

Math Handbuch

Kapitel 1 Math Handbuch

Verwenden des Formeleditors

Copyright

Dieses Dokument unterliegt dem Copyright © 2011. Die Beitragenden sind unten aufgeführt. Sie dürfen dieses Dokument unter den Bedingungen der GNU General Public License (http://www.gnu.org/licenses/gpl.html), Version 3 oder höher, oder der Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), Version 3.0 oder höher, verändern und/oder weitergeben.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Fast alle Hardware- und Softwarebezeichnungen und weitere Stichworte und sonstige Angaben, die in diesem Buch verwendet werden, sind als eingetragene Marken geschützt.

Da es nicht möglich ist, in allen Fällen zeitnah zu ermitteln, ob ein Markenschutz besteht, wird das Symbol (R) in diesem Buch nicht verwendet.

Mitwirkende/Autoren

Gisbert Friege Christian Kühl Jochen Schiffers

Regina Henschel Florian Reisinger

Originaldokument

Franz Michael Baumann Sigrid Kronenberger Janet M. Swisher Agnes Belzunce Peter Kupfer Wolfgang Uhlig Daniel Carrera Ian Laurenson Jean Hollis Weber

Rückmeldung (Feedback)

Kommentare oder Vorschläge zu diesem Dokument können Sie in deutscher Sprache an die Adresse discuss@de.libreoffice.org senden.

Alles, was an eine Mailingliste geschickt wird, inklusive der E-Mail-Adresse und anderer persönlicher Daten, die E-Mail enthält, wird öffentlich archiviert und kann nicht gelöscht werden. Also, schreiben Sie mit Bedacht!

Danksagung

Dieses Handbuch basiert auf dem Kapitel "Einführung in Math" des Handbuchs Erste Schritte. Autoren dieses Kapitels sind:

Ralf Albrecht Christian Kühl Jochen Schiffers

Sigrid Carrera Florian Reisinger Klaus-Jürgen Weghorn

Stefan Haas

Datum der Veröffentlichung und Softwareversion

Veröffentlicht am 02.05.2012. Basierend auf der LibreOffice Version 3.4.

Anmerkung für Macintosh Nutzer

Einige Tastenbelegungen (Tastenkürzel) und Menüeinträge unterscheiden sich zwischen der Macintosh Version und denen für Windows- und Linux-Rechnern. Die unten stehende Tabelle gibt

Ihnen einige grundlegende Hinweise dazu. Eine ausführlichere Aufstellung dazu finden Sie in der Hilfedatei der jeweiligen Komponente.

Windows/Linux	entspricht am Mac	Effekt
Menü-Auswahl Extras → Optionen	LibreOffice → Einstellungen	Zugriff auf die Programmoptionen
Rechts-Klick	Control+Klick	Öffnen eines Kontextmenüs
Ctrl (Control)	光 (Command)	Tastenkürzel in Verbindung mit anderen
oder Strg (Steuerung)		Tasten
F5	Shift+#+F5	öffnet den Dokumentnavigator Dialog
F11	 #+T	öffnet den Formatvorlagen Dialog

<u>Inhalt</u>

Anmerkung für Macintosh Nutzer	2
Was ist Math?	6
Formel erstellen	6
Eingabe einer Formel	8
Das Fenster Elemente	
Übers Kontextmenü	
Befehle	10
Griechische Buchstaben	10
Verändern einer Formel	
Zu ändernden Bereich auswählen	
Änderungen vornehmen	
Textmodus	
•	
Math anpassen	
Das Kommandofenster als ein schwebendes Fenster	
Den Katalog anpassen	
Layout einer Formel	
Formeln gliedern	
Funktionserkennung bei Math	
Gleichungen über mehrere Zeilen	
Elemente anordnen	
Grenzen bei einer Summe oder einem Integral eingeben	
Klammen bei Matrizen	
Ableitungen schreiben	
Einseitige und nicht paarige Klammern	
Text in einer Formel	
Die Grundeinstellungen für Formeln ändern	
Die Schriftart einer Formel ändern	
Die Schriftgröße einer Formel ändern	
Abstände in Formeln anpassen	
Die Ausrichtung verändern	
Formeln in Writer-Dokumenten	
Position	
Außenabstand	
Hintergrund, Umrandung und Größe	
Gleichungen nummerieren	
Formelbibliothek anlegen	
Formeln in Calc, Impress und Draw	
Grafikeigenschaften	
Formel mit Text kombinieren	29

Textteile in der Formel	. 29
Formeln mit Grafikobjekten gruppieren	
Formeln im Writer-OLE-Objekt	
Formeln in Charts	. 30
Export und Import	. 30
Export als MathML	. 30
Ergebnis	
Microsoft Office Dateiformate	. 32
Laden	
Speichern	
OpenDocumentText in Microsoft Word 2010 öffnen	. 33
XHTML	. 33
Flat XML	. 33
Dmaths – eine Extension nicht nur für eine schnellere Formeleingabe	. 33
Technische Einzelheiten	. 36
OASIS Open Document Format for Office Applications	. 36
Handhabung von Formeln in Basic	. 37
Formeln im einem Writer-Dokument	
Formeln in einem Draw/Impress/Calc-Dokument	. 37

Was ist Math?

Mit der Komponente Math setzen Sie mathematische und chemische Formeln typographisch ansprechend, beispielsweise

$$f(x) = \frac{x^2 - 4}{x + 1}$$

oder

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

Sie benötigen keine besonderen Kenntnisse über Richtlinien des Formelsatzes¹, sondern Math berücksichtigt diese beim Formelaufbau automatisch.

Math kann als eigenständiges Modul benutzt werden, um jeweils ein Dokument mit einer Formel herzustellen. In den meisten Fällen sind solche Formeln aber in anderen Dokumenten als OLE-Objekte eingebettet. Dies ist in allen Modulen möglich, wird aber am häufigsten in Writer-Dokumenten benutzt.

Hinweis

Der Formeleditor ist gedacht, um Formeln in symbolischer Form darzustellen. Zur numerischen Berechnung eines Wertes schauen Sie in das *Calc-Handbuch*.

Formel erstellen

Zum Erstellen einer Formel als separates Dokument öffnen Sie die Komponente Math:

- Übers Menü **Datei** → **Neu** → **Formel**.
- Durch Klick auf das Dreieck rechts neben dem Symbol Neu und Klick auf Formel.
- Im Startcenter mit einem Klick auf Formel.

Sie bekommen ein leeres Formeldokument (Abbildung 1).

¹ Festgelegt beispielsweise in DIN 1302 und in ISO 31-0.

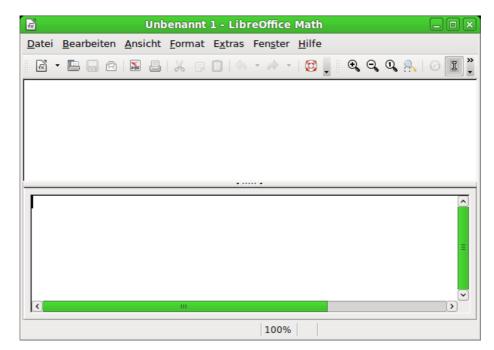


Abbildung 1: Ein leeres Formeldokument

Im oberen Bereich, der Formelansicht, wird während und nach der Eingabe die Formel angezeigt. Im unteren Bereich – dem Kommandofenster – wird der Code der Formel eingegeben. Außerdem sehen Sie noch das Fenster Elemente.

Zum Einfügen einer Formel in ein Dokument wählen Sie in der jeweiligen Komponente **Einfügen** → **Objekt** → **Formel**.

Nun öffnet sich der *Formeleditor* am unteren Bildschirmrand und es erscheint das Fenster *Elemente*. In Ihrem Dokument können Sie auch eine kleine Box mit grauer Umrandung sehen, in der die Formel angezeigt wird (Abbildung 2).

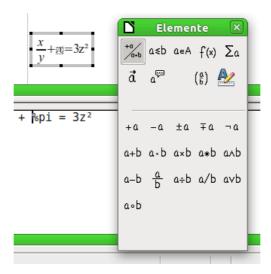


Abbildung 2: Kommandofenster, Fenster Elemente und Formel in einem Writer-Dokument

Nachdem Sie die Formel fertig eingegeben haben, schließen Sie den Formeleditor durch Drücken der *Esc*-Taste oder durch Anklicken eines Bereichs außerhalb der Formel im Hauptdokument. Die Formel wird als OLE-Objekt in das Dokument eingefügt. Mit einem Doppelklick öffnet sich erneut der Formeleditor, sodass Sie die Formel wieder bearbeiten können.

Formel erstellen 7

Je nach Komponente wird die Formel unterschiedlich in das Dokument eingebettet:

- In ein Writer-Dokument wird die Formel standardmäßig *Als Zeichen* eingefügt, sodass sie in den fortlaufenden Text eingebettet ist. Sie können wie bei jedem anderen OLE-Objekt die Verankerung ändern und die Formel frei platzieren.
- In Impress- und Draw-Dokumenten wird eine Formel als freies OLE-Objekt eingebettet.

Wenn Sie häufiger Formeln benötigen, ist es empfehlenswert, das Symbol *Formel* aus dem Bereich *Einfügen* der Symbolleiste *Standard* hinzuzufügen oder ein Tastaturkürzel festlegen. Lesen Sie Kapitel 14 "Anpassen von LibreOffice" im Handbuch *Erste Schritte* für weitere Informationen zum Anpassen der Symbolleisten oder zum Festlegen von Tastaturkürzeln.

Eingabe einer Formel

Der Formeleditor benutzt eine *Markup-Sprache* zum Darstellen der Formeln. So erzeugt z. B. **%beta** den griechischen Buchstaben " β ". Die Benennung der Ausdrücke orientiert sich an englischen Ausdrücken. Der Ausdruck **a over b** ("a über b") erzeugt z. B. einen Bruch:

 $\frac{a}{b}$

Formeln können auf drei Arten eingegeben werden:

- Durch Wahl der entsprechenden Symbole im Fenster *Elemente*.
- Durch Rechtsklick in das Kommandofenster und Wahl eines Ausdrucks aus dem Kontextmenü.
- Durch Eingabe eines Ausdrucks wie z. B. a over b in das Kommandofenster.

Das Kontextmenü und die Schaltflächen des Fensters *Elemente* fügen den zum gewählten Element gehörigen Ausdruck in den *Formelcode* ein. Dadurch können die in Math genutzten Ausdrücke leicht erlernt werden.

Tipp

Das Fenster Elemente

Die einfachste Methode (für Ungeübte) zur Eingabe einer Formel ist die Benutzung des Fensters *Elemente* (Abbildung 3).

