
Base Guide 7.2

Chapter 3
Tables

Copyright

This document is Copyright © 2021 by the LibreOffice Documentation Team. Contributors are
listed below. You may distribute it and/or modify it under the terms of either the GNU General
Public License (https://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), version 4.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
To this edition

Pulkit Krishna Dan Lewis

To previous editions

Robert Großkopf Pulkit Krishna Jost Lange
Dan Lewis Hazel Russman Jochen Schiffers
Steve Schwettman Jean Hollis Weber

Feedback
Please direct any comments or suggestions about this document to the Documentation Team’s
mailing list: documentation@global.libreoffice.org.

Note

Everything you send to a mailing list, including your email address and any other
personal information that is written in the message, is publicly archived and cannot
be deleted.

Publication date and software version
Published December 2021. Based on LibreOffice 7.2 Community.
Other versions of LibreOffice may differ in appearance and functionality.

Documentation for LibreOffice is available at https://documentation.libreoffice.org/en/

https://documentation.libreoffice.org/en/
mailto:documentation@global.libreoffice.org
https://creativecommons.org/licenses/by/4.0/
https://www.gnu.org/licenses/gpl.html

Contents
Copyright..2

Contributors..2

Feedback..2

Publication date and software version...2

General information on tables...4

Relationships between tables..4
Relationships for tables in databases..4

One-to-many relationships...5
Many-to-many relationships...5
One-to-one relationships..6

Tables and relationships for the example database...7
Media addition table...7
Loan table..8
User administration table..9

Creating tables...10
Creation using the graphical user interface...11

Primary keys..15
Formatting fields...15
Creating an index...17
Problems when modifying tables..18
Limitations of graphical table design...20

Direct entry of SQL commands...20
Table creation...21
Table modification...24
Deleting tables..26

Linking tables..27

Entering data into tables..30
Entry using the Base GUI..30

Sorting tables...33
Searching tables...33
Filtering tables..35

Direct entry using SQL..36
Entering new records...36
Editing existing records..37
Deleting existing records..38

Importing data from other sources..38
Adding imported records to an existing table..39
Creating a new table for imported data...40
Splitting data on import...43

Problems with these data entry methods..43

Chapter 3 Tables | 3

General information on tables

Databases store data in tables. The main difference from the tables in a database and a range of
cells in a simple spreadsheet is that the fields into which the data is written must be clearly
defined beforehand. For example, a database does not allow a text field to contain numbers for
use in calculations. Such numbers are displayed, but only as strings, whose actual numerical
value is zero. Similarly, images cannot be included in all types of fields.

Details of which data types are available can be obtained from the Table Design window in Base.
They are shown in the Appendix A to this book.

Simple databases are based on only one table. All data elements are entered independently,
which can lead to multiple entry of the same data. A simple address book for private use can be
created in this way. However, the address book of a school or a sports association could contain
so much repetition of postcodes and locations that these fields are better placed in one or even
two separate tables.

Storing data in separate tables helps:

• Reduce repeated input of the same content

• Prevent spelling errors due to repeated input

• Improve filtering of data in the displayed tables

When creating a table, you should always consider whether multiple repetitions, especially of text
or images (which consume a lot of storage) may occur in the table. If so, you need to export them
into another table. How to do this in principle is described in Chapter 1, Introduction to Base, in
the section “A Simple Database – Test Example in Detail”.

Note

A relational database is a group of tables which are linked to one another through
common attributes. The purpose of a relational database is to prevent duplicate entry
of data elements as much as possible. Redundancies are to be avoided.

This can be achieved by:

– Separating content into as many unique fields as practical (for example, instead of
using one field for a complete address, use separate fields for house number, street,
city and postcode).

– Preventing duplicate data for one field in multiple records (for example by importing
the postcode and city from another table).

These procedures are known as Database Normalization.

Relationships between tables

This chapter explains many of these steps in detail, using an example database for a library:
media_without_macros. Constructing the tables for this database is an extensive job, as it
covers not only the addition of items into a media library but also the subsequent loan of them.

Relationships for tables in databases
Tables in the internal database HSQLDB always have a distinctive, unique field, the primary key.
This field must be defined before any data can be written into the table. Using this field, specific
records in a table can be found.

In certain cases, a primary key is formed from several fields in combination. These fields must be
unique when considered together. This is known as a composite primary key.

4 | Chapter 3 Tables

Note

The combination of the fields in a composite primary key is unique when each record
of the table contains a unique combination of values for these fields.

Table 2 may have a field that indicates a record in Table 1. Here, the primary key of Table 1 is
written as a value in the Table 2 field. Table 2 now has a field that points to another table’s key
field, known as a foreign key. This foreign key exists in Table 2 in addition to its primary key.

The more relationships there are between tables, the more complex is the design task. Figure 1
shows the overall table structure of this example database, scaled to fit the page size of this
document. To read the content, zoom the page to 200%.

Figure 1: Relationship diagram for the example database media_without_macros

One-to-many relationships
The media_without_macros database lists the titles of the media in one table. Because titles
can have multiple subtitles or sometimes none at all, the subtitles are stored in a separate table.

This relationship is known as one-to-many (1:n). Many subtitles may be assigned to one medium,
for example the many track titles for a music CD. The primary key for the Media table is stored as
a foreign key in the Subtitle table. Most relationships between tables in a database are one-to-
many relationships.

Many-to-many relationships
A database for a library might contain a table for authors’ names and a table for the media. The
connection between an author and, for example, books that author has written, is obvious. The
library might contain more than one book by one author. It might also contain books with multiple
authors. This relationship is known as many-to-many (n:m). Such relationships require a table
that acts as an intermediary between the two tables concerned. This is represented in Figure 2
by the rel_Media_Author table.

Thus, in practice, the n:m relationship is solved by treating it as two 1:n relationships. In the
intermediate table, the Media_ID can occur more than once, as can the Author_ID. But when
using them as a pair, there is no duplication: no two pairs are identical. So this pair meets the
requirements for the primary key for the intermediate table.

Relationships between tables | 5

Figure 2: Example 1:n relationship; n:m relationship

Note

For a given value of Media_ID, there is only one title of the media and one ISBN. For
a given value for Author_ID, there is only one Author's first and last name. So, for a
given pair of these values, there is only one ISBN and only one Author. This makes
the pair unique.

One-to-one relationships

Figure 3: Example 1:1 relationship

The library database described above requires a table for readers. In this table only the fields that
are directly necessary were planned in advance. But for a school database, the school class is
also required. From the school class records, you can find borrowers’ addresses where
necessary. Therefore it is not necessary to include these addresses in the database. The school
class relationship of pupils is separated from the reader table, because mapping to classes is not
appropriate in all areas. From this arises a 1:1 relationship between the reader and the individual
school class assignment.

In a database for a public library, the addresses of readers are required. For each reader there is
a single address. If there are multiple readers at the same address, this structure would require
the address to be entered again, since the primary key of the Reader table is entered directly as

6 | Chapter 3 Tables

the primary key in the Address table. Primary key and foreign key are one and the same in the
Address table. This is therefore a 1:1 relationship.

A 1:1 relationship does not signify that for every record in a table, there will be a corresponding
record in another table. But at most there will be only one corresponding record. A 1:1
relationship therefore leads to fields being exported which will be filled with content for only some
of the records.

Tables and relationships for the example database
The example database (media_without_macros) must satisfy three requirements: media
additions and removals, loans, and user administration.

Media addition table
First, media must be added into the database so that a library can work with them. However, for a
simple summary of a media collection at home, you could create easier databases with the
wizard; that might be sufficient for home use.

The central table for media addition is the Media table (see Figure 4).

In this table all fields that are directly entered are assumed not to be also in use for other media
with the same content. Duplication should therefore be avoided.

