
Base Handbook

Chapter 1
Introduction to Base

Copyright

This document is Copyright © 2013–2015 by the LibreOffice Documentation Team. Contributors
are listed below. You may distribute or modify it under the terms of either the GNU General Public
License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), version 4.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
Jochen Schiffers
Martin Fox

Robert Großkopf
Hazel Russman

Jost Lange
Jean Hollis Weber

Feedback
Please direct any comments or suggestions about this document to the Documentation Team’s
mailing list: documentation@global.libreoffice.org

Note: Everything you send to a mailing list, including your email address and any other personal
information that is written in the message, is publicly archived and cannot be deleted.

Acknowledgments
This chapter is based on an original German document and was translated by Martin Fox and
others.

Publication date and software version
Published 24 December 2015. Based on LibreOffice 5.0.

Note for Mac users

Some keystrokes and menu items are different on a Mac from those used in Windows and Linux.
The table below gives some common substitutions for the instructions in this chapter. For a more
detailed list, see the application Help.

Windows or Linux Mac equivalent Effect

Tools > Options menu
selection

LibreOffice > Preferences Access setup options

Right-click Control+click Open a context menu

Ctrl (Control) ⌘ (Command) Used with other keys

F5 Shift+⌘+F5 Open the Navigator

F11 ⌘+T Open the Styles and Formatting window

Documentation for LibreOffice is available at http://www.libreoffice.org/get-help/documentation

http://www.libreoffice.org/get-help/documentation
mailto:documentation@global.libreoffice.org
http://creativecommons.org/licenses/by/4.0/
http://www.gnu.org/licenses/gpl.html

Contents

Copyright.. 2
Contributors... 2

Feedback... 2

Acknowledgments.. 2

Publication date and software version... 2

Note for Mac users...2

Introduction.. 4

Base – a container for database content...4
Data input using forms... 5

Data input directly into a table – basics for data entry.. 6

Queries – getting information on data in tables.. 9

Reports – presentation of data... 10

Safe handling of a base file.. 11

A simple database – test example in detail...12

Table creation... 12
Entry form.. 20

Tabbing to the subform.. 27
Activate the Navigation bar of the main form in the subform also.. 27
Restrict entry of a control panel... 28

Query... 30

Printing in the report.. 34
Setting the distances between the report fields... 38
Influencing a text field content by a formula.. 38
Change the formatting of a text field.. 39
Moving boxes in the Report Builder...39

Extensions to the sample database... 40

Preface 3

Introduction

In everyday office operation, spreadsheets are regularly used to aggregate sets of data and to
perform some kind of analyzes on them. As the data in a spreadsheet is laid out in a table view,
plainly visible and able to be edited or added to, many users ask why they should use a database
instead of a spreadsheet. This handbook explains the differences between the two.

Note
In technical language, "database document file" is used for a database from a single
interface and "database system" encompasses the database management system
(DBMS) and the actual database.

Base offers access to various database systems via a graphical user interface. Base
works by default with the embedded database engine HSQLDB.

This chapter introduces two database examples and the entire handbook is built around these:
Media_without_macros.odb and Media_with_macros.odb, extended with the inclusion of
macros. Both databases are for operating a library: media capture, user uptake, media rental, and
everything connected with it, such as the recall for readers.

Note
Like any software LibreOffice Base is not completely free of errors. Particularly
annoying are the "regressions", thus re-introducing a bug from a past version into the
present version. The following link leads to the currently outstanding regressions:

https://bugs.documentfoundation.org/buglist.cgi?
bug_status=UNCONFIRMED&bug_status=NEW&bug_status=REOPENED&bug_statu
s=NEEDINFO&bug_status=PLEASETEST&component=Database&keywords=regressi
on&order=Importance&product=LibreOffice

A look at the bug list can therefore help to understand the differences between
documentation and its own version of the program.

Base – a container for database content

A Base file is a compressed folder that contains information for the different work areas of Base. In
daily use, Base initially opens with the view shown in Figure 1.

The Base environment contains four work areas: Tables, Queries, Forms, and Reports. Depending
on the work area selected, various tasks—creating new content or calling up existing elements—
may be carried out.

In the work areas "Forms" and "Reports", the respective elements are arranged within a directory
structure (Figure 2). This is done either directly when saving in the Save dialog or by the creation
of new folders using Insert > Folder.

Although the basis for a database is formed by tables, Base starts with the Form view because
forms are the elements most commonly used when working with databases. With the forms, you
can make entries into the tables and analyze table content.