Das Fenster *Elemente* ist in zwei Bereiche unterteilt:

- Der **obere Bereich** zeigt die Symbole der Kategorien. Durch Anklicken eines der Symbole ändern sich die angezeigten Symbole im unteren Bereich.
- Der **untere Bereich** zeigt die zur aktuellen Kategorie gehörenden Symbole der Elemente.

Tipp

Das Fenster *Elemente* kann über den Menüpunkt **Ansicht** \rightarrow **Elemente** ein- bzw. ausgeblendet werden.

In der LO-Version 3.5 stehen weitere Elemente zur Verfügung

Beispiel:

In diesem Beispiel soll eine einfache Formel eingegeben werden: 5.4.

Gehen Sie im Fenster *Elemente* wie folgt vor:

1. Aktivieren Sie im Bereich *Kategorien* die linke obere Schaltfläche *Unäre/Binäre Operatoren*

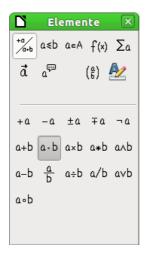


Abbildung 3: Die Schaltfläche Multiplikation (Punkt) auswählen

2. Klicken Sie auf die Schaltfläche Multiplikation (Punkt) a.b.

Wenn Sie die Schaltfläche für die Multiplikation anklicken, geschehen zwei Dinge:

- Das Kommandofenster zeigt folgenden Text: <?> cdot <?>.
- In Ihrem Dokument erscheint die folgende Box: □.□.

Abbildung 4: Ergebnis nach dem Klick auf die Schaltfläche Multiplikation (Punkt)

Die beiden Ausdrücke <?> in Abbildung 4 sind Platzhalter, die Sie durch Zahlen ersetzen können, in obigem Beispiel durch 5 und 4. Die Formel in Ihrem Dokument wird dann automatisch aktualisiert und das Ergebnis sollte wie in Abbildung 5 aussehen.

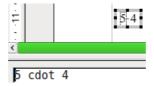


Abbildung 5: Ergebnis der Formel

Mit einem Doppelklick auf den Platzhalter ☐ in der Vorschau oder auf den Platzhalter <?> im Kommandofenster wird dieser komplett markiert. Schreiben Sie dann einfach die gewünschten Zahlen um den Platzhalter zu ersetzen.

Tipp

Wenn Sie nicht möchten, dass die Formel automatisch aktualisiert wird, wählen Sie im Menü **Ansicht** → **Ansicht automatisch aktualisieren** (wenn Sie nochmal auf Ansicht klicken, ist das Häkchen vor dem Eintrag nicht mehr vorhanden). Um die Formel anschließend manuell zu aktualisieren, drücken Sie die Taste F9 oder wählen Sie im Menü **Ansicht** → **Aktualisieren** bzw. klicken Sie in der Symbolleiste *Werkzeuge* auf die Schaltfläche *Aktualisieren* 🔀.

Eingabe einer Formel 9

Übers Kontextmenü

Eine andere Möglichkeit ist es, mit einem Rechtsklick in das Kommandofenster das Kontextmenü zu öffnen (Abbildung 6). Dieses Menü enthält sogar einige Einträge mehr, als das Fenster *Elemente*.

Abbildung 6: Das Kontextmenü im Formeleditor

Hinweis

Weder das Fenster Elemente, noch das Kontextmenü enthalten eine vollständige Liste der Kommandos. Einige selten verwendete Kommandos müssen Sie immer über den Markup-Code eingeben.

Eine vollständige Liste der Kommandos finden Sie im Anhang A zu diesem Handbuch.

Befehle

Sie können den Befehlstext auch direkt in den Formeleditor schreiben. Sie können zum Beispiel "5 times 4" schreiben, um 5×4 zu erhalten. Wenn Sie das Befehlskürzel kennen, ist das der schnellste Weg, um eine Formel einzugeben.

Tipp

Der Markup-Code ist der englischen Sprache angelehnt.

In der folgenden Tabelle sehen Sie eine Liste mit gebräuchlichen Ausdrücken und dem entsprechenden Markup-Code. Eine vollständige Liste finden Sie im Anhang A "Befehlsreferenz" zu diesem Handbuch.

Markup-Code	Ergebnis	Markup-Code	Ergebnis
a = b	a=b	a <= b	a≤b
a^2	a^2	a_n	a_n
int f(x) dx	$\int f(x) dx$	sum a_n	$\sum a_n$
sqrt {a}	\sqrt{a}	infinity	∞
a cdot b	a∙b	x times y	$x \times y$

Griechische Buchstaben

Griechische Buchstaben (wie z. B. α , β , γ , θ usw.) kommen häufig in mathematischen Formeln vor. Der einfache Weg ist, direkt im Formeleditor ein %-Zeichen gefolgt vom Namen des Buchstaben einzugeben.

• Um einen kleinen Buchstaben zu bekommen, geben Sie den Namen in Kleinbuchstaben ein.

- Um einen großen Buchstaben zu erhalten, geben Sie den Namen in Großbuchstaben ein (dabei müssen alle Zeichen Großbuchstaben sein, sonst kann LibreOffice das Symbol nicht darstellen).
- Um einen kursiven griechischen Buchstaben zu erhalten geben Sie ein kleines **i** zwischen %-Zeichen und dem Namen des Buchstaben ein.

Hinweis

Die Namen müssen in der Oberflächensprache von LibreOffice eingegeben werden, also in der Regel auf deutsch. Wenn Sie aber z. B. eine englischsprachige Oberfläche verwenden, müssen Sie die Namen der Buchstaben auch auf englisch eingeben.

In der unten stehenden Tabelle sind die ersten griechischen Buchstaben für alle vier Varianten aufgeführt. Für eine vollständige Liste sehen Sie im Anhang A "Befehlsverzeichnis" dieses Handbuchs nach.

Markup- Code	Er- geb- nis	Markup- Code	Er- geb- nis	Markup- Code	Er- geb- nis	Markup- Code	Er- geb- nis
%alpha	α	%beta	β	%gamma	γ	%delta	δ
%ALPHA	A	%BETA	В	%GAMMA	Γ	%DELTA	Δ
%ialpha	α	%ibeta	β	%igamma	γ	%idelta	δ
%iALPHA	A	%iBETA	В	%iGAMMA	Γ	%iDELTA	Δ

Eine andere Möglichkeit, griechische Buchstaben einzufügen, ist, den Katalog zu verwenden. Wählen Sie im Menü Extras → Katalog..., um das Fenster *Symbole* zu öffnen, und im Auswahlmenü *Symbolset* den Eintrag "Griechisch" oder "iGriechisch" (für kursive griechische Buchstaben) aus. Der Markup-Code des jeweils ausgewählten Zeichens wird unter dem Bereich angezeigt. Um den ausgewählten Buchstaben einzufügen, klicken Sie auf übernehmen.

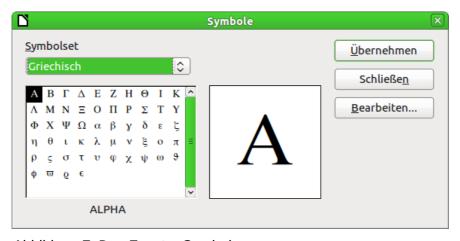


Abbildung 7: Das Fenster Symbole

Beispiel:

Folgende Formel soll eingegeben werden: $\pi \simeq 3.14159$.

Für dieses Beispiel sollen folgende Voraussetzungen gegeben sein:

 Sie möchten die oben stehende Formel eingeben (Pi auf fünf Stellen nach dem Komma gerundet).

Eingabe einer Formel 11

- Sie kennen den Namen des griechischen Buchstaben (pi).
- Aber Sie kennen das Markup-Äquivalent für das Symbol ≃ nicht.

Gehen Sie dann wie folgt vor:

- Öffnen Sie das Fenster Elemente (z. B. über Ansicht → Elemente) (Abbildung 2 auf Seite 7).
- 2. Das Symbol ist eine Relation, also klicken Sie im Bereich *Kategorien* auf die Schaltfläche "Relationen". Wenn Sie mit der Maus über die Schaltflächen wandern, sehen Sie in Tooltipps die Bezeichnungen der Symbole (Abbildung 8).

Abbildung 8: Tooltipp im Fenster Elemente

- 3. Klicken Sie auf die Schaltfläche "ist ähnlich oder gleich" a≃b. Der Ausdruck erscheint nun im Formeleditor, wo jetzt Folgendes steht: <?> simeq <?>.
- 4. Ersetzen Sie im Formeleditor den Text <?> am Anfang durch %pi.
- 5. Ersetzen Sie den Text <?> am Ende durch 3,14159. Es steht jetzt der Markup-Code %pi simeq 3,14159 im Formeleditor. Das Ergebnis im Fenster sehen Sie in Abbildung 9.

Abbildung 9: Ergebnis der Formel

Verändern einer Formel

Sie können eine Formel jederzeit verändern, indem Sie mit Doppelklick auf die Formel wieder in den Editiermodus wechseln.

Zu ändernden Bereich auswählen

Es gibt mehrere Möglichkeiten, an die entsprechende Stelle im Markup-Code zu gelangen:

- Klicken Sie im Formeleditor an die entsprechende Stelle im Markup-Code.
- Markieren Sie einen Bereich im Markup-Code, den Sie ersetzen möchten.
- Klicken Sie einfach auf ein Element in der Formelvorschau, der Cursor wird automatisch an der entsprechenden Stelle im Markup-Code platziert.
- Klicken Sie doppelt auf ein Element in der Formelvorschau, der gewählte Bereich wird im Markup-Code markiert.

Um mit der Formelvorschau zu arbeiten muss der Formel Cursor aktiviert sein. Dazu dient die Schaltfläche *Formel Cursor* in der Symbolleiste *Werkzeuge* (Abbildung 10).

Abbildung 10: Symbolleiste Werkzeug

Änderungen vornehmen

Überschreiben Sie einfach einen markierten Bereich oder fügen Sie an der Cursorposition neuen Markup-Code ein, um die Formel zu verändern.

Tipp

LibreOffice besitzt auch eine Möglichkeit, Änderungen direkt in der Formelvorschau vorzunehmen. Diese befindet sich noch im Entwicklungsstadium und gilt deshalb als experimentell. Um diese Möglichkeit nutzen zu können, müssen Sie folgende Einstellung ändern: gehen Sie im Menü auf Extras → Optionen... → LibreOffice → Allgemein und setzen Sie ein Häkchen in das Kästchen vor die Option "Aktiviere experimentelle (instabile) Funktionen".

Die Aktivierung dieser Option setzt die Möglichkeit außer Kraft, durch Klick auf ein Formelelement an die entsprechende Position im Markup-Code zu gelangen.

