
Getting Started Guide

Chapter 13
Getting Started with Macros
Using the Macro Recorder … and Beyond

Copyright

This document is Copyright © 2010–2012 by its contributors as listed below. You may distribute it
and/or modify it under the terms of either the GNU General Public License
(http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
Ron Faile Jr.
Martin Fox
Andrew Pitonyak

Feedback
Please direct any comments or suggestions about this document to:
documentation@global.libreoffice.org

Acknowledgments
This chapter is based on Chapter 13 of Getting Started with OpenOffice.org 3.3. The contributors
to that chapter are:

Andrew Pitonyak
Jean Hollis Weber

Publication date and software version
Published 14 February 2012. Based on LibreOffice 3.4.5.

Note for Mac users

Some keystrokes and menu items are different on a Mac from those used in Windows and Linux.
The table below gives some common substitutions for the instructions in this chapter. For a more
detailed list, see the application Help.

Windows or Linux Mac equivalent Effect

Tools > Options menu
selection

LibreOffice > Preferences Access setup options

Right-click Control+click Opens a context menu

Ctrl (Control) z (Command) Used with other keys

F5 Shift+z+F5 Opens the Navigator

F11 z+T Opens the Styles and Formatting window

Documentation for LibreOffice is available at www.libreoffice.org

http://www.libreoffice.org/
mailto:documentation@global.libreoffice.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Contents

Copyright... 2

Note for Mac users... 2

Your first macros.. 4

Adding an existing macro.. 4

Creating a simple macro.. 5

Running the macro.. 7

Viewing and editing the macro... 7
Comments start with REM.. 8
Defining subroutines with SUB..8
Defining variables using DIM.. 8
Pulling the macro together.. 8

Creating a macro... 9

A complicated example..9

Running the macro quickly.. 12

Sometimes the macro recorder fails... 13

The dispatch framework.. 13

How the macro recorder uses the dispatch framework.. 13

Other options... 13

Macro organization.. 14

Where are macros stored?.. 16

Importing macros... 16

Downloading macros to import.. 17

How to run a macro.. 18

Toolbar.. 19

Menu item.. 19

Keyboard shortcuts..19

Event... 20

Extensions... 22

Writing macros without the recorder... 22

Finding more information... 23

Included material... 23

Online resources... 23

Printed and eBook materials..24

Getting Started with Macros 3

Your first macros

A macro is a saved sequence of commands or keystrokes that are stored for later use. An example
of a simple macro is one that “types” your address. The LibreOffice macro language is very
flexible, allowing automation of both simple and complex tasks. Macros are especially useful to
repeat a task the same way over and over again.

LibreOffice macros are usually written in a language called LibreOffice Basic, or just abbreviated
Basic. Although you can learn Basic and write macros, there is a steep learning curve to writing
macros from scratch. The usual methods for a beginner are to add macros that someone else has
written and to use the built-in macro recorder, which records your keystrokes and saves them for
use.

In LibreOffice recording of macros is currently classified as an “experimental (unstable)” feature. To
enable macro recording, use Tools > Options > LibreOffice > General and select the Enable
experimental (unstable) features option.

Figure 1: Enable macros in the Options dialog.

Most tasks in LibreOffice are accomplished by “dispatching a command” (sending a command),
which is intercepted and used. The macro recorder works by recording the commands that are
dispatched (see “The dispatch framework” on page 13).

Adding an existing macro
The first step in learning macro programming is to find and use existing macros. This section
assumes that you have a macro that you want to use; the macro may be in an email, on a web
page, or even in a book. For this example, use the macro in Listing 1.

Listing 1: Simple macro that says hello.

Sub HelloMacro
 Print "Hello"
End Sub

4 Getting Started with Macros

You must create a library and module to contain your macro; this is covered in “Macro
organization” on page 14. Use these steps to create a library to contain your macro:

1) Use Tools > Macros > Organize Macros > LibreOffice Basic to open the Macro dialog
(see Figure 2 and Figure 7).

2) Click Organizer to open the Basic Macro Organizer dialog (see Figure 8).

3) Select the Libraries tab.

4) Set the Location to My Macros & Dialogs, which is the default.

5) Click New to open the New Library dialog. Enter a library name such as “TestLibrary” and
click OK.

6) Select the Modules tab.

7) In the Module list, expand My Macros and select TestLibrary. A module named Module1
already exists and can contain your macro. You can click New to create another module in
TestLibrary.