For this reason, planned fields in the table include the title, the ISBN, an image of the cover, and
the year of publication. The list of fields can be extended if required. So, for instance, librarians
might want to include fields for the size (number of pages), the series title, and so on.

The Subtitle table contains the detailed content of CDs. As a CD can contain several pieces of
music, a record of the individual pieces in the main table would require a lot of additional fields
(Subtitle 1, Subtitle 2, etc.) or the same item would have to be entered many times. The Subtitle
table therefore stands in a n:1 relationship to the Media table.

The fields of the Subtitle table are (in addition to the subtitle itself) the sequence number of the
subtitle and the duration of the track. The Length field must first be defined as a time field. In this
way, the total duration of the CD can be calculated and displayed in a summary if necessary.

The authors have a n:m relationship to the media. One item can have several authors, and one
author might have created several items. This relationship is controlled by the rel_Media_Author
table. The primary key of this linking table is the foreign key, formed from the Author and Media
tables. The rel_Media_Author table includes an additional sorting (Author_Sort) of authors, for
example by the sequence in which they are named in the book. In addition, a supplementary
label such as Producer, Photographer, and so on is added to the author where necessary.

Category, Mediastyle, Town, and Publisher have a 1:n relationship.

For the Category, a small library can use something like Art or Biology. For larger libraries,
general systems for libraries are available. These systems provide both abbreviations and
complete descriptions. Hence both fields appear under Category.

The Mediastyle is linked to the loan period Loantime. For example, video DVDs might on
principle have a loan period of 7 days, but books might be loaned for 21 days. If the loan period
is linked to any other criteria, there will be corresponding changes in your methodology.

The Town table serves not only to store location data from the media but also to store the
locations used in the addresses of users.

Since Publishers also recur frequently, a separate table is provided for them.

The Media table has in total four foreign keys and one primary key, which is used as a foreign
key in two tables, as shown in Figure 4.

Relationships between tables | 7

Figure 4: Media addition

Loan table
The central table is Loan (see Figure 5). It is the link between the Media and Reader tables.

When a medium is returned, much of its data can be deleted as it is no longer needed. But two of
the fields should not be: ID, and Loan_Date. The former is the primary key. The latter is when the
item was loaned. It serves two purposes. First it is useful to determine the most popular media.
Second, if damage to an item is noticed while it is being taken out, this field will show who was
the last person to borrow it. In addition, the Return_Date is recorded when the item is returned.

Similarly, Reminders are integrated into the loan procedure. Each reminder is separately entered
into the Recall table so that the total number of reminders can be determined.

As well as an extension period in weeks, there is an extra field in the loan record that enables
media to be loaned using a barcode scanner (Media_ID_BC). Barcodes contain, in addition to
the individual Media_ID, a check digit which the scanner can use to determine if the value
scanned in is correct. This barcode field is included here only for test purposes. It would be better

8 | Chapter 3 Tables

if the primary key of the Media table could be directly entered in barcode form, or if a macro were
used to remove the check digit from the entered barcode number before storage.

Finally we need to connect the Reader to the loan. In the actual reader table, only the name, an
optional lock, and a foreign key linking to the Gender table are included in the plan.

Figure 5: Loan

User administration table
For this table design, two scenarios are envisaged. The chain of tables shown in Figure 6 is
designed for school libraries. Here there is no need for addresses, as the pupils can be contacted
through the school. Reminders do not need to be sent out by post but can be distributed
internally.

The Address chain is necessary in the case of public libraries. Here you need to enter data that
will be needed for the creation of reminder letters. See Figure 6.

Figure 6: Readers - a School class chain and an Address chain

Relationships between tables | 9

The Gender table ensures that the correct salutation is used in reminders. The writing of
reminders can then be automated as far as possible. In addition, some given names can be
equally masculine or feminine. Therefore the separate listing of gender is required even when
reminders are written out by hand.

The rel_Reader_Schoolclass table, like the Address table, has a 1:1 relationship with the Reader
table. This was chosen because either the school class or the address might be required.
Otherwise the Schoolclass_ID could be put directly into the pupil table; the same would be true of
the complete content of the address table in a public library system.

A School class usually consists of a year designation and a stream suffix. In a 4-stream school,
this suffix might run from a to d. The suffix is entered in the Class table. The year is in a separate
Grade table. That way, if readers move up a class at the end of each school year, you can simply
change the year entry for everyone.

The Address is also divided. Street is stored separately because street names within an area are
often repeated. Post code and town are separated because there are often several post codes
for a single area and therefore more post codes than towns. So compared with the Address
table, the Postcode table contains significantly fewer records and the Town table even fewer.

How this table structure is put to use is explained further in Chapter 4, Forms, in this book.

Creating tables

Most LibreOffice users will generally use the graphical user interface (GUI) exclusively to create
tables. Direct entry of SQL commands becomes necessary when, for example, a field must
subsequently be inserted at a particular position, or a standard value must be set after the table
has been saved.

Table terminology: The picture below shows the standard division of tables into columns and
rows.

Each data record is stored in its own row of the table. Individual columns are largely defined by
the field, the type, and the rules that determine if the field can be empty. According to the type,
the size of the field in characters can also be determined. In addition, a default value can be
specified to be used when nothing was entered into the field.

In the Base GUI, the terms for a column are described somewhat differently, as shown below.

Field becomes Field Name, Type becomes Field Type. Field Name and Field Type are entered
into the upper area of the Table Design window. In the lower area you have the opportunity to set,
under the Field properties the other column properties, in so far as they can be set using the GUI.
Limitations include setting the default value of a date field to the actual date of entry. This is
possible only by using the appropriate SQL command (see “Direct entry of SQL commands” on
page 20).

10 | Chapter 3 Tables

Note

Default values: The term “Default value” in the GUI does not mean what the
database user generally understands as a default value. The GUI displays a certain
value visibly, which is saved with the data.

The default value in a database is stored in the table definition. It is then written into
the field whenever this is empty in a new data record. SQL default values do not
appear when editing table properties.

Creation using the graphical user interface
Database creation using the graphical user interface (GUI) is explained step by step, using the
Media table as an example.

Launch the table editor by clicking on Create Table in Design View.

1) ID field:

a) In the first column, enter the Field Name ID. Then type the Tab key to move to the
Field Type column. Alternatively, click with the mouse on the next column to select it,
or press the Enter key.

b) Select Integer [INTEGER] from the list as the field type. The default is Text
[VARCHAR]. Integers can store a number with up to 10 digits. In addition, Integer is
the only type available in the GUI that can be given an automatically incrementing
value.

Creating tables | 11

Tip

To rapidly make a selection from the Field Type list using the keyboard, type the key
corresponding to the first letter of your choice. Repeated typing of this key can be
used to change the selection. For example, typing D can change your selection from
Date to Date/Time or to Decimal.

c) Set ID as the primary key by clicking the rectangle in front of its field name with the
right mouse button and selecting Primary Key from the context menu. A key symbol
appears before ID.

Note

The primary key serves one purpose only – to uniquely identify the record. Therefore
you can use an arbitrary name for this field. In the example, we have used the
commonly used name ID (identification).

d) Under Field properties for the ID field, change AutoValue from No to Yes. This causes
the primary key to be automatically incremented. In the internal database, the count
begins at 0.

12 | Chapter 3 Tables

AutoValue can be set for only one field in a table. Choosing AutoValue > Yes
automatically sets this field to be the primary key if a primary key has not been set
already.

2) The next field is Title.

a) The field name Title is entered in the Field Name column.

b) The field type need not be altered here as it is already set to Text [VARCHAR].

c) In the Field properties, the field length must be adjusted. The default length is 100 in
recent LibreOffice versions, but should be increased to 250 for media titles.

d) In Field properties, change Entry required from No to Yes. A medium without a title
would make no sense.