Die Verwendung von experimentellen Funktionen kann zu Programmabstürzen und/oder Datenverlust führen. Verwenden Sie diese Einstellung nur, wenn Sie dieses Risiko in Kauf nehmen wollen und können.

Textmodus

Größere Formeln sollten immer vom Text abgesetzt in eigenen Absätzen stehen. Wenn Sie Formelteile im laufenden Text benutzen, passiert es leicht, dass die Formel höher ist als der Zeilenabstand.

Sollten Sie Formeln dennoch im laufenden Text platzieren müssen, wechseln sie in den Formeleditor und wählen Sie im Menü **Format** → **Textmodus**. Math versucht, die Formel so zu verkleinern, dass die Zeilenhöhe ausreicht. Dazu werden Zähler und Nenner bei Brüchen verkleinert und die Grenzen von Integralen und Summen werden neben das Integral- bzw. Summenzeichen gesetzt.

Beispiel

Die gleiche Formel einmal in einer eigenen Zeile abgesetzt

$$\sum_{i=2}^{5} i^2$$

und einmal als eingebettete Formel im *Textmodus* $\sum_{i=2}^{5} i^2$.

Math anpassen

Im Folgenden werden einige Möglichkeiten beschrieben, wie Sie Math an Ihre Bedürfnisse anpassen können.

Das Kommandofenster als ein schwebendes Fenster

Das Kommandofenster kann einen großen Teil des Writer-Fensters einnehmen. Deshalb gibt es die Möglichkeit, den Formeleditor als schwebendes Fenster einzurichten:

- 1. Bewegen Sie den Mauszeiger über den Rahmen des Formeleditors.
- 2. Drücken Sie die Strg-Taste und doppelklicken Sie mit der Maus.

Abbildung 11 zeigt das Ergebnis. Sie können das Fenster wieder fixieren, indem Sie die selben Schritte noch einmal ausführen.

Math anpassen 13

Abbildung 11: Der Formeleditor als schwebendes Fenster

Den Katalog anpassen

Wenn Sie ein Zeichen benötigen, das in Math nicht vorhanden ist, können Sie es selbst dem Katalog hinzufügen. Im Folgenden wird das Vorgehen am Beispiel der Striche, die im Schulunterricht für Ableitungen benötigt werden, gezeigt.

- 1. Öffnen Sie übers Menü **Extras** → **Katalog...** oder klicken Sie auf das Symbol *Katalog* **∑**, um den Katalog zu öffnen.
- 2. Klicken Sie auf **Bearbeiten**. Es öffnet sich der Dialog *Symbole bearbeiten* (Abbildung 12).

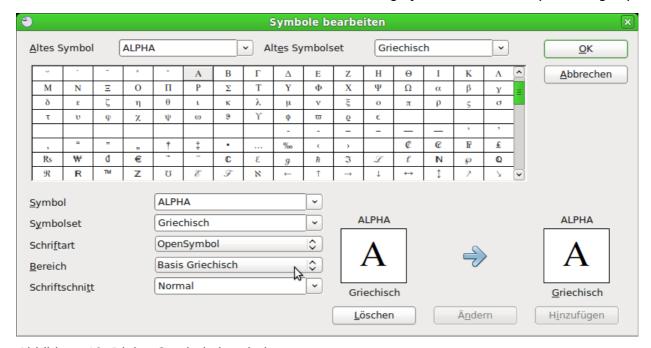


Abbildung 12: Dialog Symbole bearbeiten

- 3. Die Symbole sind in sogenannten Symbolsets zusammengefasst. Für das neue Symbol wählen Sie aus der Liste *Symbolset* ein vorhandenes Set aus, beispielsweise das Symbolset "Spezial", oder Sie schreiben den Namen eines neuen Symbolsets direkt in das Feld hinein.
- 4. Wählen Sie aus der Liste *Schriftart* diejenige Schriftart aus, die ihr gewünschtes Symbol enthält.

Wenn Sie eine Schriftart gewählt haben, werden in der *Zeichenübersicht* die Zeichen der entsprechenden Schriftart gezeigt. Mit der seitlichen Bildlaufleiste scrollen Sie durch die Tabelle. Mit der Auswahlliste *Bereich* können Sie sofort zu der entsprechenden Stelle springen.

Wenn Sie das Beispiel nachvollziehen wollen, wählen Sie die Schriftart "DejaVu Sans" und den Bereich "Allgemeine Interpunktion".

5. Klicken Sie auf das gewünschte Zeichen, hier das Zeichen "U+2032". Es wird rechts unten vergrößert dargestellt (Abbildung 13). Vergewissern Sie sich, dass das Symbolset auf "Spezial" eingestellt worden ist.

Abbildung 13: Dialog Symbole bearbeiten, Zeichen ausgewählt

- 6. Tragen Sie im Feld Symbol eine Bezeichnung für das neue Zeichen ein, im Beispiel **prime**.
- 7. Wenn ihre Bezeichnung noch nicht benutzt wurde, wird die Schaltfläche **Hinzufügen** aktiviert; klicken Sie darauf.
- 8. Sie können sofort weitere Zeichen hinzufügen. Im Beispiel sollen noch die Zeichen "U+2033" mit der Bezeichnung **dblprime** und "U+2034" mit der Bezeichnung **triprime** ergänzt.
- 9. Schließen Sie den Dialog mit OK.

In der Übersicht des Symbolsets sind die neuen Zeichen nun vorhanden (Abbildung 14). Sie können wie die anderen Symbole auch hier ausgewählt oder in der Form %prime direkt ins Kommandofenster geschrieben werden.

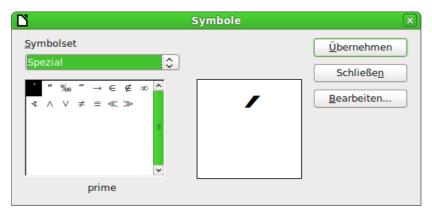


Abbildung 14: Katalog mit neuen Symbolen

Es gibt mehrere freie Fonts, die eine große Anzahl mathematischer Zeichen enthalten. Insbesondere die Schriftart "STIX2" ist hier zu nennen. Sie wurde speziell für das Schreiben mathematisch-technischer Texte entwickelt. Auch die Schriftarten "DejaVu Sans"³ und "Lucida Sans"⁴ bieten eine reiche Auswahl.

Hinweis

Viele Symbole sind in mehreren Schriftarten enthalten. Wenn Sie Dokumente mit anderen austauschen wollen, achten Sie darauf, eine Schriftart zu benutzen, die auch bei den anderen installiert ist.

In der Grundeinstellung werden nur diejenigen selbstdefinierten Symbole in einem Dokument gespeichert, die tatsächlich in dem Dokument vorkommen. Manchmal kann es aber sinnvoll sein, alle selbstdefinierten Symbole einzubetten, beispielsweise wenn das Dokument von einer anderen

Math anpassen 15

² Die Font-Dateien zu STIX sind erhältlich unter http://www.stixfonts.org/

³ Die Font-Dateien zu DejaVu Sans sind erhältlich unter http://dejavu-fonts.org/

^{4 &}quot;Lucida Sans" gehört zum Lieferumfang der JRE. Diese ist wahrscheinlich bei Ihnen auf dem PC schon installiert.

Person weiter bearbeitet werden soll. Schalten Sie in solchen Fällen unter **Extras** → **Optionen...** → **LibreOffice Math** im Abschnitt *Einstellungen* die Option "Nur verwendete Symbole einbetten (kleinere Dateigröße)" ab. Die Einstellung ist nur erreichbar, wenn Sie an einem Math-Dokument arbeiten.

Abstandszeichen am Ende einer Formelzeile

Mit den Zeichen ` (Gravis) fügen Sie einen kleinen zusätzlichen Abstand in die Formel ein, mit dem Zeichen ~ (Tilde) wird ein großer Abstand eingefügt. In der Grundeinstellung werden diese Zeichen am Ende einer Formelzeile ignoriert. Beim Arbeiten mit kursivem Text, kann es jedoch erforderlich sein, diese Abstandszeichen auch am Ende der Formel zu berücksichtigen. Die zugehörige Einstellung ist nur erreichbar, wenn Sie an einem Math-Dokument arbeiten, sie ist nicht erreichbar, wenn Sie an einer eingebetteten Formel arbeiten.

Starten Sie ein neues Math-Dokument mit **Datei** → **Neu** → **Formel**. Öffnen Sie den Dialog *Einstellungen* mit **Extras** → **Optionen...** Wählen Sie den Abschnitt *LibreOffice Math*. Im Bereich *Einstellungen* können Sie die Option "~ und `am Zeilenende ignorieren" deaktivieren.

Layout einer Formel

Bei der Nutzung von Math treten erfahrungsgemäß die größten Schwierigkeiten bei der Erstellung von komplexen Formeln auf. Der folgende Abschnitt enthält einige Tipps bezüglich der Erstellung von komplexen Formeln.

Formeln gliedern

Math analysiert den Markup-Code und erkennt Operatoren und Relationszeichen. Deshalb müssen Sie Klammen benutzen, um die Reihenfolge der Rechenoperationen anzugeben. Beachten Sie folgende Beispiele:

Markup-Code	Ergebnis	Markup-Code	Ergebnis
2 over x + 1	$\frac{2}{x}$ + 1	2 over {x + 1}	$\frac{2}{x+1}$
- 1 over 2	$\frac{-1}{2}$	- {1 over 2}	$-\frac{1}{2}$

Math hat im ersten Beispiel erkannt, dass die $\mathbf 2$ vor und das $\mathbf x$ nach dem $\mathbf over$ zum Bruch dazugehören und diese als Bruch dargestellt. Wenn Sie darstellen wollen, dass $\mathbf x + \mathbf 1$ im Nenner des Bruchs steht, müssen Sie dieses einklammern, damit beides im Nenner erscheint.

Im zweiten Beispiel hat Math das "-" (Minus) als Vorzeichen der **1** erkannt und entsprechend mit in den Zähler des Bruchs geschrieben. Wenn Sie ausdrücken wollen, dass der ganze Bruch negativ ist, das Minus also vor dem Bruch notiert haben wollen, müssen Sie den Bruch einklammern, um Math dessen Zusammengehörigkeit mitzuteilen.

Die geschweiften Klammern dienen der Gliederung des Markup-Codes und werden nicht angezeigt. Wenn Sie geschweifte Klammern in ihrer Formel benötigen, benutzen Sie dafür die Kommandos **1brace** bzw. **rbrace**. Vergleichen Sie dazu folgende Beispiele miteinander.

