
Calc Guide

Chapter 13
Calc as a Simple Database

A guide for users and macro programmers

Copyright

This document is Copyright © 2005–2011 by its contributors as listed below. You may distribute it
and/or modify it under the terms of either the GNU General Public License
(http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
Andrew Pitonyak
Barbara Duprey
Hal Parker
Simon Brydon

Feedback
Please direct any comments or suggestions about this document to:
documentation@libreoffice.org

Acknowledgments
This chapter is based on Chapter 13 of the OpenOffice.org 3.3 Calc Guide, written by Andrew
Pitonyak.

Publication date and software version
Published 5 May 2011. Based on LibreOffice 3.3.

Note for Mac users

Some keystrokes and menu items are different on a Mac from those used in Windows and Linux.
The table below gives some common substitutions for the instructions in this chapter. For a more
detailed list, see the application Help.

Windows/Linux Mac equivalent Effect

Tools → Options menu
selection

LibreOffice → Preferences Access setup options

Right-click Control+click Open context menu

Ctrl (Control) z (Command) Used with other keys

F5 Shift+z+F5 Open the Navigator

F11 z+T Open Styles & Formatting window

Documentation for LibreOffice is available at www.libreoffice.org

http://www.libreoffice.org/
mailto:documentation@libreoffice.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Contents

Copyright... 2

Note for Mac users...2

Introduction..4

Associating a range with a name...5

Named range...5

Database range...8

Sorting...10

Filters... 11

Auto filters...12

Standard filters..12

Advanced filters...15

Manipulating filtered data..18

Calc functions similar to database functions..18

Count and sum cells that match conditions: COUNTIF and SUMIF...19

Ignore filtered cells using SUBTOTAL...20

Using formulas to find data..21
Search a block of data using VLOOKUP...21
Search a block of data using HLOOKUP..21
Search a row or column using LOOKUP...22
Use MATCH to find the index of a value in a range...22
Examples..22

ADDRESS returns a string with a cell’s address..23

INDIRECT converts a string to a cell or range...24

OFFSET returns a cell or range offset from another..24

INDEX returns cells inside a specified range...25

Database-specific functions...27

Conclusion...28

Calc as a Simple Database 3

Introduction

A Calc document is a very capable database, providing sufficient functionality to satisfy the needs
of many users. This chapter presents the capabilities of a Calc document that make it suitable as a
database tool. Where applicable, the functionality is explained using both the GUI (Graphical User
Interface) and macros.

Note

Although this document was initially created for macro programmers, the content
should be accessible to all users. If you do not use macros, then skip those portions
that deal with macros. On the other hand, if you want to learn more about macros, be
certain to check out Andrew Pitonyak’s book OpenOffice.org Macros Explained.

In a database, a record is a group of related data items treated as a single unit of information. Each
item in the record is called a field. A table consists of records. Each record in a table has the same
structure. A table can be visualized as a series of rows and columns. Each row in the table
corresponds to a single record and each column corresponds to the fields. A spreadsheet in a Calc
document is similar in structure to a database table. Each cell corresponds to a single field in a
database record. For many people, Calc implements sufficient database functionality that no other
database program or functionality is required.

While teaching, a spreadsheet might be used as a grading program. Each row represents a single
student. The columns represent the grades received on homework, labs, and tests (see Table 1).
The strong calculation capability provided in a spreadsheet makes this an excellent choice.

Table 1. Simple grading spreadsheet

A B C D E F G

1 Name Test 1 Test 2 Quiz 1 Quiz 2 Average Grade

2 Andy 95 93 93 92 93.25

3 Betty 87 92 65 73 79.25

4 Bob 95 93 93 92 93.25

5 Brandy 45 65 92 85 71.75

6 Frank 95 93 85 92 91.25

7 Fred 87 92 65 73 79.25

8 Ilsub 70 85 97 79 82.75

9 James 45 65 97 85 73

10 Lisa 100 97 100 93 97.5

11 Michelle 100 97 100 65 90.5

12 Ravi 87 92 86 93 89.5

13 Sal 45 65 100 92 75.5

14 Ted 100 97 100 85 95.5

15 Tom 70 85 93 65 78.25

16 Whil 70 85 93 97 86.25

Tip
Although the choice to associate a row to a record rather than a column is arbitrary, it
is almost universal. In other words, you are not likely to hear someone refer to a
column of data as a single database record.

4 Calc as a Simple Database

Associating a range with a name

In a Calc document, a range refers to a contiguous group of cells containing at least one cell. You
can associate a meaningful name to a range, which allows you to refer to the range using the
meaningful name. You can create either a database range, which has some database-like
functionality, or a named range, which does not. A name is usually associated with a range for one
of three reasons:

1) Associating a range with a name enhances readability by using a meaningful name.

2) If a range is referenced by name in multiple locations, you can point the name to another
location and all references point to the new location.

3) Ranges associated to a name are shown in the Navigator, which is available by pressing

the F5 key or clicking on the icon. The Navigator allows for quick navigation to the
associated ranges.

Named range
The most common usage of a named range is, as its name implies, to associate a range of cells to
a meaningful name. For example, create a range named Scores, and then use the following
equation: =SUM(Scores). To create a named range, select the range to define. Use Insert →
Names → Define to open the Define Names dialog. Use the Define Names dialog to add and
modify one named range at a time.

Figure 1. Define a named range.

In a macro, a named range is accessed, created, and deleted using the NamedRanges property of
a Calc document. Use the methods hasByName(name) and getByName(name) to verify and
retrieve a named range. The method getElementNames() returns an array containing the names of
all named ranges. The NamedRanges object supports the method addNewByname, which accepts
four arguments; the name, content, position, and type. The macro in Listing 1 creates a named
range, if it does not exist, that references a range of cells.

Associating a range with a name 5

Listing 1. Create a named range that references $Sheet1.$B$3:$D$6.