4 Preface

https://bugs.documentfoundation.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=REOPENED&bug_status=NEEDINFO&bug_status=PLEASETEST&component=Database&keywords=regression&order=Importance&product=LibreOffice
https://bugs.documentfoundation.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=REOPENED&bug_status=NEEDINFO&bug_status=PLEASETEST&component=Database&keywords=regression&order=Importance&product=LibreOffice
https://bugs.documentfoundation.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=REOPENED&bug_status=NEEDINFO&bug_status=PLEASETEST&component=Database&keywords=regression&order=Importance&product=LibreOffice

Figure 1: View of Base when opened

Figure 2: Directory structure in a work area

Data input using forms
Simple forms show just one table, as in the upper part of the Loan form. The Loan form (Figure 3)
has been extended to show additional information:

• The range of persons shown can be filtered on last name to limit the detail shown. If a user
inputs the letter “G” in the Filter field (Last Name) at the right of the Loan table, only
persons whose last name begins with “G” will be shown.

• New borrower information can be input directly into the table fields of the form.

Base – a container for database content 5

• Details of items to be borrowed are input and shown in the area of the middle of the form.
The name of the user is also clearly emphasized. If a previously borrowed item is overdue
and must be returned, this area is blocked (no input possible) and the title will indicate
“Loan temporary locked!”. Items on loan are shown in the lower area of the form.

• The borrowing date is set as the current date. In the pull-down field at the left of the
Refresh button are the media items which can be borrowed. Items which are already on
loan to the selected borrower are not available for selection.

• Media items selected for loan are added to the current loan details by clicking the Refresh
button.

• In the lower section of the form (Return) it is not possible to delete a data row. Only the
fields Return Date and Extension can be edited. If a borrower was previously locked and
has subsequently returned the overdue item(s), the lending area can be unlocked by
clicking the Refresh button.

All these functions can be carried out without using macros, when the form is set up and filled in
the manner described.

Data input directly into a table – basics for data entry
The tables in a database are related much like a net. A table receives information from other tables
or provides it to them. This is referred to as the "relationship", and is shown by a line between the
tables connecting a field from each.

Note
The Reader table has a relationship with another table that involves Gender_ID.
Similarly, the Media table has a relationship with four more tables, each one involving
one of these fields: Category_ID, Mediastyle_ID, Town_ID, and Publisher_ID.

The Loan table is directly related to the Media and Reader tables, as shown in Figure 4.

When a book is borrowed, instead of its title being saved in the Loan table, only one number is
saved in the field Media_ID. The ID field of the Media table stores the unique identifier for each
record of this table. This field is a key field of the Media table: the primary key.

Tip
The primary key uniquely determines the values for each field in each record of a table.
So, when an item is borrowed, the number entered into the Media_ID field matches the
number in the ID field of the Media table that identifies the record which contains the
information about the borrowed item.

The reader name is not entered in the Loan table every time. This Information is saved in the
Reader table. It also has a primary key field which identifies each person who borrows an item.
The value of this field can then be entered in the Loan table with the Reader_ID field identifying the
specific person.

The relationships between the tables have the advantage that the desk work on the form is greatly
reduced. Instead of having to enter the media title and first and last names without any errors,
these can be entered selecting the correct numbers for the Media_ID and Reader_ID fields which
allows the selection of the correct media items and first and last names. Finally, the same medium
can be borrowed more often later and the same reader can also borrow several more media at the
first loan event.

6 Preface

Figure 3: The Loan form

Figure 4: Relationship between the Loan and Reader tables

Base – a container for database content 7

Figure 5: Table data structure

The table structure for such a form is relatively basic and easy to set up. In the table shown above,
the same data can be directly input in the rows and columns of the table as when using the form.
The relationships of this table to the other tables of the database are used in the form.

• The most important field, the primary key ("ID") which is posted automatically, shows the
indispensable, unique content for most databases. For more on this topic, see Chapter 3,
Tables, in the section "Relationships between tables in general".

• The second field Media_ID stores values of the primary key of the Media table. It refers to
the number in the corresponding field, ID, in the Media table. Such a reference to a primary
key is called a foreign key. In the form, the title and the author will be displayed instead of
the foreign key in a list box. The list box transmits the value in the background to the
foreign key of table.

• The third field, Reader_ID, stores the primary key values of the Reader table. In this
example, this key is only a number that refers to the reader who borrows media items. In
the form the last and first name of the reader are shown. As seen in the table, the reader
with the primary key number '0' has borrowed a lot of media. The table can save the unique
primary key of the Reader table as a foreign key Reader_ID many times. But in no case
may a reader, who is listed in the foreign key of the Loan table, be deleted in the Reader
table. Otherwise it would no longer be comprehensible that someone had now borrowed
media. The database makes the default settings so that a deletion is impossible. The
technical term for this is the requirement of " referential integrity".

8 Preface

• The loan date is stored In the third field. If this date is present and is later than the current
date, the corresponding data set for the reader is shown in the bottom table of the form
under the Return button.

• The field marked Extension contains information about extensions of the loan for an item.
The meaning of the values 1, 2... is explained later. The database contains a separate table
with the label “Settings".

