
Calc Guide

Chapter 12
Macros
Automating repetitive tasks

Copyright

This document is Copyright © 2020 by the LibreOffice Documentation Team. Contributors are
listed below. You may distribute it and/or modify it under the terms of either the GNU General
Public License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), version 4.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
This book is adapted and updated from the LibreOffice 6.4 Calc Guide.

To this edition
Steve Fanning Olivier Hallot Felipe Viggiano
Kees Kriek

To previous editions
Andrew Pitonyak Barbara Duprey Jean Hollis Weber
Simon Brydon Steve Fanning Leo Moons

Feedback
Please direct any comments or suggestions about this document to the Documentation Team’s
mailing list: documentation@global.libreoffice.org.

Note

Everything you send to a mailing list, including your email address and any other
personal information that is written in the message, is publicly archived and cannot
be deleted.

Publication date and software version
Published Novembrer 2020. Based on LibreOffice 7.0.

Using LibreOffice on macOS
Some keystrokes and menu items are different on macOS from those used in Windows and
Linux. The table below gives some common substitutions for the instructions in this book. For a
more detailed list, see the application Help and Appendix A (Keyboard Shortcuts) to this guide.

Windows or Linux macOS equivalent Effect

Tools > Options menu
selection

LibreOffice > Preferences Access setup options

Right-click Control+click and/or right-click
depending on computer setup

Open a context menu

Ctrl (Control) (Command)⌘ Used with other keys

Ctrl+Q ⌘+Q Exit / quit LibreOffice

F11 ⌘+T Open the Sidebar’s Styles
deck

Documentation for LibreOffice is available at http://documentation.libreoffice.org/en/

http://documentation.libreoffice.org/en/
mailto:documentation@global.libreoffice.org
http://creativecommons.org/licenses/by/4.0/
http://www.gnu.org/licenses/gpl.html

Contents
Copyright..2

Contributors..2
To this edition...2
To previous editions..2

Feedback..2

Publication date and software version...2

Using LibreOffice on macOS...2

Introduction..4

On Visual Basic for Application (VBA) compatibility..4

Using the macro recorder...4

Write your own functions...8
Create function macro...8

Using a macro as a function..12

Macro security warnings...12

Loaded / unloaded libraries...13

Passing arguments to a macro..15

Arguments are passed as values..16

Writing macros that act like built-in functions...16

Deleting LibreOffice Basic macros..16

Accessing cells directly..17

Sorting..19

Overview of BeanShell, JavaScript, and Python macros..20
Introduction...20

BeanShell macros...21

JavaScript macros...23

Python macros..25

Working with VBA macros..26
Loading VBA Code..26

Option VBA Support statement...27

VBA UserForms (LibreOffice Basic Dialogs)...28

Conclusion...28

Chapter 12 Calc Macros | 3

Introduction

Chapter 13 of the Getting Started Guide (entitled Getting Started with Macros) is an introduction
to the macro facilities that are available in LibreOffice. The current chapter provides further
introductory information about the use of macros within a Calc spreadsheet.

A macro is a set of commands or keystrokes that are stored for later use. An example of a simple
macro is one that enters your address into the current cell of an open spreadsheet. You can use
macros to automate both simple and complex tasks, and they enable you to introduce new
features that are not built into Calc.

The simplest way to create a macro is to record a series of actions through Calc’s user interface.
Calc saves recorded macros using the open source LibreOffice Basic scripting language, which
is a dialect of the well-known BASIC programming language. Such macros can be edited and
enhanced after recording using the built-in LibreOffice Basic Integrated Development
Environment (IDE).

The most powerful macros in Calc are created by writing code using one of the four supported
scripting languages (LibreOffice Basic, BeanShell, JavaScript, and Python). This chapter
provides an overview of Calc’s macro facilities, mostly focused on its default macro scripting
language, LibreOffice Basic. Some examples are included for the BeanShell, JavaScript, and
Python scripting languages but fuller descriptions of the facilities for these languages are beyond
the scope of this document.

On Visual Basic for Application (VBA) compatibility

LibreOffice Basic programming language and VBA programming language – found in many
Microsoft Office documents including Excel spreadsheets – are dialects of the Basic language. If
you want to use macros written in Microsoft Excel using the VBA macro code in LibreOffice, you
must first edit the code in the LibreOffice Basic IDE editor.

Some elements for the conversion of Excel macros written in VBA are detailed at the end of this
chapter.

Using the macro recorder

Chapter 13 of the Getting Started Guide includes examples showing how to use the macro
recorder and understand the generated LibreOffice Basic scripts. The following steps give a
further example, specific to a Calc spreadsheet, without the more detailed explanations of the
Getting Started Guide. A macro is created and saved which performs a paste special with
multiply operation across a range of spreadsheet cells.