3) Description could be anything. This column can also be left empty. The description serves
only to explain the field content for people who want to view the table definition later.

4) For the field Pub_Year, the Small Integer [SMALLINT] type has been chosen. This
can contain an integer with a maximum size of 5 digits. The publication date is not used in
calculations but making it an integer ensures that it will not contain any alphabetic
characters.

Creating tables | 13

5) For the Category_ID field, we have chosen the Integer type. In the Category table, the
primary key should have this field type, so what is entered here as a foreign key must
have the same type. This also applies to the following foreign keys Mediastyle_ID,
Town_ID, and Publisher_ID.

6) For the Price field, use the [NUMERIC] or [DECIMAL] type. Both these field types can
contain values with a decimal point. Under Field Properties, set a length of 6 characters.
This should be sufficient for the prices of our media.

a) The number of decimal places is set to 2. This provides a maximum price of 9999.99
since the decimal point itself is not included in the count.

b) It is not necessary to specify the $ character in the format, as a formula will handle
this.

7) For the ISBN field, use the [NUMERIC] type. This can be set exactly to the correct field
length for an ISBN. ISBNs are 10 or 13 characters long. They will be stored as numbers
without a separator. The length is set to a maximum of 13 characters. The number of
decimal places is set to zero.

8) Save the table with the name Media.

We have now created the main table for the example database. All the other tables can be
created in a similar way. Be careful that the field types and field properties match what is going to
be stored in those fields. This is different from a spreadsheet, in which a column can contain a
mixture of properties.

14 | Chapter 3 Tables

Note

The order of fields in the table can be changed only until the table is first saved in the
GUI. When data is subsequently entered directly into the table, the field order is
fixed. However, the order can still be freely changed in queries, forms, and reports.

Primary keys
If no primary key is set when the table is designed, you will be asked when saving the table
whether a primary key should be created. This indicates that a significant field is lacking in the
table. Without a primary key, the HSQLDB database cannot access the table in the GUI. This
field is usually named ID and given the type INTEGER with AutoValue > Yes to automatically
increment the value. Clicking Yes in the primary key dialog automatically creates a primary key
field. Clicking No or Cancel in the primary key dialog allows you to designate an existing field as
the primary key, by right-clicking on the green arrow at the left of the corresponding field.

You can also use a combination of fields as your primary key. The fields must be declared as
primary key together (hold the Control or Shift key down). Then a right-click makes the
combination of all highlighted fields the primary key.

If information is imported into this table from others (for example an address database with
externally stored postcodes and towns), a field with the same data type as the primary key of the
other table must be included. Suppose the Postcode table has as its primary key a field called ID
with the type Tiny Integer. The Address table must then have a field Postcode_ID with the Tiny
Integer type. What is entered into the Address table is always the number that serves as the
primary key for the given location in the Postcode table. This means that the Address table now
has a foreign key in addition to its own primary key.

A rule for naming fields in a table is that no two fields can have the same name. Therefore you
cannot have a second field called ID occurring as a foreign key in the Address table.

The field type can be altered only to a limited extent. Increasing a property (length of a text field,
greater size in number) is always allowed, as all values already entered will match the new
conditions. Decreasing a property is more likely to cause problems and can lead to a loss of data.

Time fields in tables cannot be created to contain fractions of a second. For that, you need a
Timestamp field. However the GUI only allows you to create a Timestamp field with date, hour,
minute and second. You will need to modify this field afterward using Tools > SQL.

ALTER TABLE "Table_name" ALTER COLUMN "Field_name" TIMESTAMP(6)

The parameter “6” makes the Timestamp field capable of storing fractions of a second.

Formatting fields
Formatting presents the values in the database to the user and allows the input of values
depending on the input conventions normal in that country. Without formatting, decimal places
are marked off with a dot where most European countries use a comma (4.21 instead of 4,21).
Date values are presented in the form 2014-12-22. In setting up formatting, you must have
regard for local standards.

Formatting only provides a representation of the contents. A date represented by a two-character
year number is still stored as a four-character year. If a field is created for a number with two
decimal places, like the overdue charge (called overdraft) in the following example, the number is
stored with two decimal places, even if the formatting has mistakenly been set not to show them.
A number with two decimal places can be entered into a field formatted without decimal places.
The decimal part seems to disappear at input but becomes visible if the formatting is bypassed.

To display just a time, not a date, forms can be formatted to show only the necessary information,
hiding the rest of the Timestamp field. In the case of storing time from a stopwatch for example,
the minutes, seconds, and fractions of a second in a Timestamp can be displayed by using

Creating tables | 15

MM:SS.00 in the display format. A format without the date can be set later in Forms using the
formatted field, but not directly into the Timestamp field.

The formatting of fields when the table is created or subsequently, via the field properties, uses a
separate dialog:

The button next to Field Properties > Format example opens the dialog for changing the
format.

16 | Chapter 3 Tables

When creating currency fields, take care that the numeric field has two decimal places set.
Formatting can be carried out when creating the table in the GUI to use the appropriate currency
during input. This only affects input into the table and into queries that use the input value without
recalculation. In forms, the currency designation must be separately formatted.

Note

Base saves the formatting of tables when the fields are created or during data entry
if the column formats are modified by right-clicking on the column headings. Column
widths on the input screen are also saved when modified during data entry.

In queries, forms, or reports, the display formatting can be modified as needed.

In the case of fields that are to contain a percentage, take note that 1% must be stored as 0.01.
Writing percentages thus requires at least two decimal places. If fractional percentages such as
3.45 need to be stored, the stored numeric value requires four decimal places.

Creating an index
Sometimes it is useful to index other fields or a combination of other fields in addition to the
primary key. An index speeds up searching and can also be used to prevent duplicate entries.

Each index has a defined sort order. If a table is displayed without sorting, the sort order will be
according to the content of the fields specified in the index.

Figure 7: Access to Index Design

Open the table for editing by right-clicking and using the context menu. Then you can access
index creation with Tools > Index Design.

Figure 8: Creating a new Index

Creating tables | 17

On the Indexes dialog (Figure 8), click New Index to create an index in addition to the primary
key.

The new index is automatically given the name index1. The Index field specifies which field or
fields are to be used for this index. At the same time you can choose the Sort order.

Figure 9: The Index is defined as Unique

In principle, an index can also be created from table fields that do not contain unique values.
However in Figure 9, the Index detail Unique has been checked, so that the LastName field
together with the FirstName field can only have entries that do not already occur in that
combination. So, for example, Robert Miller and Robert Maier are possible, and likewise Robert
Miller and Eva Miller.

If an index is created for one field only, the uniqueness applies to that field. Such an index is
usually the primary key. In this field each value may occur only once. Additionally, in the case of
primary keys, the field cannot be NULL under any circumstances.

An exceptional circumstance for a unique index is when there is no entry into a field (the field is
NULL). Since NULL can have any arbitrary value, an index using two fields is always allowed to
have the same entry repeatedly in one of the fields as long as there is no entry in the other.

Note

NULL is used in databases to designate an empty cell, one that contains nothing. No
calculation is possible using a NULL field. This contrasts with spreadsheets, in which
empty fields automatically contain the value 0 (zero).

Example: In a media database, the media number and the loan date are entered when the item is
loaned out. When the item is returned, a return date is entered. In theory, an index using the
fields Media_ID and ReturnDate could easily prevent the same item from being loaned out
repeatedly without the return date being noted. Unfortunately this will not work because the
return date initially has no value. The index will prevent an item from being marked as returned
twice with the same date but it will do nothing else.

Problems when modifying tables
It is best to create tables complete with all their required settings, so that changes in table
configuration are not needed at a later time. When properties of fields (field name, mandatory
entry, and so on) are changed later, this can lead to error messages which are not due to the GUI
but to an attempt to modify the underlying database in an undesirable way.