The input of this data permits the management of a simple library.

Queries – getting information on data in tables
Queries show a view of the tables. They bring together content from multiple tables in an overview.
Queries are stored only in the query language SQL. They are therefore not new tables, even if in
Base they appear to be the same as a table to us.

Figure 6: Example of query

The query shown in Figure 6 lists all media that are currently out on loan. It calculates how long
each item has been on loan and the balance of the loan period. When the Media_ID, the foreign
key field, reads the primary key, the title and the author in the Media field are combined into a
single text. This field will be needed in the Form under the subtitle "Return". Combined fields in the
query also serve as connecting fields from the actual Loan form to the Loan table, namely through
the fields Media_ID and Reader_ID.

• All media are listed in which the return date is not enter in the Loan table. As an additional
overview, the media name is included in the query together with the Media_ID.

• The reference to the reader is established with the primary key of the Reader table.

• The time difference in days is specified as LoanDays from the date of loan Loan_Date and
the current date.

• The number of LoanDays is subtracted from the Loan Time to give the remaining number
of days in the loan period. The Loan Time can vary with different media types.

• In the Settings table a value of '1' for Extension corresponds to an extension of the loan
period of 7 days. In the data set above, the line with Media_ID '2' shows an extension of 7
days.

Base – a container for database content 9

Reports – presentation of data
In reports the data is processed so that it can be printed out in a useful format. Forms such as the
one shown in Figure 7 are not suitable for a cleanly formatted letter.

Figure 7: Form containing information for a recall notice

Before an actual report in the form of a recall notice can be printed, the recall information must be
entered into the Recall form. The table in the form shows all persons who have borrowed items
with a negative remaining loan time.

The recall date and recall notice number are entered for each media item to be recalled. This might
be the current date in processing warnings. The recall date defaults to the current date. The recall
number is an integer incremented by 1 with each successive recall notice for a particular
lender/media.

This form, in the current database example without macros, requires user input to create recall
notices. In the macro version, the date is automatically entered and the recall notice printed.

10 Preface

Figure 8: Sample recall notice

The recall notice (Figure 8) is generated by means of a query from the previously input data. The
user of the database needs only to select the Recall report and a recall letter can be printed out
and sent to all persons who have a recall entry made in the form on the previous page.

In such a report there may be multiple entries (overdue items) for a particular person. If the table
containing the items for this person exceeds the space on a page, it is extended to cover a
succeeding page.

Such a report is more encompassing than a mail merge letter produced with Writer. It automatically
gathers together the data sets for printing and arranges the necessary accompanying text
accordingly.

A similar letter as in the above figure can be otherwise only implemented with macros, as
described in "Printing in the report".

Safe handling of a base file
Tables, queries, forms, and reports of the internal database HSQLDB are stored in a Base file.
Because the database file is written into memory, the multiple objects in it require you to deal
carefully with it. Bug reports make it clear that a database file requires just a bit more careful
treatment than, for example, a text file that is written in Writer.

Base – a container for database content 11

The following instructions should therefore be taken into consideration when dealing with a Base
file:

• An open database file should not be saved with a different name by using Save As. When
there is no other choice, the tables, queries, forms, and reports should first be closed. It is
better to close the database file and create a copy of the file.

• The Report Builder is an add-on. Although it is now no longer visible as a separate
extension, it operates largely independent of the database file. Renaming the file removes
the Report Builder of its foundation.

• Because a table, query, form, or report is saved, it does not follow that the entire database
file has been saved. This saving must be done separately. When an object (table, query,
form, report) is saved, the information is written to the database file in memory; when the
database file is saved, everything contained in the database file in memory is written to the
*.odb file.
This memory behavior is especially true for working with the Report Builder. The
preparation of a report is still most unstable component inside the Base file. Therefore, after
every step, the report and the *.odb file should both be saved. Once the report is created, it
functions by itself without any particular problems.

• Once a *.odb file is finished, data added to the database is only written in the database file
in memory, but not in the *.odb file. Only when you close the *.odb file do you save the data
to it. The content of the HSQLDB database will be written back into the file. A crash at this
point can result in data loss. Therefore, a strategy should be developed so that backup
copies are made on time. Chapter 9, Macros, includes a macro to make a backup copy
when you open a database file. Likewise, a way is shown while the Base file is opened that
is as good as can be secured.
A significantly higher level of security finally can be met using external server databases
like MySQL / MariaDB or PostgreSQL. For this, Base can then serve as a front end with the
queries, forms, and reports for the database.

A simple database – test example in detail

The creation of a database is discussed in Chapter 2, Creating a Database. Various other
database systems can be connected in addition to the internal HSQLDB.

The following example is based on the default database that is installed with LibreOffice as an
internal database. It is therefore an embedded database first created without any registration in
LibreOffice.

The first step to do after finding a location for the database file and saving it there is to complete
the wizard.