8) Select the Module1, or the new module that you created, and click Edit to open the
Integrated Debugging Environment (IDE).

9) The IDE is a text editor for macros that allows you to edit and create macros. Copy the
macro into the IDE.

When a new module is created, it contains a comment and an empty macro named Main, that
does nothing.

Listing 2: Contents of Module1 after it is created.

REM ***** BASIC *****

Sub Main

End Sub

Add the new macro either before Sub Main or after End Sub. In Listing 3, the new macro has been
added before Sub Main.

Listing 3: Module1 after adding the new macro.

REM ***** BASIC *****

Sub HelloMacro
 Print "Hello"
End Sub

Sub Main

End Sub

Click the Run Basic button in the toolbar, or press F5, to run the first macro in the module. Use

the Macro dialog, opened using the Select macro button or Tools > Macros > Organize
Macros > LibreOffice Basic, to select and run any macro in the module.

Creating a simple macro
Imagine repeatedly entering simple information. Although you can store the information in the
clipboard, if you use the clipboard for something else, the contents are changed. Storing the
contents as a macro is a simple solution. (In some simple cases, including the example used here,
a better solution is to use AutoText.)

Your first macros 5

1) Use Tools > Macros > Record Macro to start recording a macro.

A small window is displayed so you know that LibreOffice is recording.

2) Type the desired information or perform an appropriate series of
operations. In this case, I typed the name, Andrew Pitonyak.

3) Click the Stop Recording button to stop recording, save the macro, and display the
LibreOffice Basic Macros dialog.

Figure 2: LibreOffice Macro Organizer dialog, Writer module selected

4) Be certain to open the library container named My Macros. Find the library named
Standard under My Macros. Be warned, every library container has a library named
Standard. Select the Standard library and click New Module to create a new module to
contain the macro.

5) The default module name is Module1. Type a descriptive name and click OK to create the
module. The LibreOffice Basic Macros dialog is displayed again, showing the new module.

Figure 3: Give your module a meaningful name

6) Highlight the newly created module. In the upper left corner, type the macro name to use,
such as “EnterMyname”, and then click Save to save the macro.

If you followed all of the steps, the Standard library now contains a module named Recorded,
which contains the EnterMyName macro, as shown in Figure 4.

Note
When LibreOffice creates a new module, it automatically adds the macro named
Main.

6 Getting Started with Macros

Library Containers Macros

Libraries

Modules

Running the macro
Use Tools > Macros > Run Macro to open the Macro Selector dialog. Select the newly created
macro and click Run.

Figure 4: Select a macro and click Run

There are other methods to run a macro. For example, use Tools > Macros > Organize Macros >
LibreOffice Basic to open the macro organizer, which contains a Run button as well. Another
method is to use the macro organizer; the dialog usually opens faster, but the selection process
may be slightly slower.

Viewing and editing the macro
You can view and edit the macro that was just created. Use Tools > Macros > Organize Macros >
LibreOffice Basic to open the LibreOffice Basic Macros dialog (see Figure 4). Select the new
macro and click Edit to open the macro in the Basic IDE (Integrated Development Environment).

Listing 4: Generated “EnterMyname” macro.

REM ***** BASIC *****
Sub Main

End Sub

sub EnterMyName
rem ---
rem define variables
dim document as object
dim dispatcher as object
rem ---
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem ---
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Text"
args1(0).Value = "Andrew Pitonyak"

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args1())
end sub

Your first macros 7

The macro in Listing 4 is not as complicated as it first appears. Learning a few things helps
significantly in understanding the generated macros. The discussion starts with features near the
top of the macro listing and describes them. If you like to avoid details, then simply change the text
“Andrew Pitonyak” in the macro above to what you want to insert at the current cursor position.

Comments start with REM
The keyword REM, short for remark, starts a macro comment. All text after REM (on the same line)
is ignored. As a short cut, the single quote character can also be used to start a comment.

Tip

LibreOffice Basic is not case-sensitive for keywords, so REM, Rem, and rem all start
a comment. If you use symbolic constants defined by the API, it is safer to assume
that the names are case-sensitive—symbolic constants are an advanced topic not
usually needed by people that use the macro recorder.

Defining subroutines with SUB
Individual macros are stored in subroutines defined with the keyword SUB. The end of a subroutine
is indicated by the words END SUB. The code starts by defining the subroutine named Main, which
is empty and does nothing. The next subroutine, EnterMyName, contains the generated code.

Tip
LibreOffice always creates an empty subroutine named Main when it creates a
module.