Sub AddNamedRange()
 Dim oRange ' The created range.
 Dim oRanges ' All named ranges.
 Dim sName$ ' Name of the named range to create.
 Dim oCell ' Cell object.
 Dim s$

 sName$ = "MyNRange"
 oRanges = ThisComponent.NamedRanges
 If NOT oRanges.hasByName(sName$) Then
 REM Obtain the cell address by obtaining the cell
 REM and then extracting the address from the cell.
 Dim oCellAddress As new com.sun.star.table.CellAddress
 oCellAddress.Sheet = 0 'The first sheet.
 oCellAddress.Column = 1 'Column B.
 oCellAddress.Row = 2 'Row 3.

 REM The first argument is the range name.
 REM The second argument is the formula or expression to use.
 REM The second argument is usually a string that
 REM defines a range.
 REM The third argument specifies the base address for
 REM relative cell references.
 REM The fourth argument is a set of flags that define
 REM how the range is used, but most ranges use 0.
 REM The fourth argument uses values from the
 REM NamedRangeFlag constants (see Table 2).
 s$ = "$Sheet1.$B$3:$D$6"
 oRanges.addNewByName(sName$, s$, oCellAddress, 0)
 End If
 REM Get a range using the created named range.
 oRange = ThisComponent.NamedRanges.getByName(sName$)

 REM Print the string contained in cell $Sheet1.$B$3
 oCell = oRange.getReferredCells().getCellByPosition(0,0)
 Print oCell.getString()
End Sub

The method addNewByname() accepts four arguments; the name, content, position, and type. The
fourth argument to the method addNewByName() is a combination of flags that specify how the
named range will be used (see Table 2). The most common value is 0, which is not a defined
constant value.

6 Calc as a Simple Database

Table 2. com.sun.star.sheet.NamedRangeFlag constants.

Value Name Description

1 FILTER_CRITERIA The range contains filter criteria.

2 PRINT_AREA The range can be used as a print range.

4 COLUMN_HEADER The range can be used as column headers for printing.

8 ROW_HEADER The range can be used as row headers for printing.

The third argument, a cell address, acts as the base address for cells referenced in a relative way.
If the cell range is not specified as an absolute address, the referenced range will be different
based on where in the spreadsheet the range is used. The relative behavior is illustrated in Listing
2, which also illustrates another usage of a named range—defining an equation. The macro in
Listing 2 creates the named range AddLeft, which refers to the equation A3+B3 with C3 as the
reference cell. The cells A3 and B3 are the two cells directly to the left of C3, so, the equation
=AddLeft() calculates the sum of the two cells directly to the left of the cell that contains the
equation. Changing the reference cell to C4, which is below A3 and B3, causes the AddLeft
equation to calculate the sum of the two cells that are to the left on the previous row.

Listing 2. Create the AddLeft named range.

Sub AddNamedFunction()
 Dim oSheet 'Sheet that contains the named range.
 Dim oCellAddress 'Address for relative references.
 Dim oRanges 'The NamedRanges property.
 Dim oRange 'Single cell range.
 Dim sName As String 'Name of the equation to create.

 sName = "AddLeft"
 oRanges = ThisComponent.NamedRanges
 If NOT oRanges.hasByName(sName) Then
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("C3")
 oCellAddress = oRange.getCellAddress()
 oRanges.addNewByName(sName, "A3+B3", oCellAddress, 0)
 End If
End Sub

Tip
Listing 2 illustrates two capabilities that are not widely known. A named range can
define a function. Also, the third argument acts as the base address for cells
referenced in a relative way.

Select the range containing the headers and the data and then use Insert → Names → Create to
open the Create Names dialog (see Figure 2), which allows you to simultaneously create multiple
named ranges based on the top row, bottom row, right column or left column. If you choose to
create ranges based on the top row, one named range is created for each column header—the
header is not included in the named range. Although the header is not included in the range, the
text in the header is used to name the range.

Associating a range with a name 7

Figure 2. Define a named range.

The macro in Listing 3 creates three named ranges based on the top row of a named range.

Listing 3. Create many named ranges.

Sub AddManyNamedRanges()
 Dim oSheet 'Sheet that contains the named range.
 Dim oAddress 'Range address.
 Dim oRanges 'The NamedRanges property.
 Dim oRange 'Single cell range.

 oRanges = ThisComponent.NamedRanges
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("A1:C20")
 oAddress = oRange.getRangeAddress()
 oRanges.addNewFromTitles(oAddress, _
 com.sun.star.sheet.Border.TOP)
End Sub

The constants in Table 3 determine the location of the headers when multiple ranges are created
using the method addNewFromTitles().

Table 3. com.sun.star.sheet.Border constants.

Value Name Description

0 TOP Select the top border.

1 BOTTOM Select the bottom border.

2 RIGHT Select the right border.

3 LEFT Select the left border.

Caution It is possible to create multiple named ranges with the same name. Creating
multiple ranges with a single command increases the likelihood that multiple
ranges will be created with the same name—avoid this if possible.

Database range
Although a database range can be used as a regular named range, a database range also defines
a range of cells in a spreadsheet to be used as a database. Each row in a range corresponds to a

8 Calc as a Simple Database

record and each cell corresponds to a field. You can sort, group, search, and perform calculations
on the range as if it were a database.

A database range provides behavior that is useful when performing database related activities. For
example, you can mark the first row as headings. To create, modify, or delete a database range,
use Data → Define Range to open the Define Data Range dialog (see Figure 3). When you first
define a range, the Modify button shown in the example is labeled New.

Figure 3. Define a database range.

In a macro, a database range is accessed, created, and deleted from the DatabaseRanges
property. The macro in Listing 4 creates a database range named MyName and sets the range to
be used as an auto filter.

Listing 4. Create a database range and an auto filter.