Markup-Code	Ergebnis	Markup-Code	Ergebnis	
x over {-x + 1}	$\frac{x}{-x+1}$	x over lbrace – x + 1 rbrace	$\frac{x}{\{-x+1\}}$	

Funktionserkennung bei Math

Variablen werden bei Math in der Grundeinstellung kursiv ausgegeben. Wenn Sie eine Funktion eingeben, dann erkennt Math das in der Regel und notiert diese "normal". Sollte Math eine Funktion nicht erkennen (eine Liste aller von Math erkannten Funktionen finden Sie im Anhang A), so können Sie das Math mitteilen. Geben Sie vor der Funktion den Befehl **func** ein, dann wird der anschließend stehende Text als Funktion erkannt.

Wenn Math eine Funktion als solche erkannt hat, erwartet es im folgenden die Eingabe von Zahlen oder Variablen. Sollten diese ausbleiben, so notiert Math ein umgedrehtes Fragezeichen stattdessen, das Sie nur durch Eingabe einer Variablen oder einer Zahl wegbekommen, bzw. indem Sie den Platzhalter {} (leere geschwungene Klammern) notieren.

Gleichungen über mehrere Zeilen

Wenn Sie eine Gleichung erstellen möchten, die über mehrere Zeilen geht, z. B.

$$x=3$$
 $y=1$

müssen Sie die folgende Besonderheit beachten.

Wenn Sie im Formeleditor die Eingabetaste drücken, springt der Cursor im Editor zwar in die nächste Zeile, das Ergebnis der Gleichung hat aber keinen Zeilenumbruch. Sie müssen explizit **newline** als Kommando eingeben, um einen Zeilenumbruch in der Gleichung zu erhalten. Dies ist in folgender Tabelle illustriert:

Markup-Code	Ergebnis	Markup-Code	Ergebnis
x = 3	v-2 v-1	X = 3 newline	<i>x</i> =3
y = 1	x=3y=1	y = 1	y=1

Wollen Sie die Rechnung in der nächsten Zeile fortsetzen, ohne eine komplette neue Gleichung zu schreiben, ist dies nicht direkt möglich, weil Math auf der linken Seite des Gleichheitszeichens einen Term erwartet. Sie können statt dessen

- eine leere Zeichenkette "" benutzen. Dadurch wird die Zeile automatisch links ausgerichtet.
- eine leere Gruppierung {} benutzen. Die nächste Zeile ist dann zentriert.

Die Ausrichtung der Gleichheitszeichen untereinander wird im nächsten Abschnitt beschrieben.

Elemente anordnen

Um z. B. mehrere Gleichungen so untereinander zu notieren, dass das Gleichheitszeichen jeweils untereinander steht, muss man sich eines Tricks bedienen. Verwenden Sie eine Matrix, um Elemente anzuordnen, wie Sie es in der folgenden Tabelle sehen können:

Markup-Code	Ergebnis
matrix { alignr x + y # {}={} # alignl 2 ## alignr x # {}={} # alignl 2 - y}	$ \begin{array}{rcl} x + y & = & 2 \\ x & = & 2 - y \end{array} $

Die leeren Klammen um das Gleichheitszeichen {}={} sind nötig, weil = eine Eingabe auf jeder der beiden Seiten erwartet. Andernfalls werden jeweils Platzhalter angezeigt.

Layout einer Formel 17

Grenzen bei einer Summe oder einem Integral eingeben

Die Ausdrücke **sum** und **int** können (optional) um die Parameter **from** (von) und **to** (bis) ergänzt werden. Diese geben die untere und die obere Grenze der Summe oder des Integrals an. Sie können gemeinsam oder nur einer von beiden bzw. keiner benutzt werden. Grenzen werden gewöhnlich unter bzw. über das Symbol geschrieben.

Markup-Code	Ergebnis
sum from k = 1 to n a_k	$\sum_{k=1}^{n} a_k$
<pre>Int from 0 to x f(t) dt oder int_0^x f(t) dt</pre>	$\int_{0}^{x} f(t)dt \text{ oder } \int_{0}^{x} f(t)dt$
Int from Re f	$\int_{\mathfrak{R}} f$
sum to infinity 2^{-n}	$\sum^{\infty} 2^{-n}$

Klammen bei Matrizen

Hier finden Sie eine Muster-Tabelle, die das Grundgerüst von Matrizen darstellt:

Markup-Code	Ergebnis
matrix {a # b ## c # d}	a b c d

Zeilen werden durch zwei Rauten ## getrennt. Innerhalb jeder Zeile wird jede Zelle durch eine einfache Raute # getrennt.

Beachten Sie, dass einfache Klammern nicht auf die Größe der Matrix skaliert werden.

Markup-Code	Ergebnis
(matrix {a # b ## c # d})	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Verwenden Sie dafür skalierende Klammern. Dies sind Klammern, die sich an der Größe des Inhalts orientieren. Setzen Sie dazu den Ausdruck **left** vor die öffnende bzw. **right** vor die schließende Klammer.

Markup-Code	Ergebnis
left (matrix {a # b ## c # d} right)	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Für eckige Klammen können Sie ebenso die Ausdrücke **left** [und **right**] verwenden.

Tipp

Möchten Sie, dass alle Klammern grundsätzlich als skalierende Klammern benutzt werden, wählen Sie im Menü **Format** → **Abstände**, im Dialog *Abstände* die Kategorie *Klammern* und markieren Sie die Option "Alle Klammern skalieren".

Ableitungen schreiben

Um Ableitungen aufzuschreiben, bedient man sich dem Trick, einen Bruch zu verwenden. Hierzu verwenden Sie den Ausdruck **over**.

Schreiben Sie für eine absolute Ableitung den Buchstaben **d** bzw. für eine partielle Ableitung den Ausdruck **partial**, um die Ableitung zu notieren.

Markup-Code	Ergebnis
df over dx	$\frac{df}{dx}$
{partial f} over {partial y}	$\frac{\partial f}{\partial y}$
{partial^2 f} over {partial t^2}	$\frac{\partial^2 f}{\partial t^2}$

Für die in der Schule übliche Schreibweise mit Strichen am Funktionsnamen müssen Sie diese Zeichen zunächst dem Katalog hinzufügen. Anführungszeichen und Apostroph als Ersatz sind typographisch nicht schön. Lesen Sie deshalb den Abschnitt "Den Katalog anpassen" auf Seite 14, um eine elegantere Lösung einzurichten.

Einseitige und nicht paarige Klammern

Math erwartet zu jeder öffnenden Klammer immer eine passende schließende Klammer. Wenn Sie eine Klammer vergessen haben, notiert Math neben der zugehörigen Klammer ein umgedrehtes Fragezeichen. Dieses verschwindet erst, wenn alle öffnenden Klammen auch wieder geschlossen sind, sowie, wenn alle schließenden Klammern eine öffnende Klammer besitzen. Manchmal gerät bei einer vergessenen Klammer die ganze Struktur der Formel durcheinander. In manchen Fällen sind solche nicht passenden oder einseitigen Klammern aber inhaltlich erforderlich. Dazu gibt es die folgenden beiden Möglichkeiten.

Bei nicht skalierenden Klammern kennzeichnen Sie mit dem Zeichen \ (Backslash), dass eine Klammer nicht als Klammer sondern als normales Zeichen aufgefasst werden soll.

Das halboffene Intervall [a;b] wird durch \[a;b\[erzeugt. (Vergleichen Sie dies mit [a;b[!)

Bei skalierenden Klammern sind auch nicht paarige Klammern möglich. Das halboffene Intervall [a;b] lässt sich mit skalierenden Klammern als **left** [a;b] as [a;b] as [a;b] is schreiben.

Bei skalierenden Klammern benutzen Sie für eine nicht vorhandene Klammer das Kommando **none**.

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

wird erzeugt durch

abs $x = left lbrace stack {x "für" <math>x \ge 0 \# -x "für" x < 0} right none$

Layout einer Formel 19

Markup-Zeichen als reguläre Zeichen

Zeichen, die als Steuerungen im Markup-Code benutzt werden, können nicht direkt als normale Zeichen geschrieben werden. Dies betrifft die Zeichen %, {, }, &, |, _, ^ sowie ". Sie können z. B. nicht direkt 2% = 0,02 oder 1" = 2,54cm schreiben. Zwei Methoden stehen Ihnen zur Verfügung:

- Kennzeichnen Sie das Zeichen durch Anführungszeichen als Text, beispielsweise
 2"%" = 0,02. Dieser Weg ist für das Anführungszeichen selbst allerdings nicht möglich.
- Fügen Sie das Zeichen dem Katalog hinzu. Lesen Sie dafür den Abschnitt "Den Katalog anpassen" auf Seite 14.

In einigen Situationen können Sie auch Kommandos benutzen

- **1brace rbrace** erzeugt die geschweiften Klammern: {}.
- **mline** stellt zwischen Klammern den Mittelstrich dar, z. B. (2 **mline** 3) für (2|3)

Das Umschreiben als Entity wie in HTML oder das Benutzen eines Escape-Zeichens gibt es in Math nicht.

Text in einer Formel

Um Text innerhalb einer Formel zu schreiben, umschließen Sie ihn mit geraden Anführungszeichen.

abs $x = left lbrace matrix {x # "für " <math>x >= 0 ## -x # "für " x < 0}$ right none

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Außer den Anführungszeichen können Sie alle Zeichen innerhalb eines Textes benutzen. Der Dialog Sonderzeichen steht leider nicht zur Verfügung. Schreiben Sie falls nötig den Text in einem Textdokument und kopieren Sie ihn über die Zwischenablage in das Kommandofenster. Hier wurden so typographische Anführungszeichen eingefügt.

Das Beispiel zeigt eine sogenannte "Kurvendiskussion".

Das Beispiel zeigt eine sogenannte "Kurvendiskussion".

Text wird in der Schriftart angezeigt, die im Diaglog **Schriftarten** in der Zeile **Text** ausgewählt ist (Vergleichen Sie "Die Schriftart einer Formel ändern"). Um eine der im unteren Dialogteil ausgewählten Schriftarten zu benutzen, setzen Sie das Attribut **font serif, font sans** bzw. **font fixed** vor den Text.

Text ist in der Voreinstellung immer links ausgerichtet. Ändern Sie die Ausrichtung mit dem Attribut alignc oder alignr.

Innerhalb eines Textes werden Kommandos nicht interpretiert. Teilen Sie den Text auf, wenn Sie Kommandos benötigen, um einzelne Teile speziell zu formatieren.

"Im" color blue bold "gleichschenkligen" "Dreieck sind die Basiswinkel gleich groß."

Im gleichschenkligen Dreieck sind die Basiswinkel gleich groß.

