
Calc Guide

Chapter 12
Calc Macros
Automating repetitive tasks

Copyright

This document is Copyright © 2005–2012 by its contributors as listed below. You may distribute it
and/or modify it under the terms of either the GNU General Public License
(http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
Andrew Pitonyak
Barbara Duprey
Jean Hollis Weber
Simon Brydon

Feedback
Please direct any comments or suggestions about this document to:
documentation@libreoffice.org

Acknowledgments
This chapter is based on Chapter 12 of the OpenOffice.org 3.3 Calc Guide. The contributors to that
chapter are:

Andrew Pitonyak Gary Schnabl
Jean Hollis Weber Claire Wood

Publication date and software version
Published 17 July 2012. Based on LibreOffice 3.4.6.

Note for Mac users

Some keystrokes and menu items are different on a Mac from those used in Windows and Linux.
The table below gives some common substitutions for the instructions in this chapter. For a more
detailed list, see the application Help.

Windows or Linux Mac equivalent Effect

Tools > Options menu
selection

LibreOffice > Preferences Access setup options

Right-click Control+click Opens a context menu

Ctrl (Control) z (Command) Used with other keys

F5 Shift+z+F5 Opens the Navigator

F11 z+T Opens the Styles and Formatting window

Documentation for LibreOffice is available at http://www.libreoffice.org/get-help/documentation

http://www.libreoffice.org/get-help/documentation
mailto:documentation@libreoffice.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Contents

Copyright.. 2

Note for Mac users...2

Introduction.. 4

Using the macro recorder... 4

Write your own functions..7
Using a macro as a function.. 9

Passing arguments to a macro.. 12

Arguments are passed as values... 13

Writing macros that act like built-in functions... 13

Accessing cells directly.. 13

Sorting...15

Conclusion..16

Calc Macros 3

Introduction

A macro is a saved sequence of commands or keystrokes that are stored for later use. An example
of a simple macro is one that “types” your address. The LibreOffice macro language is very
flexible, allowing automation of both simple and complex tasks. Macros are especially useful to
repeat a task the same way over and over again. This chapter briefly discusses common problems
related to macro programming using Calc.

Using the macro recorder

Chapter 13 of the Getting Started guide, Getting Started with Macros, provides a basis for
understanding the general macro capabilities in LibreOffice using the macro recorder. An example
is shown here without the explanations in the Getting Started guide. The following steps create a
macro that performs paste special with multiply.

Tip
Use Tools > Options > LibreOffice > General and select the Enable experimental
(unstable) features option to enable the macro recorder.

1) Open a new spreadsheet.

2) Enter numbers into a sheet.

Figure 1: Enter numbers

3) Select cell A3, which contains the number 3, and copy the value to the clipboard.

4) Select the range A1:C3.

5) Use Tools > Macros > Record Macro to start the macro recorder. The Record Macro
dialog is displayed with a stop recording button.

Figure 2: Stop recording button

6) Use Edit > Paste Special to open the Paste Special dialog (Figure 3).

Figure 3: Paste Special dialog

4 Calc Macros

7) Set the operation to Multiply and click OK. The cells are now multiplied by 3 (Figure 4).

Figure 4: Cells multiplied by 3

8) Click Stop Recording to stop the macro recorder. The LibreOffice Basic Macros dialog
(Figure 5) opens.

1 My Macros 5 Create new module in library

2 LibreOffice Macros 6 Macros in selected library

3 Open documents 7 Current document

4 Create new library 8 Expand/collapse list

Figure 5: Parts of the LibreOffice Basic Macros dialog

9) Select the current document. For this example, the current Calc document is Untitled 1.
Existing documents show a library named Standard. This library is not created until the
document is saved or the library is needed, so at this point your new document does not
contain a library. You can create a new library to contain the macro, but this is not
necessary.

10) Click New Module. If no libraries exist, then the Standard library is automatically created
and used. In the New Module dialog, type a name for the new module or leave the name as
Module1.

Using the macro recorder 5

11) Click OK to create a new module named Module1. Select the newly created Module1, type
PasteMultiply in the Macro name box at the upper left, and click Save. (See Figure 6.)

Figure 6: Select the module and name the macro

The created macro is saved in Module1 of the Standard library in the Untitled 1 document. Listing 1
shows the contents of the macro.