Note

Use Tools > Options > LibreOffice > Advanced on the Menu bar and select the
Enable macro recording (may be limited) option to enable the macro recorder.

1) Use File > New > Spreadsheet on the Menu bar to create a new spreadsheet.

2) Enter the numbers shown in Figure 1 into cells A1:C3 of Sheet1 in the new spreadsheet.

Figure 1: Enter numbers into cells
A1:C3

4 | Chapter 12 Calc Macros

3) Select cell A3, which contains the number 3, and use Edit > Copy on the Menu bar to
copy the value to the clipboard.

4) Select all cells in the range A1:C3.

5) Use Tools > Macros > Record Macro on the Menu bar to start the macro recorder. Calc
displays the Record Macro dialog, which includes a Stop Recording button (Figure 2).

Figure 2: Record Macro dialog with Stop Recording
button

6) Use Edit > Paste Special > Paste Special on the Menu bar to open the Paste Special
dialog (Figure 3).

Figure 3: Paste Special dialog

7) Select the Paste all option in the Selection area and the Multiply option in the
Operations area, and click OK. The values in cells A1:C3 are now multiplied by 3 (Figure
4).

Figure 4: Cells A1:C3 multiplied by 3

Using the macro recorder | 5

8) Click the Stop Recording button to stop the macro recorder. Calc displays a variant of
the Basic Macros dialog (Figure 5).

Note

The Save Macro In area of the Basic Macros dialog shows the existing LibreOffice
Basic macros, hierarchically structured into library containers, libraries, modules, and
macros as described in Chapter 13 of the Getting Started Guide. Figure 5 shows the
My Macros library container, the LibreOffice Macros library container, the library
container for the open balance.ods file, and the library container for the untitled file
created at step 1. Use the expand / collapse icons to the left of each library container
name to view the libraries, modules and macros within that container.

1 My Macros 5 Current document

2 LibreOffice Macros 6 Create new library

3 Expand/collapse icon 7 Create new module in library

4 Open documents 8 Macros in selected module

Figure 5: Parts of the Basic Macros dialog

9) Select the entry for the current document in the Save Macro In area. As the current
document in this example has not been saved, it is referred to by its default name
Untitled 1.

Documents that have been saved include a macro library named Standard. This library is
not created until the document is saved or the library is needed, so at this point in the

6 | Chapter 12 Calc Macros

example procedure your new document does not contain a library. You can create a new
library to contain the macro you have just created, but this is not necessary.

10) Click the New Module button. Calc displays the New Module dialog (Figure 6). Type a
name for the new module or leave the name as the default Module1.

Figure 6: New Module dialog

Note

The libraries, modules and macro names must follow some strict rules. Following the main
rules, the names must:

• Comprise lower case letters (a..z), upper case letters (A..Z), digits (0..9), and
underscore characters (_)

• Begin with a letter or an underscore

• Not contain any other spaces, punctuation symbols, or special characters (including
accents)

11) Click the OK button to create a new module. As no macro libraries exist in our current
document, Calc automatically creates and uses a Standard library.

12) On the Basic Macros dialog, select the entry for the newly created module in the Save
Macro In area, type the text PasteMultiply in the Macro Name box, and click the Save
button (Figure 7).

Figure 7: Select the module and name the macro

The macro is saved with the name PasteMultiply in the newly created module within the
Standard library of the Untitled 1 document. Listing 1 shows the contents of the macro.

Using the macro recorder | 7

Listing 1. Paste special with multiply macro

sub PasteMultiply
 rem --
 rem define variables
 dim document as object
 dim dispatcher as object
 rem --
 rem get access to the document
 document = ThisComponent.CurrentController.Frame
 dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 rem --
 dim args1(5) as new com.sun.star.beans.PropertyValue
 args1(0).Name = "Flags"
 args1(0).Value = "A"
 args1(1).Name = "FormulaCommand"
 args1(1).Value = 3
 args1(2).Name = "SkipEmptyCells"
 args1(2).Value = false
 args1(3).Name = "Transpose"
 args1(3).Value = false
 args1(4).Name = "AsLink"
 args1(4).Value = false
 args1(5).Name = "MoveMode"
 args1(5).Value = 4

 dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0,
args1())

end sub

Note

The component model used in LibreOffice is Universal Network Objects (UNO) and
the macro recorder uses the UNO dispatcher for most commands. However, there
are two problems associated with this technical approach. One is that the dispatches
are not fully documented and may be subject to change. Another is that the recorder
ignores some values from dialogs that are opened while recording a macro – it is
possible, therefore, that you will record a complicated macro that will not actually
execute everything as expected. For more information, search for “macro recording –
limitations” in the Help index.

Write your own functions

Create function macro
You can write a macro and then call it as you would call a Calc function. Use the following steps
to create a simple function macro:

1) Use File > New > Spreadsheet on the Menu bar to create a new spreadsheet, save it
with the name CalcTestMacros.ods, and leave it open in Calc.

