

 Navigation

 	
 next

 	Plone Documentation v4.3 »

Plone - The Open Source CMS

This document is a community maintained manual for the Plone [http://plone.org] content management system.

The target audience of the documentation includes

	Content editors: writing, updating and ordering the actual content of the site

	Site administrators: installing Plone, add-ons and setting up the site

	Designers: changing Plone's visual appearance

	Deployers: hosting Plone for production on a server

	Developers: Customizing Plone, developing add-ons, and improving Plone itself

	Introduction
	What is Plone?

	What does Plone mean? How is it pronounced?

	Quickstart
	Online demo sites

	Plone on your own machine

	Deployment

	Working with Content
	Introduction

	Logging In

	Adding Content

	Managing Content

	Using TinyMCE as visual editor

	Collaboration and Workflow

	Using Listings & Queries (Collections)

	Portlet Management

	Create and maintain good quality content

	Using Kupu as visual editor

	Adapting & Extending Plone
	Basic Changes (Look and Feel)

	Theming Plone

	Configuration and Control panel

	Installing Add-ons

	Custom Content-Types

	Managing, Administration of Plone
	Installing Plone

	Guide to deploying and installing Plone in production

	Plone Upgrade Guide

	Troubleshooting

	Developing for Plone
	Developing add-ons

	Programming with Plone

	Developing for Plone Core

	Dev helper packages

	Importing content from other systems

	Tutorials

	Appendices
	Glossary

	Error Reference

	older manuals

	About this documentation
	Contributing to the documentation

	Rest Styleguide

	Helper tools for writing Documentation

	Documentation Styleguide for Add ons

	License for Plone Documentation

	Asking for help

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Introduction

What is Plone?

A powerful, flexible Content Management Solution that is easy to install, use and extend.

Plone lets non-technical people create and maintain information for a public website or an intranet using only a web browser.
Plone is easy to understand and use - allowing users to be productive in just half an hour - yet offers a wealth of community-developed add-ons and extensibility to keep meeting your needs for years to come.

Blending the creativity and speed of open source with a technologically advanced Python [http://www.python.org/] back-end, Plone offers superior security without sacrificing power or extensibility.

The Plone community is an incredibly diverse group that bridges many types and sizes of organizations, many countries and languages, and everything from technical novices to hardcore programmers.
Out of that diversity comes an attention to detail in code, function, user interface and ease of use that makes Plone one of the top 2% of open source projects worldwide. (Source: Ohloh [http://www.ohloh.net/])

Plone's intellectual property and trademarks are protected by the non-profit Plone Foundation [https://plone.org/about/foundation].
This means that Plone's future is not in the hands of any one person or company.

Thousands of websites across large and small businesses, education, government, non-profits, sciences, media and publishing are using Plone to solve their content management needs.
This is supported by a global network of over 300 solution providers [https://plone.org/support/providers] in more than 50 countries.
Looking for a hosting provider to host your Plone site for you?
You can find a list of providers and consultants on plone.org [https://plone.org/support/hosting-providers].

We are very proud to be known by the company we keep.
Organizations as diverse as NASA, Oxfam, Amnesty International, Nokia, eBay, Novell, the State Universities of Pennsylvania and Utah, as well as the Brazilian and New Zealand governments - all use Plone.

Plone is open on many levels. It runs on Linux, Windows, Mac OS X, FreeBSD and Solaris - and offers a straightforward installation to get you up and running in minutes.
It has been translated into more than 40 languages, and is developed with an unflinching emphasis on usability and standards compliance.

Need a CMS that integrates with Active Directory, Salesforce, LDAP, SQL, Web Services. LDAP or Oracle? Plone does.
Need to be sure your website is accessible? Plone meets or exceeds US Government 508 and W3C's WAI-AA standards.

Worried about security? As an open source product, a large number of developers frequently scrutinize the code for any potential security issues.
This proactive approach is better than the wait-and-see approach in proprietary software that relies on keeping security issues a secret instead of resolving them outright.
Based on Python and the Zope libraries, Plone has a technological edge that has has helped it attain the best security track record of any major CMS (Source: CVE [http://cve.mitre.org/]).
In fact, security is a major reason why many CMS users are switching to Plone.

The market is full of open source content management systems, so it is important to do your homework before choosing one for your organization.
Remember that a simple CMS may work out great to start with, but lead to problems with scaling or migration when you need more capability than it can provide.
At the other end of the spectrum, a powerful CMS can be so difficult to learn and maintain that it never gains acceptance to users.
Make sure the CMS you choose meets your needs today without compromising future growth.
We hope you'll take the time to learn more about Plone and what it can do for you.
We've created this site specifically as a gateway to information on how to get started with Plone, as well as information on development, solutions providers, events, news, and the wealth of product add-ons created by the community.

What does Plone mean? How is it pronounced?

Does the word Plone mean anything, and where does it come from? Why is Plone called Plone?

The word Plone originally comes from the electronic band Plone that used to exist on the Warp record label. The music is playful and minimalistic.

The founders of Plone-the-Software (Alan Runyan and Alexander Limi) were listening to Plone-the-Band when they met (as well as during the initial coding/design of Plone) - and one of the original quotes floating around at the time was that "Plone should look and feel like the band sounds". Thus, a legend was born. ;)

Plone-the-Band broke up in 2001 [http://en.wikipedia.org/wiki/Plone_%28band%29], but Plone-the-Software lives on.

Plone is pronounced in the same manner as the word "grown". It is not spelled out when you say it, and is not an abbreviation for anything.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Quickstart

Description

A quick overview to get you up and running with Plone.

Online demo sites

If you're just curious to see how Plone looks, without any modifications, there are a few online demo sites that can help you.
Both plone-demo.quintagroup.com [http://plone-demo.quintagroup.com/] and plonedemo.com [http://plonedemo.com/] provide you with a Plone 4.3 site that is re-set every day.

You can also try out the upcoming Plone 5 release (do note though this is an early alpha release) at plone5.veit-schiele.de [https://plone5.veit-schiele.de/]

An interesting approach was developed by Nejc Zupan: Plone on a free-tier Heroku [http://www.niteoweb.com/blog/dear-plone-welcome-to-2014] . That way, you can set up your own demo (or even very-light-weight production) Plone, which makes it a good fit to have Plone with your choice of add-ons be tested by your department or other group.

Plone on your own machine

The recommended and best supported way to deploy Plone, both for laptops as well as servers, is the Universal Installer.
It can provide you both with a single instance with developer tools installed, as well as with multiple failover clients running against a database server.

What this means it that it will scale from quick evaluation to development to deployment, which will make your experience easier.

The catch is that the Universal Installer works on Linux and Unix-like systems (including OS X and other BSD's), not Windows.
For Windows, there is a binary installer available.
In all honesty, though, this is not the ideal way to work with Plone if you want to develop with it.
A large portion of the toolchain is not readily available on Windows environments.

There is a highly workable alternative, though: Using virtual machines.
The latest release of Plone also comes as a Virtualbox / Vagrant image.
This will install a fully-working Plone for you in a virtual machine, but integrated with the host so that all your favourite Windows editing and development tools work.
If you want to develop with Plone on a Windows machine, that would be your easiest option.

For OS X users there is a also a binary installer available.
The Universal Installer works just fine under OS X, but does require use of the terminal. If that is something you'd like to avoid, the binary installer is your friend.

You can find all information on using these different options at the Installation chapter in the "Managing, Administration" section of these docs.

Or, head straight to plone.org/download [http://plone.org/download] to get started now!

Deployment

Any deployment of Plone as a real-world site will usually entail setting up some more software.
In almost all cases, you will want to have a webserver like NGINX or Apache in front, and a cache like Varnish to optimize response times.

Depending on your needs, you might also want redundant, high-availability options like ha-proxy, and monitoring tools to keep an eye on things and notify you when trouble arises.

A good selection of these tools is described in the Guide to deploying and installing Plone in production.

Alternative ways to deploy

The Universal Installer itself is based on buildout [http://www.buildout.org]. If you're working with Plone a lot, it is a good idea to get familiar with this tool and the relation with other Python module management tools.

Buildout can be used in a variety of ways, and many people use it to tweak their own development-instances and/or deployment instances. See collective.minimalplone4 [https://github.com/collective/minimalplone4] for a very bare-bones example, and
starzel.buildout [https://github.com/starzel/buildout] for a rather maximalized example.

Note however, that your chances of getting help on setup questions in the Plone support channels (IRC, community.plone.org, mailinglists) increase when other people can reproduce your outcomes, which is most efficiently done with the Universal Installer.

Besides that, there are many people deploying Plone as part of other deployment tools, be they Ansible, Salt, Chef, Puppet or the like. If you are familiar with these, you will most likely find others in the Plone community that share your enthusiasm.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Working with Content

	Introduction
	Conceptual Overview

	Visual Design of Plone Web Sites

	Plone User Accounts and Roles

	Setting Your Preferences

	Your Dashboard

	Logging In

	Adding Content
	Adding New Content

	Adding Folders

	What's in a Web Name?

	Adding Images

	Adding Pages

	Adding Files

	Adding Links

	Adding Events

	Adding News Items

	Setting Basic Properties

	Restricting Types in a Folder

	Preparing Images for the Web

	Adding collections

	Managing Content
	Cutting, Copying and Pasting Items

	Editing Content

	Folder View

	Folder Contents

	Reordering Items

	Next/Previous Navigation

	Deleting Items

	Automatic Locking and Unlocking

	Versioning

	Presentation Mode

	Working Copy

	Using Content Rules

	Creating forms without programming: PloneFormGen

	Using TinyMCE as visual editor
	Introduction

	Basics

	Inserting Images

	Inserting Links

	Inserting Tables

	Collaboration and Workflow
	Basic Publication States

	Advanced Control

	Workflow Policies

	Collaboration through Sharing

	How a folder's workflow state affects its content

	Using Listings & Queries (Collections)
	Introduction to (new-style) Collections

	Creating a collection

	Introduction to (old-style) Collections

	Adding Collections

	Adjusting the Display Settings

	Definition of Criteria

	Setting the Sort Order

	Using and Understanding Dates

	Portlet Management
	Managing Portlets

	Portlet Hierarchy

	Portlet Types

	Create and maintain good quality content
	What is "content quality"?

	Batteries included

	Using Kupu as visual editor

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Introduction

A Conceptual Overview of Plone

	Conceptual Overview
	What is Plone?

	You Love Butterflies

	What Goes on Behind the Scenes

	Visual Design of Plone Web Sites

	Plone User Accounts and Roles
	Anonymous vs Authenticated Web Surfing

	User Roles

	Setting Your Preferences

	Your Dashboard

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Introduction »

Conceptual Overview

An explanation of Plone as a content management system

What is Plone?

Plone is a content management system (CMS) which you can use to build a
web site. With Plone, ordinary people can contribute content to a web
site without the help of a computer geek. Plone runs over the Web, too,
so you don't need to install any special software on your computer.
The word content is meant to be general, because you can publish so
many types of information, including:

[image:]

A Plone web site contains various kinds of content, including text,
photos, and images. These can exist in many forms: documents, news
items, events, videos, audio files, any types of file and data that can
be uploaded or created on a web site. Content can also be uploaded from
your local computer. You create folders on a Plone web site to hold
content, and those automatically also create the navigation structure:

[image:]

You Love Butterflies

For example, to add content about butterflies, you might add a folder
named "Butterflies," then add some text to a web page in the folder:

[image:]

And then you might add some butterfly photos to the folder:

[image:]

You can add many types of content to a folder, including sub-folders.
After adding a few reports and videos to the Butterflies folder, the
content would be organized like this, with two sub-folders within the
Butterflies folder:

[image:]

What Goes on Behind the Scenes

You may wonder how it all works. A typical Plone web site exists as an
installation of Plone software on a web server. The web server may be
anywhere, often at a website server company within a "rack" of computers
dedicated to the task:

[image:]

The diagram shows the many cables that connect individual server
computers to the Internet, across fast network connections. Your Plone
site is just software and database storage software installed on one of
the individual server computers. As you type or click on your computer,
data is sent up and down the networking cables and communication
channels of the Internet to interact with your Plone software
installation on the server.

Let's simplify the diagram showing how you interact with Plone:

[image:]

You use your web browser -- Firefox, Safari, Internet Explorer, etc. --
to view and edit your Plone web site, and the changes are stored by the
Plone software into its database storage system.

For example, imagine your butterfly Plone web site is located at
mysite.com. You type www.mysite.com into your web browser. After you
press Enter, the following sequence of events happens as your browser
talks to the web server at mysite.com:

[image:]

The Plone software responds:

[image:]

Plone reads its database to look for information stored in mysite.com.
It then sends back the web page to your computer, in a code called HTML.
HTML is a computer language that describes how a web page looks. It
includes text, graphics, fonts, the color of the background, and just
about everything else. There are many online resources that can teach
you HTML details, but one of Plone's advantages is that you don't
need to know about HTML. That's one reason for Plone and other
similar web software; to let you focus on your content, e.g., butterfly
text and graphics, instead of learning a new computer language.

But back to our overview. Your web browser "renders" (translates) this
HTML, and you see the resulting web page:

[image:]

As you view your butterfly web page, you can choose to change it or add
to it. You can also upload photos, documents, etc. at any time:

[image:]

After you make your edits and click "save changes," the new version of
the web page will be immediately available to anyone surfing to your
site:

[image:]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Introduction »

Visual Design of Plone Web Sites

Plone allows web site administrators and designers the ability to create
unique site designs. Here's an overview of the Plone layout, and some
design examples.

What does a Plone web site look like? For years there has been a
consistent design for the default Plone appearance. The default design
looks generally like this:

[image: plone-default-design-areas.png]

The Plone web site you use could have a design radically different from
this, but you should be able to find common elements, such as the log in
link and a navigation panel or menu. In the default design, the
navigation menu is in the left area, and usually appears as an indented
list of folders in the site. There also may be a set of tabs in the Log
In, Location Information strip near the top.

We can distinguish between the design of a web site and the
functionality of a web site. Quite often, these aspects of a website are also under the control of different people with different skills. A designer will think about the layout, the appearance and the user interface, while a content editor will think about the structure of the information.

All of these aspects can be strictly separated in Plone, and can be adjusted independent from each other.

We'll use the default Plone layout design as an example of typical
divisions of the screen:

[image:]

You may need to adapt these terms as needed for your Plone web site
design. You may encounter varied terms for describing screen real
estate, such as right and left "slots," for the left and right column
areas, "portlet," or "viewlet," for discrete areas or boxes, and several
other terms.

For example, we can select three web sites from the list of Plone web
sites [http://plone.org/support/sites] to compare:

[image:]

This is the web site for Akamai, a leading provider of online web tools
and acceleration technology. The header area has simple text menu
choices for five main content areas arrayed horizontally at the bottom
of the header area. At right, the header contains another horizontal
menu and a search box. The bottom of the header area would contain log
in information, for use by the maintainers of the web site. The main
graphic at top left is a focus area for eye-catching graphics and
current topics. There is a main area at left center where the main text
is located. The right column holds a series of "portlets." The footer
contains a horizontal menu, repeating the menu choices in the header,
for convenience. There is a right-most column that has zoom settings.

[image:]

This is the web site for Discover Magazine. The header area contains a
large horizontal menu, the "main menu," if you will, a smaller
horizontal menu at upper right, and a search box. This site is rich with
textual "portlets" that cover so many topic areas, which are divided
into three columnar areas, left, middle, and right. The top of the
middle column contains a focus area with a video. There are large
interactive boxes in several places. The footer contains basic site
identification information and a link to "about us." For a large web
site like Discover's, maintainers of the site log in to custom editing
screens, and there is much automation of data feeds -- Plone uses Zope,
a sophisticated storage system, and Python, a great programming
language, which facilitates intelligent "wiring" of the flow of text and
graphics into the web site.

[image:]

The last of the three sites to examine is the web site for Penn State
University's Smeal College of Business. The header contains a logo, a
horizontal menu for main topic areas, and a search box at right. There
is a main menu for this site at left, which is more traditional for a
Plone web site. A large graphical area contains a rolling focus
animation. There is another small graphical focus in the left column.
Three textual columns round out the design, above the basic
identification footer. Maintainers of this web site enter by means of a
custom log in page, with the log in and user information showing along
the bottom of the topmost header area.

So, what does a Plone web site look like? Traditionally, the
out-of-the-box look is like that shown at the top of this page, with
header, menu, columns, and a footer. These three sites illustrate how
designers typically combine focus areas, vertical and horizontal menus,
"portlets," and textual content, usually arrayed in several columns. The
underlying machinery is Plone and Zope and Python, but the design
"theme" or "skin" can be made to look any way the designer chooses.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Introduction »

Plone User Accounts and Roles

Plone web sites come in many flavors, ranging from personal websites
with one user to community, organization, or business websites that
could have hundreds of users. Each person who adds content to a Plone
web site has their own user account. A user account includes a user name
and a password. Some Plone sites allow people to sign up by visiting the
site, clicking a Join link, and filling out basic user information.
Other sites have user accounts that are created by web site
administrators, in which case people normally receive emails with the
user account details.

However created, a Plone user account allows a person to log in by
typing their user name and password. Passwords are case-sensitive, which
means that you have to pay attention to the uppercase and lowercase
letters. For example, if your password is xcFGt6v, you would have to
type that exactly for it to work. Passwords that have a variety of
characters in them are preferred over passwords like "raccoon" or
"boardwalk," as they are more difficult to guess and therefore more
secure.

Anonymous vs Authenticated Web Surfing

The distinction between anonymous web surfing and authenticated
(logged-in) web activity is an important one:

Anonymous Web Surfing

This is the normal experience for a person surfing the web. You type the
web address of a web site into your browser and you look at web pages,
watch videos, view images, but you don't have to log in. This is why
this mode is called anonymous: anyone can do it just by surfing
normally.

Pro tip: you can use two different browsers (like Firefox and Chrome), and not log in with one of them. That way you can easily compare how visitors will see your site, and you can spot content that is not yet published.

Note the presence of the log in link the screen image below
(top right). If there is a log in link showing, you haven't logged in
-- and you are surfing the web site anonymously, as seen in the
following screen capture of a new Plone web site:

[image:]

Authenticated (Logged-in) Web Activity

You know the authenticated mode of web experience if you have ever
used a bank or credit card website, or any other website that involved a
user account. A bank web site will let you view your account
information, fill out information forms, transfer funds, and do other
actions, but only after you have logged in. A Plone web site is not much
different, except that you can do more sophisticated things. Compare the
screen image below, captured after a user called "John Smith" has logged
in. Near the top right you see John Smith's name, this is a drop-down menu with options for managing your settings, and to log out. There is another important difference you see after logging in --
the main area in the middle now has a green header strip with tabs. This
sort of header strip is present when a user has rights to change an area
of the website. John Smith has the user rights to change this main area.
The tabs in the green header strip for the main area will vary somewhat,
but you can count on it looking like a tabbed interface with this
particular green color. In the following screen capture, user John Smith
has logged into a new Plone web site:

[image:]

User Roles

Equally important is the distinction between different user roles on a
Plone web site. To illustrate the simplest case, let's consider two user
roles, one called member and the other called manager. Consider the
different rights or "power" of these two roles:

Member

	has a user account, so can log in

	can add content, but only in specific areas, and can't change
anything outside of this area; often users are given a "home area,"
to treat as personal space where they can add content.

	can not publish content so that it is visible to the anonymous web
surfer, even content which they added; a person with manager role
must approve content for publishing note: in many organizations, members are allowed to publish content on parts or all of the site. This is a policy that you can set up for each site or even part of the site

Manager

	has a user account, so can log in

	can add content anywhere and has the power to change anything

	can publish any content

When you get your new account on a Plone web site, you should be given
information indicating where you have the right to add content, after
you have logged in. After logging in, if you go to a folder where you
have rights, you'll see a header strip that has a green color with tabs
for contents, view, edit, rules**, and sharing:

[image:]

You'll be able to explore to find the differences between these tabs,
but here are descriptions to help you start:

	Contents - shows a list of items in a folder

	View - shows the view an anonymous web surfer would see

	Edit - shows a panel for changing a view

	Rules - shows a panel for controlling how an item is created and
managed

	Sharing - shows a panel for setting rights of other users to see or
edit content

You also see menus in the lower part of the green header strip,
Display, Add new..., and State:

[image:]

Explore these also. Here are basic descriptions of these menus:

	Display - shows menu choices for setting the display type (list
view, summary view, etc.)

	Add new... - shows menu choices for adding content items (images,
pages, folders, etc.)

	State - shows menu choices for setting publication state (private,
public draft, public, etc.)

These menus and tabs will offer the main ways you interact with Plone.
You will become very familiar with them as you learn more about managing
a Plone-powered website.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Introduction »

Setting Your Preferences

After logging in to a Plone web site, you can change your personal
preferences for information about your identity and choice of web site
settings.

After logging in, your full name will be posted on the top-right corner
of the screen. Click your name to open the dropdown, then click on the
Dashboard link to go to your personal area:

[image:]

You will see the dashboard** panel:

[image:]

When you log in for the first time, your dashboard will be empty, as the
Info message explains. Portlets are specific "views" of different types
of content. You can choose which ones you want in your dashboard by
clicking the Edit tab, but we'll get to that in a second.

First, let's look at the Preferences link in the previous dropdown,
which will bring up the personal preferences edit panel:

[image:]

Date entry fields include:

	Full Name- If your name is common, include your middle initial or
middle name.

	E-mail address - REQUIRED - You may receive emails from the web
site system, or from a message board, if installed, etc. When an item
is required, a little red square will show alongside the item.

	Location*text box* - This is the name of your city, town, state,
province, or whatever you wish to provide*.
*

	Language preference selection menu - Plone excels at offering
multilingual support.

	Biography text box - Enter a short description of yourself here,
about a paragraph or so in length.

	Home page web address - If you have your own web site or an area at
a photo-sharing web site, for instance, enter the web address here,
if you wish, so people can find out more about you.

	Content editor selection menu - You have the choice of using
TinyMCE or Kupu, which lets you edit web pages with a nice graphical
interface, or using a basic editing panel, which is good if you are
accustomed to writing web pages using HTML (the basic "code" of web
pages). The default setting for new sites is to use TinyMCE, and is
assumed in this user manual.

	Enable external editing checkbox - This is for switching on and off
an "external" editor, if one has been installed by the web site
administrator. Use of an "external" editor is mainly for web
designers and programmers who do more editing of actual code, but it
could be useful for volume page creation using specialized text
mark-up languages. (Don't worry about this setting if you haven't
heard anything about it from your web site administrator).

	Portrait photograph upload - The portrait photograph will appear as
a small image or thumbnail-size image, so it is best to use a head
shot or upper-torso shot for this.

You can change your preferences whenever you wish.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Introduction »

Your Dashboard

A Plone user has a personal "dashboard" for customizing the personal
user interface.

Plone has several built-in "views" of news, events, recently changed
items, and such. These list views are held in discrete rectangular areas
called portlets. Think of a portlet as a window view of a given type of
content. For example, the news portlet offers a view of recently
published news items.

You control which portlets you view in your dashboard, and where they
are placed. The following screen capture shows what user Elizabeth Smith
would see after logging in and clicking her own name at upper right to
go to her personal area:

[image:]

The dashboard appears to be empty for a new user.

Clicking the edit tab for the dashboard will show that there are
portlets already assigned to the dashboard -- the dashboard view shown
above is empty, because there is no content available for display in the
portlets on this new web site. Here are the default portlets:

[image:]

You see the News and Events portlets in the left-most column, the
Recent Items portlet in the second column, and the Review List
portlet in the right column. The third column does not have a portlet
assigned.

A new user account on a basic Plone web site will have a dashboard like
the one shown, but for a web site that has been customized with add-on
functionality, there may be more portlets to choose from, and the
dashboard might start out with several more placed in the columns. For
example, there could be portlets for "current weather," "stock ticker,"
"quote of the day," etc., depending on what is installed for the web
site (such things would require custom software). Depending on what is
installed for the site, the user can customize the portlets they want to
see and where to place them within the four columns.

So, for the typical Plone user account, the dashboard would start with
the portlets shown above, and later would be "populated" as news items,
events, and other content items are added to the web site.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Logging In

What to expect when you log in to a Plone site

When you visit a Plone web site anonymously, or are given the web
address for site maintenance, you'll see a log in button in the
top-right corner like this:

[image: log-in.png]
log-in.png

After clicking the log in link, you'll see an input panel where you
can type in your user name and password:

[image:]

After logging in to a Plone web site you will see some indication of
your name, often the top in the top-right corner of the screen. You can
click on your name to perform some actions related to your user, covered
in the following sections.

From Plone 4 on, you (or the site administrator) can allow users to use
their email address as login name. This feature can be switched on in
the Security settings control panel. The effect is that on the
registration form no field is shown for the user name. On the login form
the user is now asked to fill in an email address. See E-mail address
based login in the Upgrade
Guid [http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/e-mail-address-based-login]
for more info about this feature.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Adding Content

How to add basic content types to Plone web sites

	Adding New Content
	Content Types

	Title

	Description

	Adding Folders

	What's in a Web Name?
	What's in a Web Name?

	Adding Images

	Adding Pages
	Markup languages

	Adding Files

	Adding Links
	The Link Object in Use

	Adding Events

	Adding News Items

	Setting Basic Properties
	Recommendations

	Exposing Metadata Properties as meta tags in the HTML source

	Restricting Types in a Folder

	Preparing Images for the Web

	Adding collections

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding New Content

A general overview of how to add new content items in Plone, including
definitions of each standard content type

New content items are added via the Add New . . . drop-down menu:

[image: add-new-menu.png]

Adding content in Plone is done placefully,*which is to say that you
must navigate to the section of your Plone website that you wish the new
content to reside before you use the **Add New . . .* drop-down menu.
You can of course cut, copy, and paste content items from one section to
another if necessary.

Content Types

In Plone, you can use a number of Content Types to post certain kinds
of content. For example, to upload an image you must use the Image
content type. Below is a list of the available content types in order of
their appearance, and what each are used for:

	Collection

	Collections are used to group and display content based on a set of
criteria which you can set. Collections work much like a query
does in a database.

	Event

	An Event is a special page-like content type specifically for
posting information about an event (such as a fundraiser, barbecue,
etc).Â This content type has a function which allows the site
visitor to add the event to their desktop calendar with either the
iCal or vCal standard. This includes applications such as: Google
Calendar, Outlook, Sunbird and others.
To add a single event to your calendar, click on the vCal or iCal
links next to the "Add event to calendar" text in the main view of
the event item.

[image: events-summary-chart.jpg]

From Plone 3.3 on you can also get all the events in a folder in
one go (currently only available in iCal format). To download the
iCal file, append @@ics_view to the end of the URL of the folder
that contains the events. For example, if you want to get all the
events into the events folder in the root of your site, go to
http://example.com/events/@@ics_view.

	File

	A File in Plone is any binary file you wish to upload with the
intent that it can be downloaded by your site visitors. Common
examples are PDFs, Word Documents, and spreadsheets.

	Folder

	Folders work in Plone much like they do on your computer. You can
use folders to organize your content, and to give your Plone website
a navigation structure.

	Image

	The Image content type is used for uploading image files (JPG, GIF,
PNG) so that you can insert them into pages or other page-like
content types.

	Link

	Also referred to as the 'Link Object'; do not confuse this with the
links you create via TinyMCE or Kupu, Plone's visual page editors.
The Link content type is often used to include a link to an external
website in Navigation and other specialized uses.

	News Item

	This content type is similar to Event, only News Item is
specifically for posting news. You can also attach a thumbnail image
to a News Item, which then appears in folder summary views next to
the summary of the News Item.

	Page

	A Page in Plone is one of the most simple content types available.
Use Pages to write the bulk of your web pages on your Plone website.

Note: Depending on what add-on products you have installed, you may see
more options in your Add New . . . drop-down menu than appear here.
For information about those additional content types, refer to the
Product documentation for the add-on in question.

Title

Nearly all content types in Plone have two fields in common: Title
and Description.

The Title of content items, including folders, images, pages, etc.,
can be anything you want -- you can use any keyboard characters,
including blanks. Titles become part of web address for each item
you create in Plone. Web addresses, also known as URLs, are what you
type in a web browser to go to a specific location in a web site (Or,
you would click your way there), such as:

www.mysite.com/about/personnel/sally/bio

or

www.mysite.com/images/butterflies/skippers/long-tailed-skippers

Web addresses do have restrictions on allowed keyboard characters, and
blanks are not allowed. Plone does a good job of keeping web addresses
correct by using near-equivalents of the Title that you provide, by
converting them to lowercase, and by substituting dashes for spaces and
other punctuation.

The web address of a given item is referred to as the short name in
Plone. When you use the Rename function, you'll see the short name
along with the title.

The fields will vary according to the content type. For instance, the
Link content type has the URL field. The File content type has the File
field, and so on.

Description

The Description appears at the top of pages, just under the Title.
Descriptions are often used to conjunction with a variety of Folder and
Collection views (such as Standard and Summary). The Description also
appears in search results via Plone's native search engine.

The Description is just plain text, without any form of mark-up. This is to keep it inline with Dublin Core standards.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Folders

Adding folders to a Plone web site is the basic way of controlling the
organization of content.

You have undoubtedly created folders (directories) on your computer's
hard drive. Personal computers use a hierarchy of folders to structure
and organize the programs and files on the hard drive. In Plone folders
are essentially used the same way, except that they are created on a
Plone web site, for organizing content in Plone's built-in storage
system.

Folders are added by clicking the Add new... drop-down menu. Select
Folder from the menu:

[image: add-item-menu-folder.png]

You should now see the Add Folder screen:

[image:]

Fill in the Title, which is required, as indicated by the red
square. The Description is optional; you can always come back to
the edit panel if you need to add a description of the folder.
Descriptions are useful when a site visitor uses the search tool
included with Plone - results will display with both the Title and
Description of the item.

You also notice tabs along the top:

	Default, for entering the Title and Description fields,

	Categorization, for specifying categories that apply to the folder
(you may know these as keywords),

	Dates, for setting the time period when the folder should be
available for view on the web site,

	Ownership, for specifying the creator and/or contributors for the
content item,

	Settings, for allowing comments about the item, enabling Next/Previous Navigation,
and choosing whether it shows in the navigation menu for the web
site.

These tabs are standard, so you'll see them when you click other content
types. We will cover these tabs in another section of this user manual.

Be sure to click Save at the bottom of the page when you are
finished. This will complete the folder creation process.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

What's in a Web Name?

Individual content items on a Plone web site have discrete web
addresses. Plone creates these automatically, based on the Title that
you supply.

What's in a Web Name?

The Title of content items, including folders, images, pages, etc.,
can be anything you want -- you can use any keyboard characters,
including blanks. Titles become part of web address for each item
you create in Plone. Web addresses, also known as URLs, are what you
type in a web browser to go to a specific location in a web site (Or,
you would click your way there), such as:

www.mysite.com/about/personnel/sally/bio

OR

www.mysite.com/images/butterflies/skippers/long-tailed-skippers

Web addresses do have restrictions on allowed keyboard characters, and
blanks are not allowed. Plone does a good job of keeping web addresses
correct by using near-equivalents of the Title that you provide, by
converting them to lowercase, and by substituting dashes for spaces and
other punctuation.

To illustrate, let's take each of these two web addresses and split them
out into their component parts:

www.mysite.com/about/personnel/sally/bio
^
website name
 ^
 a folder named About
 ^
 a folder named Personnel
 ^
 a folder named Sally
 ^
 a folder named Bio

In this example, Plone changed each folder title to lowercase, e.g.,
from Personnel to personnel. You don't have to worry about this. Plone
handles the web addressing; you just type in titles however you want.

And, for the second example:

www.mysite.com/images/butterflies/skippers/long-tailed-skippers
^
website name
 ^
 a folder named Images
 ^
 a folder named Butterflies
 ^
 a folder named Skippers
 ^
 a folder named Long-Tailed Skippers

This example is similar to the first, illustrating how there is a
lowercase conversion from the title of each folder to the corresponding
part of the web address. Note the case of the folder named Long-tailed
Skippers. Plone kept the dash, as that is allowed in both title and part
of the web address, but it changed the blank between the words Tailed
and Skippers to a dash, in the web address, along with the lowercase
conversion.

The web address of a given item is referred to as the short name in
Plone. When you use the Rename function, you'll see the short name
along with the title.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Images

Adding images to a Plone web site is a basic task that may involve a
little work on your local computer, but is essential, because
photographs, maps, and custom graphics are so important on web sites.

Preparing Images for the Web

Remember to use web-standard file formats for all images. Acceptable
formats include: JPG, JPEG, GIF, and PNG. Do not use BMP or TIFF formats
as these are not widely supported by web browsers.

When you are ready to upload an image, use the Add new... drop-down
menu (You will only see the Add new... menu after logging in):

[image: add-item-menu-image.png]

After clicking to add an Image, you'll see the Add Image panel:

[image: add-image.png]

The Title and Description fields (field, as in "data input field") are
there, as with adding a Folder, and at the bottom there is a place to
upload an image. Let's look at the three input fields individually:

	Title - Use whatever text you want, even with blanks and
punctuation (Plone handles web addressing).

	Description - Always a good idea, but always optional. Leave it
blank if you want.

	Image - The Image field is a text entry box along with a Browse...
button. You don't have to type anything here; just click the Browse
button and you'll be able to browse you local computer for the image
file to upload.

For images, at a minimum, you will browse your local computer for the
image file, then click Save at the bottom to upload the image to the
Plone web site. You'll have to wait a few seconds for the upload to
complete (or a minute or so, if you have a slow Web connection). A
preview of the uploaded image will be shown when the upload has
finished.

As of Plone 4, images and files that are uploaded into Plone have their
IDs (URLs) based on the title that is given to the image (instead of the
file name of the image or file). Since the title field is not required,
if you do not fill it out, the name of the item will default to using
the name of the file in place of the title.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Pages

Pages in Plone vary greatly, but are single "web pages," of one sort or
another.

To add a page, use the Add new... menu for a folder:

[image:]

Select Page from the drop-down menu, and you'll see the Add Page
panel:

[image:]

The Title and Description fields are there at the top. Fill each
of them out appropriately. There is a Change note field at the bottom,
also a standard input that is very useful for storing helpful memos
describing changes to a document as you make them. This is useful for
pages on which you may be collaborating with others.

The middle panel, Body Text, is where the action is for pages. The
software used for making Pages in Plone, generically called visual
editor and specifically a tool called TinyMCE, is a most important
feature allowing you to do WYSIWYG editing. WYSIWYG editing -- What You
See Is What You Get -- describes how word processing software works.
When you make a change, such as setting a word to bold, you see the bold
text immediately.

People are naturally comfortable with the WYSIWYG approach of typical
word processors. We will describe later in this manual.

Markup languages

Your site-administrator may also enable so-called markup languages.
If you are the sort of person who likes to enter text using so-called
mark-up formats, you may switch off the visual editor under your
personal preferences. The mark-up formats available in Plone are:

	[Markdown](http://en.wikipedia.org/wiki/Markdown)

	[Textile](http://en.wikipedia.org/wiki/Textile_%28markup_language%29)

	[Restructured Text](http://en.wikipedia.org/wiki/ReStructuredText)

Each of these works by the embedding of special formatting codes within
text. For example, with structured text formatting, surrounding a word
or phrase by double asterisks will make that word or phrase bold, as in
This text would be bold. These mark-up formats are worth
learning for speed of input if you do a lot of page creation, or if you
are adept at such slightly more technical approaches to entering text.
Some people prefer such formats not just for speed itself, but for
fluidity of expression.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Files

Files of various types can be uploaded to Plone web sites.

Choose file in the Add new... menu for a folder to upload a file:

[image: add-new-menu.png]

You will see the Add File panel:

[image:]

Click the Browse button to navigate to the file you want to upload
from your local computer. Provide a title (you can use the same file
name used on your local computer if you want). Provide a description
if you want. When you click the save button the file will be uploaded to
the folder.

Example file types include PDF files, Word documents, database files,
zip files... -- well, practically anything. Files on a Plone web site
are treated as just files and will show up in contents lists for
folders, but there won't be any special display of them. They will
appear by name in lists and will be available for download if clicked.

There are specialized add-on tools for Plone web sites that search
the content of files, or can provide a preview of for instance PDF or Office files. If you are interested in this functionality, ask your
Plone web site administrator.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Links

In addition to links embedding within pages, Links can be created as
discrete content items. Having links as discrete items lets you do
things like organizing them in folders, setting keywords on them to
facilitate grouping in lists and search results, or include them in
navigation.

Add a link by clicking the menu choice in the Add new... menu for a
folder:

[image: add-new-menu.png]

You will see the Add*Link* panel:

[image:]

Good titles for links are important, because the titles will show up in
lists of links, and because there tend to be quite a number of links
held in a folder as a set.

Paste the web address in the URL field or type it in. There is no
preview feature here, so it is best to paste the web address from a
browser window where you are viewing the target for the link to be sure
you have the address correct.

The Link Object in Use

A link object will behave in the following ways, depending on your login
status, or permissions.

	If you have the ability to edit the link object, when you click
on the link object you'll be taken to the object itself so that you
can edit it (otherwise you'd be taken to the link's target and could
never get to the edit tab!)

	If you don't have the ability to edit the link object, when you
click on the link object you'll be taken to the target of the link
object. Likewise, if you enter the web address of the link object
directly in your browser, you'll be taken directly to the link's
target. The link object in this case acts as a redirect.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding Events

Plone web sites have a built-in system for managing and showing calendar
events.

Use the Add new... menu for a folder to add an event:

[image: add-new-menu.png]

You will see rather large Add Event panel:

[image: Add Event]

From the top, we have the following fields:

	Title - REQUIRED

	Description

	Event location

	Start date and time - REQUIRED

	End date and time - REQUIRED

	Event body text (visual editor panel)

	Attendees

	Event type(s)

	Event URL

	Contact Name

	Contact Email

	Contact Phone

	Change note

Note that only three fields, title and start and end date and time, are
required. So, although this is a large input panel, if you are in a
hurry, just type in the title and the start and end times and save. Of
course, if you have the other information, you should type it in.
One part of the panel needs a bit more explanation: the event start and
end times. The year, month, day, and other fields are simple pull-down
menus. But for the day, often you can't remember exactly and you need to
consult a calendar. There is a handy pop-up calendar that offers an
alternate way to select the day. If you click one of the little calendar
icons adjacent to the day pull-down, :

[image:]

you'll see this pop-up calendar:

[image:]

Just click the day and it will be set. Fill in the fields for which you
have information and save the event, but remember:

IMPORTANT:***It will not show on the main web site calendar until it
has been **published***.
**

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding News Items

Plone web sites have a built-in system for publishing news items.

Use the Add new... menu for a folder to add a news item:

[image: add-new-menu.png]

You will see the Add News Item panel:

[image:]

The standard fields for title, description, and change note are in the
panel, along with a visual editor area for body text and image and image
caption fields. You can be as creative as you want in the body text
area, and you can use the insert image (upload image) function to add as
much illustration as needed. The images you upload for the news item
will be added to the folder in which you are adding the news item.

The Image and Image Caption fields are for adding an image to be
used as a representative graphic for the news item, for posting in news
item listings. The image will be automatically resized and positioned.
Use the Body Text to insert an image in the actual body of the News
Item.

IMPORTANT: News items will not appear in the main web site news
listing or news portlet until they are published.*
*

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Setting Basic Properties

The tab panels available on each content item has fields for basic
information. The more data you can provide, the better Plone can help in making the content available to the relevant visitors.

Any content item, when clicked by a user with edit rights for the item,
will show a set of tabs at the top for setting basic properties:

[image: null]
null

These basic properties tabs are:

	Default - shows the main data entry panel for the content item

	Categorization - shows a panel for creating and setting categories
(keywords) for the item

	Dates - shows the publishing date and expiration date for the item

	Ownership - shows a panel for setting creators, contributors, and
any copyright information for the item

	Settings - shows a small panel for setting whether or not the item
will appear in navigation menus and if comments are allowed on the
item

The input fields under these tabs cover basic descriptive information
called *metadata*. Metadata is sometimes called "data about data."
Plone can use this metadata in a multitude of ways.

Here is the Categorization panel, shown for a page content item (would
be the same for other content types):

[image: null]

Note: Tags were formerly called Categories in Plone 3, and Keywords
prior to version 3.0.

The main input field for the panel is for specifying categories.
Create them anew, just by typing in words or phrases, one per line, in
the New tags box. When you save, the new tags will be created within
the system of tags for the web site, and this content item will be filed
under them. If you re-edit this item, or edit any other, the new tags
will show up as Existing tags.

The Related Items field lets you set links between content items,
which will show as links at the bottom, when a content item is viewed.
This is useful when you don't want to use explicit categories to connect
content.

The Location field is a geographic location, suitable for use with
mapping systems, but appropriate to enter, for general record keeping.

The Language choice normally would be allowed to fall to the site
default, but on multilingual web sites, different languages could be
used in a mix of content.

The Dates panel has fields for the publishing date and the expiration
date, effectively start and stop dates for the content if you wish to
set them:

[image: null]

The publication and expiration dates work like this:

	When an item is past its expiration date, it's marked "expired" in
red in its document byline when viewed.

	An item whose publication date is before the current date doesn't get
extra text in its byline.

	In both cases, the item is "unpublished", which is not to be confused
with a workflow state.

	It merely means the item doesn't show up in listings and searches.

	These listings include folder listings.

	However, the owner of the item will keep seeing it, which is handy
because you like to know what you have lying around in your site.

	The permission that controls this is Access inactive portal content.

	Expired items in a folder are marked as such when viewing the
folder_contents.

	There's no quick way of seeing if items in a folder listing are not
yet published.

	When you set an unpublished item as the default view for a folder,
that item will be shown.

	Unpublishing an item doesn't have any effect for admins. They will
always see unpublished items in their listings and searches.

	Giving another regular users rights ("can add", can edit", "can
review") on the item doesn't make it any less unpublished for those
users.

	A practical way for a non-admin user to access an unpublished item is
directly through its URL.

The Ownership panel has three free-form fields for listing creators,
contributors, and information about copyright or ownership rights to the
content:

[image: null]

The Settings panel has fields that may vary a bit from content type to
content type, but generally there are input fields controlling whether
or not the item appears in navigation, or if there are comments allowed,
and other similar controls:

[image: null]

Recommendations

There is no requirement to enter the information specified through these
panels, but it is a good idea to do so. For the Ownership panel,
providing the data is important for situations where there are several
people involved in content creation, especially if there are multiple
creators and contributors working in groups. You don't always need
fields such as publishing and expiration dates, language, and
copyrights, but these data should be specified when appropriate. A
content management system can only be as good as the data completeness
allows.

Specifying categories requires attention, but if you are able to get in
the habit, and are zealously committed to creating a meaningful set of
categories, there is a big return on the investment. The return happens
through the use of searching and other facilities in Plone that work off
the categorization. The same holds for setting related items. You'll be
able to put your finger on what you need, and you may be able to
discover and use relationships within the content.

Exposing Metadata Properties as meta tags in the HTML source

From Plone 4 on, in Site Setup, there is a check box that
will expose the Dublin Core metadata properties. Checking this box will expose the title, description, etc. metadata as meta tags within the
HTML <head>.
For example:

<meta content="short description" name="DC.description" />
<meta content="short description" name="description" />
<meta content="text/html" name="DC.format" />
<meta content="Page" name="DC.type" />
<meta content="admin" name="DC.creator" />
<meta content="2009-11-27 17:04:03" name="DC.date.modified" />
<meta content="2009-11-27 17:04:02" name="DC.date.created" />
<meta content="en" name="DC.language" />a

The generator will check and obey the so-called allowAnonymousViewAbout
setting in the Control Panel and affects the properties*Creator*, Contributors and Publisher.

You can read more about Dublin Core [http://dublincore.org/] and
HTML
Metatags [http://www.w3.org/TR/html401/struct/global.html#h-7.4.4.2].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Restricting Types in a Folder

The Add new... menu has a choice for restricting the content types that
can be added to the folder.

Restricting types available for adding to a folder is the simplest way
to control content creation on a Plone web site. You may want to
restrict content types if your site is going to be worked on by several
people. In this way you can enforce good practices such as putting just
images in the images folder.

First, select the last choice in the Add new... menu called
Restrictions...:

[image: add-new-menu.png]

There are three choices shown for restricting types in the folder:

[image:]

The default choice, to use the setting of the parent folder. Having this
as the default means that if you create a folder and restrict the types
that can be added, any subfolders created in the folder will
automatically carry the restrictions. The second choice, to allow the
standard types to be added, is a way to reset to the default,
unrestricted setting. The last choice allows selection from a list of
available types:

[image:]

Types listed under the Allowed types heading are those available on
the web site. The default, as shown, is to allow all types. Allowed
types may be toggled on and off for the folder.

Use of Secondary types allows a kind of more detailed control. For
example, if it is preferred to store images in one folder, instead of
scattering them in different folders on the web site -- a scheme that
some people prefer -- an "Images" folder could be created with the
allowed type set to the Image content type only. Likewise an "Company
Events" folder could be created to hold only the Event content type. If
left this way, content creators would be forced (or a single web site
owner) to follow this strict scheme. Perhaps some flexibility is desired
for images, though. By checking the Image content type under the
Secondary types heading for the "Company Events" folder, images could
be added if really needed, by using the More... submenu, which would
appear when this mechanism is in place.

Some people prefer a heterogeneous mix of content across the web site,
with no restrictions. Others prefer a more regimented approach,
restricting types in one organizational scheme or another. Plone has the
flexibility to accommodate a range of designs.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Preparing Images for the Web

Preparing images for the web is an essential part of using images in
Plone, or in any online context. As you will see, size matters.

Many people source photographs taken with a digital camera, but they can
also be scanned images, graphical illustrations made with software, and
other specialized images. Let's take a look at the case of a butterfly
photo taken with a digital camera.

Digital photographs taken with modern cameras are usually too big to
post directly on a website, so they need to be resized. A typical web
site design may have a width of around 1000 pixels. When a photograph
comes off your camera, it may be several thousand pixels wide and tall,
and several megabytes in file size. You need to use software on your
computer to resize the image to something less than 1000 x 1000 pixels,
often much smaller than that.

The software you use to view or print your digital photos will often
have this resizing functionality, or you may have graphics software such
as Adobe Photoshop or Gimp on your computer.
Resizing an image, sometimes called resampling, is a standard function
you should be able to find in your software, often under the Image
menu.

How do you know what width, in pixels, to resize your image? It depends.
For a little "head shot" photograph to go in a biography, maybe 200
pixels wide is just right. For a group photograph, 200 pixels would be
too small to allow identification of the people in the photograph, so it
may need to be closer to 400 pixels wide. For a scanned map image,
perhaps the image width would need to be 1000 pixels for the map detail
to be usable.

After saving your resized image, give it a name that indicates the new
size (e.g., butteryfly-resized-300px.jpg). The file format is most
commonly .jpg (or .jpeg). Other common formats for images include .png
and .gif. Take note of where you save images on your computer so that
you can find them when you upload them to your Plone web site.

[image: image_resizing.png]

To summarize:

	Take your photograph with your camera, or find an existing image you
want to use

	Transfer it to your computer

	Use image software on your computer to resize your photograph

	Upload it to your Plone website

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Adding Content »

Adding collections

Collections (formerly called Smart Folders) are virtual containers of
lists of items found by doing a specialized search.

See the later section of the manual Using Listings & Queries (Collections)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Managing Content

The contents tab is the place where content items can be copied, cut,
pasted, moved, renamed, etc.

	Cutting, Copying and Pasting Items
	Cut/Paste

	Copy/Paste

	Editing Content
	Inline Editing (optional)

	Folder View
	Setting an Individual Content Item as the View for a Folder

	Folder Contents

	Reordering Items

	Next/Previous Navigation

	Deleting Items

	Automatic Locking and Unlocking

	Versioning
	Creating a new version

	Viewing the version history

	Comparing versions

	Viewing and reverting to previous versions

	Presentation Mode
	How to Create Slides

	How to Format a Slide

	Working Copy
	Overview

	Using "Check out"

	Using "Check in"

	Canceling a "Check out"

	Using Content Rules
	Overview

	Creating and Defining Content Rules

	Creating a Rule

	Defining a Content Rule

	Assigning a Content Rule

	Managing Multiple Rules

	More on Triggers. Actions, and Assigning Rules

	Creating forms without programming: PloneFormGen
	Introduction

	Getting started with PloneFormGen

	PloneFormGen topics

	Advanced topics

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Cutting, Copying and Pasting Items

Cut, copy, and paste operations involve moving one or more items from
one folder to another.

Cut/Paste

Moving items from one area to another on a website is a common task.
Often this need arises with placement of content in the wrong folder.
For example, if the author of the following content about Skipper
butterflies realizes that a Swallowtail butterfly was mistakenly
included -- the Eastern Tiger Swallowtail folder shown below -- the
folder can simply be moved with a cut/paste operation:

[image:]

Note that the Eastern Tiger Swallowtail folder has been checked, and
that the cut button is about to be clicked. After clicking the cut
button, the screen will show a new paste button. The Eastern Tiger
Swallowtail folder and all of its contents are now in the web site's
"memory." The Eastern Tiger Swallowtail folder does not immediately
disappear, however, awaiting the actual paste operation. The paste
button is now highlighted to show the cut/paste operation is in
progress:

[image:]

The paste button is now active. The next step is to navigate to the
destination folder, in this case the Swallowtails folder:

[image:]

After clicking the Swallowtails folder, the paste button will continue
to show, because the paste operation has not yet been completed:

[image:]

And last, clicking the paste button for the destination folder adds
the Eastern Tiger Swallowtail folder to its proper place in the
Swallowtails folder, and cuts it from the original location, the
Skippers folder, and the cut/paste operation is complete:

[image:]

The paste button remains active, because you would be allowed to
continue pasting the folder in other places if you wanted. This could
happen in several situations, including when you need to copy one page,
for example, as a kind of template or basis document, into several
folders.

Copy/Paste

A copy/paste operation is identical to the cut/paste operation,
except that there is no removal of content from the original folder. It
works as you would expect it to work.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Editing Content

Editing Plone content works the same as adding content -- usually the
data entry and configuration panels for the content are the same for
editing as for adding.

Of course, when we edit an item of content, the item already exists.
Click the Edit tab for an item and you will see the data entry panel for
the item, along with the existing values of the item's data.

For an example of something really simple, where editing looks the same
as adding, we can review how to edit a folder.

The Edit panel for a folder simply shows the title and description
input areas. Often a description is not provided for a folder, so the
only thing changed is the title.Â If you do wish to give a description,
which is a good idea for distinguishing folders in a list, the
description can be text only -- there is no opportunity for setting
styling of text, such as bold, italics, or other formatting.Â This keeps
the descriptions of Plone content items as simple as possible.

Here is the Edit panel for a folder, in this case, one called
"Butterflies":

[image:]

That's it. Change what you want and save, and the content item will be
updated in Plone's storage system. You can repeatedly edit content
items, just as you can repeatedly edit files on your local computer.Â By
now you have appreciated that Plone stores discrete content items as
separate entities, akin to "files" on a local computer, but you really
don't have to think about it that way. Plone is a content management
system, where the content comes in the form of numerous discrete content
items that may be individually edited. Edit away at your heart's
content.

For an example of editing a content item that is a bit different than
adding in the first place, we can examine editing an image. Editing an
Image can be done by navigating to an individual image and clicking the
Edit tab. Clicking the Edit tab for the image, you will see the
following Edit Image panel:

[image:]

Here, an image called "Eastern Tiger Swallowtail Butterfly" is being
edited.Â You can change the title and description, as usual, in which
case you would usually keep the setting to "Keep existing image."Â You
can also change the image itself by checking the "Replace with new
image" choice. Or, clicking the "Delete current image" choice will
simply delete the image entirely.

Notice also the Transform tab at the top, which pertains specifically
to images, offering a choice of several image transforms:

[image:]

So, editing an image is a bit different than adding one in the first
place, but not by much.

Editing panels for other content items are also usually just like the
panels for adding.

Inline Editing (optional)

Inline editing is disabled by default in the latest versions of
Plone (3.3+). It can be enabled through the control panel by a Site
Manager (Site Setup -> Editing -> Enable Inline Editing checkbox).

The normal procedure to edit a content item is to click the Edit tab
and use the discrete input fields for the item.Â For text fields, such
as Title, Description, Body Text, etc., there is a quicker way to edit
called inline editing. Inline editing is used when viewing the content
item (the View tab is active).

As the mouse passes over editable text parts of the item, a subtle box
will outline the editable text. In the following screen capture, the
mouse cursor is not over editable text, so you see the page title and
body text as normal:

[image:]

But when the mouse is moved over the body text, a box highlights the
body text as editable:

[image:]

Clicking within the body text after the inline editing box has appeared
will bring up the visual editor:

[image:]

Change or add text and save, and the normal view is back. This is
considerably quicker -- fewer clicks and less intervening wait time --
than clicking the Edit tab and bringing up the entire edit panel for
the page.

If the mouse is moved over the title, also editable, an inline editing
box appears:

[image:]

Clicking the title after the box appears will activate a very simple
editing field with a Save/Cancel choice:

[image:]

Change the title and save. The speed benefit of inline editing is really
sensed for editing something as simple as a title.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Folder View

Folders have the Display tab which controls the several ways of showing
folder contents.

For most content items, if you want to change how it looks, you edit the
content directly. But folders are a different animal. As containers of
other items, folders can display their contents in a variety of ways.
We'll cover each of the options in this section.

Consider a scenario where a butterfly enthusiast, John Smith, has logged
in to his web site to work on the part devoted to Skipper butterflies.
He navigates to the "Skippers" folder by clicking the top tabs of the
web site, or the navigation menu, which is on the left in his default
Plone web site design. When he clicks the "Skippers" folder, the
standard view tab panel, or just "standard view," for the folder is
shown:

[image: folder-view-standard.png]

The View is always how a content item would show for anonymous web
site visitors. Click the View tab when you want to see what a content
item looks like after you have changed something. For folders, you will
see a listing of contained content items, in one of several list
presentations, selected via the display pull-down menu. The default
view is called standard view:

[image:]

And, here is summary view:

[image:]

And, tabular view:

[image:]

And, thumbnail view, which is mainly useful for photographs, but still
works for normal content:

[image:]

Making a photo album is easy. Just add the photographs (images, or image
files, the most common being .jpg files) to a folder and set the display
view for the folder to thumbnail view. Thumbnail view will
automatically update the display as images are added to the folder,
presenting a multi-page division into sets of images, as needed, as the
number of images grows.

If you are uploading photographic images from a digital camera or
scanner, you will most likely want to resize them on your local computer
before uploading them, because they are too large.

Setting an Individual Content Item as the View for a Folder

The basic list view functionality described above for folders fits the
normal way we think of folders -- as containers of items -- but Plone
adds a nice facility to set the view of a folder to be that of any
single item contained within the folder. This takes advantage of the way
the navigation system dynamically reflects the folder structure of a
Plone web site as folders are created.

You can set the display view for a folder to show a single page, which
can be useful for showing the most recent document within a list of
documents stored in the folder. Or, you can set it to a collection,
which on its own is already a powerful content filter. The display view
setting should be used with care, because it changes the behavior of
folders, from acting as simple containers to acting as direct links to
content. Instead, you can often accomplish what you want by only using
collections, which will be covered later in this manual.