18 | Chapter 3 Tables

In this case the Amount field is to be reset to Entry required=yes. The warning symbol notifies us
that this change can lead to loss of data. A simple change is not possible because there may
already be records that have no entry in this field.

Clicking Yes leads to a further error notice, as the structure of the database does not allow this
field to be deleted. Clicking on No cancels the entire operation. The More option is provided
whenever possible in order to give you additional information on solving the problem.

Creating tables | 19

The error notice Column is referenced in constraint or view means:
The column with the field name “Amount” is referred to in another part of the database. This
could be a constraining definition or a table view which was created by some user after the table
itself was created. The above illustration shows that the name of the constraint or view is
View_Checkout_with_Transfers. This makes it clear to the user where in the database changes
need to be made. For example the SQL code for the view could first be saved as a query, and
then the view could be destroyed and a new attempt made to recreate the field.

In this case, the name of the constraint Account not equal to Transferaccount leads us to the
definition for that constraint. The condition is that the value in the field named Account_ID is not
allowed to be the same as the value in the field TransferAccount_ID. The column can only be
altered if this condition is removed.

Now if a further error occurs, this is most likely to be caused by the corresponding field being
linked to a field in another table by a defined relationship. In this case, the link must be broken by
using Tools > Relationships before the change can be carried out.

Limitations of graphical table design
The sequence of fields in a table cannot be changed after the database has been saved. To
display a different sequence requires a query.

Only the entry of direct SQL commands can insert a field into a specific position in the table.
However, fields already created cannot be moved by this method.

The properties of the tables must be set at the beginning: for example which fields must not be
NULL and which must contain a standard value (Default). These properties cannot subsequently
be changed using the GUI.

The default values you are able to set in the GUI are not as powerful as the possible default
values within the database itself. For example, you cannot define the default for a date field as
being the date of entry. That is only possible with directly entered SQL commands.

Direct entry of SQL commands
To enter SQL commands directly, go to Tools > SQL.

Commands are entered in the upper area of the window (Figure 10). In the lower (Status) area,
the success or the reason for failure is shown. The results from queries can be displayed in the
Output box if the checkbox is selected.

20 | Chapter 3 Tables

Figure 10: Dialog for direct entry of SQL commands

A summary of the possible commands for the built-in HSQLDB engine can be found at
http://www.hsqldb.org/doc/1.8/guide/ch09.html. The contents are described in the following
sections. Some commands only make sense when dealing with an external HSQLDB database
(Specify User, etc.). Where necessary, these are dealt with in the section “Working with external
HSQLDB” in the Appendix to this handbook.

Note

LibreOffice is based on Version 1.8.0 of HSQLDB. The currently available server
version is 2.5. The functions of the new version are more extensive. They can be
reached at http://hsqldb.org/web/hsqlDocsFrame.html. The description of Version 1.8
is now at http://www.hsqldb.org/doc/1.8/guide/. A further description is given in the
installation packages for HSQLDB, which can be downloaded from
http://sourceforge.net/projects/hsqldb/files/hsqldb/.

Table creation
A simple command to create a usable table is:

CREATE TABLE "Test" ("ID" INT PRIMARY KEY, "Text" VARCHAR(50));

Breakdown of this command:

CREATE TABLE "Test": Creates a table with the name "Test".
(): the specified field names, field types and options are inserted between parenthesis.

Creating tables | 21

http://sourceforge.net/projects/hsqldb/files/hsqldb/
http://www.hsqldb.org/doc/1.8/guide/
http://hsqldb.org/web/hsqlDocsFrame.html
http://www.hsqldb.org/doc/1.8/guide/ch09.html

"ID" INT PRIMARY KEY, "Text" VARCHAR(50): Field name ID with the numeric type
integer as the primary key; field name Text with the text type variable text length and the text size
limited to 50 characters.

Parameters for the CREATE command:

CREATE [MEMORY | CACHED | [GLOBAL] TEMPORARY | TEMP | TEXT] TABLE
"Table name" (<Field definition> [, ...] [,
<Constraint Definition>...]) [ON COMMIT {DELETE | PRESERVE} ROWS];

[MEMORY | CACHED | [GLOBAL] TEMPORARY | TEMP | TEXT]:
Specifies the location of the newly created table. The default setting is MEMORY: HSQLDB
creates all tables in core memory. This setting also applies to the tables that are written into
the embedded database by LibreOffice Base. Another possibility would be to write the
tables to the hard drive and use memory only to buffer access to the hard drive (CACHED).

Note

CREATE TEXT TABLE "Text" ("ID" INT PRIMARY KEY, "Text"
VARCHAR(50));

Creates a text table in HSQLDB. Now it must be linked to an external text file (for example
a *.csv file): SET TABLE "Text" SOURCE "Text.csv";

Naturally the Text.csv file must have corresponding fields in the correct order. When
creating the link, various additional options can be selected. For details see
http://www.hsqldb.org/doc/1.8/guide/guide.html#set_table_source-section

Text tables are not write-protected against other programs. It can therefore happen that
another program or user alters the table just as Base is accessing it. Text tables are used
mainly for data exchange between different programs.

Tables in TEXT format (such as CSV) are not writable in internal databases that are set up purely
in MEMORY, while Base cannot access TEMPORARY or TEMP tables. The SQL commands are
carried out in this case but the tables are not displayed (and therefore cannot be deleted) using
the GUI, and data entered via SQL is likewise not visible to the query module of the GUI, unless
the automatic deletion of the contents after the final commit is prevented (with ON COMMIT
PRESERVE ROWS). Any request in this case shows a table without any contents.

Tables built directly with SQL are not immediately displayed. You must either use View > Refresh
Tables or simply close the database and then reopen it.

<Field definition>:
"Field name" Data type [(Number of characters[,Decimal places])]
[{DEFAULT "Default value" | GENERATED BY DEFAULT AS IDENTITY (START
WITH <n>[, INCREMENT BY <m>])}] | [[NOT] NULL] [IDENTITY] [PRIMARY
KEY]

Allows default values to be included in the field definition.

For text fields, you can enter text in single quotes or NULL. The only SQL function allowed is
CURRENT_USER. This only makes sense if HSQLDB is being used as an external Server
database with several users.

For date and time fields, a date, a time, or a combination of the two can be entered in single
quotes or else NULL. You must ensure that the date follows the American conventions (yyyy-mm-
dd), that time has the format hh:mm:ss, and that a combined date/time value has the format
yyyy-mm-dd hh:mm:ss.

22 | Chapter 3 Tables

http://www.hsqldb.org/doc/1.8/guide/guide.html#set_table_source-section

Allowed SQL functions:
for the current date – CURRENT_DATE, TODAY, CURDATE()
for the current time – CURRENT_TIME, NOW, CURTIME()
for the current data time stamp – CURRENT_TIMESTAMP, NOW.

For boolean Fields (yes/no) the expressions FALSE, TRUE, NULL can be entered. These must
be entered without single quotes.

For numeric fields, any valid number in the range, or NULL is possible. Here too, if you enter
NULL, do not use quotes. When entering decimals, make sure that the decimal point is a dot
(period) and not a comma. (Some English speaking people use a comma as the decimal point.)

For binary fields (images, etc.) any valid hexadecimal string in single quotes or NULL is possible.
A hexadecimal example string is: 0004ff, which represents 3 bytes: first 0, then 4 and finally 255
(0xff). As binary fields in practice need only be entered for images, you need to know the binary
code of the image that is to serve as a default.

Note

Hexadecimal system: Numbers are based on 16. A mixed system consisting of the
numbers 0 to 9 and the letters a to f provides 16 possible digits for each column.
With two columns, you can have 16*16=256 possible values. This corresponds to 1
Byte (28).

NOT NULL: The field value cannot be NULL. This condition can only be given in the field
definition.