2) Use Tools > Macros > Organize Macros > Basic on the Menu bar to open the Basic
Macros dialog (Figure 8). Note that the layout of the Basic Macros dialog in this

8 | Chapter 12 Calc Macros

circumstance is different from the version that Calc displays when the user clicks the
Stop Recording button on the Record Macro dialog (see Figure 5).

Figure 8: Basic Macros dialog

The Macro From area lists the available macro library containers, including those relating
to any LibreOffice documents that are currently open. My Macros contains macros that
you write or add to LibreOffice and are available to more than one document. LibreOffice
Macros contains macros that were included with your LibreOffice installation and should
not be changed.

3) Click Organizer to open the Basic Macro Organizer dialog (Figure 9).

Click on the Libraries tab and, in the Location area, select the entry for the name of the
current document. The Library area updates to show the name of the empty Standard
library.

Figure 9: Basic Macro Organizer

Write your own functions | 9

4) Click New to open the New Library dialog to create a new library for this document
(Figure 10).

Figure 10: New Library dialog

5) Enter a descriptive library name (such as AuthorsCalcMacros) and click OK to create
the library. The Library area of the Basic Macro Organizer dialog updates to include the
name of the newly created library. A library name can comprise up to 30 characters. Note
that in some cases, the dialog may show only a portion of the name.

Figure 11: The new library is shown in the Library
area

6) Select the AuthorsCalcMacros entry in the Library area and click Edit to edit the library.
Calc automatically creates a module named Module1 and a macro named Main. Calc
displays the LibreOffice Basic Integrated Development Environment (IDE), shown in
Figure 12.

10 | Chapter 12 Calc Macros

Figure 12: LibreOffice Basic Integrated Development Environment

Figure 12 shows the default configuration for the LibreOffice Basic IDE. This comprises:

• A menu bar.

• Two toolbars (Macro and Standard). The Macro toolbar provides various icons for
editing and testing programs.

• The Object Catalog, enabling selection of the required library container, library,
module, and macro.

• The Editor Window, in which you can edit the LibreOffice Basic program code. The
column on the left side is used to set breakpoints in the program code.

• The Watch Window (located at the left, below the Object Catalog and Editor
Window) displays the contents of variables or arrays during a single step process.

• The Calls Window (located to the right, below the Object Catalog and Editor
Window) provides information about the call stack of procedures and functions
when a program runs.

• A tab control area.

• A status bar.

The LibreOffice Basic IDE provides powerful facilities for the development and debugging
of LibreOffice Basic macros. A fuller description of this facility is beyond the scope of this
document, but more information can be found in the Help system.

7) In the Editor Window, modify the code so that it is the same as that shown in Listing
2.The important addition is the creation of the NumberFive function, which returns the
value 5.

Write your own functions | 11

Tip

The Option Explicit statement forces all variables to be declared before they
are used. If Option Explicit is omitted, variables are automatically defined at
first use as type Variant.

Listing 2. Function that returns the value 5

REM ***** BASIC *****
Option Explicit

Sub Main

End Sub

Function NumberFive ()
 NumberFive = 5
End Function

8) Within the LibreOffice Basic IDE select File > Save on the Menu bar, or click the Save
icon on the Standard toolbar, or press Ctrl+C, to save the modified Module1.

Using a macro as a function
Using your newly created CalcTestMacros.ods spreadsheet, select a cell and enter the
formula =NumberFive() (Figure 13). Calc finds the macro, calls it, and displays the result (5) in
that cell.

Figure 13: Use the NumberFive macro as a Calc
function

Tip

Function names are not case sensitive. In Figure 13, the function name was entered
as NumberFive() but Calc displays it as NUMBERFIVE() in the Formula bar.

Macro security warnings
You should now save the Calc document, close it, and open it again. Depending on your settings
in the Macro Security dialog accessed using Tools > Options > LibreOffice > Security > Macro
Security on the Menu bar, Calc may display one of the warnings shown in Figures 14 and 15.

In the case of the warning shown in Figure 14, you will need to click Enable Macros, or Calc will
not allow any macros to be run in the document. If you do not expect a document to contain a
macro, it is safer to click Disable Macros in case the macro is a virus.

In the case of the warning shown in Figure 15, Calc will not allow any macros to be run in the
document and you should click the OK button to remove the warning from the screen.

When the document loads with macros disabled, Calc will not be able to find any macro functions
and will indicate an error in any affected cell by displaying the text #NAME? in that cell.

12 | Chapter 12 Calc Macros

Figure 14: Warning that a document contains macros

Figure 15: Warning that macros in the document are disabled

Loaded / unloaded libraries
When it opens a spreadsheet, Calc does not open all macro libraries that it can find in the
available library containers because this would be a waste of resources. Instead Calc
automatically loads just the Standard library within the My Macros library container and the
document’s own Standard library. No other libraries are automatically loaded.