Sub AddNewDatabaseRange()
 Dim oRange 'DatabaseRange object.
 Dim oAddr 'Cell address range for the database range.
 Dim oSheet 'First sheet, which will contain the range.
 Dim oDoc 'Reference ThisComponent with a shorter name.

 oDoc = ThisComponent
 If NOT oDoc.DatabaseRanges.hasByName("MyName") Then
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("A1:F10")

Associating a range with a name 9

 oAddr = oRange.getRangeAddress()
 oDoc.DatabaseRanges.addNewByName("MyName", oAddr)
 End If
 oRange = oDoc.DatabaseRanges.getByName("MyName")
 oRange.AutoFilter = True
End Sub

Sorting

The sorting mechanism in a Calc document rearranges the data in the sheet. The first step in
sorting data is to select the data that you want to sort. To sort the data in Table 1, select the cells
from A1 to G16—if you include the column headers, indicate this in the sort dialog (see Figure 5).
Use Data → Sort to open the Sort dialog (see Figure 4). You can sort by up to three columns or
rows at a time.

Figure 4. Sort by the Name column.

Click on the Options tab (see Figure 5) to set the sort options. Check the Range contains column
labels checkbox to prevent column headers from being sorted with the rest of the data. The Sort
by list box in Figure 4 displays the columns using the column headers if the Range contains
column labels checkbox in Figure 5 is checked. If the Range contains column labels checkbox
is not checked, however, then the columns are identified by their column name; Column A, for
example.

Normally, sorting the data causes the existing data to be replaced by the newly sorted data. The
Copy sort results to checkbox, however, causes the selected data to be left unchanged and a
copy of the sorted data is copied to the specified location. You can either directly enter a target
address (Sheet3.A1, for example) or select a predefined range.

Check the Custom sort order checkbox to sort based on a predefined list of values. To set your
own predefined lists, use Tools → Options → LibreOffice Calc → Sort Lists and then enter your
own sort lists. Predefined sort lists are useful for sorting lists of data that should not be sorted
alphabetically or numerically. For example, sorting days based on their name.

10 Calc as a Simple Database

Figure 5. Set sort options.

Caution

When a cell is moved during a sort operation, external references to that cell are
not updated. If a cell that contains a relative reference to another cell is moved, the
reference is relative to the new position when sorting is finished. Know the
behavior of references during sorting and do not be alarmed; this is almost always
what you want—because the reference is to the right or left in the same row. Also,
we have not found a spreadsheet program that exhibits a different behavior for
references while sorting.

Filters

Use filters to limit the visible rows in a spreadsheet. Generic filters, common to all sorts of data
manipulations, are automatically provided by the auto filter capability. You can also define your own
filters.

Caution
After applying a filter, some rows are visible and some rows are not. If you select
multiple rows in one operation, you will also select the invisible rows contained
between the selected visible rows. Operations, such as delete, act on all of the
selected rows. To avoid this problem, you must individually select each of the
filtered rows using the control key.

Filters 11

Auto filters
Use auto filters to quickly create easily accessible filters found to be commonly used in many
different types of applications. After creating an auto filter for a specific column, a combo box is
added to the column. The combo box provides quick access to each of the auto filter types.

• The All auto filter causes all rows to be visible.

• The Standard auto filter opens the Standard Filter dialog and is the same as the standard
filter.

• The Top 10 auto filter displays the ten rows with the largest value. If the value 70 is in the
top ten values, then all rows containing the value 70 in the filtered column are displayed. In
other words, more than ten rows may be displayed.

• An auto filter entry is created for each unique entry in the column.

To create an auto filter, first select the columns to filter. For example, using the data in Table 1,
select data in columns B and C. If you do not select the title rows, Calc asks if the title row or the
current row should be used. Although you can place the auto filter in any row, only the rows below
the auto filter are filtered. Use Data → Filter → AutoFilter to insert the auto filter combo box in the
appropriate cell. Finally, use the drop-down arrow to choose an appropriate auto filter (see Figure
6).

Figure 6: Use an auto filter with column C

Remove an auto filter by repeating the steps to create the auto filter—in other words, the menu
option acts as a toggle to turn the auto filter on and off. When an auto filter is removed, the combo
box is removed from the cell. The macro in Listing 4 demonstrates creating an auto filter for a
range.

Standard filters
Use Data → Filter → Standard Filter to open Standard Filter dialog (see Figure 7) and limit the
view based on 1 to 3 filter conditions. Use Data → Filter → Remove Filter to turn off the filter.

12 Calc as a Simple Database

Figure 7: Use the standard filter

The macro in Listing 5 creates a simple filter for the first sheet.

Listing 5. Create a simple sheet filter.

Sub SimpleSheetFilter()
 Dim oSheet ' Sheet that will contain the filter.
 Dim oFilterDesc ' Filter descriptor.
 Dim oFields(0) As New com.sun.star.sheet.TableFilterField

 oSheet = ThisComponent.getSheets().getByIndex(0)

 REM If argument is True, creates an empty filter
 REM descriptor. If argument is False, create a
 REM descriptor with the previous settings.
 oFilterDesc = oSheet.createFilterDescriptor(True)

 With oFields(0)
 REM You could use the Connection property to indicate
 REM how to connect to the previous field. This is
 REM the first field, so this is not required.
 '.Connection = com.sun.star.sheet.FilterConnection.AND
 '.Connection = com.sun.star.sheet.FilterConnection.OR

 REM The Field property is the zero based column
 REM number to filter. If you have the cell, you
 REM can use .Field = oCell.CellAddress.Column.
 .Field = 5

 REM Compare using a numeric or a string?