Next, we move to the Contents tab to see important functions for
accessing content in a list of folder content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Folder Contents

The Contents tab shows a list of items in a folder. It is the place for
simple item-by-item actions and for the manipulative actions of copy,
cut, paste, move, reorder, etc.

The Contents tab for folders is like "File Manager" or "My Computer"
system utilities in Windows and Linux desktops and the "Finder" in Mac
OS X, with similar functionality.

Clicking the Contents tab for a folder, such as the "Skippers" folder
below, shows the Contents tab panel:

[image: folder-contents.png]
folder-contents.png

The Contents tab panel is immediately recognized by observing the
check boxes beside the items in the contents list. Click these check
boxes to select multiple items for performing copy, cut, rename,
delete, or change state operations.

Plone has a clipboard for copy and cut operations. If you check one
or more items, and click cut or copy, a paste button will be added to
the row of buttons along the bottom of the panel. If you then click
another folder, you'll be able to paste the items there. For a cut
operation, the items will remain in the source folder -- they won't
disappear -- until they are pasted somewhere.

Renaming items will show a panel for entering a new name for the
short name (or id) of the item, as well as the title. The
distinction between short name and title is one that becomes
apparent only when you rename, because Plone automatically creates the
short name from the title in most Plone web sites. But the renaming
operation must show you the short name as well as the title, because
usually would want to change both, if changing either. Consider the
following example:

[image: rename-item.png]

If you were to change the title to "Long-tailed Skippers," you would
also change the short name to "long-tailed-skippers." This keeps things
tidy -- it keeps them correct, so that the URL for the item, the web
address, is kept up-to-date with the actual content item. Note that the
short name should contain no blanks. Use dashes for any blanks in the
title, and otherwise make it a carbon copy of the title. Also, use
lowercase for the short name. See also the page "What's in a Web
Name? [http://plone.org/documentation/manual/plone-4-user-manual/adding-content/whats-in-a-web-name]"
for a description of how Plone handles web addressing and the short
name.

The delete operation is straightforward. Click to select one or more
items, and then the delete button, and the items will be deleted.

The change state operation offers a great way to change the
publication state of a selection of folders, and their subfolders if you
select this option. In the following example, the publication state for
a folder called "Long-tailed Skippers" is being modified. Checking the
"Include Folder Items" will make the state change affect all contained
content. Don't forget that you can do this to, say, three folders at a
time, and all of their subfolders and contained content, so that in one
fell swoop you can quickly publish, unpublish, etc.

Shift-clicking to select a range of items works. This could be very
handy for a folder with more than a dozen items or so, and would be
indispensable for folders with hundreds of items.

[image:]

In addition to these individual action operations, reordering is a
natural mouse-driven manipulation, as described in the next section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Reordering Items

The contents tab contains functionality for quick and precise reordering
of items in a folder.

Consider the following folder, called "Skippers," for holding
information about this type of butterfly.Â Often, when we add content
items, we don't initially get them in the order we want.Â The desired
ordering is not always alphabetical, but in this example we can assume
so. Below you see the Skipper butterfly subfolders are not in
alphabetical order:

[image:]

To move the top item named "Spread-winged Skippers" to the bottom of the
list, one would click within the Order column on the left (containing
the "double-colon" symbols) and drag the row to the desired position:

[image: Example of Reordering]
Example of Reordering

Dragging and dropping is done by holding the mouse button down as you
move the item. The item that is being moved turns yellow as it is being
moved:

[image:]

When the mouse button is released, the item stays where it was dropped:

[image:]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Next/Previous Navigation

Automatic previous-next links for content items in a folder can be
enabled under the Settings tab for a folder.

The Settings tab is found by clicking the Edit tab for the folder.
There is a toggle for enabling previous-next links for items contained
in the folder:

[image:]

Once enabled, as content items are added to the folder, previous and
next links will automatically appear as needed:

[image:]

Three pages have been created within the Cloudywings folder, and "Page
Two" (which has no text, for this example) has been clicked. At the
bottom of "Page Two" are links for "Previous: Page One" and "Next: Page
Three."

This is a really useful feature!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Deleting Items

Items may be deleted from a folder with ease.

Sometimes it is necessary to delete a content item, often to replace it
with an updated version. Or, you could simply delete an item, for a
variety of reasons. In the example of the swallowtail butterfly
mistakenly added to the Skippers folder, instead of cutting it and
pasting it somewhere, it could simply be deleted:

[image:]

In the example shown above, the Eastern Tiger Swallowtail folder is
will be deleted after clicking on the Delete button.

Entire folders may be deleted, so care must be taken with the delete
operation, but this is true for computer use in general, and we all have
learned to do a last minute self-check to make sure the delete operation
is intended.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Automatic Locking and Unlocking

Plone gives you a locking message that will tell you that a document was
locked, by whom, and how long ago - so you won't accidentally stomp on
somebody else's changes.

When somebody clicks on the Edit tab, that item immediately becomes
locked. This feature prevents two people from editing the same document
at the same time, or accidentally saving edits over another users edits.
In this example, George Schrubb has started editing the "Widget
Installation" document. When Jane Smythe (who has permissions to edit
that document as well) goes to view it, she will see the following:

[image: locking01.png]

Once George has finished editing the document and clicks the Save
button, the document is automatically unlocked and available to be
edited by others (should they have the proper permissions to do so, of
course).

However, if it becomes clear to Jane that George isn't really editing
the document anymore (e.g. the locking message says that the item was
locked several days ago and not just a few minutes ago) then Jane can
"unlock" it and make it available for editing again.

In Plone 3.3 or higher:
If a user leaves the edit page without clicking Save or Cancel, the
content locking will remain effective for the next ten minutes after
which time, the locked content item becomes automatically unlocked. This
timeout feature is important for some browsers that do not execute the
"on-unload" javascript action properly such as Safari.
Should you desire to disable locking, go to the Plone control panel
(Site Setup -> Site) and uncheck Enable locking for through-the-web
edits.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Versioning

An overview on how to view the version history of an item, compare
versions, preview previous versions and revert to previous versions.

Creating a new version

Plone includes a versioning feature. By default, the following content
types have versioning enabled:

	Pages

	News Items

	Events

	Links

Note that all other content types do track workflow history.

Content items can be configured to have versioning enabled/disabled
through the Site Setup â†’ Plone Configuration panel under "Types".

When editing an item, you may use the change note field at the
bottom; the change note will be stored in the item's version history. If
the change note is left blank, Plone includes a default note: "Initial
Revision".

A new version is created every time the item is saved. Versioning keeps
track of all kinds of edits: content, metadata, settings, etc.

Viewing the version history

Once an item as been saved, you can use the History link found near
the top of the page. Simply click it to show the History overlay:

[image: history-viewlet.png]
history-viewlet.png

The most recent version is listed first. The History viewlet provides
the following information:

	The type of edit (content or workflow)

	Which user made the edit

	What date and time the edit occurred

Comparing versions

From the History viewlet you can compare any previous version with the
current version or any other version with the version just before it.

To compare any previous version with the one just before it, click the
Compare link located between two adjacent versions in the History
overlay.

[image: compare-button.png]
compare-button.png

By clicking this button, you'll see a screen like this one where you can
see the differences between the two versions:

[image: compare-versions.png]
compare-versions.png

In this example, text in red is text which has been deleted and text in
green is text which has been added to the newer version. You can toggle
between inline or as code views of the differences between
versions.

[image: Comparing Versions (HTML Source)]
Comparing Versions (HTML Source)

You may also compare any previous version to the current version by
clicking the Compare to current link History overlay, found to the far
right of each version listed.

Viewing and reverting to previous versions

You can preview any previous version of a document by clicking the
View link to the right of any version listed.

To revert back to a previous version, click on the Revert to this
revision button to the right of any version listed.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Presentation Mode

Plone comes with the ability to create very simple slideshow
presentations.

Presentation Mode is a special feature of the Page content type. You can
enable Presentation Mode by editing the page, then going to the
Settings tab. Notice the Presentation Mode checkbox available there.
Once checked, a link will appear in the view of the page for a user to
view the page in Presentation Mode.

How to Create Slides

All the content for a presentation lives on a single page. You do not
need to create a page for each slide. A slide is created when you use
the Heading (h1) class on the page - they effectively indicate to Plone
where you want your slides to be.

You can have as many slides as you want in your presentation. Just add
more Heading (h1) tags to your page and the content between that h1 tag
and the next h1 tag becomes the content of your slide.

How to Format a Slide

It is very important to note that the Normal Paragraph style will not
render any content in the slide. Slides are meant to display summary
information, not chunks of paragraph text. As such, you must class all
content in each slide with a style other than Normal Paragraph. Examples
of those styles include:

	Heading (h1)

	Subheading (h3)

	Definition list

	Bulleted list

	Numbered list

	Literal

	Pull-quote

	Call out

	Highlight

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Working Copy

Working Copy lets you have two versions of your content in parallel.

When a Plone site is first created, there a number of additional
features that can be enabled, including "Working Copy". If the Plone
site you are using doesn't show the "Check out" option under the Actions
menu, you will need to contact your site manager and request that
"Working Copy Support (Iterate)" be installed.

Overview

You might have been in a situation like this before: you have published
a document, and you need to update it extensively, but you want the old
version to exist on the web site until you have published the new one.
You also want the new document to replace the current one, but you'd
like to keep the history of the old one, just in case. Working copy
makes all this possible.

Essentially, you "check out" a version of the currently published
document, which creates a "working copy" of the document. You then edit
the working copy (for as long as you like) and when you're ready for the
new version to go live, you "check in" your working copy, and it's live.
Behind the scenes, Plone will replace the original document with the new
one in the exact same location and web address â€” and archive the old
version as part of the document's version history.

Using "Check out"

First, navigate to the page you want check out. Then from the "Actions"
drop-down menu, select "Check out":

[image:]

An info message will appear indicating you're now working with a working
copy:

[image:]

Now you're free to edit your own local copy of a published document.
During this time, the original document is "locked" -- that is, no one
else can edit that published version while you have a working copy
checked out. This will prevent other changes from being made to (and
subsequently lost from) the published version while you edit your copy.

[image:]

Using "Check in"

When you are ready to have your edited copy replace the published one,
simply choose "Check-in" from the "Actions" drop-down menu:

[image:]

You will then be prompted to enter a Check-in message. Fill it out and
click on "Check in":

[image:]

Your updated document will now replace the published copy and become the
new published copy.

[image:]

You will also notice that there is no longer a copy of the document in
the user's personal folder.

Note that it is not necessary (and in fact, it is not recommended) to
use the "State" drop-down menu on a working copy. If you inadvertently
do so, however, don't panic. Just go back to your working copy and use
"Check in" from the "Actions" menu.

Canceling a "Check out"

If for any reason it becomes necessary to cancel a check out and you
don't want to save any of your changes, simply navigate to the working
copy and select "Cancel check-out":

[image:]

You will prompted to confirm the "Cancel checkout" or to "Keep
checkout":

[image:]

Note that if the user who has checked out a working copy is not
available to check in or cancel a check out, users with the Manager role
may navigate to the working copy and perform either the check in or
cancel check out actions. That's because not all contributors have the
Check in privilege. If that option is missing from your Actions
menu:

	Use the State menu.

	Submit for publication.

	Ask a reviewer to not change the state.

	Ask the reviewer to perform the check in on your behalf instead.

The check in routine will handle the state.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Using Content Rules

This tutorial discusses what content rules are and how to configure and use them.

Overview

A general overview as to what makes up a content rule, some sample use cases, and who can set up and use content rules.

What is a content rule?

A content rule will automatically perform an action when certain events (known as "triggers") take place. For example, you can set up a content rule to send an email (the action) whenever certain (or any) content is added to a specific folder (the trigger).

Other use cases for content rules

	Move content from one folder to another when that content item is published

	Send email when a content item is deleted

	Delete content after a certain date

Who can set up and use content rules?

Site Manager permissions are required to in order to set up and apply content rules. In the ZMI "Content rules: Manage rules" is the permission related to being able to access the content rules configuration pages.

What are the triggers and actions that come with Plone 3.0?

The following general triggers are available by default:

	Object added to this container

	Object modified

	Object removed from this container

	Workflow state changed

The following actions are available by default:

	Make an entry in the event log

	Notify user with an information, warning, or error message

	Copy object to folder

	Move object to folder

	Delete object

	Transition workflow state of object

	Send email

Creating and Defining Content Rules

How to define content rules using the triggers and actions included in Plone

Creating a Rule

Content rules are created globally through the Plone Control Pane ("site setup" link) and then selected from the Rules tab for the desired folder (or at the Plone site root if you want the rule applied site-wide).

In this example, you're going to create a content rule that will send an email any time a Page type is modified.

	Click on "Content Rules" from the Site Setup page

	The first option, "Enable Globally", allows you to enable and disable ALL content rules easily. Make sure this is enabled (which is the default) before continuing.

	In the second section of the main page for Content Rules is where any existing content rules will be listed:

[image:]
If there are a large number of content rules, it can be useful to filter them based on the triggers in the dropdown menu

	If no content rules exist, the only option is an "Add content rule" button. Click that.

	An "Add Rule" form comes up. Enter a descriptive title -- for this example, use: "Send Email when any Page is Modified". Enter a description if desired.

	For the "Triggering event" select "Object modified". Leave "Enabled" checked, and "Stop executing rules" unchecked.

[image:]

	Click the "Save" button. At this point, you have essentially created a "container" for the content rule:

[image: ../../_images/rulejustadded.png]
Next you'll further define the trigger and actions for this rule.

Defining a Content Rule

	After creating a content rule, you need to actually define the specific conditions of the trigger and actions that will occur based on those conditions.

	Click on the title of your content rule, in this case "Send Email when any Page is Modified".

	Two new sections will show up for setting the conditions and actions:

[image: ../../_images/conditionlistempty.png]
For the condition:

	By default, "Content type" is selected and since you want a trigger only for Pages, just click on the "Add" button.

	From the "Add Content Type Condition" page, select "Page" and click on "Save":

[image: ../../_images/addcontenttypecondition.png]
For the action:

	Select "Send email" from the drop down menu and click on the "Add" button.

	From the "Add Mail Action" page, fill out the form:

	For the "Subject" enter: "Automated Notification: Page Modified"

	"Email source" is the From: address and is optional

	"Email recipients" is the To: address; enter a valid email address

	For the "Message" enter what you want for the body of the email:

[image: ../../_images/addmailaction.png]

	Click the "Save" button

Congratulations, you have created a working content rule! Your content rule should look like:

[image: ../../_images/ruleslistcomplete.png]
In the next section, you'll learn how easy it is to apply this content rule to any part (or all) of your Plone site.

Assigning a Content Rule

Now that you've set up a content rule, how does it actually get used?

At this point, you have successfully created a content rule. However, this content rule isn't actually in use until it has been assigned and enabled on one or more folders.

	Navigate to the folder where you want the content rule to be in effect. This can be any folder on the Plone site or it can be for the entire Plone site ("Home").

	Click on the "Rules" tab. From there you will see a drop down menu of possible content rules:

[image: ../../_images/availablecontentrulesforcontext.png]

	Select the desired content rule ("Send Email..." in this example) and click on the "Add" button. The "Rules" tab now shows that your rule has been assigned to the current folder:

[image: ../../_images/rulesforthiscontext.png]

	By default, the rule has now been applied to the current folder only as indicated by the symbol in the "Enabled here" column indicates.

Notice there are several buttons near the bottom. Tick the check box for the rule you want ("Send Email...") and then click on either "Apply to subfolders" button. Now this content rule will also apply to any subfolder that exist now or are created in the future.
If you wish to have this rule apply to all the subfolders but not to the current folder, then tick the check box next to the rule and click on the "Disable" button.

Note

Note: that the "Enabled here" column is empty for this rule now. You will need to explicitly use the "Enable" button to re-active this rule for the current folder; just using the "Apply to current folder only" button will NOT re-enable the content rule.

Basically, the "Apply to subfolders" and "Apply to current folder only" can be thought of as toggles.
You can test this rule now by creating a new Page or modifying an existing Page. Once you click on "Save" for that Page, an email will be sent.

Managing Multiple Rules

Now that you've created, defined, and assigned one content rule, it's time to explore how multiple rules work together.

In this section you'll need to create one or more additional rules before proceeding. Try one of these for size:

Send an email when a News Item is deleted.
Move News Items to a Folder when that News Item is published
Send an email whenever a News Item is modified.

More on Triggers. Actions, and Assigning Rules

In-depth information covering each of the triggers and actions available and notes on applying content rules.

Triggers

	Object added to container

	Object modified (note: this gets triggered on creation for a Page -- because it's renamed?)

	Object removed

	Workflow state changed

Conditions

	Content type

	File extension

	Workflow state: restricts rules to objects in particular workflow states

	Workflow transition: restricst rules to execute only after a certain transition

	User's group

	User's role

Actions

	Logger

	Notify user

	Copy to folder

	Move to folder

	Delete object

	Transition workflow state

	Mail action

Assigning rules

	Rules tab on the folder

	rule name is in the drop down

	select rule, click on add

	enable / disable

	apply to subfolders / apply to current folder only

	unassign

Things to note when "navigating" with assigned content rules

The "Edit Content Rule" page uses a 'related items' like display ("Assignments") for listing all the locations where the rule is assigned. From there, you can go directly to that folder's Rules tab by clicking on the Title of that folder. Note that there is no indication in the Assignments section if the Rule is applied to subfolders or not.

[image: ../../_images/rule_assignment_list.png]
If you're on a folder that has the rule assigned to it directly (e.g. it's NOT a subfolder of a folder that has the rule assigned), you can get directly to the "Edit Content Rule" page from the Rules tab by clicking on the Title of that rule (which is always a link).

Alternately, if you're on a folder that has the rule assigned from a folder higher up in the hierarchy, clicking on the rule Title link will take you to the folder's Rules tab where the rule has been explicitly assigned.

If from the Rules tab, a rule is listed at active, then the assignment of that rule is being managed from a parent folder.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

Creating forms without programming: PloneFormGen

Description

PloneFormGen allows you to build and maintain convenience forms through Plone edit interface.

Introduction

PloneFormGen is a Plone add-on Product that provides a generic Plone form generator using fields, widgets and validators from Archetypes. Use it to build simple, one-of-a-kind, web forms that save or mail form input.

To build a web form, create a form folder, then add form fields as contents. Individual fields can display and validate themselves for testing purposes. The form folder creates a form from all the contained field content objects.

Final disposition of form input is handled via plug-in action products. Action adapters included with this release include a mailer, a save-data adapter that saves input in tab-separated format for later download, and a custom-script adapter that makes it possible to script simple actions without recourse to the Zope Management Interface.

To make it easy to get started, newly created form folders are pre-populated to act as a simple e-mail response form.

	PloneFormGen product page [http://plone.org/products/ploneformgen]

Getting started with PloneFormGen

	Getting Started with PloneFormGen
	Introduction

	Getting Started

	Form Folder Settings

	Overview of Field Types

	Adding a String Field

	PloneFormGen editing environment

	Changing the Order of the Fields

	Text Field

	Selection and Multi Select

	The Thank You Page

	The Mailer Adapter

	Configuring the mailer adapter

	The Save Data Adapter

PloneFormGen topics

	Installing PloneFormGen

	Overriding field defaults dynamically

	Creating custom validators

	Using a selection field to pick mail destination

	Restyle a form

	Adding a JavaScript event handler to a form

	Customizing an individual thanks page

	What's in a Request

	Creating a Multi-Page Form

	Adding CAPTCHA Support

	Frequently Asked Questions

Advanced topics

	Simple SQL CRUD with PloneFormGen

	Using GnuPG encryption

	Embedding PloneFormGen forms

	Adding Custom Fields, Action Adapters or Thanks Pages

	Creating content from PFG

	Custom mailer script

	Fail-safe email sending

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Getting Started with PloneFormGen

Description

Learn the basics of creating web forms with PloneFormGen

	Introduction

	Getting Started
	Create the form

	Form Folder Settings
	Adding text to the form

	Overrides

	Overview of Field Types
	Common field types

	Adding a String Field
	Basic field info

	Validators

	PloneFormGen editing environment

	Changing the Order of the Fields

	Text Field

	Selection and Multi Select
	Selection field

	Options

	Presentation widget

	Value|label

	Multi-select

	The Thank You Page
	Add content to the thank you page

	Fields

	The Mailer Adapter
	Overview

	Configuring the mailer adapter
	Addressing

	Message

	Template, encryption, & overrides

	The Save Data Adapter
	Configure the adapter

	Retrieving your data

	Safety Net

Introduction

Please read general PloneFormGen information first

Getting Started

Note

The best place to start for non-technical Plone users.

To get started building a custom form using PloneFormGen, you must first create a Form Folder. A form folder is a lot like a normal Plone folder - you use it to organize and hold other types of content. The Form Folder also has some settings of its own that will control the behavior and appearance of the form.

Click Add Item and choose Form Folder from the drop-down menu.

[image: screenshot: Adding form folder via drop-down]

Create the form

Provide a Title and Description for the form. You can also change the wording of the Submit or Reset button if you wish.

Ignore the rest of this edit screen for the time being and just click Save at the bottom.

[image: screenshot: Creating the form]

Form Folder Settings

Description

Learn how to configure your form.

You now have a basic form to work with. By default, a form starts with E-Mail Address, Subject and Comments. These are fields you get automatically, every time you create a new form.

[image: screenshot: Basic form]

Adding text to the form

Before you learn how to add new fields, or change existing ones, let's look at how you can add some simple text above and below the form.

You may want to include instructions to your site visitor about how to fill out your form, or what the purpose of the form is supposed to be. You can add that descriptive text as follows:

	Edit the Form Folder by clicking on Edit in the taskbar

	Now you'll see two Body Text areas called Form Prologue and FormEpilogue (which means before and after). Use the text editor to format your content, include links, and even pictures. Click Save when you're all done.

[image: screenshot: prologue and epilogue]

Overrides

When in the Edit mode on the Form Folder, notice the Overrides tab on the right-hand side of the page properties tabs. Form submission behaviors can be customized in this tab.

Read the on-screen help to give you an idea what sort of customizations are possible here. Depending on what you need to do, you may need to learn how to write some basic TALES or Python code. Don't be afraid though!

[image: screenshot: overrides tab]

Overview of Field Types

Description

Learn about the commonly used field types in PloneFormGen.

By now you've seen how to create a new form. The next step is to learn how to add new fields to the form.

There are a lot of different types of fields that one can employ. You've probably seen many of those types of fields around on the Internet like a text box, a list you can choose from, a checkbox, radio buttons, and so on.

Some of the field types that are included with PloneFormGen will not be discussed here as they are used more for advanced applications than for basic web forms. The field types discussed here should be all you need to create useful forms in Plone.

Common field types

Navigate to your Form Folder and push the Add Item button. You should see a long drop-down menu appear. There's a lot of choices, but we've chosen the four most common to focus on for this tutorial.

	String Field

	This is probably the most commonly used field. It's a simple, one-line text box for gathering info like name, address, e-mail, phone number and so on.

	Text Field

	A large text box for gathering things like comments or other long-form text responses.

	Selection Field

	This field type is to gather one choice from a list of selections. The list can be checkboxes, radio buttons, or a text list.

	Multi-Select Field

	Use this field type if you want to let your site visitor select multiple items from a list.

You'll notice that there is a special icon for each field type. It's a good idea to get familiar with how each one looks so you'll be able to recognize the different field types at a glance.

In the next section, you'll see how to add and configure a string field; the most common type of form field.

Adding a String Field

Steps to adding a single text line field called a String.

Navigate to your Form Folder and click Add Item. Select String Field from the drop-down menu.

The string field creates a simple one-line text box. Some common uses for this field type are:

	First Name

	Last Name

	Email

	Street Address

	Lots more!

Basic field info

Many field types have the same information on their edit screen. Here's an explanation of each of these:

	Field label

	The title of the field.

	Field help

	Some text you can provide to the form submitter to help them figure out what you're asking for.

	Required

	Is this a required field?

	Hidden

	Is this a hidden field? This is useful for passing data back to yourself.

	Default

	You can supply a defult value that the form submitter can change if they wish.

Other types of information can be defined for other field types, and we will cover those as they come up. Since we're talking about the string field, let's take a moment to talk about validation.

Validators

Validation is a feature common to many web forms. A validator checks that the input being provided conforms to a particular format. For example the "email address" validator simply checks that the input contains an @ sign (i.e. contact@groundwire.org). There are a set of standard validators available for string fields such as: Valid US phone number and Valid zip code.

In practice validators can be helpful, but in some cases they may be too restrictive. If your site visitors are from outside the US, they mey become frustrated with trying to get past US-centric form validators!

PloneFormGen editing environment

Note that PloneFormGen has both an Edit tab and a QuickEdit tab on the taskbar. The Edit mode mainly allows you to edit major settings for the entire form. The QuickEdit mode allows you to interactively edit the form. It's much a much easier way to add, edit, delete and reorder fields.

In QuickEdit mode, you may add fields by dragging them from the toolkit at the right side of the page and dropping it into the target position in the form.

If you want to see the form the way that your site visitors would, you can click on View in the taskbar. Likewise you can get to the editing environment from the normal view, by clicking the QuickEdit tab in the taskbar.

Note that you cannot complete or submit the form when working in the editing environment. You will need to return to the normal form view first.

[image: screenshot: Quick edit demo]

Changing the Order of the Fields

Description

How to rearrange fields in your form.

By now you're probably wondering how to change the order that fields appear on your form. By default, when you create a new field, it will appear at the bottom of your form. Often, this isn't the result you wanted to see.

Navigate to your Form Folder and click on the QuickEdit tab on the taskbar to enter the form editing environment.

Notice that the column on the far left called Order. You can move the position of each field by clicking and dragging each field around if you hover your mouse pointer in the Order column. Continue to rearrange fields until you have the layout you want.

To see the results, you need to click on the View tab to see your form the way your site visitors will.

Text Field

Description

How to add a text box for collecting comments or other text.

A Text field is like a string field except that it's a large box instead of a single line. You can change the size of the field by adjusting theRows and Max Lengthparameters.

Rows controls the vertical height of the text box. Max Length controls the number of characters the site visitor can input at a time. If you want to limit a Comments text box to short comments, you might choose 500 characters as the limit.

The Default field can be used if you want to suggest some content to the site visitor or wish to show an example of the sort of information you want from them.

You can also Reject Text with Links to discourage people from adding links to your text area field. One reason why you might choose to do this would be if you're asking someone to enter some information and you don't want them to simply link to a blog entry or other online content.

Selection and Multi Select

Description

How to create menus and checkboxes for selecting items from a list within your form.

In addition to text boxes and the string field, selection and multi-select are commonly used field types. They allow site visitors to choose a selection from a list, drop-down menu, radio buttons or checkboxes.

Selection field

As before, you must be in your Form Folder to add additional fields. Choose Selection Field from the list in the Add New drop-down menu or the QuickEdit toolkit.

In addition to the regulars like Field Label and Field Help, there is Options and Presentation Widget to consider.

Options

Options is for establishing what the options in the field are going to be. Each option should be separated with a line break.

Presentation widget

The Presentation Widget is the kind of graphic used for gathering the input: you can choose either Radio Button or Selection List (a drop-down menu). The option Flexible simply means that you leave it up to PloneFormGen to decide which widget is most appropriate. Basically, if you have more than three choices it will use the selection list. Less than three will appear as radio buttons.

Value|label

Entering Options can be done in one of two ways. Either "one line per option" or the "Value|Label format". One line per option is described above, but what about Value|Label?

Let's say you want to present some choices, but the actual value recorded by the form is different than what the form submitter sees on the screen. For example, let's say that you want to ask a site visitor what county they live in, but in your program work you classify counties into regions like "Northwest" and "Southeast". Instead of asking the visitor to identify which region they live in (which some might get wrong or misunderstand) you could present them a list of counties.

In the above example you would format Options like this:

Northwest|Jefferson
Northwest|Island
Northwest|Mason
Southeast|Columbia
Southeast|Asotin
Etc . . .

In this example, if a visitor selects "Jefferson" as their county, the form would record the entry as "Northwest".

Multi-select

Multi-select is very similar to a Selection Field except that you have an additional widget (the checkbox) and your site visitors can choose many options from one list.

If you plan to use the Selection List widget for a multi-select field, it is helpful to include a note about the Control key in Field Help. In order to actually choose more than one option in the list, you must hold down the control key (CRTL) on your keyboard and then click to select/de-select options. Because of this, it is most often the best choice to use the Checkbox widget instead of Selection List for a multi-select field.

The Thank You Page

Description

How to customize the page a site visitor sees after submitted the form.

After a site visitor has filled out your form and clicks submit, they will see a page thanking them for their input. Look in your Form Folder and you should already see a Thank You page in the contents.

It doesn't matter where the Thank You page appears in your Form Folder contents. It will always work the same, no matter its folder position.

By default, the thank you page only lists a summary of what the site visitor put into the form. Here's an example of what that looks like, to the right.

Note: You will only see this result if you fill out the form and submit it. Otherwise, if you try to navigate or link to the thank you page directly, you get a message that says something like "no input was received".

Add content to the thank you page

The above example is decent, but there will be times that you may want to say something more, or even provide a few links for your site visitor to follow. Edit the Thank You page in your list of Form Folder contents. You should now see the familiar Title and Description fields, but you'll also see:

	Thanks Prologue

	Thanks Epilogue

	No Submit Message

If you've chosen to display any field results the Prologue content will appear before those results and the Epilogue content will appear after. If you aren't going to display field results, just use the Prologue.

Should you wish to change the No Submit Message (remember, if you just hit submit on your form without filling out any fields, you'll see this message) you can do so here. You have the full power of Plone's text editor so feel free to include links and formatted text here.

Fields

thanks-fields.gif

When editing the Thank You page, notice the Fields tabnext to Default. Here's where you can control which field results to display or which ones to take out. Simply uncheck Show All Fields if you don't want to display any results on the Thank You Page.

The Mailer Adapter

Description

Learn to configure the adapter which sends an email after the form is submitted.

Overview

Adapters control what happens to the form data that your site visitors submit the form. The Mailer Adapter will send form data to an email address or addresses of your choosing. The Save Data Adapter will save the results in your Form Folder so that you can export any time you wish. You can even use adapters concurrently to get the functionality of both.

Configuring the mailer adapter

The Mailer Adapter is probably the more complex of the two adapters covered in this tutorial. As such, we won't go through and explain all the options present in the Mailer Adapter. However, we will cover the most important options available.

Go ahead and edit the Mailer Adapter in the form editing environment. The first screen you see look like this:

From here you can do three things:

	Change the Title of your Mailer Adapter (really no reason to unless you have more than one)

	Choose a recipient name

	Choose a recipient email address

Addressing

Now notice the tabs [default] [addressing] and so on. Click on [addressing].

The Addressing screen allows you to make selections about other recipients any dynamically populate the From and Reply-to fields directly from form data.

Message

The Message tab allows you to configure the:

	Subject Line

	Email body content

	Form field data that appears in the email message

Template, encryption, & overrides

These options are beyond the scope of this tutorial as they require a discussion of HTML, TALES and Python programming languages as well as an understanding of mail server configuration.

The Save Data Adapter

Description

Collect and save answers from each from submission with the Save Data Adapter.

Unlike the Mailer Adapter, the Save Data Adapter isn't automatically created when you build a new Form Folder. As such, you must add it yourself by clicking Add New (when you're in your Form Folder) and selecting the Save Data Adapter from the drop-down menu. Or, drag and drop it from the toolbox in QuickEdit mode.

The first thing you'll see is a screen like the one to the right.

Configure the adapter

Enter in a Title that sounds good to you (My Saved Form Data, for example). Your site visitors won't see this title at all, so anything will do.

Next, you can select some Extra Data to store if you wish. Most of these choices are for fairly esoteric things, but Posting Date/Time could be helpful if you want to know when someone filled out your form.

Download Format depends on what your preferences are, but Comma-Separated Values is probably the most common. It really depends on if you are going to plug the info into a database, and what type of file is most appropriate for that. If the info is for human eyes only, then it doesn't really matter what you pick here. Europeans: you may choose to use a colon rather than a comma for CSV on the PloneFormGen config panel in site setup.

Now click on Save to finish. You do not need to put anything into the Saved Form Input box. If your Save Data Adapter had any data in it, it would appear in that box.

That's all there is to it. Sit back and wait for the data to come pouring in!

Retrieving your data

Once your form has been filled out a few times by site visitors, you can start retrieving the form data. You need to navigate to your Form Folder and click on the Contentstab to get a view of all contents.

Now click on your Save Data Adapter. You should then see a screen like this one at the right.

You can download the form data as many times as you want. The data will always be there as long as you don't delete the Save Data Adapter. If you click Clear Saved Input all data will be erased as well.

Safety Net

A common way of saving important data is to use two save data adapters in your form. Use one to occasionally harvest new data and clear it. Use the other to save all your history.

Note

This document was originally written by Sam Knox for Groundwire. Thanks to both Sam and Groundwire for passing it on to the Plone Foundation.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Installing PloneFormGen

Description

PloneFormGen is a Plone add-on product, and is not included with Plone. Fortunately, it's easy to install.

PFG installs just like most other Plone add ons. Edit the buildout.cfg file at the top of your Plone instance and look for the eggs = section that specified Python Packages that you with to include. Add PloneFormGen:

eggs =
 Plone
 ...
 Products.PloneFormGen

Run bin/buildout and restart your Plone instance. Dependencies will be loaded automatically.

After restarting Plone, visit your site-setup page and use the "add on" configuration page to activate PloneFormGen.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Overriding field defaults dynamically

Description

PloneFormGen allows you to supply dynamic field defaults by specifying a TALES expression in the Default Expression field of the overrides fieldset (sub-form). This how-to explains what that means, and offers a few examples.

Creating a dynamic field default means to have a form field's initial value change with context. We might, for example, wish to use a member's e-mail address, which would vary with the user. Or, we might be looking up some data via a catalog or RDBMS query, and wish to supply that to the user for correction.

Template Attribute Language Expression Syntax (TALES) is a simple notation that allows determination of a value via path (as in path/to/object), string or Python expressions. It is used in Zope's Template Attribute Language (TAL), and is ubiquitous in Plone templates. This how-to does not teach you TALES; for that, try the Zope Page Templates Reference [http://www.plope.com/Books/2_7Edition/AppendixC.stx#1-10].

Warning

Please note that it's easy to make a mistake when working with TALES fields that will cause an error when you try to display your form. Stay calm! Take note of the error message, and return to the field edit form to fix it. Don't be scared of this kind of error.

A quick example

Let's say you wish to put the member's id in a string field default. You may do that with the TALES expression:

member/id

This is a path expression. "id" is found in the "member" object and returned.

There's a gotcha here. What if the form is viewed by an anonymous visitor? They'll receive an error message. We can avoid that with the expression:

member/id | nothing

The vertical bar (|) marks alternate expression that is used if the left-hand expression is empty or can't be evaluated. Here we're saying to show nothing if member/id can't be evaluated.
Using Python

You may also use Python expressions:

python: 5 + 3

would supply a value of 8. This is trivial, but what about:

python: DateTime() + 7

This would supply the current date/time plus seven days.

The name space

Here are the objects available when your expression is evaluated.

TALES context

	here

	The current object. A bit dangerous since this varies depending on context.

	folder

	This will be your form folder.

	portal

	The portal object.

	request

	The REQUEST object. Note that request/form contains form input.

	member

	The authenticated user's member data -- if any.

	nothing

	Equivalent to Python None.

	folder_url

	URL of the form folder.

	portal_url

	URL of the site.

	modules

	Module importer.

Note

Some of these identifiers are supplied by PloneFormGen and are not available in other contexts.

When you compose your TALES expression, keep in mind that it will need to return different types of data for different types of fields. For simple field defaults, return a string value; for the lines field, return a list or tuple.

Calling a Python script

You'll be frustrated fast if you try to do anything smart in a single TALES expression. If you need to do something more complicated, add a Python Script to your form folder and call it via TALES. For example, if you added a script with the id getEmail, you could call it with the expression:

folder/getEmail

Make sure your script returns the value you wish to use as a field default, in the appropriate format.
Setting Many Defaults With One Script

If you need to dynamically set several fields, you may do it with one script. Call the script by specifying it in the Form Setup Script field of the form folder's overrides fieldset.

Set the form fields by putting them in the request/form dictionary. Make sure you don't overwrite anything that's already in the dictionary, as that is probably previously submitted input.

For example, we could create a Python Script (using the ZMI) in the form folder:

request = container.REQUEST

request.form.setdefault('topic', 'value from python script')

If the script id was setTopicDefault, we'd call it by putting:

here/setTopicDefault

in the Form Setup Script field of the form folder's overrides fieldset.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Creating custom validators

Description

PloneFormGen allows you to create a custom field-input validator by specifying a TALES expression that will be used to validate input when it's submitted. This how-to explains what that means, and offers a few examples.

Template Attribute Language Expression Syntax (TALES) is a simple notation that allows determination of a value via path (as in path/to/object), string or Python expressions. It is used in Zope's Template Attribute Language (TAL), and is ubiquitous in Plone templates. This how-to does not teach you TALES; for that, try the Zope Page Templates Reference [http://www.plope.com/Books/2_7Edition/AppendixC.stx#1-10].

Warning

Please note that it's easy to make a mistake when working with TALES fields that will cause an error when you try to display your form. Stay calm! Take note of the error message, and return to the field edit form to fix it. Don't be scared of this kind of error.

The rules for writing a validator are:

	You should validate against the the variable value, which will contain the field input. Note that -- for simple fields -- value will be a string. But, for a lines field, the contents of value will be a list.

	Return False or zero if you wish to accept the input.

	Return a string containing a user-feedback message if you don't wish to accept the input.

	Don't change the value variable. It won't do you any good.

A simple example

Let's say that you are operating a restaurant that serves only dishes containing spam. You may wish to check to make sure that the input to a string or text field contains "spam". You may do that with by setting a custom validator that reads:

python: 'spam' not in value and 'Input must include spam.'

The odd logic comes from the need to return False for valid input. Look at a couple of examples of validation in action with literal strings. Remember, we want to force spam on the user:

>>> 'spam' not in "eggs, eggs, bacon" and 'Input must include spam.'
'Input must include spam.'

>>> 'spam' not in "eggs, eggs, bacon and spam" and 'Input must include spam.'
False

The name space

Here are the objects available when your expression is evaluated.

TALES context

	value

	The field input.

	here

	The current object. A bit dangerous since this varies depending on context.

	folder

	This will be your form folder.

	portal

	The portal object.

	request

	The REQUEST object. Note that request/form contains form input.

	member

	The authenticated user's member data -- if any.

	nothing

	Equivalent to Python None.

	folder_url

	URL of the form folder.

	portal_url

	URL of the site.

	modules

	Module importer.

Note

Some of these identifiers are supplied by PloneFormGen and are not available in other contexts.

Using a Python script

You'll be frustrated fast if you try to do anything smart in a single TALES expression. If you need to do something more complicated, add a Python Script to your form folder and call it via TALES. For example, if you added a script with the id includesSpam, you could call it with the expression:

python: folder.includesSpam(value)

Make sure your script returns False if you wish to accept the input, or an error string otherwise.

Here's what a validator script to check for spam might look like:

if 'spam' in value.lower():
 return False
else:
 return "'%s' doesn't seem to have spam. Try again." % value

Make sure your script parameter list includes value. (Alternatively, you may check the request.form dictionary,
which will include form input.)

Note

Python scripts are not the same as the Custom Script Adapter. The latter is meant to make it easy to add a custom adapter that's processed in the same way as the mail or save-data adapter. Python scripts are just simple Python code fragments that act like functions. They are added via the Zope Management Interface

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Using a selection field to pick mail destination

Description

You may allow form users to use a selection field to choose a destination address for their form input.

I'm trying to use a PloneFormGen form as a support center for my project and I would like to have the mail sent to different email addresses based on a choice from a selection field.

How can I do it?

The form

First, create a selection field in your form

In the Options field, specify your set of possible destination addresses in a "value|label" format where the e-mail address is the value and its readable name the label. For example:

softwarehelp@example.org|Software Support Desk
hardwarehelp@example.org|Hardware Support Desk

Then, pick the address (the actual e-mail address value, not the label) you wish selected by default. Put it in the Default field. Make sure the Required checkbox is selected.

Save the form field.

Configuring the mailer

Now, edit the mail adapter for your form. (Navigate to the form folder, click on contents, find your mail adapter and follow the link; select the edit tab.)

Choose the [addressing] sub-form and find the Extract Recipient From field. You should see a None choice and a list of all of the selection fields in your form. Select the field you just created and save your changes.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Restyle a form

Description

How to inject CSS into a form page to turn a label green ... or pretty much anything else.

The general answer to "how do I restyle a form" questions is: use CSS.

The underlying Archetypes form generator surrounds every form element with a <div> with a distinct ID. For example, a sample form with a textarea contents field has the generated XHTML:

<div class="field ArchetypesTextAreaWidget"
 id="archetypes-fieldname-comments">

 <label for="comments">Comments</label>

 (Required)

 <div class="formHelp" id="comments_help"></div>
 <textarea rows="5" name="comments" cols="40" id="comments"></textarea>
 <input type="hidden" name="comments_text_format" value="text/plain" />
</div>

That's more than enough ID and Class selectors to do pretty much anything in the way of visual formatting.

So, how do we get the CSS into the form's page. You could add it to the site's css, but there's a much easier way. Using the ZMI, create an object of type File inside your form folder. Set its Content Type to "text/plain" and give it the ID "newstyle".

Let's turn the label for the comments field green. Just fill in the big text field on your file with:

<style>
#archetypes-fieldname-comments label {
 color: green;
}
</style>

Now, just save it, return to the Plone UI and edit your form folder. Specify "here/newstyle" for the Header Injection field of the overrides pane. Now, enjoy your green label.

Putting checkboxes in a row

Now, for a more useful example. It's a common requirement to want to put a set of checkbox fields on a single line.

The easiest way to set this up is to create the list of checkboxes as a multi-selection field with "checkboxes" designated for display. That's going to generate markup that will look something like this:

<div id="my-questions">
 <div class="formQuestion label">
 My Questions

 </div>
 <div id="archetypes-value-my-questions_1" class="ArchetypesMultiSelectionValue">
 <input type="checkbox" name="my-questions:list" value="a" id="my-questions_1" class="blurrable">
 <label for="my-questions_1">Choice A</label>
 </div>
 <div id="archetypes-value-my-questions_2" class="ArchetypesMultiSelectionValue">
 <input type="checkbox" name="my-questions:list" value="b" id="my-questions_2" class="blurrable">
 <label for="my-questions_2">Choice B</label>
 </div>
 <div id="archetypes-value-my-questions_3" class="ArchetypesMultiSelectionValue">
 <input type="checkbox" name="my-questions:list" value="c" id="my-questions_3" class="blurrable">
 <label for="my-questions_3">Choice C</label>
 </div>
</div>

Note that each checkbox/label pair is in a DIV with the class "ArchetypesMultiSelectionValue". The basic CSS couldn't be simpler:

<style>
#my-questions div.ArchetypesMultiSelectionValue {
 float: left;
}
</style>

Of course, you'll need to do some more styling. First of all, you'll need to set a clear: left on the following control. And, you'll need to do some padding.

Putting string fields in a row

Making string fields display horizontally is a little different than the solution for checkboxes. There is no div wrapping the string fields like there is with check boxes. To get around this, add a fieldset and put the fields in the fieldset. This also lets you isolate the horizontal fields from other vertical fields. Here, two fields are required, one is not. The markup will look similar to this:

<fieldset class="PFGFieldsetWidget" id="pfg-fieldsetname-name">
 <div class="formHelp" id="name_help"></div>
 <div class="field ArchetypesStringWidget " id="archetypes-fieldname-first-name">
 <label class="formQuestion" for="first-name"> First Name ■ </label>
 <div class="formHelp" id="first-name_help"></div>
 <div class="fieldErrorBox"></div>
 <input type="text" name="first-name" class="blurrable firstToFocus" id="first-name" size="20" maxlength="30" />
 </div>
 <div class="field ArchetypesStringWidget " id="archetypes-fieldname-middle-initial">
 <label class="formQuestion" for="middle-initial"> Middle Initial </label>
 <div class="formHelp" id="middle-initial_help"></div>
 <div class="fieldErrorBox"></div>
 <input type="text" name="middle-initial" class="blurrable firstToFocus" id="middle-initial" size="1" maxlength="1" />
 </div>
 <div class="field ArchetypesStringWidget " id="archetypes-fieldname-last-name">
 <label class="formQuestion" for="last-name"> Last Name ■ </label>
 <div class="formHelp" id="last-name_help"></div>
 <div class="fieldErrorBox"></div>
 <input type="text" name="last-name" class="blurrable firstToFocus" id="last-name" size="30" maxlength="255" />
 </div>
 </fieldset>

Here is the CSS:

<style>
/* Displays the 3 string fields horizontally. Turn off the clear from Public.css. This is necessary to display horizontally. */
#pfg-fieldsetname-name div.ArchetypesStringWidget {
 float: left;
 clear:none;
}

/* needed for space between fields */
#archetypes-fieldname-middle-initial
{
 padding: 0 1em;
}

#content fieldset#pfg-fieldsetname-name
{
/*Hide the border on the fieldset */
 border-style: none;
/*Need this to left align the fields inside the fieldset with the fields outside the fieldset*/
 padding-left: 0;
}
</style>

An alternative way to inject CSS

Let's say you've got a lot of CSS. You may want to use an external style sheet file rather than inject the whole bundle into the header with every form display.

Let's say the CSS resource is named form_styles.css. Then, just put the following in your overrides / header injection field:

string:<style>@import url(form_styles.css)</style>

We can get a little fancier to generate absolute URLs for the style file:

string:<style>@import url(${here/form_styles.css/absolute_url})</style>

using the string interpolation feature of TALES.

Note

Need to do something more sophisticated? You can use a Python script to generate dynamic CSS or JavaScript.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Adding a JavaScript event handler to a form

Description

Need to make your PFG forms more dynamic? It's easy to add JavaScript.

There are two basic steps to injecting JavaScript into a PFG form:

	Use the Zope Management Interface to create a text file (object type: file; mimetype: text/plain) either inside the form folder or in a skin folder;

	Use the form folder's edit / overrides pane, header injection field to tell PFG to inject it into the form.

Injection

Let's look at the second step first. Let's say that your JavaScript file is named form_js. Then just specify:

here/form_js

in the header injections override field.

The JavaScript

There are a couple of considerations here:

	Since this is a header injection, you'll need to supply the SCRIPT tags;

	You'll nearly certainly want to use jQuery to attach the event handler, since jQuery is part of Plone.

<script>
jQuery(function($) {
 $('#my-questions :input')
 .click(function() {
 alert('checkbox clicked');
 });
});
</script>

This code fragment shows off both, and attaches an alert to every input in the mqy-questions field.

Note the use of the common jQuery idiom:

jQuery(function($) {
 ...
});

This accomplishes a couple of things: 1) it sets the code up to run once the page is loaded; 2) it aliases "jQuery" to "$" so that we may use common jQuery shorthand.

An alternative injection

If you want to use a separate JavaScript file that is actual JS (no script tags) and will be shared among forms, just use the header injection override like this:

string:<script src="form_scripts.js" />

assuming your script is named form_scripts.js. You may make it a little more sophisticated if you need an absolute URL:

string:<script src="${here/form_scripts.js/absolute_url}" />

using TALES string interpolation.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Customizing an individual thanks page

Description

It's not hard to customize the thanks page for an individual form. This trick is particularly useful for purposes like adding 'pay now' buttons.

If you can tolerate a little work in the Zope Management Interface, you'll find it very easy to customize the Thanks Page for an individual form.

The steps:

	Create your form;

	Bring up the Zope Management Interface; navigate to portal_skins/PloneFormGen;

	Open the fp_thankspage_view template; push the Customize button; this puts an editable copy of the thanks page template in your custom skin folder.

	Step back to the Custom folder listing (still in the ZMI); cut the fp_thankspage_view template;

	Navigate to your form folder; paste it there.

	Edit the template to insert your Pay/Donate Now form and button code, or whatever other custom code you might need just for this form.

Note

Note: If there is already an fp_thankspage_view template in your custom skin folder (perhaps because you've already customized the template for the site), you'll be cutting and pasting a new copy.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

What's in a Request

Description

If you're trying to use PloneFormGen overrides, you're going to need to use the request object. Here's a quick trick for exploring it.

As a page is assembled by Zope and Plone following a browser request, information about that request is bundled into a non-persistent, pseudo-global request object. This object is available in the scripts, templates and TALES expressions you may use in creating PloneFormGen overrides. It will contain the form input submitted by the user.

To effectively write more complex overrides, you're going to need to know how to get information out of the request object.

Note

The Request class itself is well-documented in the Zope help system (API section) and in the source at Products.OFSP-2.13.2-py2.X/Products/OFSP/help/Request.py.

Here's a quick recipe that will help you examine the form input contained in the request.

	Jump into the ZMI and navigate to your PFG Form Folder. Inside it, create a Page Template named showrequest. Now, just before </body>, add:

<div tal:replace="structure request" />

Note: when the request object is called, it renders a readable, HTML version of the data. We use "structure" to prevent escaping the HTML.

	Give your template a title and save it away.

	Return to Plone and your form folder. Edit it, and on the form's [overrides] pane, set a Custom Success Action of:

traverse_to:string:showrequest

Note that this will override any thanks page you've specified. Just clear it when you're done developing.

Now, just fill out your form, and submit it. You should see the contents of the request object. Take a particular look at the form section. That's a dictionary available as request.form when you're composing an override.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Creating a Multi-Page Form

Description

You can create a multi-page form as a chain of form folders.

Creating a multi-page form is probably much simpler than you might suppose. You may do it by just creating a sequence of form folders that each link to the next.
The basic procedure is:

	Create your sequence of form folders, typically all in the same normal Plone folder;

	On all but the last form folder, turn off all action adapters and set the Custom Success Action override to "traverse_to:string:id-of-next-form-folder";

	On all but the last form folder, set the Submit Button Label to something like "Next" and turn off the cancel button.

	On all but the first form folder, set the Exclude From Navigation flag in the properties tab;

	In each form folder, create a set of hidden form fields matching all the fields in all the previous forms;

	In the last form, turn on your real action adapter(s).

As your user moves from form page to page, input will be automatically saved in the hidden fields of subsequent pages.

Note

A Note on Hidden Fields: The hidden flag is not available for all form field types, but you don't need it. String, Text and Lines fields are adequate to carry all the basic data. Use a hidden Lines field to hold multiple selection field input, string or text for the rest.

An added bonus

If you want to create a sequence of forms, where the answers on form_A could lead to a form_B or form_C, you can use a traverse_to override.

	Create a selection field in form_A, which could be called 'formnext';

	As values in the selection field, put the paths to the next forms in the sequence;

	Then, in the form overrides -> custom success action use

traverse_to:request/form/formnext

Note

use traverse_to as opposed to a redirect_to as this will preserve the form object in the request.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Adding CAPTCHA Support

Description

PloneFormGen has built-in support for Re-Captcha. This howto-tells you how to enable it.

PloneFormGen and CAPTCHA Fields

When PFG is installed in a Plone instance via add/remove products, it will look for evidence that either collective.captcha or collective.recaptcha are available. If that's found, the CAPTCHA Field will be added to the available field list.

If you are using collective.recaptcha, you need to take the additional step of setting your public/private keypair. You get these by setting up an account at recaptcha.net. The account is free. You may specify your keypair in the PFG configlet in your site settings.

Note

If you add a captcha facility after installing PFG, you will need to reinstall PFG (via add/remove products) to enable captcha support.

Installing collective.recaptcha

Add the following code to your buildout.cfg to install collective.recaptcha and Products.PloneformGen together:

[buildout]
...
eggs =
 Plone
 ...
 collective.recaptcha
 Products.PloneFormGen
 ...

	Re-run bin/buildout and relaunch your zope/plone instance.

	Open the PortalQuickinstaller or plone control panel and install (or reinstall if already installed) PloneFornGen.

	Open the PloneFormGen configlet in the Plone control Panel and fill in the fields with your Public and Private Keys of your ReCaptcha Account. Obtain keys from reCaptcha.net [http://www.google.com/recaptcha/whyrecaptcha].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Frequently Asked Questions

	Q. How can I make a date/time field default to current time?

	Q. I've made an error in a TALES expression, and now I can't view or edit my form!

	Q. How do I make a field default to the member's name/address/id?

	Q. Where is the encryption option?

	Q. I've just added a form folder, and the action adapter list only includes "None" and "Mailer". Where is the save-data adapter?

	Q. Why are these action adapters content types? Why aren't they just built into the form folder?

	Q. When I attempt to submit a form, I get an AssertionError "You must specify a recipient e-mail address in the mail adapter."

	PloneFormGen missing from Add list?

	How do I add a hidden field with the username?

	Q. Dynamically populate selection fields?

	Q. Could a selection field in a FormFolder be used to redirect?

	Use a "From" address other than the site address?

	Q. Can I integrate my favorite field/widget?

	Q. Captcha field is not accessible?

Q. How can I make a date/time field default to current time?

In the field's "overrides" fieldset, specify as Default Expression:

python:DateTime()

Note that you may do some simple date arithmetic. To set the default a week after server time, use:

python:DateTime() + 7

Q. I've made an error in a TALES expression, and now I can't view or edit my form!

An error in a TALES override may prevent you from viewing the form, but it shouldn't stop you from editing it.

To edit, navigate to the form (you'll see your error).

	If the error is in a form override, add "/atct_edit" to the end of the URL to reach the editor. That will allow you to reach the form editor; now go to the overrides fieldset and fix the problem.

	If the error is in a field override, add "/folder_contents" to the end of the URL to reach the folder contents. Click on the troubled field; you'll again get an error. Now, add "/atct_edit" to the end of the URL to reach the editor.

Q. How do I make a field default to the member's name/address/id?

In the field's override fieldset, set the Default Expression to:

here/memberEmail

memberEmail is a method of the form folder which will return a member's e-mail address, if one is available, and an empty string otherwise.

You may also use "here/memberFullName" to get the member's name, and "here/memberId" to get the login id.

Note

memberEmail, memberFullName and memberId are just a convenience facility of PloneFormGen. They are not part of the Plone API.

Q. Where is the encryption option?

I understood PFG could GPG encrypt mail, but can't find the option to do it.

Navigate to your mail adapter and edit it. Look in the fieldset list (the list of bracketed sub-forms at the top of the form).
Do you see an encryption field set title? If so, you've found the option. If not, it means that PFG was unable to find the gpg binary when it started. Read the README_GPG.txt file in the PFG product folder for details on how to solve this problem.

Don't forget that after you install GnuPG, you'll need to restart Zope or refresh your PFG product.
Where is the save-data adapter?

Q. I've just added a form folder, and the action adapter list only includes "None" and "Mailer". Where is the save-data adapter?

You need to add it to the folder via the add-item drop-down.

A mailer adapter is in the "sample" form created when you add a form folder because it's probably the most common use. Other adapters need to be added.