Listing 1. Paste special with multiply.

sub PasteMultiply
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(5) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Flags"
args1(0).Value = "A"
args1(1).Name = "FormulaCommand"
args1(1).Value = 3
args1(2).Name = "SkipEmptyCells"
args1(2).Value = false

6 Calc Macros

args1(3).Name = "Transpose"
args1(3).Value = false
args1(4).Name = "AsLink"
args1(4).Value = false
args1(5).Name = "MoveMode"
args1(5).Value = 4

dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0, args1())
end sub

More detail on recording macros is provided in Chapter 13, Getting Started with Macros, in the
Getting Started guide; we recommend you read it if you have not already done so. More detail is
also provided in the following sections, but not as related to recording macros.

Write your own functions

Calc can call macros as Calc functions. Use the following steps to create a simple macro:

1) Create a new Calc document named CalcTestMacros.ods.

2) Use Tools > Macros > Organize Macros > LibreOffice Basic to open the LibreOffice
Basic Macros dialog. The Macro from box lists available macro library containers including
currently open LibreOffice documents. My Macros contains macros that you write or add to
LibreOffice. LibreOffice Macros contains macros included with LibreOffice and should not
be changed.

Figure 7: LibreOffice Basic Macros dialog

Write your own functions 7

3) Click Organizer to open the LibreOffice Basic Macro Organizer dialog (Figure 8). On the
Libraries tab, select the document to contain the macro.

Figure 8: LibreOffice Basic Macro Organizer

4) Click New to open the New Library dialog.

Figure 9: New Library dialog

5) Enter a descriptive library name (such as AuthorsCalcMacros) and click OK to create the
library. The new library name is shown in the library list, but the dialog may show only a
portion of the name.

Figure 10: The library is shown in the organizer

8 Calc Macros

6) Select AuthorsCalcMacros and click Edit to edit the library. Calc automatically creates a
module named Module1 and a macro named Main.

Figure 11: Basic Integrated Development Environment (IDE)

7) Modify the code so that it is the same as that shown in Listing 2.The important addition is
the creation of the NumberFive function, which returns the number five. The Option
Explicit statement forces all variables to be declared before they are used. If Option
Explicit is omitted, variables are automatically defined at first use as type Variant.

8) Save the modified Module1.

Listing 2. Function that returns five.

REM ***** BASIC *****
Option Explicit

Sub Main

End Sub

Function NumberFive()
 NumberFive = 5
End Function

Using a macro as a function
Using the newly created Calc document CalcTestMacros.ods, enter the formula
=NumberFive() (see Figure 12). Calc finds the macro and calls it.

Write your own functions 9

Figure 12: Use the NumberFive() Macro as a Calc function

Tip
Function names are not case sensitive. In Figure 12, you can enter =NumberFive()
and Calc clearly shows =NUMBERFIVE().

Save the Calc document, close it, and open it again. Depending on your settings in Tools >
Options > LibreOffice > Security > Macro Security, Calc will display the warning shown in
Figure 13 or the one shown in Figure 14. You will need to click Enable Macros, or Calc will not
allow any macros to be run inside the document. If you do not expect a document to contain a
macro, it is safer to click Disable Macros in case the macro is a virus.

Figure 13: LibreOffice warns you that a document contains macros

Figure 14: Warning if macros are disabled

If you choose to disable macros, then when the document loads, Calc can no longer find the
function.

10 Calc Macros

Figure 15: The function is gone

When a document is created and saved, it automatically contains a library named Standard. The
Standard library is automatically loaded when the document is opened. No other library is
automatically loaded.

Calc does not contain a function named NumberFive(), so it checks all opened and visible macro
libraries for the function. Libraries in LibreOffice Macros, My Macros, and the Calc document are
checked for an appropriately named function (see Figure 7). The NumberFive() function is stored in
the AuthorsCalcMacros library, which is not automatically loaded when the document is opened.

Use Tools > Macros > Organize Macros > LibreOffice Basic to open the LibreOffice Basic
Macros dialog (see Figure 16). Expand CalcTestMacros and find AuthorsCalcMacros. The icon for
a loaded library is a different color from the icon for a library that is not loaded.

Click the expansion symbol (usually a plus or a triangle) next to AuthorsCalcMacros to load the
library. The icon changes color to indicate that the library is now loaded. Click Close to close the
dialog.

Unfortunately, the cells containing =NumberFive() are in error. Calc does not recalculate cells in
error unless you edit them or somehow change them. The usual solution is to store macros used
as functions in the Standard library. If the macro is large or if there are many macros, a stub with
the desired name is stored in the Standard library. The stub macro loads the library containing the
implementation and then calls the implementation.