The database is intended to organize a sports competition into different disciplines. Therefore,
"Example_Sport" was chosen as the label for the file.1

Table creation

As soon as the database has been saved, the main window for the database appears. By default,
Tables is selected in the Database section on the left side of the window (Figure 9). The tables are
the central storage for data; without tables, there is no database.

Click Create Table in Design View to open the window shown in Figure 10.

1 The Example_Sport.odb database is included in the sample databases for this handbook.

12 Preface

Figure 9: Main window for sample database Example_Sport.odb

Figure 10: Design View for a table

Table creation 13

The field names for the first table will be entered here. The table should include the men and
women starters. Here the field names are reduced first to the key components.

The field names "forename", "surname" and "Birthday" are likely to be clear. In addition, a field
called "ID" was added. This field will later take a value which is unique for each record. A unique
key field is necessary for the embedded database. Otherwise, no records can be entered in the
table. This key field is called the "primary key" in databases.

Another field could be used for this property. However, if for example, "surname" was used alone
for this, two people with the same last name could not both be saved. In this case, it might help to
declare two fields together in one shared primary key. There is no guarantee that it works in the
long term, which it does not. So here the simple version is preferred.

In the second step, select the field types for the already named fields from the lists. Set the field
"ID" to the field type "Integer". This field type has the advantage that it can be automatically
provided by the embedded HSQLDB with the next higher integer.

14 Preface

Edit the field property of the ID field. For this field, activate the automatic setting of ascending
numerical values: Field Properties > AutoValue > Yes.

After selecting AutoValue, a key icon should appear on the row header when leaving the field type
selection. This indicates that this field is the primary key of the table. If AutoValue is not selected,
the primary key can also be selected in the context menu (right-click > primary key).

Select the field type for "Birthday" to "Date". This ensures that only valid date entries are added. It
is also used for sorting dates, or, for example, calculating age.

The table can now be saved under the name “starters”. Subsequently, data can be entered. Input
into the field "ID" input is not necessary. It is done automatically when you save the record.

Note
The database file is a zipped folder of individual files. Storing a single object as the
table is therefore not directly written to the database file itself. That's why the Save
button for the database file itself must be clicked even after the creation of tables,
queries, forms, and reports.

Only when leaving the data row is the entered data saved automatically.

Starters can now be entered. However, the following information is missing at first glance:

• A list of sports in which the starters want to compete.

• For competitions, the distinction between male and female starters.

Create a "sport" table. Since there are not many different sports, AutoValue isn't selected for the
primary key. Instead, the field type is left to Text, but limited to 5 characters. The 5 characters are
sufficient, in order to find a suitable abbreviation for the sports.

Table creation 15

Open the Starter table again for editing, not for data entry, using the context menu of the table.

Add the field "gender" to the table. A new field may be added to the Table Design dialog only at the
end of the table. It is also possible using SQL to add new fields to certain positions.

The length of the text in this field is limited to one character, sufficient for 'm' and 'f' as input.

16 Preface

Somehow, the two tables must be linked so that each starter can be registered in several sports
and more starters can be registered for any sport. This is done through a table in which the values
of the two primary keys of the "starter" and "sport" tables are saved. Since only the combination of
these fields will be saved together, these fields are the primary key for this table. To assign the
primary key to both fields, click the row header for the first field, Shift+click the row header for the
second field, and right-click either row header. Click Primary Key in the context menu to specify
the primary key.

The appropriate values can be taken from "starter" and "sport", since the fields must exactly match
the field types that you want to save. ID_starter must therefore have the field type Integer. ID_sport
has the field type Text and is limited to 5 characters also, as the ID field from the "sport" table.

Save the table as "rel_starter_sport".

Tip
The results of a competition could also be included in this table. However, if several
competitions are held, a race date must be attached to the common primary key.

As the tables are completed, a relationship between the tables should be defined. This can prevent
a number for a starter from appearing in the table "rel_starter_sport" that is not listed in the table
"starter", for example. Tools > Relationships opens the window for the relationship definition.

All tables created so far are necessary for the relationship definition. Click each individual table and
click the Add button to add them to the relation design. Then close the Add Tables dialog.

Table creation 17

All the fields are listed in the each of the added tables. The primary key fields are marked with a
key symbol. The rectangles for the tables can be moved and resized.

Left-click "starter"."ID". Hold the mouse button down and move the mouse to
"rel_starter_sport"."ID_Athletes". The cursor indicates a link. Release the mouse button. The
following dialog will appear to define the relationship.

The field "rel_starter_sport"."ID_sport" should not be changed when "starter"."ID" is changed. This
is the default. ID is not changed anyway because it is an automatically autoincremented field and
no input is needed.