When you re-open your CalcTestMacros.ods spreadsheet, Calc does not contain a function
named NumberFive(), so it checks all visible, loaded macro libraries for the function. Loaded
libraries in LibreOffice Macros, My Macros, and the document are checked for an appropriately
named function. In our initial implementation, the NumberFive() function is stored in the
AuthorsCalcMacros library, which is not automatically loaded when the document is opened.
Hence the NumberFive() function is not found and an error condition appears in the cell where it
is called (Figure 16).

Figure 16: The macro function is not available

Use Tools > Macros > Organize Macros > Basic on the Menu bar to open the Basic Macros
dialog (Figure 17). The icon for a loaded library (for example, Standard) has a different
appearance to the icon for a library that is not loaded (for example, AuthorsCalcMacros).

Click the expand icon next to AuthorsCalcMacros to load the library. The icon changes
appearance to indicate that the library is now loaded. Click Close to close the Basic Macros
dialog.

Write your own functions | 13

Figure 17: Different symbols for loaded and unloaded libraries

Unfortunately, the cell containing =NumberFive() in our initial implementation is still in error.
Calc does not recalculate cells in error unless you edit them or somehow change them. The
usual solution is to store macros used as functions in the Standard library. If the macro is large or
if there are many macros, a stub with the desired name is stored in the Standard library. The stub
macro loads the library containing the implementation and then calls the implementation. The
following steps illustrate this method.

1) Use Tools > Macros > Organize Macros > Basic on the Menu bar to open the Basic
Macros dialog. Select the NumberFive macro and click Edit to open the macro for editing
(Figure 18).

Figure 18: Select a macro and click Edit

2) Calc displays the LibreOffice Basic IDE (Figure 12), with the input cursor in the Editor
Window at the line Function NumberFive (). Change the name of NumberFive to
NumberFive_Implementation so that the function’s code matches Listing 3.

Listing 3. Change the name of NumberFive to NumberFive_Implementation

Function NumberFive_Implementation ()
 NumberFive_Implementation = 5
End Function

3) Click the Select Macro button in the Standard toolbar of the LibreOffice Basic IDE to
open the Basic Macros dialog (Figure 18).

14 | Chapter 12 Calc Macros

4) Select the Standard library in the CalcTestMacros.ods document and click the New
button to create a new module. Enter a meaningful name such as CalcFunctions and
click OK. Calc automatically creates a macro named Main and opens the module for
editing.

5) Create a macro in the CalcFunctions module of the Standard library that loads the
AuthorsCalcMacros library if it is not already loaded, and then calls the implementation
function. See Listing 4.

Listing 4. Create a new NumberFive function to call the NumberFive_Implementation
function

Function NumberFive()
 If NOT BasicLibraries.isLibraryLoaded("AuthorsCalcMacros") Then
 BasicLibraries.LoadLibrary("AuthorsCalcMacros")
 End If
 NumberFive = NumberFive_Implementation()
End Function

6) Save, close, and reopen the Calc document. This time, if macros are enabled, the
NumberFive() function works as expected.

Passing arguments to a macro
To illustrate a function that accepts arguments, we will write a macro that calculates the sum of its
arguments that are positive. It will ignore arguments that are less than zero (see Listing 5).

Listing 5. PositiveSum calculates the sum of its positive arguments

Function PositiveSum(Optional x)
 Dim TheSum As Double
 Dim iRow As Integer
 Dim iCol As Integer

 TheSum = 0.0
 If NOT IsMissing(x) Then
 If NOT IsArray(x) Then
 If x > 0 Then TheSum = x
 Else
 For iRow = LBound(x, 1) To UBound(x, 1)
 For iCol = LBound(x, 2) To UBound(x, 2)
 If x(iRow, iCol) > 0 Then TheSum = TheSum + x(iRow, iCol)
 Next
 Next
 End If
 End If
 PositiveSum = TheSum
End Function

The macro in Listing 5 demonstrates some important techniques:

1) The argument x is Optional. When an argument is not Optional and the function is
called without it, Calc outputs a warning message every time the macro is called. If Calc
calls the function many times, then the error is displayed many times.

2) The function IsMissing checks that an argument was passed before it is used.

3) The function IsArray checks to see if the argument is a single value, or an array. For
example, =PositiveSum(7) or =PositiveSum(A4). In the first case, the number 7 is

Write your own functions | 15

passed as an argument, and in the second case, the value of cell A4 is passed to the
function. In both these cases, IsArray returns the value False.

4) If a range is passed to the function, it is passed as a two-dimensional array of values; for
example, =PositiveSum(A2:B5). The functions LBound and UBound are used to
determine the array bounds that are used. Although the lower bound is one, it is
considered safer to use LBound in case it changes in the future.