Filters 13

 .IsNumeric = True

 REM The NumericValue property is used
 REM because .IsNumeric = True from above.
 .NumericValue = 80

 REM If IsNumeric was False, then the
 REM StringValue property would be used.
 REM .StringValue = "what ever"

 REM Valid operators include EMPTY, NOT_EMPTY, EQUAL,
 REM NOT_EQUAL, GREATER, GREATER_EQUAL, LESS,
 REM LESS_EQUAL, TOP_VALUES, TOP_PERCENT,
 REM BOTTOM_VALUES, and BOTTOM_PERCENT
 .Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL
 End With

 REM The filter descriptor supports the following
 REM properties: IsCaseSensitive, SkipDuplicates,
 REM UseRegularExpressions,
 REM SaveOutputPosition, Orientation, ContainsHeader,
 REM CopyOutputData, OutputPosition, and MaxFieldCount.
 oFilterDesc.setFilterFields(oFields())
 oFilterDesc.ContainsHeader = True
 oSheet.filter(oFilterDesc)
End Sub

When a filter is applied to a sheet, it replaces any existing filter for the sheet. Setting an empty filter
in a sheet will therefore remove all filters for that sheet (see Listing 6).

Listing 6. Remove the current sheet filter.

Sub RemoveSheetFilter()
 Dim oSheet ' Sheet to filter.
 Dim oFilterDesc ' Filter descriptor.

 oSheet = ThisComponent.getSheets().getByIndex(0)
 oFilterDesc = oSheet.createFilterDescriptor(True)
 oSheet.filter(oFilterDesc)
End Sub

Listing 7 demonstrates a more advanced filter that filters two columns and uses regular
expressions. Some unexpected behavior occurred while working with Listing 7. Although you can
create a filter descriptor using any sheet cell range, the filter applies to the entire sheet.

Listing 7. A simple sheet filter using two columns.

Sub SimpleSheetFilter_2()
 Dim oSheet ' Sheet to filter.
 Dim oRange ' Range to be filtered.
 Dim oFilterDesc ' Filter descriptor.
 Dim oFields(1) As New com.sun.star.sheet.TableFilterField

 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("E12:G19")

14 Calc as a Simple Database

 REM If argument is True, creates an
 REM empty filter descriptor.
 oFilterDesc = oRange.createFilterDescriptor(True)

 REM Setup a field to view cells with content that
 REM start with the letter b.
 With oFields(0)
 .Field = 0 ' Filter column A.
 .IsNumeric = False ' Use a string, not a number.
 .StringValue = "b.*" ' Everything starting with b.
 .Operator = com.sun.star.sheet.FilterOperator.EQUAL
 End With
 REM Setup a field that requires both conditions and
 REM this new condition requires a value greater or
 REM equal to 70.
 With oFields(1)
 .Connection = com.sun.star.sheet.FilterConnection.AND
 .Field = 5 ' Filter column F.
 .IsNumeric = True ' Use a number
 .NumericValue = 70 ' Values greater than 70
 .Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL
 End With

 oFilterDesc.setFilterFields(oFields())
 oFilterDesc.ContainsHeader = False
 oFilterDesc.UseRegularExpressions = True
 oSheet.filter(oFilterDesc)
End Sub

Advanced filters
An advanced filter supports up to eight filter conditions, as opposed to the three supported by the
simple filter. The criteria for an advanced filter is stored in a sheet. The first step in creating an
advanced filter is entering the filter criteria into the spreadsheet.

1) Select an empty space in the Calc document. The empty space may reside in any sheet in
any location in the Calc document.

2) Duplicate the column headings from the area to be filtered into the area that will contain the
filter criteria.

3) Enter the filter criteria underneath the column headings (see Table 4). The criterion in each
column of a row is connected with AND. The criteria from each row are connected with OR.

Table 4. Example advanced filter criteria

Name Test 1 Test 2 Quiz 1 Quiz 2 Average Grade

="Andy" >80

<80

Filters 15

Tip
Define named ranges to reference your advanced filter criteria and any destination
ranges for filtered data (see Figure 1). Each appropriately configured named range is
available in drop down list boxes in the Advanced Filter dialog (see Figure 8).

After creating one or more sets of filter criteria, apply an advanced filter as follows:

1) Select the sheet ranges that contain the data to filter.

2) Use Data → Filter → Advanced Filter to open the Advanced Filter dialog (see Figure 8).

3) Select the range containing the filter criteria and any other relevant options.

4) Click OK.

Applying an advanced filter using a macro is simple (see Listing 8). The cell range containing the
filter criteria is used to create a filter descriptor, which is then used to filter the range containing the
data.

Figure 8. Apply an advanced filter using a previously defined named range.

Listing 8. Use an advanced filter.

Sub UseAnAdvancedFilter()
 Dim oSheet 'A sheet from the Calc document.
 Dim oRanges 'The NamedRanges property.
 Dim oCritRange 'Range that contains the filter criteria.
 Dim oDataRange 'Range that contains the data to filter.
 Dim oFiltDesc 'Filter descriptor.

 REM Range that contains the filter criteria
 oSheet = ThisComponent.getSheets().getByIndex(1)
 oCritRange = oSheet.getCellRangeByName("A1:G3")

 REM You can also obtain the range containing the
 REM filter criteria from a named range.
 REM oRanges = ThisComponent.NamedRanges
 REM oRange = oRanges.getByName("AverageLess80")
 REM oCritRange = oRange.getReferredCells()

 REM The data that you want to filter
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oDataRange = oSheet.getCellRangeByName("A1:G16")

16 Calc as a Simple Database

 oFiltDesc = oCritRange.createFilterDescriptorByObject(oDataRange)
 oDataRange.filter(oFiltDesc)
End Sub

Change properties on the filter descriptor to change the behavior of the filter (see Table 5).

The filter created in Listing 8 filters the data in place. Modify the OutputPosition property to specify
a different output position (see Listing 9). The filter descriptor must be modified before the filter is
applied.

Table 5. Advanced filter properties.

Property Comment

ContainsHeader Boolean (true or false) that specifies if the first row (or column)
contains headers which should not be filtered.

CopyOutputData Boolean that specifies if the filtered data should be copied to another
position in the document.

IsCaseSensitive Boolean that specifies if the case of letters is important when
comparing entries.

Orientation Specifies if columns
(com.sun.star.table.TableOrientation.COLUMNS) or rows
(com.sun.star.table.TableOrientation.ROWS) are filtered.