Die Grundeinstellungen für Formeln ändern

Die Schriftart einer Formel ändern

Die Schriftarten in der Formel stellen Sie über **Format** → **Schriftarten...** ein (Abbildung 15). Wie bei anderen Einstellungen auch, gelten diese jeweils für die aktuelle Formel. Mit einem Klick auf **Standard** legen Sie diese Einstellungen als Grundlage auch für alle neuen Formeln fest.

Abbildung 15: Dialog Schriftarten

Der Abschnitt Formelschriften bezieht sich auf die angegebenen Bestandteile der Formel. Die Schriftart der Operatoren, Relationen und Klammern wird dadurch nicht beeinflusst, sondern dafür wird weiterhin die Schriftart "OpenSymbol" benutzt. Auch die Zeichen aus dem Katalog werden mit ihrer dort festgelegten Schriftart dargestellt.

Im Abschnitt *Benutzerschriften* legen Sie fest, welche Schriftart benutzt wird, wenn Sie einen Abschnitt der Formel mit dem Attribut "font serif", "font sans" oder "font fixed" kennzeichnen.

Klicken Sie zunächst auf das Ausklappmenü Ändern (Abbildung 16). Wählen Sie dort aus, welchen Eintrag Sie bearbeiten wollen.

Abbildung 16: Aufklappmenü Ändern

Es öffnet sich dann der Dialog *Schriften* (Abbildung 17). Er zeigt Ihnen alle auf Ihrem PC installierten Schriftarten an. Wenn Sie im oberen Teil einen Buchstaben eingeben, springt die Liste zu diesem Bereich. Mit weiteren Buchstaben des Schriftnamens gelangen Sie zu der gewünschten Schriftart. Wenn Sie den Schriftnamen nicht wissen, scrollen Sie mit der Laufleiste durch die Liste. Im unteren Bereich sehen Sie eine Schriftprobe der gewählten Schriftart.

Abbildung 17: Dialog Schriften

Variablen sollten kursiv gesetzt werden, markieren Sie dafür das entsprechende Attribut "kursiv". Für alle anderen Bereiche sollten Sie die Schriftart in der Grundform benutzen. Der Schriftschnitt kann problemlos in der Formel selbst mit den Kommandos "italic" und "bold" auf kursiv bzw. fett gesetzt oder mit den Kommandos "nitalic" bzw. "nbold" zurückgesetzt werden.

Wenn Sie eine neue Schriftart für eine Formel festgelegt haben, wird die alte Schriftart zusätzlich zu der neuen Schriftart im Aufklappmenü angezeigt und kann dort auch gewählt werden. Dies gilt allerdings nur während einer Sitzung und die alte Schriftart wird nicht gespeichert.

Sie können beliebige Schriftarten einstellen. Wenn Sie jedoch Dokumente mit anderen austauschen, sollten Sie nur Schriftarten benutzen, die auch auf dem PC Ihres Partners installiert sind.

Die Schriftgröße einer Formel ändern

Um die Schriftgröße der Formeln zu verändern, führen Sie folgende Schritte aus:

- 1. Wählen Sie den Menüeintrag Format → Schriftgrößen...
- 2. Stellen Sie eine andere Schriftgröße im Feld Basisgröße ein (Abbildung 18).

Abbildung 18: Dialog Schriftgröße

Hinweis

Die Änderung der Schriftgröße wird nur für die aktuelle Formel übernommen. Wenn Sie die Schriftgröße generell ändern möchten, klicken Sie zunächst auf die Schaltfläche **Standard** und anschließend auf **OK**. Die generelle Änderung der Schriftgröße kann zum Beispiel die Arbeit erleichtern, wenn Sie eine umfangreiche Präsentation vorbereiten und alle Formeln dort mit der Schriftgröße 28pt als Basisgröße verwenden möchten – vergessen Sie aber nicht, am Ende der Arbeit die Einstellung wieder rückgängig zu machen.

Das Ergebnis sehen Sie in Abbildung 19.

Abbildung 19: Formel mit veränderter Schriftgröße

Abstände in Formeln anpassen

Wenn Sie Abstände in Formeln vergrößern oder verkleinern möchten, können Sie dieses wie folgt tun:

- 1. Wählen Sie im Menü Format → Abstände...
- 2. Im Dialog *Abstände* (Abbildung 20) klicken Sie auf das Dreieck neben *Kategorien* und wählen Sie den gewünschten Eintrag aus der Auswahlliste.
- 3. Geben Sie die Abstände für die aufgeführten Bereiche (je nach Kategorie unterschiedlich) ein und beenden Sie den Dialog mit **OK**.

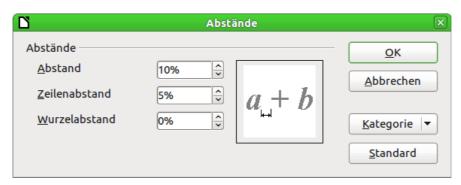


Abbildung 20: Der Dialog Abstände

Hinweis

Die Änderung des Abstandes wird nur für die aktuelle Formel übernommen. Wenn Sie den Abstand generell ändern möchten (nicht unbedingt empfohlen), klicken Sie zunächst auf die Schaltfläche **Standard** und anschließend erst auf **OK**.

Für die folgenden Kategorien ist die Änderung von Abständen möglich:

Kategorie	Einstellmöglichkeit		
Abstände	a + b Zeichenabstand	x = a $y = b$ Zeilenabstand	√2 [‡] Wurzelabstand
	Zeidrichabstaria	Zenenabstaria	VVIIZCIADSIAITA

Kategorie	Einstellmöglichkeit			
Indizes	m ² Hochstellung		M2 Tiefstellung	
Brüche	X Zähler	höhe	X Nenn	ertiefe
Bruchstriche	X V Überlä	ınge	$\frac{x}{y}$	ıstärke
Grenzen	$ \begin{array}{c} i = N_{\downarrow} \\ \hline \end{array} $ Grenz	höhe	i = 0 Green	ztiefe
Klammern	left/right Übergröße		Tx V Abstand	
Matrizen	$\begin{bmatrix} a_c \\ b \end{bmatrix}$ Zeilen	abstand	$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ Spalt	enabstand
Symbole	Primärhöhe		m Minde	estabstand
Operatoren	$\nabla^{\scriptscriptstyle{I}}\!x$		∇x	
	Übergröße		Absta	ınd
Ränder	 →E=ma ²	E=ma ² →	E=ma ²	E=ma ²
	Links	Rechts	Oben	Unten

Die Ausrichtung verändern

Die Einstellungen zur Ausrichtung legen fest, wie Formelbestandteile, die übereinander stehen, horizontal relativ zueinander ausgerichtet werden. Unter **Format** → **Ausrichtung...** wählen Sie zwischen den globalen Einstellungen *links*, *zentriert* und *rechts*.

Abbildung 21: Dialogfenster Ausrichtung

Auch hier legen Sie mit der Schaltfläche Standard fest, dass diese Einstellung nicht nur für die aktuelle Formel, sondern für alle neuen Formeln gelten soll.

Die folgenden Beispiele zeigen die Auswirkung der Einstellung in verschiedenen Situationen.

Ausrichtung	Beispiele		
links	$\frac{x^2-9}{x}$	$\begin{pmatrix} 100 \\ 7 \end{pmatrix}$	$c^{2}=a^{2}+b^{2}-2 ab \cos y$ $\cos y = \frac{c^{2}-a^{2}-b^{2}}{-2 ab}$
zentriert (Standard)	$\frac{x^2-9}{x}$	$\begin{pmatrix} 100 \\ 7 \end{pmatrix}$	$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$ $\cos \gamma = \frac{c^{2}-a^{2}-b^{2}}{-2 a b}$
rechts	$\frac{x^2-9}{x}$	$\begin{pmatrix} 100 \\ 7 \end{pmatrix}$	$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$ $\cos \gamma = \frac{c^{2}-a^{2}-b^{2}}{-2 a b}$

Es ist nicht möglich, Formelteile an einem bestimmten Zeichen auszurichten.

Die globalen Einstellungen der Ausrichtung beziehen sich nicht auf Texte; diese sind immer links ausgerichtet. In den folgenden beiden Beispielen ist die globale Ausrichtung *recht*s, aber im linken Beispiel beginnt die zweite Zeile mit einem Text – auch wenn er leer ist – und wird daher linksbündig ausgerichtet.

Markup-Code	Ergebnis
{1+2+3+4} over 5 + 2 over {60+70+80+90} newline	$\frac{1+2+3+4}{5} + \frac{2}{60+70+80+90}$
""=2+1 over 150	$=2+\frac{1}{150}$
{1+2+3+4} over 5 + 2 over {60+70+80+90} newline	$\frac{1+2+3+4}{5} + \frac{2}{60+70+80+90}$
{}=2+1 over 150	$=2+\frac{1}{150}$

Unabhängig von der globalen Einstellung der Ausrichtung der Formel werden durch die Kommandos **alignl**, **alignc** und **alignr** Formelteile individuell ausgerichtet. Diese Attribute

wirken auch auf Texte. In den beiden Beispielen sind die Formeln jeweils global auf Ausrichtung *recht*s eingestellt.

Markup-Code	Ergebnis
"Zeit" = "Weg" over "Geschwindigkeit"	Zoit – Weg – 25 km
= {25"km"} over {50"km/h"}	$Zeit = \frac{Weg}{Geschwindigkeit} = \frac{25 \text{ km}}{50 \text{ km/h}}$
"Zeit" = {alignc "Weg"} over	
"Geschwindigkeit"	$Zeit = \frac{Weg}{Geschwindigkeit} = \frac{25 \text{ km}}{50 \text{ km/h}}$
= {25"km"} over {50"km/h"}	Geschwindigkeit 30 km/n

Formeln in Writer-Dokumenten

Position

Standardmäßig wird eine Formel "Als Zeichen" in einem Writer-Dokument verankert. Wie jedes andere OLE-Objekt können Sie diese Verankerung ändern und die Formel beliebig positionieren. Mehr dazu erfahren Sie im Kapitel 11 "Grafiken, Bilder und Fontworks verwenden" im Handbuch *Erste Schritte*.

In der Grundeinstellung werden "Als Zeichen" verankerte Formelobjekte automatisch vertikal an der Grundlinie des umgebenden Textes ausgerichtet. Um die Formeln manuell ausrichten zu können, deaktivieren Sie die Option "Basislinienausrichtung in Formeln" unter Extras → Optionen... → LibreOffice Writer → Formatierungshilfen im Abschnitt Layout Assistent. Diese Einstellung gilt für alle Formeln des Dokuments und wird in dem Dokument gespeichert. Für neue Dokumente gilt die gerade aktuelle Einstellung aus dem Dialog.