Q. Why are these action adapters content types? Why aren't they just built into the form folder?

There are several reasons. One is that doing it this way makes it easy to copy configured action adapters from one form to another.
How do I specify a recipient e-mail address?

Q. When I attempt to submit a form, I get an AssertionError "You must specify a recipient e-mail address in the mail adapter."

The error is occurring because PloneFormGen doesn't have a recipient address to which to mail the form input.

To fix this, choose the contents tab of your PFG form folder. Navigate to the mailer and use its edit tab. Choose the "addressing" fieldset and specify a recipient address.

By the way, if the recipient address isn't specified, PFG tries to use the e-mail address of the form folder's owner. So, you'll only see this error if you've failed to set an e-mail address in personal preferences.

PloneFormGen missing from Add list?

I installed the release of PloneFormGen in my Products directory in Plone 2.5.x, and neither the ZMI (/Control_Panel/Products) nor Plone (Quick Installer) seemed to recognize it after restarting my Zope.

Zope has probably encountered an error in the course of loading the product.

Try checking your event.log for related error messages. You may wish to try starting Zope in foreground mode (bin/zopectl fg for a standalone zope) for more diagnostics.

How do I add a hidden field with the username?

Create a string field and mark it hidden.

On the overrides tab, set "here/memberId" for the Default Expression.

Note

To follow this recipe, you'll need to have permission to edit TALES fields.

Q. Dynamically populate selection fields?

Can I dynamically populate selection and/or multi-selection fields in PloneFormGen?

Yes, just use the [overrides] panel of the field's edit view to set an Options Vocabulary.

It should be a TALES expression that evaluates as a list of value/label lists (tuples are also OK).

For example, let's say that we wanted a selection field populated with option values '1', '2', '3', '4' and matching visible labels 'one', 'two', three', 'four'. The TALES code for this would be:

python: (('1','one'), ('2','two'), ('3','three'), ('4','four'))

It's unlikely, though, that you'll be able to do what you need in a single line of TALES. So, a more typical use would be to create a python script that returns a sequence of value/label sequences. If you put that script in your form folder, you can just fill in:

here/myscriptid

in your Options Vocabulary field.

Q. Could a selection field in a FormFolder be used to redirect?

I have created a custom FormFolder, using PloneFormGen. Within the FormFolder, I have created a page and added a selection field with value/label pairs equivalent to: path (url) | company department -->i.e. http://my.site/reports/accounting|Accounting I am wondering if it is possible to create an action override that would 'redirect_to' the 'selected' value in the selection field, something like: 'redirect_to:string: ' If so, how might I access the value from the selection field?

For the redirection, just put something like:

redirect_to: request/form/my-selection-field

in the Custom Success Action field on the form folder's [override] panel.

If you need to do something more complicated, you can use the "Custom
Script Adapter" in the 1.1 alpha and end your code with:

request.response.redirect(request.form['my-selection-field'])

Use a "From" address other than the site address?

One stock-field is called replyto and contains a valid email address. I want this address to be in the From: line - not just in Reply-To:. So I could fill in a TALES expression to overwrite the default sender-address. But what's the correct TALES expression for that?

By default, PloneFormGen's mailer sends mail with the "From" address set to the site's global "From" address (specified in site setup / Portal Settings). That's the standard return address for portal-generated mail, but you may wish to use another.

In the mailer's overrides sub-form, set the Sender Expression to:

request/form/replyto

to use the address filled in for the "replyto" form field.

You could also specify a literal:

string:test@mysite.org

Be cautious about using user-submitted addresses for the "From" address. It's important that the "From" address be a real one, owned by a responsible person.

Q. Can I integrate my favorite field/widget?

I'd like to integrate a new field/widget into PloneFormGen so that it will be useful as a form field in a PFG form.

PFG is designed to allow this, but it's going to take some programming by you or the field developer. See the PFG "examples" directory for a heavily commented, really working, example of integrating a third-party field into PloneFormGen without touching the PFG or field code.
How do I save the uploaded file from "file field"?

Q. Captcha field is not accessible?

Or, not always readable for some people with low vision, or using mobile this type of control is strongly blocking

To effectively replace a Captcha, just add a text field mandatory (must match the size of two char. Max.) That can be called eg 'Filter' as help text with the following question: "to avoid spam can you answer this question: 7+2-1 = ?

Next, modify the object and choose the menu 'overrides' and fill in the "custom validator" by this expression:

python: value != '8' and 'the answer is false'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Simple SQL CRUD with PloneFormGen

Description

A step-by-step lesson in using PloneFormGen to read, insert and update rows in a single SQL table.

	Introduction

	Database table & form

	Inserting rows

	The form
	Calling The Form

	Updating or inserting as necessary

	A note on security

Introduction

One of the goals of PloneFormGen is that it should be useful for simple update operations on an external database.

This tutorial covers the use of PloneFormGen to update and insert rows in a single-table SQL database.

The simple application we'll develop here would need quite a bit of polishing before you'd wish to expose it to the public, but it will demonstrate the basic techniques.

Skills required to understand this tutorial include:

	The ability to add an SQL database connection and Z SQL Methods via the Zope Management Interface and to understand what they do. If you've never read the Relational Database Connectivity chapter of the Zope Book, take some time now to do it; it's fundamental.

	Simple Python scripting via the ZMI. Read the python-based scripts portions of the Advanced Zope Scripting chapter of the Zope Book if you're new to this vital Zope/Plone development skill.

Our basic steps will be to:

	Add a database and table to our SQL database and create a matching form in PloneFormGen;

	Add a Z SQL Method to insert rows into the database and show how it can be used in PFG;

	Add a Z SQL Method to read a row, write a Python script wrapper and use it to fill out the fields of our form;

	Add a Z SQL Method to update a row, write a Python wrapper for it and the insert method and use it as a form action;

	Consider the security implications of the fact that the SQL access methods we just created are not part of the Plone workflow.

By the way, we'll be skipping the "D" in CRUD. Deletion is up to you. :)

Note

This tutorial uses Z SQL Methods because they're easy to teach quickly. If you're doing any significant database work with any Python application, SQLAlchemy [http://www.sqlalchemy.org] is a much more scalable way to use a relational database from Plone.

Database table & form

In this step, we create a simple database table and a matching form.
The database

Hope you're not feeling too ambitious at the moment, because this is going to be a very simple demonstration table. It's going to have just three columns:

	uid

	A unique ID that's the primary key for the table. We'll make it auto-increment so that our SQL server (MySQL in this case) will do the work of keeping it unique.

	string1

	A simple string.

	string2

	Another simple string.

(I told you this was simple!)

Create a test database and then the table. In MySQL, the CREATE code to set up the table is:

CREATE TABLE simple_db (
 uid bigint(20) unsigned NOT NULL auto_increment,
 string1 varchar(255) NOT NULL default '',
 string2 varchar(255) NOT NULL default '',
 PRIMARY KEY (uid)
) TYPE=MyISAM;

Now, set up an SQL user with privileges adequate to select, insert and update the table. Use that user identity to set up an SQL database connection object via the ZMI. (If you're using MySQL, this would be a Z MySQL Database Connection.) The connection must be in a place where it will be visible to the form you'll be creating.
The form

Now, create a PloneFormGen form with three fields:

	uid

	An string field with id uid, marked hidden, with a default value of "-1". Later in the tutorial, we'll use the "-1" as a marker value to indicate a new record.

	string1

	A string field with id string1.

	string2

	A string field with id string2.

Note that the form field ids must exactly match our column ids. You can script your way around this requirement, but it's a lot easier this way.

While you're at it, turn off or delete the mailer action adapter. It's harmless, but it would be a distraction.

That's it. We now have a form that matches our database table.

Inserting rows

In this step, we create a method to insert a row, and show how to make simple use of it.

Now, inside the Zope Management Interface, in your form folder, create a Z SQL Method with the id testCreateRow.

Set the parameters:

	Connection ID

	This should be the database connection you set up to allow access to your test database.

	Arguments

	On separate lines, specify "string1" and "string2". (Leave off the quotes.)

Then, in the big text area, specify the code:

insert into simple_db values (
 0,
 <dtml-sqlvar string1 type=string>,
 <dtml-sqlvar string2 type=string>
)

Note: always use <dtml-sqlvar ...> to insert your variables. It protects you against SQL-injection attacks by SQL quoting the values.

Now for a little magic: Z SQL Methods can pick up their arguments from REQUEST.form, which is exactly where Zope is putting your form variables when you submit a form. That means that you can just go to the [overrides] pane of your Form Folder and set here/testCreateRow as your After Validation Script.

Your form will now store its input into your SQL table! Add a few rows to check it out.
Reading a Row, Filling in the Fields

If we want to update records, we're going to have to get rows from our SQL table and use the columns to populate our form fields.
The SQL

Now, use the ZMI to create, inside your form folder, a Z SQL Method named testReadRow. Set up the following parameters:

	Connection ID

	Choose your test database adapter.

	Arguments

	Just "uid"

Then, add the SQL Code:

select * from simple_db where
 <dtml-sqltest uid type="int">

The <dtml-sqltest ...> operator is a safe way to use user input for an SQL "where" test. The default test is "=".
The Script

Let's wrap this method in a simple Python script that will selectively use it. Create a Python Script with the id formSetup and the Python:

request = container.REQUEST
form = request.form

if form.has_key('uid') and not form.has_key('form.submitted') :
 res = context.testReadRow().dictionaries()
 if len(res) == 1:
 row = res[0]
 for key in row.keys():
 form[key] = row[key]

Let's deconstruct this code.

The if test:

if form.has_key('uid') and not form.has_key('form.submitted')

will make sure that this code does nothing if the form has already been submitted (we don't want to overwrite values the user just input). It also won't do anything if we don't have a "uid" variable in the form dictionary. (form.submitted is a hidden input that's part of every PFG form.)

If we have a uid variable and we won't be overwriting user input, then we call our SQL read method:

res = context.testReadRow().dictionaries()

This will return the results of our SQL query in the form of a list of dictionaries. The dictionary entries will be in the form columnid:value.

Note that the uid value is being passed via the request variable, and doesn't need to be specified.

The rest of the code checks to make sure that we got one result, and throws all of its key:value pairs into the form dictionary -- just where our form will expect them.

The form

Now, just go to the [override] pane of your form folder, and specify here/formSetup for your Form Setup Script.

Calling The Form

Hopefully, you've got a few rows in your table. Now, try calling your form with the URL:

http://localhost/testfolder/myform?uid=1

Everything up to the question mark (the query string marker) should be the URL of your form folder. The "?uid=1" specifies that we want to use the data from the row where the uid is "1".

How would you actually get your users to such a URL? Typically, you'd have some sort of drill-down search that offered them a list of links constructed in this fashion.

Creating a drill-down template is left as an exercise for the reader.

Updating or inserting as necessary

In this step, we'll create an update SQL method and show how to selectively update or insert data.

Using the ZMI, create a Z SQL Method inside your form folder with the id testUpdateRow. For its parameters, set:

	Connection ID

	Choose your test database connection.

	Arguments

	Add "uid", "string1" and "string2" on separate lines, without quotes.

Then, specify the SQL code:

UPDATE simple_db
SET
 <dtml-sqltest string1 type="string">,
 <dtml-sqltest string2 type="string">
WHERE <dtml-sqltest uid type="int">

Notice the use <dtml-sqltest ...> for the SQL set id=value lines. This is just a hack that uses sqltest where we could have instead written lines like "string1=<dtml-sqlvar string1 type=string>".

Now, we've got to solve a simple problem. How do we update our table under some circumstances, and insert new values under others?

Remember how we set "-1" as the default value of our hidden "uid" form field? If we've read a record, uid will have changed to match a real row. If it's "-1", that means that we started with a clean form rather than values read from a table row.

Let's use that knowledge in a simple switchboard script with the id doUpdateInsert:

request = container.REQUEST
form = request.form

if int(form.get('uid', '-1')) >= 0:
 # we have a real uid, so update
 context.testUpdateRow()
else:
 context.testCreateRow()

Now, go to the [overrides] pane of your form folder and set here/doUpdateInsert as the AfterValidationScript.

Note

Believe it or not ... you're done.

Time to go back and repeat the process with your own table. Don't forget to add lots of sanity-checking code along the way.

A note on security

It takes extra steps to secure a database connection and SQL methods.

If this is the first time you've worked with a Zope database connection, there's an important security point you may not have considered:

Warning

Zope Database Connections and Z SQL Methods are not part of the Plone workflow.

This means that you may not depend on the Plone content workflow to provide security for these connections and methods. You must use the Zope security mechanisms directly to control access.

This is also true of Python scripts and other Zope-level objects you might create via the ZMI. But Zope provides a safety net of security for most of those. There is no such automatic safety net for external RDBMS access methods.

The easiest way to do this is to use the ZMI to visit the top-most folder of your form and use the Security tab to customize security. Look in particular for the Use Database Methods permission, and make sure it is not extended to any user role that should not have a right to read or update your external database.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Using GnuPG encryption

Description

The Gnu Privacy Guard may be used to encrypt emails sent by PloneFormGen.

Warning

Encryption is serious business, and this how-to does not teach you about it or about the Gnu Privacy Guard. You should develop expertise with both of these before attempting to enable PFG encryption.

Using GPG encryption with PloneFormGen requires:

1) That gpg be installed on your system and available on the search path
or in a common location (e.g., /usr/bin);

2) That gpg, when executed as a subprocess of Zope/Plone, be able to
find a public keyring;

3) That gpg, when executed as a subprocess of Zope/Plone, have the
rights to read the public keyring;

4) That you, as administrator, understand how gpg works, and be able to
maintain the public keyring.

PloneFormGen tries to find the gpg binary when it's installed, when the
product code is refreshed, and when you restart Zope. If it finds it
you will see an "encryption" field set in the mailer adapter form. If
you don't see the "encryption" fieldset, it means PloneFormGen didn't
find a gpg binary. Fix this by adding the path to the gpg binary to the
PATH environment variable when you start Zope.

gpg will typically look for a public keyring in the current user's home
directory, .gnupg subdirectory. If it's not finding it, consider the
possibility that the user id you're using to maintain your keys isn't the
same one that you're using to run Zope. You may need to use the
GNUPGHOME environment variable to point to your .gnupg directory. Make
sure your Zope process can open the directory and read the file!

Note

Windows

gpg can work in a Windows environment, but you'll need to have a
command-line gpg. http://www.cygwin.com/ is a good, free source.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Embedding PloneFormGen forms

Description

PloneFormGen forms may be rendered from other templates, viewlets, and portlets.

Warning

This feature requires Plone 3.0 or later to work out of the box. You
can make it work in Plone 2.5 by turning on the PLONE_25_PUBLISHER_MONKEYPATCH
config option, which applies a monkey patch to the Zope publisher exception hook
based on some code included in Plone 3.

Caveat: This feature should be considered beta quality. I've written code that
takes advantage of it, and you shouldn't be afraid of it, but take care to test
thoroughly. There may be certain types of contexts for rendering the form with
implications that I haven't taken into consideration.

To insert the form into an arbitrary template, use the 'embedded' browser view:

<tal:block tal:replace="structure path/to/form/@@embedded"/>

If you are including the form on a page that features another form, you'll probably
need to set a prefix on the 'embedded' view to disambiguate submissions:

<tal:block tal:define="form nocall:path/to/form/@@embedded;
 dummy python:form.setPrefix('mypfg')"
 tal:replace="structure form"/>

Or if you are using a view class, you could define a method like:

from Products.CMFCore.utils import getToolByName
def render_form(self):
 portal = getToolByName(self.context, 'portal_url').getPortalObject()
 form_view = portal.restrictedTraverse('path/to/form/@@embedded')
 form_view.prefix = 'mypfg'
 return form_view()

(Note that restrictedTraverse expects a path relative to the object you are
calling it on, with no initial slash.) And then in the associated template:

<tal:block tal:replace="view/render_form"/>

By default the embedded form uses the current URL as the form's 'action' parameter.
When the form is rendered upon submission, it will perform validation, run the normal
action adapters, and redirect to the success page as normal. If you want to submit to
the form's real location or somewhere else, you can override the action by setting the
'action' attribute on the 'embedded' view.

Known limitation: Embedded forms have no way of injecting javascript or CSS into
the page head like their standalone counterparts.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Adding Custom Fields, Action Adapters or Thanks Pages

Description

You may add custom fields, action adapters and thanks pages
to PloneFormGen. By far the easiest way to do this is to derive
a subclass from one of the field types in fieldsBase or an
action adapter from actionAdapter.FormActionAdapter.

When PFG is installed, or reinstalled, it will automatically add
to its available fields, adapters and thanks pages list any installed
Archetypes content type that implements one of:

	Products.PloneFormGen.interfaces.actionAdapter.IPloneFormGenActionAdapter

	Products.PloneFormGen.interfaces.field.IPloneFormGenField

	Products.PloneFormGen.interfaces.thanksPage.IPloneFormGenThanksPage

Also, the Archetypes class must specify a meta_type in the class definition
that matches the meta_type defined in its GS type declaration. Otherwise, it
won't be found.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Creating content from PFG

Description

This how-to covers simple creation of portal content from PloneFormGen. We'll create web pages from sample form submissions.

A question that's come up frequently on IRC and the Plone users' mailing list is "How do I create an event, news item, page, or some other content item from PloneFormGen? It's common that there's some security need or extra content needed that prevents just using Plone's "add item."

This is actually very easy if you know a little Python and are willing to learn something about the content items you want to create.

Please note that I'm not going to show you how to create new content types here. Just how to use PFG to create content objects from existing types. If you want to create new content types, learn to use Archetypes.

Your first step should be to determine the attributes you want to set in the new content item and how they'll map from your form fields.

In this case, we're going to use the sample contact form created when you first create a form folder to create a page (Document).

Our mapping of form fields to content attributes will look like this:

	Form Field

	Document Attribute

	Your E-Mail Address (replyto)

	Description

	Subject (topic)

	Title

	Comments (comments)

	Body text

Note that for each form field, we've determined its ID in the form. We'll use those to look up the field in the form submission.

Next, we need to learn the methods that are used to set our attributes on a Document object. How do you learn these? It's always nice to read the source, but when I'm working fast, I usually just use DocFinderTab and look for "set*" methods matching the attributes.

Now, determine where you want to put the new content. That's your target folder. It's convenient to locate that folder in a parent folder of the form object, as you may then use the magic of acquisition to find it without learning how to traverse the object database.

Now, in the form folder, we add a "Custom Script Adapter" - which is just a very convenient form of Python script. Then, just customize the script to look something like the following:

Find our target folder from the context. The ID of
our target folder is "submissions"
target = context.submissions

The request object has an dictionary attribute named
form that contains the submitted form content, keyed
by field name
form = request.form

We need to engineer a unique ID for the object we're
going to create. If your form submit contained a field
that was guaranteed unique, you could use that instead.
from DateTime import DateTime
uid = str(DateTime().millis())

We use the "invokeFactory" method of the target folder
to create a content object of type "Document" with our
unique ID for an id and the form submission's topic
field for a title.
target.invokeFactory("Document", id=uid, title=form['topic'])

Find our new object in the target folder
obj = target[uid]

Set its format, content and description
obj.setFormat('text/plain')
obj.setText(form['comments'])
obj.setDescription(form['replyto'])

Force it to be reindexed with the new content
obj.reindexObject()

That's it. This will really work.

Security

At the moment, the person that submits your form will need to be logged in as a user that has the right to add pages to the target folder, then change their attributes. You may need to allow other users (even anonymous ones) to submit the form. That's where the Proxy role setting of the custom script adapter comes in. You may change this setting to Manager, and the script will run as if the user has the manager role - even if they're anonymous.

I hope it's obvious that you want to be very, very careful writing a script that will run with the Manager role. Review it, and review it again to make sure it will do only what you want. Never trust unchecked form input to determine target or content ids.

If I'm doing this trick with a form that will be exposed to the public, I often will use a Python script rather than the custom script adapter, as it allows me to determine the proxy role for the script more precisely than choosing between None and Manager. I may even create a new role with minimal privileges, and those only in the target folder.
Credit!

Note

A big thank's to Mikko Ohtamaa for contributing the Custom Script Adapter to PloneFormGen.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Custom mailer script

Description

Customizing email output from PloneFormGen

Introduction

Below is an email script example to customize how PloneFormGen generates the email output.

Installation instructions

Go to form, on the contents tab remove the existing Mailer item.

Choose create new... Custom script adapter. Pick any name.

For the script, set Proxy role: Manager.

Fix the email addresses in the script below.

Paste the code to the script body field.

Save.

Test.

Example script

from Products.CMFCore.utils import getToolByName

mailhost = getToolByName(ploneformgen, 'MailHost')

subject = "Email subject"

Use this logger to output debug info from this script if needed
import logging
logger = logging.getLogger("mailer-logger")

Create a message body by appending all the fields after each another
This includes non-functional fields like labels too
message=""
for field in ploneformgen.fgFields():
 label = field.widget.label.encode("utf-8")
 value = str(fields[field.getName()])

 # For non-functional fields draw a custom separator line
 if not field.widget.blurrable:
 value = "-------------------------------"

 # Format lists on the same row
 try:
 if (value[0] == "["):
 value = value.replace("'", "")[1:-1]
 except IndexError:
 # Skip formatting on error
 pass

 #remove last ':' from label
 if (label[-1] == ":"):
 label = label[0:-1]

 message += label + ": " + value + "\n\n"

source = "noreply@example.com"
receipt = "info@example.com"

mailhost.secureSend(message, receipt, source, subject=subject, subtype='plain', charset="utf-8", debug=False,)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Managing Content »

 	Creating forms without programming: PloneFormGen »

Fail-safe email sending

By default if SMTP server rejects the message send by PloneFormGen
the page will crash with an exception. Possible reasons for SMTP failure are

	SMTP server is down

	SMTP server is overloaded

	SMTP server spam protection is giving false positives for your email sending attempts

If you have a situation where gathering the data is critical
the following process is appropriate

	Use save data adapter to save results

	Use a custom email sender script adapter to send email and even if this
step fails then the data is saved and no exception is given to the user

Example PloneFormGen script adapter (using proxy role Manager):

-*- coding: utf-8 -*-
from Products.CMFCore.utils import getToolByName

This script will send email to several recipients
each written down to its own email field
whose id starts with "email-"
emails = []

for key in fields:
 if key.startswith('email-'):
 if fields[key] != '':
 emails.append(fields[key])

mailhost = getToolByName(ploneformgen, 'MailHost')

subject = "Huuhaa"

Custom message with a name filled in
message = u"""Hello,

Thanks for participating %s !
Cheers,
http://www.opensourcehacker.com
""" % (fields['etunimi'])

source = "info@opensourcehacker.com"

for email in emails:
 try:
 mailhost.secureSend(message, email, source, subject=subject, subtype='plain', charset="utf-8", debug=False, From=source)
 except Exception:
 pass

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Using TinyMCE as visual editor

A user manual for content creators

	Introduction

	Basics
	Toolbar

	Inserting Images
	Image Captioning

	Inserting Links
	Internal Links

	External Links

	Anchors

	Inserting Tables

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using TinyMCE as visual editor »

Introduction

Introduction to TinyMCE.

TinyMCE is a platform independent web based Javascript HTML WYSIWYG
editor. What this means is that it will let you create html content on
your web site. TinyMCE supports a lot of Operating Systems and browsers.
Some examples are: Mozilla, Internet Explorer, Firefox, Opera, Safari
and Chrome. TinyMCE has a large userbase and an active development
community.

TinyMCE is the default visual editor starting from Plone 4.0, although
Kupu is also available for users who prefer it. TinyMCE was decided to
be shipped as default because Kupu wasn't being well-maintained, whereas
TinyMCE had a much broader use in other communities, as well as a better
plugin story and some other usability niceties as adding both internal
and external links via the same button.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using TinyMCE as visual editor »

Basics

Basic options of TinyMCE.

The default TinyMCE editor will look like this:

[image:]

On top you can see the toolbar, below the text area and at the bottom a
resize bar. If you drag the lower right corner you can make the editor
window bigger or smaller.

Toolbar

The following table describes the function and output of each button.

[image:]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using TinyMCE as visual editor »

Inserting Images

A description of the options available for inserting images with
TinyMCE.

The TinyMCE editor allows you to insert image files stored in Plone into
your document, using the [image: Image] button on the TinyMCE toolbar:

[image:]

Clicking this button launches the Insert Image dialog:

[image:]

The three columns of the dialog display:

	In the first column - a folder navigation list.

	In the second column - an object navigation list, from which you can
select your image file.

	In the third column - image preview, and options for alignment, size
and captions.

In the example above, an image of a rose was selected - rose.png (rather
large one, at its original size of 600*450 pixels).

According to the "Image alignment" option you choose, the image will be
placed in your page (and the following HTML code will be generated):

	lefthand (<img class="image-left captioned" src="rose.png" alt="rose"
/>);

	righthand (<img class="image-right captioned" src="rose.png"
alt="rose" />);

	inline (<img class="image-inline captioned" src="rose.png" alt="rose"
/>).

You may also choose the size of the image you need. This is especially
convenient when you deal with large images, as there is no need to use
Photoshop or other external image editing application to crop or change
the size of an image. The "Image size" dropdown list provides a choice
between many sizes and formats:

[image:]

	Large ();

	Preview ();

	Mini () - the
minimum-size image is formed;

	Thumb () - a
thumb(inch)-size icon is made out of your image (little bigger than
2,5cm);

	Tile () - a tile is made
out of your image;

	Icon () - an icon is
made out of your image;

	Listing () - a
listing icon is made out of your image;

Image Captioning

It is possible to put image caption under the image in TinyMCE. Caption
is taken from image description. Alt text is taken from image title. Alt
text and caption update if image is updated.

To enable image captioning go to Site Setup â†’ TinyMCE. Make sure
that you have Allow captioned images selected in the Resource
Types tab.

[image:]

When you add image to the site, you can put some text into its
description that will be displayed as an image caption.

[image:]

Now when we create a page, and insert image into it, check the box
Caption:

[image:]

Save this page, and you will see the image followed by its description
as the caption all inserted into a frame:

[image:]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using TinyMCE as visual editor »

Inserting Links

Inserting internal, external and anchor links.

Internal Links

Select a word or phrase, click the Insert/edit link icon, and the
Insert/edit link panel will appear: [image: image19]

You use this panel by clicking on Home or Current folder to begin
navigating the Plone web site to find a folder, page, or image to which
you wish to make a link. In the example above, a page named "Long-tailed
Skippers" has been chosen for the link. After this panel is closed, a
link to the "Long-tailed Skippers" page will be set for the word or
phrase selected for the link.

External Links

Select a word or phrase, click the Insert/edit link icon, select
External under Libraries, and the External link panel will appear:

[image:]

Type the web address of the external web site in the box after http://.
When you press return or leave the field a preview will appear to check
the address. If you paste in the web address, make sure you don't have
duplicate http:// at the beginning of the address. Then click ok. The
external link will be set to the word or phrase you selected.

Anchors

Anchors are like position markers within a document, based on headings,
subheadings, or another style set within the document. As an example,
for a page called "Eastern Tiger Swallowtail," with subheadings entitled
"Description," "Habitat," "Behavior," "Conservation Status," and
"Literature," an easy set of links to these subheadings (to the
positions within the document at those subheadings) can be created using
anchors.

First, create the document with the subheadings set within it, and
re-type the subheadings at the top of the document:

[image:]

Now create the anchors for each subheading. To create each anchor move
the cursor to the beginning of the subheading and press the Insert/edit
anchor icon. Enter the name of the anchor in the Anchor name field.
Then click ok.

[image:]

Then select each of the re-typed subheadings at the top and click the
Insert/edit link icon to select by subheadings:

[image:]

When selecting Anchors under Libraries, a panel will appear for
selecting which subheading to which the anchor link should connect:

[image:]

The Link to anchor tab will appear. The right side of the panel shows
the anchors that have been set within the document. Here the
Description anchor is chosen for the link (for the word Description,
typed at the top of the document).

You can be creative with this powerful feature, by weaving such
links-to-anchors within narrative text, by setting anchors to other
styles within the document, and coming up with clever mixes. This
functionality is especially important for large documents.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using TinyMCE as visual editor »

Inserting Tables

Inserting, updating and deleting tables, columns, rows and cells.

Tables are handy for tabular data and lists. To add a table, put your
cursor where you want it and click the Inserts a new table icon.
You'll see the Insert/Modify table panel:

[image:]

Setting rows and columns is straightforward. You can add a summary of
the table in the Summary field if you like. Table class refers to how
you want the table to be styled. You have choices such as these:

[image:]

Here are examples of these table styles:

Subdued grid:

[image:]

Invisible grid:

[image:]

Fancy listing:

[image:]

Fancy grid listing:

[image:]

Fancy vertical listing:

[image:]

After the table has been created you can click in a cell to show table
resizing handles:

[image:]

In the table above, the cursor has been placed in the "Special Leader"
cell, which activates little square handles around the edges for
resizing the entire table. It also activates the other table controls in
the toolbar which, lets you edit properties of a row or a cell, lets you
add and remove rows or columns and lets you split and merge cells.

[image:]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Collaboration and Workflow

Learn how to share and control access to your content by using the
Sharing tab and the State menu.

	Basic Publication States

	Advanced Control

	Workflow Policies

	Collaboration through Sharing
	Example 1: Letting others add content to a folder you created

	Example 2: Letting others edit content you created

	How a folder's workflow state affects its content
	A caveat: Images and Files

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Collaboration and Workflow »

Basic Publication States

The publication control system for Plone is very flexible, starting with
basic settings for making an item private or public.

In the upper right corner of the edit panel for any content type --
folders, images, pages, etc., and any specialized content types -- there
is a menu for publication state. This state menu has
settings for controlling publication state:

[image:]

The header for the menu will show the current publication state for the
content item, such as State: Private, as shown above. Private is the
initial state when you create a content item -- a
page, a news item -- and in the private state, as the name indicates,
the content item will generally not be available to visitors to the web
site. The Publish menu choice will make the content item available on
the web site to anonymous visitors. The Submit for publication menu
choice is used on web sites where there are content editors who must
approve items for publication, as discussed below.

Also, and this will be very important, certain content types, such as
news items and events, will not appear on the website as you expect,
until they are explicitly published.

Store this in your memory: Publication state is important!

Publication state can be changed only by users whose accounts have the
necessary permissions. The menu choices in the state menu will reflect
existing permissions settings. For example, in a big newspaper web site,
a reporter could add pages for news articles, but the state menu will
not show a Publish menu choice, only a Submit for publication menu
choice. This is because a reporter must submit articles up the line to
the editorial staff for approval before publication. If your account has
the permissions, however, the Publish menu choice will appear and you
can simply publish in one step.

For an editor, a content item that has been submitted may be published
or rejected, either outright, because it is an inappropriate
submission for the situation, or for the more typical reason that the
content item needs revision.

After a content item has been published, it may be retracted, to
change the state back to public draft state, or sent back to
private, if desired. The menu choices in the state menu will change
accordingly:

[image:]

Consideration should be given to retracting ("unpublishing"), or setting
to private, any content that has become obsolete or undesired for some
reason. Setting to private will take the item from public view and
from showing up in search results, but will keep it around in case the
format or the actual material (text, images, etc.) is needed later. This
is especially true for content relating to events that may recur or to
one-of-a-kind creations. The decision to delete or to set to private
may depend on whether or not the content exists elsewhere, on a local
computer. If the content is large in size, in the sense of disk space
taken, perhaps saving to a local computer is warranted before deletion,
if space on the website server computer is an issue.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Collaboration and Workflow »

Advanced Control

The publication control system, under the advanced menu, has
sophisticated features for setting availability by date and by context.

The state menu has an advanced... item:

[image: state-menu.png]

which brings up the advanced state panel:

[image:]

Below an explanation section at the beginning of the panel, there is a
check box showing the content that will be affected by this change of
publication state. It shows that the folder "Long-tailed Skipper" will
be affected by this state change.

A brief aside: you may have noticed that, apart from the checkbox to the
left, there is also a checkbox above, next to the headers of the
Affected content section. The reason is that this same advanced
state panel can be used to make the changes described below to a whole
list of unrelated content items simultaneously, in bulk, from the
contents tab of a folder. More on this later.

The next field, Include contained items, is a check box for
controlling whether the state change affects this item only (the
"Long-tailed Skipper" folder) or the items it contains and all of any
subfolders and other contained items. This is an important check box. It
lets you easily change the availability of an entire section of a
website. For example, the "Long-tailed Skipper" folder could contain
four subfolders, for photographs, species occurrence descriptions,
taxonomic history, and behavior descriptions, all of which has been kept
private during the initial work to build up this content. All of it
could be immediately made public -- it could be published -- by
checking this box and checking Publish at the bottom before saving.
Likewise, the Submit for publication choice would be used on a web
site where editors controlled ultimate publication.

Likewise, an entire section could be immediately made private. For
example, if an automobile rental agency decided to remove a car model
from its fleet, an entire section of their website devoted to this car
model, with several subfolders full of pages, images, and files, could
be set to private.

The next two date fields are for effective date and expiration date.
Their meanings are straightforward. If there is a window of time, for
which a content item or a set of content items is valid for publication,
it may be set with these fields.

A comment lets you attach an explanation to all content affected by the
state change. This is especially useful when several people are working
on a website, and a person less familiar with an area of the web site
looks at content and wonders why it isn't published. They wonder, "This
information looks good. Why isn't it published already?" Then they read
a comment that says something like, "Don't publish until Richard checks
on copyright issues regarding the items described here." Using comments
is a good idea for sensitive information, even if you are the only
person working on the web site, because you might forget why you made a
decision about publication state.

Finally, at the bottom there is a choice of several available states for
this action. It will vary, depending on the present state of the item.
For example, if the item is currently in a published state, there won't
be a choice for publish, if the item is presently in a private
state, there won't be a choice for make private, etc. If an item is
published already, there will be choices in this bottom part of the
panel for reject and retract, for "unpublishing" at item, setting it
back to public draft or then to private state.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Collaboration and Workflow »

Workflow Policies

Workflow policies allow a site administrator to create a formalized
system for controlling publication and content management as a
step-by-step flow involving different users in set roles.

Workflow is an advanced subject. It involves creation of a more
regimented control of content creation, review, and publication. If you
have a user account on a typical small Plone site, you will probably not
encounter custom workflow policies, because there isn't a need for this
more sophisticated control. But, the potential is there for using this
functionality, as it is built in to Plone.

For an introduction to the workflow concept, consider an example
involving a web site for a newspaper business, for which these different
groups of people are at work:

	Reporters

	Can create stories, but can only submit them for review.

	Editors

	Can review stories, but can't publish completely. They send
positively reviewed and edited stories up the line for further
approval.

	Copy Editors

	Do final fact checking, fixes, and review, and may publish stories.

A workflow policy, sometimes abbreviated to workflow, describes the
constraints on state-changing actions for different groups of people.
Once the workflow policy has been created, it needs to be applied to an
area of the website for the rules to take effect. In the example of the
newspaper web site, a workflow policy would be set up and then applied
to the folders where reporters do the work of adding news articles.
Then, reporters would create stories and send them up the line for
review and approval:

[image:]

Reporters would add news articles and would submit them (the publish
menu choice is not available to them). Likewise, editors may reject
the article for revision or they may, in turn, submit the article up
the line to a copy editor for final proofreading and publication. In
this newspaper business example, this policy could be called something
like "Editorial Review Policy." Configuring a workflow policy is a
matter of applying it to an area of the website -- to define the scope
of the workflow. This is a web site administrator task. The web site
administrator would use control panels of Plone to specify where on the
web site the "Editorial Review Policy" applies, site-wide or to a
subsection.

Plone comes with several useful workflow policies -- the default one is
a simple web publishing policy. Your web site administrator might employ
a more specific policy, such as a policy for a community-based web site
or a company Intranet (internal web system). If so, you may need to
learn some procedural steps to publishing, but these are just
elaborations of principles in the default, basic workflow policy.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Collaboration and Workflow »

Collaboration through Sharing

The Sharing tab empowers you to collaborate with other users through the
use of several built-in roles.

Example 1: Letting others add content to a folder you created

In this example, Jane Smythe has full access to her Plone site. She can
add, edit, delete and publish content anywhere in the site. For now, she
has created a folder called "Documentation" and added one Page to it,
"Project Overview". She hasn't published either the folder or the
document. The default workflow for this Plone site has not been
modified.
Now she wants to let her colleague, George Shrubb, add content to the
Documentation folder. He has permission to edit any of the existing
content, but she needs him to start adding content. Before we follow
along with Jane, let's take a peek at what George currently sees when he
logs in on this Plone site:

[image:]

Notice that as of right now, George can't even view the Documentation
folder, because Jane created it and it is still in the Private state.
All the default permissions are currently in place and work as expected.

Jane gives George the permissions he needs to add content to the
Documentation folder.

Jane navigates to the Documentation folder and clicks on the Sharing
tab:

[image:]

One of the first things to notice is that Jane already has all the
permissions available for this Folder. These permissions were actually
granted from higher up in the site as indicated by the green/check mark
symbol.

Taking a closer look at the available permissions, they are:

	Can add - This means that when this permission is granted to a
particular user (or group of users), that user can then add new
content items. And since that user was also the creator of that
content item, they will be able to edit it as they like.

	Can edit- When this permission is granted on a folder, the user
can not only edit the Folder (its title and description) but can also
edit any of the items in the folder. Note, however, the user is not
allowed to delete any of the content. When this permission is granted
on a Page, for example, the user can only edit that Page and none of
the other items in the folder.

	Can view - When this permission is used on a folder or other
item, the user can view the content but not make any changes.

	Can review - When this permission is granted, the user can
publish items.

Note: these permissions will override the default workflow permissions!
For example, if you grant a user "Can view" permission on a Page that is
in the Private state, that user will be able to see that Page.

In this example, Jane will grant George "Can add" permission on the
"Documentation" folder so that he can add content to the folder. First,
she searches to find him by his name:

[image:]

Jane can now add specific permissions for George in the "Documentation"
folder. She is going to give him the "Can add" permission and then click
on "Save":

[image:]

And that's all there is to it! Let's see how George views the site now.

Note: George does NOT need to log out and log back in. Permissions are
always current because they are checked every time a user accesses
anything (e.g. clicks on a link) on a Plone site.

George clicks on the Home tab (for example) to refresh his view of the
site and can now see the "Documentation" folder:

[image:]

When George clicks on the "Documentation" tab, he notices that he can
view all the content in the "Documentation" folder, and he now is able
to add the available content types to the folder, as shown in the Add
new... menu:

[image:]

George wants to review what Jane has already created, so he clicks on
the Project Overview link and sees:

[image: image25]

While George can view the document, his limited permissions do not allow
him to edit it or change its state. The only thing he can do beyond
viewing the document is to make his own copy of it.

George adds a Page called "Widget Installation" and creates the content
for that Page. When he's done he saves it:

[image:]

Jane views the work George has done. She clicks on the "Documentation"
tab and sees that George indeed has been busy. She clicks on "Widget
Installation" page to take a closer look:

[image:]

Notice that Jane has full access to the page that George created. She
can edit it as well as cut/copy/paste it. Instead, she will wait until
George submits the page for review before actually doing anything
further with this page.

Example 2: Letting others edit content you created

Both Jane and George have been hard at work creating pages in the
Documentation folder. Jane has published the Documentation folder and
several pages:

[image:]

Jane has decided that she wants to turn over all editing (but not
publishing) control of the "Documentation" folder to George. So she
returns to the "Documentation" folder and clicks on the Sharing tab:

[image: sharing10.png]
sharing10.png

From here she only needs to tick the "Can edit" check box and George
will be able to edit all the content in the "Documentation" folder --
including the "Documentation" folder itself. When George next visits the
folder and clicks on "Project Overview" (which is a Page that Jane
created), this is what he sees:

[image: sharing11.png]
sharing11.png

So now George can edit any item in the "Documentation" folder regardless
of who created it or when.

Meanwhile, Molly has joined George as a new team member. George helps
Molly start updating the "Widget Installation" document. He goes to the
sharing tab for "Widget Installation" and searches for Molly's Full Name
(not username) and gives her the "Can edit" permissions on this
document.

[image: sharing12.png]
sharing12.png

Now when Molly goes to the "Documentation" folder, she can see the two
published items and the private item that she is now allowed to edit:

[image: sharing13.png]
sharing13.png

And, in fact, when she clicks on the "Widget Installation" document, she
is able to edit it:

[image: sharing13b.png]
sharing13b.png

Notice, however, when she clicks on either of the two items she isn't
allowed to edit, she doesn't have any additional access. She can view
these two items because they are published and in the default Plone
workflow (meaning that anyone can view them).

[image: sharing13c.png]
sharing13c.png

One final note on this example: if the "Documentation" folder was not in
the published state OR Molly had not been given any other permissions
(for example, "Can view" on the Documentation folder), then Molly would
have needed the complete URL to reach the document she had been given
access to edit. Permissions are very specific in Plone!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Collaboration and Workflow »

How a folder's workflow state affects its content

Description

On this page we are referring to workflow states and their effects on content as they are configured in a default Plone installation. Your specific site may have custom workflows, and the following discussion may or may not apply.

When it comes to the Private state, Folders are somewhat special. Changing a folder to (or leaving it in) private state has the following effects:

	The folder as well as all its contents are taken out of the navigation and site map for anonymous users, and also for logged-in users who don't have permission to see private content. This means that all these users will not be able to find either the folder or any of its contents through any of the navigation menus. Of course, this includes external search engine robots.

	The folder itself can not be viewed by anonymous users, or by logged-in users who do not have permission to see private content. This is true even if an anonymous user, for example, had the direct URL to the folder, which would be the case if a link to the folder was part of the content body of a page in a different section of the same site or even a different site. Clicking such a link would result in being redirected to the login form.

	However, any published content of a private folder (or even of any of its sub-folders) will appear in the site search, even for anonymous users.

	Also, anonymous users who know the URL of a published content item inside a private folder will be able to view this content. Consequently, if a link to any such published content of a private folder is embedded in any part of the same site or external site, that content will be viewable by anyone.

Thus, putting a folder in the private state is not a guarantee of security for any of its contents. Unless, of course, all the content has been made private, as well. This can be done in bulk and in a single step, as described in Advanced Control.

This is especially true of a folder's default item view (see Setting an Individual Content Item as the View for a Folder). If the contained item that is set as the folder's default view is published, then the folder will in a sense be public as well, even if it's own state has been set to private. However, the folder will still be hidden from navigation for anonymous users.

When it comes to the folder default item view, care must be taken to have clarity on whether the desired workflow state is set on the folder, the default view item, or both.

A caveat: Images and Files

When discussing published content of a private folder above, we glossed over an important assumption: namely, that all content items actually have a published state. This assumption is actually incorrect. The Image content type and the File content type do not have the State menu (in a default Plone installation). Thus, they can not be made public or private or any other state. Instead, Images and Files inherit their state from the container in which they find themselves. Therefore an image in a private folder will be private; an image in a public folder will be public.

It is possible to bypass this inheritance of a folder's workflow state by contained images and files. One of the workflows shipped with Plone by default is called "Single State Workflow". To change the workflow for all Image content items, go to Type Settings on the Site Setup page. Select Image (or File) in the top dropdown menu, and then "Single State Workflow" from the New workflow dropdown menu. Once you click Apply changes, all Image content items will acquire the new workflow, and in particular, they will all be in published state, and will not inherit the containing folder's workflow state.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Using Listings & Queries (Collections)

Collections take advantage of the intelligence of Plone.

Think of them as automatically updated queries, with criteria that you define. As new pieces of content are added, they will show up in these Collections if they match the criteria.

Collections have gone through various iterations, since Plone 4.2 the so-called 'newstyle' collections are enabled by default. These are easy to create and maintain.

	Introduction to (new-style) Collections

	Creating a collection

Before that, there were 'oldstyle' Collections. Setting them up was a bit less streamlined, but for power users they can have more flexibility, which is why you can enable them in your site if wanted.

	Introduction to (old-style) Collections

	Adding Collections

	Adjusting the Display Settings

	Definition of Criteria

	Setting the Sort Order

	Using and Understanding Dates

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Introduction to (new-style) Collections

A Collection in Plone works much like a report or query does in a database
Use Collections to dynamically sort and display your content.

A Collection in Plone works much like a report or query does in a database.
The idea is that you use a Collection to search your website based on a set of Criteria such as: content type (page, news item, image), the date it was published, or keywords contained in the title, description, or body.

Let's say you have a large catalog of photos and maps on your website.
You can easily display them all at once by creating a link to the folder they're stored in.
You could even create different links for subfolders if you've organized things that way.
However, if your images and maps were spread out over the site in many folders this would quickly become cumbersome.
Also, there is no way with normal folders to display different content, from different parts of your site based on things like:

	keywords in the title

	date of creation

	author

	type of content

The need for showing content in a variety of dynamic ways has given rise to Collections (formerly known as Smart Folders, or Rich Topic in older versions of Plone).
Collections do not actually contain any content items themselves in the same way that a folder does.
Instead it is the Criteria that you establish which determines what content appears on each Collection page.

Common applications for Collections are:

	News Archives

	Event Archives

	Photos Displayed by Date Range

	Content Displayed by Keyword

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Creating a collection

When you add a new collection, you can select from a lot of different options.

The content type (Page, Event, Folder, etcetera), various dates, the location in the site and also keywords or tags are available as selection criteria.

[image: choosing criteria]

While you're adding criteria, the number of content items that fit those criteria is dynamically updated.

[image: Content items are dynamically updated]

By combining more criteria, you can create sophisticated queries, which will be automatically updated.

The combination shown below will always show upcoming events:

	content type is event

	the start date must be within 31 days from now

[image: select upcoming events]

The resulting "Collection" works much like a Folder, only it is always up-to-date according to the criteria you set.

Please experiment with Collections, they are one of the most powerful features of Plone!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Introduction to (old-style) Collections

A Collection in Plone works much like a report or query does in a database.
Use Collections to dynamically sort and display your content.

A Collection in Plone works much like a report or query does in a database.
The idea is that you use a Collection to search your website based on a set of Criteria such as: content type (page, news item, image), the date it was published, or keywords contained in the title, description, or body.

Let's say you have a large catalog of photos and maps on your website.
You can easily display them all at once by creating a link to the folder they're stored in.
You could even create different links for subfolders if you've organized things that way.
However, if your images and maps were spread out over the site in many folders this would quickly become cumbersome.
Also, there is no way with normal folders to display different content, from different parts of your site based on things like:

	keywords in the title

	date of creation

	author

	type of content

The need for showing content in a variety of dynamic ways has given rise to Collections (formerly known as Smart Folders, or Rich Topic in older versions of Plone).
Collections do not actually contain any content items themselves in the same way that a folder does.
Instead it is the Criteria that you establish which determines what content appears on each Collection page.

Common applications for Collections are:

	News Archives

	Event Archives

	Photos Displayed by Date Range

	Content Displayed by Keyword

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Adding Collections

Collections (formerly called Smart Folders) are virtual containers of
lists of items found by doing a specialized search.

Learning to think about content being stored wherever it is stored, and
about using custom collections to gather up different "views" of the
content, is an important step to using Plone most effectively. It is an
intelligent system.

To add a collection, use the Add new... menu, as for adding other
content types:

[image: p4_addnewmenu]
p4_addnewmenu

You will see the Add*Collection*panel:

[image: p4_addcollection2]
p4_addcollection2

Below the title and description fields is a set of fields for specifying
the format of search results returned by the search criterion for the
new collection. The four fields in the panel above are in pairs. The top
two fields let you limit the search results to a number of items that
will be displayed. The bottom two fields let you control the order of
the search result items.

Setting the search criterion

After setting the display configuration in the edit panel shown above,
click the criteria tab to show the panel for setting search criteria:

[image: p4_collectionssearchcrit1 2]
p4_collectionssearchcrit1 2

The top area of the panel, Add New Search Criteria, lets you set a
field and a matching criterion. The bottom area, Set Sort Order, is a
simple selection for a field to sort on:

[image: p4_collectionssearchcrit2 2]
p4_collectionssearchcrit2 2

The criteria types for matching data in content items depend on which
field is selected.

After saving the collection, the search criteria will be applied and the
results shown when the collection is clicked. You can create any number
of collections for such custom views. For the butterfly example
described above, in addition to a date constraint to find recent items,
the categories field could be used to match color to have a series of
collections for "Blue Butterflies," "White Butterfles," etc.

Multiple criteria can be used for a collection. For example, a
collection called "Butterflies Photographed in the Last Month," could be
made by setting a criterion on Creation Date and on Item Type as Image.
Such date-based collections are really effective to show up-to-date
views of content that don't require any administrative hand-work -- once
such a collection has been created, it will automatically stay up to
date.

Note: A collection doesn't behave like a normal folder, you can't
add content items via the add item menu, as you can for a normal folder.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Adjusting the Display Settings

Learn how display settings can change the look of your Collection page

While the main power of Collections lies in Criteria, the display
settings can make a big difference in the way your Collection will
appear. All three of the settings we will cover in this section can be
found by clicking the Edit tab of a Collection.

Inherit Criteria

By selecting the Inherit Criteria option, the Collection will
inherit the Criteria from a parent Collection. This is only useful when
using Sub Collections. If this is checked, you can create another
Collection that is more specific than the Parent while still retaining
the basic criteria of the Parent. A simple example might be a Parent
Collection for displaying all Events in a site, and a Sub Collection
that also displays Events (by inheriting Criteria) but only those
Events with a particular keyword.

Limit Search Results

We can use Limit Search Results to limit the number of results that
are Collection will display per page. This way if we have a Collection
that is displaying News Items, we can limit the results to five or ten,
instead of having it show all News Items on a single, large list.

Display as a Table

Display as a Table is simply another way to display the results of a
Collection. Instead of having the Collection spit out the results in a
list form, we can have it generate a table with the results, and set
exactly what information about the results we want displayed. We
customize the table by selecting the Table Columns from the left and
clicking the right arrow button to move it over to the right. In the
example above we chose to include the Title of the object, its Creator,
and the Effective date. You can use any number of the columns, or all of
them if you so choose.

When considering what to select, keep in mind that not all objects will
have the information for every column available. For example, the
Start Date and End Date only apply to Events. Therefore if you
added these columns and your table included Pages as well as Events then
the rows for the Pages would not have the Start and End Dates filled in.
The other thing to consider is that the more columns you have showing
the more crowded the table will become. The best rule of thumb is to
only display what you absolutely need to display.

A few more notes on selecting columns: You can select more than one at a
time by holding down the control key (Ctrl) while you click. If you want
to remove a column, select it on the right and click on the left arrow
button. Also you can add and remove columns by double clicking on their
name.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Definition of Criteria

Definitions and examples of the different criteria fields available

The power of Collections most certainly lies with the Criteria fields.
Mastering how to use the different Criteria will allow you to use
Collections in several useful ways. In this section, we will use
examples to illustrate the many ways of using Criteria.

Categories

The Category criterion allows you to search the Category field of
objects. For this to work you must specify Categories for the content
objects ahead of time (this is done through the Categorization tab on
content objects). An example where you could use this is you want to
create a Collection that would display all objects relating to the
Category Organization. As you can see in the image below, we are able
to select the value Organization for our criterion. Then, by saving
this criterion and viewing our Collection, the results would be all
content objects we had designated with the Category Organization.

Once again the values available to you are completely dependent on what
you have specified on your objects in the Categorization tab.

Creator

When using the Creator criterion, we are filtering objects based on
who created them. This might be useful if you want to do a featured
author section, where you would only want to display content on your
site that has been created by a certain author.

As you can see we have several options for our criterion type. They
allow us to restrict the creator to the person currently logged in,
enter the name of another user as text, or to select users from a list.

If you want to display results from multiple users, you would need to
use the List of Values option. Otherwise you would normally use the
Text option unless the creator you wanted to select was yourself in
which case you would use Restrict to Current User.

Description

The Description field is essentially a search box type criterion.
However, instead of searching the title and body of a page, it will
only search for the text in the Description field of a content
object. This criterion is only really useful if you fill out the
Description field consistently for all your content objects.

Location

Using the Location criterion is much like specifying a location when you
search for a document on your hard drive. By specifying a Location
criterion, the results that are displayed in your Collection will only
come from that location, most commonly a Folder. This can be useful if
you only want to display content that is in the About Us section of your
site, for example. This is also useful for narrowing Collection results
when combined with other criteria.

To specify a Location, simply click the Add button, which will pop
up a new window showing you a directory of your site. If we follow our
example and want to search the About Us section of our site, we would
click the InsertÂ button next to the About Us folder.

You can open folders to view content contained within them either by
clicking the Browse button or directly on the title of the folder you
want to open. You may also use the Search box to search for the Title of
an object.

Search Text

The Search Text is a very useful criterion. It is similar to the search
box on your site or an Internet search engine. It takes the text you
specify and searches the Title, Description, and Body of all objects and
returns any that have the word or phrase you specify. This is useful
when you want to find objects that have to deal with a certain thing,
especially if the word or phrase appears across many content types.
Using LearnPlone.Org as an example, if I want to create a Collection
that displays all objects that reference the word Collections, I would
use the Search Text criterion and specify collections. All Tutorials,
Videos, Glossary items, etc with collections in the Title,
Description, or Body would then appear in the Collection results.

Related To

The Related To field is another field, like Category, that must be
specified on a content object prior to being used for a Collection.
The Related To field on an object lets you specify which other objects
in your site are similar or are relevant to the object you created. By
specifying this field, when you create an object you can create a web of
related content that will reference each other (think of a "see also"
kind of function). When you have done this, you can use the Related To
criterion in a Collection to display anything related to a specific
object.****

In this case we have specified that there are pages related to Our
Staff, History, and the About Us Homepage. By selecting one or multiple
values from this list, our Collection will display the pages that
related to that Value.

If we selected History as the value we wanted, our Collection would show
us everything that is related to the History page.

Keep in mind that the Related To Values list does not work based on
which objects are related to content but on which objects have another
object related to it. The Collection will display the results that
are related to that value.

State

Using the State criterion is very simple. It allows us to sort by
published or private state. It is a very good idea to restrict
publicly viewable Collections to filter on published, so that no
private content appears in the Collection results. Filtering on the
Private state can be useful as well. For example, a site administrator
might want to quickly see private content, so that they could determine
what work needs to be done and what could deleted.

Dates

You may have noticed that there are several different dates
available to use as Criteria. Since there are such a large number of
dates, they will be covered in their own section of the manual

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Setting the Sort Order

Learn how to use the Sort Order feature to customize the order in which
your results display

The Sort Order determines the order the results of the Collection will
be displayed in. Sort Order allows you to sort by three main
categories: text, object properties, and dates. When you sort by text,
objects will be sorted in alphabetical order. When sorting by one of the
object properties, we effectively are grouping objects together by the
specified properties. When we sort by a date the results will be
displayed with the most recent first (although there are many 'dates' in
Plone). All Sort Orders are in Ascending Order unless the Reverse Order
check box is selected. By checking this we can display in reverse order,
or newest dates first, etc.

Dates

There are numerous Date options which will be explained in the next
section of the manual.

Object Properties

Item Type

When sorting by Item Type, we end up with a Collection that has results
that are grouped by Item Type. We would want to use this if we have a
Collection that will return many different Item Types. This way we can
make the Collection very easy to browse for the site visitor.