Tip

The macro in Listing 5 is careful and checks to see if the argument is an array or a
single argument. The macro does not verify that each value is numeric. You may be
as careful as you like. The more things you check, the more robust the macro is, but
the slower it runs.

Passing one argument is as easy as passing two: add another argument to the function definition
(see Listing 6). When calling a function with two arguments, separate the arguments with a
comma; for example, =TestMax(3, -4).

Listing 6. TestMax accepts two arguments and returns the larger

Function TestMax(x, y)
 If x >= y Then
 TestMax = x
 Else
 TestMax = y
 End If
End Function

Arguments are passed as values
Arguments passed to a macro from Calc are always values. It is not possible to know what cells,
if any, are used. For example, =PositiveSum(A3) passes the value of cell A3, and
PositiveSum has no way of knowing that cell A3 was used. If you must know which cells are
referenced rather than the values in the cells, pass the range as a string, parse the string, and
obtain the values in the referenced cells.

Writing macros that act like built-in functions
Although Calc finds and calls macros as normal functions, they do not really behave as built-in
functions. For example, macros do not appear in the function lists. It is possible to write functions
that behave as regular functions by writing an Add-In. However, this is an advanced topic that is
for experienced programmers and is beyond the scope of this guide. Some information, along
with links to more detailed reading, is available in the Help.

Deleting LibreOffice Basic macros
Use the following steps to delete an unwanted macro:

1) Use Tools > Macros > Organize Macros > Basic on the Menu bar to open the Basic
Macros dialog (see Figure 18 on page 14).

2) Select the macro to be deleted and click the Delete button.

3) Calc displays a confirmation dialog. Click Yes to continue.

4) Click the Close button to remove the Basic Macros dialog from the screen.

16 | Chapter 12 Calc Macros

Use the following steps to delete an unwanted module:

1) Use Tools > Macros > Organize Macros > Basic on the Menu bar to open the Basic
Macros dialog (see Figure 18 on page 14).

2) Click the Organizer button to open the Basic Macro Organizer dialog (Figure 19).

3) Make sure that the Modules tab is selected.

Figure 19: Basic Macro Organizer dialog, Modules tab

4) Select the module to be deleted in the Module area.

5) Click the Delete button.

6) Calc displays a confirmation dialog. Click Yes to continue.

7) Click the Close button to remove the Basic Macro Organizer dialog from the screen.

8) Click the Close button to close the Basic Macros dialog.

Accessing cells directly

You can access the LibreOffice internal objects directly to manipulate a Calc document. For
example, the macro in Listing 7 adds the values in cell A2 from every sheet in the current
document. ThisComponent is automatically set to reference the current document when the
macro starts. A Calc document contains sheets and the macro accesses these via a call to
ThisComponent.getSheets(). Use getCellByPosition(col, row) to return a cell at a
specific row and column.

Listing 7. SumCellsAllSheets adds the values in cell A2 of every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double

Accessing cells directly | 17

 Dim i As integer
 Dim oSheets
 Dim oSheet
 Dim oCell

 TheSum = 0
 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCell = oSheet.getCellByPosition(0, 1) ' GetCell A2
 TheSum = TheSum + oCell.getValue()
 Next
 SumCellsAllSheets = TheSum
End Function

Tip

A cell object supports the methods getValue(), getString(), and getFormula() to get
the numerical value, the string value, or the formula used in a cell. Use the
corresponding set functions to set appropriate values.

Use oSheet.getCellRangeByName("A2") to return a range of cells by name. If a single cell is
referenced, then a cell object is returned. If a cell range is given, then an entire range of cells is
returned (see Listing 8). Notice that a cell range returns data as an array of arrays, which is more
cumbersome than treating it as an array with two dimensions as is done in Listing 5.

Listing 8. SumCellsAllSheets adds the values in cells A2:C5 of every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim iRow As Integer, iCol As Integer, i As Integer
 Dim oSheets, oSheet, oCells
 Dim oRow(), oRows()

 TheSum = 0
 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCells = oSheet.getCellRangeByName("A2:C5")

 REM The getDataArray() method returns strings and numbers
 REM but is not used in this function.

 REM The getData() method returns only numbers and is applicable
 REM to this function.

 oRows() = oCells.getData()
 For iRow = LBound(oRows()) To UBound(oRows())
 oRow() = oRows(iRow)
 For iCol = LBound(oRow()) To UBound(oRow())
 TheSum = TheSum + oRow(iCol)
 Next
 Next
 Next
 SumCellsAllSheets = TheSum
End Function

18 | Chapter 12 Calc Macros

Tip

When a macro is called as a Calc function, the macro cannot modify any value in the
sheet from which the macro was called, except the value of the cell that contains the
function.