1) Use Tools > Macros > Organize Macros > LibreOffice Basic to open the LibreOffice
Basic Macros dialog. Select the NumberFive macro and click Edit to open the macro for
editing.

Figure 16: Select a macro and click Edit

2) Change the name of NumberFive to NumberFive_Implementation (Listing 3).

Listing 3. Change the name of NumberFive to NumberFive_Implementation

Function NumberFive_Implementation()
 NumberFive_Implementation() = 5
End Function

Write your own functions 11

3) In the Basic IDE (see Figure 11), hover the mouse cursor over the toolbar buttons to
display the tool tips. Click the Select Macro button to open the LibreOffice Basic Macros
dialog (see Figure 16).

4) Select the Standard library in the CalcTestMacros document and click New to create a new
module. Enter a meaningful name such as CalcFunctions and click OK. LibreOffice
automatically creates a macro named Main and opens the module for editing.

5) Create a macro in the Standard library that calls the implementation function (see Listing
4). The new macro loads the AuthorsCalcMacros library if it is not already loaded, and then
calls the implementation function.

6) Save, close, and reopen the Calc document. This time, the NumberFive() function works.

Listing 4. Change the name of NumberFive to NumberFive_Implementation.

Function NumberFive()
 If NOT BasicLibraries.isLibraryLoaded("AuthorsCalcMacros") Then
 BasicLibraries.LoadLibrary("AuthorsCalcMacros")
 End If
 NumberFive = NumberFive_Implementation()
End Function

Passing arguments to a macro
To illustrate a function that accepts arguments, we will write a macro that calculates the sum of its
arguments that are positive —it will ignore arguments that are less than zero (see Listing 5).

Listing 5. PositiveSum calculates the sum of the positive arguments.

Function PositiveSum(Optional x)
 Dim TheSum As Double
 Dim iRow As Integer
 Dim iCol As Integer

 TheSum = 0.0
 If NOT IsMissing(x) Then
 If NOT IsArray(x) Then
 If x > 0 Then TheSum = x
 Else
 For iRow = LBound(x, 1) To UBound(x, 1)
 For iCol = LBound(x, 2) To UBound(x, 2)
 If x(iRow, iCol) > 0 Then TheSum = TheSum + x(iRow, iCol)
 Next
 Next
 End If
 End If
 PositiveSum = TheSum
End Function

The macro in Listing 5 demonstrates some important techniques:

1) The argument x is optional. When an argument is not optional and the function is called
without it, LibreOffice prints a warning message every time the macro is called. If Calc calls
the function many times, then the error is displayed many times.

2) IsMissing checks that an argument was passed before the argument is used.

3) IsArray checks to see if the argument is a single value, or an array. For example,
=PositiveSum(7) or =PositiveSum(A4). In the first case, the number 7 is passed as
an argument, and in the second case, the value of cell A4 is passed to the function.

4) If a range is passed to the function, it is passed as a two-dimensional array of values; for
example, =PositiveSum(A2:B5). LBound and UBound are used to determine the

12 Calc Macros

array bounds that are used. Although the lower bound is one, it is considered safer to use
LBound in case it changes in the future.

Tip

The macro in Listing 5 is careful and checks to see if the argument is an array or a
single argument. The macro does not verify that each value is numeric. You may be as
careful as you like. The more things you check, the more robust the macro is, and the
slower it runs.

Passing one argument is as easy as passing two: add another argument to the function definition
(see Listing 6). When calling a function with two arguments, separate the arguments with a
semicolon; for example, =TestMax(3; -4).

Listing 6. TestMax accepts two arguments and returns the larger of the two.

Function TestMax(x, y)
 If x >= y Then
 TestMax = x
 Else
 TestMax = y
 End If
End Function

Arguments are passed as values
Arguments passed to a macro from Calc are always values. It is not possible to know what cells, if
any, are used. For example, =PositiveSum(A3) passes the value of cell A3, and PositiveSum
has no way of knowing that cell A3 was used. If you must know which cells are referenced rather
than the values in the cells, pass the range as a string, parse the string, and obtain the values in
the referenced cells.

Writing macros that act like built-in functions
Although Calc finds and calls macros as normal functions, they do not really behave as built-in
functions. For example, macros do not appear in the function lists. It is possible to write functions
that behave as regular functions by writing an Add-In. However, this is an advanced topic that is
not covered here.