OutputPosition If if CopyOutputData is True , specifies the position where filtered
data are to be copied.

SaveOutputPosition Boolean that specifies if the OutputPosition position is saved for
future calls.

SkipDuplicates Boolean that specifies if duplicate entries are left out of the result.

UseRegularExpressions Boolean that specifies if the filter strings are interpreted as regular
expressions.

Listing 9. Copy filtered results to a different location.

 REM Copy the output data rather than filter in place.
 oFiltDesc.CopyOutputData = True

 REM Create a CellAddress and set it for Sheet3,
 REM Column B, Row 4 (remember, start counting with 0)
 Dim x As New com.sun.star.table.CellAddress
 x.Sheet = 2
 x.Column = 1
 x.Row = 3
 oFiltDesc.OutputPosition = x

(Advanced material.) The OutputPosition property returns a copy of a struct. Because a copy is
returned, it is not possible to set the individual values directly. For example,
oFiltDesc.OutputPosition.Row = 2 does not work (because you set the Row on the copy to 2, but
do not change the original).

Filters 17

Manipulating filtered data
Filtered data copied to a new location may be selected, modified, and deleted at will. Data that is
not copied, however, requires special attention because rows that do not match the filter criteria
are simply hidden. LibreOffice behaves differently depending on how the cells became hidden and
what operation is done.

Cells may be hidden using an outline, data filter, or the hide command. When data is moved by
dragging or using cut and paste, all of the cells are moved—including the hidden cells. When
copying data, however, filtered data includes only the visible cells and data hidden using an outline
or the hide command copies all of the data.

Calc functions similar to database functions

Although every Calc function can be used for database manipulation, the functions in Table 6 are
more commonly used as such. Some functions’ names differ only by the letter appended at the
end; AVERAGE and AVERAGEA, for example. Functions that do not end with the letter A operate
only on numeric values and cells that contain text or are empty are ignored. The corresponding
function whose name ends with the letter A, treats text values as a number with the value of zero;
blank cells are still ignored.

Table 6. Functions frequently used as database functions.

Function Description

AVERAGE Return the average. Ignore empty cells and cells that contain text.

AVERAGEA Return the average. The value of text is 0 and empty cells are ignored.

COUNT Count the number of numeric entries; text entries are ignored.

COUNTA Count the number of non-empty entries.

COUNTBLANK Return the number of empty cells.

COUNTIF Return the number of cells that meet the search criteria.

HLOOKUP Search for a specific value across the columns in the first row of an array.
Return the value from a different row in the same column.

INDEX Return the content of a cell, specified by row and column number or an
optional range name.

INDIRECT Return the reference specified by a text string.

LOOKUP Return the contents of a cell either from a one-row or one-column range or
from an array.

MATCH Search an array and return the relative position of the found item.

MAX Return the maximum numeric value in a list of arguments.

MAXA Return the maximum numeric value in a list of arguments. The value of text
is 0.

MIN Return the minimum numeric value in a list of arguments.

MINA Return the minimum numeric value in a list of arguments. The value of text
is 0.

MEDIAN Return the median of a set of numbers.

18 Calc as a Simple Database

Function Description

MODE Return the most common value in a data set. If there are several values with
the same frequency, it returns the smallest value. An error occurs when a
value doesn’t appear twice.

OFFSET Return the value of a cell offset by a certain number of rows and columns
from a given reference point.

PRODUCT Return the product of the cells.

STDEV Estimate the standard deviation based on a sample.

STDEVA Estimate the standard deviation based on a sample. The value of text is 0.

STDEVP Calculate the standard deviation based on the entire population.

STDEVPA Calculate the standard deviation based on the entire population.

SUBTOTAL Calculate a specified function based on a subset created using AutoFilters.

SUM Return the sum of the cells.

SUMIF Calculate the sum for the cells that meet the search criteria.

VAR Estimate the variance based on a sample.

VARA Estimate the variance based on a sample. The value of text is 0.

VARP Estimate the variance based on the entire population.

VARPA Estimate the variance based on the entire population. The value of a text is
0.

VLOOKUP Search for a specific value across the rows in the first column of an array.
Returns the value from a different column in the same row.

Most of the functions in Table 6 require no explanation, either because they are well understood
(SUM, for example) or because if you need to use them then you know what they are (STDEV, for
example). Unfortunately, some of the more useful functions are infrequently used because they are
not well understood.

Count and sum cells that match conditions: COUNTIF and SUMIF
The COUNTIF and SUMIF functions calculate their values based on search criteria. The search
criteria can be a number, expression, text string, or even a regular expression. The search criteria
can be contained in a referenced cell or it can be included directly in the function call.

The COUNTIF function counts the number of cells in a range that match specified criteria. The first
argument to COUNTIF specifies the range to search and second argument is the search criteria.
Table 7 illustrates different search criteria using the COUNTIF function referencing the data shown
in Table 1.

The first two arguments for SUMIF serve the same purpose as the arguments for COUNTIF; the
range that contains the cells to search and the search criteria. The third and final argument for
SUMIF specifies the range to sum. For each cell in the search range that matches the search
criteria, the corresponding cell in the sum range is added into the sum.

Calc functions similar to database functions 19

Table 7. Examples of search criteria for the COUNTIF and SUMIF functions.

Criteria Type Function Result Description

Number =COUNTIF(B1:C16; 95) 3 Finds numeric values of 95.

Text =COUNTIF(B1:C16; "95") 3 Finds numeric or text values
of 95.

Expression =COUNTIF(B1:C16; ">95") 6 Finds numeric values
greater than 95.

Expression =COUNTIF(B1:C16; 2*45+5) 3 Finds only numeric values
of 95.

Regular
expression

=COUNTIF(B1:C16; "9.*") 12 Finds numbers or text that
start with 9.

Reference a cell =COUNTIF(B1:C16; B3) 3 Finds a number or number
and text depending on the
data type in cell B3.