State

Sorting by State will display results grouped by the publishing state.
Since there are only two States in the default configuration of Plone,
there will only be Published and Private items. We can use this to
separate all pages on our site and easily see what we have that is
public (Published) and what we are hiding from the public eye (Private).

Category

Category Sort Order is useful when we want to display the objects on our
site in a manner where they are grouped by the Category we placed them
in. Keep in mind, for sorting by Category to even be remotely useful,
you must have specified the Category on several objects. If you have not
specified any Categories, then sorting by Categories will do nothing.

Related To

The Related To Sort Order will actually apply a criterion to your
Collection. It limits to the results to only those that have Related To
information Specified on their properties.

Text

Short Name

Sorting by the Short Name is the same as putting the result objects in
alphabetical order. By default Plone sets the Short Name of an object to
be the same as the Title. The difference between the two is that the
Short Name is all lower case and hyphenated between all words. For
example the Short Name for the page titled About Us would be about-us.
The Short Name is what Plone also uses in the URL for the page
(www.myplonesite.org/about-us). You can specify a different Short Name
for an object by using the Rename button on the Contents tab.

Creator

Sorting by the Creator will group all results in alphabetical order by
their author. For example, let's say we had several documents published
by Bob Baker and several of other documents published by Jane Smith.
Sorting by the creator would result in all the documents created by Bob
Baker listed first followed by those of Jane Smith.

Title

Sorting by Title will display the results in alphabetical order, by
the object Titles.

Next we will cover the Dates that we skipped over in this section as
well as the Criteria Field Section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Using Listings & Queries (Collections) »

Using and Understanding Dates

Explanation of the Dates associated with Collections and their uses

There are several different types of dates we can choose from, many of
them sounding similar. Because of this it is very easy to get confused
about which date to use. Below, each date option is defined.

Dates Defined

Creation Date
The Creation Date is the date the document was made. You can think of
this as its birthday, the day it was born. You cannot change the
Creation Date of an object.

Effective Date
The Effective Date is the date when an object becomes published. This
date is customizable through the Edit tab on objects under the
Date tab. However, there it is referred to as the Publishing Date (a
minor discrepancy in Plone's nomenclature).

Creation Date and Effective Date are very similar. They both are
representative of the beginning point of an object. A very important
point to keep in mind when choosing which one you want to use, is that
an object can be created long before it ever becomes public. You could
have a page that is worked on for several weeks before it is actually
published. Thus you would get different results in a Collection
depending on which date you used.
We recommend using the Effective Date, instead of Creation Date for
date-oriented Collections. This way your Collection shows results based
on when they became viewable to the public, which is more relevant to
the audience of your Collection. Also, you can go in and manually adjust
the Effective Date to control the sort order which is not something you
can do with the Creation Date.

Expiration Date
The Expiration Date refers to the day that the item will no longer
become publicly available. This date is also customizable through the
Edit tab (shown above) like the Effective Date. By default, objects have
no Expiration Date.

Modification Date
The Modification Date is the date the object was last edited. Note that
this date is first set the day the object is created and will
automatically change every time the object is edited. There is no way to
customize this date. You could use this as a Sort Order along with an
Item Type criterion set to Page, to display all recently modified pages
within the last week, for example. The What's New listing on the
homepage of LearnPlone.Org uses Modification Date as its date criterion.
That way both newly created documents and ones that have been updated
appear in the listing.

Event Specific Dates
The two following dates only apply to objects that
are Events. These two dates are very effective for creating Recent
Events and Upcoming Events Collections that will let your audience know
what your organization is doing and will be doing in the future.

Start Date
The Start Date is simply the date that an Event starts.

End Date
The End Date is simply the date that the Event ends.

Publication Date

The Publication Date is the date when object was last published. It can
either be set manually by means of Effective Date field or, if the
latter hasn't been set, calculated based on date when object was last
published.

To display Publication Date on your pages you need to switch it on with
"Display publication date in 'about' information" option in Site
Settings Control Panel. Publication Date will be visible right before
object Modification Date inside 'about' information area. Make sure
"Allow anyone to view 'about' information" option is also enabled
inside Security Settings Control Panel to make it all work.

Setting Dates

A confusing thing about dates can be how its Criteria are set up. They
have a setup that is not like any of the other Criteria. First off, you
have to choose whether you want a Relative Date or a Date Range.

The Relative Date allows you to construct a conditional statement.
Such as: Items modified less than 5 days in the past. A Date Range will
allow you to specify an exact range of dates, such as 01/02/08 to
02/02/08. The Date Range is useful when you want to create a Collection
with a static date that won't change. The Relative Date can be very
useful as it will allow you to create Collections that are automatically
updating themselves, such as a Recent News Collections or an Upcoming
Event Section.

Relative Date

Looking first at the Relative Date option, you can see we have three
options to fill out.

The first option is Which Day. This allows us to select the number
of days our criterion will include. One of the options is called Now.
Using this will set the date range to the current day. The other two
options do not matter and can be ignored when using Now.

The second option is In the Past or Future. This enables us to
choose whether we are looking forward or backward into time.

The last option is More or Less. Here we can choose from three
options. Less than allows us to include everything from now to a
period of time equal to or less than the Which Day setting, either in
the past or future. More than will include everything from beyond our
specified number of days equal to or more than Which Day. Finally
On the Day will only include things that are on the day we specified in
the Which Day. Using the example in the image above if we had
selected On the Day instead of Less than our Collection would
display only objects that were modified (we are using the Modification
Date criterion) 5 days ago.

If this is confusing to you, try reading it as a statement substituting
in the field options you chose. "I want the results to include objects
More or Less than Which Day, In the Past or Future". Our
example in the image above would become "I want the results to include
objects Less than 5 days in the past".

Date Range

The Date Range is much easier to understand. Both a Start Date and
End Date are required (do not confuse these terms with the Event
Specific dates!). The Date Range allows us to enter a beginning and an
end date and the display everything within that time frame. Notice also
that it allows us to specify a specific time of day as well.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Portlet Management

An introduction to the use and management of portlets.

	Managing Portlets
	Finding the Manage Portlets link

	Adding a Portlet

	Editing an Existing Portlet

	Rearranging Portlets

	Removing Portlets

	Hiding Portlets

	Portlet Hierarchy

	Portlet Types
	Navigation

	Calendar

	Classic

	Collection

	Events

	Log in

	News

	RSS Feeds

	Recent Items

	Review List

	Search

	Static Text

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Portlet Management »

Managing Portlets

How to add, remove, and rearrange portlets.

To begin manipulating portlets, you must find the Manage Portlets
link, usually located on the bottom of each side column. Under Manage
Portlets, you can create new Portlets, remove Portlets, rename and
rearrange Portlets.

Finding the Manage Portlets link

[image: Portlet manage link]

Clicking on this link will take us to a new page that will allow us to
edit the Portlets. The other method of getting to this screen is by
adding /@@manage-portlets to the end of the page URL that we want to
edit the Portlets on. For example, to edit the Portlets on the About Us
Page, the URL would end up being
www.myplonesite.org/about/@@manage-portlets.

[image: Manage portlets]

Adding a Portlet

Adding a Portlet is as simple as selecting the Add Portlet drop down
box and clicking on the type of Portlet you would like to add. We will
cover the different options available in the next section.

Editing an Existing Portlet

To edit the properties of an existing Portlet, simply click on the name
of the Portlet. In the example to the left, if we wanted to edit the
properties of the Navigation Portlet, we would Click on Navigation.
Each type of Portlet will have different configuration options available
to it.

Rearranging Portlets

To Rearrange your Portlets, simply click the blue up or down arrow.
This will affect the order your Portlets are displayed on the page.

Removing Portlets

To remove a Portlet, click the red "X" associated with its name.

Hiding Portlets

From Plone 4 on you can show/hide portlets using the associated
show/hide links present.

As you may have noticed on the Manage Portlet screen, you have the
ability to work with Portlets on both the right and left side of the
page. This is because there are two columns for Portlets to be in, a
left column and a right column. Portlets will only appear on the side
that you add them on.

With Portlets, you can add more than one of the same type on a page.
There is no limit to how many times you can use an individual Portlet or
a limit to how many total Portlets can be on a Page.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Portlet Management »

Portlet Hierarchy

Portlets use a basic hierarchy approach which determines how and why
they appear on each section of your site.

Portlets use a basic hierarchical approach. By default, the portlets
that you assign at the root (homepage) of the site will propogate down
to all the subsections of the site. If you want a different set of
portlets or order of portlets for a particular sub-section, you must use
the Block/unblock portlets controls, to "block" the parent portlets.
When you block Portlets, you must explicitly add all the Portlets that
you wish to see on the child page.

The portlet management screen has been updated in Plone 4 to show all
portlets, including portlets that are blocked. Users can now see what's
being blocked and what's being inherited. When a portlet is blocked, you
will notice a subtle change in color on on the portlet management
screen:

[image: Blocked portlets in management]
Blocked portlets in management

In this diagram, our Portlets are designated in blue underneath the Page
title:

[image: ../../_images/hierarchy.png]
Portlet Hierarchy

As you can see we have two Portlets designated on our Home page
(navigation and recent items). These same Portlets appear on our About
Page because of portlet hierarchy.

However, on the Documentation page we added a third portlet - the
Collection Portlet. Here we are still allowing Parental Portlets, but in
addition we specifically added the Collection Portlet.

On both the Tutorials and Videos Pages we have to block Parental
Portlets because we do not want the Collection Portlet that is on the
Documentation Page to show. When we block Parental Portlets we must
re-add the Portlets to each Child page. In this case we re-added the
Navigation Portlet to both and then added the Search Portlet to both.

Remember that the child pages only inherit from the parent page directly
above them. In our example, if we added a page called Staff under
About and allowed the parent portlets without adding any additional
portlets, it would show the same Portlets as the Home Page as well as
the About Page. However do not think that it is inheriting from the Home
page. If we were to change the About Page and added a Search Portlet,
our Staff Page would reflect the Portlets on the About Page not the Home
Page.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Portlet Management »

Portlet Types

Descriptions of each Portlet Type

There are several different types of Portlets to chose from. The way
that Portlet types are named can be confusing at times. Also, some can
be configured through Manage Portlets and others require some setup
through the ZMI or by creating other content objects first. Below is a
basic description of the use and functionality of each available Portlet
type.

Navigation

The Navigation Portlet allows users to navigate your site with ease
by providing a structured "site map", or navigation tree. You have the
option to display the navigation for the overall site or choose to only
display the current folder contents. On LearnPlone.Org, you can see an
example of the Navigation Portlet in the left column. As you dig deeper
into the site, the tree will continue to expand. There are several
configuration options available that effect how the Navigation Portlet
will behave.

Calendar

The Calendar Portlet is a very simple Portlet that will display a
Calendar on your site. This Portlet has no customizable options. If you
have published Event content objects on your site, the days upon which
they occur will be bolded in the calendar and will link to the
corresponding events on your site.

Classic

A Classic Portlet is refers to the way portlets were used in older
version of Plone, prior to Plone 3. You must create a Page Template in
the ZMI and properly set the path and macro to enable the portlet. This
requires technical knowledege of both TALES and the ZMI.

Collection

The Collection Portlet will allow you to display the results of a
Collection. You must have a Collection previously created when you add
this Portlet, then you can specifying the Collection to be used . This
is a great way to present targeted queries like for example "newest sightings of Amazonian butterflies".

Events

The Events Portlet will display Upcoming Events, provided that you
have Events on your site. You can determine how many events you want to
be displayed and also which events you want to display based on
publishing state.

Log in

The Log in Portlet is another non configurable Portlet that will simply
display a Log in Form that will allow users with Log in information
to log in to the site. Once a user is logged into the site, this Portlet
will not appear.

News

The News Portlet works exactly like the Events Portlet. However instead
of displaying Events, it displays recent News items. Once again you
can choose how many News items are displayed and filter them based on
their state.

RSS Feeds

The RSS Feed Portlet allows you to link to an RSS Feed, choose how many
items to display, and specify the refresh rate.

Recent Items

The Recent Items Portlet displays a customizable number of Recent
Items, listed by Title. A Recent Item is determined by its Last
Modified Date.

Review List

The Review List Portlet will display a list of objects that have been
submitted for review. If you are using a submit and review cycle (and
have properly set global roles for your users) this is a great way for
reviewers to see what content has been submitted for review. This
Portlet only appears to those logged in as this state is not viewable to
the public.

Search

The Search Portlet will place a search box in your Portlet Column. This
search box will search the Titles, Descriptions, and Body text of
objects on your site for the text specified. You have the option of
enabling Live Search. Live Search is a feature which shows live results
if the browser supports JavaScript.

Static Text

The Static Text Portlet allows you to enter content just as you would on
a normal Page object. This is useful for adding hyperlinks to different
sites, address information, or any information that is relatively static.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Create and maintain good quality content

Description

Plone comes with several tools to maintain the quality of the content you create.
This ensures both good results in search engines, as better usability for the visitors.

What is "content quality"?

Under this heading we list several tools that help you to ensure content can be properly indexed,
is enriched with meta-data such as tags, dates and even geo-location, and to make sure links are not broken.

This will also help you with accessibility certification for your content, and Search Engine Optimization (SEO)

Batteries included

Plone comes standard with a whole host of features that help you:

	The URL's for content are derived from the Title, making sure you have human-readable URL's

	Dublin Core [http://dublincore.org/] metadata is used throughout

	The navigation is automatic, and within folders you can also enable "previous/next" style links

	Automatic filters in the editor ensure that the page will be saved as valid HTML

	Behind the scenes, Plone registers internal links with so-called "UUIDs". In short, a unique key is generated for every content item, making sure all internal links will work if you move pieces of content or even whole folders around.

	When you delete a piece of content, you will receive a warning if there are other places in your site that still link to this content. You'll get the option to correct those other pages.

	If you move content around and people come to your site using the old URL, they will be automatically redirected to the new location. (Tip: you can even use this to create short 'alias' URL's...)

	Images are automatically scaled. Even if your editors upload high-resolution images, you will get smaller sizes that ensure quick loading of your page. Of course the original image size is also available, if you want.

And there are some hidden gems as well: you can enable (in the Control Panel, as site administrator) the After The Deadline [http://www.afterthedeadline.com/] intelligent spelling and grammar checker. Now while this is only available at the moment for English, French, Spanish and Portuguese, if your site uses one of those languages this is a very valuable add-on.
For testing and light use, you can use the connection to the online service; if you have many users or create much content, you are advised to set up your own instance of the After The Deadline server. It is free and open source software.

In the next section, we will point to several add-ons that can help even more to create and maintain high-quality content.

	Content Quality helper tools
	Avoiding content errors

	Check your links

	Better images

	Tags, relations and more

	Analytics and SEO

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

 	Create and maintain good quality content »

Content Quality helper tools

Description

A selection of add-ons that can help create and maintain appealing, searchable, and high-quality content.

Apart from the inbuilt tools, there are several add-ons available.

Note that these are all separate add-ons you will have to install, and we strongly suggest testing them out first on a separate test-instance of your site, to see if they fit your purpose and do not interfere with other parts of your site.
Also, some of these tools rely on web-services, which may or may not be allowed or advisable in high-security scenarios.

Avoiding content errors

	collective.jekyll [https://pypi.python.org/pypi/collective.jekyll] is a package that will help you identify common pitfalls, like too long or short titles or descriptions, or a URL starting with "copy_of". You can even set it up so it alerts editors when they don't stick to the preferred image format, or if a page has not enough links to other pages.

	eea.progressbar [https://pypi.python.org/pypi/eea.progressbar] can provide a visual clue as to where a document is in the workflow progress, making it easier for editors and reviewers to track what to do next to publish a document.

Check your links

	collective.linkcheck [https://pypi.python.org/pypi/collective.linkcheck] provides link validity checking and reporting.

	although you may also want to keep this out of Plone itself, and run an external linkchecker regularly. This Linkchecker [http://wummel.github.io/linkchecker/] is open source, available for multiple platforms and can be easily scripted.

Better images

	Products.ImageEditor [https://pypi.python.org/pypi/Products.ImageEditor] allows you to rotate, flip, blur, compress, change contrast & brightness, sharpen, add drop shadows, crop, resize an image, and apply sepia.

	collective.aviary [https://pypi.python.org/pypi/collective.aviary] integrates the external "Aviary" image editor into Plone.

	plone.app.imagecropping [https://pypi.python.org/pypi/plone.app.imagecropping] surprisingly enough, crops images.

Tags, relations and more

	eea.tags [https://pypi.python.org/pypi/eea.tags] provides a Facebook-like autocomplete widget for tagging content.

	eea.alchemy [https://pypi.python.org/pypi/eea.alchemy] allows you to bulk auto-discover geographical coverage, temporal coverage, keywords and more.

	collective.taghelper [https://pypi.python.org/pypi/collective.taghelper] can connect to a range of webservices to assist tagging

	collective.simserver [https://github.com/collective/collective.simserver.core] can help with creating 'related items' links

	collective.taxonomy [https://github.com/collective/collective.taxonomy] can set up hierarchical taxonomies in multiple languages

	collective.classifiers [https://github.com/collective/collective.classifiers] provides a 'middle ground' between a complex taxonomy and simple tagging, allowing for two new fields to classify content

	collective.facets [https://github.com/collective/collective.facets] is an alternative approach allowing editors to add 'facets' to content.

Analytics and SEO

	collective.googleanalytics [https://pypi.python.org/pypi/collective.googleanalytics] enables easy tracking of the standard Google statistics as well as external links, e-mail address clicks and file downloads. It also defines Analytics reports that are used to query Google and display the results using Google Visualizations.

	quintagroup.seoptimizer [https://pypi.python.org/pypi/quintagroup.seoptimizer/] allows setting various meta tags and other information search engines like and need.

	if you have migrated from another system, and need to set up aliases to content that still lives in search engines, Products.RedirectionTool [https://pypi.python.org/pypi/Products.RedirectionTool] gives you an interface to Plone's built-in redirection and aliasing.

And after all that work, you can use quintagroup.analytics [https://pypi.python.org/pypi/quintagroup.analytics] to see your webmaster stats increase. Now lean back with your favorite hot beverage, you've earned it!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Working with Content »

Using Kupu as visual editor

Kupu is a platform independent web based Javascript HTML WYSIWYG editor.
What this means is that it will let you create HTML content on your web
site.

From Plone 4 on, TinyMCE is the default visual editor for new sites.
However, Kupu is still available to use if you prefer so. Check the
Setting Your Preferences
section to learn how to set Kupu as your default editor.

A typical Kupu toolbar looks like this:

[image: kupu-grab]
kupu-grab

The text format is normally left with the HTML setting, but some sites
offer structured text or other markup languages for editing pages.

The icons are:

	bold,

	italics,

	left align,

	center,

	right align,

	numbered list,

	bulleted list,

	dictionary list,

	tab left (block),

	tab right (block),

	image (the "tree" icon),

	internal link (the "chain link" icon; make a link to another page in
the given site),

	external link (the "world" icon; make a link to a web page
elsewhere),

	anchor (the "anchor" icon; make a link to a specific section of a web
page),

	table (add a table with rows and columns),

	direct HTML editing (the "HTML" icon; if you know HTML, edit the HTML
for the page directly), and a

	pulldown menu for text styling.

Images

Place your cursor within the text of a page, then click the "tree" icon.
This panel will pop up:

[image: insert-image-current-folder.png]

Click "Current folder" in the left side of the panel, if it isn't
already highlighted. The current folder is the folder that contains the
page you are editing -- all pages are contained inside some folder.
There are many ways to manage storage of images, including having one
central images folder, but a common method is to store images that show
on a page in the folder that contains the page (the current folder). In
this method, pages and the images associated with them are stored
together within the folder structure. If you click the Upload button,
you will be prompted to select an image on your computer and upload it.
After selecting an image to upload, the right panel will let you give
the image a title for use on the web site, and several image placement
and sizing options. Clicking OK will upload the image and place it on
the page.
The same panel will appear if you click an image on page to select it,
then click the same "tree" icon for editing the image options or for
changing the image.
You are responsible for sizing and editing images on your computer
before you upload them, but one easy way to handle images for use on
most web pages is to make a copy of an image on your computer, then
resize it to something like 1000 pixels in largest dimension. This is a
reasonable size for uploading -- there is no need to upload your
gargantuan images coming from your digital camera. Plone will
automatically create several sizes of an uploaded image, including
"large," "mini," and other sizes. You pick the size you want to use when
your upload or edit the image with the "tree" icon. You can also
override the image size choice by editing the HTML.

Internal Links

Select a word or phrase, click the internal link icon, and the insert
link panel will appear:

[image:]

You use this panel by clicking on Home or Current folder to begin
navigating the Plone web site to find a folder, page, or image to which
you wish to make a link. In the example above, a page named "Long-tailed
Skippers" has been chosen for the link. After this panel is closed, a
link to the "Long-tailed Skippers" page will be set for the word or
phrase selected for the link.

External Links

Select a word or phrase, click the external link icon, and the
External link panel will appear:

[image:]

Type the web address of the external website in the box starting with
http://. You can click preview if you need to check the address. If
you paste in the web address, make sure you don't have duplicate http://
at the beginning of the address. Then click ok. The external link will
be set to the word or phrase you selected.

Anchors

Anchors are like position markers within a document, based on headings,
subheadings, or another style set within the document. As an example,
for a page called "Eastern Tiger Swallowtail," with subheadings entitled
"Description," "Habitat," "Behavior," "Conservation Status," and
"Literature," an easy set of links to these subheadings (to the
positions within the document at those subheadings) can be created using
anchors.

First, create the document with the subheadings set within it, and
re-type the subheadings at the top of the document:

[image:]

Then select each of the re-typed subheadings at the top and click the
anchor icon to select by subheadings:

[image:]

A panel will appear for selecting which subheading to which the anchor
link should connect:

[image:]

The Link to anchor tab will appear. The left side shows a list of
styles that could be set within the document. For this example, the
subheadings are used for each section, which is the usual case, so
subheadings has been selected. The right side of the panel shows the
subheadings that have been set within the document. Here the
Description subheading is chosen for the link (for the word
Description, typed at the top of the document).

You can be creative with this powerful feature, by weaving such
links-to-anchors within narrative text, by setting anchors to other
styles within the document, and coming up with clever mixes. This
functionality is especially important for large documents.

Tables

Tables are handy for tabular data and lists. To add a table, put your
cursor where you want it and click the add table icon. You'll see the
add table panel:

[image:]

Setting rows and columns is straightforward. If you check the Create
Headings box you'll have a place to type column headings for the table.
Table class refers to how you want the table to be styled. You have
choices such as these:

[image:]

Here are examples of these table styles:

plain:

	Thoroughbred Champions
	Quarter Horse Champions

	Man O' War
	First Down Dash

	Secretariat
	Dashing Folly

	Citation
	Special Leader

	Kelso
	Gold Coast Express

	Count Fleet
	Easy Jet

listing:

	Thoroughbred Champions
[image: image21]
	Quarter Horse Champions
[image: image22]

	Man O' War
	First Down Dash

	Secretariat
	Dashing Folly

	Citation
	Special Leader

	Kelso
	Gold Coast Express

	Count Fleet
	Easy Jet

After the table has been created you can click in a cell to show table
resizing handles and row and column add/delete icons:

[image: image23]

In the table above, the cursor has been placed in the "Special Leader"
cell, which activates little square handles around the edges for
resizing the entire table. It also activates add/delete icons for the
current cell, the "Special Leader" cell. Clicking the little x in the
circle will delete the entire row or column that contains the current
cell. Clicking the little arrowhead icons will add a row above or below,
or a column to the left or right of the current cell.

Text Styling

The text style setting is made with a pulldown menu. Here are the
choices:

[image: kupu-text-styles]

As with normal word-processing editing, select a word, phrase, or
paragraph with your mouse, then choose one of the style choices from the
pulldown menu and you will see the change immediately.

Saving

Click the Save button at the very bottom and your changes will be
committed for the page.

Footnotes

Markup languages

If you are the sort of person who likes to enter text using so-called
mark-up formats, you may switch off the visual editor under your
personal preferences, which will replace Kupu with a simplified text
entry panel. The mark-up formats available in Plone are:

	Markdown [http://en.wikipedia.org/wiki/Markdown]

	Textile [http://en.wikipedia.org/wiki/Textile_%28markup_language%29]

	Restructured Text [http://en.wikipedia.org/wiki/ReStructuredText]

Each of these works by the embedding of special formatting codes within
text. For example, with structured text formatting, surrounding a word
or phrase by double asterisks will make that word or phrase bold, as in
This text would be bold. These mark-up formats are worth
learning for speed of input if you do a lot of page creation, or if you
are adept at such slightly more technical approaches to entering text.
Some people prefer such formats not just for speed itself, but for
fluidity of expression.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Adapting & Extending Plone

	Basic Changes (Look and Feel)
	Change the Logo

	Change the Font Colors

	Theming Plone
	plone.app.theming manual

	Diazo theme engine guide

	Quick Test Recipe

	Create a Plone theme product with Diazo

	Front-end: templates, CSS and Javascript

	Old-Style Plone Theming

	Configuration and Control panel
	Site-Configuration

	Add-ons

	Mail Configuration

	Enabling HTML embed codes

	TinyMCE visual editor for Plone

	Installing Add-ons
	Introduction

	Prerequisitements

	Background

	Finding add-ons

	Downloading and configuring an add-on package for Plone

	Downloading and configuring add-on package from github

	Further help

	Custom Content-Types
	Dexterity Developer Manual

	Content-types with Archetypes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

Basic Changes (Look and Feel)

	Change the Logo

	Change the Font Colors

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Basic Changes (Look and Feel) »

Change the Logo

How to substitute the standard Plone logo with your own logo - a
through-the-web approach.

The Basics

In Plone 3 and 4, the logo is simply an image with a link to the home
page of your site wrapped around it (there's just one small difference
between versions, the name is logo.jpg in Plone 3, logo.png in Plone 4).

If you're happy with this approach, then you won't need to touch the
HTML as all the attributes in this snippet are generated automatically.
Follow the instructions in Section 1: Changing the Image and its Title.

If you just want to tweak the styles a little bit, then go to Section 2:
Changing the portal_logo style.

If you would rather deliver your logo in a different fashion and need to
rewrite the HTML, then you can do this by customizing the logo template,
follow the instructions in Section 3: Changing the HTML.

1. Changing the Image and its Title

The logo image - logo.jpg (Plone 3) logo.png (Plone 4) - can be found in
the plone_images folder in portal_skins. The quickest way to replace
this is simply to upload your own image and give it the same name:

	Go to the Zope Management Interface (Site Setup > Zope Management
Interface)

	Go to portal_skins > plone_images

	Click logo.jpg (Plone 3) or logo.png (Plone 4) and then click the
customize button

	Now replace the image by clicking the browse button and choosing your
own image from your file system

	Edit the Title field (this will ensure that the title attribute
changes in the HTML)

	Save your changes and refresh your browser to see the changes on your
site

2. Changing the portal_logo style

There are no styles set for #portal-logo, but there are some for
#portal-logo img in basic.css. Use the Firebug extension for Firefox
to investigate these. The simplest approach is to override these with
your own styles in ploneCustom.css.

	Go to the Zope Management Interface (Site Setup > Zope Management
Interface)

	Make sure you have debug mode / development mode turned on in the CSS
Registry (portal_css)

	Click portal_skins > plone_styles > ploneCustom.css and then click
the Customize button

	You will now have an editable version of ploneCustom.css in the
custom folder of portal_skins

	Add your own styles here, click Save, and refresh your browser to see
the changes

3. Changing the HTML

The HTML for the logo is generated by logo.pt - a page template which is
part of a viewlet called plone.logo. To customize this through the web,
you'll need to use portal_view_customizations.

	Go to the portal_view_customizations in the Zope Management
Interface (Site Setup > Zope Management Interface)

	Click plone.logo and then click the Customize button

	You'll now have a template you can rewrite - we've highlighted the
significant bits in the theory section below and given you a couple
of examples to get you started.

	Save your changes and refresh your browser to see them

Note: if you want to go back and make further changes later, you'll
see that plone.logo is highlighted in the portal_view_customizations
list, click on it to edit it. If you want to remove your customizations
completely, use the contents tab of portal_view_customizations, tick
the box next to your template and click Delete.

The Theory

Here's the logo.pt template. It is written in the templating language
used by Plone - TAL (or ZPT). It helps to know this (and it doesn't take
long to learn), but we'll talk you through this example:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

First we have the link tag:

You can disregard metal:define-macro="portal_logo"this is just
wrapping the code into something that can be re-used again if necessary.

The important bit is tal:attributes="href view/navigation_root_url",
this is the code that supplies your site URL to the href attribute.

There is a magic variable here, view/navigation_root_url,that
seems to have appeared from nowhere. In fact, view is a collection of
properties computed by the plone.logo viewlet and seamlessly passed to
the logo.pt template. Here are the available properties:

	navigation_root_url

	supplies the URL of your site (it could potentially be something
different if you've set up a different navigation root)

	logo_tag

	looks up the name of the logo image from base_properties, finds the
image, collects its dimensions and title and turns all of this into
an HTML image tag with the appropriate attributes Check back to the
alternative approach in Section 1 of this How To for more
information about base_properties.

	portal_title

	looks up and supplies the title of your site

Now look at the image tag in the template.

The key here is tal:replace="structure view/logo_tag". This means
that the template won't deliver the image tag actually written out here,
instead, it will replace the whole thing with the tag generated by
the plone.logo viewlet. If you don't want this to happen, then you
should delete this line.

Note: structure means treat the value as HTML rather than a text
string.

Example 1: A plain text title

Here's a customized version of the template, using view/portal_title
rather than view/logo_tag, to give you a text header instead (if
you've used Plone 2, then you might recognize this):

<h1 metal:define-macro="portal_logo"
 id="portal-logo">
 <a accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone" tal:content="view/portal_title">

</h1>

Of course you'll want to supply your own styles, look back at Section 2
of this How To for information on defining these in ploneCustom.css. You
could adjust this example to use an accessible image replacement
technique in your CSS.

Example 2: Supplying your own image tag

You don't have to use logo_tag if you don't want to:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="[My logo ID]" alt="[My Logo]"
 width="[My Width]" height="[My Height]"
 tal:attributes="title view/portal_title" />

You will, of course, need to upload your own logo to the custom folder
in portal_skins, see the instructions in Section 1 of this How To.

Further Information

	There are further How Tos in the Logo section of the Plone
documentation dealing with more advanced customization methods.

	More guidance on TAL and ZPT can be found in the ZPT tutorial.

	If you want to transfer your changes to the file system in your own
theme product, then proceed to the viewlets overview section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Basic Changes (Look and Feel) »

Change the Font Colors

How to change the font colors - a through-the-web approach.

You'll be introduced to some very simple techniques here for
through-the-web customizations of Plone's CSS.

	How to locate the styles you want to change

	How to override these styles using the ploneCustom.css style sheet

In this case we'll change the color of page titles from black to
turquoise.

Before you start

For convenience, Plone themes often comprise a number of separate style
sheets, but for speed and efficiency, in production mode, Plone has a
mechanism (portal_css) for packaging these up into just one or two
files.

You'll need to disable this when making changes to your site or
customizing CSS. So make sure you've followed the instructions on how to
put your site into debug mode.

Locating the styles you want to change

	If you don't already have a page in your Plone site, add one, save it
and inspect it in view mode.

	Use Firebug [https://getfirebug.com/] , or a similar
tool, to locate the class name of the page title - in this case its
h1.documentFirstHeading.

Locating the ploneCustom.css style sheet

As a matter of course, the last style sheet to load on every Plone page
is ploneCustom.css. You'll see this if you inspect the HTML head tag of
your page using Firebug. If you dig further, you'll probably find that
this style sheet is completely empty. By the rules of precedence in the
CSS Cascade, any styles in this sheet will override styles specified in
the preceding sheets. So you have a "blank sheet" here for your own
customizations.

The trick now is to locate this file, so that you can make it available
for editing.

To make life easier for yourself, you might like to open a second tab or
browser window at this point - you can then quickly switch back to the
first tab to see your changes.

Go to Site Setup > Zope Management Interface and click portal_skins

Use the Find option in the tabs across the top to locate
ploneCustom.css:

	Type ploneCustom.css in the "with ids:" box and click Find

	You may get more than one result, it doesn't matter which you choose
to click on, however best practice is to choose the one flagged with
the red asterisk.

Customizing and Editing ploneCustom.css

When you click on ploneCustom.css you'll find that you can't edit it.
The next stage is to put the ploneCustom.css in a place where it can be
edited. You'll see a Customize option just above the grey text area,
click the Customize button and you'll find that the style sheet has been
automatically copied to portal_skins/custom.

You're now free to edit the file as you like. To change the color of
our page titles, add:

h1.documentFirstHeading {
 color: #0AAE95;
}

and save.

If you've installed Plone 4 with the Sunburst theme, the ploneCustom.css
comes with a number of commented out pre-packaged styles that you might
like to experiment with. You can override the layout styles to a fixed
width and alter the colors of the links.

Rolling back your changes

You've got a couple of options for reverting back to the original CSS:

comment out your styles in the ploneCustom.css - the usual CSS
commenting syntax applies

delete (or, if you want to keep a note of what you did, rename) your
version of ploneCustom.css, you'll find it here:

	Site Setup > Zope Management Interface > portal_skins > custom

	you can choose the delete or rename options - try renaming to
ploneCustom.css.old

	you can then go back to the beginning of the process of locating and
customizing ploneCustom.css

Further Information

You've actually encountered two types of customization here.

	The first is a standard method of using order of precedence - the
Cascade - to overwrite CSS styles as they reach the browser.

	The second is a Plone/Zope specific method of overriding the style
sheets themselves by dropping them into the custom folder of
portal_skins. This method can also be used for templates and other
resources and is explained in more depth in the section on Skin
Layers
in this manual.

More advanced techniques, including incorporating your own style sheets
into a theme product, are covered later in this manual.

You can find out more about how the CSS Registry (portal_css) packages
up the style sheets to deliver them to the page in the Templates and
Components to
Page
section of this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

Theming Plone

Intro

The current best-practice way to theme a Plone site is by using an engine called "Diazo".
This allows designers to design a theme in just plain, flat HTML, CSS (and javascript, if wanted) and then to hook that into the Plone backend to fill it with sophisticated content.

The easiest way to do this is to use "plone.app.theming". But if you need to integrate Plone with other back-end servers, legacy systems, or any webservice, you can use Diazo to all combine it in a unified look & feel.

	plone.app.theming manual
	Introduction

	What is a Diazo theme?

	Using the control panel

	Reference

	Diazo theme engine guide
	Introduction

	Quickstart

	Installation

	Basic syntax

	Advanced usage

	Compilation

	Deployment

	Contributing to this documentation

	Contributing to Diazo

	Recipes

	Quick Test Recipe
	Ingredients

	Procedure

	Create a Plone theme product with Diazo
	Introduction

	Create a product to handle your Diazo theme

	Override the Plone skin

	Override Plone BrowserViews with jbot

	Manage CSS and JS in registries

General information on the stylesheets and other resources in Plone

	Front-end: templates, CSS and Javascript
	TAL page templates

	CSS

	Resource folders

	Skin layers

	DTML

Information on 'old-style' theming for Plone 3, but still valid in Plone 4.
So upgrading from Plone3 to Plone4 is possible without switching to the new style of theming.

Do note that for all new theme development, Diazo is strongly recommended.

	Old-Style Plone Theming
	Theming guide for Plone 3

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

plone.app.theming manual

This guide provides an overview of Diazo theming in Plone versions 4.3 and higher.

Contents

	Introduction

	What is a Diazo theme?

	Using the control panel
	Selecting a theme

	Creating a new theme

	Uploading an existing theme

	Modifying the theme

	The theme inspector

	The rule builder

	Advanced settings

	Reference
	Deploying and testing themes

	The manifest file

	Rules syntax
	Selectors

	Conditions

	Available rules
	rules

	theme and notheme

	replace

	before and after

	drop and strip

	merge and copy

	Advanced modification

	Theme parameters

	Theme debugging

	Commonly used rules

	Advanced: Using portal_css to manage your CSS

Introduction

In Plone [http://plone.org] versions 4.3 and higher you
can edit your website theme through web browser in Plone's site setup control panel.
Only HTML, CSS and little XML knowledge needed as the prerequisitements.
This guide explains how to use this feature of Plone.

See introduction video to plone.app.theming [https://vimeo.com/42564510].

What is a Diazo theme?

A "theme" makes a website (in this case, one powered by Plone) take on a
particular look and feel.

Diazo (formerly known as XDV) is a technology that can be used to theme
websites. It is not specific to Plone per se, but has been created by the Plone
community and, as of Plone 4.3, provides the default way to apply a theme to a
Plone site. You can learn more about Diazo at http://diazo.org.

Diazo themes may be a little different to themes you have created in other
systems, and indeed to themes you may have created for earlier versions of
Plone. A Diazo theme is really about transforming some content - in this case
the output from "vanilla" Plone - into a different set of HTML markup by
applying a set of rules to combine a static HTML mock-up of the end result you
want with the dynamic content coming from Plone.

In comparison, the previous way to theme a Plone site (like the way many other
content management systems are themed) relies on selectively overriding the
templates and scripts that Plone uses to build a page with custom versions
that produce different HTML markup. The latter approach can be more powerful,
certainly, but also requires much deeper knowledge of Plone's internals and
command of server-side technologies such as Zope Page Templates and even Python.
Diazo themes, by contrast, are easy to understand for web designers and non-
developers alike.

A Diazo theme consists of three elements:

	One or more HTML mockups, also referred to as theme files, that represent
the desired look and feel.

These will contain placeholders for content that is to be provided by the
Plone content management system. Mockups usually reference CSS, JavaScript
and image files by relative path. The most common way to create a theme is to
use desktop software like Dreamweaver or a text editor to create the relevant
markup, styles and scripts, and test the theme locally in a web browser.

	The content that is being themed. In this case, that is the output from
Plone.

	A rules file, which defines how the placeholders in the theme (i.e. the
HTML mockup) should be replaced by relevant markup in the content.

The rules file uses XML syntax (similar to HTML). Here is a very simple
example:

<?xml version="1.0" encoding="UTF-8"?>
<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">`

 <theme href="theme.html" />

 <replace css:content-children="#content" css:theme-children="#main" />

</rules>

Here, we are replacing the contents (child nodes) of a placeholder element
with HTML id main in the theme file (theme.html, found in the same
directory as the rules.xml file, as referenced by the <theme /> rule)
with the contents (children) of the element with the HTML id content in
the markup generated by Plone.

When this theme is applied, the result will look very much like the static
HTML file theme.html (and its referenced CSS, JavaScript and image
files), except the placeholder that is identified by the node in the theme
with id main will be filled by Plone's main content area.

Plone ships with an example theme called, appropriately, Example theme, which
uses the venerable Twitter Bootstrap [http://twitter.github.com/bootstrap/]
to build a simple yet functional theme exposing most of Plone's core
functionality. You are advised to study it - in particular the rules.xml
file - to learn more about how Diazo themes work.

Using the control panel

After installation of the Diazo theme support package in a Plone site, the
Theming control panel will appear in Plone's Site setup.

The main tab of this control panel, Themes, will show all available themes,
with buttons to activate/deactivate, modify, copy or delete each, as well as
buttons to create new themes or bring up this help text.

Click on a theme preview image to open a preview of that theme in a new tab
or window. The preview is navigable, but form submissions and some advanced
features will not work.

Selecting a theme

To apply an existing theme, simply click the Activate button underneath the
theme preview. The currently active theme will be highlighted in yellow. If
you deactivate the currently active theme, no Diazo theme will be applied, i.e.
"vanilla" Plone theming will apply.

Note: The Theming control panel is never theemd, ensuring that you can
always deactivate an errant theme that could render the control panel unusable.
Thus, you may not see any difference immediately after enabling a theme. Simply
navigate to another page in the Plone site, though, and you should see the
theme applied.

Creating a new theme

New themes can be created in one of two ways:

	Click the New theme button at the top of the Themes tab in the Theming
control panel and enter a title and description in the form that appears.
A bare-bones theme will be created, and you will be taken to the Modify
theme screen (see below), where you can edit or create theme and rules files.

	Click the Copy button underneath any existing theme and enter a title and
description in the form that appears. A new theme will be created as a copy
of the existing theme, and you will be taken to the Modify theme (see
below), where you can edit or create theme and rules files.

Uploading an existing theme

Themes can be distributed as Zip files, containing the HTML mockup and rules
file. To download an existing theme, click the Download button underneath the
theme on the Themes tab of the Theming control panel.

To upload such a Zip file into another site, use the Upload Zip file button
on the Themes tab of the Theming control panel. You can choose whether or
not to replace any existing theme with the same name (based on the name of the
top-level directory contained within the Zip file).

You can also upload a Zip file of a static HTML mockup that does not contain a
rules file, such as a design provided by a Plone-agnostic web designer.

In this case, a basic rules.xml file will be added for you to start building
up a theme from using the Modify theme screen (see below). The
generated rules file will assume the main HTML mockup file is called
index.html, but you can change this in rules.xml.

Once you have successfully uploaded a theme Zip file, you will be taken to the
Modify theme screen (see below), where you can edit or create theme files.

Hint: If you get an error message like "The uploaded file does not contain
a valid theme archive", this usually means that you have uploaded a Zip file
that contains multiple files and folders, rather than a single top level
folder with all the theme resources in it. This could happen if you compressed
a theme or HTML mockup by adding its files and folders directly a Zip archive,
rather than compressing the directory in which they were found. To fix this,
simply unzip the archive on your computer into a new directory, move up a level,
and compress this directory on its own into a new Zip file, which you can then
upload.

Modifying the theme

You can modify a theme by clicking Modify theme underneath a theme in the
Themes tab of the Theming control panel. This screen is also launched
automatically when you create or upload a new theme.

Note: Only themes created or uploaded through the Theming control panel can
be modified through Plone. Themes installed by third-party add-ons or
distributed on the filesystem cannot, although changes made on the filesystem
will be reflected immediately if Zope is running in debug mode. To modify a
filesystem theme, you can copy it to a new in-Plone theme by clicking the Copy
button underneath the theme in the Theming control panel.

The Modify theme screen initially shows a file manager, with a file tree on
the left and an editor on the right. Click on a file in the file tree to open an
editor or preview: HTML, CSS, JavaScript and other text files can be edited
directly through the editor. Other files (e.g. images) will be rendered as a
preview.

Note: The advanced editor with syntax highlighting is not available in
Microsoft Internet Explorer.

Click New folder to create a new folder. You can also right-click on a folder
in the file tree to bring up this action.

Click New file to create a new text file. You can also right-click on a folder
in the file tree to bring up this action.

Click Upload file to upload a file from your computer. You can also right-
click on a folder in the file tree to bring up this action.

Click Preview theme to preview the theme as it will be applied with the mockup
and rules as currently saved. The preview is navigable, but forms and certain
advanced features will not work.

To save the file currently being edited, click the Save file button, or use
the keyboard shortcut Ctrl+S (Windows/Linux) or Cmd+S (Mac).

To rename or delete a file or folder, right-click on it in the file tree and
select the appropriate action.

The theme inspector

The theme inspector provides an advanced interface for discovering and building
up the rules of a Diazo theme. It can be launched by clicking the Show
inspectors button on the Modify theme screen for in-Plone themes, or by
clicking the Inspect theme button underneath a filesystem theme on the
Themes tab of the Theming control panel.

The theme inspector consists of two panels:

	The HTML mockup. If there are several HTML files in the theme, you can switch
between them using the drop-down list underneath the HTML mockup panel.

	The Unthemed content. This shows Plone without any theme applied.

Either panel can be maximised by clicking the arrows icon at the top right of
either.

The HTML mockups and Unthemed content panels can be switch to source view,
showing their underlying HTML markup, by clicking the tags icon at the top right
of either.

As you hover over elements in the HTML mockup or Unthemed content panels,
you will see:

	An outline showing the element under the cursor.

	A CSS or XPath selector in the status bar at the bottom if the panel which
would uniquely identify this element in a Diazo rule.

Click on an element or press Enter whilst hovering oveer an element to
select it. The most recently selected element in each panel is shown in the
bottom right of the relevant status bar.

Press Esc whilst hovering over an element to select its parent. This is
useful when trying to select "invisible" container elements. Press Enter
to save this selection.

The contents of the HTML mockup or (more commonly) Unthemed content panels
can be navigated, for example to get to a content page that requires specific
theme rules, by disabling the inspector. Use the toggle switches at the bottom
right of the relevant panel to enable or disable the selector.

The rule builder

Click the Build rule button near the top of the Modify theme or Inspect
theme screen to launch an interactive rule building wizard. You will be asked
which type of rule to build, and then prompted to select the relevant elements
in the HTML mockup and/or Unthemed content panels as required. By default,
this will use any saved selections, unless you untick the Use selected
elements box on the first page if the wizard.

Once the wizard completes, you will be shown the generated rule. You can edit
this if you wish. If you click Insert, the newly generated rule will be
inserted into the rules.xml editor at or near your current cursor position.
You can move it around or edit it further as you wish.

Click Preview theme to preview the theme in a new tab or window. Don't forget
to save the rules.xml file if you have made changes.

Note: In readonly mode, you can build rules and inspect the HTML mockup and
theme, but not change the rules.xml file. In this case, the Insert button
of the rule builder (see below) will not be available either.

Note: The ability to insert rules from the Build rule wizard are not
available in Microsoft Internet Explorer, although you will be given the option
to copy the rule to the clipboard when using this browser.

Advanced settings

The Theming control panel also contains a tab named Advanced settings. Here
be dragons.

The Advanced setings tab is divided into two areas. The first, Theme
details, contains the underlying settings that are modified when a theme is
applied from the Themes control panel. These are:

	Whether or not Diazo themes are enabled at all.

	The path to the rules file, conventionally called rules.xml, either
relative to the Plone site root or as an absolute path to an external
server.

	The prefix to apply when turning relative paths in themes (e.g. references to
images in an tag's src attribute) into absolute ones at
rendering time.

	The HTML DOCTYPE to apply to the rendered output, if different to the default
XHTML 1.0 Transitional.

	Whether or not to allow theme resources (likes rules.xml) to be read from
the network. Disabling this gives a modest performance boost.

	A list of host names for which a theme is never applied. Most commonly, this
contains 127.0.0.1, allowing you to view an unthemed site through
http://127.0.0.1:8080 and a themed one at http://localhost:8080 during
development, say.

	A list of theme parameters and the TALES expressions to generate them
(see below).

The second, Theme base, controls the presentation of the unthemed content, and
apply even if no Diazo theme is being applied. These are the settings that used
to be found in the Themes control panel in previous versions of Plone.

Reference

The remainder of this guide contains reference materials useful for theme
builders.

Deploying and testing themes

To build and test a theme, you must first create a static HTML mockup of the
look and feel you want, and then build a rules file to describe how Plone's
content maps to the placeholders in this mockup.

The mockup can be created anywhere using whatever tool you feel most comfortable
building web pages in. To simplify integration with Plone, you are recommended
to make sure it uses relative links for resources like CSS, JavaScript and image
files, so that it will render properly when opened in a web browser from a local
file. Plone will convert these relative links to the appropriate absolute paths
automatically, ensuring the theme works no matter which URL the user is viewing
when the theme is applied to a Plone site.

There are several ways to get the theme into Plone:

	On the filesystem

If you used an installer or a standard "buildout" to set up your Plone site,
you should have a directory called resources in the root of your Plone
installation (this is created using the resources option to the buildout
recipe plone.recipe.zope2instance. See
http://pypi.python.org/pypi/plone.recipe.zope2instance for more details.)

You can find (or create) a theme directory inside this directory, which is
used to contain themes. Each theme needs its own directory with a unique name.
Create one (e.g. resources/theme/mytheme) and put your HTML files and any
references resources inside this directory. You can use subdirectories if you
wish, but you are recommended to keep the basic theme HTML files at the top
of the theme directory.

You will also need a rules file called rules.xml inside this directory. If
you haven't got one yet, start with an empty one:

<?xml version="1.0" encoding="UTF-8"?>
<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">`

 <theme href="theme.html" />
 <replace css:content-children="#content" css:theme-children="#main" />

</rules>

Provided you are running Zope in debug mode (e.g. you start it up with
bin/instance fg), changes to the theme and rules should take effect
immediately. You can preview or enable the theme through the Themes control
panel, and then iteratively modify the rules.xml file or the theme mockup
as you wish.

	Through the web

If you prefer (or do not have filesystem access), you can create themes entirely
through the Plone control panel, either by duplicating an existing theme, or
starting from scratch with a near-empty theme.

See the instructions on using the control panel above for more details.

Once a theme has been created, you can modify it through the Theming
control panel. See above for more details.

	As a zip file

Themes can be downloaded from Plone as Zip files, which can then be uploaded
into other sites.

See the instructions on using the control panel above for more details.

In fact, you can create valid theme zip archives by compressing a theme
directory on the filesystem using a standard compression tool such as 7-Zip or
Winzip (for Windows) or the built-in Compress action in the Mac OS X Finder.
Just make sure you compress exactly one folder that contains all the theme files
and the rules.xml file. (Do not compress the contents of the folder
directly: when unpacked, the zip file should produce exactly one folder which
in turn contains all the relevant files).

	In a Python package (programmers only)

If you are creating a Python package containing Plone customisations that you
intend to install into your site, you can let it register a theme for
installation into the site.

To do this, place a directory called e.g. theme at the top of the package,
next to the Zope configure.zcml file, and add a <plone:static />
declaration to the configure.zcml file:

<configure
 xmlns:plone="http://namespaces.plone.org/plone"
 xmlns="http://namespaces.zope.org/zope">

 ...

 <plone:static name="mytheme" directory="theme" type="theme" />

 ...

</configure>

Notice the declaration of the plone namespace at the root <configure />
element. Place the theme files and the rules.xml file into the theme
directory.

If your package has a GenericSetup profile, you can automatically enable the
theme upon installation of this profile by adding a theme.xml file in the
profiles/default directory, containing e.g.:

<theme>
 <name>mytheme</name>
 <enabled>true</enabled>
</theme>

The manifest file

It is possible to give additional information about a theme by placing a file
called manifest.cfg next to the rules.xml file at the top of a theme
directory.

This file may look like this:

[theme]
title = My theme
description = A test theme

As shown here, the manifest file can be used to provide a more user friendly
title and a longer description for the theme, for use in the control panel.
Only the [theme] header is required - all other keys are optional.

You can also set:

rules = http://example.org/myrules.xml

to use a different rule file name than rules.xml (you should provide a URL
or relative path).

To change the absolute path prefix (see Advanced settings), use:

prefix = /some/prefix

To employ a DOCTYPE in the themed content other than XHTML 1.0
Transitional, add e.g.:

doctype = <!DOCTYPE html>

To provide a user-friendly preview of your theme in the Theming control panel,
add:

preview = preview.png

Here, preview.png is an image file relative to the location of the
manifest.cfg file.

Extensions to the Diazo theming engine can add support for additional blocks of
configurable parameters.

Rules syntax

The following is a short summary of the Diazo rules syntax. See
http://diazo.org for more details and further examples.

Selectors

Each rule is represented by an XML tag that operates on one or more HTML
elements in the content and/or theme. The elements to operate on are indicated
using attributes of the rules known as selectors.

The easiest way to select elements is to use a CSS expression selector, such as
css:content="#content" or css:theme="#main .content". Any valid CSS 3
expression (including pseudo-selectors like :first-child may be used.

The standard selectors, css:theme and css:content, operate on the
element(s) that are matched. If you want to operate on the children of the
matched element instead, use css:theme-children="..." or
css:content-children="..." instead.

If you cannot construct a suitable CSS 3 expression, you can use XPath
expressions such as content="/head/link" or theme="//div[@id='main']"
(note the lack of a css: prefix when using XPath expressions). The two
approaches are equivalent, and you can mix and match freely, but you cannot
have e.g. both a css:theme and a theme attribute on a single rule. To
operate on children of a node selected with an XPath expression, use
theme-children="..." or content-children="...".

You can learn more about XPath at http://www.w3schools.com/xpath/default.asp.

Conditions

By default, every rule is executed, though rules that do not match any elements
will of course do nothing. You can make a rule, set of rules or theme reference
(see below) conditional upon an element appearing in the content by adding an
attribute to the rule like css:if-content="#some-element" (to use an XPath
expression instead, drop the css: prefix). If no elements match the
expression, the rule is ignored.

Tip: if a <replace /> rule matches an element in the theme but not in
the content, the theme node will be dropped (replaced with nothing). If you do
not want this behavior and you are unsure if the content will contain the
relevant element(s), you can use css:if-content conditional rule. Since
this is a common scenario, there is a shortcut: css:if-content="" means
"use the expression from the css:content attribute".

Similarly, you can construct a condition based on the path of the current
request by using an attribute like if-path="/news" (note that there is no
css:if-path). If the path starts with a slash, it will match from the root
of the Plone site. If it ends with a slash, it will match to the end of the URL.
You can set an absolute path by using a leading and a trailing slash.

Finally, you can use arbitrary XPath expressions against any defined variable
using an attribute like if="$host = 'localhost'" . By default, the variables
url , scheme , host and base are available, representing the
current URL. Themes may define additional variables in their manifests.

Available rules

The various rule types are summarized below.

rules

<rules>
 ...
</rules>

Wraps a set of rules. Must be used as the root element of the rules file. Nested
<rules /> can be used with a condition to apply a single condition to a
set of rules.

When used as the root element of the rules file, the various XML namespaces must
be declared:

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 ...
</rules>

theme and notheme

<theme href="theme.html" />
<theme href="news.html" if-path="/news" />
<notheme if="$host = 'admin.example.org'" />

Choose the theme file to be used. The href is a path relative to the rules
file. If multiple <theme /> elements are present, at most one may be given
without a condition. The first theme with a condition that is true will be used,
with the unconditional theme, if any, used as a fallback.

<notheme /> can be used to specify a condition under which no theme
should be used. <notheme /> takes precedence over <theme />.

Tip: To ensure you do not accidentally style non-Plone pages, add a
condition like css:if-content="#visual-portal-wrapper" to the last theme
listed, and do not have any unconditional themes.

replace

<replace
 css:content="#content"
 css:theme="#main"
 />

Replaces the matched element(s) in the theme with the matched element(s) from
the content.

before and after

<before
 css:content-children="#portal-column-one"
 css:theme-children="#portlets"
 />

<after
 css:content-children="#portal-column-two"
 css:theme-children="#portlets"
 />

Inserts the matched element(s) from the content before or after the matched
element(s) in the theme. By using theme-children , you can insert the
matched content element(s) as the first (prepend) or last (append) element(s)
inside the matched theme element(s).

drop and strip

<drop css:content=".documentByLine" />
<drop theme="/head/link" />
<drop css:theme="#content *" attributes="onclick onmouseup" />

<strip css:content="#parent-fieldname-text" />

Remove element(s) from the theme or content. Note that unlike most other rules,
a <drop /> or <strip /> rule can operate on the theme or
content , but not both. <drop /> removes the matched element(s) and
any children, whereas <strip /> removes the matched element(s), but leaves
any children in place.