18 Preface

The record in the table "rel_starter_sport" should be deleted when "ID_sport"equals "starter"."ID"
and "starter"."ID" is deleted. So if a starter is removed from the Athletes table, then all relevant
records from the table "rel_starter_sport" will be removed. This procedure is called "Delete
Cascade".

In the next step "rel_starter_sport"."ID_sport" and "sport"."ID" are connected by dragging the
mouse while holding the left mouse button. Here, too, a record will be deleted when the
corresponding sport is deleted.

For a data change in "sport"."ID" however, another variant has been selected. If "sport"."ID" is
changed, "rel_starter_sport"."ID_sport" will be also. Thus, the abbreviation for a sport of up to 5
characters can be adjusted easily although there are already many records in the table
"rel_starter_sport". This procedure is called "Update Cascade".

The fields are now completely connected. Each 1 and n appears at the ends of the connections. A
starter may repeatedly appear in the table "rel_starter_sport". A sport can also repeatedly appear in
the table "rel_starter_sport". A given combination of "starter" and "sport" appears in the table, only
a maximum of 1 time. From two 1:n relationships, an n:m relationship now exists through the
intervening set table "rel_starter_sport".

Such a table design can be bad when filled by typing content into tables. It requires all three tables
to be opened when a starter is assigned to a sport. “starter”. "ID" must be sought in the table
"starter" and transmitted to "rel_starter_sport".”ID_starter”. "sport"."ID" must be sought in the Table
"sport" and transmitted to "rel_starter_sport".”ID_sport”. This is too complicated: A form solves this
more elegantly.

Table creation 19

Entry form
Forms can be created directly in the design view or by using the wizard. Even experienced people
have learned that they can quickly use the wizard and then customize what it creates to produce
what they want. This is often the more time-saving way.

First select Forms in the Database section. Then in the Tasks section, select Use Wizard to
Create Form.

The Starter table data should be written in the main form. Data for the Sport table is loaded directly
with the few necessary sports and will be rarely updated.

All fields except the primary key field "ID" are needed from the Starter table. The primary key field
is filled automatically with a corresponding distinctive value.

The fields in the form are populated using the arrow buttons between the Available Fields and
Fields in the Form boxes.

20 Preface

A subform should be set up where a sport can be assigned to the starter. The relationship for the
subform is determined from the previously defined relationship. However, they must still be
confirmed by clicking the table "rel_starter_sport".

Only the ID_sport field is required from the table "rel_starter_sport". The primary key in the Starter
table provides the value for the ID_sport field for the current record by the connection of the main
form to subform.

That this shortcut is already regulated can also be seen at step 4 of the wizard: Get joined fields is
inactive.

Table creation 21

How the items in the main form and subform are arranged does not ultimately matter. However in
order that the data assignment should also be plain for the inexperienced. in our example "As Data
Sheet" should not be selected for the main form. The fields in the subform later shows all sports of
the starters. This is why "As Data Sheet" is best left as it is.

Step 6 should remain as it is: Data entry > The form displays existing data. So then a new entry
is possible, as an alteration of existing data.

Step 7 is a matter of taste. Just beware: Some styles involve unexpected low-contrast images,
especially in table control fields. Here then the font color of the data sheet fields must be
readjusted if necessary.

The form is not going to work because the subform still requires you to enter the abbreviation for
the sports. What is needed is a selection of sports after the desired complete name. Therefore:
Modify the form.

22 Preface

First right-click on the table header of the data sheet. It says ID_sport. In the context menu, select
Replace with > List Box.

Then the list should be processed so that it can also display the corresponding data. Right-click
ID_sport and then click Column.

This opens the properties of the selected list box. Select Data > Type of list contents > SQL. With
the help of SQL (Structured Query Language – standard query language for databases), the field
should get its content from the Sport table.

If Sql is selected, List content appears with an ellipse on the right (......). Click this button to open
the editor for creating queries. The query being created will be put together and finally saved in the
list box itself.

Table creation 23

In the dialog Add Table or Query, click "sport" > Add > Close.

For the first column in the query editor, select the Sport field. This field should be visible in the list
box.

Put the ID field into the second column. This field afterwards passes its value to the table, which is
the data source of the subform. The prescribed words therefore are displayed and the appropriate
shortcuts stored.

The query is transmitted by the Save button to the properties of the list box. Close the Editor.

In "Content List", the following text can now be read:

SELECT "sport"."ID" FROM "sport"

This is the SQL code that has been created by the operation of the editor. Colloquially speaking,
the code says: from the "sport" table first select the "sport" field and second the associated key
value.

24 Preface

This query illustrates the minimum that should be selected. Of course, sorting could be
incorporated. Saving abbreviations with skillful selection gives a useful list of sports stored in "ID".
If records are not sorted in a specified way, the sorting is always performed by the primary key
field. In order to see sports later in the list box, this content must be entered in the "sport" table
accordingly.