Sorting

Consider sorting the data shown in Figure 20. First, sort on column B descending and then on
column A ascending.

Figure 20: Sort column B descending and column A
ascending

The example in Listing 9 demonstrates how to sort on these two columns. Run the macro by
clicking the Run icon in the Macro toolbar of the LibreOffice Basic IDE.

Listing 9. SortRange sorts cells A1:C5 of Sheet 1

Sub SortRange
 Dim oSheet ' Calc sheet containing data to sort.
 Dim oCellRange ' Data range to sort.

 REM An array of sort fields determines the columns that are
 REM sorted. This is an array with two elements, 0 and 1.
 REM To sort on only one column, use:
 REM Dim oSortFields(0) As New com.sun.star.util.SortField
 Dim oSortFields(1) As New com.sun.star.util.SortField

 REM The sort descriptor is an array of properties.
 REM The primary property contains the sort fields.
 Dim oSortDesc(0) As New com.sun.star.beans.PropertyValue

 REM Get the sheet named "Sheet1"
 oSheet = ThisComponent.Sheets.getByName("Sheet1")

 REM Get the cell range to sort
 oCellRange = oSheet.getCellRangeByName("A1:C5")

 REM Select the range to sort.
 REM The only purpose would be to emphasize the sorted data.
 'ThisComponent.getCurrentController.select(oCellRange)

 REM The columns are numbered starting with 0, so
 REM column A is 0, column B is 1, etc.
 REM Sort column B (column 1) descending.
 oSortFields(0).Field = 1
 oSortFields(0).SortAscending = FALSE

Sorting | 19

 REM If column B has two cells with the same value,
 REM then use column A ascending to decide the order.
 oSortFields(1).Field = 0
 oSortFields(1).SortAscending = TRUE

 REM Setup the sort descriptor.
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Sort the range.
 oCellRange.Sort(oSortDesc())
End Sub

Overview of BeanShell, JavaScript, and Python macros

Introduction
Many programmers may not be familiar with LibreOffice Basic and so Calc supports macros
written in three other languages that may be more familiar. These are BeanShell, JavaScript, and
Python.

The primary macro scripting language for Calc is LibreOffice Basic and the standard LibreOffice
installation provides a powerful integrated development environment (IDE) together with more
options for this language.

Macros are organized in the same way for all four scripting languages. The LibreOffice Macros
container holds all the macros that are supplied in the LibreOffice installation. The My Macros
library container holds your macros that are available to any of your LibreOffice documents. Each
document can also contain your macros that are not available to any other document.

When you use the macro recording facility, Calc creates the macro in LibreOffice Basic. To use
the other available scripting languages you must write the code yourself.

When you select to run a macro using Tools > Macros > Run Macro on the Menu bar, Calc
displays the Macro Selector dialog. This dialog enables selection and running of any available
macro, coded in any of the available languages (Figure 21).

When you select to edit a macro using Tools > Macros > Edit Macros on the Menu bar, Calc
displays the LibreOffice Basic IDE. This dialog enables selection and editing of any available
LibreOffice Basic macro, but not macros in other languages.

The component model used in LibreOffice is known as Universal Network Objects or UNO.
LibreOffice macros in any scripting language use a UNO runtime application programming
interface (API). The XSCRIPTCONTEXT interface is provided to macro scripts in all four
languages, and provides a means of access to the various interfaces which they might need to
perform some action on a document.

20 | Chapter 12 Calc Macros

Figure 21: Macro Selector dialog

BeanShell macros
BeanShell is a Java-like scripting language that was first released in 1999.

When you select Tools > Macros > Organize Macros > BeanShell on the Menu bar, Calc
displays the BeanShell Macros dialog (Figure 22).

Click the Edit button on the BeanShell Macros dialog to access the BeanShell Debug Window
(Figure 23).

Overview of BeanShell, JavaScript, and Python macros | 21

Figure 22: BeanShell Macros dialog

Figure 23: BeanShell Debug Window

Listing 10 is an example of a BeanShell macro that inserts the text “Hello World from BeanShell”
in cell A1 of the active Calc spreadsheet.

22 | Chapter 12 Calc Macros

Listing 10. Sample BeanShell macro

import com.sun.star.uno.UnoRuntime;
import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.text.XText;

model = XSCRIPTCONTEXT.getDocument();

controller = model.getCurrentController();

view = UnoRuntime.queryInterface(XSpreadsheetView.class, controller);

sheet = view.getActiveSheet();

cell = sheet.getCellByPosition(0, 0);

cellText = UnoRuntime.queryInterface(XText.class, cell);

textCursor = cellText.createTextCursor();

cellText.insertString(textCursor, "Hello World from BeanShell", true);

return 0;

JavaScript macros
JavaScript is a high-level scripting language that was first released in 1995.