There are advanced topics that are beyond the scope of this document, but knowing about them
might be of interest:

• You can write a macro so that values can be passed to the subroutine. The values are
called arguments. Recorded macros do not accept arguments.

• Another kind of subroutine is called a function. A function is a subroutine that returns a
value. The keyword FUNCTION is used rather than SUB to define a function. Generated
macros are always of type SUB.

Defining variables using DIM
You can write information on a piece of paper so that you can look at it later. A variable, like a piece
of paper, contains information that can be changed and read. The DIM statement is similar to
setting aside a piece of paper to be used to store a message or note.

The EnterMyName macro defines the variables document and dispatcher as type object. Other
common variable types include string, integer, and date. A third variable, named args1, is an array
of property values. A variable of type array allows a single variable to contain multiple values,
similar to storing multiple pages in a single book. Values in an array are usually numbered starting
from zero. The number in the parentheses indicates the highest usable number to access a
storage location. In this example, there is only one value, and it is numbered zero.

Pulling the macro together
The following details are very complete; it is not important to understand all of the details. The first
line defines the start of the macro.

sub EnterMyName

Declare two variables:

dim document as object
dim dispatcher as object

8 Getting Started with Macros

ThisComponent refers to the current document.

The CurrentController property of a document refers to a service that “controls” the document. For
example, when you type, it is the current controller that notices. The current controller then
dispatches the changes to the document’s frame.

The Frame property of a controller returns a main frame for a document. Therefore, the variable
named document refers to a document’s frame, which receives dispatched commands.

document = ThisComponent.CurrentController.Frame

Most tasks in LibreOffice are accomplished by dispatching a command. LibreOffice includes a
dispatch helper service, which does most of the work to use dispatches in macros. The method
CreateUnoService accepts the name of a service and it tries to create an instance of that service.
On completion, the dispatcher variable contains a reference to a DispatchHelper.

dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

Declare an array of properties. Each property has a name and a value. In other words, it is a
name/value pair. The created array has one property at index zero.

dim args1(0) as new com.sun.star.beans.PropertyValue

Give the property the name “Text” and the value “Andrew Pitonyak”, which is the text that is
inserted when the macro is run.

args1(0).Name = "Text"
args1(0).Value = "Andrew Pitonyak"

This is where the magic happens. The dispatch helper sends a dispatch to the document’s frame
(stored in the variable named document) with the command .uno:InsertText. The next two
arguments, frame name and search flags, are beyond the scope of this document. The last
argument is the array of property values to be used while executing the command InsertText.

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args1())

Finally, the end of the subroutine.

end sub

Creating a macro

When creating a macro, it is important to ask two questions before recording:

1) Can the task be written as a simple set of commands?

2) Can the steps be arranged such that the last command leaves the cursor ready for the next
command?

A complicated example
I frequently copy rows and columns of data from a web site and format them as a table in a text
document. First, I copy the table from the web site to the clipboard. To avoid strange formatting and
fonts, I paste the text into a Writer document as unformatted text. I reformat the text with tabs
between columns so that I can use Table > Convert > Text to Table to convert to a table.

I inspect the text to see if I can record a macro to format the text (remember the two questions that
I ask). As an example, I copied the FontWeight constants group from the API web site. The first
column indicates the constant name. Each name is followed by a space and a tab.

Creating a macro 9

DONTKNOW The font weight is not specified/known.

THIN specifies a 50% font weight.

ULTRALIGHT specifies a 60% font weight.

LIGHT specifies a 75% font weight.

SEMILIGHT specifies a 90% font weight.

NORMAL specifies a normal font weight.

SEMIBOLD specifies a 110% font weight.

BOLD specifies a 150% font weight.

ULTRABOLD specifies a 175% font weight.

BLACK specifies a 200% font weight.

I want the first column to contain the numeric value, the second column the name, and the third
column the description. The desired work is easily accomplished for every row except for
DONTKNOW and NORMAL, which do not contain a numeric value—but I know that the values are
0 and 100, so I will enter those manually.

The data can be cleaned in multiple ways—all of them easy. The first example uses keystrokes
that assume the cursor is at the start of the line with the text THIN.

1) Use Tools > Macros > Record Macro to start recording.

2) Press Ctrl+Right Arrow to move the cursor to the start of “specifies”.

3) Press Backspace twice to remove the tab and the space.

4) Press Tab to add the tab without the space after the constant name.

5) Press Delete to delete the lower case s and then press S to add an upper case S.