Außenabstand

Eine eingefügte Formeln besitzt im Writer links und rechts Abstände, die sie vom umlaufenden Text absetzen. Wenn Sie diese Einstellung nicht wünschen, ändern Sie am besten die Rahmenvorlage *Formel*, um die Einstellung für alle eingefügten und zukünftig einzufügenden Formeln in dem Dokument gleichzeitig vorzunehmen. Gehen Sie dazu wie folgt vor:

- Drücken Sie die Taste F11. Es öffnet sich der Dialog Formatvorlagen.
- Wechseln Sie in das Register Rahmenvorlagen.
- Suchen und rechtsklicken Sie auf die Rahmenvorlage *Formel*.
- Wählen Sie im Kontextmenü den Eintrag Ändern...
- Wechseln Sie in das Register *Umlauf*. Ändern Sie die Werte für *Recht*s und *Link*s im Abschnitt Abstände auf "0,00cm".
- Schließen Sie den Dialog Formatvorlagen mit einem Klick auf OK.

Die Abstände sind für alle Formeln in dem Dokument geändert, die nicht zuvor manuell geändert wurden. Weitere Informationen zum Einsatz von Formatvorlagen finden Sie im Kapitel 3 "Formate und Vorlagen" im Handbuch *Erste Schritte*.

Hintergrund, Umrandung und Größe

Formeln werden bezüglich Formatierung als Objekte der Gruppe *Rahmenvorlagen* behandelt und erhalten die Formatvorlage "Formel". Über diese Formatvorlage oder direkt über **Format** →

Rahmen/Objekt bzw. mit einem Rechtsklick auf die Formel und Auswahl von Objekt im Kontextmenü lassen sich Hintergrundfarbe und Umrandung festlegen. In der Grundeinstellung haben Formeln einen transparenten Hintergrund und keine Umrandung. Die Größe einer Formel lässt sich nicht einstellen, sondern in einem Writer-Dokument ergibt sie sich direkt aus dem Aufbau der Formel selbst.

Gleichungen nummerieren

Die Nummerierung von Gleichungen ist eine der am besten versteckten Funktionen für Math im Writer. Aber die Umsetzung ist einfach:

- Rufen Sie ein Writer-Dokument auf bzw. erstellen Sie ein neues Writer-Dokument.
- 2. Geben Sie in einem leeren Absatz "fn" ein und drücken Sie die Taste F3.

Der Ausdruck "fn" wird durch eine nummerierte Formel ersetzt (mit der berühmtesten Formel Albert Einsteins als Ausgangsgleichung). Das Ergebnis ist in Formel (1) zu sehen:

$$E = mc^2 \tag{1}$$

Mit einem Doppelklick auf die Formel können Sie diese nun ändern. Geben Sie z. B. die Formel für die Riemann'sche Zetafunktion ein. Das Ergebnis sieht dann wie in Formel (2) aus:

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$
 (2)

Um eine Referenz zu einer Gleichung herzustellen, führen Sie folgende Schritte aus:

- 1. Wählen Sie im Menü den Eintrag Einfügen → Querverweis...
- 2. Es öffnet sich der Dialog *Feldbefehle* mit dem Register *Querverwei*s (Abbildung 22). In der Liste unter *Feldtyp* wählen Sie den Eintrag "Text".
- 3. Im Bereich *Auswahl* wählen Sie die Nummer der Gleichung.
- 4. Wählen Sie im Feld Format den Eintrag "Referenztext" aus.
- 5. Klicken Sie auf Einfügen.

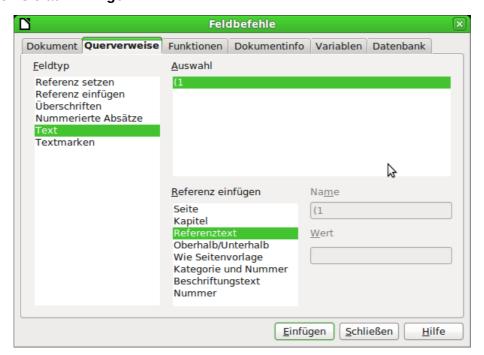


Abbildung 22: Das Register Querverweis im Dialog Feldbefehle

Wenn Sie im Nachhinein weitere nummerierte Gleichungen oberhalb bestehender Gleichungen einfügen, werden die bestehenden Gleichungen neu nummeriert und die Referenzen aktualisiert.

Tipp

Um die Referenzen zu nummerierten Gleichungen ohne die runden Klammen einzufügen, wählen Sie den Eintrag "Nummer" anstelle von "Referenz" im Feld *Format* aus.

Der durch obiges Vorgehen eingefügte AutoText besteht aus einer 1×2 Tabelle. In der linken Zelle steht die Formel und in der rechten Zelle die Nummer. Durch die Nummer wird automatisch der Nummernkreis "Text" angelegt. Den Autotext können Sie bearbeiten, wenn Sie beispielsweise eckige statt runde Klammern benötigen oder Formel und Nummer nicht mit einer Tabelle sondern mit Tabulatoren ausrichten wollen. Lesen Sie dazu den Abschnitt "AutoText verwenden" in Kapitel 3 "Arbeiten mit Text" des Writer Handbuchs.

Formelbibliothek anlegen

Mithilfe der Komponente Math von LibreOffice (z. B. über **Datei** → **Neu** → **Formel** erreichbar) werden Dokumente mit der Dateiendung .odf mit jeweils einer Formel erstellt. Diese können Sie benutzen, um eine Bibliothek häufig benutzter Formeln zu erstellen. Mit einem Rechtsklick auf eine Formel und Auswahl von **Speichern als...** im Kontextmenü lassen sich auch eingebettete Formeln als separates Math-Dokument speichern. Um eine solches Math-Dokument in einem Writer-Dokument einzufügen, benutzen Sie **Einfügen** → **Objekt** → **OLE-Objekt...** Markieren Sie dann die Option "aus Datei erstellen" und tragen Sie *Pfad* und *Name* der Datei in das Feld ein oder suchen Sie die Datei über die Schaltfläche "Suchen" mithilfe des Dateimanagers Ihres Betriebssystems.

Hinweis

Es ist weder möglich, ein Math-Dokument durch Ziehen&Ablegen mit der Maus einzufügen, noch übers Menü **Einfügen** \rightarrow **Datei...**

Eine Formel kann nicht in der Gallery abgelegt werden, weil es sich nicht um ein Bildformat handelt. Sie können aber Formeln als AutoText speichern. Schreiben Sie dazu die Formel allein in einen Absatz, markieren diesen und rufen dann **Bearbeiten** → **AutoText...** auf. Für weitere Informationen lesen Sie den Abschnitt "AutoText verwenden" in Kapitel 3 "Arbeiten mit Text" des Writer Handbuchs.

Formeln in Calc, Impress und Draw

Grafikeigenschaften

Formelobjekte haben in Calc, Impress und Draw ähnliche Eigenschaften. Sie werden immer mit transparentem Hintergrund und ohne Umrandung eingefügt. In Draw und Impress ist ihnen die Grafikvorlage *Standard* zugeordnet, in Calc ist keine Formatvorlage zugeordnet und Eigenschaften können nur direkt gesetzt werden. Aber die in der Vorlage bzw. im Kontextmenü oder über **Format** \rightarrow **Grafik** angezeigten Eigenschaften sind – wenn überhaupt – nur eingeschränkt nutzbar.

Linie, Fläche, Schatten

Sie können zwar Werte angeben, aber die Einstellungen werden komplett ignoriert.

Textattribute

Alle Textattribute, z. B. Schrift oder Ausrichtung, beziehen sich nicht auf den Formeltext, sondern auf den bei allen Grafikobjekten vorhandenen Grafiktext. Diesen erreichen Sie bei markiertem Objekt über die Funktionstaste *F2*. Lesen Sie für weitere Informationen das Kapitel "Arbeit mit Texten in Draw" im *Draw-Handbuch*.

Position

Eine Formel kann beliebig positioniert werden. Benutzen Sie dazu die Maus, die Pfeiltasten oder im Menü **Format** → **Position und Größe...** den Dialog *Position und Größe*.

Größe

Im Dokument wird nicht das Formelobjekt selbst dargestellt, sondern die zugehörige Ersatzgrafik. Diese ist in ihrer Größe zunächst geschützt. Um die Größe zu ändern öffnen Sie den Dialog *Position und Größe* und deaktivieren Sie auf der ersten Dialogseite den Schutz im Abschnitt *Schützen* durch Entfernen des Häkchens der Option "Größe". Dadurch wird der Abschnitt *Größe* aktiviert. Geben Sie Ihre Änderungen ein. Nach dem Schließen des Dialogs wird die Größe automatisch wieder geschützt.

Die Änderung der Größe wirkt sich nicht auf die Formel selbst aus, sondern nur auf ihre Darstellung. Insbesondere ändert sich die Basisschriftgröße der Formel dadurch nicht. Um zu der aus dem Formelinhalt festgelegten Größe zurückzukehren, benutzen Sie den Eintrag *Originalgröße* aus dem Kontextmenü. Damit lassen sich auch Größenfehler beheben, die manchmal beim Einfügen einer Formel aus einem anderen Modul entstehen.

In Präsentationen werden Formeln meist in größerer Darstellung benötigt als in Textdokumenten. Neben der hier gezeigten Lösung können Sie auch die Basisschriftgröße ändern, wie im Abschnitt "Die Schriftgröße einer Formel ändern" beschrieben.

Drehung, Scherung und Spiegelung

Drehungen, Scherungen und Spiegelungen sind nicht möglich, die entsprechenden Dialogabschnitte sind deaktiviert. Benötigen Sie eine solche Darstellung, wandeln Sie die Formel in eine *GDI Metafile*-Grafik um. Dann ist es jedoch keine Formel mehr, sondern ein Bild. Kopieren Sie die Formel dazu in die Zwischenablage. Wählen Sie dann im Menü **Bearbeiten** → **Inhalte einfügen...** oder in der Symbolleiste *Standard* die mit dem Symbol *Einfügen* (ICON) verbundene Auswahlliste (durch Klick auf den keinen Pfeil rechts neben dem Symbol) und wählen dort den Eintrag **GDI Metafile**.

Formel mit Text kombinieren

Weil eine Formel ein OLE-Objekt ist, sind weder Tabellenzellen noch Grafik- oder Präsentationsobjekte in der Lage, Formeln aufzunehmen. Es ist daher im Gegensatz zu Writer-Dokumenten nicht möglich, Formeln in den Fließtext zu integrieren. Es folgen einige Alternativen.