<drop /> may be given a whitespace-separated list of attributes to
drop. In this case, the matched element(s) themselves will not be removed. Use
attributes="*" to drop all attributes.

merge and copy

<merge
 attributes="class"
 css:content="body"
 css:theme="body"
 />

<copy
 attributes="class"
 css:content="#content"
 css:theme="#main"
 />

These rules operate on attributes. <merge /> will add the contents of the
named attribute(s) in the theme to the value(s) of any existing attributes with
the same name(s) in the content, separated by whitespace. It is mainly used to
merge CSS classes.

<copy /> will copy attributes from the matched element(s) in the content
to the matched element(s) in the theme, fully replacing any attributes with
the same name that may already be in the theme.

The attributes attribute can contain a whitespace-separated list of
attributes, or the special value * to operate on all attributes of the
matched element.

Advanced modification

Instead of selecting markup to insert into the theme from the content, you can
place markup directly into the rules file, as child nodes of the relevant rule
element:

<after css:theme="head">
 <style type="text/css">
 body > h1 { color: red; }
 </style>
</after>

This also works on the content, allowing you to modify it on the fly before any
rules are applied:

<replace css:content="#portal-searchbox input.searchButton">
 <button type="submit">

 </button>
</replace>

In addition to including static HTML in this manner, you can use XSLT
instructions that operate on the content. You can even use css: selectors
directly in the XSLT.:

<replace css:theme="#details">
 <dl id="details">
 <xsl:for-each css:select="table#details > tr">
 <dt><xsl:copy-of select="td[1]/text()"/></dt>
 <dd><xsl:copy-of select="td[2]/node()"/></dd>
 </xsl:for-each>
 </dl>
</replace>

Rules may operate on content that is fetched from somewhere other than the
current page being rendered by Plone, by using the href attribute to specify
a path of a resource relative to the root of the Plone site:

<!-- Pull in extra navigation from a browser view on the Plone site root -->
<after
 css:theme-children="#leftnav"
 css:content=".navitem"
 href="/@@extra-nav"
 />

Theme parameters

It is possible to pass arbitrary parameters to your theme, which can be
referenced as variables in XPath expressions. Parameters can be set in Plone's
theming control panel, and may be imported from a manifest.cfg file.

For example, you could have a parameter mode that could be set to the
string live or test. In your rules, you could do something like this
to insert a warning when you are on the test server:

<before css:theme-children="body" if="$mode = 'test'">
 Warning: This is the test server
</before>

You could even use the parameter value directly, e.g.:

<before css:theme-children="body">
 This is the <xsl:value-of select="$mode" /> server
</before>

The following parameters are always available to Plone themes:

	scheme

	The scheme portion of the inbound URL, usually http or https.

	host

	The hostname in the inbound URL.

	path

	The path segment of the inbound URL. This will not include any virtual
hosting tokens, i.e. it is the path the end user sees.

	base

	The Zope base url (the BASE1 request variable).

You can add additional parameters through the control panel, using TALES
expressions. Parameters are listed on the Advanced tab, one per line, in
the form <name> = <expression>.

For example, if you want to avoid theming any pages that are loaded by Plone's
overlays, you can make use of the ajax_load request parameter that they
set. Your rules file might include:

<notheme if="$ajax_load" />

To add this parameter as well as the mode parameter outlined earlier, you
could add the following in the control panel:

ajax_load = python: request.form.get('ajax_load')
mode = string: test

The right hand side is a TALES expression. It must evaluate to a string,
integer, float, boolean or None: lists, dicts and objects are not
supported. python:, string: and path expressions work as they do
in Zope Page Templates.

The following variables are available when constructing these TALES expressions:

	context

	The context of the current request, usually a content object.

	request

	The current request.

	portal

	The portal root object.

	context_state

	The @@plone_context_state view, from which you can look up additional
values such as the context's URL or default view.

	portal_state

	The @@plone_portal_state view, form which you can look up additional
values such as the navigation root URL or whether or not the current
user is logged in.

See plone.app.layout for details about the @@plone_context_state and
@@plone_portal_state views.

Theme parameters are usually integral to a theme, and will therefore be set
based on a theme's manifest when a theme is imported or enabled. This is done
using the [theme:parameters] section in the manifest.cfg file. For
example:

[theme]
title = My theme
description = A test theme

[theme:parameters]
ajax_load = python: request.form.get('ajax_load')
mode = string: test

Theme debugging

When Zope is in development mode (e.g. running in the foreground in a console
with bin/instance fg), the theme will be re-compiled on each request. In
non-development mode, it is compiled once when first accessed, and then only re-
compiled the control panel values are changed.

Also, in development mode, it is possible to temporarily disable the theme
by appending a query string parameter diazo.off=1. For example:

http://localhost:8080/Plone/some-page?diazo.off=1

Finally, you can get an overlay containing your rules, annotated with how
many times the conditions matched both the theme and the document. Green
means the condition matched, red means it didn't. The entire rule tag will
be green (i.e. it had an effect) so long as all conditions within are green.

To enable this, append diazo.debug=1. For example:

http://localhost:8080/Plone/some-page?diazo.debug=1

The parameter is ignored in non-development mode.

Commonly used rules

The following recipes illustrate rules commonly used in building Plone themes:

To copy the page title:

<replace css:theme="title" css:content="title" />

To copy the <base /> tag (necessary for Plone's links to work):

<replace css:theme="base" css:content="base" />

If there is no <base /> tag in the theme, you can do:

<before css:theme-children="head" css:content="base" />

To drop all styles and JavaScript resources from the theme and copy them
from Plone's portal_css tool instead:

<!-- Drop styles in the head - these are added back by including them from Plone -->
<drop theme="/html/head/link" />
<drop theme="/html/head/style" />

<!-- Pull in Plone CSS -->
<after theme-children="/html/head" content="/html/head/link | /html/head/style" />

To copy Plone's JavaScript resources:

<!-- Pull in Plone CSS -->
<after theme-children="/html/head" content="/html/head/script" />

To copy the class of the <body /> tag (necessary for certain Plone
JavaScript functions and styles to work properly):

<!-- Body -->
<merge attributes="class" css:theme="body" css:content="body" />

Advanced: Using portal_css to manage your CSS

Plone's "resource registries", including the portal_css tool, can be used
to manage CSS stylesheets. This offers several advantages over simply linking
to your stylesheets in the template, such as:

	Detailed control over the ordering of stylesheets

	Merging of stylesheets to reduce the number of downloads required to render
your page

	On-the-fly stylesheet compression (e.g. whitespace removal)

	The ability to include or exclude a stylesheet based on an expression

It is usually desirable (and sometimes completely necessary) to leave the
theme file untouched, but you can still use portal_css to manage your
stylesheets. The trick is to:

	Register your theme's styles with Plone's portal_css tool (this is
normally best done when you ship a theme in a Python package - there is
currently no way to automate this for a theme imported from a Zip file or
created through the web)

	Drop the theme's styles with a rule, and then

	Include all styles from Plone

For example, you could add the following rules:

<drop theme="/html/head/link" />
<drop theme="/html/head/style" />

<!-- Pull in Plone CSS -->
<after theme-children="/html/head" content="/html/head/link | /html/head/style" />

The use of an "or" expression for the content in the after /> rule means
that the relative ordering of link and style elements is maintained.

To register stylesheets upon product installation using GenericSetup, use the
cssregistry.xml import step in your GenericSetup profiles/default
directory:

<?xml version="1.0"?>
<object name="portal_css">

 <!-- Set conditions on stylesheets we don't want to pull in -->
 <stylesheet
 expression="not:request/HTTP_X_THEME_ENABLED | nothing"
 id="public.css"
 />

 <!-- Add new stylesheets -->
 <stylesheet title="" authenticated="False" cacheable="True"
 compression="safe" conditionalcomment="" cookable="True" enabled="on"
 expression="request/HTTP_X_THEME_ENABLED | nothing"
 id="++theme++my.theme/css/styles.css" media="" rel="stylesheet"
 rendering="link"
 applyPrefix="True"
 />

</object>

There is one important caveat, however. Your stylesheet may include relative
URL references of the following form:

background-image: url(../images/bg.jpg);

If your stylesheet lives in a resource directory (e.g. it is registered in
portal_css with the id ++theme++my.theme/css/styles.css), this
will work fine so long as the registry (and Zope) is in debug mode. The
relative URL will be resolved by the browser to
++theme++my.theme/images/bg.jpg.

However, you may find that the relative URL breaks when the registry is put
into production mode. This is because resource merging also changes the URL
of the stylesheet to be something like:

/plone-site/portal_css/Suburst+Theme/merged-cachekey-1234.css

To correct for this, you must set the applyPrefix flag to true when
installing your CSS resource using cssregistry.xml. There is a
corresponding flag in the portal_css user interface.

It is sometimes useful to show some of Plone's CSS in the styled site. You
can achieve this by using an Diazo <after /> rule or similar to copy the
CSS from Plone's generated <head /> into the theme. You can use the
portal_css tool to turn off the style sheets you do not want.

However, if you also want the site to be usable in non-themed mode (e.g. on a
separate URL), you may want to have a larger set of styles enabled when Diazo
is not used. To make this easier, you can use the following expressions as
conditions in the portal_css tool (and portal_javascripts if relevant),
in portal_actions, in page templates, and other places that use TAL
expression syntax:

request/HTTP_X_THEME_ENABLED | nothing

This expression will return True if Diazo is currently enabled, in which case
an HTTP header "X-Theme-Enabled" will be set.

If you later deploy the theme to a fronting web server such as nginx, you can
set the same request header there to get the same effect, even if
plone.app.theming is uninstalled.

Use:

not: request/HTTP_X_THEME_ENABLED | nothing

to 'hide' a style sheet from the themed site.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

Diazo theme engine guide

[image: ../../../_images/diazo-concept.png]

di-az-o (also di-az-o-type)

noun

a copying or coloring process using a diazo compound decomposed by ultraviolet light

Diazo allows you to apply a theme contained in a static HTML web page to a
dynamic website created using any server-side technology. With Diazo, you can
take an HTML wireframe created by a web designer and turn it into a theme for
your favourite CMS, redesign the user interface of a legacy web application
without even having access to the original source code, or build a unified
user experience across multiple disparate systems, all in a matter of hours,
not weeks.

When using Diazo, you will work with syntax and concepts familiar from working
with HTML and CSS. And by allowing you seamlessly integrate XSLT into your
rule files, Diazo makes common cases simple and complex requirements possible.

Contents:

	Introduction

	Quickstart

	Installation

	Basic syntax
	Rule directives
	<theme />

	<notheme />

	<replace />

	<before /> and <after />

	<drop />

	<strip />

	<merge />

	<copy />

	Order of rule execution

	Behaviour if theme or content is not matched

	Advanced usage
	Conditional rules
	Conditions based on content nodes

	Conditions based on paths

	Conditions based on arbitrary parameters

	Condition grouping and nesting

	Multiple, conditional themes

	Modifying the theme on the fly

	Modifying the content on the fly

	Inline XSL directives

	Doctypes

	XInclude

	Including external content
	Using the XSLT document() function.

	Using a Server Side Include directive

	Using an Edge Side Includes directive

	Compilation
	Absolute prefix

	Custom parameters

	Testing the compiled theme

	Compiling the theme in Python code

	Deployment
	Plone

	WSGI

	Nginx
	Including external content with SSI

	Varnish

	Apache

	Contributing to this documentation

	Contributing to Diazo

	Recipes
	Drop empty tags

	Insert wrapping element

	Adding an attribute to elements

	Modifying an attribute

	Modifying text

	Create an unordered list from a series of elements

	Contributing a recipe

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Introduction

Consider a scenario where you have a dynamic website, to which you want to
apply a theme built by a web designer. The web designer is not familiar with
the technology behind the dynamic website, and so has supplied a static HTML
wireframe of the site. This consists of an HTML file with more-or-less
semantic markup, one or more style sheets, and perhaps some other resources
like images or JavaScript files.

Using Diazo, you could apply this theme to your dynamic website as follows:

	Identify the placeholders in the theme file that need to be replaced with
dynamic elements. Ideally, these should be clearly identifiable, for
example with a unique HTML id attribute.

	Identify the corresponding markup in the dynamic website. Then write a
"replace" or "copy" rule using Diazo's rules syntax that replaces the
theme's static placeholder with the dynamic content.

	Identify markup in the dynamic website that should be copied wholesale into
the theme. CSS and JavaScript links in the <head /> are often treated
this way. Write an Diazo "append" or "prepend" rule to copy these elements
over.

	Identify parts of the theme and/or dynamic website that are superfluous.
Write an Diazo "drop" rule to remove these elements.

The rules file is written using a simple XML syntax. Elements in the theme
and "content" (the dynamic website) can be identified using CSS3 or XPath
selectors.

Once you have a theme HTML file and a rules XML file, you compile these using
the Diazo compiler into a single XSLT file. You can then deploy this XSLT file
with your application. An XSLT processor (such as mod_transform in Apache)
will then transform the dynamic content from your website into the themed
content your end users see. The transformation takes place on-the-fly for
each request.

Bear in mind that:

	You never have to write, or even read, a line of XSLT (unless you want to).

	The XSLT transformation that takes place for each request is very fast.

	Static theme resources (like images, stylesheets or JavaScript files) can
be served from a static webserver, which is normally much faster than
serving them from a dynamic application.

	You can leave the original theme HTML untouched, which makes it easier to
re-use for other scenarios. For example, you can stitch two unrelated
applications together by using a single theme file with separate rules
files. This would result in two compiled XSLT files. You could use location
match rules or similar techniques to choose which one to invoke for a given
request.

We will illustrate how to set up Diazo for deployment later in this guide.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Quickstart

There are several ways to use Diazo:

	If you want to theme Plone [http://plone.org], you should use plone.app.theming [http://pypi.python.org/pypi/plone.app.theming]

	If you want to theme a Python WSGI application, you can use the WSGI
middleware component described here and in more detail in Deployment.

	If you want to theme just about anything, you can deploy a compiled theme to
nginx [http://wiki.nginx.org] or another web server

To test Diazo, however, the easiest way is to set up a simple proxy. The idea
is to run a local webserver that applies the Diazo theme to a response coming
from an existing website, either locally or somewhere on the internet.

To set up the proxy, we will use Buildout [http://www.buildout.org].

	Create a directory for the buildout:

$ mkdir diazo-test

	Download the latest Buildout bootstrap.py [http://downloads.buildout.org/2/bootstrap.py] and put it in this directory:

$ cd diazo-test
$ wget http://downloads.buildout.org/2/bootstrap.py

	Create a buildout.cfg in this directory with the following contents.
Please read the inline comments and adjust your copy as necessary:

[buildout]
versions = versions

Uncomment the `lxml` line if you are on OS X or want to compile your
own lxml binary egg on Linux. This will not work on Windows.

parts =
lxml
 diazo

[diazo]
recipe = zc.recipe.egg
eggs =
 diazo [wsgi]
 gearbox
 rutter
 webobentrypoints

[lxml]
recipe = z3c.recipe.staticlxml
egg = lxml

[versions]
Lastest versions as of 2015-04-24
PasteDeploy = 1.5.2
Tempita = 0.5.2
WebOb = 1.4
argparse = 1.3.0
cliff = 1.12.0
cmd2 = 0.6.8
diazo = 1.1.1
experimental.cssselect = 0.3
future = 0.14.3
gearbox = 0.0.7
lxml = 3.4.3
prettytable = 0.7.2
pyparsing = 2.0.3
repoze.xmliter = 0.6
rutter = 0.2
setuptools = 15.1
six = 1.9.0
stevedore = 1.4.0
webobentrypoints = 0.1.0
zc.buildout = 2.3.1
zc.recipe.egg = 2.0.1

	Bootstrap the buildout (this is only required once):

$ python bootstrap.py

Note: You should use a Python binary version 2.6 or above. Python 3 is
currently untested and may not work.

	Run the buildout (this is required each time you change buildout.cfg):

$ bin/buildout

You should now have the binaries bin/paster, bin/diazocompiler,
bin/diazorun and maybe a few others.

	Place the theme in a directory. The theme is a static HTML design, usually
with placeholder content and images, stylesheets and JavaScript resources
included via relative links. You would normally be able to test the theme
by opening it from the filesystem.

For the purposes of this quick-start guide, we'll create a very simple
theme:

$ mkdir theme

In the theme directory, we place a theme.html:

<html>
 <head>
 <title>My own Diazo</title>
 <link rel="stylesheet" href="./theme.css" />
 </head>
 <body>
 <h1 id="title">My own Diazo home page</h1>
 <div id="content">
 <!-- Placeholder -->
 Lorem ipsum ...
 </div>
 </body>
</html>

We also create theme.css:

h1 {
 font-size: 18pt;
 font-weight: bold;
}

.headerlink {
 color: #DDDDDD;
 font-size: 80%;
 text-decoration: none;
 vertical-align: top;
}

.align-right {
 float: right;
 margin: 0 10px;
 border: dotted #ddd 1px;
}

	Create the rules file. The rules file contains the Diazo directives that
merge the content (the thing we are applying the theme to) into the theme,
replacing placeholders with real content.

For this example, we'll theme diazo.org, copying in the .content
area and dropping the indices and tables.

We create rules.xml at the top level (next to buildout.cfg):

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <theme href="theme/theme.html" />

 <drop css:content="#indices-and-tables" />
 <replace css:theme-children="#content" css:content-children=".content" />

</rules>

See Basic syntax for details about the rules syntax.

Hint: Use tools like Firefox's Firebug or Chrome's Developer Tools to
inspect the theme and content pages, looking for suitable ids and classes
to build the rules from.

	Create the configuration file for the proxy server. This uses the Paste
Deploy toolset to set up a WSGI application.

At the top level (next to buildout.cfg), we create proxy.ini:

[server:main]
use = egg:gearbox#wsgiref
host = 0.0.0.0
port = 5000

[composite:main]
use = egg:rutter#urlmap
/static = static
/ = default

Serve the theme from disk from /static (as set up in [composite:main])
[app:static]
use = egg:webobentrypoints#staticdir
path = %(here)s/theme

Serve the Diazo-transformed content everywhere else
[pipeline:default]
pipeline = theme
 content

Reference the rules file and the prefix applied to relative links
(e.g. the stylesheet). We turn on debug mode so that the theme is
re-built on each request, making it easy to experiment.

[filter:theme]
use = egg:diazo
rules = %(here)s/rules.xml
prefix = /static
debug = true

Proxy the diazo docs hosted at http://docs.plone.org as content
not using http://docs.diazo.org since there's a redirect in place
[app:content]
use = egg:webobentrypoints#proxy
address = http://docs.plone.org/external/diazo/docs/index.html
suppress_http_headers = accept-encoding

	Run the proxy:

$ bin/gearbox serve --reload -c proxy.ini

	Test, by opening up http://localhost:5000/ in your favourite web
browser.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Installation

To install Diazo, you should install the diazo Python distribution.

Note: The Diazo package is only required to get the Diazo compiler and
development tools. If you deploy your Diazo theme into a web server, you
do not need the diazo distribution on that server.

You can install the diazo distribution using easy_install, pip or
zc.buildout. For example, using easy_install (ideally in a
virtualenv):

$ easy_install -U diazo

If using zc.buildout, you can use the following buildout.cfg as a
starting point. This will ensure that the console scripts are installed,
which is important if you need to execute the Diazo compiler manually:

[buildout]
parts =
 diazo

[diazo]
recipe = zc.recipe.egg
eggs = diazo

Note that lxml is a dependency of diazo, so you may need to install
the libxml2 and libxslt development packages in order for it to build. On
Debian/Ubuntu you can run:

$ sudo apt-get install build-essential python2.6-dev libxslt1-dev

On some operating systems, notably Mac OS X, CentOS and other RedHat-based
Linux distributions, installing a "good" lxml egg can be problematic,
due to a mismatch in the operating system versions of the libxml2 and
libxslt libraries that lxml uses. To get around that, you can
compile a static lxml egg using the following buildout recipe:

[buildout]
lxml should be first in the parts list
parts =
 lxml
 diazo

[lxml]
recipe = z3c.recipe.staticlxml
egg = lxml

[diazo]
recipe = zc.recipe.egg
eggs = diazo

Once installed, you should find diazocompiler and diazorun in your
bin directory.

If you want to use the WSGI middleware filter, you should use the [wsgi]
extra when installing the Diazo egg. See Quickstart for an example.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Basic syntax

A Diazo theme consists of a static HTML page (referred to as the "theme") and
a rules file, conventionally called rules.xml.

The rules file contains an XML document that is is rooted in a tag called
<rules />:

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 ...

</rules>

Here we have defined three namespaces: the default namespace is used for rules
and XPath selectors. The css namespace is used for CSS3 selectors. These
are functionally equivalent to the XPath selectors. In fact, CSS selectors are
replaced by the equivalent XPath selector during the pre-processing step of
the compiler. Thus, they have no performance impact. The xsl namespace is
used if you want to add inline XSLT directives for fine-grained control. We
will come to that later in this guide.

Diazo supports complex CSS3 and XPath selectors, including things like the
nth-child pseudo-selector. You are advised to consult a good reference
if you are new to XPath and/or CSS3.

Rule directives

The following directives are allowed inside the <rules /> element in the
rules file:

<theme />

Used to specify the theme file. For example:

<theme href="theme.html" />

Relative paths are resolved relative to the rules.xml file. For http/https
urls, the --network switch must be supplied to the diazocompiler or
diazorun program.

The following attributes are allowed:

	href (required)

	A reference to the theme HTML file, as either a relative or absolute
URL.

	if

	Used to specify an arbitrary condition that must be true for this theme
reference to be used. More on this in the section on using multiple themes
later in this guide.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for this theme reference to be used. More on this in the section
on using multiple themes later in this guide.

	if-content or css:if-content

	Used to specify an element that must be present in the content for this
theme reference to be used. More on this in the section on using multiple
themes later in this guide.

<notheme />

Used to turn off all theming in certain conditions. For example:

<theme href="theme.html" />
<notheme css:if-content="body.rawpage" />

Multiple <notheme /> elements may be used. If the condition on any of
them is true, the theme will be omitted. That is, they are logically or'd
together.

One or more of the following attributes are required:

	if

	Used to specify an arbitrary condition for when to omit the theme.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for the theme to be omitted.

	if-content or css:if-content

	Used to specify an element that must be present in the content for the
theme to be omitted.

If more than one attribute is used, the condition of all must be true for the
directive to take effect. That is, they are logically and'ed together.

<replace />

Used to replace an element in the theme entirely with an element in the
content. For example:

<replace theme="/html/head/title" content="/html/head/title"/>

The (near-)equivalent using CSS selectors would be:

<replace css:theme="title" css:content="title"/>

The result of either is that the <title /> element in the theme is
replaced with the <title /> element in the (dynamic) content.

The following attributes are allowed:

	theme or theme-children or css:theme or css:theme-children (required)

	Used to specify the node(s) in the theme that is to be replaced. When using
theme-children, all elements inside the tag that matches the XPath
or CSS expression will be replaced, but the matched tag itself will remain
intact.

	content or content-children or css:content or css:content-children (required)

	Used to specify the node in the content that is to replace the matched
node(s) in the theme. When using content-children, all elements inside
the tag that matches the XPath or CSS expression will be used, but the
matched tag itself will be left out.

	attributes

	If you want to replace attributes instead of tags, you can use the
attributes attribute to provide a space-separated list of attributes
that should be replaced on the matched theme node(s). For example, with
attributes="class" the class attribute on the matched theme
node(s) will be replaced by the class attribute of the matched content
node(s).

Note: As with <replace /> rules working on tags, if the named
attribute(s) do not exist on the both the theme and content nodes, nothing
will happen. If you want to copy attributes regardless of whether they
exist on the theme node(s) or not, you can use <copy /> instead.

Using attributes="class id", the class and id attributes will
be replaced.

As a special case, you can write attributes="*" to drop all attributes
on the matched theme node and copy over all attributes from the matched
content node.

Note: You should not use theme-children or content-children
or their CSS equivalents when using attributes.

See also <merge />, <copy /> and <drop />

	method

	If you have any <drop /> or other rules that manipulate the content,
and you do not want that manipulation to be taken into account when
performing this replacement, you can add method="raw" to the
<replace /> rule.

	if

	Used to specify an arbitrary condition for when to perform the
replacement.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for the replacement to be performed

	if-content or css:if-content

	Used to specify an element that must be present in the content for the
replacement to be performed.

For more advanced usage of <replace>,
see Modifying the theme on the fly
and Modifying the content on the fly.

<before /> and <after />

These are equivalent to <replace /> except that the node(s) matched in
the content are inserted before or after the node(s) matched in the theme,
respectively. For example:

<before css:theme="#content" css:content="#info-box" />

This would place the element with id info-box from the content
immediately before the element with id content in the theme. If we
wanted the box below the content instead, we could do:

<after css:theme="#content" css:content="#info-box" />

To insert the box immediately inside the #content node, before any of its
existing children, we could do:

<before css:theme-children="#content" css:content="#info-box" />

<before /> and <after /> have the same required and optional
attributes as <replace />, except for attributes, which is not
supported.

<drop />

Used to drop elements from the theme or the content. This is the only
element that accepts either theme or content attributes (or their
css: and -children equivalents), but not both:

<drop css:content="#portal-content .about-box" />
<replace css:theme-children="#content" css:content="#portal-content" />

This would copy all children of the element with id portal-content in
the theme into the element with id content in the theme, but only
after removing any element with class about-box inside the content
element first.

Similarly:

<drop theme="/html/head/base" />

Would drop the <base /> tag from the head of the theme.

The following attributes are allowed:

	theme or theme-children or css:theme or css:theme-children

	Used to specify the node(s) in the theme that is to be dropped. When using
theme-children, all elements inside the tag that matches the XPath
or CSS expression will be dropped, but the matched tag itself will remain
intact.

	content or content-children or css:content or css:content-children

	Used to specify the node(s) in the content that is to be dropped. When
using content-children, all elements inside the tag that matches the
XPath or CSS expression will be dropped, but the matched tag itself will
remain intact.

	attributes

	If you want to drop attributes instead of whole tags, you can use the
attributes attribute to provide a space-separated list of attributes
that should be dropped on the matched theme node(s). For example, with
attributes="class" the class attribute will be dropped from the
matched node(s). Using attributes="class id", the class and id
attributes will both be dropped.

As a special case, you can write attributes="*" to drop all attributes
on the matched theme node.

Note: You should not use theme-children or content-children
or their CSS equivalents when using attributes.

See also <merge /> and <replace />

	if

	Used to specify an arbitrary condition for when to perform the
drop.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for the drop to be performed

	if-content or css:if-content

	Used to specify an element that must be present in the content for the
drop to be performed.

<strip />

Used to strip a tag from the theme or content, leaving its children intact.
You can think of this as the inverse of <drop /> with theme-children
or content-children. For example:

<strip css:theme="#content" />

This will remove the element with id content, leaving in place all its
children.

Similarly:

<strip css:content="#main-area .wrapper" />
<replace css:theme="#content-area" css:content="#main-area" />

This will replace the theme's element with the id content-area with the
element in the content that has the id main-area, but will strip out any
nested tags with the CSS class wrapper found inside #main-area.

<strip /> uses the same attributes and semantics as <drop />.

<merge />

Used to merge the values of attributes in the content with attributes with the
same name in the theme. This is mainly useful for merging CSS classes:

<merge attributes="class" css:theme="body" css:content="body" />

If the theme has the following body tag:

<body class="alpha beta">

and the content has:

<body class="delta gamma">

then the result will be:

<body class="alpha beta delta gamma">

The following attributes are allowed:

	attributes (required)

	A space-separated list of attributes to merge. A given attribute must
exist on both the theme and the content nodes for the rule to have any
effect.

	theme or css:theme (required)

	The theme node(s) to merge the attribute value(s) with.

	content (required)

	The content node(s) to merge the attribute value(s) from.

	separator

	The separator to use when merging attributes. The default is to use
a space. Use separator="" to merge with no separator.

	if

	Used to specify an arbitrary condition for when to perform the
merge.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for the merge to be performed

	if-content or css:if-content

	Used to specify an element that must be present in the content for the
merge to be performed.

<copy />

Used to copy an attribute from a node in the content to a node in the theme.
Unlike <replace />, <copy /> will work even if the attribute does
not exist on the target theme node. If it does exist, it will be replaced.
For example:

<copy attributes="class" css:theme="body" css:content="body"/>

The following attributes are allowed:

	theme or css:theme (required)

	Used to specify the node(s) in the theme where the attribute should be
copied.

	content or css:content (required)

	Used to specify the node(s) in the content from which the attribute should
be copied.

	attributes (required)

	A space-separated list of attributes that should be copied to the theme.

As a special case, you can write attributes="*" to drop all attributes
on the matched theme node and copy over all attributes from the matched
content node.

	if

	Used to specify an arbitrary condition for when to perform the
copy.

	if-path

	Used to specify a URL path segment that must be matched by the current
request for the copy to be performed

	if-content or css:if-content

	Used to specify an element that must be present in the content for the
copy to be performed.

Order of rule execution

In most cases, you should not care too much about the inner workings of the
Diazo compiler. However, it can sometimes be useful to understand the order
in which rules are applied.

	<before /> rules using theme (but not theme-children) are
always executed first.

	<drop /> rules are executed next.

	<replace /> rules using theme (but not theme-children) are
executed next, provided no <drop /> rule was applied to the same theme
node or method="raw" was used.

	<strip /> rules are executed next. Note that <strip /> rules do
not prevent other rules from firing, even if the content or theme node
is going to be stripped.

	Rules that operate on attributes.

	<before /> and <replace /> and <after /> rules using
theme-children execute next, provided no <replace /> rule using
theme was applied to the same theme node previously.

	<after /> rules using theme (but not theme-children) are
executed last.

Behaviour if theme or content is not matched

If a rule does not match the theme (whether or not it matches the content),
it is silently ignored.

If a <replace /> rule matches the theme, but not the content, the matched
element will be dropped in the theme:

<replace css:theme="#header" content="#header-element" />

Here, if the element with id header-element is not found in the content,
the placeholder with id header in the theme is removed.

Similarly, the contents of a theme node matched with a <copy /> rule will
be dropped if there is no matching content. Another way to think of this is
that if no content node is matched, Diazo uses an empty nodeset when copying
or replacing.

If you want the placeholder to stay put in the case of a missing content node,
you can make this a conditional rule:

<replace css:theme="#header" content="#header-element" if-content="" />

See the next section for more details on conditional rules.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Advanced usage

For most themes, the basic rules will suffice. There are times when you need
a little more power, however, for example when working with a complex design
or a content source that does not have well-defined, semantic markup.

Conditional rules

Sometimes, it is useful to apply a rule only if a given element appears or
does not appear in the markup. The if, if-content and if-path
attributes can be used with any rule, as well as the <theme /> and <notheme />
directives.

Conditions based on content nodes

if-content should be set to an XPath expression. You can also use
css:if-content with a CSS3 expression. If the expression matches a node
in the content, the rule will be applied:

<replace css:theme-children="#portlets" css:content=".portlet"/>
<drop css:theme="#portlet-wrapper" css:if-content="#content.wide"/>

This will copy all elements with class portlet into the portlets
element. If there are no matching elements in the content we drop the
portlet-wrapper element, which is presumably superfluous.

Here is another example using CSS selectors:

<replace css:theme-children="#header" css:content-children="#header-box"
 css:if-content="#personal-bar"/>

This will copy the children of the element with id header-box in the
content into the element with id header in the theme, so long as an
element with id personal-bar also appears somewhere in the content.

An empty if-content (or css:if-content) is a shortcut meaning "use the
expression in the content or css:content` attribute as the condition".
Hence the following two rules are equivalent:

<replace css:theme-children="#header" css:content="#header-box"
 css:if-content="#header-box"/>
<copy css:theme-children="#header" css:content="#header-box"
 css:if-content=""/>

If multiple rules of the same type match the same theme node but have
different if-content expressions, they will be combined as an
if..else if...else block:

<replace theme-children="/html/body/h1" content="/html/body/h1/text()"
 if-content="/html/body/h1"/>
<replace theme-children="/html/body/h1" content="//h1[@id='first-heading']/text()"
 if-content="//h1[@id='first-heading']"/>
<replace theme-children="/html/body/h1" content="/html/head/title/text()" />

These rules all attempt to fill the text in the <h1 /> inside the body.
The first rule looks for a similar <h1 /> tag and uses its text. If that
doesn't match, the second rule looks for any <h1 /> with id
first-heading, and uses its text. If that doesn't match either, the
final rule will be used as a fallback (since it has no if-content),
taking the contents of the <title /> tag in the head of the content
document.

A content condition may be negated with if-not-content or css:if-not-content,
for example:

<drop css:theme="#portlet-wrapper" css:if-not-content=".portlet"/>

Conditions based on paths

Provided the live transform is correctly configured to pass the relevant
parameter (the $path parameter), it is possible to create conditions based
on URL path segments in the incoming request. This uses the if-path
attribute.

A leading / indicates that a path should be matched at the start of the
url:

<drop css:theme="#info-box" if-path="/news"/>

matches pages with urls /news, /news/ and /news/page1.html but
not /newspapers - only complete path segments are matched.

A trailing / indicates that a path should be matched at the end of the
url:

<drop css:theme="#info-box" if-path="news/"/>

matches /mysite/news and /mysite/news/.

To match an exact url, use both leading and trailing /:

<drop css:theme="#info-box" if-path="/news/"/>

matches /news and /news/.

Without a leading or trailing / the path segment(s) may match anywhere in
the url:

<drop css:theme="#info-box" if-path="news/space"/>

matches /mysite/news/space/page1.html.

Multiple alternative path conditions may be included in the if-path
attribute as whitespace separated list:

<drop css:theme="#info-box" if-path="/ /index.html/"/>

matches / and /index.html. if-path="/" is considered an exact
match condition

A path condition may be negated with if-not-path, for example:

<drop css:theme="#info-box" if-not-path="/news"/>

Conditions based on arbitrary parameters

The if attribute can be used to make a rule or theme conditional on any
valid XPath expression.

For example, if the transform is set up to receive a string parameter
$mode, you could write:

<drop css:theme=".test-site-warning" if="$mode = 'live'" />

Use the if-not attribute to negate the conditon, for example:

<drop css:theme=".test-site-warning" if-not="$mode = 'live'" />

Condition grouping and nesting

A condition may be applied to multiple rules by placing it on a <rules>
tag:

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <rules css:if-content="#personal-bar">
 <after css:theme-children="#header-box" css:content="#user-prefs"/>
 <after css:theme-children="#header-box" css:content="#logout"/>
 </rules>

 ...

</rules>

Conditions may also be nested, so:

<rules if="condition1">
 <rules if="condition2">
 <copy if="condition3" css:theme="#a" css:content="#b"/>
 </rules>
</rules>

Is equivalent to:

<copy if="(condition1) and (condition2) and (condition3)" css:theme="#a" css:content="#b"/>

Multiple, conditional themes

It's possible to specify multiple themes using conditions. For instance:

<theme href="theme.html"/>
<theme href="news.html" css:if-content="body.section-news"/>
<theme href="members.html" css:if-content="body.section-members"/>

Potential themes are tested in the order specified. The first one to match is
used.

The unconditional theme is used as a fallback when no other theme's condition
is satisfied. If no unconditional theme is specified, the document is passed
through without theming.

It is also possible to conditionally disable theming, using <notheme />:

<theme href="theme.html"/>
<notheme if-path="/assets" />

The theme is disabled if there is a matching <notheme />, regardless of
any conditional <theme /> directives.

All rules are applied to all themes. To have a rule apply to only a single
theme, use the condition grouping syntax:

<rules css:if-content="body.section-news">
 <theme href="news.html"/>
 <copy css:content="h2.articleheading" css:theme="h1"/>
</rules>

Modifying the theme on the fly

Sometimes, the theme is almost perfect, but cannot be modified, for example
because it is being served from a remote location that you do not have access
to, or because it is shared with other applications.

Diazo allows you to modify the theme using "inline" markup in the rules file.
You can think of this as a rule where the matched content is explicitly
stated in the rules file, rather than pulled from the response being styled.

For example:

<after theme-children="/html/head">
 <style type="text/css">
 /* From the rules */
 body > h1 { color: red; }
 </style>
</after>

In the example above, the <after /> rule will copy the <style />
attribute and its contents into the <head /> of the theme. Similar rules
can be constructed for <before /> and <replace />.

It is even possible to insert XSLT instructions into the compiled theme in
this manner:

<replace css:theme="#details">
 <dl id="details">
 <xsl:for-each css:select="table#details > tr">
 <dt><xsl:copy-of select="td[1]/text()"/></dt>
 <dd><xsl:copy-of select="td[2]/node()"/></dd>
 </xsl:for-each>
 </dl>
</replace>

Here, the XSL context is the root node of the content.

Notice how we used css:select to select a node to operate on in the
<xsl:for-each /> directive. In fact, you can use the css: namespace
for anything that specifies an XPath expression, and the Diazo pre-processor
will turn it into the equivalent XPath for you.

Inline markup and XSLT may be combined with conditions:

<before css:theme"#content-wrapper" css:if-content="body.blog-page">
 <div class="notice">Welcome to our new blog</div>
</before>

Modifying the content on the fly

It is possible to modify the included content using <replace />,
<before />, or <after />.

For example:

<replace css:content="div#portal-searchbox input.searchButton">
 <button type="submit">

 </button>
</replace>

<before css:content="#content-core">
 Ask for help
</before>

This may be combined with conditions and inline XSLT.

Warning: it is not possible to both modify the content children and put them in
the theme, for instance:

<before css:content-children="#one">
 Uno
</before>

<before
 css:theme="#alpha"
 css:content-children="#one"
 />

would not work. But:

<before css:content-children="#one">
 Uno
</before>

<before
 css:theme="#alpha"
 css:content="#one"
 />

would work (because the theme rule targets the #one content, not its
children).

Inline XSL directives

You may supply inline XSL directives in the rules to tweak the final output.
For instance to strip space from the output document use:

<xsl:strip-space elements="*" />

(Note: this may effect the rendering of the page on the browser.)

Inline XSL directives must be placed directly inside the root <rules> tag
and are applied unconditionally.

Doctypes

By default, Diazo transforms output pages with the XHTML 1.0 Transitional
doctype. To use a strict doctype include this inline XSL:

<xsl:output
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

It's important to note that only the XHTML 1.0 Strict and XHTML 1.0
Transitional doctypes trigger the special XHTML compatibility mode of
libxml2's XML serializer. This ensures
 is rendered as
 and
<div/> as <div></div>, which is necessary for browsers to correctly
parse the document as HTML.

It's not possible to set the HTML5 doctype from XSLT, so plone.app.theming and
the included WSGI middleware include a doctype option which may be set to
"<!DOCTYPE html>".

XInclude

You may wish to re-use elements of your rules file across multiple themes.
This is particularly useful if you have multiple variations on the same theme
used to style different pages on a particular website.

Rules files may be included using the XInclude protocol.

Inclusions use standard XInclude syntax. For example:

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="standard-rules.xml" />

</rules>

Including external content

Normally, the content attribute of any rule selects nodes from the
response being returned by the underlying dynamic web server. However, it is
possible to include content from a different URL using the href attribute
on any rule (other than <drop />). For example:

<after css:theme-content="#left-column" css:content="#portlet" href="/extra.html"/>

This will resolve the URL /extra.html, look for an element with id
portlet and then append to to the element with id left-column in the
theme.

The inclusion can happen in one of three ways:

Using the XSLT document() function.

This is the default, but it can be explicitly specified by adding an attribute
method="document" to the rule element. Whether this is able to resolve the
URL depends on how and where the compiled XSLT is being executed:

<after css:theme-children="#left-column" css:content="#portlet"
 href="/extra.html" method="document" />

Using a Server Side Include directive

This can be specified by setting the method attribute to ssi:

<after css:theme-children="#left-column" css:content="#portlet"
 href="/extra.html" method="ssi"/>

The output will render like this:

<!--#include virtual="/extra.html?;filter_xpath=descendant-or-self::*[@id%20=%20'portlet']"-->

This SSI instruction would need to be processed by a fronting web server such
as Apache or Nginx. Also note the ;filter_xpath query string parameter.
Since we are deferring resolution of the referenced document until SSI
processing takes place (i.e. after the compiled Diazo XSLT transform has
executed), we need to ask the SSI processor to filter out elements in the
included file that we are not interested in. This requires specific
configuration. An example for Nginx is included below.

For simple SSI includes of a whole document, you may omit the content
selector from the rule:

<append css:theme="#left-column" href="/extra.html" method="ssi"/>

The output then renders like this:

<!--#include virtual="/extra.html"-->

Some versions of Nginx have required the wait="yes" ssi option to be
stable. This can be specified by setting the method attribute to
ssiwait.

Using an Edge Side Includes directive

This can be specified by setting the method attribute to esi:

<after css:theme-content="#left-column" css:content="#portlet"
 href="/extra.html" method="esi"/>

The output is similar to that for the SSI mode:

<esi:include src="/extra.html?;filter_xpath=descendant-or-self::*[@id%20=%20'portlet']"></esi:include>

Again, the directive would need to be processed by a fronting server, such as
Varnish. Chances are an ESI-aware cache server would not support arbitrary
XPath filtering. If the referenced file is served by a dynamic web server, it
may be able to inspect the ;filter_xpath parameter and return a tailored
response. Otherwise, if a server that can be made aware of this is placed
in-between the cache server and the underlying web server, that server can
perform the necessary filtering.

For simple ESI includes of a whole document, you may omit the content
selector from the rule:

<append css:theme="#left-column" href="/extra.html" method="esi"/>

The output then renders like this:

<esi:include src="/extra.html"></esi:include>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Compilation

Once you have written your rules file, you need to compile it to an XSLT for
deployment. In some cases, you may have an application server that does this
on the fly, e.g. if you are using the plone.app.theming package with
Plone. For deployment to a web server like Apache or Nginx, however, you will
need to perform this step manually.

The easiest way to invoke the Diazo compiler is via the diazocompiler
command line script which is installed with the diazo egg. To see its help
output, do:

$ bin/diazocompiler --help

To run the compiler with rules.xml:

$ bin/diazocompiler rules.xml

This will print the compiled XSLT file to the standard output. You can save
it to a file instead using:

$ bin/diazocompiler -o theme.xsl -r rules.xml

The following command line options are available:

	Use -t theme.html to supply a theme if none is specified in the rules.

	Use -p to pretty-print the output for improved readability. There is a
risk that this could alter rendering in the browser, though, as browsers
are sensitive to some kinds of whitespace.

	Use -a to set an absolute prefix - see below.

	Use -i to set the default external file inclusion mode to one of
document, ssi or esi.

	Use -n to permit fetching resources over a network.

	Use --trace to output trace logging during the compilation step. This
can be helpful in debugging rules.

Check the output of the --help option for more details.

Absolute prefix

The compiler can be passed an "absolute prefix". This is a string that will be
prefixed to any relative URL referenced an image, link or stylesheet in the
theme HTML file, before the theme is passed to the compiler. This allows a
theme to be written so that it can be opened and views standalone on the
filesystem, even if at runtime its static resources are going to be served
from some other location.

For example, say the theme is written with relative URLs for images and
external resources, such as . When the
compiled theme is applied to a live site, this is unlikely to work for
any URL other than a sibling of the images folder.

Let's say the theme's static resources are served from a simple web server
and made available under the directory /static. In this case, we can
set an absolute prefix of /static. This will modify the tag
in the compiled theme so that it becomes an absolute path that will work for
any URL:

Custom parameters

Custom parameters may be passed in at runtime to enable advanced if
conditions for rules and theme selection. For this to work, however, the
compiled theme needs to be aware of the possible parameters.

Use the -c / --custom-parameters option to diazocompiler and
diazorun to list the parameter names that should be known to the theme.
Multiple names should be separated by spaces. For example:

$ bin/diazocompiler -o theme.xsl -r rules.xml -c mode=test,preview

Here, the compiled theme will be aware of the parameters $mode and
$test. The default for mode will be the string value test.

Using this theme.xsl, it is now possible to pass these parameters. See
the section on Nginx deployment for more details about how to do this with
Nginx, or the next section for how to test it with diazorun.

Testing the compiled theme

To test the compiled theme, you can apply it to a static file representing
the content. The easiest way to do this is via the diazorun script:

$ bin/diazorun --xsl theme.xsl content.html

This will print the output to the standard output. You can save it to a file
instead with:

$ bin/diazorun -o output.html --xsl theme.xsl content.html

For testing, you can also compile and run the theme in one go, by supplying the
-r (rules) argument to diazorun:

$ bin/diazorun -o output.html -r rules.xml content.html

If you are using any custom parameters, you can specify string values for
them on the command line:

	$ bin/diazorun -o output.html -r rules.xml

	-c mode=test,preview --parameters mode=live,preview=off content.html

To see the built-in help for this command, run:

$ bin/diazorun --help

Compiling the theme in Python code

You can run the Diazo compiler from Python code using the following helper
function:

>>> from diazo.compiler import compile_theme

Please see the docstring for this function for more details about the
parameters it takes.

compile_theme() returns an XSLT document in lxml's ElementTree
format. To set up a transform representing the theme and rules, you can do:

from lxml import etree
from diazo.compiler import compile_theme

absolute_prefix = "/static"

rules = "rules.xml"
theme = "theme.html"

compiled_theme = compile_theme(rules, theme,
 absolute_prefix=absolute_prefix)

transform = etree.XSLT(compiled_theme)

You can now use this transformation:

content = etree.parse(some_content)
transformed = transform(content)

output = etree.tostring(transformed)

Please see the lxml documentation for more details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Deployment

Before it can be used, the deployed theme needs to be deployed to a proxying
web server which can apply the XSLT to the response coming back from another
web application.

In theory, any XSLT processor will do. In practice, however, most websites
do not produce 100% well-formed XML (i.e. they do not conform to the XHTML
"strict" doctype). For this reason, it is normally necessary to use an XSLT
processor that will parse the content using a more lenient parser with some
knowledge of HTML. libxml2, the most popular XML processing library on Linux
and similar operating systems, contains such a parser.

Plone

If you are working with Plone, the easiest way to use Diazo is via the
plone.app.theming [http://pypi.python.org/pypi/plone.app.theming] add-on. This provides a control panel for configuring the
Diazo rules file, theme and other options, and hooks into a transformation
chain that executes after Plone has rendered the final page to apply the Diazo
transform.

Even if you intend to deploy the compiled theme to another web server,
plone.app.theming is a useful development tool: so long as Zope is in
"development mode", it will re-compile the theme on the fly, allowing you to
make changes to theme and rules on the fly. It also provides some tools for
packaging up your theme and deploying it to different sites.

WSGI

Diazo ships with two WSGI middleware filters that can be used to apply
the theme:

	XSLTMiddleware, which can apply a compiled theme created with
diazocompiler

	DiazoMiddleware, which can be used to compile a theme on the fly and
apply it.

In most cases, you will want to use DiazoMiddleware, since it will cache
the compiled theme. In fact, it uses the XSLTMiddleware internally.

See Quickstart for an example of how to set up a WSGI pipeline using
the DiazoMiddleware filter, which is exposed to Paste Deploy as
egg:diazo. You can use egg:diazo#xslt for the XSLT filter.

The following options can be passed to XSLTMiddleware:

	filename

	A filename from which to read the XSLT file

	tree

	A pre-parsed lxml tree representing the XSLT file

filename and tree are mutually exclusive. One is required.

	read_network

	Set this to True to allow resolving resources from the network. Defaults
to False.

	update_content_length

	Can be set to False to avoid calculating an updated Content-Length
header when applying the transformation. This is only a good idea if some
middleware higher up the chain is going to set the content length instead.
Defaults to True.

	ignored_extensions

	Can be set to a list of filename extensions for which the transformation
should never be applied. Defaults to a list of common file extensions for
images and binary files.

	environ_param_map

	Can be set to a dict of environ keys to parameter names. The
corresponding values in the WSGI environ will then be sent to the
transformation as parameters with the given names.

Additional arguments will be passed to the transformation as parameters. When
using Paste Deploy, they will always be passed as strings.

The following options can be passed to DiazoMiddleware:

	rules

	Path to the rules file

	theme

	Path to the theme, if not specified using a <theme /> directive in
the rules file. May also be a URL to a theme served over the network.

	debug

	If set to True, the theme will be recompiled on every request, allowing
changes to the rules to be made on the fly. Defaults to False.

	prefix

	Can be set to a string that will be prefixed to any relative URL
referenced in an image, link or stylesheet in the theme HTML file before
the theme is passed to the compiler.

This allows a theme to be written so that it can be opened and views
standalone on the filesystem, even if at runtime its static resources are
going to be served from some other location. For example, an
 can be turned into
 with a prefix of "/static".

	includemode

	Can be set to 'document', 'esi' or 'ssi' to change the way in which
includes are processed

	read_network

	Set this to True to allow resolving resources from the network. Defaults
to False.

	update_content_length

	Can be set to False to avoid calculating an updated Content-Length
header when applying the transformation. This is only a good idea if some
middleware higher up the chain is going to set the content length instead.
Defaults to True.

	ignored_extensions

	Can be set to a list of filename extensions for which the transformation
should never be applied. Defaults to a list of common file extensions for
images and binary files.

	environ_param_map

	Can be set to a dict of environ keys to parameter names. The
corresponding values in the WSGI environ will then be sent to the
transformation as parameters with the given names.

When using DiazoMiddleware, the following keys will be added to the
WSGI environ:

	diazo.rules

	The path to the rules file.

	diazo.absolute_prefix

	The absolute prefix as set with the prefix argument

	diazo.path

	The path portion of the inbound request, which will be mapped to the
$path rules variable and so enables if-path expressions.

	diazo.query_string

	The query string of the inbound request, which will be
available in the rules file as the variable $query_string.

	diazo.host

	The inbound hostname, which will be available in the rules file as the
variable $host.

	diazo.scheme

	The request scheme (usually http or https), which will be
available in the rules file as the variable $scheme.

Nginx

To deploy an Diazo theme to the Nginx web server, you
will need to compile Nginx with a special version of the XSLT module that
can (optionally) use the HTML parser from libxml2.

In the future, the necessary patches to enable HTML mode parsing will
hopefully be part of the standard Nginx distribution. In the meantime, they
are maintained in the html-xslt [http://code.google.com/p/html-xslt/] project.

Using a properly patched Nginx, you can configure it with XSLT support like
so:

$./configure --with-http_xslt_module

If you are using zc.buildout and would like to build Nginx, you can start
with the following example:

[buildout]
parts =
 ...
 Nginx

...

[Nginx]
recipe = zc.recipe.cmmi
url = http://html-xslt.googlecode.com/files/Nginx-0.7.67-html-xslt-4.tar.gz
extra_options =
 --conf-path=${buildout:directory}/etc/Nginx.conf
 --sbin-path=${buildout:directory}/bin
 --error-log-path=${buildout:directory}/var/log/Nginx-error.log
 --http-log-path=${buildout:directory}/var/log/Nginx-access.log
 --pid-path=${buildout:directory}/var/Nginx.pid
 --lock-path=${buildout:directory}/var/Nginx.lock
 --with-http_stub_status_module
 --with-http_xslt_module

If libxml2 or libxslt are installed in a non-standard location you may need to
supply the --with-libxml2=<path> and --with-libxslt=<path> options.
This requires that you set an appropriate LD_LIBRARY_PATH (Linux / BSD) or
DYLD_LIBRARY_PATH (Mac OS X) environment variable when running Nginx.

For theming a static site, enable the XSLT transform in the Nginx
configuration as follows:

location / {
 xslt_stylesheet /path/to/compiled-theme.xsl
 path='$uri'
 ;
 xslt_html_parser on;
 xslt_types text/html;
}

Notice how we pass the path parameter, which will enable if-path
expressions to work. It is possible to pass additional parameters to use in
an if condition, provided the compiled theme is aware of these. See the
previous section about the compiler for more details.

Nginx may also be configured as a transforming proxy server:

location / {
 xslt_stylesheet /path/to/compiled-theme.xsl
 path='$uri'
 ;
 xslt_html_parser on;
 xslt_types text/html;
 rewrite ^(.*)$ /VirtualHostBase/http/localhost/Plone/VirtualHostRoot$1 break;
 proxy_pass http://127.0.0.1:8080;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Diazo "true";
 proxy_set_header Accept-Encoding "";
}

Removing the Accept-Encoding header is sometimes necessary to prevent the
backend server compressing the response (and preventing transformation). The
response may be compressed in Nginx by setting gzip on; - see the gzip
module documentation [http://wiki.Nginx.org/NginxHttpGzipModule] for
details.

In this example an X-Diazo header was set so the backend server may choose to
serve different different CSS resources.

Including external content with SSI

As an event based server, it is not practical to add document() support to
the Nginx XSLT module for in-transform inclusion. Instead, external content is
included through SSI in a sub-request. The SSI sub-request includes a query
string parameter to indicate which parts of the resultant document to include,
called ;filter_xpath - see above for a full example. The configuration
below uses this parameter to apply a filter:

worker_processes 1;
events {
 worker_connections 1024;
}
http {
 include mime.types;
 gzip on;
 server {
 listen 80;
 server_name localhost;
 root html;

 # Decide if we need to filter
 if ($args ~ "^(.*);filter_xpath=(.*)$") {
 set $newargs $1;
 set $filter_xpath $2;
 # rewrite args to avoid looping
 rewrite ^(.*)$ /_include$1?$newargs?;
 }

 location @include500 { return 500; }
 location @include404 { return 404; }

 location ^~ /_include {
 # Restrict _include (but not ?;filter_xpath=) to subrequests
 internal;
 error_page 404 = @include404;
 # Cache page fragments in Varnish for 1h when using ESI mode
 expires 1h;
 # Proxy
 rewrite ^/_include(.*)$ $1 break;
 proxy_pass http://127.0.0.1:80;
 # Protect against infinite loops
 proxy_set_header X-Loop 1$http_X_Loop; # unary count
 proxy_set_header Accept-Encoding "";
 error_page 500 = @include500;
 if ($http_X_Loop ~ "11111") {
 return 500;
 }
 # Filter by xpath
 xslt_stylesheet filter.xsl
 xpath=$filter_xpath
 ;
 xslt_html_parser on;
 xslt_types text/html;
 }

 location / {
 xslt_stylesheet theme.xsl
 path='$uri'
 ;
 xslt_html_parser on;
 xslt_types text/html;
 ssi on; # Not required in ESI mode
 }
 }
}

In this example the sub-request is set to loop back on itself, so the include
is taken from a themed page. filter.xsl (in the lib/diazo directory) and
theme.xsl should both be placed in the same directory as Nginx.conf.

An example buildout is available in Nginx.cfg in this package.

Varnish

To enable ESI in Varnish simply add the following to your VCL file:

sub vcl_fetch {
 if (obj.http.Content-Type ~ "text/html") {
 esi;
 }
}

An example buildout is available in varnish.cfg in the Diazo distribution.

Apache

Diazo requires a version of mod_transform with html parsing support.
The latest compatible version may be downloaded from the html-xslt [http://code.google.com/p/html-xslt/] project
page.