6) Press Ctrl+Right Arrow twice to move the cursor to the start of the number.

7) Press Ctrl+Shift+Right Arrow to select and move the cursor before the % sign.

8) Press Ctrl+C to copy the selected text to the clipboard.

9) Press End to move the cursor to the end of the line.

10) Press Backspace twice to remove the two trailing spaces.

11) Press Home to move the cursor to the start of the line.

12) Press Ctrl+V to paste the selected number to the start of the line.

13) Pasting the value also pasted an extra space, so press Backspace to remove the extra
space.

14) Press Tab to insert a tab between the number and the name.

15) Press Home to move to the start of the line.

16) Press down arrow to move to the next line.

17) Stop recording the macro and save the macro.

It takes much longer to read and write the steps than to record the macro. Work slowly and think
about the steps as you do them. With practice this becomes second nature.

The generated macro has been modified to contain the step number in the comments to match the
code to the step above.

10 Getting Started with Macros

Listing 5: Copy the numeric value to the start of the column.

sub CopyNumToCol1
rem ---
rem define variables
dim document as object
dim dispatcher as object
rem ---
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem (2) Press Ctrl+Right Arrow to move the cursor to the start of “specifies”.
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem (3) Press Backspace twice to remove the tab and the space.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem ---
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (4) Press Tab to add the tab without the space after the constant name.
dim args4(0) as new com.sun.star.beans.PropertyValue
args4(0).Name = "Text"
args4(0).Value = CHR$(9)

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args4())

rem (5) Press Delete to delete the lower case s
dispatcher.executeDispatch(document, ".uno:Delete", "", 0, Array())

rem (5) ... and then press S to add an upper case S.
dim args6(0) as new com.sun.star.beans.PropertyValue
args6(0).Name = "Text"
args6(0).Value = "S"

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args6())

rem (6) Press Ctrl+Right Arrow twice to move the cursor to the number.
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem ---
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem (7) Press Ctrl+Shift+Right Arrow to select the number.
dispatcher.executeDispatch(document, ".uno:WordRightSel", "", 0, Array())

rem (8) Press Ctrl+C to copy the selected text to the clipboard.
dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())

rem (9) Press End to move the cursor to the end of the line.
dispatcher.executeDispatch(document, ".uno:GoToEndOfLine", "", 0, Array())

rem (10) Press Backspace twice to remove the two trailing spaces.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem ---

Creating a macro 11

dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (11) Press Home to move the cursor to the start of the line.
dispatcher.executeDispatch(document, ".uno:GoToStartOfLine", "", 0, Array())

rem (12) Press Ctrl+V to paste the selected number to the start of the line.
dispatcher.executeDispatch(document, ".uno:Paste", "", 0, Array())

rem (13) Press Backspace to remove the extra space.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (14) Press Tab to insert a tab between the number and the name.
dim args17(0) as new com.sun.star.beans.PropertyValue
args17(0).Name = "Text"
args17(0).Value = CHR$(9)

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args17())

rem (15) Press Home to move to the start of the line.
dispatcher.executeDispatch(document, ".uno:GoToStartOfLine", "", 0, Array())

rem (16) Press Down Arrow to move to the next line.
dim args19(1) as new com.sun.star.beans.PropertyValue
args19(0).Name = "Count"
args19(0).Value = 1
args19(1).Name = "Select"
args19(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0, args19())
end sub

Cursor movements are used for all operations (as opposed to searching). If run on the
DONTKNOW line, the word weight is moved to the front of the line, and the first “The” is changed
to “She”. This is not perfect, but I should not have run the macro on the lines that did not have the
proper format; I need to do these manually.

Running the macro quickly
It is tedious to repeatedly run the macro using Tools > Macros > Run Macro (see Figure 4). The
macro can be run from the IDE. Use Tools > Macros > Organize Macros > LibreOffice Basic to
open the Basic Macro dialog. Select your macro and click Edit to open the macro in the IDE.

The IDE has a Run Basic icon in the toolbar that runs the first macro in the IDE. Unless you
change the first macro, it is the empty macro named Main. Modify Main so that it reads as shown in
Listing 6.

Listing 6: Modify Main to call CopyNumToCol1.
Sub Main
 CopyNumToCol1
End Sub

Now, you can run CopyNumToCol1 by repeatedly clicking the Run Basic icon in the toolbar of the
IDE. This is very fast and easy, especially for temporary macros that will be used a few times and
then discarded.