Textteile in der Formel

Schreiben Sie den Text direkt in die Formel hinein. Beispiel:

Die Veranschaulichung am Parallelogramm legt die Beziehung $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BC}$ nahe. Ein Beweis ist dies jedoch nicht.

Der zugehörige Markup-Code ist

"Die Veranschaulichung am Parallelogramm legt die" newline

"Beziehung " widevec AB = widevec CD dlrarrow widevec AC = widevec BC " nahe." newline

"Ein Beweis ist dies jedoch nicht."

Es gibt keinen automatischen Zeilenumbruch, sondern Sie müssen jeweils das Kommando **newline** benutzen.

Die Schriftart passen Sie über **Format** → **Schriftarten...** an den sonstigen Text an. Lesen Sie auch den Abschnitt "*Die Schriftart einer Formel ändern"*.

Die Sonderzeichenauswahl via **Einfügen** → **Sonderzeichen...** steht innerhalb des Formeleditors nicht zur Verfügung. Schreiben Sie ein Sonderzeichen deshalb in einem Textdokument und kopieren Sie es dann über die Zwischenablage in das Kommandofenster.

Formeln mit Grafikobjekten gruppieren

Anders als in Textdokumenten können Formeln problemlos mit anderen Objekten zusammen markiert und zu einer Gruppe zusammengefasst werden. Im Beispiel wurden Textboxen mit Formelobjekten gruppiert und Rechtecke benutzt, um Teile der Formel hervorzuheben.

Nun wird die quadratische Ergänzung eingefügt

$$=x^2-6x+3^2-3^2-7$$

und anschließend werden die Teile zusammengefasst.

$$= x^{2} - 6x + 3^{2} - 3^{2} - 7$$
$$= (x - 3)^{2} - 16$$

Formeln im Writer-OLE-Objekt

Um alle Möglichkeiten eines Textdokuments nutzen zu können, erstellen Sie den gewünschten Text mit Formeln zunächst im Modul Writer. Legen Sie dabei eine Seitengröße fest, die etwa der späteren Zielgröße entspricht. Schreiben Sie nicht mehr als eine Seite, weil eine Seitenauswahl später problematisch ist. Speichern Sie das Dokument.

In Impress (und genauso in Calc oder Draw) benutzen Sie nun **Einfügen** → **Objekt** → **OLE-Objekt...** und dann die Option "Aus Datei". Die Formel wird als OLE-Objekt in ein Dokument eingebettet, das nun als OLE-Objekt benutzt wird. Damit ist die Formel in Impress nicht mehr zu bearbeiten. Sie sollten daher auf jeden Fall die Option *Mit Datei verknüpfen* aktivieren. So können Sie, wenn Änderungen notwendig werden, das Textdokument direkt öffnen und Text und Formeln bearbeiten. In Impress passen Sie mit **Bearbeiten** → **Verknüpfungen...** → **Aktualisieren** die Darstellung an die gespeicherte Version des Textdokuments an. Versuchen Sie nicht, den Text innerhalb von Impress zu bearbeiten, die Darstellung wird dann fehlerhaft.

Formeln in Charts

Ein Diagramm ist selbst ein OLE-Objekt. Daher können Sie innerhalb des Bearbeitungsmodus den Formeleditor nicht aufrufen. Für Diagramme steht keine eigenständige LibreOffice Komponente zur Verfügung, sodass der oben für Writer-Dokumente beschriebene Weg ebenfalls nicht möglich ist. Sie können jedoch eine Formel außerhalb des Bearbeitungsmodus für Diagramme erstellen, die Formel dann in die Zwischenablage kopieren, das Diagramm zum Bearbeiten aktivieren und die Formel aus der Zwischenablage einfügen. Dabei wird die Formel automatisch in eine Metafile-Grafik umgewandelt. Wenn eine Änderung nötig sein sollte, müssen Sie diese löschen und den Vorgang wiederholen.

Export und Import

Export als MathML

Neben den Export als PDF, der im Kapitel 10 "Drucken, Exportieren und E-Mailen" des *Erste Schritte* Handbuchs erklärt wird, bietet Math auch die Möglichkeit, eine Formel als MathML auszugeben. Leider unterstützen die Browser den Standard noch nicht perfekt. Wenn es zu Darstellungsfehlern kommt, liegt es am eingesetzten Browser.

Als Beispiel wird diese Formel verwendet:

Markup-Code Ergebnis

```
%zeta (z) = sum from {n = 1} to infinity {1 over {n^z} newline (matrix {a # b ## c # d}) newline "Text" newline int_0^x f(t) dt newline x = 3 y = 1 \zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} \binom{a \ b}{c \ d} Text \int_0^x f(t) dt x = 3 \ y = 1
```

Diese Formel vereint die verschiedenen Möglichkeiten, die Math bietet. Sie eignet sich daher gut zum Testen.

Wenn Sie in einem separaten Math-Dokument arbeiten, wählen Sie im Menü **Datei** → **Speichern unter...**, um den Dialog *Speichern unter* zu öffnen. Wählen Sie "MathML" aus der Liste der verfügbaren *Dateierweiterungen* aus (Abbildung 23), um die Formel als MathML abzuspeichern.

Abbildung 23: Format auswählen

Bei einer in einem Dokument eingebetteten Formel wählen Sie aus dem Kontextmenü der Formel den Eintrag "Kopie speichern unter".

Ergebnis

Dieses MathML-Datei wurde im Anschluss mit vier verschiedenen Browsern getestet.

Das Ergebnis ist in Abbildung 24 bis Abbildung 27 zu sehen:

```
\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^{2}}
```

Abbildung 24: Firefox 6

Abbildung 25: Opera 11.50

Abbildung 26: Internet Explorer 9

Export und Import 31

```
▼<math xmlns="http://www.w3.org/1998/Math/MathML">
▼<semantics>
▼<mtable>
▼<mtr>
▼<mtr>
▼<mtr>
▼<mtd>
▼<mrow>
<mo stretchy="false">ζ</mo>
▼<mrow>
```

Abbildung 27: Chromium 13

Safari 5.1 öffnet nur den Dateimanager, um die Datei zu speichern.

Microsoft Office Dateiformate

Die Optionen in Extras → Optionen... → Laden/Speichern → Microsoft Office steuern, wie beim Import oder Export von Microsoft Office Dateiformaten mit den Formeln verfahren wird.

Laden

Wenn [L] markiert ist, konvertiert LibreOffice die Microsoft-Formeln beim Laden eines Dokumentes in das eigene Format. Dies ist möglich, falls die Formeln mit MathType⁵ (bis Version 3.1) oder mit dem Programm "Microsoft Equation Editor" erstellt wurden. Letzteres ist eine reduzierte, von Microsoft lizenzierte ältere Version des Programms MathType, die mit Microsoft Office mitgeliefert wird.

Formeln neuerer MathType Versionen und Formeln des neuen Microsoft Formeleditors "OMML Equation Editor"⁶ (Microsoft Office Suite 2010, teilweise auch 2007) können nicht konvertiert werden.

Wird von Microsoft Office 2010 ein Dokument mit OMML-Formel in ein doc-Dateiformat gespeichert, wandelt Microsoft Office die Formel in ein Bild um. In LibreOffice ist dann nur dieses Bild zu sehen.

Laden Sie ein docx-Dokument, das OMML-Formeln enthält, dann fehlen diese Formeln völlig, egal ob die Option [L] markiert ist oder nicht.

Die mit MathType oder mit dem Microsoft Equation Editor erstellten Formeln werden innerhalb von Microsoft Office als OLE Objekte behandelt. Wenn [L] nicht markiert ist, behält LibreOffice dies bei. Bei einem Doppelklick auf die Formel wird MathType gestartet und neue Formeln werden über Einfügen → Objekt → OLE Objekt... erstellt. Diese Einstellung ist dann empfehlenswert, wenn Sie MathType installiert haben und Formeln mit diesem Programm erstellen und bearbeiten wollen.

Speichern

Wenn [S] markiert ist, wandelt LibreOffice die Formel in eine Form um, die von Microsoft Equation Editor und MathType gelesen und bearbeitet werden können. Wenn [S] nicht markiert ist, wird beim Exportieren in das doc-Fileformat die Formel als OLE-Objekt behandelt und bleibt mit LibreOffice verknüpft. Ein Doppelklick in Word auf die Formel versucht daher LibreOffice zu starten.

Speichern Sie im docx-Dateiformat, werden die Formeln gar nicht übernommen, egal ob [S] markiert ist oder nicht.

⁵ http://www.dessci.com/en/

⁶ Office Math Markup Language.

OpenDocumentText in Microsoft Word 2010 öffnen

Bei Verwendung von Microsoft Word 2010 kann die LibreOffice-Datei auch im odt-Dateiformat geöffnet werden. Microsoft Word 2010 meldet zwar einen Fehler, erstellt aber trotzdem ein "repariertes" Dokument. In diesem sind die ursprünglichen Formeln zu OMML-Formeln umgewandelt worden. Beim erneuten Speichern in das odt-Dateiformat wird die Formel von Microsoft Word 2010 wieder in eine MathML-Formel umgewandelt und kann von LibreOffice bearbeitet werden. Achten Sie darauf, dass Sie inhaltlich zusammengehörende Teile mit Gruppierungsklammern zusammenfassen – auch wenn dies aus optischen Gründen für LibreOffice nicht erforderlich ist. Dadurch ist es LibreOffice möglich, die Struktur der Formel richtig nach MathML zu übersetzen. Benutzen Sie beispielsweise sum from {i=1} to n i^2.

Bei dieser Vorgehensweise geht das Annotation-Element verloren. Dadurch zeigt LibreOffice im Kommandofenster nicht mehr den ursprünglichen Math Markup-Code, sondern generiert einen neuen Markup-Code aus der internen MathML-Notation.

XHTML

Das XHTML-Dateiformat steht nur für ein Speichern als Exportdatei zur Verfügung. Deshalb finden Sie diese Option nicht bei **Datei** → **Speichern unter...**, sondern nur bei **Datei** → **Exportieren...** Falls die Option bei Ihnen fehlt, können Sie den entsprechenden Filter nachinstallieren. Die Ersatzgrafik der Formel ist in die Datei eingebettet, aber der beim Export in das MathML-Dateiformat (vergleichen Sie auch den Abschnitt "Export als MathML") in einem Annotation-Element enthaltene Math Markup-Code fehlt hier.

Ob das Dokument im Browser richtig dargestellt wird, hängt sehr vom Browser ab. Firefox zeigt das Dokument einschließlich der Formeln korrekt an. Opera und Internet Explorer haben Schwierigkeiten mit der eingebetteten Grafik.

Der alte Exportfilter "HTML Dokument (OpenOffice.org Writer)(.html)" speichert die Formel überhaupt nicht, sondern benutzt nur ein schlecht aufgelöstes Bild im gif-Dateiformat.