Example:

CREATE TABLE "Test" ("ID" INT GENERATED BY DEFAULT AS IDENTITY (START
WITH 10), "Name" VARCHAR(50) NOT NULL, "Date" DATE DEFAULT TODAY);

A table called Test is created. The key field ID is defined as AutoValue, with values starting at 10.
The input field Name is a text field with a maximum size of 50 characters. It must not be empty.
Finally we have the date field Date which by default stores the current date, if no other date is
entered. This default value only becomes effective when a new record is created. Deleting a date
in an existing record leaves the field empty.

<Constraint definition>:
[CONSTRAINT "Name"]

UNIQUE ("Field_name 1" [,"Field_name 2"…]) |

PRIMARY KEY ("Field_name 1" [,"Field_name 2"…]) |

FOREIGN KEY ("Field_name 1" [,"Field_name 2"…])

REFERENCES "other_table_name" ("Field_name_1" [,"Field_name 2"…])

[ON {DELETE | UPDATE}

{CASCADE | SET DEFAULT | SET NULL}] |

CHECK(<Search_condition>)

Constraints define conditions that must be fulfilled when data is entered. Constraints can be
given a name.

UNIQUE ("Field_name"): the field value must be unique within that field
PRIMARY KEY ("Field_name"): the field value must be unique and cannot be NULL (primary
key)
FOREIGN KEY ("Field_name") REFERENCES <"other_table_name">
("Field_name"): The specified fields of this table are linked to the fields of another table. The
field value must be tested for referential integrity as foreign keys; that is, there must be a

Creating tables | 23

corresponding primary key in the other table, if a value is entered here.
[ON {DELETE | UPDATE} {CASCADE | SET DEFAULT | SET NULL}]: In the case of a
foreign key, this specifies what is to happen if, for example, the foreign record is deleted. It
makes no sense, in a loan table for a library, to have a user number for which the user no longer
exists. The corresponding record must be modified so that the relationship between the tables
remains valid. Usually the record is simply deleted. This happens if you select ON DELETE
CASCADE.
CHECK(<Search_condition>): Formulated as a WHERE condition, but only for the current
record.

CREATE TABLE "Time_measurement" ("ID" INT PRIMARY KEY, "Start_time"
TIME, "End_time" TIME, CHECK ("Start_time" <= "End_time"));

The CHECK condition excludes the input of an end time value earlier than the start time. An
attempt to do this produces an error message similar to:

Check constraint violation SYS_CT_357 table: Time_measurement …

The search constraint is assigned a name that is not very informative. Instead, the name could
be defined in the table definition:

CREATE TABLE "Time_measurement" ("ID" INT PRIMARY KEY, "Start_time"
TIME, "End_time" TIME, CONSTRAINT "Start_time<=End_time" CHECK
("Start_time" <= "End_time"));

This gives a somewhat clearer error message in that the name of the constraint involved then
appears.

Constraints must be honored when establishing relationships between tables or the indexing for
particular fields. The constraints are established using the «CHECK» condition, in the GUI using
Tools > Relationships, and also in indexes created in Table design under Tools > Index
design.

[ON COMMIT {DELETE | PRESERVE} ROWS]:
The content of tables of the type TEMPORARY or TEMP are erased by default when you
have finished working with a particular record (ON COMMIT DELETE ROWS). This allows
you to create temporary records, which contain information for other actions to be carried
out at the same time.

If you want a table of this type to contain data available for a whole session (from opening a
database to closing it), choose ON COMMIT PRESERVE ROWS.

Table modification
Sometimes you might wish to insert an additional field into a particular position in the table.
Suppose you have a table called Addresses with fields ID, Name, Street, and so on. You realize
that perhaps it would be sensible to distinguish first names and last names.

ALTER TABLE "Addresses" ADD "FirstName" VARCHAR(25) BEFORE "Name";

ALTER TABLE "Addresses": Alter the table with the name Addresses.
ADD "FirstName" VARCHAR(25): insert the field FirstName with a length of 25 characters.
BEFORE “Name”: before the field Name.

The possibility of specifying the position of additional fields after the creation of the table is not
available in the GUI.

ALTER TABLE "Table_name" ADD [COLUMN] <Field_definition> [BEFORE
"already_existing_field_name"];

The additional designation COLUMN is not necessary in cases where no alternative choices are
available.

24 | Chapter 3 Tables

ALTER TABLE "Table_name" DROP [COLUMN] "Field_name";

The field Field name is erased from the table Table_name. However this does not take place if
the field is involved in a view or as a foreign key in another table.

ALTER TABLE "Table_name" ALTER COLUMN "Field_name" RENAME TO
"New_field_name"

Changes the name of a field.

ALTER TABLE "Table_name" ALTER COLUMN "Field_name" SET DEFAULT
<Standard value>};

Sets a specific default value for the field. NULL removes an existing default value.

ALTER TABLE "Table_name" ALTER COLUMN "Field_name" SET [NOT] NULL

Sets or removes a NOT NULL condition for a field.

ALTER TABLE "Table_name" ALTER COLUMN <Field definition>;

The field definition corresponds to the one from the Table creation with the following restrictions:

• The field must already be a primary key field to accept the property IDENTITY.
IDENTITY means that the field has the property AutoValue. This is possible only for
INTEGER or BIGINT fields. For these field type descriptions, see the Appendix to this
handbook.

• If the field already has the property IDENTITY but it is not repeated in the field definition,
the existing IDENTITY property is removed.

• The default value will become that specified in the new field definition. If the definition of
the default value is left blank, any default already defined is removed.

• The property NOT NULL continues into the new definition, if not otherwise defined. This is
in contrast to the default value.

• In some cases, depending on the type of modification, the table must be empty in order
for the change to occur. In all cases the change will have effect only if it is possible in
principle (for example a change from NOT NULL to NULL) and the existing values can all
be translated (for example a change from TINYINT to INTEGER).

ALTER TABLE "Table_name" ALTER COLUMN "Field_name" RESTART WITH
<New_field_value>

This command is used exclusively for an IDENTITY field. It determines the next value for a field
with the Autovalue function set. It can be used, for example, when a database is initially used
with test data, and subsequently provided with real data. This requires the contents of the tables
to be deleted and a new value such as "1" to be set for the field.

ALTER TABLE "Table_name"

ADD [CONSTRAINT "Condition_name"] CHECK (<Search_condition>);

This adds a search condition introduced by the word CHECK. Such a condition will not apply
retrospectively to existing records, but it will apply to all subsequent changes and newly entered
records. If a constraint name is not defined, one will be assigned automatically.

Example:

ALTER TABLE "Loan" ADD CHECK
(IFNULL("Return_Date","Loan_Date")>="Loan_Date")

The Loan table needs to be protected from input errors. For example, you must prevent a return
date being given that is earlier than the loan date. Now if this error occurs during the return
process, you will get an error message Check constraint violation …

Creating tables | 25

ALTER TABLE "Table_name"

ADD [CONSTRAINT "Constraint_name"] UNIQUE ("Field_name1",
"Field_name2"…);

Here a condition is added that forces the named fields to have different values in each record. If
several fields are named, this condition applies to the combination rather than the individual
fields. NULL does not count here. A field can therefore have the same value repeatedly without
causing any problems, if the other field in each of the records is NULL.

This command will not work if there is already a UNIQUE condition for the same field
combination.

ALTER TABLE "Table_name"

ADD [CONSTRAINT "Constraint_name"] PRIMARY KEY ("Field_name1",
"Field_name2"…);

Adds a primary key, optionally with a constraint, to a table. The syntax of the constraint is the
same as when a table is created.

