
LibORef no2

LibOBasic_02_Overview_Flat_A4_EN_v200.odt

Overview
☞ Development time: Coding 20% – Maintaining 80%

Entities Naming
Variables, constants, subs, functions, modules and libraries must be identified.
Allowed chars: unaccented chars, numbers, underscore (_).
☞ An identifier can’t start with a number nor contain a space.
 Do not use any Basic keyword to name an entity!
Easy to read names CamelCase, Name_with_separators
Explicit names IsCell(), SaveSpreadsheet()
Comments
' (apostrophe) or REM. What follows is a comment.
☞ Comments are as important as code! They apply to the current line only.

Code Indent
Indented code is easier to read. Indent each block level with Space / Tabulation .
Several Instructions On The Same Line
Use the “:” character (semicolon) to separate instructions on the same line:
Dim MyVar As Integer : MyVar = 123
Continuing An Instruction On The Next Line
Last two chars or the first line: _ (space + underscore).

Variables
Variable : a memory place. A variable contents may be modified at run-time.
 By default, variable declares are not mandatory but this is dangerous (typos lead to

double declares).
Adding Option Explicit on top of a module forces variable declaration.

Declaring Variables

Simple Variables
Dim MyVar As AType Ex : Dim MyText As String
Dim A As Byte, B As String (multiple declares)
Dim MaVar As Integer : MaVar = 123 (declare + initialize)
Array Variables
☞ See RefCard #9 “Structured Types”

Setting Non-Object Variables
MyVar = SomeValue
☞ Basic often automatically typecasts when SomeValue is not of the same type as

MyVar. Prefer explicit typecasts using the CXxx() functions (RefCard #5).

Creating/Setting Object Variables
☞ See RefCard #9 “Structured Types”

Variables Visibility
Declaring… gives visibility…

Dim MyVar As AType In the current subprogram or module.
Static MyVar As AType In the current subprogram.

☞ Persistent value between calls.
Private MyVar As AType In the current module.
Public MyVar As AType In the current library.
Global MyVar As AType In all libraries.

 Persistent value between programs!

Types
Specifies the value set a variable can carry or a function return.
Predefined Simple Types

Type name Description Initzed to
Boolean Logical values True / False.

☞ Can be seen as False = 0 ; True = other integers (-1).
False

Byte Integer numbers (8 bits), from 0 to 255. 0
Currency Currency numbers (4 decimals). 0.0000
(Decimal) Variant subtype, returned by CDec(string)

28 digits (int. part + dec. part). From 1 x 10-28 to 7,9 x 1028

(max precision 28 decimals).
☞ Used with API functions that use 64bits integers.
 Overflow does not create any runtime error.

n/a

Date Dates and hours. In fact, doubles.
Reference date (0.0) is 12/30/1899 at 00:00.

0.0

Double Floating numbers (64 bits). 0.0
Integer Integer numbers (16 bits), from -32 768 to +32 767. 0
Long 32bits int numbers, -2 147 483 648 to +2 147 483 647. 0
Object Objects. Allow to manipulate LibreOffice API objects. Null
Single Floating numbers (32 bits). 0.0
String Text (0 to 65 545 characters).

In code, strings are delimited with " (double quotes).
"" (null
length)

Variant Any type, incl. object. Empty
See also the Main types compatibility chart.
☞ Every time a type is unspecified, Variant is implicit.
☞ Integer values may be specified in hexadecimal base.

Prefix these values using &H. Ex : &HFF (decimal 255). Useful for colors.
☞ Always set initial values rather than rely upon implicit settings.
 Beware to rounding errors when using floating numbers!

Arrays, Custom Types, Collections And Objects
☞ See RefCard #9 “Structured Types”

LibreOffe RefCard

LibreOfice Basic
Overview

v. 2.0 – 04/20/2019
Beginner

Writen using LibreOffe v. 5.3.3 – Platform: All

Empty, Null And Nothing
Empty Uninitialized variable yet. Empty assignation possible.
Null Invalid contents. Null assignation possible.
Nothing (objects only) No (more) reference to the object. Assignation possible.
Functions
IsEmpty(SomeVar) Variable is empty.
IsNull(SomeObject) Unusable data.

Operators
Booleans
Not Not And And Or Or (inclusive) Xor Exclusive or
Comparisons (return True Or False)

= Strictly equal < Strictly lower <= Lower or equal
<> Different > Strictly upper >= Upper or equal

 Beware to floating numbers comparisons!

Numerical
+ Addition * Multiplication \ Integer division
- Subtraction / Division Mod Modulo (remainder of

integer division)
^ Raising to the power
Text
& Strings concatenation (fusion) (“ + ” is possible ; better not use).

Constants
Constant: a memory place; fixed value (immutable during execution).
Declaring Constants
Const SOME_CONSTANT = SomeValue
☞ SomeValue must be a simple type: no array, no object.