Now even the title needs to be changed which was entered for the "ID_sport". It is still stored as
"ID_sport". It is visible as "sport". Therefore: General > Label > sport.

Should, for example, the name of other fields be changed these can be done best through the
Form Navigator. If fields are clicked, not only the fields, but also the labeling fields are selected.
Through the wizard, they were grouped together. This then requires further action from the
selection's context menu.

The Form Navigator is started from the Form Design toolbar at the bottom of the window.

Tip
Sometimes the toolbar will not open correctly for creating forms when processing the
forms. The Form Navigator can not be found in this case.

To show the toolbars, choose View > Toolbars > Form Design and Form Controls.
Should they then be visible during data entry, the view must be changed accordingly
here again.

Each field can be examined individually with the Form Navigator. The field properties are then
accessible in the context menu. A property is automatically saved after going to another property. It
is possible to jump from one field to another even when the properties dialog is open. Here also the
respective intermediate level is stored.

Table creation 25

If the design has now been completed, the form can be saved and closed. Also the saving of the
base file again is rational.

If now you want to enter data in the form, then it might look something like this. In the following
form a record has been entered for the test. After entering the gender clcik the Save button. Of
course, sorting could be incorporated.

When using the form, some inconvenience will attract attention:

• The subform with sports is not directly accessible. If navigating with the Tab key, after
entering the gender Tab jumps directly to the next starter record.

• The navigation bar shows, if it's in the subform, the record number of the subform. You
should better navigate through only the main form.

• The gender is entered depending upon the user preference found in memory. In the table,
the length of the field has been limited to only 1 character. So here a safer entry must be
guaranteed.

26 Preface

To solve these problems, open the form for editing, not data entry.

Tabbing to the subform
In order not to go straight to the next "starter" record using the Tab key after entering the gender, it
is necessary to modify the activation sequence, accessible via the toolbar Form Design toolbar.,

By selecting Automatic Sort, this is not only the sorting of the displayed controls, but also the
automatic redirection in the subform. Although this is not seen from the dialog, it is regulated in this
way in the background.

Activate the Navigation bar of the main form in the subform also
Open the Form Navigator to view the subform properties.

Table creation 27

Under Data > Navigation bar change the value from “Yes” to "Parent Form". Now the navigation
toolbar always shows the number of the record from the Starter table.

Restrict entry of a control panel
For the limitation of input, the control can not be a simple text box. In the main form, the solution
can be found by entering gender in a Group Box. Another solution is to presented the choices in a
list box.

First, highlight the field for gender on the Navigator. Right-click to open the context menu. Select
Replace > List Box. Properties will be selected via the context menu.

28 Preface

Data > Type of list contents > Valuelist is default here. In Data > List content enter the symbols
'f' and 'm' below each other (using Shift + Enter). These abbreviations are the data that will be
given to the Starter table.

In General > List entries, specify what will to be displayed in the list box. This can also be 'f' and
'm'. It must in any case have the same order as the items below Data.

Next select Yes for the property General > Dropdown. Look near the bottom of the General
properties for this one.

The most striking inconveniences have thus far been eliminated. Now, you must again save the
form and database file. The input for male and female starters may begin as well as their
assignment to the sports.

Thus, the following step is useful: records should be entered only once. Care should be taken to
ensure that the starters can also compete with each other once by age and by sport. Otherwise the
subsequent queries and reports do not make sense.

Table creation 29

Query
In a query, for example, contents of various tables can be grouped together. Each of the starters
should be displayed with the sports which they have entered.

Click Queries > Create Query in Design View. A dialog appears listing tables from which we
select all the tables for the query. It will be very clear when the "rel_starter_sport" table is selected
as the second table. Then the connections are also equally well recognized.

The fields that should be displayed in the query can be added either by double-clicking the field
names in the table or by selecting the row, Field. By the selection of this row, a drop-down list
appears consisting of the fields names and their corresponding table names indexed by table
name. In order to match the fields of the tables correctly to their tables, they are labeled "table
name"."field name" in queries. If "*" is used instead of the field name, it means that all the fields of
the corresponding table are displayed.

In principle, a query should be executed once before saving to see if it really produces the desired
result. For this purpose, click the button shown above. F5 can also be pressed, or execute the path
Edit > Run Query.

30 Preface

The query now displays all combinations of starters and sports. If a subscriber has multiple sports
he has as many records. Starters do not appear without sports.

In order to put together different age groups in a competition, the year of birth is decisive. It
depends on how old a person is in that year.

The year of birth can be used with different functions. The following data shows the variation that is
also perhaps developed for people with English skills:

YEAR(NOW())-YEAR("birthday")

NOW () stands for "now", for example the current time. The current year is read with
YEAR(NOW()). YEAR ("birthday") picks out the year of birth. A difference is formed between
them indicating how old the person is or will become in the current year.