ALTER TABLE "Table_name" ADD [CONSTRAINT "Constraint_name"] FOREIGN KEY
("Field_name1", "Field_name2"…)

REFERENCES "Table_name_of_another_table" ("Field_name1_other_table",
"Field_name2_other_table"…)

[ON {DELETE | UPDATE} {CASCADE | SET DEFAULT | SET NULL}];

This adds a foreign key (FOREIGN KEY) to the table. The syntax is the same as when a table is
created.

The operation will terminate with an error message, if any value in the table does not have a
corresponding value in the table containing that primary key.

Example: The Name and Address tables are to be linked. The Name table contains a field with
the name Address_ID. The value of this should be linked to the ID field in the Address table. If the
value 1 is found in Address_ID but not in the ID field of the Address table, the link will not work. It
will not work either if the two fields are of different types.

ALTER TABLE "Table_name" DROP CONSTRAINT "Constraint_name";

This command removes the named constraint (UNIQUE, CHECK, FOREIGN KEY) from a table.

ALTER TABLE "Table_name" RENAME TO "new_table_name";

Finally this command changes only the name of a table.

Note

When you change a table using SQL, the change affects the database but is not
necessarily apparent or effective in the GUI. When the database is closed and
reopened, the changes appear in the GUI too.

Changes are also displayed if you choose View > Refresh Tables in the table
container.

Deleting tables
DROP TABLE "Table name" [IF EXISTS] [RESTRICT | CASCADE];

Deletes the Table name table.

IF EXISTS prevents an error occurring if this table does not exist.

26 | Chapter 3 Tables

RESTRICT is the default arrangement and need not be explicitly chosen; it means that deletion
does not occur if the table is linked to another table by the use of a foreign key or there is an
active view of this table. Queries are not affected as they are not stored within HSQLDB.

If instead you choose CASCADE, all links to the table Table_name are deleted. In the linked
tables, all foreign keys are set to NULL. All views referring to the named table are also completely
deleted.

Linking tables

In principle you can have a database without links between tables. The user must then ensure
during data entry, that the relationships between the tables remain correct. This usually occurs
through the use of suitable input forms that manage this.

Deleting records in linked tables is not a simple matter. Suppose you wish to delete a particular
street from the Street table in Figure 6, where this field is linked with the Address table as a
foreign key in that table. The references in the Address table would disappear. The database
does not allow this, once the relationship has been created. In order to delete the Street, the
precondition must be fulfilled, that it is no longer referenced in the Address table.

Basic links are made using Tools > Relationships. This creates a connection line from the
primary key in one table to the defined foreign key in the other.

You may receive the following error message when creating such a link:

This message shows the error that occurred and the internal SQL command that caused the
error.

Column types do not match in statement—As the SQL command is displayed as well,
the reference is clearly to the columns Address.str_ID and Street.ID. For test purposes one of
these fields was defined as an Integer, the other as Tiny Integer. Therefore no link could be
created since the one field cannot have the same value as the other.

Linking tables | 27

In this case the column types match. The SQL statement is the same as in the first example. But
again there is an error:

Integrity constraint violation – no parent 1, table: Address... —The
integrity of the relationship could not be established. In the str_ID field of the Address table, there
is a number 1, which is not present in the ID field of the Street table. The parent table here is
Street, since its primary key is the one that must exist. This error is very common, when two
tables are to be linked and some fields in the table with the prospective foreign key already
contain data. If the foreign key field contains an entry that is not present in the parent table (the
table containing the primary key), this is an invalid entry.

If the linking is carried out successfully and subsequently there is an attempt to enter a similarly
invalid record into the table, you get the following error message:

Again this is an integrity violation. Base refuses to accept the value 1 for the field str_ID after the
link has been made because the Street table contains no such value in the ID field.

Figure 11: Links can be edited with a right-click

The properties of a link can be edited so that the deletion of a record from the Street table will
simultaneously set to NULL the corresponding entries in the Address table.

The properties shown in Figure 11 always relate to an action linked to the change in a record
from the table containing the corresponding primary key. In our case this is the Street table. If the
primary key of a record in this table is altered (Update), the following actions might take place.

No action
Changing the primary key Street.ID is not allowed in this case, as it would break the
relationship between the tables.

28 | Chapter 3 Tables

Update cascade
If the primary key Street.ID is changed, the foreign key is automatically changed to its new
value. This ensures that the linkage is not damaged. For example, if a value is changed
from 3 to 4, all records from the Address table that contain the foreign key
Address.Street_ID with the value 3, have it changed to 4.

Set null
All records which contain this particular primary key will now have no entry in the foreign
key field Address.Street_ID; the field will be NULL.

Figure 12: Editing the properties of a relationship

Set default
If the primary key Street_ID is changed, the value of Address.Street_ID originally linked to it
is set to the previously defined default value. For this purpose we need an unambiguous
definition of a default value. If the default is set using the SQL statement:

ALTER TABLE "Address" ALTER COLUMN "Street_ID" SET DEFAULT 1;

the link definition ensures that the field will return to this value in the case of an Update. So
if the primary key in the Street table is changed, the corresponding foreign key in the
Address table will be set to 1. This is useful when a record is required to have a street field,
in other words this field cannot be NULL. But be careful: if 1 is not in use, you will have
created a link to a non-existent value. It is therefore possible to destroy the integrity of the
relationship.

Caution

If the default value in a foreign key field is not linked to a primary key value of the
foreign table, a link to a value would be created that isn't possible. The referential
integrity of the database would be destroyed.

It would be better not to use the possibility to set the value to default.

If a record is deleted from the Street table, the following options are available.

Linking tables | 29

No Action
No action takes place. If the requested deletion affects a record in the Address table, the
request will be refused.

Cascading Delete
If a record is deleted from the Street table and this affects a record in the Address table,
that record will also be deleted.

That might seem strange in this context but there are other table structures in which it
makes sense. Suppose you have a table of CDs and a table which stores the titles on
these CDs. Now if a record in the CD table is deleted, many titles in the other table have no
meaning as they are no longer available to you. In such cases, a cascading deletion makes
sense. It means that you do not need to delete all the titles before deleting the CD from the
database.

Set to Null
This is the same as for the update option.

Set to Default
This is the same as for the update option and requires the same precautions.

Tip

The No Action option should be avoided in most cases in order to avoid displaying
error messages from the database to the user, since these may not always be
comprehensible to the user.

In Tools > Relationships, dragging with the mouse creates foreign keys that refer to a single
field in another table. To link to a table that has a composite primary key, go to Tools >
Relationships, then Insert > New Relation, or use the corresponding button. A dialog appears
for editing the properties of a relationship with a free choice of available tables.

Entering data into tables

Databases that consist of only a single table usually do not require an input form unless they
contain a field for images. However as soon as a table contains foreign keys from other tables,
users must either remember which key numbers to enter or they must be able to look at the other
tables simultaneously. In such cases, a form is useful.

Entry using the Base GUI
Tables in the table container are opened by double-clicking them. If the primary key is an
automatically incrementing field, one of the visible fields will contain the text AutoValue. No entry
is possible into the AutoValue field. Its assigned value can be altered if required, but only after the
record has been committed.

Figure 13: Entry into tables – Hiding columns

30 | Chapter 3 Tables

Figure 14: Entry into tables – Unhiding columns

Individual columns in the Table Data View can be hidden. For example, if the primary key field
does not need to be visible, this can be specified in the table in data entry view by right-clicking
on the column header. This setting is stored with the GUI. The column continues to exist in the
table and can always be made visible again.

Entry into the table usually takes place from left to right using the keyboard with the Tab or Enter
keys. You can also use the mouse.

When you reach the last field of a record, the cursor automatically jumps to the next record. The
previous entry is committed to storage. Additional storage using File > Save is not necessary and
indeed not possible. The data is already in the database.

Caution

For the HSQLDB, data is in working memory. It will only be transferred to the hard
drive when Base is closed (unfortunately from the viewpoint of data security). If Base
for some reason does not close down in an orderly fashion, this can lead to loss of
data.