Naming Constants
It is frequent to name constants in all UPPERCASE.
Constants Visibility

Declaring… gives visibility…
Const MYCONST = SomeValue In the current subprogram or module.
Public MYCONST = SomeValue In the current library.
Global MYCONST = SomeValue In all libraries.

File Paths
To ensure multi-platform compliance, file paths are often expressed using the URL for-
mat : file:///support/path/to/afile.txt instead of the native OS format.
Two functions allow to switch from one to the other representation:
From OS native to URL URLname = ConvertToURL(NativeName)
From URL to OS native NativeName = ConvertFromURL(URLname)
Example (Windows)

Native name: C:\MyDir\File.odt
URL name: file:///C:/MyDir/File.odt

☞ The URL format
An URL (Uniform Resource Locator) stores a document or an internet server address.
The URL structure is: service://host_name:port/path/to/page#mark
(some items could be omitted). An URL could be a FTP address, internet address
(HTTP), file address or email address.

Subprograms
 Ensure arguments ↔ parameters correspondence, in number and type.
☞ Premature subprogram exit: Exit Sub, Exit Function
Sub
Executes an action.
 Naming hint: verb at the infinitive: DoXxx(), etc.
Declaration Sub SubName(parameters)
Structure Sub SubName(parameters)

'instructions
End Sub

Use SubName(arguments). If no argument: SubName()
Function
Returns a value.
 Naming hint: verb at the indicative: IsXxx(), etc.
Declaration Function FuncName(parameters) As SomeType
Structure Function FuncName(parameters) As SomeType

'instructions
'somewhere, define the return value:
FuncName = SomeValue

End Function
Use SomeVar = FuncName(arguments)

If no argument: SomeVar = FuncName()
☞ A Function may be called like a Sub (without caring of the return value).

Parameters
Parameter a value the subprogram declaration specifies.
Argument the actual value the caller passes to the subprogram.
Usage
Ex : MySub(ByRef AParam as Long, ByVal OtherParam As String, _

Optional ByRef SomeParam As Object)
ByRef By reference (default). The parameter points to the argument passed by the

caller.
 Any modification of a ByRef item is propagated to the caller on exit.

ByVal By value. The parameter is a copy of the argument passed by the caller.
☞ Value modifications are local to the called and not propagated to the caller.

Optional Optional parameter.
☞ Test the parameter absence using If IsMissing(SomeParam) Then …

The identifier is always available in the subprogram.
 Giving a default value to an optional parameter:

If IsMissing(SomeParam) Then SomeParam = SomeValue

Control Structures
Loops
Repeat a sequence of instructions.
☞ Premature exit possible using Exit For or Exit Do according to situation.
For … Next
For each index value …
For i = Start To End [Step

Increment]
'instructions

Next i

You must know the counter bounds.
By default, increment Step is 1.
☞ Indices are often named as i, j, k, etc.
 Never set the counter in the loop instructions!

For Each … Next
For each item …
For Each item In SomeObject
'do smthg with item

Next

The number of items is unknown.
item must be of a compatible type.

Do While … Loop
Do While Condition
'instructions

Loop

Condition is evaluated first.
 Infinite loops (Condition never met)!

or…
While Condition
'instructions

Wend

☞ Older syntax, for compatibility only. Doesn’t sup-
port Exit.
Do not use!

Do Loop ... Until
Do
'instructions

Loop Until Condition

Condition is evaluated last.
 Infinite loops (Condition never met)!

Conditional Tests
A branch that allows to take action according to a given state/situation.
If (alone)
If Condition Then SomeInstruction
If Then [Else]
If Condition Then
'InstructionsThen

Else
'InstructionsElse

End If

The Else condition is not mandatory.

If ElseIf
If Condition Then
'InstructionsThen1

ElseIf OtherCondition Then
'InstructionsThen2

Else
'InstructionsElse

End If

Instead of nested Ifs.

Select
Select Case SomeVariable
Case Value : DoThat()
Case Value1, Value2
'instructions for SomeValue

Case Value3 To Value4
'instructions for OtherValue

Case Else
'instructions for other situations

End Select

Choose among several possibilities,
according to SomeVariable actual
value.

Loading A Code Library
For readability and maintainability, organize your code in several libraries (RefCard #1).
☞ The Standard code library is the only loaded library at document opening. Other li-

braries must be explicitly loaded to gain access to their code.
 Library names are case sensitive!