Flat XML

Dieses Format kann von LibreOffice gelesen und gespeichert werden. Wenn bei Ihnen diese Option im Menü **Datei** → **Speichern** bzw. **Datei** → **Speichern unter...** fehlt, können Sie den entsprechenden Filter nachinstallieren. Bei diesem Format wird der gesamte Inhalt des Dokuments, einschließlich der Vorlagen, innerhalb eines XML-Dokuments gespeichert. Es ist also kein komprimierter Ordner wie beim üblichen Abspeichern als OpenDocument-Datei. Die Formeln sind dabei als MathML-Elemente enthalten, ähnlich zum Export als MathML. Es wird jedoch nicht eine einzelne Formel gespeichert, sondern das gesamte Dokument mit allen Formeln. Dieses Format eignet sich direkt für eine externe Versionsverwaltung.

Dmaths – eine Extension nicht nur für eine schnellere Formeleingabe

Es gibt ein Mathematik-Makropaket für LibreOffice Writer, das als Extension installiert werden kann. Diese Extension heißt "Dmaths" und kann von der Webseite http://dmaths.projects.ooodev.org heruntergeladen werden. Hier finden Sie auch weitere Informationen zu Installation und Verwendung von Dmaths und zu den mitgelieferten Autotexten und Gallerie-Themen.

Nach der Installation erhält LibreOffice Writer ein neues Menü (Abbildung 28),

Abbildung 28: Neues Menü Dmaths

eine neue (anpassbare) Symbolleiste mit 36 Schaltflächen (Abbildung 29),

Abbildung 29: Symbolleiste Dmaths

eine neue Symbolleiste mit 26 Schaltflächen für die Bedienung von Gdmath (Abbildung 30),

Abbildung 30: Symbolleiste Gdmath

eine neue Symbolleiste mit 10 Schaltflächen für die Bedienung von AHmath3D (Abbildung 31)

Abbildung 31: Symbolleiste AHmath3D

und zwei kurze Symbolleisten zum schnellen An- und Ausschalten der langen Symbolleisten und zum Zugriff auf einige weitere Funktionen (Abbildung 32).

Abbildung 32: Symbolleisten zum An- und Ausschalten für weitere Funktionen

Dmaths stellt damit eine Vielzahl von Werkzeugen für die Erstellung mathematikhaltiger Dokumente zur Verfügung:

- Erstellung von Math-Formeln mit einem Klick aus eingegebenem Text (Symbolfarbe: orange).
- Erstellung vom Math-Formeln mit Hilfe von Eingabedialogen (Symbolfarbe: violett).
- Auszeichnung von Text (Symbolfarbe: blau).
- Veränderung von Eigenschaften vorhandener Formeln (Symbolfarbe: grün).
- Zeichnen von Graphen, Gittern, statistischen Diagrammen und geometrischen Figuren (Symbolfarbe: türkis).
- Zeichnen und Verändern von geometrischen Objekten (Gdmath-Symbolleiste in grau ebenso in LibreOffice-Draw verfügbar).
- Zeichnen von 3D-Objekten (AHmath3D-Symbolleiste mit Kantenmodellen).

Über das Menü erhalten Sie Zugriff auf weitere mathematische Addons, die Einstellungen und das ausführliche Handbuch "Dmaths Hilfe".

Dmaths, initiiert von dem französischen Mathematiklehrer Didier Dorange, gibt es inzwischen nicht nur auf französisch, sondern auch auf englisch, deutsch und spanisch. Die originale Adresse im Internet ist http://www.dmaths.org.

Hier zur Veranschaulichung zwei Beispiele für die Erstellung von Formeln mit Dmaths (Abbildung 33):

- Tippen Sie -3;4;x^3 ein (die Schreibmarkierung kann hinter dem eingegebenen Text bleiben).
- Klicken Sie auf das orangene Integralsymbol oder verwenden Sie das Tastaturkürzel Strg+Umsch+I.
- Die fertige Math-Formel erscheint nun an der Stelle des eingegebenen Textes.

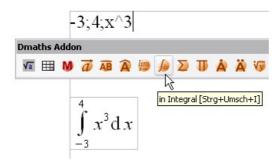


Abbildung 33: Beispiel mit Dmaths

Besonders interessant ist die Möglichkeit, mit Hilfe des erweiterten Formel-Dialogs komplizierte Formeln zusammenzusetzen. Dazu stehen Unterdialoge zur Verfügung, die intuitiv ausfüllbar sind und deren Ergebnisse direkt in der Eingabezeile des Dialogs und an der Position der Schreibmarke eingetragen und dort auch beliebig per Hand verändert werden können (Abbildung 34). Hier finden Sie auch zwei spezielle Dialoge für die Formel einer Binomialverteilung (Abbildung 35 und 36) und für den Bau von Reaktionsgleichungen ("Isotope").

Abbildung 34: Dialog zur intuitiven Formeleingabe

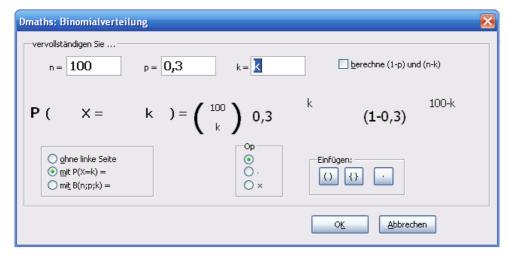


Abbildung 35: Dialog Binomialverteilung

$$P(X=k) = {100 \choose k} 0.3^{k} (1-0.3)^{100-k} \P$$

Abbildung 36: Beispiel einer Binomialverteilung

Technische Einzelheiten

OASIS Open Document Format for Office Applications

In den ODF-Spezifikationen wurde für die Math-Formeln kein vollständig neuer Standard festgelegt, sondern der schon vom World Wide Web Consortium (W3C) für Formeln in Webseiten erarbeitete Standard Mathematical Markup Language (MathML) übernommen (vergleichen Sie http://www.w3.org/TR/2003/REC-MathML2-20031021). Von den dort vorgesehenen zwei Arten "Presentation Markup" und "Content Markup" wird in ODF die erstere benutzt. Es wird also mehr die Darstellung einer Formel beschrieben als ihre mathematische Bedeutung.

Die Markup-Sprache MathML unterscheidet sich von dem Markup, das in Kommandofenster benutzt wird. So lassen sich beispielsweise in der Formel int from {i=1} to 3 {f(t) {nitalic d}t} die Teile from... to... nicht übersetzen, sondern werden wie int_{i=1}^3 in MathML übertragen. Die ursprüngliche Formel aus dem Kommandofenster ist eine StarMath⁷ 5.0 Kodierung. Damit diese nicht verloren geht, wird sie in einem Annotation-Element gespeichert. Andere Anwendungen brauchen dieses Element weder auswerten noch bewahren und erzeugen ihrerseits auch keins.

Zu den Formeln gehört bei LibreOffice auch jeweils eine Ersatzgrafik. In den Containerformaten odt, odf usw. liegen diese Grafiken in einem separaten Ordner und sind zu dem eigentlichen Dokument intern verlinkt. Benutzen Sie jedoch das Speicherformat "Open Dokument (Flat XML)" oder den Export nach XHTML, müssen diese Grafiken eingebettet werden. Dazu werden sie in BASE64 kodiert.

⁷ LibreOffice basiert auf der von StarDivision entwickelten Office-Suite StarOffice, vergleichen Sie auch http://de.wikipedia.org/wiki/LibreOffice#Vorgeschichte

Handhabung von Formeln in Basic

Dieser Abschnitt enthält keine Einführung in Basic⁸, sondern beschreibt nur einige spezielle Aspekte von Formeln.

Nähere Informationen zu den unten benutzten Typen und Services finden Sie in http://api.libreoffice.org/common/ref/com/sun/star/module-ix.html. Wenn Sie die hier erwähnten Bezeichnungen über den Index suchen, gelangen Sie schnell zu den relevanten Beschreibungen.

Formeln im einem Writer-Dokument

In einem Writer-Dokument liegen alle OLE-Objekte – und damit auch die Formeln – in einer Sammlung von Typ SwXTextEmbeddedObjects.

```
oCurrentController = ThisComponent.getCurrentController()
oTextDocument = oCurrentController.Model
oEmbeddedObjects = oTextDocument.EmbeddedObjects
```

Diese Sammlung ist von 0 an durchnummeriert. Ein einzelnes Objekt erhalten Sie über den Index:

```
nEndIndex = oEmbeddedObjects.Count-1
for nIndex=0 to nEndIndex
  oMathObject = oEmbeddedObjects.getByIndex(nIndex)
```

Um festzustellen, ob dieses Objekt tatsächlich eine Formel ist, überprüfen Sie, ob es einen Service unterstützt, der nur von Formeln unterstützt wird:

```
oModel = oMathObject.Model
  if oModel.supportsService("com.sun.star.formula.FormulaProperties") then
Oder Sie überprüfen, ob die CLSID, die jedes OLE-Objekt besitzt, dasjenige eines Math-Objekts
ist'
```

if oMathObject.CLSID = "078B7ABA-54FC-457F-8551-6147e776a997" then Über das Model ändern Sie dann die Eigenschaften der Formel, wie beispielsweise die Basisschriftgröße:

```
oModel.BaseFontHeight = 12
```

Damit die Änderungen sichtbar werden, müssen die Formeln neu gezeichnet werden. Die Eigenschaft **ExtendedControlOverEmbeddedObject** stellt einige Methoden bereit, die sich speziell auf OLE-Objekte beziehen:

```
oXCOEO = oMathObject.ExtendedControlOverEmbeddedObject
oXCOEO.update()
```

Formeln in einem Draw/Impress/Calc-Dokument

In einem Draw-, Impress- oder Calc-Dokument, werden auch OLE-Objekte als Zeichenobjekte angesehen. Nachdem Sie Zugriff auf ein einzelnes Objekt haben, testen Sie, ob es ein OLE-Objekt ist und anschließend, ob es eine Formel ist. Kernstück eines Makros ist dann beispielsweise:

```
if oShape.supportsService("com.sun.star.drawing.OLE2Shape") then
if oShape.CLSID = "078B7ABA-54FC-457F-8551-6147e776a997" then
   oModelFormula = oShape.Model
   oModelFormula.BaseFontHeight = 12
```

Ein explizites Update ist in hier nicht erforderlich.

Technische Einzelheiten 37

⁸ Das Basic-Handbuch ist noch nicht fertiggestellt. Verfolgen Sie die Arbeit unter http://wiki.documentfoundation.org/Documentation/de#Handbuch Verwendung von Makros.