If no data is entered into a field that has been previously defined during table design as
mandatory (NOT NULL), the appropriate error message is displayed:
Attempt to insert null into a non-nullable column …

The corresponding column, the table and the SQL command (as translated by the GUI) are also
displayed.

Changing a record is easy: find the field, enter a different value, and leave the row again.

To delete a record, select the row by clicking its header (the grey area to the left), right-click and
choose Delete Rows.

There is a method, rather well hidden, to copy complete rows. For this to work, the primary key of
the table must be defined as AutoValue.

Entering data into tables | 31

First, the row header is clicked with the left mouse button. Next, hold down the button and drag
the mouse. The cursor will change to a symbol with a + sign. This means that the record is
copied to the last entry to the table.

The record with the primary key 1 is inserted as a new record with the new primary key 9.

If the control or shift key is used to highlight a group of records, these will be copied as a group.

Tip

The column headers can be dragged to a suitable width for input. If this is done in a
table, Base automatically saves the new column width in the table.

The column widths in tables affect those in queries. If the columns in a query are too
narrow, widening them will have only a temporary effect. The new width will not be
saved. It is better to widen the column in the table so that it will appear properly in
queries without the need to resize.

The Sort, Search, and Filter functions are very useful for retrieving particular records.

32 | Chapter 3 Tables

Sorting tables

Figure 15: Quick Sort

The A > Z and Z > A buttons allow for quick sorting. First, select a field. Then, click on the button
corresponding to ascending or descending sort, and the data is sorted by that column. Figure 15
shows a descending sort by the Title field.

Quick sort will only sort by one column. To sort by several columns simultaneously, a more
advanced sort function is provided to the left of the quick sort buttons:

Figure 16: Sorting by more than one column

The field name of the column and the current sort order are selected. If a previous quick sort has
been carried out, the first row will already contain the corresponding field name and sort order.

Searching tables

The Find Record button is a simple method to locate records in a large table. However, the
search function is very slow for large databases, as the search does not use a SQL command
within the database. For a quicker search, instead of using Find Record, use a query. To
eliminate frequent modification of the query, it can be designed to run using parameters. See
Chapter 5, Queries, in the section “Using Parameters in Queries”.

Entering data into tables | 33

Tip

Before you search, make sure the columns you will be searching are wide enough to
show correctly the records that you will find. The search window remains in the
foreground and you will not be able to correct the settings for column width in the
underlying table. To reach the table, you must break off the search.

The Find Record button automatically populates the search term with the contents of the field
from which it was invoked.

To make the search effective, the search area should be limited as far as possible. It would be
pointless to search for the above text from the Title field in the Author field. Instead, the field
name Title is already suggested as the single Field name.

Further settings for the search can make things easier through specific combinations. You can
use the normal SQL placeholders ("_" for a variable character, "%" for an arbitrary number of
variable characters, or "\" as an escape character to enable these special characters themselves
to be searched for).

Regular expressions are described in detail in LibreOffice Help. Apart from that, the Help
available for this module is rather sparse.

Figure 17: Entry mask for a Record search

The similarity search function is useful when you need to exclude spelling mistakes. The higher
the values that you set, the more records will be shown in the final list.

This search module is most suitable for people who know, from regular use, exactly how to
achieve a given result. Most users are more likely to succeed in finding records by using a filter.

Chapter 4 of this book describes the use of forms for searching, and how the use of SQL and
macros can accomplish a keyword search.

34 | Chapter 3 Tables

Figure 18: Limiting the similarity search

Filtering tables

You can filter a table quickly by using the AutoFilter. Place the cursor in the cell of a field, and
one click on the icon causes the filter to take over the content of this field. Only those records are
shown for which the chosen field has the same content as the selected cell. The figure below
shows filtering according to an entry in the Pub_Year column.

The filter is active, as shown by the filter icon with a green check mark. The filter symbol is shown
pressed in. This button is a toggle, so if it is clicked again, the filter continues to exist, but all
records are now shown. So, if you want, you can always click it to return to the filtered state.

Clicking on the Remove Filter/Sort icon at the extreme right causes all existing filters and sorts
to be removed. The filters become inactive and can no longer be recovered with their old values.

Tip

You can still enter records normally into a filtered table or one that has been
restricted by a search. They remain visible in the table view until the table is updated
by clicking the Refresh button.

Entering data into tables | 35

The Standard Filter icon opens a dialog in which you can filter using several simultaneous
criteria, similar to sorting. If AutoFilter is in use, the first line of the Standard Filter will already
show this existing filter criterion.

Figure 19: Multiple Data Filtering using the Standard Filter

The Standard Filter provides many of the functions of SQL data filtering. The following SQL
commands are available.

GUI Condition Description

= Exact equality; corresponds to like, but without any additional placeholders

<> Unequal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

like For text, written in quotation marks (' '); "_" for a variable character, "%" for an
arbitrary number of variable characters

not like Opposite of like, in SQL NOT LIKE

empty No entry, not even a space character. In SQL this is expressed by the term
NULL

Not empty Opposite of empty, in SQL NOT NULL

Before one filter criterion can be combined with another, the following row must have at least one
field name selected. In Figure 19, the word – none – is shown instead of a field name, so the
combination is not active. The combination operators available are AND and OR.

The field name can be a new field name or a previously selected one.

Even for large data collections, the number of retrieved records can be reduced to a manageable
set with skillful filtering using these three possible conditions.

In the case of filtering forms too, there are some further possibilities (described in Chapter 4)
which are not provided by the GUI.

Direct entry using SQL
Direct data entry using SQL is useful for entering, changing or removing multiple records with
one command.

Entering new records
INSERT INTO "Table_name" [("Field_name" [,…])]

36 | Chapter 3 Tables

{ VALUES("Field value" [,…]) | <Select-Formula>};

If no Field_name is specified, all fields must be completed and in the right order (as laid down in
the table). That includes the automatically incremented primary key field, where present. The
values entered can also be the result of a query (<Select-Formula>). More exact information
is given below.

INSERT INTO "Table_name" ("Field_name") VALUES ('Test');

CALL IDENTITY();

In the table, in the column Field_name, the value Test is inserted. The automatically
incremented primary key field ID is not touched. The corresponding value for ID needs to be
created separately by using CALL IDENTITY(). This is important when you are using macros,
so that the value of this key field can be used later on.

INSERT INTO "Table_name" ("Field_name") SELECT "Other_fieldname" FROM
"Name_of_other_table";

In the first table, as many new records are inserted into Field_name, as are present in the column
Other_fieldname in the second table. Naturally a Select-Formula can be used here to limit the
number of entries.

Editing existing records
UPDATE "Table_name" SET "Field_name" = <Expression> [, ...] [WHERE
<Expression>];

When you are modifying many records at once, it is very important to check carefully the SQL
command you are entering. Suppose that all students in a class are to be moved up one year:

UPDATE "Table_name" SET "Year" = "Year"+1

Nothing could be faster: All data records are altered with a single command. But imagine that you
must now determine which students should not have been affected by this change. It would have
been simpler to check a Yes/No field for the repetition of a year and then to move up only those
students for which this field was not checked:

UPDATE "Table_name" SET "Year" = "Year"+1 WHERE "Repetition" = FALSE

These conditions only function when the field in question can only take the values FALSE and
TRUE; it may not be NULL. It would be safer if the condition were formulated as WHERE
"Repetition" <> TRUE.

If you should subsequently want a default value to be entered in a particular field wherever this is
empty, you can do this with the command:

UPDATE "Table" SET "Field" = 1 WHERE "Field" IS NULL

You can alter several fields at once by directly assigning values to them. Suppose that a table for
books includes the names of their authors. It is discovered that Erich Kästner has frequently been
entered as Eric Käschtner.