These and many other functions that work with the built-in HSQLDB are described in the appendix
of the manual.

When the query is run during a given year (for example 2015), the appropriate calculations appear
for that same year.

The whole code that we have entered in the field also appears in the column heading. This is
remedied by entering an alias for the code under which the result will appear.

Table creation 31

In the row Alias, the term "sportage" is entered. Here one should not use this age for anyone who
has not had a birthday yet in this year. The chapter, "Current age determine," describes how the
actual age can be determined.

If the query is run again, the column header no longer contains the code but the term "sportage".

Thus the query should be saved under the name "sportage" instead of the confusion of using the
code as the name. This query is then used as the basis for the next query that the "sportage" now
assigns an "age_group".

The query "sportage" was chosen as the basis for the 2nd query. Before the term "sportage" in the
table container is a different icon than seen for the tables of the first query. This symbol indicates
that the basis of this query is precisely a query and not a table.

Double-click on "*" or select "sportage.*" All fields are selected. So, the following query returns the
same result: Only the formula is no longer visible.

The "sportage" field should now be accessed. The sportage determines in which age group the
respective persons participates.

In order that the calculation will not be too complex, the following classifications should be
modified: for those under 20 years of age, the starters are divided into age groups containing two
ages per group beginning with 0. From 20 years and older, groups containing 10 ages each are
formed, for example, 20-29 years...

32 Preface

Such formulas no longer really belong to the entry-level group of skills. A simpler allocation of ages
would be possible even with the help of the following report. For more sophisticated allocations,
please refer to the Appendix of this manual again.

CASEWHEN("sportage" > 19, CEILING("sportage" / 10) * 10, "sportage" -
MOD("sportage", 2))

CASEWHEN (condition to be tested for being true or false using a value, enter the value of this
expression if true, enter the value of this expression if false).
In English, this means: In the case that the "sportage" is over 19 years, “sportage” is used to
calculate the next lower age that ends in a zero to get the '”age_group”.
If the "sportage" is under 19 years; calculate MOD("sportage",2)) by dividing the Athlete_age by 2
and using the remainder (this will be 0, or 1); and then subtract the remainder from the value of the
"sportage" to get the "age_group".

All starters over the age of 19 are thus assigned to an age group for each ten years. All starters up
through age 19 are assigned to an age group for each two ages.

This formula was again assigned an alias, in this case the alias is "age_group".

Save the query with the name "registration".

Switching off of the design view is not really necessary, since all entries are possible in the design
view without any major problems. However, looking closer at the code in a query can never hurt.
Finally, there are SQL expressions that fit poorly in the design view or are not possible there. But
then the direct entry of the SQL code is used.

Table creation 33

Tip
The code fields and tables are enclosed in double quotes and displayed in ocher
colored. Terms of SQL code are are in blue, database functions in green.

SELECT "sportage".*, CASEWHEN("sportage" > 19, CEILING("sportage" / 10)
* 10,"sportage" - MOD("sportage", 2)) AS "age_group" FROM "sportage"

The parts of the formula was already mentioned. Here now is the Structure:

SELECT "sportage".*,... AS "age_group" FROM "sportage"

Select from the table "sportage" all the records from and in addition to what is determined by the
formula. That which is determined by the formula, refer to as "age_group".

The code does not distinguish between tables and queries as the basis of the data. It therefore
works only in the graphical user interface of Base. A query can not have the same name as a table;
a table can not have the same name as a query.

Immediately when the SQL button is clicked (It runs the SQL command directly) while in SQL
View, the database responds with an error message. The embedded HSQLDB does not know the
query "sportage" to which the current query "registration" refers.

Printing in the report
Use Reports > Create Report in Design View to create a report with a clear list of starters, sorted
by sport, gender, and age group.

If the editor is started, the Add Field dialog first appears in the foreground. Using this dialog, fields
are taken from the alphabetical sorted table as a basis. The query must be chosen as the data
source.

In the report window, you will find the right side of the overview of the properties for the currently
active object. If it is not visible, select View > Properties.

From Properties, select Data > Content type > query. For the Content property, select the query
"registration" which was the final summary query.

34 Preface

The Report Builder now displays all the fields of the selected query.

In the next step, select the Sort dialog:

The sorting can also be displayed by selecting View > Sorting and Grouping.

In the Sorting and Grouping dialog, select the fields "sport", "gender" and "age_group".

A group header for sorting appear at each sorting selection on the left side of the report. Use the
default settings for the properties of the sorting and grouping selections.

Close the Sorting and Grouping dialog.

Table creation 35

Select the Group header, "sport Header". This is visible within the white border of the header.
Using the Add Field dialog, click on the field "starter" to insert a label field and a text field which will
display the contents of the field "starter".

36 Preface

By the same method, assign the fields "gender" and "age_group" to the appropriate group
headers.

All remaining fields are inserted in the area "Detail".