Accessing cells directly

You can access the LibreOffice internal objects directly to manipulate a Calc document. For
example, the macro in Listing 7 adds the values in cell A2 from every sheet in the current
document. ThisComponent is set by StarBasic when the macro starts to reference the current
document. A Calc document contains sheets: ThisComponent.getSheets(). Use
getCellByPosition(col, row) to return a cell at a specific row and column.

Listing 7. Add cell A2 in every sheet.

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim i As integer
 Dim oSheets
 Dim oSheet
 Dim oCell

Accessing cells directly 13

 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCell = oSheet.getCellByPosition(0, 1) ' GetCell A2
 TheSum = TheSum + oCell.getValue()
 Next
 SumCellsAllSheets = TheSum
End Function

Tip
A cell object supports the methods getValue(), getString(), and
getFormula() to get the numerical value, the string value, or the formula used in a
cell. Use the corresponding set functions to set appropriate values.

Use oSheet.getCellRangeByName("A2") to return a range of cells by name. If a single cell is
referenced, then a cell object is returned. If a cell range is given, then an entire range of cells is
returned (see Listing 8). Notice that a cell range returns data as an array of arrays, which is more
cumbersome than treating it as an array with two dimensions as is done in Listing 5.

Listing 8. Add cell A2:C5 in every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim iRow As Integer, iCol As Integer, i As Integer
 Dim oSheets, oSheet, oCells
 Dim oRow(), oRows()

 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCells = oSheet.getCellRangeByName("A2:C5")
 REM getDataArray() returns the data as variant so strings
 REM are also returned.
 REM getData() returns data data as type Double, so only
 REM numbers are returned.
 oRows() = oCells.getData()
 For iRow = LBound(oRows()) To UBound(oRows())
 oRow() = oRows(iRow)
 For iCol = LBound(oRow()) To UBound(oRow())
 TheSum = TheSum + oRow(iCol)
 Next
 Next
 Next
 SumCellsAllSheets = TheSum
End Function

Tip
When a macro is called as a Calc function, the macro cannot modify any value in the
sheet from which the macro was called.

14 Calc Macros

Sorting

Consider sorting the data in Figure 17. First, sort on column B descending and then column A
ascending.

Figure 17: Sort column B descending and column A ascending

The example in Listing 9, however, demonstrates how to sort on two columns.

Listing 9. Sort cells A1:C5 on Sheet 1.

Sub SortRange
 Dim oSheet ' Calc sheet containing data to sort.
 Dim oCellRange ' Data range to sort.

 REM An array of sort fields determines the columns that are
 REM sorted. This is an array with two elements, 0 and 1.
 REM To sort on only one column, use:
 REM Dim oSortFields(0) As New com.sun.star.util.SortField
 Dim oSortFields(1) As New com.sun.star.util.SortField

 REM The sort descriptor is an array of properties.
 REM The primary property contains the sort fields.
 Dim oSortDesc(0) As New com.sun.star.beans.PropertyValue

 REM Get the sheet named "Sheet1"
 oSheet = ThisComponent.Sheets.getByName("Sheet1")

 REM Get the cell range to sort
 oCellRange = oSheet.getCellRangeByName("A1:C5")

 REM Select the range to sort.
 REM The only purpose would be to emphasize the sorted data.
 'ThisComponent.getCurrentController.select(oCellRange)

 REM The columns are numbered starting with 0, so
 REM column A is 0, column B is 1, etc.
 REM Sort column B (column 1) descending.
 oSortFields(0).Field = 1
 oSortFields(0).SortAscending = FALSE

 REM If column B has two cells with the same value,
 REM then use column A ascending to decide the order.
 oSortFields(1).Field = 0
 oSortFields(1).SortAscending = True

 REM Setup the sort descriptor.
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Sort the range.
 oCellRange.Sort(oSortDesc())
End Sub

Sorting 15

Conclusion

This chapter provides a brief overview on how to create libraries and modules, using the macro
recorder, using macros as Calc functions, and writing your own macros without the macro recorder.
Each topic deserves at least one chapter, and writing your own macros for Calc could easily fill an
entire book. In other words, this is just the beginning of what you can learn!

16 Calc Macros

	Copyright
	Note for Mac users
	Introduction
	Using the macro recorder
	Write your own functions
	Using a macro as a function
	Passing arguments to a macro
	Arguments are passed as values
	Writing macros that act like built-in functions

	Accessing cells directly
	Sorting
	Conclusion