As well as the libxml2 and libxslt development packages, you will require the
appropriate Apache development package:

$ sudo apt-get install libxslt1-dev apache2-threaded-dev

(or apache2-prefork-dev when using PHP.)

Install mod_transform using the standard procedure:

$./configure
$ make
$ sudo make install

An example virtual host configuration is shown below:

NameVirtualHost *
LoadModule transform_module /usr/lib/apache2/modules/mod_transform.so
<VirtualHost *>

 FilterDeclare THEME
 FilterProvider THEME XSLT resp=Content-Type $text/html

 TransformOptions +ApacheFS +HTML +HideParseErrors
 TransformSet /theme.xsl
 TransformCache /theme.xsl /etc/apache2/theme.xsl

 <LocationMatch "/">
 FilterChain THEME
 </LocationMatch>

</VirtualHost>

The ApacheFS directive enables XSLT document() inclusion, though
beware that the includes documents are currently parsed using the XML rather
than HTML parser.

Unfortunately it is not possible to theme error responses (such as a 404 Not
Found page) with Apache as these do not pass through the filter chain.

As parameters are not currently supported, path expression are unavailable.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Contributing to this documentation

Contributing to this documentation is easy, just follow these steps*:

	Install Sphinx [http://pypi.python.org/pypi/Sphinx].

	Fork the github repository at https://github.com/plone/diazo.

If you don't know how to do it, check Fork a Repo [http://help.github.com/fork-a-repo/]
at GitHub Help.

	Check out the repository you just forked:

$ git clone https://github.com/YOUR-GITHUB-USERNAME/diazo

	Change directories to the documentation directory:

$ cd diazo/docs

	Make your changes. If you don't know Sphinx or reStructuredText,
you can read about them respectively here [http://sphinx.pocoo.org/], and here [http://docutils.sourceforge.net/rst.html].

To see the final result you can run:

$ make html

	Commit your changes and push them back to your github fork:

$ git commit -m 'Added documentation to make the world a better place'
$ git push origin master

	Send a pull request [http://help.github.com/send-pull-requests/]
with your changes.

See how in Send Pull Requests [http://help.github.com/send-pull-requests/]
at GitHub Help.

Contributing to Diazo

Diazo is maintained by the Plone project. The canonical source code
repository can be found at:

https://github.com/plone/diazo

You can follow the same
fork & pull request
procedure described above to contribute to the source.

Discussion about the development of Diazo happens mainly on the
plone-developers mailing list.

If you have questions as a user of Diazo, please see http://plone.org/support.

Some important ground rules:

	Please do each new features on a separate branch.
Bugfixes can be done in the master branch.

	Keep the tests passing and write new tests (simply create a new directory
in the tests/ directory following the convention of the existing
tests).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

Recipes

	Drop empty tags

	Insert wrapping element

	Adding an attribute to elements

	Modifying an attribute

	Modifying text

	Create an unordered list from a series of elements

Contributing a recipe

Each recipe lives in a folder under docs/recipes and follows a standard
format that facilitates automated testing, ensuring each recipe works as
advertised.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Drop empty tags

This recipe demonstrates dropping of empty paragraph tags, including those
that contain only whitespace or a single non-breaking space.

Rules

<?xml version="1.0" encoding="UTF-8"?>
<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- indent and strip space for pretty output -->
 <xsl:output indent="yes"/>
 <xsl:strip-space elements="*"/>

 <!-- TinyMCE empty paras include a non breaking space -->
 <drop content="p[not(*) and (not(normalize-space()) or text() = ' ')]"/>

 <replace css:theme="#target" css:content="#content" />
</rules>

Theme

<div id="target">
 <div>Content</div>
</div>

Content

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<div id="content">
<p></p>
<p> </p>
<p> </p>
<p> </p>
<p>Not empty paragraph text</p>
<p>Not empty paragraph element
</div>
</body>
</html>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 <p>Not empty paragraph text</p>
 <p>
 Not empty paragraph element
 </p>
 </div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Insert wrapping element

This recipe demonstrates the insertion of a wrapping element around multiple
tags.

Rules

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 >
 <replace css:content-children="#content" css:theme-children="#content"/>
 <before css:theme-children="#content">
 <div id="wrapper">
 <xsl:apply-templates css:select="#title" mode="raw"/>
 <xsl:apply-templates css:select="#description" mode="raw"/>
 </div>
 </before>
 <drop css:content="#title"/>
 <drop css:content="#description"/>
</rules>

Theme

<html>
 <body>
 <div id="content">
 <div id="wrapper">
 Title
 Description
 </div>
 More stuff
 </div>
 </body>
</html>

Content

<div id="content">
 <h1 id="title"> Title </h1>
 <div id="description"> Description </div>
 <p> More stuff </p>
 <p> ... </p>
</div>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 <div id="wrapper">
 <h1 id="title"> Title </h1>
 <div id="description"> Description </div>
 </div>

 <p> More stuff </p>
 <p> ... </p>
</div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Adding an attribute to elements

This recipe demonstrates adding a target attribute to any a (link)
tags on a page. This recipe will also ensure that any children elements
of the given a tag will be maintained (such as img tags, as shown)
and that if said attribute is already set, its value will be maintained.
Note that due to processing, the attribute's ordering on the tag may change.

Rules

<?xml version="1.0" encoding="UTF-8"?>
<rules xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <replace css:theme="#target" css:content="#content" />

 <xsl:template match="a">
 <xsl:copy>
 <xsl:attribute name="target">_blank</xsl:attribute>
 <xsl:copy-of select="@*" />
 <xsl:apply-templates />
 </xsl:copy>
 </xsl:template>

</rules>

Theme

<div id="target">
 <div>Content</div>
</div>

Content

<div id="content">
 <!-- This link gets target="_blank" -->
 Visit plone.org

 <!-- This link gets target="_blank"-->
 Visit diazo.org today!

 <!-- This link has its target attribute maintained -->
 Open in this window
</div>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 <!-- This link gets target="_blank" -->
 Visit plone.org

 <!-- This link gets target="_blank"-->
 Visit diazo.org today!

 <!-- This link has its target attribute maintained -->
 Open in this window
</div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Modifying an attribute

This recipe demonstrates modifying an img href to use a thumbnail.

Rules

<?xml version="1.0" encoding="UTF-8"?>
<rules xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <replace css:theme="#target" css:content="#content" />

 <xsl:template match="img/@src[not(contains(., '@@'))]">
 <xsl:attribute name="src"><xsl:value-of select="." />/@@/images/image/thumb</xsl:attribute>
 </xsl:template>

</rules>

Theme

<div id="target">
 <div>Content</div>
</div>

Content

<div id="content">
 Text

 Some more text
</div>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 Text

 Some more text
</div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Modifying text

This recipe demonstrates the modification of some text.

Rules

<?xml version="1.0" encoding="UTF-8"?>
<rules xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <replace css:theme="#target" css:content="#content" />

 <xsl:template match="h2/text()"><xsl:copy /> - Some extra text</xsl:template>

</rules>

Theme

<div id="target">
 <div>Content</div>
</div>

Content

<div id="content">
 <h2>Some heading text</h2>
 Text
 <h2>Some more heading text</h2>
 Text
</div>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 <h2>Some heading text - Some extra text</h2>
 Text
 <h2>Some more heading text - Some extra text</h2>
 Text
</div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Diazo theme engine guide »

 	Recipes »

Create an unordered list from a series of elements

This recipe demonstrates how you can create an unordered list from a
series of elements.

Rules

<rules
 xmlns="http://namespaces.plone.org/diazo"
 xmlns:css="http://namespaces.plone.org/diazo/css"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 >
 <replace css:content-children="#content" css:theme-children="#content"/>
 <xsl:template css:match=".listingBar > span,.listingBar > a">

 <xsl:copy>
 <xsl:copy-of select="@*" />
 <xsl:apply-templates />
 </xsl:copy>

 </xsl:template>
 <xsl:template css:match=".listingBar">
 <div class="pagination-centered">
 <ul class="pagination">
 <xsl:apply-templates />

 </div>
 </xsl:template>
</rules>

Theme

<html>
 <body>
 <div id="content">
 </div>
 </body>
</html>

Content

<div id="content">
 <div class="listingBar">

 Next
 20
 items
 »

 [1]
 2
 3
 4
 5
 6
 7

 ...
 35

 </div>
</div>

Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <div id="content">
 <div class="pagination-centered"><ul class="pagination">

 Next
 20
 items
 Â»

 [1]
 2
 3
 4
 5
 6
 7

 ...
 35

 </div>
</div>
 </body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

Quick Test Recipe

Description

Diazo is the system used to implement Plone themes.
As of Plone 4.2, Plone ships with all the 'machinery'
required to get started with Diazo based theme creation.
This recipe is designed to get you started quickly.

The goal of this recipe is to help you confirm that everything is working. The theme resources for this recipe are hosted on a github page (http://pigeonflight.github.io).

	Ingredients

	Procedure
	Disabling the test theme

	How the rule.xml file works

	Troubleshooting

Ingredients

You will need to have the following:

	Administrative access to a working copy of Plone 4.2 or (Plone 4.1 with plone.app.theming installed)

Procedure

If you're using Plone 4.2, look for 'Site Setup' > 'Theming'.

[image: ../../_images/sitesetup-cp-4_2.png]
In a Plone 4.1 with plone.app.theming you may find the same thing under 'Site Setup' > 'Diazo theme'
Instead.

[image: ../../_images/sitesetup-cp.png]

Note

If you don't see anything like the 'Diazo theme' option, go to 'Site Setup' > 'Add-ons', select 'Diazo theme support' and click 'Activate'.

In the Diazo theming control panel click on the 'Advanced Settings' tab.

[image: ../../_images/theming-cp-test.png]
Enter the following values:

Rules file: http://pigeonflight.github.io/diazodemo/rules.xml

Absolute path prefix: http://pigeonflight.github.io/diazodemo/

Read network should be checked, then click 'save'

Important

Make sure that your Diazo theme is enabled

Note

The rule file and resources in this example are hosted online, this will be a problem if your Plone site is behind a firewall or otherwise not connected to the internet.

When you visit your Plone site you will see a the main content displayed inside of the custom theme provided by http://pigeonflight.github.io/diazodemo.

It should look similar to this screenshot:

[image: ../../_images/plone_theme_dev_theming-test-screenshot.png]

Disabling the test theme

To disable the test theme click on the enable/disable button at the top right.
Then uncheck the 'Theme enabled' box.

[image: ../../_images/enable-disable-custom-theme.png]

How the rule.xml file works

Think of the rules.xml file as a mapper which uses CSS ids and classes
to identify content from the Plone site that should be injected into
an HTML document.

The diagram below explains this visually.

[image: ../../_images/diazothemeexplained.png]
View an explanatory diagram in PDF format

Troubleshooting

The theme is not showing

Check 'Site Setup' > 'Diazo Theme' and ensure that under 'Basic Settings', 'Enabled' is checked.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

Create a Plone theme product with Diazo

Introduction

Creating a theme product with the Diazo inline editor is an easy way to start
and to test, but it is not a solid long term solution.

Even if plone.app.theming allows to import and export a Diazo theme as a ZIP
archive, it might be prefereable to manage your theme into an actual Plone
product.

One of the most obvious reason is it will allow you to override Plone elements
that are not accessible from the pure Diazo features (like overloading content
views templates, viewlets, configuration settings, etc.).

Create a product to handle your Diazo theme

Create a module

To create a blank module, you will use ZopeSkel. ZopeSkel is part of the
executables files deployed in ./bin on a standard UnifiedInstaller install
once you have run the develop.cfg buildout:

bin/buildout -Nc develop.cfg

ZopeSkel allows to initialize Python modules based on different templates.

You will use the template named plone.

Into your Plone install, go to src/, and launch the following command:

$../bin/zopeskel plone

Give a name to your module (for instance: projectname.theme).
And just accept all the default choices but:

Register Profile (Should this package register a GS Profile) [False]: True

The module is created in src/projectname.theme.

Declare this new module in your buildout.cfg:

develop =
 ...
 src/projectname.theme

eggs =
 ...
 projectname.theme

And run buildout:

$ bin/buildout -Nv

Put your Diazo theme in the module

Create a folder for the Diazo resources:

$ mkdir src/projectname.theme/projectname/theme/static

Download your theme created using the inline editor and unzip it in that folder.

Modify the configure.zcml file to declare this static folder:

<configure
 ...
 xmlns:plone="http://namespaces.plone.org/plone"
 >

 ...

 <plone:static name="projectname.theme" directory="static" type="theme" />

 ...

</configure>

Update the GenericSetup profile

In src/projectname.theme/projectname/theme/profiles/default/, you have to:

	Add the dependency with plone.app.theming in metadata.xml:

<?xml version="1.0"?>
<metadata>
 <version>1000</version>
 <dependencies>
 <dependency>profile-plone.app.theming:default</dependency>
 </dependencies>
</metadata>

	Declare the theme by creating theme.xml:

<?xml version="1.0"?>
<theme>
 <name>projectname.theme</name>
 <enabled>true</enabled>
</theme>

Then you can restart Zope, and install the new product to activate the theme.

Override the Plone skin

Diazo allows to control the global rendering of the Plone pages.

But if you need to change elements which are deeply melt into the Plone
generated content, or which are not easily accessible using a CSS selector, or
maybe an image (for instance, the members default portrait, defaultUser.png)
which are provided by the Plone skin, you will have to override the Plone skin.

Note

that is basically what you do when you go to ZMI / portal_skins and
click on the Customize button. But here, you will do that from the sources.

To override Plone skin elements from our product, you will need to:

Create a folder
src/projectname.theme/projectname/theme/skins/projectname_custom and put
the needed resources in that folder (like your new version of
defaultUser.png). It can be anything, you just need to make sure it as
the very same name as the original one.

Declare that folder in configure.zcml:

<configure

 ...

 xmlns:cmf="http://namespaces.zope.org/cmf"
 >

 ...

 <cmf:registerDirectory name="projectname_custom"/>

</configure>

And move it in first position compare to the other existing skin layers by
creating
src/projectname.theme/projectname/theme/profiles/default/skins.xml:

<?xml version="1.0"?>
<object name="portal_skins" allow_any="False" cookie_persistence="False" default_skin="projectname.theme">

 <object name="projectname_custom"
 meta_type="Filesystem Directory View"
 directory="projectname.theme:skins/projectname_custom"/>
 <skin-path name="projectname.theme" based-on="Sunburst Theme">
 <layer name="projectname_custom"
 insert-after="custom"/>
 </skin-path>

</object>

You can now restart Zope and re-install your product from the Plone control
panel (Site Setup > Add-ons), once done, the elements contained in
projectname_custom will take priority on the corresponding elements from
the Plone skin (or any other add-on skin).

Override Plone BrowserViews with jbot

A large part of the Plone UI are not provided by the portal_skins layers but by
BrowserViews.

That is the case for viewlets (all the blocks you can see when you call the url
./@@manage-viewlets).

Note

to override them from the ZMI, you can go to ./portal_view_customizations.

To overrides them from your theme product, the easiest way is to use
z3c.jbot (Just a Bunch of Templates).

First of all you need to add this module in buildout.cfg:

eggs =
 ...
 z3c.jbot

And run buildout:

$ bin/buildout -Nv

Then create a folder
src/projectname.theme/projectname/theme/static/overrides.

And declare that folder as a jbot folder:

	modify configure.zcml:

<configure

 ...

 xmlns:browser="http://namespaces.zope.org/browser"
 >

 ...

 <include package="z3c.jbot" file="meta.zcml" />
 <interface name="projectname.theme"
 interface="projectname.theme.interfaces.IThemeSpecific"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 />
 <browser:jbot directory="static/overrides" />

</configure>

	create interfaces.py:

from plone.theme.interfaces import IDefaultPloneLayer

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer and a plone skin marker.
 """

	and declare a layer by creating src/projectname.theme/projectname/theme/profiles/default/browserlayer.xml:

<?xml version="1.0"?>
<layers>

 <layer name="projectname.theme" interface="projectname.theme.interfaces.IThemeSpecific"/>

</layers>

Then, you can put in
src/projectname.theme/projectname/theme/static/overrides all the templates
you want to override but you will need to name them by prefixing the template
name by its complete path to its original version.

For instance, to override colophon.pt from plone.app.layout, knowing this
template in a subfolder named viewlets, you need to name it
plone.app.layout.viewlets.colophon.pt.

Note

ZMI > portal_view_customizations is an handy way to find the template path.

You can now restart Zope and re-install your product from the Plone control
panel (Site Setup > Add-ons).

Manage CSS and JS in registries

For performances reasons, it is recommended to minimize the amount of JS and CSS
files loaded in you pages.

To do that, Plone offers two registries, portal_javascript and
portal_css, which allow to:

	declare resources you want to load,

	sort them,

	if needed, specify conditions to decide when a resource must be loaded or not.

Using those information, Plone will inject the corresponding tags (<script>,
<link>, etc.) in the <head>, and if Zope does not run in debug mode, the
different files will be merged and compressed.

It is obviously important to manage your theme's main CSS and JS that way.

To do so, you first need to remove them from your theme HTML templates (so
you do not make things worse by loading them twice).

Then, declare them to the registries:

Create a file
src/projectname.theme/projectname/theme/profiles/default/jsregistry.xml:

<?xml version="1.0"?>
<object name="portal_javascripts">

 <javascript id="++theme++projectname.theme/js/theme.js"
 cacheable="True"
 compression="none"
 cookable="True"
 enabled="True"
 expression="request/HTTP_X_THEME_ENABLED | nothing"
 inline="False"
 insert-after="++resource++collective.js.leaflet/leaflet.js"
 />

</object>

And a file
src/projectname.theme/projectname/theme/profiles/default/cssregistry.xml:

<?xml version="1.0"?>
<object name="portal_css">

 <stylesheet
 id="++theme++projectname.theme/css/theme.css"
 applyPrefix="1"
 media=""/>

 <stylesheet
 id="++theme++projectname.theme/bootstrap/css/bootstrap.css"
 applyPrefix="1"
 media=""/>

</object>

You can now restart Zope and re-install your product from the Plone control
panel (Site Setup > Add-ons).

Note

the expression request/HTTP_X_THEME_ENABLED | nothing returns True only if the page is served through Diazo (it allows to avoid to load the resources when the Diazo theme is not active).

You have to be careful about the resources order and their conditions: resources
are merged together in the order they are declared with as far as the condition
are the same.

If the next resource as a different condition, it will end the current merged
set of resources, and start a new one.

So if you want to minimize the total number of resulting files, you have to:

	declare as few conditions as possible,

	when you have to declare a condition, try to make them identical if possible,

	and re-order the resources in such a way that similar conditions are consecutives.

Regarding the JS or CSS which are not used globally into the web site, but just
in a very specific template, it might be better to not declare them in the
registries, and let them declared manually into the static HTML /template.

Note

if you use a responsiveCSS framework, it is often useful to deactivate the Plone mobile.css file which might produces bad formatting (typically with Boostrap). To do so, you add the following to cssregistry.xml:

<stylesheet id="mobile.css" enabled="False" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

Front-end: templates, CSS and Javascript

Instructions and information for front-end development for Plone CMS.

This includes creating page templates, managing Javascript and CSS assets
and writing Javascript for Plone.

	TAL page templates

	CSS

	Resource folders

	Skin layers

	DTML

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Front-end: templates, CSS and Javascript »

TAL page templates

Description

Plone uses Zope Page Templates (ZPT). This document contains
references to this template language and generally available templates,
macros and views you can use to build your Plone add-on product.

	Introduction

	The MIME-Type

	Overriding templates
	Overriding a template using z3c.jbot

	Main template
	Custom per view main template

	Plone template element map

	Zope Page Templates

	TAL

	Escaped and unescaped content

	METAL

	TALES expressions

	Omitting tags

	Images

	Overriding templates for existing Plone views
	View page template

	Old style page template

	Portlet slots

	Head slots
	Edit frame

	Hiding the edit frame

	Special style on individual pages
	URL quoting inside TAL templates

	Using macros

Introduction

Plone uses Zope Page Templates [http://docs.zope.org/zope2/zope2book/AppendixC.html],
consisting of the three related standards:
Template Attribute Language (TAL),
TAL Expression Syntax (TALES),
and Macro Expansion TAL (METAL).

A normal full Plone HTML page consists of:

	the master template, defining the overall layout of the page,

	slots, defined by the master template, and filled by the object being
published,

	viewlets and Viewlet managers.

Templates can be associated with Python view classes
(also known as "new style", circa 2008) or
they can be standalone ("old style", circa 2001).

Note

The rationale for moving away from standalone page templates is that
the page template code becomes easily cluttered with inline Python
code. This makes templates hard to customize or override. New style
templates provide better separation with view logic (Python code)
and HTML generation (page template).

The MIME-Type

Basically a document file got a mime-type. This is also important for Plone Templates if you don't want to export to text/html.
If you want to export to a XML File you have to change the mime-type because otherwise the browser won't recognize the file as an XML.
At the moment Plone supports text/html which is the default value. And text/xml.
You got 2 opportunities to change this value. If you customize a template you got an input box which called "Content-Type".
The other Way is to create a file named by your template name and extend the name by .metadata.

	Example:

	
	my_view.pt

	my_view.pt.metadata

Content of metadata file:

[default]
content_type = text/xml

Overriding templates

The recommended approach to customize .pt files for Plone 4 is to use a
little helper called z3c.jbot [https://pypi.python.org/pypi/z3c.jbot].

If you need to override templates in core Plone or in an existing add-on,
you can do the following:

	Roll out your own add-on [https://github.com/miohtama/sane_plone_addon_template]
which you can use to contain your page templates on the file system.

	Use the z3c.jbot [https://pypi.python.org/pypi/z3c.jbot] Plone helper add-on to override existing page
templates.
This is provided in the sane_plone_addon_template [https://github.com/miohtama/sane_plone_addon_template] add-in, no separate
set-up needed.

	z3c.jbot [https://pypi.python.org/pypi/z3c.jbot] can override page templates (.pt files) for views,
viewlets, old style page templates and portlets.
In fact it can override any .pt file in the Plone source tree.

Overriding a template using z3c.jbot

	First of all, make sure that your customization add-on supports
z3c.jbot [https://pypi.python.org/pypi/z3c.jbot].
sane_plone_addon_template [https://github.com/miohtama/sane_plone_addon_template] has a templates folder where you can
drop in your new .pt files.

	Locate the template you need to override in Plone source tree.
You can do this by searching the eggs/ folder of your Plone
installation for .pt files. Usually this folder is
.../buildout-cache/eggs.

Below is an example UNIX find command to find .pt files.
You can also use Windows Explorer file search or similar tools:

$ find ~/code/buildout-cache/eggs -name "*.pt"
./archetypes.kss-1.4.3-py2.4.egg/archetypes/kss/browser/edit_field_wrapper.pt
./archetypes.kss-1.4.3-py2.4.egg/archetypes/kss/browser/view_field_wrapper.pt
./archetypes.kss-1.6.0-py2.6.egg/archetypes/kss/browser/edit_field_wrapper.pt
./archetypes.kss-1.6.0-py2.6.egg/archetypes/kss/browser/view_field_wrapper.pt
...

Note

Your eggs/ folder may contain several versions of the same egg
if you have re-run buildout or upgraded Plone.
In this case the correct action is usually to pick the latest
version.

	Make a copy of .pt file you are going to override.

Rename the file to its so-called canonical name: to do this,
exclude the .egg folder name from the filename, and
then replace all slashes / with dot .:

archetypes/kss/browser/edit_field_wrapper.pt

to:

archetypes.kss.browser.edit_field_wrapper.pt

Drop the file in the templates folder you have registered for z3c.jbot
in your add-on.

Make your changes in the new .pt file.

Warning

After overriding the template for the first time
(adding the file to the templates/ folder)
you need to restart Plone.
z3c.jbot [https://pypi.python.org/pypi/z3c.jbot] scans new overrides only during the restart.

After the file is in place, changes to the file are instantly picked up:
the template code is re-read on every HTTP request — just hit enter in
your browser location bar. (Hitting enter in the location bar is quicker
than hitting Refresh, which also reloads CSS and JS files.)

If you want to override an already overridden template, read here:
<http://stackoverflow.com/questions/16209392/how-can-i-override-an-already-overriden-template-by-jbot>

More info:

	https://pypi.python.org/pypi/z3c.jbot/

	http://blog.keul.it/2011/06/z3cjbot-magical-with-your-skins.html

Main template

The master page template in Plone is called main_template.pt and it is
provided by the
Products.CMFPlone package [https://github.com/plone/Products.CMFPlone/blob/4.3.x/Products/CMFPlone/skins/plone_templates/main_template.pt].

This template provides the visual frame for Plone themes. The template is
an old-style page template living in plone_skins/plone_templates.

Custom per view main template

Here is an example how to provide a customized main template for one view.
In this example we have customized main template so that only the content area is visible.

First we register our template in configure.zcml:

<!-- Provide a custom main_template for our consumption -->
<browser:page
 name="widgets-demo-main-template"
 for="*"
 permission="zope.Public"
 template="barebone-main-template.pt"
 />

We refer it in our page template instead of here/main_template:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="here/@@widgets-demo-main-template/macros/master"
 i18n:domain="plone.app.widgets"
 lang="en"
 >

barebone-main-template.pt is an edited copy of portal_skins/sunburst_templates/main_template.pt:

<metal:page define-macro="master">
<tal:doctype tal:replace="structure string:<!DOCTYPE html>" />

<html xmlns="http://www.w3.org/1999/xhtml"
 tal:define="portal_state context/@@plone_portal_state;
 context_state context/@@plone_context_state;
 plone_view context/@@plone;
 lang portal_state/language;
 view nocall:view | nocall: plone_view;
 dummy python: plone_view.mark_view(view);
 portal_url portal_state/portal_url;
 checkPermission nocall: context/portal_membership/checkPermission;
 site_properties context/portal_properties/site_properties;
 ajax_load request/ajax_load | nothing;
 ajax_include_head request/ajax_include_head | nothing;
 dummy python:request.RESPONSE.setHeader('X-UA-Compatible', 'IE=edge,chrome=1');"
 tal:attributes="lang lang;">

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <metal:baseslot define-slot="base">
 <base tal:attributes="href plone_view/renderBase" /><!--[if lt IE 7]></base><![endif]-->
 </metal:baseslot>

 <tal:notajax tal:condition="python:not ajax_load or ajax_include_head">
 <div tal:replace="structure provider:plone.htmlhead" />
 <link tal:replace="structure provider:plone.htmlhead.links" />

 <tal:comment replace="nothing">
 Various slots where you can insert elements in the header from a template.
 </tal:comment>
 <metal:topslot define-slot="top_slot" />
 <metal:headslot define-slot="head_slot" />
 <metal:styleslot define-slot="style_slot" />
 <metal:javascriptslot define-slot="javascript_head_slot" />

 <meta name="viewport" content="width=device-width, initial-scale=0.6666, maximum-scale=1.0, minimum-scale=0.6666" />
 <meta name="generator" content="Plone - http://plone.org" />
 </tal:notajax>
</head>

<body tal:define="isRTL portal_state/is_rtl;
 sl python:plone_view.have_portlets('plone.leftcolumn', view);
 sr python:plone_view.have_portlets('plone.rightcolumn', view);
 body_class python:plone_view.bodyClass(template, view);
 classes python:context.restrictedTraverse('@@sunburstview').getColumnsClasses(view)"
 tal:attributes="class body_class;
 dir python:isRTL and 'rtl' or 'ltr'">

<div id="visual-portal-wrapper">

 <div id="portal-columns" class="row">

 <div id="portal-column-content" class="cell" tal:attributes="class classes/content">

 <div id="viewlet-above-content" tal:content="structure provider:plone.abovecontent" tal:condition="not:ajax_load" />

 <metal:block define-slot="content">
 <div metal:define-macro="content"
 tal:define="show_border context/@@plone/showEditableBorder; show_border python:show_border and not ajax_load"
 tal:attributes="class python:show_border and 'documentEditable' or ''">

 <div metal:use-macro="context/global_statusmessage/macros/portal_message">
 Status message
 </div>

 <metal:slot define-slot="body">
 <div id="content">

 <metal:header define-slot="header" tal:content="nothing">
 Visual Header
 </metal:header>

 <metal:bodytext define-slot="main">

 <div id="viewlet-above-content-title" tal:content="structure provider:plone.abovecontenttitle" tal:condition="not:ajax_load" />
 <metal:title define-slot="content-title">
 <metal:comment tal:content="nothing">
 If you write a custom title always use
 <h1 class="documentFirstHeading"></h1> for it
 </metal:comment>
 <h1 metal:use-macro="context/kss_generic_macros/macros/generic_title_view">
 Generic KSS Title. Is rendered with class="documentFirstHeading".
 </h1>
 </metal:title>

 <div id="viewlet-below-content-title" tal:content="structure provider:plone.belowcontenttitle" tal:condition="not:ajax_load" />

 <metal:description define-slot="content-description">
 <metal:comment tal:content="nothing">
 If you write a custom description always use
 <div class="documentDescription"></div> for it
 </metal:comment>
 <div metal:use-macro="context/kss_generic_macros/macros/generic_description_view">
 Generic KSS Description. Is rendered with class="documentDescription".
 </div>
 </metal:description>

 <div id="viewlet-above-content-body" tal:content="structure provider:plone.abovecontentbody" tal:condition="not:ajax_load" />

 <div id="content-core">
 <metal:text define-slot="content-core" tal:content="nothing">
 Page body text
 </metal:text>
 </div>

 <div id="viewlet-below-content-body" tal:content="structure provider:plone.belowcontentbody" tal:condition="not:ajax_load" />

 </metal:bodytext>
 </div>
 </metal:slot>

 <metal:sub define-slot="sub" tal:content="nothing">
 This slot is here for backwards compatibility only.
 Don't use it in your custom templates.
 </metal:sub>
 </div>
 </metal:block>

 </div>
 </div>

</div>
</body>
</html>

</metal:page>

Plone template element map

Plone 4 ships with the Sunburst theme. Its viewlets and viewlets managers
are described
here [http://plone.org/documentation/manual/theme-reference/elements/elementsindexsunburst4].

Note

Plone 3 viewlets differ from Plone 4 viewlets.

Zope Page Templates

Zope Page Templates, or ZPT for short, is an XML-based templating
language, consisting of the Template Attribute Language (TAL), TAL
Expression Syntax (TALES), and Macro Expansion TAL (METAL).

It operates using two XML namespaces (tal: and metal:) that can
occur either on attributes of elements in another namespace (e.g. you will
often have TAL attributes on HTML elements) or on elements (in which
case the element itself will be ignored, but all its attributes will be
recognized as TAL or METAL statements).

A statement in the tal: namespace will modify the element on which it
occurs and/or its child elements.

A statement in the metal: namespace defines how a template interacts
with other templates (defining or using macros and slots to be filled by
macros).

The value of an attribute in the tal: namespace is an expression. The
syntax of this expression is defined by the TALES standard.

TAL

TAL [http://wiki.zope.org/ZPT/TALSpecification14] is the Template
Attribute Language used in Plone.

	TAL Guide [http://www.owlfish.com/software/simpleTAL/tal-guide.html]

Escaped and unescaped content

By default, all TAL output is escaped for security reasons:

view.text = "Test"

<div tal:content="view/text" />

Will output escaped HTML source code:

Testlt;/b>

Unescaped content can be output using the TALES structure keyword
in the expression for the tal:replace and tal:content statements:

<div tal:replace="structure view/text" />

Will output unescaped HTML source code:

Test

METAL

The METAL (Macro Expansion TAL) standard provides macros and
slots to the template language.

Using METAL macros is no longer recommended, since they couple programming
logic too tightly with the template language. You should use views instead.

Read more about them in the
TAL Guide [http://www.owlfish.com/software/simpleTAL/tal-guide.html].

TALES expressions

The value of TAL statements are defined by TALES expressions. A TALES
expression starts with the expression type. If no type is specified, the
default is assumed. Three types are standard:

	path: expressions (default),

	python: expressions,

	string: expressions.

They are generally useful, and not limited to use in Page Templates.
For example, they are widely used in various other parts of Plone:

	CSS and Javascript registries, to decide whether to include a
particular file;

	Action conditions, to decide whether to show or hide action link;

	Workflow security guards, to decide whether to allow a workflow state
transition

	etc.

Read more about expressions in TAL Guide [http://www.owlfish.com/software/simpleTAL/tal-guide.html].

See the Expressions chapter for more information.

Omitting tags

Sometimes you need to create XML control structures which should not end up
to the output page.

You can use tal:omit-tag="":

<div tal:omit-tag="">
 Only the content of the tag is rendered, not the DIV tag itself.
</div>

Images

See how to use images in templates.

Overriding templates for existing Plone views

	New style templates can be overridden by overriding the view using the
template.

	Old stype templates can be overridden by register a new skins layer in
plone_skins.

View page template

	http://lionfacelemonface.wordpress.com/2009/03/02/i-used-macros-in-my-browser-views-and-saved-a-bunch-of-money-on-my-car-insurance/

Old style page template

	Create a new layer in portal_skins

	Templates are resolved by their name, and a property on the
portal_skins tool defines the order in which skin layers are
searched for the name (see the Properties tab on portal_skins).

	You can reorder layers for the active theme so that your layer takes
priority.

Portlet slots

By default, Plone main_template has slots for left and right portlets.
If you have a view where you don't explicitly want to render portlets you
can do:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">

 <head>
 <metal:block fill-slot="column_one_slot" />
 <metal:block fill-slot="column_two_slot" />
 </head>

This blanks out the column_one_slot and column_two_slot slots.

Head slots

You can easily include per-template CSS and JavaScript in the <head>
element using extra slots defined in Plone's main_template.pt.

Note that these media files do not participate in
portal_css or
portal_javascript
resource compression.

Extra slots are:

<tal:comment replace="nothing"> A slot where you can insert elements in the header from a template </tal:comment>
<metal:headslot define-slot="head_slot" />

<tal:comment replace="nothing"> A slot where you can insert CSS in the header from a template </tal:comment>
<metal:styleslot define-slot="style_slot" />

<tal:comment replace="nothing"> This is deprecated, please use style_slot instead. </tal:comment>
<metal:cssslot define-slot="css_slot" />

<tal:comment replace="nothing"> A slot where you can insert javascript in the header from a template </tal:comment>
<metal:javascriptslot define-slot="javascript_head_slot" />

Example use:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="sits">

 <metal:slot fill-slot="css_slot">
 <style media="all" type="text/css">

 .schema-browser {
 border-collapse: collapse;
 }

 .schema-browser td,
 .schema-browser th {
 vertical-align: top;
 border: 1px solid #aaa;
 padding: 0.5em;
 text-align: left;
 }

 .default {
 color: green;
 }

 .mandatory {
 color: red;
 }
 </style>
 </metal:slot>

<body>
 <metal:main fill-slot="main">
 <p>
 Protocols marked with question marks can be required or not
 depending of the current state of the patient. For example,
 priodisability field depends on other set fields of the
 patient.
 </p>
 ...

Edit frame

By default, Plone draws a green edit frame around the content if you can
edit it. You might want to disable this behavior for particular views.

Hiding the edit frame

If you'd like to hide the (green) editing frame, place the following code in
your Zope 2-style page template:

<metal:block fill-slot="top_slot"
 tal:define="dummy python:request.set('disable_border',1)" />

Examples of this usage:

	The Contact info page [https://github.com/plone/Products.CMFPlone/blob/4.3.x/Products/CMFPlone/skins/plone_templates/contact-info.cpt].

	The Recently modified page [https://github.com/plone/Products.CMFPlone/blob/4.3.x/Products/CMFPlone/skins/plone_templates/recently_modified.pt].

Special style on individual pages

To override page layout partially for individual pages you can use marker
interfaces to register special overriding viewlets.

More information:

	Viewlets

	http://starzel.de/blog/how-to-get-a-different-look-for-some-pages-of-a-plone-site

URL quoting inside TAL templates

You need to escape TAL attribute URLs if they contain special characters like plus (+)
in query parameters. Otherwise browsers will mangle links, leading to incorrect parameter
passing.

Zope 2 provides url_quote() function which you can access

<td id="cal#"
 tal:define="std modules/Products.PythonScripts.standard;
 url_quote nocall: std/url_quote;

Then you can use this function in your TAL code

<a href="#" tal:define="start_esc python:url_quote(start)"
 tal:attributes="href string: ${url}/day?currentDate=${start_esc}&xmy=${xmy}&xsub=${xsub}">

If you need to also quote spaces, use url_quote_plus rather than url_quote.

Using macros

Here is an example how to use <metal:block define-macro="xxx"> and
<metal:block use-macro="xxx"> in your view class
template files.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 tal:omit-tag=""
 >

 <metal:row define-macro="row">
 <!--
 A macro. You can call this using metal:use-macro
 and pass variables to using tal:define.
 -->
 </metal:row>

 <!-- Call macro in different parts of the main template using *widget* variable as a parameter -->

 <table class="datagridwidget-table-view" tal:attributes="data-extra view/extra">

 <tbody class="datagridwidget-body">
 <tal:row repeat="widget view/getNormalRows">
 <tr>
 <metal:macro use-macro="template/macros/row" />
 </tr>
 </tal:row>

 <tal:row condition="view/getTTRow" define="widget view/getTTRow">
 <tr>
 <metal:macro use-macro="template/macros/row" />
 </tr>
 </tal:row>

 <tal:row condition="view/getAARow" define="widget view/getAARow">
 <tr>
 <metal:macro use-macro="template/macros/row" />
 </tr>
 </tal:row>

 </tbody>
</table>
</html>

More info

	http://stackoverflow.com/q/13165748/315168

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Front-end: templates, CSS and Javascript »

CSS

Description

Creating and registering CSS files for Plone and Plone add-on products.
CSS-related Python functionality.

	Introduction

	View all Plone HTML elements

	Registering a new CSS file
	Expressions

	Inserting CSS as last into anonymous bundles

	CSS files for logged-in members only

	Condition for Diazo themed sites

	Conditional comments (IE)

	Generating CSS classes programmatically in templates

	Per-folder CSS theme overrides

	Striping listing colors

	plone.css

	CSS reset

	Adding new CSS body classes

Introduction

This page has Plone-specific CSS instructions.

In Plone, most CSS files are managed by the portal_css tool via the
ZMI. Page templates can still import CSS files directly,
but portal_css does CSS file compression and merging automatically if
used.

View all Plone HTML elements

To test Plone HTML element rendering go to test_rendering page on your site:

http://localhost:8080/Plone/test_rendering

It will output a styled list of all commonly used Plone user interface elements.

Registering a new CSS file

You can register stylesheets to be included in Plone's various CSS bundles
using GenericSetup XML.

Example profiles/default/cssregistry.xml:

<?xml version="1.0"?>
<!-- Setup configuration for the portal_css tool. -->

<object name="portal_css">

 <!-- Stylesheets are registered with the portal_css tool here.
 You can also specify values for existing resources if you need to
 modify some of their properties.
 Stylesheet elements accept these parameters:
 - 'id' (required): it must respect the name of the CSS or DTML file
 (case sensitive). '.dtml' suffixes must be ignored.
 - 'expression' (optional, default: ''): a TAL condition.
 - 'media' (optional, default: ''): possible values: 'screen', 'print',
 'projection', 'handheld', ...
 - 'rel' (optional, default: 'stylesheet')
 - 'rendering' (optional, default: 'import'): 'import', 'link' or
 'inline'.
 - 'enabled' (optional, default: True): boolean
 - 'cookable' (optional, default: True): boolean (aka 'merging allowed')

 See registerStylesheet() arguments in
 ResourceRegistries/tools/CSSRegistry.py for the latest list of all
 available keys and default values.
 -->

 <stylesheet
 id="++resource++yourproduct.something/yourstylesheet.css"
 cacheable="True"
 compression="safe"
 cookable="True"
 enabled="1"
 expression=""
 media=""
 rel="stylesheet"
 rendering="import"
 insert-after="ploneKss.css" />

</object>

In this case there should be a registered resource directory named
yourproduct.something. In the directory should be a file yourstylesheet.css.
If you have registered the stylesheet directly in zcml

	<browser:resource

	name="yourstylesheet.css"
file="yourstylesheet.css"
/>

then id must be

id="++resource++yourstylesheet.css"

Expressions

The expression attribute of portal_css defines when your CSS file is
included on an HTML page. For more information see
expressions documentation.

Inserting CSS as last into anonymous bundles

Plone compresses and merges CSS files to bundles.

For Plone 3.x, the optimal place to put CSS file available to all users is
after ploneKss.css, as in the example above, to override rules in
earlier files.

Todo

Also for Plone 4.x?

CSS files for logged-in members only

Add the following expression to your CSS file:

not: portal/portal_membership/isAnonymousUser

If you want to load the CSS in the same bundle as Plone's default
member.css, use insert-after="member.css". In this case, however,
the file will be one of the first CSS files to be loaded and cannot override
values from other files unless the CSS directive !important is used.

Condition for Diazo themed sites

To check if theming is active, will return true if Diazo is enabled:

request/HTTP_X_THEME_ENABLED | nothing

Conditional comments (IE)

	http://plone.org/products/plone/roadmap/232

cssregistry.xml example:

<!-- Load stylesheet for IE6 - IE8 only to fix layout problems -->
<stylesheet
 id="++resource++plonetheme.xxx.stylesheets/ie.css"
 applyPrefix="False"
 authenticated="False"
 cacheable="True"
 compression="safe"
 conditionalcomment="lt IE 9"
 cookable="True"
 enabled="1"
 expression=""
 media="screen"
 rel="stylesheet"
 rendering="link"
 title=""
 insert-before="ploneCustom.css" />

Generating CSS classes programmatically in templates

Try to put string generation code in your view/viewlet if you have one.

	# If you do not have a view (e.g. you're dealing with main_template)

	you can create a view and
call it as in the following example.

View class generating CSS class spans:

from Products.Five.browser import BrowserView
from Products.CMFCore.utils import getToolByName

class CSSHelperView(BrowserView):
 """ Used by main_template <body> to set CSS classes """

 def __init__(self, context, request):
 self.context = context
 self.requet = request

 def logged_in_class(self):
 """ Get CSS class telling whether the user is logged in or not

 This allows us to fine-tune layout when edit frame et. al.
 are on the screen.
 """
 mt = getToolByName(self.context, 'portal_membership')
 if mt.isAnonymousUser(): # the user has not logged in
 return "member-anonymous"
 else:
 return "member-logged-in"

Registering the view in ZCML:

<browser:view
 for="*"
 name="css_class_helper"
 class=".views.CSSHelperView"
 permission="zope.Public"
 allowed_attributes="logged_in_class"
 />

Calling the view in main_template.pt:

<body
 tal:define="css_class_helper nocall:here/@@css_class_helper"
 tal:attributes="class string:${here/getSectionFromURL} template-${template/id} ${css_class_helper/logged_in_class};
 dir python:test(isRTL, 'rtl', 'ltr')">

Defining CSS styles reaction to the presence of the class:

#region-content { padding: 0 0 0 0px !important;}
.member-logged-in #region-content { padding: 0 0 0 4px !important;}

Per-folder CSS theme overrides

	https://pypi.python.org/pypi/Products.CustomOverrides

Striping listing colors

In your template you can define classes for 1) the item itself 2) extra odd
and even classes.

<div tal:attributes="class python:'feed-folder-item feed-folder-item-' + (repeat['child'].even() and 'even' or 'odd')">

And you can colorize this with CSS:

.feed-folder-item {
 padding: 0.5em;
}

/* Make sure that all items have same amount of padding at the bottom,
whether they have last paragraph with margin or not.*/
#content .feed-folder-item p:last-child {
 margin-bottom: 0;
}

.feed-folder-item-odd {
 background: #ddd;
}

.feed-folder-item-even {
 background: white;
}

plone.css

plone.css is automagically generated dynamically based on the full
portal_css registry configuration. It is used in e.g. TinyMCE to load
all CSS styles into the TinyMCE <iframe> in a single pass. It is not
used on the normal Plone pages.

plone.css generation:

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/skins/plone_scripts/plone.css.py

CSS reset

If you are building a custom theme and you want to do a cross-browser CSS
reset, the following snippet is recommended:

/* @group CSS Reset .*/

/* Remove implicit browser styles, to have a neutral starting point:
 - No elements should have implicit margin/padding
 - No underline by default on links (we add it explicitly in the body text)
 - When we want markers on lists, we will be explicit about it, and they render inline by default
 - Browsers are inconsistent about hX/pre/code, reset
 - Linked images should not have borders
 .*/

* { margin: 0; padding: 0; }
* :link,:visited { text-decoration:none }
* ul,ol { list-style:none; }
* li { display: inline; }
* h1,h2,h3,h4,h5,h6,pre,code { font-size:1em; }
* a img,:link img,:visited img { border:none }
a { outline: none; }
table { border-spacing: 0; }
img { vertical-align: middle; }

Adding new CSS body classes

Plone themes provide certain standard CSS classes on the <body> element
to identify view, template, site section, etc. for theming.

The default body CSS classes look like this:

<body class="template-subjectgroup portaltype-XXX-app-subjectgroup site-LS section-courses icons-on" dir="ltr">

But you can include your own CSS classes as well.
This can be done by overriding plone.app.layout.globals.LayoutPolicy
class which is registered as the plone_layout view.

layout.py:

""" Override the default Plone layout utility.
"""

from zope.component import queryUtility
from zope.component import getMultiAdapter

from plone.i18n.normalizer.interfaces import IIDNormalizer
from plone.app.layout.globals import layout as base
from plone.app.layout.navigation.interfaces import INavigationRoot

class LayoutPolicy(base.LayoutPolicy):
 """
 Enhanced layout policy helper.

 Extend the Plone standard class to have some more <body> CSS classes
 based on the current context.
 """

 def bodyClass(self, template, view):
 """Returns the CSS class to be used on the body tag.
 """

 # Get content parent
 body_class = base.LayoutPolicy.bodyClass(self, template, view)

 # Include context and parent ids as CSS classes on <body>
 normalizer = queryUtility(IIDNormalizer)

 body_class += " context-" + normalizer.normalize(self.context.getId())

 parent = self.context.aq_parent

 # Check that we have a valid parent
 if hasattr(parent, "getId"):
 body_class += " parent-" + normalizer.normalize(parent.getId())

 # Get path with "Default content item" wrapping applied
 context_helper = getMultiAdapter((self.context, self.request), name="plone_context_state")
 canonical = context_helper.canonical_object()

 # Mark site front page with special CSS class
 if INavigationRoot.providedBy(canonical):

 if "template-document_view" in body_class:
 body_class += " front-page"

 # Add in logged-in / not logged in status
 portal_state = getMultiAdapter((self.context, self.request), name="plone_portal_state")
 if portal_state.anonymous():
 body_class += " anonymous"
 else:
 body_class += " logged-in"

 return body_class

Related ZCML registration:

<browser:page
 name="plone_layout"
 for="*"
 permission="zope.Public"
 class=".layout.LayoutPolicy"
 allowed_interface="plone.app.layout.globals.interfaces.ILayoutPolicy"
 />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Front-end: templates, CSS and Javascript »

Resource folders

Description

How to use resource directories to expose static media files (css, js, other)
in your Plone add-on product

	Introduction

	ZCML resourceDirectory

Introduction

Resource folders are the Zope Toolkit way to expose static media files to
Plone URL mapping.

Resource folders provide a mechanism which allows conflict free
way to have static media files mapped to Plone URL space.
Each URL is prefixed with ++resource++your.package
resource identified.

ZCML resourceDirectory

If you want to customize media folder mapping point, you need to use
the resourceDirectory directive.

Below is an example how to map static folder in your add-on
root folder to be exposed via ++resource++your.product/ URI

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="your.product">

 <!-- Register the installation GenericSetup extension profile
 (needed for portal_css and portal_javascripts XML import) -->
 <genericsetup:registerProfile
 name="default"
 title="Your add-on product name"
 directory="profiles/default"
 description="Your add-on product description"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

 <!-- Resource directory for static media files -->
 <browser:resourceDirectory
 name="your.product"
 directory="static"
 />

 <!-- -*- extra stuff goes here -*- -->

</configure>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Front-end: templates, CSS and Javascript »

Skin layers

Description

Skin layers are a legacy Plone 2 technology, still is use, for
adding overridable templates and media resources to Plone
packages.

	Introduction

	Defining a skin layer
	Unit testing and portal_skins

	Activating the current skin layer from a debug/ipzope shell

	Rendering a skin layer template

	Testing templates

	Nested folder overrides (z3c.jbot)

	Poking portal_skins

	Dumping a portal_skins folder to the filesystem

Introduction

Skin layers, portal_skins and CMFCore.SkinsTool are the old-fashioned
way to manage Plone templates.

	Each Plone theme has set of folders it will pick from portal_skins. These sets
are defined in portal_skins -> properties.

	Skins layers are searched for a template by template name, higher layers first.

	Skin layers can be reordered through-the-web in portal_skins -> properties

Defining a skin layer

Skin files are placed in the skins folder of your add-on product.

The structure looks like this:

	yourproduct/namespace/configure.zcml

	yourproduct/namespace/profiles/default/skins.xml

	yourproduct/namespace/skins

	yourproduct/namespace/skins/layer1folder

	yourproduct/namespace/skins/layer2folder/document_view.pt

	yourproduct/namespace/skins/layer2folder

	...

GenericSetup skins.xml:

<?xml version="1.0"?>
<object name="portal_skins" meta_type="Plone Skins Tool">
 <object name="headeranimation" meta_type="Filesystem Directory View"
 directory="plone.app.headeranimation:skins/headeranimation"/>
 <skin-path name="*">
 <layer name="headeranimation" insert-after="custom"/>
 </skin-path>
</object>

ZCML to register the layer:

<configure
 ...
 xmlns:cmf="http://namespaces.zope.org/cmf">

 <cmf:registerDirectory name="skins" directory="skins" recursive="True" />

</configure>

See also

	https://mail.zope.org/pipermail/zope-cmf/2007-February/025650.html

Unit testing and portal_skins

If you test templates in your unit testing code you might need to call PloneTestCase._refreshSkinData():

def afterSetUp(self):
 # Must be called to load our add-on skins folders
 # for unit testing
 self._refreshSkinData()

Activating the current skin layer from a debug/ipzope shell

The skin needs to be initialised before its files can be accessed
e.g. via restrictedTraverse:

portal.setupCurrentSkin()

Rendering a skin layer template

Templates must be bound to a context object before rendering. Plone
acquisition magic maps templates as acquired attributes of all
contentish objects.

Example:

Any page object
doc = portal.doc

portal_skins/plone_content/document_view.pt template bound to document
doc.document_view

Resulting HTML is rendered when template object is called
doc.document_view()

Testing templates

Below is some example code how templates behave.

Example:

(Pdb) doc
<ATDocument at /plone/doc>
(Pdb) template = doc.document_view
(Pdb) template
<FSPageTemplate at /plone/document_view used for /plone/doc>
(Pdb) template._filepath
'/home/moo/workspace2/plone.app.headeranimation/plone/app/headeranimation/skins/headeranimation/document_view.pt'

Nested folder overrides (z3c.jbot)

z3c.jbot allows to override any portal_skins based file based on its file-system
path + filename.

Example jbot ZCML slug (no layers, unconditional overrides)

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:browser="http://namespaces.zope.org/browser"
 >

 <browser:jbot directory="jbot" />

Then your add-on has folder structure (example):

yourcompany.app/yourcompany/app/jbot
yourcompany.app/yourcompany/app/jbot/Products.TinyMCE.skins.tinymce.plugins.table.js.table.js
yourcompany.app/yourcompany/app/jbot/Products.TinyMCE.skins.tinymce.plugins.table.html.pt

For layered example (theme layer, add-on layer), see

	https://github.com/miohtama/sane_plone_addon_template/blob/master/youraddon/configure.zcml#L41

More info

	https://pypi.python.org/pypi/z3c.jbot

	http://stackoverflow.com/questions/6161802/nested-overrides-in-portal-skins-folder

Poking portal_skins

portal_skins is a persistent tool in Plone site root providing functions to manage skin layers.
Its code mostly lives in Products.CMFCore.SkinsTool.

Available skin layers are directly exposed as traversable attributes:

(Pdb) for i in dir(portal_skins): print i
ATContentTypes
ATReferenceBrowserWidget
CMFEditions
COPY
COPY__roles__
ChangeSet
DELETE
...
plone_3rdParty
plone_content
plone_deprecated
plone_ecmascript
plone_form_scripts
plone_forms
plone_images
plone_login
plone_portlets
plone_prefs
plone_scripts
plone_styles
plone_templates

portal_skins.getSkinSelections() will list available skins.

You can edit a specific skin layer:

skin = portal_skins.getSkinByName("Go Mobile Default Theme")

portal_skins.selections is a PersistentDict object
holding skin name -> comma separated layer list mappings.

Dumping a portal_skins folder to the filesystem

qPloneSkinDump can build a filesystem dump from portal_skins but it only works on Plone 2.
If you need this functionality you can try to use this script ripped off qPloneSkinDump:
https://gist.github.com/silviot/5402869. It is a WorksForMe quality script; replace the variables
and run it with:

bin/instance run export_skin_folder.py

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Front-end: templates, CSS and Javascript »

DTML

DTML technology has been phased out ten years ago.

Do not use it.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

Old-Style Plone Theming

	Theming guide for Plone 3
	Preface

	Introduction

	Quick start

	Approaches

	Tools

	Building blocks

	Page

	Elements

	Where is what?

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

Theming guide for Plone 3

	Preface

	Introduction

	Quick start

	Approaches

	Tools

	Building blocks

	Page

	Elements

	Where is what?

Preface

This is a theming guide for Plone 3. The technologies here work
directly on Zope Page Templates (TAL) and viewlets.
On Plone 4.2+ versions of Plone the suggested approach for theming your site
is plone.app.theming [https://pypi.python.org/pypi/plone.app.theming]
where you can create your theme through-the-web and with less
needed low level programming information.

Even if not recommended the techniques described are
still useful and might be needed with new versions of Plone.
Please consult
stackoverflow.com (plone tag) [http://stackoverflow.com/questions/tagged/plone] or
plone-users mailing list [http://plone.org/support/forums/general]
when in confusion.

Introduction

	Aims and Prerequisites

	What's a Plone Theme?

	Overview

Quick start

	Overview

	Change the Logo

	Change the Font Colours

	Firefox/mozilla UI development tools

Approaches

	From Scratch or Based on Plone Default?

	Through the Web or on the File System?

	Future Directions

	update

Tools

	Authoring Tools

	Debug Mode

	Creating a Python package for theme

Building blocks

Skin, Components, Configuration. The three main building blocks of a
theme; interconnected, but each with a distinctive way of behaving.

Overview

	Overview

	Where to find what you need

Templates

	Templates and the Templating Language

	Getting started

	Advanced Usage

	Create an Alternative Edit Template

	Global Template Variables

	Macros and Slots

	How to customise view or edit on archetypes content items

	Introduction

	What Makes It Tick?

	Customizing Widgets

	Total Control: The View Template

	Conclusion

	Reference

Skin layers

	Skin Layers

	Customizing through Order of Precedence

	Making and Naming your own Skin

CSS stylesheets on skin layers

	The Custom Style Sheet and Base Properties

Components

	Components

	Component Wiring and ZCML

	Viewlets, Portlets and Other Components

	Viewlet

	Customizing or Creating New

	Interfaces and why they matter

	Python Classes

	Permission

	Making Components Theme Specific

	Skin or Components?