Regular
expression

=SUMIF(A1:A16; "B.*"; B1:B16) 227 Sum Column B for names in
Col. A starting with the
letter B.

Ignore filtered cells using SUBTOTAL
The SUBTOTAL function applies a function (see Table 8) to a range of data, but it ignores cells
hidden by a filter and cells that already contain a SUBTOTAL. For example, =SUBTOTAL(2,
"B2:B16") counts the number of cells in B2:B16 that are not hidden by a filter.

Table 8. Function index for the SUBTOTAL function.

Function index Function

1 AVERAGE

2 COUNT

3 COUNTA

4 MAX

5 MIN

6 PRODUCT

7 STDEV

8 STDEVP

9 SUM

10 VAR

11 VARP

Tip

Do not forget that the SUBTOTAL function ignores cells that use the SUBTOTAL
function. Say you have a spreadsheet that tracks investments. The retirement
investments are grouped together with a subtotal. The same is true of regular
investments. You can use a single subtotal that includes the entire range without
worrying about the subtotal cells.

20 Calc as a Simple Database

Using formulas to find data
Calc offers numerous methods to find data in a sheet. For example, Edit → Find & Replace moves
the display cursor based on simple and advanced searching. Use Data → Filter to limit what is
displayed rather than simply moving the cursor. Calc also offers lookup functions used in formulas,
for example a formula to look up a student’s grade based on their test score.

Search a block of data using VLOOKUP
Use VLOOKUP to search the first column (columns are vertical) of a block of data and return the
value from another column in the same row. For example, search the first column for the name
“Fred” and then return the value in the cell two columns to the right. VLOOKUP supports two
forms:

VLOOKUP(search_value; search_range; return_column_index)
VLOOKUP(search_value; search_range; return_column_index; sort_order)

The first argument, search_value, identifies the value to find. The search value can be text, a
number, or a regular expression. For example, Fred searches for the text Fred, 4 searches for the
number 4, and F.* is the regular expression for finding something that starts with the letter F.

The second argument, search_range, identifies the cells to search; only the first column is
searched. For example, B3:G10 searches the same sheet containing the VLOOKUP formula and
Sheet2.B3:G10 searches the range B3:G10 on the sheet named Sheet2.

The return_column_index identifies the column to return; a value of 1 returns the first column
in the range. The statement =VLOOKUP("Bob"; A1:G9; 1) finds the first row in A1:G9
containing the text Bob, and returns the value in the first column. The first column is the searched
column, so the text Bob is returned. If the column index is 2, then the value in the cell to the right
of Bob is returned: column B.

The final column, sort_order, is optional. The default value for sort_order is 1, which
specifies that the first column is sorted in ascending order; a value of 0 specifies that the data is
not sorted. A non-sorted list is searched by sequentially checking every cell in the first column for
an exact match. If an exact match is not found, the text #N/A is returned.

A more efficient search routine is used if the data is sorted in ascending order. If one exact match
exists, the returned value is the same as for a non-sorted list; but it is faster. If a match does not
exist, the largest value in the column that is less than or equal to the search value is returned. For
example, searching for 7 in (3, 5, 10) returns 5 because 7 is between 5 and 10. Searching for 27
returns 10, and searching for 2 returns #N/A because there is no match and no value less than 2.

Use VLOOKUP when:

• The data is arranged in rows and you want to return data from the same row. For example,
student names with test and quiz scores to the right of the student’s name.

• Searching the first column of a range of data.

Search a block of data using HLOOKUP
Use HLOOKUP to search the first row (rows are horizontal) of a block of data and return the value
from a row in the same column. HLOOKUP supports the same form and arguments as VLOOKUP:

HLOOKUP(search_value; search_range; return_row_index)
HLOOKUP(search_value; search_range; return_row_index; sort_order)

Use HLOOKUP when:

• The data is arranged in columns and you want to return data from the same column. For
example, student names with test and quiz scores underneath the student’s name.

• Searching the first row of a range of data.

Calc functions similar to database functions 21

Search a row or column using LOOKUP
LOOKUP is similar to HLOOKUP and VLOOKUP. The search range for the LOOKUP function is a
single sorted row or column. LOOKUP has two forms:

LOOKUP(search_value; search_range)
LOOKUP(search_value; search_range; return_range)

The search value is the same as HLOOKUP and VLOOKUP. The search range, however, must be
a single row or a single column; for example, A7:A12 (values in column A) or C5:Q5 (values in row
5). If the return_range is omitted, the matched value is returned. Using LOOKUP without a return
range is the same as using HLOOKUP or VLOOKUP with a column index of 1.

The return range must be a single row or column containing the same number of elements as the
search range. If the search value is found in the fourth cell in the search range, then the value in
the fourth cell in the return range is returned. The return range can have a different orientation than
the search range. In other words, the search range can be a row and the return range may be a
column.

Use LOOKUP when:

• The search data is sorted in ascending order.

• The search data is not stored in the same row, column, or orientation as the return data.

Use MATCH to find the index of a value in a range
Use MATCH to search a single row or column and return the position that matches the search
value. Use MATCH to find the index of a value in a range. The supported forms for MATCH are as
follows:

=MATCH(search_value; search_range)
=MATCH(search_value; search_range; search_type)

The search value and search range are the same as for LOOKUP. The final argument, search
type, controls how the search is performed. A search type of 1, sorted in ascending order, is the
default. A search type of -1 indicates that the list is sorted in descending order. A search type of 0
indicates that the list is not sorted. Regular expressions can only be used on an unsorted list.

Use MATCH when:

• You need an index into the range rather than the value.

• The search data is in descending order and the data is large enough that the data must be
searched assuming that it is sorted; because it is faster to sort a sorted list.