Loading From The Local Container (document)
Checking existence LibExists = BasicLibraries.hasByName("MyLib")
Loading BasicLibraries.loadLibrary("MyLib")
Loading From A Global Container
Same as above but BasicLibraries is replaced with GlobalScope.BasicLibraries.
 Mind to identifiers collisions between libraries! You may qualify names using:

container.library.module.name (all or part).
Ex: GlobalScope.Tools.Strings.ClearMultiDimArray(MyArray, 3)

Calling A Command Associated With A LibreOffice Menu
101
Use the Dispatcher, and pass it the wanted UNO menu command.
Knowing UNO Menus Commands
UNO menu commands: see the menubar.xml files in the LibreOffice installation directory
(OS specific), under share/config/soffice.cfg/modules. Subdir menubar of the
wanted module (eg: sglobal/menubar/menubar.xml, etc.).
All commands start with .uno:
Ex : ".uno:Open" (File > Open), ".uno:OptionsTreeDialog" (Tools > Options), etc.
Program Skeleton

Dim Frame As Variant
Dim Dispatch As Object
Dim Args() As Variant 'contents depends upon context
Dim UnoCmd As String
Frame = ThisComponent.CurrentController.Frame
UnoCmd = 'UNO command to run (above)
Dispatch = createUnoService("com.sun.star.frame.DispatchHelper")
Dispatch.executeDispatch(Frame, UnoCmd, "", 0, Args())

where UnoCmd is the command found in the files above.
Exemples
(only modified parts are shown)
Ex1. Calling Print Preview

Dispatch.executeDispatch(Frame, ".uno:PrintPreview", "", 0, Args())

Ex2. Showing/Hiding The Sidebar

Dim Args(0) As New com.sun.star.beans.PropertyValue
Args(0).Name = "Sidebar"
Args(0).Value = True 'or False depending on aim
Dispatch.executeDispatch(Frame, ".uno:Sidebar", "", 0, Args())

Error Management
In Basic, error management relies upon:
• On Error Xxx (and On Local Error Xxx) instructions for error interception.
• the Err, Erl and Error functions to get information about the last error met.
Error Information Functions
Err The error code.

☞ An error code of 0 (zero) means “no error”.
Use If Err Then … to check for error presence.

Error The message that describes the error.
Erl The line number where the error occurred.
On Error – Globally Intercepting Errors
 Error interception using OnError is active as long as it has not been canceled.
On Error Goto MyLabel Activates error interception. If an error occurs, the

execution continues to MyLabel.
☞ In the program body, you must define the label

MyLabel: (beware to the semicolon character).
On Error Resume Next Activates error interception. If an error occurs, the

execution continues to the next instruction.
On Error Goto 0 Cancels error interception.
On Local Error – Locally Intercepting Errors
In a subprogram, you might prefer the On Local Error Xxx syntax. This doesn’t re-
quires calling On Error Goto 0 to cancel error interception: canceling is automatically
performed when leaving the Sub or Function.
☞ On Local Error Goto Xxx has precedence upon an existing On Error Goto Xxx.

Different Ways Of Running A Macro

▼ Method LibreOffice Document Type Current Document

Using a toolbar button ● ●
Using a menu ● ●
Using a shortcut ● ●
Through an event ● ●

Main Types Compatibility Chart

Target ▶

Source ▼ In
te

g
er

L
o

n
g

S
in

g
le

D
o

u
b

le

C
u

rr
en

cy

D
ec

im
al

D
at

e

S
tr

in
g

O
b

je
ct

B
o

o
le

an

V
ar

ia
n

t

Integer ● ● ● ● ● ● ● ● x ● ●

Long ! ● ● ● ● ● ● ● x ● ●

Single ○! ○! ● ● ● ● ● ● x ! ●

Double ○! ○! ○! ● ● ● ● ● x ! ●

Currency ○! ○! ! ● ● ● ○ ● x ! ●

Decimal ○! ○! ○! ○ ○! ● ○ ● x ○! ●

Date ○! ○! ! ● ● ○! ● ● x ! ●

String ○! ○! ○! ○! ○! ● ○! ● x ○! ●

Object x x x x x x x x ● x ●

Boolean ● ● ● ● ● ● ● ● x ● ●

Variant ○! ○! ○! ○! ○! ● ○! ○! ● ○! ●

Compatibility
● compatible ○ possible loss ! possible overflow x not compatible

Reading The Chart
• You may assign a source variable contents of type Double to a target variable of any

of the Double, Currency, Date, and Variant types, without data loss.
• A target variable of type Double may lossless receive values of types Integer, Long,
Single, Double, Date and Byte.

Credits
Author : Jean-François Nifenecker – jean-francois.nifenecker@laposte.net
We are like dwarves perched on the shoulders of giants, and thus we are able to see more and farther than the
latter. And this is not at all because of the acuteness of our sight or the stature of our body, but because we are
carried aloft and elevated by the magnitude of the giants (Bernard de Chartres [attr.])

History

Version Date Comments

2.0 04/20/2019 Restructure (some types moved to new RefCard #9)

License
This refcard is placed under the

CreativeCommons BY-SA v4 (intl) license.
More information:

https://creativecommons.org/licenses/by-sa/4.0/

mailto:jean-francois.nifenecker@laposte.net
https://creativecommons.org/licenses/by-sa/4.0/