	Where to find what you need

Configuration

	Profiles

	Generic Setup XML

	The Generic Setup Tool

	Where to find what you need

Page

How do all these bits and pieces go together to make up a web page? And,
more importantly, how do you get content onto the page?

	Content to Template

	Templates and Components to Page

	How to show full content in folder views

	How to scale images using PiL in Page Templates

	Skin or Components?

	Using jQuery and jQuery Tools

	Using Other Information about your Site on a Page

Elements

A reference for the viewlets, portlets, viewlet managers, and portlet
columns which make up a page. There's a quick reference to each
component type with links and reminders on how to handle them, a visual
index of page elements plus code snippets to make your life easier.

Viewlet

	Anatomy of a Viewlet

	Override viewlet

	Move viewlet

Viewlet manager

	Anatomy of a Viewlet Manager

	Creating a New Viewlet Manager

	Moving, Removing or Hiding a Viewlet Manager

Portlet

	Anatomy of a Portlet

	Moving, Removing or Hiding a Portlet

	Overriding a Portlet

	Override the portlets in Plone 3.0

Portlet manager

	Creating a New Portlet Manager

	Moving or Removing a Portlet Manager

	Hiding a Portlet Manager

	Adding Portlet Managers

Structural elements

	Header

Visible elements

	Document Actions

	Language Selector

	Content History

	Related Items

	Workflow History

	Byline

	Keywords

	Colophon

	Comments

	Content Actions

	Content Views

	Footer

	Global Sections

	Lock

	Logo

	Next Previous

	Path Bar (Portal Breadcrumbs)

	Personal Bar

	Presentation

	Search Box

	Site Actions

	Table of Contents

Hidden elements

	Analytics

	Dublin Core Metadata

	KSS Base Url

	HTML Head Title

	Author Link

	Favicon Link

	Navigation Link

	RSS Link

	Search Link

	Next Previous Links

	Skip Links

	Elements

Where is what?

How to locate the bits and pieces you need. Links to useful visual aids
for identifying page elements, pointers to locating your product and
eggs directories, diagrams of a theme egg on the file system.

	Files for Components

	Files for Configuration

	Files for Installing your Egg

	Where's my Egg Location?

	Where is What on the Page

	Location of files in your own Theme Product

	Where's my Products Directory?

	Files for the Skin

	Files for Installing your Theme

	Where's my Zope Instance?

	Where is what

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Aims and Prerequisites

The aim of this manual is to give you an overview of the theory, tools,
and techniques involved in customizing Plone's look and feel or creating
your own theme.

Aims

Don't read this manual from beginning to end. Think of it as a guide or
phrase book to help you get your bearings in the rather complicated
world of Plone themes.

We'll introduce you to the theory, but there's no substitute for
practice; so we'll point you to the many excellent tutorials, books, and
resources on this site and elsewhere, which will walk you through
various aspects of themes for Plone 3. We aim to complement those
resources by filling in gaps, providing brief overviews of theory,
setting things in context, and giving you a quick reference for bits you
find confusing or can't remember clearly from the last time you tried
them out.

Prerequisites

This manual is written for integrators and customizers, and we're not
assuming any development experience. We do however imagine that you are
experienced with XHTML and CSS, know a little about XML, and have some
knowledge of scripting languages. We're working from the premise that
you are entirely new to Plone, though if you are familiar with Plone 2,
you'll find one or two new things.

It will help if you have installed Plone and have looked briefly at the
directories that ended up on your file system when you did this. It is
also useful to have investigated the Site Setup link on your Plone
website and to have clicked through to the Zope Management Interface for
a brief look behind the scenes.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

What's a Plone Theme?

A brief description of what we're talking about.

A theme is a collection of page templates, style sheets, components, and
configuration settings that go to make up the individual look and feel
of a Plone site.

Plone gives you the option of embedding your theme changes and additions
into a single site by working through the web. Or, alternatively, by
packaging your theme into your own product, you can then install and
uninstall it at will and apply it to a number of sites. There are pros
and cons to both approaches, and this manual runs through them in later
sections.

Plone 3 comes with with two themes:

	an inbuilt, ready-made theme - Plone Default

	and an additional optional replacement - NuPlone.

Things are somewhat different in Plone 4:

	Two themes are available - Plone Classic and Sunburst (with Sunburst
being the active theme when you first install Plone)

	Plone Default still exists as the core on which both Plone Classic
and Sunburst are built and should prove a useful basis for any theme
product

	NuPlone has been removed but is still available for download if
required

If you're at all skeptical about what can be achieved, have a look at
the wealth of different sites showcased on
plone.net [http://plone.net/] or at the downloadable themes available
from the Products section [http://plone.org/documentation/products]
of this site.

If you already have a Plone 3 theme and want to know how to upgrade it
to work with Plone 4 then the upgrade
guide [http://plone.org/documentation/manual/upgrade-guide] has
further information and guidance.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Overview

Here's a quick overview of what this manual covers.

[image: ../../../_images/mindmap.png]
Section 1: Introduction

A theme is a distinct look and feel for Plone, which is often based
structurally on the out-of-the box Default Plone theme.

Section 2: Approaches

What's the best way to go about it - what are the pros and cons of
working through the web or on the file system?

Section 3: Tools

What tools are required and what's available to help you build your
theme?

Section 4: Building Blocks

There are three main building-blocks in a Plone 3 theme. While there are
a few overlaps between them, in general, it helps to see them as
discrete entities.

	skin

	components

	configuration

This section will give you an overview of

	the terminology involved in each of these building blocks

	the languages you'll need to work with each of them

	the techniques / approaches required to customize these building
blocks or create new ones

	how you can locate the files you need

Section 5: Putting a Page Together

How is everything pulled together to create a page? We'll look at

	how a page is constructed

	how content reaches the page

	how style sheets and JavaScript reach the page

	how you can get hold of other information about your site

Sections 6: Elements Reference

There's a quick reference to page elements and a brief summary of how to
tackle customization and creation of components.

Section 7: Where is What?

It's often difficult to identify the location of the files you need.
This section gives you a quick reference to the file layout of a theme
product. There are also pointers to other diagrams on the web which
should help you to map the visual page elements to components, templates
and styles.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Overview

Once you have your new shiny Plone site installed and running, the first
thing we recommend you do is try out a few through the web
customizations - changing the font colours and replacing the Plone logo
with your own.

You probably have greater ambitions than this for the look and feel of
your site, but editing the CSS and replacing the logo is a good way of
making a start in learning theming techniques.

Prerequisites

We're assuming that you are familiar with HTML and CSS - although the
very basic customizations outlined here, don't require much knowledge of
that. It will help if, as a manager, you've had a chance to investigate
the Site Setup section of Plone.

Outline

	First Sharpen Your Pencils

	There are a number of tools out there that will make the process of
theming Plone a great deal easier, so we run through them
here.
To see your customizations, you'll also need to be sure that you are
running your site in debug/development
mode.

	Next Try Som se CSS Customizations

	We'll walk you through the process of overriding the page title
style,
by customizing and editing the ploneCustom.css style sheet. All of
this is done through-the-web via the Zope Management Interface.

	Finally Replace the Logo

	We'll revisit the techniques of customization and CSS editing and
expand on them to replace the Plone
logo.
image with your own logo.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Change the Logo

How to substitute the standard Plone logo with your own logo - a
through-the-web approach.

The Basics

In Plone 3 and 4, the logo is simply an image with a link to the home
page of your site wrapped around it (there's just one small difference
between versions, the name is logo.jpg in Plone 3, logo.png in Plone 4).

If you're happy with this approach, then you won't need to touch the
HTML as all the attributes in this snippet are generated automatically.
Follow the instructions in Section 1: Changing the Image and its Title.

If you just want to tweak the styles a little bit, then go to Section 2:
Changing the portal_logo style.

If you would rather deliver your logo in a different fashion and need to
rewrite the HTML, then you can do this by customizing the logo template,
follow the instructions in Section 3: Changing the HTML.

1. Changing the Image and its Title

The logo image - logo.jpg (Plone 3) logo.png (Plone 4) - can be found in
the plone_images folder in portal_skins. The quickest way to replace
this is simply to upload your own image and give it the same name:

	Go to the Zope Management Interface (Site Setup > Zope Management
Interface)

	Go to portal_skins > plone_images

	Click logo.jpg (Plone 3) or logo.png (Plone 4) and then click the
customize button

	Now replace the image by clicking the browse button and choosing your
own image from your file system

	Edit the Title field (this will ensure that the title attribute
changes in the HTML)

	Save your changes and refresh your browser to see the changes on your
site

Alternative Approach (Plone 3 only)

The name (ID) of the logo image is specified in base_properties - a
list of useful values that, in Plone 3, are picked up and used across
the Plone Default theme style sheets. This gives you the ability to
upload your own logo image, give it any name you like, and then
customize the base_properties with that name.

	Go to the Zope Management Interface (Site Setup > Zope Management
Interface)

	Make sure that you've switched your css registry to debug mode
(portal_css)

	Go to portal_skins > custom and choose Image from the drop down list
on the right

	Upload your own image giving it an ID and a Title e.g.:

ID = MyLogo.jpg
Title = My Logo

	Go to portal_skins > plone_styles, click base_properties and then
click the customize button

	You'll now have a customized version of base_properties in the
custom folder of portal_skins which you can change as you like. Find
the logoName field and replace the value logo.jpg with the ID you
gave your image (if you gave your ID a .jpg or .gif suffix, make sure
you include that, and remember that it is case-sensitive) e.g.:

logoName = MyLogo.jpg

	Save your changes and refresh your browser

In Plone 4 base_properties still exists but has only a very limited
use.

Note that when you go back to your customized base_properties in
portal_skins > custom, it will look like an empty folder. Click the
properties tab to get back to the list of properties.

2. Changing the portal_logo style

There are no styles set for #portal-logo, but there are some for
#portal-logo img in basic.css. Use the Firebug extension for Firefox
to investigate these. The simplest approach is to override these with
your own styles in ploneCustom.css.

	Go to the Zope Management Interface (Site Setup > Zope Management
Interface)

	Make sure you have debug mode / development mode turned on in the CSS
Registry (portal_css)

	Click portal_skins > plone_styles > ploneCustom.css and then click
the Customize button

	You will now have an editable version of ploneCustom.css in the
custom folder of portal_skins

	Add your own styles here, click Save, and refresh your browser to see
the changes

3. Changing the HTML

The HTML for the logo is generated by logo.pt - a page template which is
part of a viewlet called plone.logo. To customize this through the web,
you'll need to use portal_view_customizations.

	Go to the portal_view_customizations in the Zope Management
Interface (Site Setup > Zope Management Interface)

	Click plone.logo and then click the Customize button

	You'll now have a template you can rewrite - we've highlighted the
significant bits in the theory section below and given you a couple
of examples to get you started.

	Save your changes and refresh your browser to see them

Note: if you want to go back and make further changes later, you'll
see that plone.logo is highlighted in the portal_view_customizations
list, click on it to edit it. If you want to remove your customizations
completely, use the contents tab of portal_view_customizations, tick
the box next to your template and click Delete.

The Theory

Here's the logo.pt template. It is written in the templating language
used by Plone - TAL (or ZPT). It helps to know this (and it doesn't take
long to learn), but we'll talk you through this example:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

First we have the link tag:

You can disregard metal:define-macro="portal_logo"this is just
wrapping the code into something that can be re-used again if necessary.

The important bit is tal:attributes="href view/navigation_root_url",
this is the code that supplies your site URL to the href attribute.

There is a magic variable here, view/navigation_root_url,that
seems to have appeared from nowhere. In fact, view is a collection of
properties computed by the plone.logo viewlet and seamlessly passed to
the logo.pt template. Here are the available properties:

	navigation_root_url

	supplies the URL of your site (it could potentially be something
different if you've set up a different navigation root)

	logo_tag

	looks up the name of the logo image from base_properties, finds the
image, collects its dimensions and title and turns all of this into
an HTML image tag with the appropriate attributes Check back to the
alternative approach in Section 1 of this How To for more
information about base_properties.

	portal_title

	looks up and supplies the title of your site

Now look at the image tag in the template.

The key here is tal:replace="structure view/logo_tag". This means
that the template won't deliver the image tag actually written out here,
instead, it will replace the whole thing with the tag generated by
the plone.logo viewlet. If you don't want this to happen, then you
should delete this line.

Note: structure means treat the value as HTML rather than a text
string.

Example 1: A plain text title

Here's a customized version of the template, using view/portal_title
rather than view/logo_tag, to give you a text header instead (if
you've used Plone 2, then you might recognize this):

<h1 metal:define-macro="portal_logo"
 id="portal-logo">
 <a accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone" tal:content="view/portal_title">

</h1>

Of course you'll want to supply your own styles, look back at Section 2
of this How To for information on defining these in ploneCustom.css. You
could adjust this example to use an accessible image replacement
technique in your CSS.

Example 2: Supplying your own image tag

You don't have to use logo_tag if you don't want to:

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="[My logo ID]" alt="[My Logo]"
 width="[My Width]" height="[My Height]"
 tal:attributes="title view/portal_title" />

You will, of course, need to upload your own logo to the custom folder
in portal_skins, see the instructions in Section 1 of this How To.

Further Information

	There are further How Tos in the Logo section of the Plone
documentation dealing with more advanced customization methods.

	More guidance on TAL and ZPT can be found in the ZPT tutorial.

	If you want to transfer your changes to the file system in your own
theme product, then the further sections in this reference manual
will give you an outline of the files and templates you'll need
(Logo viewlet
section [http://plone.org/documentation/manual/theme-reference/elements]).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Change the Font Colours

How to change the font colours - a through-the-web approach.

You'll be introduced to some very simple techniques here for
through-the-web customizations of Plone's CSS.

	How to locate the styles you want to change

	How to override these styles using the ploneCustom.css style sheet

In this case we'll change the colour of page titles from black to
turquoise.

Before you start

For convenience, Plone themes often comprise a number of separate style
sheets, but for speed and efficiency, in production mode, Plone has a
mechanism (portal_css) for packaging these up into just one or two
files.

You'll need to disable this when making changes to your site or
customizing CSS. So make sure you've followed the instructions on how to
put your site into debug mode.

Locating the styles you want to change

	If you don't already have a page in your Plone site, add one, save it
and inspect it in view mode.

	Use Firebug, or a similar
tool,
to locate the class name of the page title - in this case its
h1.documentFirstHeading.

Locating the ploneCustom.css style sheet

As a matter of course, the last style sheet to load on every Plone page
is ploneCustom.css. You'll see this if you inspect the HTML head tag of
your page using Firebug. If you dig further, you'll probably find that
this style sheet is completely empty. By the rules of precedence in the
CSS Cascade, any styles in this sheet will override styles specified in
the preceding sheets. So you have a "blank sheet" here for your own
customizations.

The trick now is to locate this file, so that you can make it available
for editing.

To make life easier for yourself, you might like to open a second tab or
browser window at this point - you can then quickly switch back to the
first tab to see your changes.

Go to Site Setup > Zope Management Interface and click portal_skins

Use the Find option in the tabs across the top to locate
ploneCustom.css:

	Type ploneCustom.css in the "with ids:" box and click Find

	You may get more than one result, it doesn't matter which you choose
to click on, however best practice is to choose the one flagged with
the red asterisk.

Customizing and Editing ploneCustom.css

When you click on ploneCustom.css you'll find that you can't edit it.
The next stage is to put the ploneCustom.css in a place where it can be
edited. You'll see a Customize option just above the grey text area,
click the Customize button and you'll find that the style sheet has been
automatically copied to portal_skins/custom.

You're now free to edit the file as you like. To change the colour of
our page titles, add:

h1.documentFirstHeading {
 color: #0AAE95;
}

and save.

If you've installed Plone 4 with the Sunburst theme, the ploneCustom.css
comes with a number of commented out pre-packaged styles that you might
like to experiment with. You can override the layout styles to a fixed
width and alter the colours of the links.

Rolling back your changes

You've got a couple of options for reverting back to the original CSS:

comment out your styles in the ploneCustom.css - the usual CSS
commenting syntax applies

delete (or, if you want to keep a note of what you did, rename) your
version of ploneCustom.css, you'll find it here:

	Site Setup > Zope Management Interface > portal_skins > custom

	you can choose the delete or rename options - try renaming to
ploneCustom.css.old

	you can then go back to the beginning of the process of locating and
customizing ploneCustom.css

Further Information

You've actually encountered two types of customization here.

	The first is a standard method of using order of precedence - the
Cascade - to overwrite CSS styles as they reach the browser.

	The second is a Plone/Zope specific method of overriding the style
sheets themselves by dropping them into the custom folder of
portal_skins. This method can also be used for templates and other
resources and is explained in more depth in the section on Skin
Layers [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/layers/precedence]
in this manual.

More advanced techniques, including incorporating your own style sheets
into a theme product, are covered later in this manual.

You can find out more about how the CSS Registry (portal_css) packages
up the style sheets to deliver them to the page in the Templates and
Components to
Page [http://plone.org/documentation/manual/theme-reference/page/css/overview]
section of this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Firefox/mozilla UI development tools

Firefox and mozilla have a number of extensions that can greatly help
your UI development work. A basic set is listed here.

Using trusty old "view source" used to be the way to debug bad-looking
html. Now there are mozilla/firefox extensions that make html
development much more productive. A basic set is listed here to get you
up to speed.

	Web developer

	Web
developer [http://chrispederick.com/work/firefox/webdeveloper/]
adds a web development toolbar to your firefox with almost
everything you'd want to do or know. CSS info, validation, resizing
to test other screen resolutions, converting POSTs to GETs. An
essential.

	Aardvark

	Aardvark [http://www.karmatics.com/aardvark/], when enabled for a
page, shows you the class/id information when you hover over an
element. Pressing v for instance, gives you the source for the
item you hover over. Start the demo on their site and experiment
with the keystrokes. It is a lightweight and elegant tool.

	ColorZilla

	ColorZilla [https://addons.mozilla.org/firefox/271/] is
surprisingly handy. It does what the name suggest: providing a color
picker that displays the hex code of the pixel you hover over in the
status bar. There's more: showing the box size of the current box
element; showing the element, class and ID of the current element;
distance between two points. All in the status bar.

	FireBug

	FireBug [http://getfirebug.com/] constantly displays the number
of errors it finds in your page. Handy during development for
finding that mis-spelled css class or the faulty javascript
statement. Also includes some css and source examination, but
aardvark tends to be a bit handier for that.

	X-ray

	The x-ray firefox
extension [https://addons.mozilla.org/en-US/firefox/addon/1802?id=1802]
is pretty handy in figuring out the layout of a plone site. It
displays the tags, the IDs and the classes inline, giving you a
surprisingly good idea of what's happening behind the scenes.

	View formatted source

	View formatted
source [https://addons.mozilla.org/extensions/moreinfo.php?id=697]
gives you a well-rendered view of the page's source. More important,
when you hover over an opening tag, it shows you the css that gets
used for that tag. And with multiple css files (plone anyone?) it
shows them in the order in which they're used (and overwritten).

	View source with

	View source with [https://addons.mozilla.org/firefox/394] allows
you to right-click on every textarea or source view and select a
program to edit/view it with. A bit like ExternalEditor, but then
for every textarea. Not 100% developer oriented, but handy for
small changes to test css files in the custom skin folder and so
anyway.

Another type of useful gadgets are bookmarklets.

Two sources of these are http://squarefree.com and
http://slayeroffice.com See for example:

	Web development bookmarklets

	The Web development
bookmarklets [http://www.squarefree.com/bookmarklets/webdevel.html]
provide the same kind of functionality as the web developer toolbar.
The JavaScript Shell [http://www.squarefree.com/shell/] and
JavaScript Development
Environment [http://www.squarefree.com/jsenv/] deserve mention.

	Mouse-over DOM Inspector

	The Mouseover DOM
Inspector [http://slayeroffice.com/tools/modi/v2.0/modi_help.html]
, or MODI for short, is a favelet (also known as a bookmarklet) that
allows you to view and manipulate the DOM of a web page simply by
mousing around the document.

	Javascript Object Tree Favelet

	The Javascript Object Tree
Favelet [http://slayeroffice.com/?c=/content/tools/js_tree.html]
will overlay your current document with a DIV element containing a
collapsed list of all the javascript object types currently
referenced by the page, from functions to strings to booleans and
all else that falls between.

	Favelet Suite

	This is a favelet that combines most of [the slayeroffice]
development
favelets [http://slayeroffice.com/?c=/content/tools/suite.html] .
When invoked, a div element will appear in the top left corner of
your browser window with a list of all the favelets I've included.
Simply click the link you want to invoke the favelet.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

From Scratch or Based on Plone Default?

It is perfectly possible to build your own Plone theme completely from
scratch, but you probably won't want to do this.

Based on Plone Default?

In particular, the bells and whistles of the Plone editing interface are
wrapped up as part of the out-of-the box Plone Default, and you'll
probably want to keep these.

The good news is that you can base your own theme on Plone Default
and interweave your bits of templates, styles, scripts and components
with what's already there. There are three ways of doing this:

	with the Skin building block you customizethe Plone Default
bits (there's a neat way of doing this which ensures you leave the
Plone Default theme completely intact)

	with the Components building block you build your own, but you
can reuse bits of the Plone Default components in the process

	with the Configuration you simply add newdirectives

There's more good news - the elements of a Plone theme are broken up
into very small parts. Each one can be dealt with independently of the
others, so you can home in on just the bits you want to change.The price
of all this flexibility is that it is sometimes difficult to track down
exactly which bit you want, and things can start to seem complicated.
This manual should help with that.

You can change a great deal of the look and feel just by overwriting
existing CSS styles, or by rewriting some of the existing style sheets.
However, if you want to start moving page elements around or rewriting
some of the XHTML, then you'll need to delve into the templates,
components, and configuration in more detail.

In the end, you're likely to come up with a theme based on Plone Default
(that is, based structurally, not necessarily visually). This will
probably contain

	your own style sheet; or rewrites of some of the Plone CSS

	some rearrangement of page elements

	a few rewrites of some page elements

	a few 'new' page elements

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Through the Web or on the File System?

How to decide whether to build your theme through the web or on the file
system.

Sooner or later with Plone you'll be faced with a decision. Plone is
sufficiently flexible that there is often more that one way of doing
things, and the conundrum is, usually, not how to do it, but which
way.

You can customize Plone Default through the web very easily -
particularly the skin and the configuration building blocks; further
sections of this manual will point you in the direction of the relevant
places in the Zope Management Interface to do this. However, if you want
to move these customizations to a new site, undertake quite extensive
customizations, or build a completely new theme, then it is advisable to
move your work to the file system.

In this case you will need to create an installable module (also known
as a theme product or egg). This can be a daunting prospect, but there
are tools available to simplify this process, providing you with a
ready-made package into which to drop all the elements of your theme
building blocks. We explain these tools on the next few pages.

If you are just starting out, then it is a good idea to get familiar
with the building blocks and techniques by working through the web. It
isn't difficult to move what you've done to the file system later. Once
you start rewiring or moving components around you'll find the file
system a more convenient way to work.

Through the Web

	Pros
	Cons

	Quick and easy
	Difficult to replicate or move from one site to another

	Results immediately visible
	Large customizations can get complicated

	
	Some customizations of components aren't possible (e.g. can't move viewlets between viewlet managers)

On the File System

	Pros
	Cons

	Portable and reusable
	Steeper learning curve when you first start out

	Complete flexibility, can write your own viewlets and portlets
	Need access to the file system

	Bundles your changes up into your own theme / skin
	Will sometimes need to restart to see changes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Future Directions

This reference manual outlines the current approach to Plone themes. But
you may as well know now that there are other, perhaps simpler,
approaches on the horizon.

Plone theming is getting a bit complicated. So the Plone community, in
its inimitable and energetic way, is already exploring different
solutions to the “theme problem”.

Things move fast. At the time of writing, some of the solutions listed
below are probably not mature enough to use in earnest, particularly if
you are just starting out. However, you might want to investigate them
to see how they’re progressing

update

for current development of themes, the recommended approach is plone.app.theming.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Authoring Tools

If you're working through the file system, you can use any text editor
to write templates, configuration files (xml, zcml) and the small
amounts of Python code you'll need.

You might find the following useful:

Zope/Plone TextMate support

	http://plone.org/products/textmate-support/

	http://dev.plone.org/collective/browser/textmate-support

You will have to check this out of the collective svn - instructions on
how to do this can be found on http://svn.plone.org. There is also a
Windows version of Textmate
(http://www.e-texteditor.com/).

Checking template syntax

A quick and dirty route to finding out what's wrong with a template
you've written yourself is to customize it through the Zope Management
Interface. However you can also set up your own checking, to run before
you install a template on your site:

	http://docs.neuroinf.de/PloneBook/ch6.rst#conducting-syntax-checks

this is a little complex if you're not comfortable with Python, but it's
worth the effort in the long run.

Python code editors

Something a little more advanced than Notepad will give you code
highlighting for Python. You'll find a comprehensive listing here

	http://wiki.python.org/moin/PythonEditors.

Integrated Development Environments

If you fancy using an IDE, then there are plenty of options, though
these are directed towards Python development rather than writing or
customizing templates:

	http://plone.org/documentation/how-to/developing-plone-with-eclipse-ide

	http://plone.org/documentation/tutorial/debugging-plone-products-with-pida

Other IDEs include Wing
(http://www.wingware.com/), BoaConstructor
and Komodo
(http://www.activestate.com/Products/komodo_ide/index.mhtml).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Debug Mode

Inevitably you won't get things right first time, so you need to make
sure your site is running in debug mode.

For further information see the debug mode.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Creating a Python package for theme

If you want to work on the file system, here's the magic required to get
yourself set up with a skeleton set of files and code.

This section will talk you through the processes required to create your
own theme on the file system and to install this in your own Plone
site.

The good news is that you don't have to write substantial amounts of
code yourself to create the framework for your own file system theme,
you can use a generator (Paster from ZopeSkel) to do this for you. This
will give you a directory containing a number of pre-prepared
directories and files, which you can augment or re-write with your own
customizations.

In Practical 1: How to Create a Plone 3 Theme Product on the File
System,
you'll use the code generator to make your skeleton framework. This
practical will also talk you through the files you've been given and
what they do.

	Jumpstart Your Theme Development Using Paster

	Python Eggs, Generic Setup and Zope 3

	Anatomy of a Plone Theme Product

In Practical 2: How to Install your Plone 3 Theme Using
Buildout,
you'll make this product available for your Plone site to install and
use.

	Installing your Egg-Based Theme Product

	Background: Third Party Theme Products

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

 	Creating a Python package for theme »

Jumpstart Your Theme Development Using Paster

The quickest and most efficient way to get started is not to create your
theme product folders and associated files from scratch, but to take
advantage of a product generator which will automatically create the
framework for a theme product based on your responses to a few
interactive questions.

Using Paster on Your Local Machine

For users more comfortable using the command line, you are more likely
to use a tool called ZopeSkel and the paster templates it contains.
ZopeSkel is a collection of PasteScript templates which can be used to
quickly generate Zope and Plone projects like buildouts, archetypes
products and, most pertinently for us, Plone themes.

Please refer to this manual page for up-to-date instructions how to
include Paster with ZopeSkel templates in your Plone
configuration [http://collective-docs.readthedocs.org/en/latest/tutorials/paste.html].
Plone Unified Installer should ship with a working Paster command.

Create your Theme Product

If you have paster and ZopeSkel installed, navigate to the directory
where you'd like to create your product (we'd recommend [your
buildout]/[zinstance|zeocluster/src]) and run from the command line:

$ bin/paster create -t plone3_theme plonetheme.mytheme

or, if you have paster in your Plone installation:

$ [path to your buildout]/python-[version]/paster create -t plone3_theme plonetheme.mytheme

This will initiate a series of questions by the paster script. The
defaults are largely appropriate for your first theme, so in many cases
you can simply hit return. Here is example output from the interactive
session.

Selected and implied templates: ZopeSkel#basic_namespace A project with a namespace package ZopeSkel#plone A Plone project ZopeSkel#plone3_theme A Theme for Plone 3.0Variables: egg: plonetheme.mytheme package: plonethememytheme project: plonetheme.mythemeEnter namespace_package (Namespace package (like plonetheme)) ['plonetheme']:Enter package (The package contained namespace package (like example)) ['example']:mythemeEnter skinname (The skin selection to be added to 'portal_skins' (like 'My Theme')) ['']:My ThemeEnter skinbase (Name of the skin selection from which the new one will be copied) ['Plone Default']:Enter empty_styles (Override default public stylesheets with empty ones?) [True]: FalseEnter include_doc (Include in-line documentation in generated code?) [False]:TrueEnter zope2product (Are you creating a Zope 2 Product?) [True]:Enter version (Version) ['1.0']:Enter description (One-line description of the package) ['An installable theme for Plone 3.0']: Enter long_description (Multi-line description (in reST)) ['']:Enter author (Author name) ['Plone Collective']:Enter author_email (Author email) ['product-developers@lists.plone.org']:Enter keywords (Space-separated keywords/tags) ['web zope plone theme']:Enter url (URL of homepage) ['http://svn.plone.org/svn/collective/']:Enter license_name (License name) ['GPL']:Enter zip_safe (True/False: if the package can be distributed as a .zip file) [False]:

You cannot use 'delete' to correct a typo during the interactive
session. If you make a mistake, ctrl-c to stop the script and start
over.

Paster Options

Some of these questions warrant further explanation:

	Enter namespace_package

	It is good practice to use the 'plonetheme' namespace for your
theme. You can use other namespaces, of course ('products' might be
another), but unless you have a compelling reason to do otherwise,
use 'plonetheme'.

	Enter package

	The 'package' is simply the lowercase name of your theme product,
sans spaces or underscores.

	Enter skinname

	The 'skinname' is the human-readable name for your theme. Spaces and
capitalization are appropriate.

	Enter skinbase

	In nearly all cases, you'll want to leave this as 'Plone Default'.

	Enter empty_styles

	Answering 'True' will cause empty stylesheets to be added to your
product which will override the default base.css, public.css, and
portlets.css included in any Plone site using the 'Plone Default'
skin. 'False' will not add empty stylesheets. For the purposes of
this practical, we recommend entering 'False'.

	Enter include_doc

	Answering 'True' will cause inline documentation to be added to the
files created by ZopeSkel. It is worth doing this at least once, as
some of the documentation is quite useful.

	Enter zope2product

	Answering 'True' means that the package will be useable as an egg,
it will be listed in the ZMI, skin folders will be registered as
layers with the Skins Tool ('portal_skins'), and the Generic Setup
profile for the product can be loaded via the Setup Tool
('portal_setup'). We'll explore some of this further; for now,
suffice to say that you'll always want to enter 'True' here when
generating a Plone theme.

	Enter zip_safe

	Stick with the default here.

Creating new eggs and packages quickly with
paster [http://plone.org/documentation/how-to/how-to-create-a-plone-3-theme-product-on-the-filesystem/use-paster]

How to use the paster command to create new packages with proper
setuptools- and egg-compliant filesystem layout quickly and easily.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

 	Creating a Python package for theme »

Python Eggs, Generic Setup and Zope 3

Background notes on changes between Plone 2.5 and Plone 3.

Products, in Plone's parlance, are analogous to modules or extensions
for other applications. In the move from Plone 2.5 to Plone 3, several
important changes were made in the way Plone handles products. First,
some products began to be packaged as Python eggs, which made them
easier to manage, distribute and install. Second, products began to use
GenericSetup as a means for installation. And third, products
increasingly incorporated Zope 3 (Z3) technologies like browser views.

Python Eggs

A python egg is simply a bundle of files and directories which
constitute a python package. Eggs can either be compressed, in which
case they appear as a single *.egg file, or uncompressed. Eggs are
similar in concept and function to Java's JAR files.

Eggs are installed via the setuptools framework, a side project of the
Python Enterprise Application Kit (PEAK), which provides for package
(and dependendency) management and distribution.

If you're using version control, you'll want to add *.egg-info and
*.pyc to the ignore patterns for your setup so that the egg metadata
and compiled python files aren't added to your repository.

A Quick Guide to Python
Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs]

A good overview of eggs and setuptools from the folks at PEAK.

Hatch Python Eggs with
SetupTools [http://www.ibm.com/developerworks/library/l-cppeak3.html]

David Metz takes a look at the setuptools framework.

GenericSetup

GenericSetup (GS) is a tool for managing site configuration in Plone
using xml files. GS makes it possible to export customizations from one
Plone site and import them into another. And to some extent, GS replaces
the Portal QuickInstaller (QI) post-Plone 2.5 in that GS can be used to
install products. In products which rely on GS, we find xml
configuration files; in products which use the older, venerable QI for
installation, by comparison, we find install methods written in python.

Keep in mind that GenericSetup does not currently allow you to undo the
profile applied during installation. You can uninstall your theme using
the QuickInstaller, however, assuming that an uninstall method is
present.

Because our skeleton theme product utilizes GenericSetup to install
itself, we will shortly be configuring several xml files needed by GS.

Understanding and Using GenericSetup in
Plone [http://plone.org/documentation/tutorial/genericsetup]

Now a bit dated, Rob Miller's tutorial on GS remains a useful
resource for background on GS.

GenericSetup
Improvements [http://theploneblog.org/blog/archive/2007/06/21/genericsetup-improvements]

More information about GS from Rob Miller.

Benefit NOW from Using GenericSetup and Z3
Technologies [http://plone.org/documentation/tutorial/benefit-now-from-using-genericsetup-and-zope-3-technologies/?searchterm=benefit%20NOW]

Impress your colleagues by using GenericSetup and Zope 3 views
efficiently and with minimal effort! This tutorial shows you how to
add a new view, how to use it, how to add a new content type and how
to hook it all up.

Zope 3 Technology

Despite any version number-induced miasma, remember that Plone 3 runs on
Zope 2. Zope 3 is a dramatic rewrite of Zope 2 and some Zope 3
functionality has been backported to work under Zope 2. (And yes, Plone
3.) For a full explanation of the Zope 3 technologies involved, consult
this tutorial:

Customization for
developers [http://plone.org/documentation/how-to/how-to-create-a-plone-3-theme-product-on-the-filesystem/plone.org/documentation/tutorial/customization-for-developers]

An overview of Plone 3 customization by Martin Aspeli.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

 	Creating a Python package for theme »

Anatomy of a Plone Theme Product

The directory structure and an explanation of what all these files do.

Assuming that you've created your theme product successfully, you should
have a directory structure that looks roughly like this:

plonetheme.mytheme docs HISTORY.txt INSTALL.txt LICENSE.GPL LICENSE.txt MANIFEST.in plonetheme __init__.py mytheme __init__.py browser __init__.py configure.zcml images README.txt interfaces.py stylesheets main.css README.txt viewlet.pt viewlets.py configure.zcml profiles default cssregistry.xml import_steps.xml jsregistry.xml metadata.xml plonetheme.mytheme_various.txt skins.xml viewlets.xml profiles.zcml setuphandlers.py skins plonetheme_mytheme_custom_images CONTENT.txt plonetheme_mytheme_custom_templates CONTENT.txt plonetheme_mytheme_styles base.css.dtml base_properties.props CONTENT.txt portlets.css.dtml public.css.dtml skins.zcml tests.py version.txt plonetheme.mytheme-configure.zcml plonetheme.mytheme.egg-info dependency_links.txt entry_points.txt namespace_packages.txt not-zip-safe paster_plugins.txt PKG-INFO requires.txt SOURCES.txt top_level.txt README.txt setup.cfg setup.py zopeskel.txt

Things may seem a little complicated at this point, but not to worry.
Let's take closer look at the main files and directories according to
their respective functions.

Documentation

	docs/

	The docs directory contains installation instructions (INSTALL.txt),
license files, and the development log (HISTORY.txt).

	README.txt

	The top-level text file contains the one-line description of the
product you entered during the interactive session with ZopeSkel.
Other README files exist throughout the product.

Python Package

	plonetheme/

	This is a namespace package, which serves to group other packages.

	mytheme/

	This is the actual name of your theme, usually the name of the
client or project you are working on.

	tests.py

	Python tests for our package go here. Typically themes don't have
much python code, and so don't have much in the way of testing.

	version.txt

	The version of our product. This information is also contained in
/profiles/default/metadata.xml.

Python Egg

	plonetheme.mytheme.egg-info/

	The egg metadata is stored here.

	setup.cfg

	This configuration file contains information used to create egg-info
files.

	setup.py

	If we wanted setuptools to handle the installation of the package
and dependencies we could install via "python setup.py install" (for
now, we don't).

GenericSetup

	profiles.zcml

	Register appropriate GenericSetup profiles.

	profiles/

	"Default" is the current configuration profile (only one profile is
automatically created, but more could be added). Within our
configuration profile we have XML files which tell GS how to
configure CSS files (cssregistry.xml), Javascript files
(jsregistry.xml), skin layers (skins.xml), and viewlets
(viewlets.xml). Metadata.xml tracks the product version number and
other metadata, import_steps.xml _____ and the presence of
plonetheme.mytheme-various.txt tells GS to look to setuphandlers.py
for additional methods.

Zope 3

plonetheme.mytheme-configure.zcml

This is the ZCML slug which must be placed in the etc/package-includes
if the theme is installed as a python package (ours won't be).

configure.zcml

skins.zcml

Register skin layers (images, styles, templates) as filesystem directory
views.

browser/

Stylesheets, Templates and More

Once you've got your theme product in place, the next step is to modify
the pieces that Plone gives us, specifically templates, stylesheets, and
viewlets.

	Templates/

	Plone templates, specifically the main_template that controls the
layout of a Plone site, can be grabbed from the
parts/plone/CMFPlone/skins/plone_templates directory. Most of the
templates that were contained here in 2.5 have been moved to eggs
and are controlled by viewlets. To modify a template from this
directory, copy it to your theme product, into your theme's
skins/templates folder and make your modifications there.

	Stylesheets/

	Plone's default stylesheets can be found in your
buildout/parts/plone/CMFPlone/skins/plone_styles directory. It's
usually advisable to create a stylesheet specific to your theme
product, e.g. "mytheme.css" (where "mytheme" is the name of your
theme product), and then take any relevant styles from CMFPlone's
stylesheets and customize them in your own theme product, rather
than overriding entire CMFPlone stylesheets. The one exception here
may be IEFixes.css, which you likely want to keep intact as a single
file, since it is called in explicitly from the main_template.

	Viewlets/

	It is a great oversimplification to state that most often you will
be overriding viewlets from eggs commonly known as plone.app.layout,
plone.app.portlets, and plone.app.content. Those viewlets, can be
found in your buildout/eggs/ in packages named
"plone.app.layout[xx]," "plone.app.portlets[xx]," and
"plone.app.content[xx]," where [xx] is a version number. When
modified, these viewlets and their related code belong in your theme
product's browser/ directory. For more information on how to work
with viewlets, read this
tutorial [http://plone.org/documentation/tutorial/customizing-main-template-viewlets].

If modifying page templates, you won't need to restart Zope in order to
see your changes take effect. Changes to python, XML or ZCML, however,
will require a restart.

Customization for
developers [http://plone.org/documentation/how-to/how-to-create-a-plone-3-theme-product-on-the-filesystem/plone.org/documentation/tutorial/customization-for-developers]
An overview of Plone 3 customization by Martin Aspeli.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

 	Creating a Python package for theme »

Installing your Egg-Based Theme Product

In this section, we will look at how to install egg-based themes using
buildout. As of Plone 3.1.2, all of the Plone installers create a
buildout that contains your Plone instance. When installing or
developing themes, buildout is highly recommended.

 To install the theme product you created in Practical 1:

	First, if it isn't already there, copy your theme product to [your
buildout]/[zinstance|zeocluster]/src (if you find that this
directory doesn't exist, you can create it yourself).

	Then, using a text editor, edit your buildout.cfg (you'll find it in
[your buildout]/[zinstance|zeocluster]) and add the following
information into the buildout, instance, and zcml sections. The
actual buildout.cfg file will be much longer than the snippets below:

[buildout]
 ...
 develop =
 src/plonetheme.mytheme

[instance]
 eggs =
 ...
 plonetheme.mytheme

zcml =
 ...
 plonetheme.mytheme

The last line tells buildout to generate a ZCML snippet (slug) that
tells Zope to recognize your theme product. The dots [...] indicate that
you may have additional lines of ZCML code here.

	After updating the configuration, stop your site and run the
''bin/buildout'' command, which will refresh your buildout.

	Then, restart your site and go to the 'Site Setup' page in the Plone
interface and click on the 'Add-on Products' link. The 'Site Setup'
area is also known as plone_control_panel, as this is the URL used
to get to 'Site Setup'.

	Choose the product (My Theme 1.0) by selecting the checkbox next to
it and click the 'Install' button.

Note: You may have to empty your browser cache to see the effects of the
product installation.

Uninstalling a Theme Product

Uninstalling can be done from the 'Site Setup' / 'Add/Remove Products'
page, but only if you installed it from the 'Add/Remove Products'
screen. Not all themes uninstall cleanly, but reinstalling the Default
Plone product generally cures any issues here.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

 	Creating a Python package for theme »

Background: Third Party Theme Products

In this section, we will look at how to install a Plone theme that you
have downloaded from Plone.org/products, PyPi, etc. We will also show
how you can distinguish between an old-style 2.5 product and a new
egg-based one.

There are two kinds of theme products: newer egg-based products, and
older theme products that are in the "magical Products namespace".
The type of theme product you are working with determines the steps you
must take to install your theme. We'll now see how to tell the
difference between the two.

Is the Theme Product Egg-Based or in the Product's Namespace?

First, we need to understand what egg-based means. If the theme, when
unzipped, is named plonetheme.whatever, or you generate a new theme
using the Paster [http://plone.org/how-to/use-paster] recipe and
answer "yes" to the "is this a Zope2 product", then your theme product
is egg-based. On an even simpler note, if the root folder contains
setup.py, it's an egg. In a typical egg-based theme product, setup.py
would look something like this, where the highlighted text is the name
of the egg.

from setuptools import setup, find_packages

version = '1.1'

setup(name='webcouturier.icompany.theme',

[...]

If the product looks like it was created using DIYPloneStyle 3.x (now
outdated), it lives in the Products namespace. You can also tell that
you are working with a theme in the Products namespace because there is
no setup.py file in the root.

Installing an Egg-based Product

We recommend using buildout to install an egg-based product. You can
decide whether you want to download the package yourself or leave
buildout to do it for you. If the former, then follow the instructions
in the previous section. If you want to leave the download up to
buildout, then buildout configuration is simpler:

[configuration here]

Dependencies

If another package depends on the theme egg or includes its ZCML
directly, you do not need to specify anything in the buildout
configuration; buildout will detect this automatically. This is
considered a more advanced topic. Similarly, if the theme egg depends on
another product, then buildout will take care of this too.

Installing a Product if it is in the 2.x Products namespace

Assuming the theme product is an older 3.x theme and that it is in the
Products namespace, all you have to do is place the theme product in
your buildout's "products/" directory and restart your Zope instance.
There is no need to rerun your buildout, because we have not changed any
ZCML code.

Then, after your Zope has restarted, go to the 'Site Setup' page in the
Plone interface and click on the 'Add/Remove Products' link. The 'Site
Setup' area is also known as plone_control_panel, as this is the URL
used to get to 'Site Setup'.

Choose the product by selecting the checkbox next to it and click the
'Install' button.

Older themes in the Products namespace may show up twice in the
portal_quickinstaller, but this is a bug that is fixed in a more recent
version of ZopeSkel. You can either ignore the bug or resolve it by
removing this line from your theme product's configure.zcml file and
restarting your Zope instance:

<five:registerPackage package="." initialize=".initialize" />

Note: You may have to empty your browser cache to see the effects of the
product installation.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Overview

An overview of the building blocks and how they fit together to create a
theme.

There are really three main building blocks in a theme. The diagram
below shows you how these slot together:

[image: ../../../_images/buildingblocks1.png]

Skin

	deals with the overall construction of a page and the delivery of
content

	comprises page templates, macros, and Python scripts, and is also the
place to put style sheets and JavaScript

	to help you understand these we'll point you in the direction of
tutorials on the templating language TAL and introduce you to skin
layers and order of precedence

	to find skin elements, look in
	portal_skins in the Zope Management Interface

	the skins directory in a file system product

Components

	the Components part deals (mostly) with page furniture - the page
elements which have some level of consistency from page to page along
with page elements involving a level of processing - such as the
navigation tree, RSS feeds

	deploys a mixture of Python classes and page templates to create
viewlets, portlets and browser views

	to help you understand these, we'll give you an overview of how they
are wired together with ZCML, and we'll give you the briefest of
introductions to the bits you really need to know about Python
classes

	to find the pieces that go together to make a component, look in
	portal_view_customizations in the Zope Management Interface

	the browser directory in a file system product

Configuration

	the Configuration part deals with setting the order of some page
elements (or individual items) on the page and with automatically
setting some of the configuration you would otherwise make manually
through the Site Setup interface

	to help you understand the configuration, we'll point you in the
direction of the main tools for manual configuration, give you a
quick overview of the Generic Setup Tool and the XML used for
automatic configuration

	configuration tools are found in several places in the site, but the
files required to run a configuration automatically are found in the
profiles directory of a file system product

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where to find what you need

Where the skin lives in Plone and in your own theme product.

Through the Web

You can customize all page templates, skins and CSS very easily through
the web.

	Site Setup > Zope Management Interface > portal_skins

Locate the item you want to change, click the customize button and a
copy will be dropped into the custom layer for you.

You can also add new page templates, Python scripts and files (for CSS
and JavaScript) to the custom layer by using the drop-down list in the
ZMI. In most cases, though, you will find it easier to locate a template
you want to base your new template on, customize it and then rename it
through the ZMI.

Don't forget that, if you're hunting for something, the Find tab in the
ZMI can be very useful.

Plone Default Skin on the File System

All the page templates, style sheets, scripts and JavaScript for the
Plone Default skin can be found in the CMFPlone product:

	[your products directory]/CMFPlone/skins

	You'll see there are a number of directories corresponding to
specific skin layers. Most of this should be self-explanatory, but
its worth remembering that only the generic templates live in
plone_templates. If you want to track down a specific content view
(e.g., document_view) then you'll need to look in plone_content.

In your own Theme Product

[image: The skins folder in your theme product]

	/skins/[your theme namespace].[your theme name]_custom_templates |

	custom_images | styles

These directories will form your skin layers. Your templates,
images, and style sheets can go here. If you asked it to, the
plone3_theme paster template will have provided blank style sheets
to override the Plone Default ones.

	/skins.zcml

	When your Zope instance starts up, this turns your directories into
skin layers

[image: Subsidiary files used for installing and setting up the Skin]

/profiles/default/skins.xml | cssregistry.xml | jsregistry.xml

When your theme is installed in your Plone site, these set up the
hierarchy of skin layers, and register your style sheets and
JavaScript with the registries

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Templates and the Templating Language

The main elements of a skin are page templates, images, Python scripts,
CSS files, and JavaScript files.

(Zope) Page Templates

Page templates (.pt files or ZPT) are an essential part of a Plone theme
and are probably the easiest aspect of Plone to get to grips with. They
are written in an elegant XML-based templating language called TAL,
sometimes make use of macros (METAL), and sometimes incorporate Python
expressions (small one-line calculations) or Python scripts.

There are several excellent introductions to ZPT, and it doesn't take
long to learn TAL. Try these:

	Zope Page Templates tutorial on
plone.org [http://plone.org/documentation/tutorial/zpt/]

	ZPT Reference on
Zope.org [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx]

TAL is the one language that we really recommend you learn properly. The
rest you can pick your way through or familiarise yourself with as you
go along.

	Zope Page Template Tutorial on plone.org - Advanced
Usage [http://plone.org/documentation/tutorial/zpt/advanced-usage]

A Plone web page is delivered via an aggregation of templates, rather
than just one, and there a couple of aspects of Zope Page Template that
you'll need to be aware of.

1. Slot

A slot is a predefined section of a template. This can be left empty, or
given some default content, but it is available to be filled on the fly.
A slot is defined in a template in code like this:

<metal:bodytext metal:define-slot="main" tal:content="nothing">

</metal:bodytext>

And filled via another template like this:

<metal:main fill-slot="main">
 <h1 class="documentFirstHeading">

 </h1>
</metal:main>

The ZPT tutorial on plone.org talks you through this in more detail, and
the Templates and Components to
Page [http://plone.org/documentation/manual/theme-reference/buildingblocks/page/templates]
section of this manual gives you an example.

2. Content view templates (_view)

Note: the term "view" also has a more technical application, so in
the context of Components (discussed later in this manual) it will
mean something different.

From the user's, contributor's, or visitor's perspective, a view is the
way in which a content item is presented on the page. There's a useful
introduction [http://plone.org/documentation/plone-2.5-user-manual/managing-content/folder-view/]
to this in the Plone User Manual.

Templates that are used to render a content item for a view have _view
appended to their name (e.g., document_view.pt) and may have a title
such as "Standard View." These templates are, in fact, sets of
information ready to drop into slots.

Scripts

These are small stand-alone functions for times when you need a few
lines of code to perform your calculation. On the file system, they have
a .py extension; you'll find them in the Zope Management Interface as
Script (Python).

Here's a snippet from the event_view template (the content view for the
event content type) which uses a Python script to format the a time
field according to the default format for the site. If you look in
CMFPlone/skins/plone_scripts, you'll find toLocalizedTime.py - just a
few lines of code.

<span metal:define-slot="inside"
 class="explain"
 tal:attributes="title python:here.end()"
 tal:content="python:here.toLocalizedTime(here.end(),
 long_format=1)">End Date Time

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Getting started

Page Templates are a web page generation tool. In this part, we'll go
through their basics and show how to use them in your web site to create
dynamic web pages easily.

The goal of Page Templates is natural workflow. A designer will use a
WYSIWYG HTML editor to create a template, then a programmer will edit it
to make it part of an application. If required, the designer can load
the template back into his editor and make further changes to its
structure and appearance. By taking reasonable steps to preserve the
changes made by the programmer, he will not disrupt the application.

Page Templates aim at this goal by adopting three principles:

	Play nicely with editing tools.

	What you see is very similar to what you get.

	Keep code out of templates, except for structural logic.

A Page Template is like a model of the pages that it will generate. In
particular, it is a valid HTML/XHTML page. Since HTML is highly
structured, and WYSIWYG editors carefully preserve this structure, there
are strict limits on the ways in which the programmer can change a page
and still respect the first principle.

Although Page Templates are suited for programmers and designers who
need to work together to create dynamic web pages, they form the basis
for most of Plone's pages, so you should learn them a bit at least, if
you need to customize the Plone look or layout. Moreover, they can be
simpler to use and understand than the alternative, DTML.

Why Yet Another Template Language?

There are plenty of template systems out there, some of them quite
popular, such as ASP, JSP, and PHP. Since the beginning, Zope has come
with a template language called DTML. Why invent another?

First, none of these template systems are aimed at HTML designers. Once
a page has been converted into a template, it is invalid HTML, making it
difficult to work with outside of the application. Each of them violates
the first or second principle of Zope Page Templates to one degree or
another. Programmers should not "hijack" the work of the designers and
turn HTML into software. XMLC, part of the Enhydra project, shares our
goal, but requires the programmer to write substantial amounts of Java
support code for each template.

Second, all of these systems suffer from failure to separate
presentation, logic, and content (data). Their violations of the third
principle decrease the scalability of content management and website
development efforts that use these systems.

Applying The Principles

Page Templates use the Template Attribute Language (TAL). TAL
consists of special tag attributes. For example, a dynamic page title
might look like this:

<title tal:content="context/title">Page Title</title>

The tal:content attribute is a TAL statement. Since it has an XML
namespace (the tal: part) most editing tools will not complain that
they don't understand it, and will not remove it. It will not change the
structure or appearance of the template when loaded into a WYSIWYG
editor or a web browser. The name content indicates that it will set
the content of the title tag, and the value "context/title" is an
expression providing the text to insert into the tag.

To the HTML designer using a WYSIWYG tool, this is perfectly valid HTML,
and shows up in the editor looking the way a title should look. The
designer, not caring about the application details of TAL, only sees a
mockup of the dynamic template, complete with dummy values like "Page
Title" for the title of the document.

When this template is saved in Zope and viewed by a user, Zope turns
this static content into dynamic content and replaces "Page Title" with
whatever "context/title" resolves to. In this case, "context/title"
resolves to the title of the object to which to the template is applied.
This substitution is done dynamically, when the template is viewed.

This example also demonstrates the second principle. When you view the
template in an editor, the title text will act as a placeholder for the
dynamic title text. The template provides an example of how generated
documents will look.

There are template commands for replacing entire tags, their contents,
or just some of their attributes. You can repeat a tag several times or
omit it entirely. You can join parts of several templates together, and
specify simple error handling. All of these capabilities are used to
generate document structures. You can't create subroutines or
classes, write loops or multi-way tests, or easily express complex
algorithms. For these tasks, you should use Python.

The template language is deliberately not as powerful and
general-purpose as it could be. It is meant to be used inside of a
framework (such as Zope) in which other objects handle business logic
and tasks unrelated to page layout.

For instance, template language would be useful for rendering an invoice
page, generating one row for each line item, and inserting the
description, quantity, price, and so on into the text for each row. It
would not be used to create the invoice record in a database or to
interact with a credit card processing facility.

Creating a Page Template

If you design pages, you will probably use FTP or WebDAV instead of the
Zope Management Interface (ZMI) to create and edit Page Templates, or
you will be developing templates on the filesystem for later
installation. If you're not the Zope site owner, ask your Zope
administrator for instructions. For the very small examples in this
article, it is much easier to use the ZMI. For more information on using
FTP or WebDAV with Zope, see The Zope
Book [http://www.zope.org/Documentation/Books/ZopeBook/current/ExternalTools.stx]
or Jeffrey Shell's WebDAV
article [http://www.zope.org/Documentation/Articles/WebDAV].

You may also use Emacs [http://www.gnu.org/software/emacs/],
cadaver [http://www.webdav.org/cadaver/], or some other client, but
if you are a Zope administrator or a programmer, you will probably use
the ZMI anyway at least occasionally. See the Zope Book for instructions
on setting up Zope to to work with various clients.

Use your web browser to log into the Zope management interface as you
normally would with Zope. Choose a Folder (the root is fine) and pick
"Page Template" from the drop-down add list. Type "simple_page" in the
add form's Id field, then push the "Add and Edit" button.

You should now see the main editing page for the new Page Template. The
title is blank, the content-type is text/html, and the default
template text is in the editing area.

Now you will create a very simple dynamic page. Type the words "a Simple
Page" in the Title field. Then, edit the template's body text to
look like this:

This is <b tal:replace="template/title">the Title.

Now push the "Save Changes" button. The edit page should show a message
confirming that your changes have been saved. If an error message
appears above the code area, or some text starting with
<-- Page Template Diagnostics is added to the template, then check
to make sure you typed the example correctly and save it again. You
don't need to erase the error comment: once the error is corrected it
will go away.

Click on the Test tab. You should see a mostly blank page with "This
is a Simple Page." at the top.