Examples
Consider the data in Table 1. Each student’s information is stored in a single row. Write a formula
to return the average grade for Fred. The problem can be restated as Search column A in the
range A1:G16 for Fred and return the value in column F (column F is the sixth column). The
obvious solution is =VLOOKUP("Fred"; A2:G16; 6). Equally obvious is
=LOOKUP("Fred"; A2:A16; F2:F16).

It is common for the first row in a range to contain column headers. All of the search functions
check the first row to see if there is a match and then ignore it if it does not contain a match, in
case the first row is a header.

What if the column heading Average is known, but not the column containing the average? Find
the column containing Average rather than hard coding the value 6. A slight modification using
MATCH to find the column yields
=VLOOKUP("Fred"; A2:G16; MATCH("Average"; A1:G1; 0)); notice that the heading is

22 Calc as a Simple Database

not sorted. As an exercise, use HLOOKUP to find Average and then MATCH to find the row
containing Fred.

As a final example, write a formula to assign grades based on a student’s average score. Assume
that a score less than 51 is an F, less than 61 is an E, less than 71 is a D, less than 81 is a C, less
than 91 is a B, and 91 to 100 is an A. Assume that the values in Table 9 are in Sheet2.

Table 9. Associate scores to a grade.

A B

1 Score Grade

2 0 F

3 51 E

4 61 D

5 71 C

6 81 B

7 91 A

The formula =VLOOKUP(83; $Sheet2.$A$2:$B$7; 2) is an obvious solution. Dollar signs are
used so that the formula can be copied and pasted to a different location and it will still reference
the same values in Table 9.

ADDRESS returns a string with a cell’s address
Use ADDRESS to return a text representation of a cell address based on the row, column, and
sheet; ADDRESS is frequently used with MATCH. The supported forms for ADDRESS are as
follows:

ADDRESS(row; column)
ADDRESS(row; column; abs)
ADDRESS(row; column; abs; sheet)

The row and column are integer values where ADDRESS(1; 1) returns A1. The abs argument
specifies which portion is considered absolute and which portion is considered relative (see Table
10); an absolute address is specified using the $ character. The sheet is included as part of the
address only if the sheet argument is used. The sheet argument is treated as a string. Using
ADDRESS(MATCH("Bob";A1:A5 ; 0); 2) with the data in Table 9 returns B2.

Tip
Calc supports numerous powerful functions that are not discussed here. For example,
the ROW, COLUMN, ROWS, and COLUMNS statements are not discussed; a curious
person would investigate these functions.

Calc functions similar to database functions 23

Table 10. Values supported by the abs argument to ADDRESS.

Value Description

1 Use absolute addressing. This is the default value if the argument is missing or an
invalid value is used. ADDRESS(2; 5; 1) returns E2.

2 Use an absolute row reference and a relative column reference. ADDRESS(2; 5; 2;
"Blah") returns Blah.E$2.

3
Use a relative row reference and an absolute column reference. ADDRESS(2; 5; 3)
returns $E2.

4 Use relative addressing. ADDRESS(2; 5; 4) returns E2.

INDIRECT converts a string to a cell or range
Use INDIRECT to convert a string representation of a cell or range address to a reference to the
cell or range. Table 11 contains examples accessing data as shown in Table 9.

Table 11. Examples using INDIRECT.

Example Comment

INDIRECT("A2") Returns cell A2, which contains Bob.

INDIRECT(G1) If Cell G1 contains the text A2, then this returns Bob.

SUM(INDIRECT("B1:B5")) Returns the sum of the range B1:B5, which is 194.

INDIRECT(ADDRESS(2; 1)) Returns the contents of cell A2, which is Bob.

OFFSET returns a cell or range offset from another
Use OFFSET to return a cell or range offset by a specified number of rows and columns from a
given reference point. The first argument, specifies the reference point. The second and third
arguments specify the number of rows and columns to move from the reference point; in other
words, where the new range starts. The OFFSET function has the following syntax:

OFFSET(reference; rows; columns)
OFFSET(reference; rows; columns; height)
OFFSET(reference; rows; columns; height; width)

Tip
If the width or height is included, the OFFSET function returns a range. If both the
width and height are missing, a cell reference is returned.

If the height or width are missing, they default to 1. If the height is present, then a range reference
is returned rather than a cell reference. Using values from Table 1, Listing 10 uses OFFSET to
obtain the quiz scores for the student named Bob.

Listing 10. Complex example of OFFSET.

=SUM(OFFSET(INDIRECT(ADDRESS(MATCH("Bob";A1:A16; 0); 4)); 0; 0; 1; 2))

In its entirety, Listing 10 is complex and difficult to understand. Table 12 isolates each function in
Listing 10, providing an easy to understand explanation of how the example works.

24 Calc as a Simple Database

Table 12. Breakdown of Listing 10.

Function Description

MATCH("Bob";A1:A16; 0) Return 4 because Bob is the fourth entry in column A.

ADDRESS(4; 4) Return D4.

INDIRECT("D4") Convert D4 into a reference to the cell D4.

OFFSET(D4; 0; 0; 1; 2) Return the range D4:E4.

SUM(D4:E4) Return the sum of Bob’s quiz scores.

Although Listing 10 works as intended, it breaks easily and unexpectedly. Consider, for example,
what happens if the range is changed to A2:A16. MATCH returns an offset into the provided range,
so MATCH("Bob";A2:A16 ; 0) returns 3 rather than 4. ADDRESS(3; 4) returns D3 rather
than D4 and Betty’s quiz scores are returned instead of Bob’s. Listing 11 uses a slightly different
method to obtain Bob’s quiz scores.

Listing 11. Better use of OFFSET.

=SUM(OFFSET(A1; MATCH("Bob"; A1:A16; 0)-1; 3; 1; 2))

Table 13 contains a description of each function used in Listing 11. To help convince yourself that
Listing 11 is better than Listing 10, replace A1 with A2 in both Listing 11 and Table 13 and notice
that you still obtain Bob’s quiz scores.

Table 13. Breakdown of Listing 11.