The draft report should now look like this:

Subsequently, the report should be saved. The name could be something like "list of entrants".

The database file itself should be saved, otherwise the storage of the report is only made once,
temporarily.

Note
Especially when designing a report using the Report Builder, it often fails because of
instabilities of the program. It is important step that you save both the report and
database file.

Fortunately, the later executing of a report is not affected by these instabilities.

If this report is executed with the appropriate data, then the approximate following picture appears:

Table creation 37

The beginning of the report shows two female starters who want to enter the high jump sport and
belong to the age_group 30.

When running the report, some design flaws appear:

• The distances between the group headers and the content in the Detail section is much too
large.

• The gender is indicated by "m" and "f". Better would be a name such as "Men" and
"Women".

• Presumably because of the division in the query, the age_group field contains numbers
with one decimal place.

• The label fields for the illustrated fields from "Detail" ("forename", "surname",...) should be
better placed together horizontally as table headers below the "age_group" label and field
in the age_group header.

Setting the distances between the report fields
The vertical distances between the fields can be reduced by using the mouse to drag the bottom
border of the "age_group" Header to the bottom of table headers. It is also possible to highlight a
section and to regulate the height of the group header in Properties. Therefore, no field but only the
group header should be labeled

It is not possible for a section to be smaller than the labels and fields that it contains.

The area "age_group Header" should be selected so large that it can take the label fields from the
area "Detail".

It should also be considered in the selection of the distances that a following group does not
appear too close below the previous group. The label and text boxes may also need a distance to
the top of the section containing them. If this distance to the top is not desired, group footers rather
than headers can be displayed to provide this distance. Such a preference is possible View >
Sorting and Grouping for each group.

Influencing a text field content by a formula
The designation of the gender in the table is not enough for the demands of a list of starters.
Renaming the field could be done in the query But because the query has already been created,
now the possibilities of the report be used instead.

38 Preface

Highlight the text field "= gender". In the Properties on the right side of the Report Builder tab,
select Data > Data field. Click the button with the ellipse(......). You will see the Function WizardFunction Wizard.

From Category, select "Logical" and then double click "IF". The prediction in this function, which
relies on other functions must be switched off.

Input the Test value. This is the field of the query from which the data is read and is put in square
brackets. Texts must be enclosed in double quotes. When the "gender" is the value "m", then
"Men" is displayed in the report field. If there is no "m", then "Women" appears.

The entry is confirmed with OKOK.

Thus, the wording of the field is changed accordingly.

Change the formatting of a text field
The field, which receives the contents of the database, is identified in the report as a "text box".
However, it can be formatted just like the fields in tables in Writer or Calc.

Highlight the field "= age_group". At the properties on the right of the screen, select General >
Formatting. The Formatting property is set to "text". Click the button with the ellipse (……). This
opens the formatting dialog, which is also used in Calc, the Writer or in creating Forms. Select
Category > Number and confirm with OK.

The format of the display is now changed from text to numbers.

Moving boxes in the Report Builder
Fields can also be moved beyond the boundaries of a section to another section in Report Builder.
However, sufficient space for the field must be present in the destination section. No part of one
field can exist in the same location as any part of another field.

The positioning with the mouse is so inaccurate at any time according to the system even that to
the best ample space should be present. Provide ample space in each section because the
positioning of fields is so inaccurate with any operating system. Only once are the fields in a
section like this, the group header "age_group", so they can be precisely positioned using
keystrokes with the arrow keys.

Table creation 39

In order to position with the keyboard look at the properties General > Position X and General >
Position Y.

Here a label field for the header was added. The entry of the text for the label field is appears in the
Properties of the fields.

The page footer is set in the properties: Visible → No. The bottom margin of the document
contains too much space. Remember that the available amount is already additionally reduced by
the size of the page margins. By default, all page margins are set for letter page format to 0.79
inches.

For more formatting options for reports, study "Reports using the Report Designer" in the separate
chapter.

Extensions to the sample database
The example presented here is only the first step for a database in the sports sector. Now, add a
field for each possible item of needed information. A good place to add such a field is in the table
"rel_Athlete_sport".

However, if the inputs apply to several competitions for the same sport, include a date field or
another field that can be assigned to the respective competition in the table "rel_starter_sport". The
field then also becomes part of the table's primary key.

Perhaps the club membership could also be added. Adding a field in the table "starter" would be
sufficient. When many clubs have the same name, this suggest adding a separate table "Club" and
also the corresponding foreign key in the table "starter".

Then, of course, it must be determined, as with all competitions, who should be placed in what
relevant age group and sport. Sorting is required here, which might again end up as a report with a
results list.

It would be nice if every starter (again via a report) obtained a beautifully designed certificate with
the personal performance and placement.

Such extensions are easily possible, as described in other chapters of this handbook.

40 Preface