12 Getting Started with Macros

Sometimes the macro recorder fails

Understanding the LibreOffice internals helps to understand how and why the macro recorder
frequently fails. The primary offender is related to the dispatch framework and its relationship to the
macro recorder.

The dispatch framework
The purpose of the dispatch framework is to provide uniform access to components (documents)
for commands that usually correspond to menu items. I can use File > Save from the menu, the
shortcut keys Ctrl+S, or click on the Save toolbar icon. All of these commands are translated into
the same “dispatch command”.

The dispatch framework can also be used to send “commands” back to the UI (User Interface). For
example, after saving the document, the File Save command is disabled. As soon as the document
has been changed, the File Save command is enabled.

If we see a dispatch command, it is text such as .uno:InsertObject or .uno:GoToStartOfLine. The
command is sent to the document’s frame, and the frame passes on the command until an object
is found that can handle the command.

How the macro recorder uses the dispatch framework
The macro recorder records the generated dispatches. The recorder is relatively simple to
implement and the same commands that are issued are recorded for later use. The problem is that
not all dispatched commands are complete. For example, inserting an object generates the
following code:

dispatcher.executeDispatch(document, ".uno:InsertObject", "", 0, Array())

It is not possible to specify what kind of object to create or insert. If an object is inserted from a file,
you cannot specify which file to insert.

I recorded a macro and used Tools > Options to open and modify configuration items. The
generated macro does not record any configuration changes; in fact, the generated code is
commented so it will not even be run.

rem dispatcher.executeDispatch(document,

 ".uno:OptionsTreeDialog", "", 0, Array())

If a dialog is opened, the command to open the dialog is likely to be generated. Any work done
inside the dialog is not usually recorded. Examples include macro organization dialogs, inserting
special characters, and similar types of dialogs. Other possible problems using the macro recorder
include things such as inserting a formula, setting user data, setting filters in Calc, actions in
database forms, and exporting a document to an encrypted PDF file. You never know for certain
what will work unless you try it, however. The actions from the search dialog are properly captured,
for example.

Other options
When the macro recorder is not able to solve a specific problem, the usual solution is to write code
using the LibreOffice objects. Unfortunately, there is a steep learning curve for the objects. It is
usually best to start with simple examples and then branch out slowly as you learn more. Learning
to read generated macros is a good place to start.

If you record Calc macros, and the recorder can correctly generate a macro, there is an add-in
created by Paolo Mantovani, which converts Calc macros when they are recorded. The final code
manipulates LibreOffice objects rather than generating dispatches. This can be very useful for
learning the object model.

Sometimes the macro recorder fails 13

You can download the macro recorder from Paolo’s web site directly:

http://www.paolo-mantovani.org/downloads/DispatchToApiRecorder/

Macro organization

In LibreOffice, macros are grouped in modules, modules are grouped in libraries, and libraries are
grouped in library containers. A library is usually used as a major grouping for either an entire
category of macros, or for an entire application. Modules usually split functionality, such as user
interaction and calculations. Individual macros are subroutines and functions.

Figure 5: Macro Library hierarchy

A computer scientist would use Figure 6 to precisely describe the situation. The text “1..*” means
one or more, and “0..*” means zero or more. The black triangle means composed of or contains.

• A library container contains one or more libraries, and each library is contained in one
library container.

• A library contains zero or more modules, and each module is contained in one library.

• A module contains zero or more macros, and each macro is contained in one module.

Figure 6: Macro Library hierarchy

Use Tools > Macros > Organize Macros > LibreOffice Basic to open the LibreOffice Basic
Macros dialog (see Figure 7). All available library containers are shown in the Macro from list.
Every document is a library container, capable of containing multiple libraries. The application itself
acts as two library containers, one container for macros distributed with LibreOffice called
LibreOffice Macros, and one container for personal macros called My Macros. As shown in Figure
7, only two documents are currently open.

14 Getting Started with Macros

http://www.paolo-mantovani.org/downloads/DispatchToApiRecorder/
http://www.paolo-mantovani.org/downloads/DispatchToApiRecorder/

Figure 7: Library containers are shown on the left

The LibreOffice Macros are stored with the application runtime code, which may not be editable to
you unless you are an administrator. This is just as well since these macros should not be changed
and you should not store your own macros in the LibreOffice container.

Unless your macros are applicable to a single document, and only to a single document, your
macros will probably be stored in the My Macros container. The My Macros container is stored in
your user area or home directory.

If a macro is contained in a document, then a recorded macro will attempt to work on that
document; primarily because it uses “ThisComponent” for its actions.