Function Description

MATCH("Bob";A1:A16; 0)-1 Return 3 because Bob is the fourth entry in column A.

OFFSET(A1; 3; 3; 1; 2) Return the range D4:E4.

SUM(D4:E4) Return the sum of Bob’s quiz scores.

Tip The first argument to OFFSET can be a range so you can use a defined range name.

INDEX returns cells inside a specified range
INDEX returns the cells specified by a row and column number. The row and column number are
relative to the upper left corner of the specified reference range. For example, using
=INDEX(B2:D3; 1; 1) returns the cell B2. Table 14 lists shows the syntax for using the INDEX
function.

Calc functions similar to database functions 25

Table 14. Syntax for INDEX.

Syntax Description

INDEX(reference) Return the entire range.

INDEX(reference; row) Return the specified row in the range.

INDEX(reference; row; column) Return the cell specified by row and column. A row and
column of 1 returns the cell in the upper left corner of the
range.

INDEX(reference; row; column;
range)

A reference range can contain multiple ranges. The range
argument specifies which range to use.

The INDEX function can return an entire range, a row, or a single column (see Table 14). The
ability to index based on the start of the reference range provides some interesting uses. Using the
values shown in Table 1, Listing 12 finds and returns Bob’s quiz scores. Table 15 contains a listing
of each function used in Listing 12.

Listing 12. Return Bob’s quiz scores.

=SUM(OFFSET(INDEX(A2:G16; MATCH("Bob"; A2:A16; 0)); 0; 3; 1; 2))

Table 15. Breakdown of Listing 12.

Function Description

MATCH("Bob";A2:A16; 0) Return 3 because Bob is the third entry in column A2:A16.

INDEX(A2:A16; 3) Return A4:G4—the row containing Bob’s quiz scores.

OFFSET(A4:G4; 0; 3; 1; 2) Return the range D4:E4.

SUM(D4:E4) Return the sum of Bob’s quiz scores.

Tip
A simple range contains one contiguous rectangular region of cells. It is possible to
define a multi-range that contains multiple simple ranges. If the reference consists of
multiple ranges, you must enclose the reference or range name in parentheses.

If reference argument to the INDEX function is a multi-range, then the range argument specifies
which simple range to use (see Table 16).

Table 16. Using INDEX with a multi-range.

Function Returns

=INDEX(B2:G2; 1; 2) 93

=INDEX(B5:G5; 1; 2) 65

=INDEX((B2:G2;B5:G5); 1; 2) 93

=INDEX((B2:G2;B5:G5); 1; 2; 1) 93

=INDEX((B2:G2;B5:G5); 1; 2; 2) 65

26 Calc as a Simple Database

Database-specific functions

Although every Calc function can be used for database manipulation, the functions in Table 17 are
specifically designed for use as a database. The descriptions in Table 17 use the following terms
interchangeably: row and record, cell and field, and database and all rows.

Table 17. Database functions in a Calc document.

Function Description

DAVERAGE Return the average of all fields that matches the search criteria.

DCOUNT Count the number of records containing numeric data that match the search
criteria.

DCOUNTA Count the number of records containing text data that match the search criteria.

DGET Return the contents of a field that matches the search criteria.

DMAX Return the maximum content of a field that matches the search criteria.

DMIN Return the minimum content of a field that matches the search criteria.

DPRODUCT Return the product of the fields that matches the search criteria.

DSTDEV Calculate the standard deviation using the fields that match the search criteria.
The fields are treated as a sample.

DSTDEVP Calculate the standard deviation using the fields that match the search criteria.
The fields are treated as the entire population.

DSUM Return the sum of all fields that matches the search criteria.

DVAR Calculate the variance using the fields that match the search criteria. The fields
are treated as a sample.

DVARP Calculatesthe variance using the fields that match the search criteria. The fields
are treated as the entire population.

The syntax for the database functions are identical.

DCOUNT(database; database field; search criteria)

The database argument is the cell range that defines the database. The cell range should contain
the column labels (see Listing 13). The following examples, assume that the data from Table 1 is
placed in Sheet 1 and the filter criteria in Table 4 is placed in Sheet 2.

Listing 13. The database argument includes the headers.

=DCOUNT(A1:G16; "Test 2"; Sheet2.A1:G3)

The database field specifies the column on which the function operates after the search criteria is
applied and the data rows are selected. The database field can be specified using the column
header name or as an integer. If the column is specified as an integer, 0 specifies the entire data
range, 1 specifies the first column, 2 specifies the second column, and so on. Listing 14 calculates
the average test score for the rows that match the search criteria.

Listing 14. “Test 2” is column 3.

=DAVERAGE(A1:G16; "Test 2"; Sheet2.A1:G3)
=DAVERAGE(A1:G16; 3; Sheet2.A1:G3)

Database-specific functions 27

The search criteria is the cell range containing search criteria. The search criteria is identical to the
advanced filters; criteria in the same row is connected by AND and criteria in different rows is
connected by OR.

Conclusion

A Calc document provides sufficient database functionality to satisfy the needs of most people. The
infrequently used database functions, such as OFFSET and INDEX, are worth the time to learn
and they can save yourself time in the long run.

28 Calc as a Simple Database

	Copyright
	Note for Mac users
	Introduction
	Associating a range with a name
	Named range
	Database range

	Sorting
	Filters
	Auto filters
	Standard filters
	Advanced filters
	Manipulating filtered data

	Calc functions similar to database functions
	Count and sum cells that match conditions: COUNTIF and SUMIF
	Ignore filtered cells using SUBTOTAL
	Using formulas to find data
	Search a block of data using VLOOKUP
	Search a block of data using HLOOKUP
	Search a row or column using LOOKUP
	Use MATCH to find the index of a value in a range
	Examples

	ADDRESS returns a string with a cell’s address
	INDIRECT converts a string to a cell or range
	OFFSET returns a cell or range offset from another
	INDEX returns cells inside a specified range

	Database-specific functions
	Conclusion