UPDATE "Books" SET "Author_first_name" = 'Erich', "Author_surname" =
'Kästner' WHERE "Author_first_name" = 'Eric' AND "Author_surname" =
'Käschtner'

Other calculation steps are also possible with Update. If, for example, wares costing more than
$150.00 are to be included in a special offer and the price reduced by 10%, this can be carried
out as follows:

UPDATE "Table_name" SET "Price" = "Price"*0.9 WHERE "Price" >= 150

Entering data into tables | 37

When you choose the data type CHAR, the field has a fixed width. Where necessary, text is
padded with null characters. If you convert this to VARCHAR, these null characters remain. To
remove them use the right-trim function:

UPDATE "Table_name" SET "Field_name" = RTRIM("Field_name")

Deleting existing records
DELETE FROM "Table_name" [WHERE <Expression>];

Without the conditional expression the command

DELETE FROM "Table_name"

deletes the entire content of the table.

For this reason it is preferable for the command to be more specific. For example, if the value of
the primary key is given, only this precise record will be deleted.

DELETE FROM "Table_name" WHERE "ID" = 5;

If, in the case of a loan, the media record is to be deleted when the item is returned, this can be
done using

DELETE FROM "Table_name" WHERE NOT "Return_date" IS NULL;

or alternatively with

DELETE FROM "Table_name" WHERE "Return_date" IS NOT NULL;

Importing data from other sources
Sometimes there are complete data sets in another program which need to be imported into
Base via the clipboard. This may involve creating a new table or adding records to an existing
one.

Note

To import data using the clipboard, the data format must be readable by Base. This
will always be the case for data files opened in LibreOffice.

For example, if tables from an external database are to be read into an *.odb file,
that database must first be opened in LibreOffice or registered with LibreOffice as a
data source. See “Accessing external databases” in Chapter 2, Creating a Database.

Here a small example table has been copied from the spreadsheet program Calc onto the
clipboard. Then it is pasted into Base’s Table container. Of course this could also have been done
by selecting it with the left mouse button and then dragging it across.

38 | Chapter 3 Tables

In the Table container, right-click to open the context menu for the table to which the records are
to be added.

Adding imported records to an existing table

The name of the table appears in the Import wizard. At the same time Append data is selected.
Use first line as column names may or may not be required, depending on your version of
LibreOffice. If the records are to be appended, then no data definition is required. A primary key
must also be available for use.

Entering data into tables | 39

The columns of the Calc source table and the destination table in Base do not have to agree in
their sequence, names, or overall number. Only the elements selected from the left hand side are
transferred. The correspondence between source and destination tables must be adjusted using
the arrow buttons to either side.

This completes the import.

The import can lead to problems if:

• Fields in the destination table require a mandatory entry, but the source table provides no
data for them.

• Field definitions in the destination table are inconsistent with those in the source table (for
instance, a name is to be entered into a numeric field, or the destination field has too few
characters for the data).

• The source table provides data inconsistent with those of the destination table, for
example non-unique values for primary keys or other fields defined as unique.

Creating a new table for imported data
When the Import wizard is launched, the previously selected table name appears automatically.
This table name must be changed if you are creating a new table, as it is forbidden to have a
table with the same name as an existing one. The name of this table is Names. Definition and
data are to be transferred. The first row is to be used as column headers.

At this point you can create a new, additional field for a primary key. The name of this field must
not exist as a column header in the Calc table. Otherwise you get the error message:

The following fields are already set as primary keys: ID

Unfortunately this message does not explain the situation quite correctly.

If you want an existing field to serve as your primary key, do not select Create primary key. In this
case you will establish your primary key field on the third page of the Wizard dialog.

On import, the table definition and data are transferred.

40 | Chapter 3 Tables

All available columns are transferred.

The formatting of table types often requires adjustment. Usually the fields have been predefined
as text fields with a very large size. Numeric and date fields should therefore be reset using Type
formatting > Column information > Field type. In the case of decimal numbers, you will need
to check the number of decimal places.

Entering data into tables | 41

The option to choose a primary key is present, somewhat obscurely, in the context menu of the
field that is to contain it. In this example, the ID field has been formatted in a way that will allow
its use as a primary key. This must now be set explicitly using the context menu of the field name,
if a primary key was not created as an additional field in the Copy table window of the wizard.

When you click the Create button, the table is created and filled with the copied data.

The new primary key is not an AutoValue key. To create one of these, the table must be opened
for editing. You can then carry out further formatting operations.

42 | Chapter 3 Tables

Splitting data on import
Sometimes source data are not available in the desired form. Addresses, for example, are often
entered into spreadsheets as a single field, including the town and postcode. When importing
these, you might wish to place those elements in a separate table, which can then be linked to
the main table.

The following is a possible way to create this relationship directly:

1) The complete table with all address information is imported into Base as a table called
Addresses. See the previous chapters for details.

2) The Postcode and Town fields are read with a query, copied and stored as a separate
Postcode_Town table. For this, an ID field is added and specified as a primary key with
AutoValue.

Here is the query:
SELECT DISTINCT "Postcode", "Town" FROM "Addresses"

3) A new field called Postcode_ID is added to the Addresses table.

4) Using Tools > SQL, an update is carried out for this table:
UPDATE "Addresses" AS "a" SET "a"."Postcode_ID" = (SELECT "ID"
FROM "Postcode_Town" WHERE "Postcode"||"Town" =
"a"."Postcode"||"a"."Town")

5) The Addresses table is opened for editing and the Postcode and Town fields deleted. This
change is saved and the table closed again.

This separates the tables so that a 1:n relationship can be created between the Postcode_Town
table and the Addresses table. This relationship is defined using Tools > Relationships.

For details on SQL code, see also Chapter 5, Queries.

Problems with these data entry methods
Entry using a table alone takes no account of links to other tables. This is clear from an example
of a media loan.

The Loan table consists of foreign keys for the item being loaned (Media_ID) and the
corresponding reader (Reader_ID) as well as a loan date (Loan_Date). In the table, therefore, we
need to enter at the time of the loan two numeric values (Media number and Reader number)
and a date. The primary key is automatically entered in the ID field. Whether the reader actually
corresponds to the number is not apparent unless a second table for the readers is open at the
same time. Whether the item was loaned out with the correct number is also not apparent. Here
the loan must rely on the label on the item or on another open table.

All this is much easier to accomplish using forms. Here the users and the media can be looked
up using list box controls. In forms, the names of user and item are visible and their numeric
identifiers are hidden. In addition, a form can be so designed that a user can be selected first,

Entering data into tables | 43

then a loan date, and each set of media are assigned this one date by number. Elsewhere these
numbers can be made visible with the exactly corresponding media descriptions.

Direct entry into tables is useful only for databases with simple tables. As soon as you have
relationships between tables, a specially designed form is better. In forms, these relationships
can be better handled by using sub-forms or list fields.

44 | Chapter 3 Tables

	Copyright
	Contributors
	Feedback
	Publication date and software version

	General information on tables
	Relationships between tables
	Relationships for tables in databases
	One-to-many relationships
	Many-to-many relationships
	One-to-one relationships

	Tables and relationships for the example database
	Media addition table
	Loan table
	User administration table

	Creating tables
	Creation using the graphical user interface
	Primary keys
	Formatting fields
	Creating an index
	Problems when modifying tables
	Limitations of graphical table design

	Direct entry of SQL commands
	Table creation
	Table modification
	Deleting tables

	Linking tables
	Entering data into tables
	Entry using the Base GUI
	Sorting tables
	Searching tables
	Filtering tables

	Direct entry using SQL
	Entering new records
	Editing existing records
	Deleting existing records

	Importing data from other sources
	Adding imported records to an existing table
	Creating a new table for imported data
	Splitting data on import

	Problems with these data entry methods