Every library container contains a library named Standard. It is better to create your own libraries
with meaningful names than to use the Standard library. Not only are meaningful names easier to
manage, but they can also be imported into other library containers whereas the Standard library
cannot.

Caution LibreOffice allows you to import libraries into a library container, but it will not allow
you to overwrite the library named Standard. Therefore, if you store your macros in
the Standard library, you cannot import them into another library container.

Just as it makes good sense to give your libraries meaningful names, it is prudent to use
meaningful names for your modules. By default, LibreOffice uses names such as Module1. Feel
free to use your own meaningful name.

As you create your macros, you must decide where to store them. Storing a macro in a document
is useful if the document will be shared and you want the macro to be included with the document.
Macros stored in the application library container named My Macros, however, are globally
available to all documents.

Macros are not available until the library that contains them is loaded. The Standard library and
Template library, however, are automatically loaded. A loaded library is displayed differently from a
library that is not loaded. To load the library and the modules it contains, double-click on the library.

Macro organization 15

Where are macros stored?
LibreOffice stores user-specific data in a directory under the user’s home directory. The location is
operating system specific. Use Tools > Options > LibreOffice > Paths to view where other
configuration data is stored. On Windows XP, this is C:\Documents and Settings\<name>\
Application Data. User macros are stored in LibreOffice\3\user\basic. Each library is
stored in its own directory off the basic directory.

It is not important to understand where macros are stored for casual use. If you know where they
are stored, however, you can create a backup, share your macros, or inspect them if there is an
error.

Use Tools > Macros > Organize Dialogs to open the LibreOffice Macro Organizer dialog. Another
common way to open this dialog is to use Tools > Macros > Organize Macros > LibreOffice
Basic to open the LibreOffice Macros dialog and then click the Organizer button.

Figure 8: The macro organizer dialog

Importing macros
The LibreOffice Macro Organizer dialog provides functionality to create, delete, and rename
libraries, modules, and dialogs. Select the library container to use and then click the Import button
to import macro libraries (see Figure 9).

Note You cannot import the library named Standard.

Tip

On Linux, the LibreOffice-specific files are stored under the user's home directory in
a directory whose name begins with a period. Directories and files with names
beginning with a period are not shown in a normal selection dialog. To open the
directory, either navigate to the home directory, enter the name .libreoffice\3, and
then click Open or press Ctrl-H to show hidden folders and files and navigate as
usual. This will open the directory, which is not initially shown.

16 Getting Started with Macros

Figure 9: Select a macro library to import

Navigate to the directory containing the library to import. There are usually two files from which to
choose, dialog.xlb and script.xlb. It does not matter which of these two files you select; both will be
imported. Select a file and click Open to continue.

Figure 10: Choose library import options

If the library already exists, it will not be replaced unless Replace existing libraries is checked. If
Insert as reference is checked, the library is referenced in its current location, but you cannot edit
the library. If Insert as reference is not checked, however, the library is copied to the user’s macro
directory.

Macros can be stored in libraries inside LibreOffice documents. Select a document rather than a
directory on disk (as shown in Figure 9) to import libraries contained in a document.

ownloading macros to import
Macros are available for download. Some macros are contained in documents, some as regular
files that you must select and import, and some as macro text that should be copied and pasted
into the Basic IDE; use Tools > Macros > Organize Macros > LibreOffice Basic to open the

Macro organization 17

LibreOffice Macros dialog, choose the macro to edit, and then click Edit to open the macro in the
Basic IDE.

Some macros are available as free downloads on the Internet (see Table 1). “Adding an existing
macro“ on page 4 describes how to add these macros to your macros library.

Table 1. Places to find macro examples

Location Description

http://www.ooomacros.org/ Collection of packaged macros – now somewhat
dated.

http://www.pitonyak.org/oo.php Reference materials regarding macros.

http://www.pitonyak.org/database/ Reference materials regarding database macros.

http://development.openoffice.org/ Lots of links to everything.

http://www.oooforum.org/ A forum, with many examples and help.

http://user.services.openoffice.org/ Another forum, with many examples and help.

How to run a macro

A typical method to run a macro is as follows:

1) Use Tools > Macros > Run Macro to open the Macro Selector dialog (see Figure 11).

2) Select the library and module in the Library list (left hand side).

3) Select the macro in the Macro name list (right hand side).

4) Click Run to run the macro.