When you select Tools > Macros > Organize Macros > JavaScript on the Menu bar, Calc
displays the JavaScript Macros dialog (Figure 24).

Figure 24: JavaScript Macros dialog

Overview of BeanShell, JavaScript, and Python macros | 23

Click the Edit button on the JavaScript Macros dialog to access the Rhino JavaScript Debugger
(Figure 25). Detailed instructions for using this tool can be found on Mozilla’s website at
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Debugger.

Figure 25: Rhino JavaScript Debugger

Listing 11 is an example of a JavaScript macro that inserts the text “Hello World from JavaScript”
in cell A1 of the first sheet in a Calc spreadsheet.

Listing 11. Sample JavaScript macro

importClass(Packages.com.sun.star.uno.UnoRuntime);
importClass(Packages.com.sun.star.sheet.XSpreadsheetDocument);
importClass(Packages.com.sun.star.container.XIndexAccess);
importClass(Packages.com.sun.star.table.XCellRange);
importClass(Packages.com.sun.star.table.XCell);

documentRef = XSCRIPTCONTEXT.getDocument();

24 | Chapter 12 Calc Macros

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Debugger

spreadsheetInterface = UnoRuntime.queryInterface(XSpreadsheetDocument,
documentRef);

allSheets = UnoRuntime.queryInterface(XIndexAccess,
spreadsheetInterface.getSheets());

theSheet = allSheets.getByIndex(0);

Cells = UnoRuntime.queryInterface(XCellRange,theSheet);

cellA1 = Cells.getCellByPosition(0,0);

theCell = UnoRuntime.queryInterface(XCell,cellA1);

theCell.setFormula("Hello World from JavaScript");

Python macros
Python is a high-level, general-purpose programming language that was first released in 1991.

When you select Tools > Macros > Organize Macros > Python on the Menu bar, Calc displays
the Python Macros dialog (Figure 26).

Figure 26: Python Macros dialog

Facilities to edit and debug Python scripts are not currently integrated into the standard
LibreOffice user interface. However you can edit Python scripts with your preferred text editor or
an external IDE. The Alternative Python Script Organizer (APSO) extension eases the editing of
Python scripts, in particular when embedded in a document. Using APSO you can configure your
preferred source code editor, start the integrated Python shell and debug Python scripts. For
more information search for Python in the LibreOffice Help system and visit the Designing &
Developing Python Applications section of The Document Foundation’s wiki
(https://wiki.documentfoundation.org/Macros/Python_Design_Guide) and the Help pages starting
at (https://help.libreoffice.org/latest/en-US/text/sbasic/python/main0000.html).

Overview of BeanShell, JavaScript, and Python macros | 25

https://help.libreoffice.org/latest/en-US/text/sbasic/python/main0000.html
https://wiki.documentfoundation.org/Macros/Python_Design_Guide

Listing 12 is an example of a Python macro that sets cell A1 of the first sheet in a Calc
spreadsheet to the text “Hello World from Python”.

Listing 12. Sample Python macro

import uno

def HelloWorld():

 doc = XSCRIPTCONTEXT.getDocument()

 cell = doc.Sheets[0]['A1']

 cell.setString('Hello World from Python')

 return

Working with VBA macros

For the Excel/VBA programmer, LibreOffice Basic is a programming language very similar to
VBA. The primary reason that VBA does not work in Calc, even though Calc is able to read the
Excel workbook, is that Calc uses a different mechanism to access the workbook (called
spreadsheet in Calc) components, such as cells on the worksheet (called sheet in Calc).
Specifically the objects, attributes and methods use different names and the corresponding
behavior is sometimes slightly different.

To convert VBA code you must first load the VBA code in LibreOffice.

Loading VBA code
On the VBA Properties page (Tools > Options > Load/Save > VBA Properties), you can
choose whether to keep any macros in Microsoft Office documents that are opened in
LibreOffice.

If you choose Load Basic code, you can edit the macros in LibreOffice. The changed code is
saved in an ODF document but is not retained if you save into a Microsoft Office format.

If you choose Save original Basic code, the macros will not work in LibreOffice but are retained
unchanged if you save the file into Microsoft Office format.

If you are importing a Microsoft Word or Excel file containing VBA code, you can select the option
Executable code. Whereas normally the code is preserved but rendered inactive (if you inspect
it with the Basic IDE you will notice that it is all commented), with this option the code is ready to
be executed.

26 | Chapter 12 Calc Macros

Figure 27: Choosing Load/Save VBA Properties

Save original Basic code takes precedence over Load Basic code. If both options are selected
and you edit the disabled code in LibreOffice, the original VBA code will be saved when saving in
a Microsoft Office format.

To remove any possible macro viruses from the Microsoft Office document, deselect Save
original Basic code. The document will be saved without the VBA code.