Figure 11: Use the Macro Selector dialog to run macros

Although you can use Tools > Macros > Run Macro to run all macros, this is not efficient for
frequently run macros. A more common technique is to assign a macro to a toolbar button, menu
item, keyboard shortcut, or a button embedded in a document. While choosing a method, it is also
good to ask questions such as:

• Should the macro be available for only one document, or globally for all documents?

• Does the macro pertain to a specific document type, such as a Calc document?

• How frequently will the macro be used?

18 Getting Started with Macros

http://user.services.openoffice.org/
http://www.oooforum.org/
http://development.openoffice.org/
http://www.pitonyak.org/database/
http://www.pitonyak.org/oo.php
http://www.ooomacros.org/

The answers will determine where to store the macro and how to make it available. For example,
you will probably not add a rarely used macro to a toolbar. To help determine your choices, see
Table 2.

Table 2. Methods for starting a macro

Type LibreOffice Document Type Document

Toolbar No Yes Yes

Menu No Yes Yes

Shortcut Yes Yes No

Event Yes No Yes

To add a menu item, keyboard shortcut, or toolbar icon that calls a macro, use the Customize
dialog (see Figure 13). Open this dialog in either of these ways:

• Choose Tools > Customize from the main menu bar.

• Each toolbar has an icon that opens a menu; choose the Customize Toolbar option.

Tip
Complete coverage of the Customize dialog is beyond the scope of this document.
Click the Help button to access the help pages included with LibreOffice.

The Customize dialog contains tabs to configure menus, keyboard bindings, toolbars, and events.

Toolbar
Macros can be added to toolbars. For more about modifying toolbars, see Chapter 14, Customizing
LibreOffice.

Menu item
Use Tools > Customize to open the Customize dialog, and select the Menus tab. You can modify
an existing menu, or create new menus that call macros. For more about modifying menus, see
Chapter 14.

Keyboard shortcuts
Use Tools > Customize to open the Customize dialog, and select the Keyboard tab. Assigning
keyboard shortcuts is discussed in Chapter 14.

How to run a macro 19

Figure 12: LibreOffice Customize dialog

Event
In LibreOffice, when something happens, we say that an event occurred. For example, a document
was opened, a key was pressed, or the mouse moved. LibreOffice allows events to cause a macro
to be called; the macro is then called an event handler. Full coverage of event handlers is well
beyond the scope of this document, but a little knowledge can accomplish much.

Caution Be careful when you configure an event handler. For example, assume that you
write an event handler that is called every time that a key is pressed, but you make a
mistake so the event is not properly handled. One possible result is that your event
handler will consume all key presses, forcing you to forcibly terminate LibreOffice.

Use Tools > Customize to open the Customize dialog, and select the Events tab (see Figure 13).
The events in the Customize dialog are related to the entire application and specific documents.
Use the Save In box to choose LibreOffice, or a specific document.

20 Getting Started with Macros

Figure 13: Assign macro to an application level event

A common use is to assign the Open Document event to call a specific macro. The macro then
performs certain setup tasks for the document. Select the desired event and click the Macro button
to open the Macro Selector dialog (see Figure 14).

Figure 14: Assign macro to the document open event

How to run a macro 21

Select the desired macro and click OK to assign the macro to the event. The Events tab shows
that the event has been assigned to a macro (see Figure 15). When the document opens, the
PrintHello macro is run.

Many objects in a document can be set to call macros when events occur. The most common
usage is to add a control, such as a button, into a document. Even double-clicking on a graphic
opens a dialog with a Macros tab that allows you to assign a macro to an event.

Figure 15: HelloMacro is assigned to the Open Document event

Extensions

An extension is a package that can be installed into LibreOffice to add new functionality.
Extensions can be written in almost any programming language and may be simple or
sophisticated. Extensions can be grouped into types:

• Calc Add-Ins, which provide new functionality for Calc, including new functions that act like
normal built-in functions

• New components and functionality, which normally include some level of UI integration
such as new menus or toolbars

• Data pilots that are used directly in Calc

• Chart Add-Ins with new chart types

• Linguistic components such as spell checkers

• Document templates and images

Although individual extensions can be found in different places, there is currently an extension
repository at: http://extensions.libreoffice.org/ and some documentation at
http://libreplanet.org/wiki/Group:OpenOfficeExtensions/List

For more about obtaining and installing extensions, see Chapter 14, Customizing LibreOffice.

Writing macros without the recorder

The examples covered in this chapter are created using the macro recorder and the dispatcher.
You can also write macros that directly access the objects that comprise LibreOffice. In other
words, you can directly manipulate a document.

Directly manipulating LibreOffice's internal objects is an advanced topic that is beyond the scope of
this chapter. A simple example, however, demonstrates how this works.

Listing 7: Append the text “Hello” to the current document.

Sub AppendHello
 Dim oDoc
 Dim sTextService$
 Dim oCurs

22 Getting Started with Macros

http://libreplanet.org/wiki/Group:OpenOfficeExtensions/List
http://extensions.libreoffice.org/

 REM ThisComponent refers to the currently active document.
 oDoc = ThisComponent

 REM Verify that this is a text document
 sTextService = "com.sun.star.text.TextDocument"
 If NOT oDoc.supportsService(sTextService) Then
 MsgBox "This macro only works with a text document"
 Exit Sub
 End If

 REM Get the view cursor from the current controller.
 oCurs = oDoc.currentController.getViewCursor()

 REM Move the cursor to the end of the document
 oCurs.gotoEnd(False)

 REM Insert text "Hello" at the end of the document
 oCurs.Text.insertString(oCurs, "Hello", False)
End Sub

Finding more information

Numerous resources are available that provide help with writing macros. Use Help > LibreOffice
Help to open the LibreOffice help pages. The upper left corner of the LibreOffice help system
contains a drop-down list that determines which help set is displayed. To view the help for Basic,
choose LibreOffice Basic from this list.

Included material
Many excellent macros are included with LibreOffice. Use Tools > Macros > Organize Macros >
LibreOffice Basic to open the Macro dialog. Expand the Tools library in the LibreOffice library
container. Inspect the Debug module—some good examples include WritedbgInfo(document) and
printdbgInfo(sheet).

Online resources
The following links and references contain information regarding macro programming:

http://user.services.openoffice.org/ (OOo forums, well supported; volunteers answer questions
about LibreOffice as well)

http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html (official IDL reference; here
you'll find almost every command with a description)

http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Reso
urces (BASIC Programming Guide)

http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Reso
urces (Developers Guide; contains a detailed explanation)

http://www.pitonyak.org/oo.php (Andrew Pitonyak’s macro page)

http://www.pitonyak.org/AndrewMacro.odt (numerous examples of working macros)

http://www.pitonyak.org/OOME_3_0.odt (Andrew Pitonyak’s book on macros)

http://www.pitonyak.org/database/ (numerous macro examples using Base)

Finding more information 23

http://www.pitonyak.org/database/
http://www.pitonyak.org/OOME_3_0.odt
http://www.pitonyak.org/AndrewMacro.odt
http://www.pitonyak.org/oo.php
http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Resources
http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Resources
http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Resources
http://wiki.documentfoundation.org/Documentation/Publications#Other_Documentation_and_Resources
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://user.services.openoffice.org/
http://user.services.openoffice.org/
http://user.services.openoffice.org/

Printed and eBook materials
There are currently no books specific to LibreOffice macros which are available for download.

For OpenOffice.org the following books are available for purchase in both printed and eBook form
from their publishers.

Dr. Mark Alexander Bain’s Learn OpenOffice.org Spreadsheet Macro Programming.
See http://www.packtpub.com/openoffice-ooobasic-calc-automation/book.

Roberto Benitez's Database Programming with OpenOffice.org Base & Basic.
See http://www.lulu.com/product/paperback/database-programming-with-openofficeorg-base-
basic/3568728

24 Getting Started with Macros

http://www.lulu.com/product/paperback/database-programming-with-openofficeorg-base-basic/3568728
http://www.lulu.com/product/paperback/database-programming-with-openofficeorg-base-basic/3568728
http://www.packtpub.com/openoffice-ooobasic-calc-automation/book

	Copyright
	Note for Mac users
	Your first macros
	Adding an existing macro
	Creating a simple macro
	Running the macro
	Viewing and editing the macro
	Comments start with REM
	Defining subroutines with SUB
	Defining variables using DIM
	Pulling the macro together

	Creating a macro
	A complicated example
	Running the macro quickly

	Sometimes the macro recorder fails
	The dispatch framework
	How the macro recorder uses the dispatch framework
	Other options

	Macro organization
	Where are macros stored?
	Importing macros
	ownloading macros to import

	How to run a macro
	Toolbar
	Menu item
	Keyboard shortcuts
	Event

	Extensions
	Writing macros without the recorder
	Finding more information
	Included material
	Online resources
	Printed and eBook materials