Option VBASupport statement
The Option VBASupport statement specifies that LibreOffice Basic will support some VBA
statements, functions and objects. The statement must be added before the executable program
code in a module.

Note

The support for VBA is not complete, but covers a large portion of the common
usage patterns.

When VBASupport is enabled, LibreOffice Basic function arguments and return values are the
same as their VBA counterparts. When the support is disabled, LibreOffice Basic functions may
accept arguments and return values different from their VBA counterparts.

Listing 13. Option VBASupport usage

Option VBASupport 1
Sub Example
 Dim sVar As Single
 sVar = Worksheets("Sheet1").Range("A1")
 Print sVar
End Sub

Without the Option VBASupport statement, the code in Listing 13 must be converted to the
LibreOffice Basic of Listing 14.

Listing 14. Converted VBA code

Sub Example
 Dim sVar As Single
 Dim oSheet as Object
 Dim oCell as Object
REM Worksheets(“Sheet1”).

Working with VBA macros | 27

 oSheet = ThisComponent.getSheets().getByIndex(0)
REM Range("A1")
 oCell = oSheet.getCellByPosition(0, 0)
 sVar = oCell.getValue()
 Print sVar
End Sub

Option VBASupport may affect or assist in the following situations:

• Allow special characters as identifiers. All characters that are defined as letters in the
Latin-1 (ISO 8859-1) character set, are accepted as part of identifiers. For example,
variables with accented characters in their names.

• Create VBA constants including non-printable characters (vbCrLf, vbNewLine,...).

• Support Private/Public keywords for procedures.

• Compulsory Set statement for objects.

• Default values for optional parameters in procedures.

• Named arguments when multiple optional parameters exist.

• Preload of LibreOffice Basic libraries.

VBA UserForms (LibreOffice Basic Dialogs)
UserForms (Dialogs) appears frequently in macros that demand your interaction and parameter
selections. The code snippet below is a recipe for such conversions, which are not handled
automatically by VBA options.

Listing 15. VBA display of a UserForm [Dialog] called “MyForm”

Sub MyProc
 MyForm.Show
End Sub

Listing 16. LibreOffice Basic display of a UserForm [Dialog] called “MyForm”

Rem oDlg should be visible at the module level
Dim oDlg As Object
Sub MyProc
 DialogLibraries.LoadLibrary("Standard")
 oDlg = CreateUnoDialog(DialogLibraries.Standard.MyForm)
 oDlg.execute()
End Sub

Note

The oDlg variable is visible at the module level to all other procedures that are
accessing controls on the dialog. This means all the procedures manipulating or
accessing controls on this dialog panel are housed in a single module.

Conclusion

This chapter provides an overview of how to create libraries and modules, using the macro
recorder, using macros as Calc functions, writing your own macros without the macro recorder
and converting VBA to LibreOffice Basic. Each topic deserves at least one chapter, and writing
your own macros for Calc could easily fill an entire book. In other words, this is just the beginning
of what you can learn.

28 | Chapter 12 Calc Macros

If you are already familiar with the Basic language (or with one programming language), the
LibreOffice Extensions website has a set of LibreOffice Basic quick reference cards at the
address https://extensions.libreoffice.org/?Tags%5B%5D=53&Tags%5B%5D=173.

Additional detail about Calc’s macro facilities can be obtained from the Help system
(https://help.libreoffice.org/7.0/en-US/text/sbasic/shared/main0601.html?DbPAR=BASIC for
general macros information, or, to find some specific VBA Support information go to
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/03103350.html), The Document
Foundation’s wiki pages (https://wiki.documentfoundation.org/Macros) and other Internet sources
(for example the https://ask.libreoffice.org/ Q&A site).

Conclusion | 29

https://ask.libreoffice.org/
https://wiki.documentfoundation.org/Macros
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/03103350.html
https://help.libreoffice.org/7.0/en-US/text/sbasic/shared/main0601.html?DbPAR=BASIC
https://extensions.libreoffice.org/?Tags%5B%5D=53&Tags%5B%5D=173

	Copyright
	Contributors
	To this edition
	To previous editions

	Feedback
	Publication date and software version
	Using LibreOffice on macOS

	Introduction
	On Visual Basic for Application (VBA) compatibility
	Using the macro recorder
	Write your own functions
	Create function macro
	Using a macro as a function
	Macro security warnings
	Loaded / unloaded libraries
	Passing arguments to a macro
	Arguments are passed as values
	Writing macros that act like built-in functions
	Deleting LibreOffice Basic macros

	Accessing cells directly
	Sorting
	Overview of BeanShell, JavaScript, and Python macros
	Introduction
	BeanShell macros
	JavaScript macros
	Python macros

	Working with VBA macros
	Loading VBA code
	Option VBASupport statement
	VBA UserForms (LibreOffice Basic Dialogs)

	Conclusion