Back up, then click on the "Browse HTML source" link under the
content-type field. This will show you the unrendered source of the
template. You should see "This is the Title." Back up again, so that
you are ready to edit the example further.

Simple Expressions

The text "template/title" in your simple Page Template is a path
expression. This the most commonly used of the expression types defined
by the TAL Expression Syntax (TALES). It fetches the title property
of the template. Here are some other common path expressions:

	request/URL: The URL of the current web request.

	user/getUserName: The authenticated user's login name.

	container/objectIds: A list of Ids of the objects in the same Folder
as the template.

Every path starts with a variable name. If the variable contains the
value you want, you stop there. Otherwise, you add a slash (/) and
the name of a sub-object or property. You may need to work your way
through several sub-objects to get to the value you're looking for.

There is a small built in set of variables, such as request and
user, that will be listed and described later. You will also learn
how to define your own variables.

Inserting Text

In your "simple_page" template, you used the tal:replace statement
on a bold tag. When you tested it, it replaced the entire tag with the
title of the template. When you browsed the source, instead, you saw the
template text in bold. We used a bold tag in order to highlight the
difference.

In order to place dynamic text inside of other text, you typically use
tal:replace on a span tag. Add the following lines to your
example:

The URL is URL.

The span tag is structural, not visual, so this looks like "The URL
is URL." when you view the source in an editor or browser. When you view
the rendered version, it may look something like:

The URL is http://localhost:8080/simple_page.

Remember to take care when editing not to destroy the span or place
formatting tags such as b or font inside of it, since they would
also be replaced.

If you want to insert text into a tag but leave the tag itself alone,
you use tal:content. To set the title of your example page to the
template's title property, add the following lines above the other text:

<head>
 <title tal:content="template/title">The Title</title>
</head>

If you open the "Test" tab in a new window, the window's title will be
"a Simple Page".

Repeating Structures

Now you will add some context to your page, in the form of a list of the
objects that are in the same Folder. You will make a table that has a
numbered row for each object, and columns for the id, meta-type, and
title. Add these lines to the bottom of your example template:

<table border="1" width="100%">
 <tr>
 <th>#</th><th>Id</th><th>Meta-Type</th><th>Title</th>
 </tr>
 <tr tal:repeat="item container/objectValues">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/id">Id</td>
 <td tal:content="item/meta_type">Meta-Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
</table>

The tal:repeat statement on the table row means "repeat this row for
each item in my container's list of object values". The repeat statement
puts the objects from the list into the item variable one at a time,
and makes a copy of the row using that variable. The value of "item/id"
in each row is the Id of the object for that row.

You can use any name you like for the "item" variable, as long as it
starts with a letter and contains only letters, numbers, and underscores
(_). It only exists in the <tr> tag; If you tried to use it above or
below that tag you would get an error.

You also use the tal:repeat variable name to get information about
the current repetition. By placing it after the builtin variable
repeat in a path, you can access the repetition count starting from
zero (index), from one (number), from "A" (Letter), and in
several other ways. So, the expression repeat/item/number is 1
in the first row, 2 in the second row, and so on.

Since one tal:repeat loop can be placed inside of another, more than
one can be active at the same time. This is why you must write
repeat/item/number instead of just repeat/number. You must
specify which loop you are interested in by including the loop name.

Conditional Elements

View the template, and you'll notice that the table is very dull
looking. Let's improve it by shading alternate rows. Copy the second row
of the table, then edit the code so that it looks like this:

<table border="1" width="100%">
 <tr>
 <th>#</th><th>Id</th><th>Meta-Type</th><th>Title</th>
 </tr>
 <tbody tal:repeat="item container/objectValues">
 <tr bgcolor="#EEEEEE" tal:condition="repeat/item/even">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/id">Id</td>
 <td tal:content="item/meta_type">Meta-Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
 <tr tal:condition="repeat/item/odd">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/id">Id</td>
 <td tal:content="item/meta_type">Meta-Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
 </tbody>
</table>

The tal:repeat has not changed, you have just moved it onto the new
tbody tag. This is a standard HTML tag meant to group together the
body rows of a table, which is how you are using it. There are two rows
in the body, with identical columns, and one has a grey background.

View the template's source, and you see both rows. If you had not added
the tal:condition statements to the rows, then the template would
generate both rows for every item, which is not what you want. The
tal:condition statement on the first row ensures that it is only
included on even-indexed repetitions, while the second row's condition
only lets it appear in odd-indexed repetitions.

A tal:condition statement does nothing if its expression has a true
value, but removes the entire statement tag, including its contents, if
the value is false. The odd and even properties of
repeat/item are either zero or one. The number zero, a blank string,
an empty list, and the builtin variable nothing are all false
values. Nearly every other value is true, including non-zero numbers,
and strings with anything in them (even spaces!).

Defining Variables

Note: In Plone 4 or newer, use container/values instead of
container/objectValues below.

Your template will always show at least one row, since the template
itself is one of the objects listed. In other circumstances, you might
want to account for the possibility that the table will be empty.
Suppose you want to simply omit the entire table in this case. You can
do this by adding a tal:condition to the table:

<table border="1" width="100%"
 tal:condition="container/objectValues">

Now, when there are no objects, no part of the table will be included in
the output. When there are objects, though, the expression
"container/objectValues" will be evaluated twice, which is mildly
inefficient. Also, if you wanted to change the expression, you would
have to change it in both places.

To avoid these problems, you can define a variable to hold the list, and
then use it in both the tal:condition and the tal:repeat. Change
the first few lines of the table to look like this:

<table border="1" width="100%"
 tal:define="items container/objectValues"
 tal:condition="items">
 <tr>
 <th>#</th><th>Id</th><th>Meta-Type</th><th>Title</th>
 </tr>
 <tbody tal:repeat="item items">

The tal:define statement creates the variable items, and you can
use it anywhere in the table tag. Notice also how you can have two TAL
attributes on the same table tag. You can, in fact, have as many as
you want. In this case, they are evaluated in order. The first assigns
the variable items and the second uses items in a condition to
see whether or not it is false (in this case, an empty sequence) or
true.

Now, suppose that instead of simply leaving the table out when there are
no items, you want to show a message. To do this, you place the
following above the table:

<h4 tal:condition="not:container/objectValues">There
Are No Items</h4>

You can't use your items variable here, because it isn't defined
yet. If you move the definition to the h4 tag, you can't use it in
the table tag any more, because it becomes a local variable of the
h4 tag. You could place the definition on some tag that enclosed
both the h4 and the table, but there is a simpler solution. By
placing the keyword global in front of the variable name, you can
make the definition last from the h4 tag to the bottom of the
template:

<h4 tal:define="global items container/objectValues"
 tal:condition="not:items">There Are No Items</h4>
<table border="1" width="100%"
 tal:condition="items">

The not: in the first tal:condition is an expression type prefix
that can be placed in front of any expression. If the expression is
true, not: is false, and vice versa.

Changing Attributes

Most, if not all, of the objects listed by your template have an
icon property, that contains the path to the icon for that kind of
object. In order to show this icon in the meta-type column, you will
need to insert this path into the src attribute of an img tag,
by editing the meta-type column in both rows to look like this:

<td>
 <img src="/misc_/OFSP/Folder_icon.gif"
 tal:attributes="src item/icon">
 Meta-Type
</td>

The tal:attributes statement replaces the src attribute of the
image with the value of item/icon. The value of src in the
template acts as a placeholder, so that the image is not broken, and is
the correct size.

Since the tal:content attribute on the table cell would have
replaced the entire contents of the cell, including the image, with the
meta-type text, it had to be removed. Instead, you insert the meta-type
inline in the same fashion as the URL at the top of the page.

Based on the Zope
Book [http://www.zope.org/Documentation/Books/ZopeBook/], © Zope
Corporation [http://www.zope.com/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Advanced Usage

In this part we'll look at some more advanced features of the Template
Attribute Language, including a more in-depth look at the TAL Expression
Syntax (TALES).

Mixing and Matching Statements

As you have seen in the example template, you can put more than one TAL
statement on the same tag. There are three limits you should be aware
of, however:

	Only one of each kind of statement can be used on a single tag. Since
HTML does not allow multiple attributes with the same name, you can't
have two tal:define on the same tag.

	Both of tal:content and tal:replace cannot be used on the
same tag, since their functions conflict.

	The order in which you write TAL attributes on a tag does not affect
the order in which they execute. No matter how you arrange them, the
TAL statements on a tag always execute in the following order:
define, condition, repeat, content / replace,
attributes.

To get around these limits, you can add another tag and split up the
statements between the tags. If there is no obvious tag type that would
fit, use span or div.

For example, if you want to define a variable for each repetition of a
paragraph, you can't place the tal:define on the same tag as the
tal:repeat, since the definition would happen before all of the
repetitions. Instead, you would write either of the following:

<div tal:repeat="ph phrases">
 <p tal:define="n repeat/ph/number">
 Phrase number 1 is
 <b tal:content="ph">Phrase.</p>
</div>

<p tal:repeat="ph phrases">

 Phrase number 1 is
 <b tal:content="ph">Phrase".
</p>

Note: the definition of "n" is actually not much useful in this example
because we could have directly used "repeat/ph/number" in the replace
attribute which only occurs once, but it serves our purpose.

Statements with Multiple Parts

If you need to set multiple attributes on a tag, you can't do it by
placing multiple tal:attributes statements on the tag, and splitting
them across tags is useless.

Both the tal:attributes and tal:define statements can have
multiple parts in a single statement. You separate the parts with
semicolons (;), so any semicolon appearing in an expression in one
of these statements must be escaped by doubling it (;;). Here is an
example of setting both the src and alt attributes of an image:

<img src="default.jpg"
 tal:attributes="src item/icon; alt item/id">

Here is a mixture of variable definitions:

Note: in Plone 4 or newer you can use context/items instead of
context/objectIds.

String Expressions

String expressions allow you to easily mix path expressions with text.
All of the text after the leading string: is taken and searched for
path expressions. Each path expression must be preceded by a dollar sign
($). If it has more than one part, or needs to be separated from the
text that follows it, it must be surrounded by braces ({}). Since
the text is inside of an attribute value, you can only include a double
quote by using the entity syntax ". Since dollar signs are used
to signal path expressions, a literal dollar sign must be written as two
dollar signs ($$). For example:

Nocall Path Expressions

An ordinary path expression tries to render the object that it fetches.
This means that if the object is a function, Script, Method, or some
other kind of executable thing, then the expression will evaluate to the
result of calling the object. This is usually what you want, but not
always. For example, if you want to put a DTML Document into a variable
so that you can refer to its properties, you can't use a normal path
expression because it will render the Document into a string.

If you put the nocall: expression type prefix in front of a path, it
prevents the rendering and simply gives you the object. For example:

<span tal:define="doc nocall:context/aDoc"
 tal:content="string:${doc/id}: ${doc/title}">
Id: Title

This expression type is also valuable when you want to define a variable
to hold a function or class from a module, for use in a Python
expression.

Other Builtin Variables

You have already seen some examples of the builtin variables
template, user, repeat, and request. Here is a more
complete list of the other builtin variables and their uses:

	nothing

	A false value, similar to a blank string, that you can use in
tal:replace or tal:content to erase a tag or its contents.
If you set an attribute to nothing, the attribute is removed
from the tag (or not inserted), unlike a blank string. Equivalent to
None in Python.

	default

	A special value that doesn't change anything when used in
tal:replace, tal:content, or tal:attributes. It leaves
the template text in place.

	options

	The keyword arguments, if any, that were passed to the template.

	attrs

	A dictionary of attributes of the current tag in the template. The
keys are the attributes names, and the values are the original
values of the attributes in the template.

	root

	The root Zope object. Use this to get Zope objects from fixed
locations, no matter where your template is placed or called.

	context

	The object on which the template is being called. This is often the
same as the container, but can be different if you are using
acquisition. Use this to get Zope objects that you expect to find in
different places depending on how the template is called.

	here

	An (older) alias for context.

	container

	The container (usually a Folder) in which the template is kept. Use
this to get Zope objects from locations relative to the template's
permanent home.

	request

	Contains the complete information about the current HTTP request
that Zope is processing. See this page in the zope.org
wiki [http://wiki.zope.org/zope2/REQUESTX] for further info about
the request object.

	modules

	The collection of Python modules available to templates. See the
section on writing Python expressions.

	view

	For templates called from a Zope 3-style view only, this variable
refers to the associated view class. This may then contain functions
and variables prepared explicitly for the template to output

Alternate Paths

The path template/title is guaranteed to exist every time the
template is used, although it may be a blank string. Some paths, such as
request/form/x, may not exist during some renderings of the
template. This normally causes an error when the path is evaluated.

When a path doesn't exist, you often have a fallback path or value that
you would like to use instead. For instance, if request/form/x
doesn't exist, you might want to use context/x instead. You can do
this by listing the paths in order of preference, separated by vertical
bar characters (|):

<h4 tal:content="request/form/x | context/x">Header</h4>

Two variables that are very useful as the last path in a list of
alternates are nothing and default. Use nothing to blank the
target if none of the paths is found, or default to leave the
example text in place.

You can also test the existence of a path directly with the exists:
expression type prefix. A path expression with exists: in front of
it is true if the path exists, false otherwise. These examples both
display an error message only if it is passed in the request:

<h4 tal:define="err request/form/errmsg | nothing"
 tal:condition="err" tal:content="err">Error!</h4>

<h4 tal:condition="exists:request/form/errmsg"
 tal:content="request/form/errmsg">Error!</h4>

Dummy Elements

You can include page elements that are visible in the template but not
in generated text by using the builtin variable nothing, like this:

<tr tal:replace="nothing">
 <td>10213</td><td>Example Item</td><td>$15.34</td>
</tr>

This can be useful for filling out parts of the page that will take up
more of the generated page than of the template. For instance, a table
that usually has ten rows will only have one row in the template. By
adding nine dummy rows, the template's layout will look more like the
final result.

Inserting Structure

Normally, the tal:replace and tal:content statements quote the
text that they insert, converting < to <, for instance. If
you actually want to insert the unquoted text, you need to precede the
expression with the structure keyword. Given a variable
copyright with a string value of "© 2008 By Me", the
following two lines:

Copyright 2008
Copyright 2008

...will generate "© 2001 By Me" and "© 2001 By Me",
respectively.

This feature is especially useful when you are inserting a fragment of
HTML that is stored in a property or generated by another Zope object.
For instance, you may have news items that contain simple HTML markup
such as bold and italic text when they are rendered, and you want to
preserve this when inserting them into a "Top News" page. In this case,
you might write:

<p tal:repeat="article topnewsitems"
 tal:content="structure article">A News Article</p>

Basic Python Expressions

A Python expression starts with python:, followed by an expression
written in the Python language. Python is a simple and expressive
programming language. If you have never encountered it before, you
should read one of the excellent tutorials or introductions available at
the official website http://www.python.org [http://www.python.org/].

A Page Template Python expression can contain anything that the Python
language considers an expression. You can't use statements such as
if and while, and Zope's security restrictions are applied.

Comparisons

One place where Python expressions are practically necessary is in
tal:condition statements. You usually want to compare two strings or
numbers, and there isn't any other way to do that. You can use the
comparison operators < (less than), > (greater than), ==
(equal to), and != (not equal to). You can also use the boolean
operators and, not, and or. For example:

<p tal:repeat="widget widgets">

 Gear #1:
 Name

</p>

Sometimes you want to choose different values inside a single statement
based on one or more conditions. You can do this with the test
function, like this:

You <span tal:define="name user/getUserName"
 tal:replace="python:test(name=='Anonymous User', 'need to log in', default)">
 are logged in as
 Name

<tr tal:define="oddrow repeat/item/odd"
 tal:attributes="class python:test(oddrow, 'oddclass', 'evenclass')">

Using other Expression Types

You can use other expression types inside of a Python expression. Each
type has a corresponding function with the same name, including
path(), string(), exists(), and nocall(). This allows
you to write expressions such as:

"python:path('context/%s/thing' % foldername)"
"python:path(string('context/$foldername/thing'))"
"python:path('request/form/x') or default"

The final example has a slightly different meaning than the path
expression "request/form/x | default", since it will use the default
text if "request/form/x" doesn't exists or if it is false.

Getting at Zope Objects

Much of the power of Zope involves tying together specialized objects.
Your Page Templates can use Scripts, SQL Methods, Catalogs, and custom
content objects. In order to use them, you have to know how to get
access to them.

Object properties are usually attributes, so you can get a template's
title with the expression "template.title". Most Zope objects support
acquisition, which allows you to get attributes from "parent" objects.
This means that the Python expression "context.Control_Panel" will
acquire the Control Panel object from the root folder. Object methods
are attributes, as in "context.objectIds" and "request.set". Objects
contained in a folder can be accessed as attributes of the folder, but
since they often have Ids that are not valid Python identifiers, you
can't use the normal notation. For example, instead of writing
"context.penguin.gif", you must write "getattr(context, 'penguin.gif')".

Some objects, such as request, modules, and Zope Folders support
item access. Some examples of this are:

request['URL'], modules['math'], and context['thing']

When you use item access on a Folder, it doesn't try to acquire the
name, so it will only succeed if there is actually an object with that
Id contained in the folder.

Path expressions allow you to ignore details of how you get from one
object to the next. Zope tries attribute access, then item access. You
can write "context/images/penguin.gif" instead of
"python:getattr(context.images, 'penguin.gif')", and "request/form/x"
instead of "python:request.form['x']".

The tradeoff is that path expressions don't allow you to specify those
details. For instance, if you have a form variable named "get", you must
write "python:request.form['get']", since "request/form/get" will
evaluate to the "get" method of the form dictionary.

Using Scripts

Script objects are often used to encapsulate business logic and complex
data manipulation. Any time that you find yourself writing lots of TAL
statements with complicated expressions in them, you should consider
whether you could do the work better in a script.

Each script has a list of parameters that it expects to be given when it
is called. If this list is empty, then you can use the script by writing
a path expression. Otherwise, you will need to use a Python expression,
like this:

"python:context.myscript(1, 2)"
"python:context.myscript('arg', foo=request.form['x'])"

If you want to return more than a single bit of data from a script to a
page template, it is a good idea to return it in a dictionary. That way,
you can define a variable to hold all the data, and use path expressions
to refer to each bit. For example, supposing we have a getPerson
script which returns a dictionary like {'name':'Fred', 'age':25}:

<span tal:define="person context/getPerson"
 tal:replace="string:${person/name} is ${person/age}">
Name is 30 years old.

Calling DTML

DTML is another templating language made available by Zope, mostly
replaced by ZPT nowadays, but still in use. You can read more about it
in the relevant chapter of the Zope
Book [http://www.zope.org/Documentation/Books/ZopeBook/current/DTML.stx].

Unlike Scripts, DTML Methods don't have an explicit parameter list.
Instead, they expect to be passed a client, a mapping, and keyword
arguments. They use these to construct a namespace.

When Zope's ZPublisher publishes a DTML object, it passes the context of
the object as the client, and the REQUEST as the mapping. When one DTML
object calls another, it passes its own namespace as the mapping, and no
client.

If you use a path expression to render a DTML object, it will pass a
namespace with request, context, and the template's variables
already on it. This means that the DTML object will be able to use the
same names as if it were being published in the same context as the
template, plus the variable names defined in the template.

Python Modules

The Python language comes with a large number of modules, which provide
a wide variety of capabilities to Python programs. Each module is a
collection of Python functions, data, and classes related to a single
purpose, such as mathematical calculations or regular expressions.

Several modules, including "math" and "string", are available in Python
Expressions by default. For example, you can get the value of pi from
the math module by writing "python:math.pi". To access it from a path
expression, however, you need to use the modules variable. In this
case, you would use "modules/math/pi". Please refer to the Zope Book or
a DTML reference guide for more information about these modules.

The "string" module is hidden in Python expressions by the "string"
expression type function, so you need to access it through the
modules variable. You can do this directly in an expression in which
you use it, or define a global variable for it, like this:

tal:define="global mstring modules/string"
tal:replace="python:mstring.join(slist, ':')"

Modules can be grouped into packages, which are simply a way of
organizing and naming related modules. For instance, Zope's Python-based
Scripts are provided by a collection of modules in the "PythonScripts"
subpackage of the Zope "Products" package. In particular, the "standard"
module in this package provides a number of useful formatting functions
that are standard in the DTML "Var" tag. The full name of this module is
"Products.PythonScripts.standard", so you could get access to it using
either of the following statements:

tal:define="pps modules/Products.PythonScripts.standard"
tal:define="pps python:modules['Products.PythonScripts.standard']"

Most Python modules cannot be accessed from Page Templates, DTML, or
Scripts unless you add Zope security assertions to them. That's outside
the scope of this document, and is covered by the Zope Security
Guide [http://www.zope.org/Documentation/Books/ZDG/current/Security.stx].

Special HTML attributes

The HTML boolean attributes checked, selected, nowrap, compact,
ismap, declare, noshade, disabled, readonly, multiple,
selected and noresize are treated differently by tal:attributes. The
value is treated as true or false (as defined by tal:condition). The
attribute is set to attr=”attr” in the true case and omitted otherwise.
If the value is default, then it is treated as true if the attribute
already exists, and false if it does not. For example, each of the
following lines:

<input type="checkbox" checked tal:attributes="checked default">
<input type="checkbox" tal:attributes="checked string:yes">
<input type="checkbox" tal:attributes="checked python:42">

will render as:

<input type="checkbox" checked="checked">

while each of these:

<input type="checkbox" tal:attributes="checked default">
<input type="checkbox" tal:attributes="checked string:">
<input type="checkbox" tal:attributes="checked nothing">

will render as:

<input type="checkbox">

This article contains information and examples from the Zope Book [http://docs.zope.org/zope2/zope2book/source/index.html], ©
Zope Developers Community. [http://docs.zope.org/zope2/zope2book/source/Contributions.html]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Create an Alternative Edit Template

Suppose you've a content type and you want to keep the default "edit"
template, but you want also to create another edit template suited for
editing only some particular metadata.

Think of the standard edit as a "full" edit, while your new edit is a
custom version. They co-exist together. This method also works if you've
already a mycustomtype_edit edit template, and you want to have another
one.

Limiting the Fields Available to Edit

Step 1: Copy the base_edit and the edit_macros (you can do it by
simply customizing them) and change their id (rename) to mynewedit and
mynewmacros

Step 2: Modify mwynewedit to point to mynewmacros:

	edit_template python:'newemacros';

	edit_macros python:path('here/newemacros/macros | nothing');

so this edit template will pick up the macros from your custom version.

Step 3: Modify mynewmacros as you need. For example, if you want to
display only some fields, you can (in<metal:block define-slot="widgets">
which manages widgets display) change the template as below:

<tal:fields repeat="field
python:schematas[fieldset].editableFields(here, visible_only=True)">

 <div tal:omit-tag=""
 tal:condition="python:field.getName()
 in ['title','myfield1','myfield2','myfield3','myfield4']">

 <metal:fieldMacro use-macro="python:here.widget(field.getName(),
 mode='edit')" />

 </div>

</tal:fields>

So only 'title','myfield1','myfield2','myfield3','myfield4' will be
displayed and you will avoid people editing unwanted fields (even if
they can).

Step 4: If there's a failure, the user should go back to your form, so
in mynewedit -> actions, change failure from string:edit to
string:mynewedit

Dealing with Validation

Suppose you've some validated fields, or you want to run custom code
when the user saves the form. The validation will kick in when you'll
press "save". If you've some required fields, but they're not in the
fields listed above, you'll get the red warning and your data will not
be saved. So you have to bypass it, and we need to do it in two places:

Step 1:

	edit mwynewedit -> validation -> delete the validation step.

	edit mwynewedit -> actions -> change string:content_edit to
string:mycontent_edit (a custom content edit)

Step 2:

	Find content_edit in portal_skins/archetypes and customize it. Then
rename it to mycontent_edit. Here you can add custom code, sending
mail and so on.

	Edit it -> actions -> delete the validate_integrity step

	Edit it -> actions -> change any string:edit to string:mynewedit , so
after saving you'll go to your edit form if there are any failures
(should not if you remove the validation)

Now your form can edit your content type without any restrictions. If
you need some restrictions, just don't delete the validation steps above
and customize the validation scripts validate_base and
validate_integrity (renaming them and pointing to them in the
validation steps above).

This is enough to perform your "very" own custom edit, with custom
saving and custom validation, leaving the default one untouched.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Global Template Variables

Plone defines a few useful global variables to use them in your
templates

Note: This page covers the methods for referencing variables for Plone
3. It has changed slightly for Plone 4 (see
https://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/no-more-global-definitions-in-templates/)

While writing templates for Plone, you will notice a set of variables
you use more often, like the URL of the portal or the currently
authenticated member.

For your convenience, Plone defines a few global template variables that
are pulled into main_template via global_defines. Some of the most
useful ones are:

	portal

	The portal object.

	portal_url

	The url of the portal.

	member

	The current user (None if user is anonymous)

	checkPermission

	A function to check if the current user has a certain permission in
the current context, e.g.
checkPermission('View portal content', context).

	isAnon

	True if the current user is not logged in.

	is_editable

	True if the current user has edit permissions in the context.

	default_language

	The default language of the portal.

	here_url

	The URL of the current object.

To see the full list list of these variables, see the docstring for
``globalize()` in the interface
Products.CMFPlone.browser.interfaces.IPlone <http://dev.plone.org/plone/browser/Plone/branches/3.2/Products/CMFPlone/browser/interfaces.py#L199>`_.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Macros and Slots

Macros

So far, you've seen how Page Templates can be used to add dynamic
behavior to individual web pages. Another feature of page templates is
the ability to reuse look and feel elements across many pages.

For example, with Page Templates, you can have a site that has a
standard look and feel. No matter what the "content" of a page, it will
have a standard header, side-bar, footer, and/or other page elements.
This is a very common requirement for web sites, and this is exactly how
Plone works.

You can reuse presentation elements across pages with macros. Macros
define a section of a page that can be reused in other pages. A macro
can be an entire page, or just a chunk of a page such as a header or
footer. After you define one or more macros in one Page Template, you
can use them in other Page Templates.

Using Macros

You can define macros with tag attributes similar to TAL statements.
Macro tag attributes are called Macro Expansion Tag Attribute Language
(METAL) statements. Here's an example macro definition:

<p metal:define-macro="copyright">
 Copyright 2008, Foo, Bar, and Associates Inc.
</p>

This metal:define-macro statement defines a macro named "copyright". The
macro consists of the p element (including all contained elements,
ending with the closing p tag).

Macros defined in a Page Template are stored in the template's macros
attribute. You can use macros from other Page Templates by referring to
them through the macros attribute of the Page Template in which they
are defined. For example, suppose the copyright macro is in a Page
Template called "master_page". Here's how to use the copyright macro
from another Page Template:

<hr />
<b metal:use-macro="container/master_page/macros/copyright">
 Macro goes here

In this Page Template, the b element will be completely replaced by the
macro when Zope renders the page:

<hr />
<p>
 Copyright 2008, Foo, Bar, and Associates Inc.
</p>

If you change the macro (for example, if the copyright holder changes)
then all Page Templates that use the macro will automatically reflect
the change.

Notice how the macro is identified by a path expression using the
metal:use-macro statement. The metal:use-macro statement replaces the
statement element with the named macro.

Macro Details

The metal:define-macro and metal:use-macro statements are pretty simple.
However there are a few subtleties to using them which are worth
mentioning.

A macro's name must be unique within the Page Template in which it is
defined. You can define more than one macro in a template, but they all
need to have different names.

It should also be noted that, despite the define-macro attribute, the
macro is anyway a regular section of the template; so, when you call the
whole template, the macro section is rendered in the output page just
like any other section in the template. By using the define-macro
attribute you are simply adding some sort of "anchor" to that
section, so that you can call it from outside; but you are not changing
anything regarding the behaviour of that same section in the template
itself.

Normally you'll refer to a macro in a metal:use-macro statement with a
path expression. However, you can use any expression type you wish so
long as it returns a macro. For example:

<p metal:use-macro="python:context.getMacro()">
 Replaced with a dynamically determined macro,
 which is located by the getMacro script.
</p>

In this case the path expression returns a macro defined dynamically by
the getMacro script. Using Python expressions to locate macros lets you
dynamically vary which macro your template uses.

You can use the default variable with the metal:use-macro statement:

<p metal:use-macro="default">
 This content remains - no macro is used
</p>

The result is the same as using default with tal:content and
tal:replace. The "default" content in the tag doesn't change when it is
rendered. This can be handy if you need to conditionally use a macro or
fall back on the default content if it doesn't exist.

If you try to use the nothing variable with metal:use-macro you will get
an error, since nothing is not a macro. If you want to use nothing to
conditionally include a macro, you should instead enclose the
metal:use-macro statement with a tal:condition statement.

Zope handles macros first when rendering your templates. Then Zope
evaluates TAL expressions. For example, consider this macro:

<p metal:define-macro="title"
 tal:content="template/title">
 template's title
</p>

When you use this macro it will insert the title of the template in
which the macro is used, not the title of the template in which the
macro is defined. In other words, when you use a macro, it's like
copying the text of a macro into your template and then rendering your
template.

Using Slots

Macros are much more useful if you can override parts of them when you
use them. You can do this by defining slots in the macro that you
can fill in when you use the template. For example, consider a side bar
macro:

<div metal:define-macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

</div>

This macro is fine, but suppose you'd like to include some additional
information in the sidebar on some pages. One way to accomplish this is
with slots:

<div metal:define-macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

</div>

When you use this macro you can choose to fill the slot like so:

<p metal:use-macro="container/master_page/macros/sidebar">
 <b metal:fill-slot="additional_info">
 Make sure to check out our specials.

</p>

When you render this template the side bar will include the extra
information that you provided in the slot:

<div>
 Links

 Home
 Products
 Support
 Contact Us

 Make sure to check out our specials.

</div>

Notice how the span element that defines the slot is replaced with the b
element that fills the slot.

Customizing Default Presentation

A common use of slot is to provide default presentation which you can
customize. In the slot example in the last section, the slot definition
was just an empty span element. However, you can provide default
presentation in a slot definition. For example, consider this revised
sidebar macro:

<div metal:define-macro="sidebar">
 <div metal:define-slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </div>

</div>

Now the sidebar is fully customizable. You can fill the links slot to
redefine the sidebar links. However, if you choose not to fill the links
slot then you'll get the default links, which appear inside the slot
definition.

You can even take this technique further by defining slots inside of
slots. This allows you to override default presentation with a fine
degree of precision. Here's a sidebar macro that defines slots within
slots:

<div metal:define-macro="sidebar">
 <div metal:define-slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </div>

</div>

If you wish to customize the sidebar links you can either fill the
links slot to completely override the links, or you can fill the
additional_links slot to insert some extra links after the default
links. You can nest slots as deeply as you wish.

Combining METAL and TAL

You can use both METAL and TAL statements on the same elements. For
example:

<ul metal:define-macro="links"
 tal:repeat="link context/getLinks">

 <a href="link_url"
 tal:attributes="href link/url"
 tal:content="link/name">link name

In this case, getLinks is a (imaginary) Script that assembles a list of
link objects, possibly using a Catalog query.

Since METAL statements are evaluated before TAL statements, there are no
conflicts. This example is also interesting since it customizes a macro
without using slots. The macro calls the getLinks Script to determine
the links. You can thus customize your site's links by redefining the
getLinks Script at different locations within your site.

It's not always easy to figure out the best way to customize look and
feel in different parts of your site. In general you should use slots to
override presentation elements, and you should use Scripts to provide
content dynamically. In the case of the links example, it's arguable
whether links are content or presentation. Scripts probably provide a
more flexible solution, especially if your site includes link content
objects.

Whole Page Macros

Rather than using macros for chunks of presentation shared between
pages, you can use macros to define entire pages. Slots make this
possible. Here's an example macro that defines an entire page:

<html metal:define-macro="page">
 <head>
 <title tal:content="context/title">The title</title>
 </head>

 <body>
 <h1 metal:define-slot="headline"
 tal:content="context/title">title</h1>

 <p metal:define-slot="body">
 This is the body.
 </p>

 <p>Copyright 2008 Fluffy Enterprises</p>

 </body>
</html>

This macro defines a page with three slots: headline, body, and
footer. Notice how the headline slot includes a TAL statement to
dynamically determine the headline content.

You can then use this macro in templates for different types of content,
or different parts of your site. For example here's how a template for
news items might use this macro:

<html metal:use-macro="container/master_page/macros/page">

 <h1 metal:fill-slot="headline">
 Press Release:
 Headline
 </h1>

 <p metal:fill-slot="body"
 tal:content="context/getBody">
 News item body goes here
 </p>

</html>

This template redefines the headline slot to include the words "Press
Release" and call the getHeadline method on the current object. It also
redefines the body slot to call the getBody method on the current
object.

The powerful thing about this approach is that you can now change the
page macro and the press release template will be automatically
updated. For example you could put the body of the page in a table and
add a sidebar on the left and the press release template would
automatically use these new presentation elements.

Based on the Zope
Book [http://www.zope.org/Documentation/Books/ZopeBook/], © Zope
Corporation [http://www.zope.com/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

How to customise view or edit on archetypes content items

Explains one way to customise the view or edit templates without having
to change the action of an object.

Reasons/Use Cases

I usually like to customise as little as possible so that more of my
page templates are just like the plone default templates. I find this
helps when I move to a new version and also makes doing styling using
CSS easier.

Another use case is if I want to generate a form using the schema but I
need it to do different things based on which button is pushed, you can
accomplish this with putting named buttons on the form in combination by
using portal_formcontroller to override what happens on a submit. E.g.
importing data from CSV, in a seperate schemata I have a
form.button.Import button and on this schemata I only show this button
and the cancel button (instead of save, nex previous etc.) and then I
customise the portal_formcontroller action (and validation) so
content_edit (the script that does the saving) goes to a script that
does the importing before going back to the view action.

Archetypes base_view and base_edit

Both of these templates have several macros which are gotten by from
other page templates. They are setup in such a way that they will look
for a template named with the content type for these macros and then
default to the generic archetypes macros. I.e. say you have a content
type 'Newsletter' base_view looks for a template named
'newsletter_view' if it finds it and it contains the right macros it
will use those instead of the default 'view_macros' (found in
'portal_skins/archetypes' skin folder.

Below is a skeleton example of a custom view template showing the
different things you can customise. See base.pt

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

 lang="en"

 metal:use-macro="here/main_template/macros/master"

 i18n:domain="plone">

<body>

<metal:main fill-slot="main">

 <!-- header, H1 with title in it -->

 <metal:header define-macro="header">

 </metal:header>

 <!-- body macro where all the fields are -->

 <metal:body define-macro="body">

 </metal:body>

 <!-- folderlisting that shows sub-objects if there are any -->

 <metal:folderlisting define-macro="folderlisting">

 </metal:folderlisting>

 <!-- footer, by line created date etc. -->

 <metal:footer define-macro="footer">

 </metal:footer>

</metal:main>

</body>

</html>

Below is an skeleton of a custom edit template:

<html xmlns="http://www.w3.org/1999/xhtml"

 xml:lang="en"

 lang="en"

 xmlns:tal="http://xml.zope.org/namespaces/tal"

 xmlns:metal="http://xml.zope.org/namespaces/metal"

 xmlns:i18n="http://xml.zope.org/namespaces/i18n"

 i18n:domain="plone">

 <metal:head define-macro="topslot">

 </metal:head>

 <metal:head define-macro="javascript_head">

 </metal:head>

 <body>

 <!-- header, h1 of Edit <Type>, schemata links and webdav lock message -->

 <metal:header define-macro="header">

 </metal:header>

 <!-- typedesription, typeDescription from the content type -->

 <metal:typedescription define-macro="typedescription">

 </metal:typedescription>

 <!-- body, editform , fields, buttons, the default macro

 contains a number of slots which usually provide enough

 ways to customise so often I use that macro and just

 fill the slots

 -->

 <metal:body define-macro="body">

 <metal:default_body use-macro="here/edit_macros/macros/body">

 <!-- inside the fieldset but above all the fields -->

 <metal:block fill-slot="extra_top">

 </metal:block>

 <!-- listing of the fields, usually I won't customise this

 <metal:block fill-slot="widgets">

 </metal:block>

 -->

 <!-- below the fields above the formControls (hidden fields for refernce stuff is above buttons) -->

 <metal:block fill-slot="extra_bottom">

 </metal:block>

 <!-- within the formControls these are the default previous, next, save, cancel buttons -->

 <metal:block fill-slot="buttons">

 </metal:block>

 <!-- within the formControls a slot for extra buttons -->

 <metal:block fill-slot="extra_buttons">

 </metal:block>

 </metal:default_body>

 </metal:body>

 <!-- footer, by line created date etc. -->

 <metal:footer define-macro="footer">

 </metal:footer>

 </body>

</html>

See the templates into Products.Archetypes:skins/archetypes for examples
about how does Archetypes work by default: get the field lists, hook up
translation, handle form processing and more. Using them as a base and
customizing only the neccessary bits can make the job much easier than
starting from scratch.

How to do it

Lets say your content type is 'Newsletter'

Steps for View

	Create a page template (either file system of in ZMI) called
'newsletter_view'

	Use the skeleton and comment out the macros you wish to keep the
same. I.e. the ones you want to use from view_macros template (in
portal_skins/archetypes)

	Put your code into the relevant macros/slots.

	Test and you are done.

Steps for Edit

	Create a page template called 'newsletter_edit'

	Use the skeleton and then comment out the macros you wish to use the
default for. (from edit_macros).

	Put your code into the relevant macros/slots.

	Test and you are done.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Introduction

Goals, Pre-Requisites, and Tools

So you think Archetypes' way of automagically generating HTML to view
your object isn't pretty enough? Well, you've come to the right place!
I'm going to teach you how to dress up those boring, drab views and make
them shine!

Goals: What will I learn?

	How Archetypes generates views for content objects

	How much control Archetypes gives you

	How to change the HTML output for a particular field by creating a
custom widget template

	How to use the Archetypes template framework to make minor changes to
the default AT-generated view

	How to customize the HTML output for the entire view of an Archetypes
object by using the title,body,folderlisting, and
footer macros

Pre-Requisites: What do I need to know?

	How to read and write Python code

	How to read and write Zope Page Templates (ZPT)

	How to create Archetypes-based products (ArchGenXML is acceptable)

Tools: What do I need to have installed?

	Plone 2.0 or 2.1

	Archetypes (included by default in Plone 2.1)

	The ATViewTutorial
product [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/templates/customizing-at-templates/atviewtutorial.tgz]
- this product has examples of the concepts in this tutorial

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

What Makes It Tick?

This page describes how Archetypes uses different templates to generate
HTML, and how AT-based template customization can be applied.

Archetypes has a very clever system for generating HTML pages for
AT-based objects. The same set of templates generates all of the
content areas for all AT-based objects. This buys you the following
benefit, useful for site consistency:

	All the pages look the same.

However, it also has the following drawback:

	All the pages look the same.

Different types of content need to be displayed differently. Let's dig
into how Archetypes does things, so we can figure out how to make your
content types shine!

The base_view Template

The base_view template (found in the archetypes skin) handles
selecting the appropriate macros from the appropriate templates, and
using those macros to display content objects. If you look at this piece
of code from 'base_view':

<tal:block define="portal_type python:here.getPortalTypeName().lower().replace(' ', '_');
 view_template python:'%s_view' % portal_type;
 view_macros python:path('here/%s/macros|nothing' % view_template);
 macro view_macros/css | nothing"
 condition="macro">

You can see that it defines the variable view_template as the
object's Portal Type Name converted to lowercase, with spaces replaced
with underscores (_), followed by _view. So, MyType's view
template, for instance, would be called mytype_view.

Now, before we move on, I must warn you: don't edit base_view.
Seriously.
Don't.[1] [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/templates/customizing-at-templates/what-makes-it-tick#ref1]

No, really. Don't customize base_view. If you think you need to
customize base_view, first, well... don't. Keep reading the
tutorial. If you're certain, after reading the tutorial, that you need
to customize base_view, again, don't! Write a clear, concise
example indicating why, after reading this tutorial, you believe you
should customize base_view, and send it to the archetypes-users
mailing list. If you really do need to customize base_view, you've
found a shortcoming in Archetypes, and the people on the list will
inform you if that's the case. So, repeat after me: "Don't customize
base_view." Good!

Now, there are six important macros to be aware of. These six macros
give you the power to insert template code that is customized for your
class. These macros are:

	js

	A macro to insert javascript into the <head> tag of the
generated HTML page

	css

	A macro to insert CSS includes and style code into the <head>
tag of the page

	header

	The macro that defines the topmost portion of the content area. By
default, this macro has an <h1> tag that contains the title, and
links for printing, emailing, etc. on the right.

	body

	The macro that defines the "body" area of the content. This is where
the fields and their values are displayed.

	folderlisting

	This macro shows a list of the child content for the object. Don't
confuse this with folder_contents, this is what the view tab
shows for folderish objects. Folderish objects use both the body
macro and the folderlisting macro.

	footer

	This is where AT puts the byline.

[image: This image shows the areas generated by the header, body, and folderlisting macros]
This image shows the areas generated by the header, body, and
folderlisting macros

As you can see, the header macro generates what's outlined in the
area marked ''header'' in red, the body macro generates the content
just beneath it, and the folderlisting macro generates the listing
of the objects within the folderish object.

The base_view template automatically pulls the appropriate macro
from the custom view template (mytype_view, from our earlier ad-hoc
example), or from the next template that we are going to explore:
base.

The base Template

The base template contains four of the six macros that base_view
looks for:

	header

	body

	folderlisting

	footer

The only reason why I mention base is so that you know where AT's
default behavior comes from. This is important if you only want to
change a little bit of a type's view. It's often helpful to copy the
macro from base into your custom view template, and then start
tweaking and customizing.

Widgets

Widgets are what Archetypes uses to display fields. Widgets have two
parts:

	The widget class

	This class defines data and behavior for the widget. In most cases,
you'll never need to create a custom 'Widget'-derived class. See
Archetypes/Widget.py for examples.

	The widget template

	This is a ZPT that provides three macros: view, edit, and
search. These macros display the field. Some of the macros
depend on certain variables being defined in the calling template,
so pay close attention. Most often, you'll only need to provide a
custom widget template, and not a custom widget class.

There are all kinds of widgets out there to do all kinds of things. The
Archetypes Quick Reference
Manual [http://plone.org/products/archetypes/documentation/manual/quickref]
covers the details for the various widgets in Archetypes.

[1] Unless you're wiggy.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Customizing Widgets

This page shows you how to customize widgets, and gives some examples of
what kinds of neat tricks can be done with widget customization.

As we've already said, widgets are what Archetypes uses to display
individual fields. Archetypes' built-in templates,
base_view,base, and widgets/field use each field and the
field's associated widget (specified in the schema) to determine which
widget template to use. However, you can override a widget's template,
as we will show below. Furthermore, you can create a whole new widget
class, which will have data and operations specific to the display of
your custom data type. Read the next section to determine how much
widget hacking you need to do.

How to Determine If You Need to Create A Custom Widget Class

If you cannot find a widget in Archetypes or in a readily-available
third-party product that does what you need, use the following set of
questions to determine if you can just customize the template versus
creating a new widget class. If you answer "no" to the following
questions, a custom template is all you need:

	Does the display of your field require helper functions to do
conversions or formatting that would be difficult or cumbersome in
TALES?

	Do you have multiple AT-based classes where some fields in those
classes share all of the the following characteristics?
	The same data type

	Similar, needs for display

	One or more attributes that are class-specific that apply to the
display (i.e. the most appropriate place to set these attributes
is in the schema definition)

	Does your custom data type need some super-specific marshalling when
edited or searched that you can't get from any standard AT widget
class?

	Do you need to override or change the way that Archetypes handles the
processing of the edit form for a particular field?

If you answered yes to most of the questions, then you might need to
create a Widget class. If the questions aren't clear, take a look at the
RichDocument tutorial [http://plone.org/tutorial/richdocument] . If
you've got a specific enough use-case (like RichDocument) that you
need custom widget classes, you're probably able to make it happen
just by the sheer fact that you know you need them.

Customizing Widget Templates

Creating custom widget templates is not hard, so don't be afraid. I
assume if you're reading this far, you've already determined that you
don't need a custom widget class, and just need to tinker a little bit
with how things are done by default.

First, you should understand what you have control over by customizing a
widget template itself. You're controlling the display of the widget's
data, but not its label. For a StringField called myfield, the
default display is something like:

myfield: some value

The only thing we can control is the display of what comes after
"myfield:", which is just the data contained within the field
itself (we'll talk about how to customize the display of labels later).
However, if we customize the template, we can insert all kinds of
nifty HTML into there! Take a look at the default template for
StringWidget, 'widget/string'. It's pretty straight-forward. As you can
see, there are three important macros in a widget template:

	view

	edit

	search

Widget templates must define all three macros, however we can pass-through
to the default when we aren't customising.

Don't concern yourself with the edit and search macros;
remember, we're customizing the view. Let's start by creating a new
skin template called my_string_widget. Start with this:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">

 <head><title></title></head>

 <body>

 <metal:define define-macro="view">
 <metal:use use-macro="context/widgets/string/macros/view">
 <metal:fill fill-slot="inside">
 Content
 is the coolest field data ever!
 </metal:fill>
 </metal:use>
 </metal:define>

 <metal:define define-macro="edit">
 <metal:block use-macro="context/widgets/string/macros/edit" />
 </metal:define>

 <metal:define define-macro="search">
 <metal:block use-macro="context/widgets/string/macros/search" />
 </metal:define>

 </body>

</html>

(NB: I'm breaking AT's naming convention here. You don't have to do that,
but I find it more convenient and understandable to add a _widget to
the names of my widget templates)

Notice we didn't copy the definitions for edit or search, we also
get the default template to generate the markup surrounding the view widget,
and just populate the inside macro.

Also, notice how there is no display code for the label; that's handled
elsewhere. If you're wondering where the accessor variable comes
from, that's part of the widget display code. The widget class defines
the following local variables that are accessible inside widget
templates:

	accessor

	The accessor method for the field. Call it to retrieve the value of
the field.

	fieldName

	The name of the field.

	widget

	The widget object for the field.

	field

	The instance of the field class itself.

	mode

	Will be view or edit, based on the action being taken. For
our purposes, it should always be view.

Now, let's modify the way that our StringField displays. For brevity,
I'll just show the view macro:

Then, we should tell our type's schema to point at the new template,
by setting macro:

StringField('myfield',
 widget=StringWidget(
 label='Myfield',
 label_msgid='ATViewTutorial_label_myfield',
 description_msgid='ATViewTutorial_help_myfield',
 i18n_domain='ATViewTutorial',
 macro='my_string_widget',
)
),

Be sure to restart Zope and reinstall using portal_quickinstaller.
Now, our StringField, when rendered, looks like this:

[image: Custom Widget]
Custom Widget

Yes, folks, it's just that easy.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Total Control: The View Template

This page describes how you can control every portion of the HTML output
in the content area by creating a custom view template.

Okay, so you've hacked up some custom widget templates, and they're
basking in the glory of your newfound power, yet you're still not
satisfied. You want to control it all! Well, I've got the
information for you!

Archetypes and Type-Specific View Templates

Archetypes automatically recognizes templates with specific names, and
uses the code within those templates to display your AT-based object.
All of this magic happens within the base_view template. To create a
custom view template, convert your type name to lowercase (the name
that's listed in portal_types, or what's returned from
myObject.portal_type). Now, replace spaces with underscores (_).
Finally, add _view to the end of the name, and you've almost got a
custom view template.

See below for examples of type names and their corresponding view
templates.

Type Name

View Template Name

My Type

my_type_view

SomeTypeV2

sometypev2_view

Now, to remedy that "almost" part of the above paragraph, define one or
more of the following macros in your template:

	header

	body

	folderlisting

	footer

Voila! You've got a custom view template. To see how this works, create
a simple template (named appropriately, of course) that contains the
following code:

Foo

Foo

Foo

Foo

And, just like magic, you should see, rendered in your content area:

[image: The Infamous "Foo" View]
The Infamous "Foo" View

But Wait! Where Are All My Fields?

So now you want your data back. You said you wanted total control, and
now you don't want total control. But the point of this tutorial isn't
control, it's shine. So, let's explore how to mix and match existing
AT templates with your custom code to make a shiny template that renders
exactly how you want it.

First, keep the above "Foo" template around. It's very useful when you
aren't quite sure which of the four macros is generating a portion of
the content area. Simply comment out one or more of the macros, and
you'll see which macro generates what portion.

Now, do you remember when I talked about using the base template as
a starting point for creating custom templates? Well, that's what we'll
do. Let's start by customizing the footer. The footer macro in the
following template is copied directly from 'base':

Get the byline - contains details about author and modification date.

Now, let's add something below the byline, say, some important
information that applies to every instance of your custom type:

::

Get the byline - contains details about author and modification date.
Important information that applies to every instance of my custom type.

Notice that all we had to do was copy the macro from base , and add
the `` <p>`` tag with some text in it. Notice that, for example, we
could have used tal:content="here/getCustomFooterData" in the
</p> <p> tag if we had defined a getCustomFooterData() method in
our class.

Now, let's apply this concept to the body macro, and play around
with displaying fields. First, we'll start by coping the body from
base into our template.

Now, we'll change up some things by adding a little bit of code into the
macro. First, notice that the tal:repeat is repeating over all the
fields that are not metadata. Therefore, if you want to do something for
every field, put it inside this macro. You could (conceivably) rearrange
the macro so that the tal:repeat loop is inside another containing
block, and put TAL code before and after the display of the fields, or
make use of the first and last repeat variables to achieve
the same thing. So, let's do two things to customize our body macro:

	Surround all the fields with a </p> <div> that has a custom CSS
class, my-custom-at-body

	Surround each field with a `` <div>`` that has a different custom CSS
class, my-custom-at-field

These changes, as I'm sure you've figured out, aren't going to make much
of a difference (if any) in the look of the rendered page without
actually writing some custom CSS code. We now introduce the css
macro:

<link href="#" type="text/css" rel="stylesheet" />
<div class="my-custom-at-body">
<div class="my-custom-at-field"> </div>
</div>

Now, we can define a CSS stylesheet called my_custom_css.css that
contains our custom CSS code:

.my-custom-at-body {
 border: thin dashed;
 background-color: #cccccc;
 padding-top: 1em;
}

.my-custom-at-field {
 background-color: #ffffff;
}

Archetypes inserts the css macro into the '' tag of the rendered
page, making our custom CSS code, linked files, and includes available
within the page. Our end-result would look something like this:

[image: Custom Body Macro]
Custom Body Macro

If we had created custom widget templates, those would be applied to the
rendered page as well.

Customizing Labels

There's still one element of control that we're missing: we still can't
override the display of a field label. By customizing the display of the
label, we can insert images, links, etc. into the page instead of the
default label.

The macro included in our custom view template below will do that magic
for us:

<link href="#" type="text/css" rel="stylesheet" />
<div class="my-custom-at-body">
<div class="my-custom-at-field"> </div>
</div>
<label>Now presenting... Field1!</label>

Notice that I've only overridden the default label for fields labeled
"myfield". The label macro in widgets/field is where the default
behavior can be found. The final result looks like this:

[image: Customized Label]
Customized Label

Also, don't forget that you have the power to omit
head,body,folderlisting, and footer by simply
writing in do-nothing macros into your view template. Furthermore, you
can reach into your object and retrieve field values without using the
widget framework.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Conclusion

Some final notes about customizing Archetypes view templates

So, now you should know all of the following information:

	How to identify which parts of an Archetypes view template are
generated by the header,body,folderlisting, and
footer macros

	How to create a custom view template that overrides one or more of
the header,body,folderlisting, and footer macros

	How to create a custom widget template that works in the Archetypes
framework

	How to create a custom body template that uses Archetypes' widget
rendering templates

	How to inject custom CSS code and links to custom CSS files into your
view template

Some Final Notes

I want to cover a few details about how to apply all of these tools.
Some wise guy somewhere said something like, "To a man whose only tool
is a hammer, every problem tends to look like a nail." Your success with
Archetypes is very contingent upon selecting the appropriate tool for
your specific problem. So, use the following outline of the basic AT
page layout as a guideline to determine what should be customized:

	header macro
	Title (or id if no title is present)

	Document actions (e.g. print, send to)

	body macro
	List of fields
	Field label (from the label macro in the view template, if
one exists)

	Field value (from the widget template's view macro)

	folderlisting macro
	List of links to each sub-object

	footer macro
	byline

So, based on which parts of this standard layout you need to customize,
use the appropriate macro. Keep the infamous "Foo" template around to
help you with debugging. See the next page for a reference on
customizing Archetypes view templates.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Reference

A reference for customizing Archetypes view templates

View Templates

View templates are named according to the portal_type of the class.
To create the name for a view template, follow these steps to create the
name of the template:

	Change the portal_type to lowercase.

	Replace all spaces with underscores (_).

	Append _view to the end of the name.

Archetypes will automatically locate templates with names created
according to the above steps, and will make use of the macros defined
within the template. View templates can define one or more of the
following macros:

	css

	A macro for inserting type-specific CSS code, including <link>
tags pointing to custom CSS files. There is no default macro for
this within Archetypes; Archetypes uses the existing CSS styles in
Plone to render AT-based objects.

	header

	This macro, by default, generates the <h1> tag containing the
object's title and the document actions (print, rss, e.g.)

	body

	The location where the fields and values are displayed by default.
When rendering fields using the existing widget mechanism, be sure
to tal:define the variable field as the current field; the
widget templates depend on this variable being set.

	folderlisting

	This is the folder listing display when viewing the view tab of
a folderish object. This is not the same as the contents
view.

	footer

	By default, this is where Archetypes puts the byline.

	label

	This template generates field labels.

For any of these macros that is not defined in the custom view template,
Archetypes will use the default behavior in its place, taken from
base or widgets/field.

Widget Templates

Use custom widget templates by naming them in the schema - insert a
macro parameter into the widget's constructor in the schema, and set
the value to the name of the template. For example,
macro="my_widget_template". Widget templates must have the following
three macros:

	view

	edit

	search

Widget templates have the following local variables available within
TALES expressions:

	accessor

	The accessor method for the current field. The code
<p tal:content="accessor" /> will cause the field's value to be
written within the <p> tag.

	fieldName

	The name of the field.

	widget

	The widget object for the field.

	mode

	Will always be view for view templates, but is useful for, say,
error checking.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Skin Layers

Templates, scripts, images, CSS and JavaScript files are organized with
skin layers.

Note: in the context of components, "layer" has a slightly different
meaning.

A skin is comprised of a series of skin layers. On the file system, each
layer is a directory. In the Zope Management Interface (ZMI), each layer
appears in portal_skins as a separate folder (containing page
templates, style sheets or Python scripts).

[image:]

These have two uses.

	Firstly they keep things organized. If you take a look at the Plone
Default Skin (part of which is shown in portal_skins in the
screenshot above) you'll see that they've separated out templates,
scripts, styles and images into separate skin layers.

	More importantly they have an order of precedence. This means that an
item named main_template in the top layer will be found and used
before an item named main_template in the bottom layer. We will go
into this in more detail on the next page.

To create a skin layer through the web, simply add a new folder. On the
file system, add a directory to your skins directory. You will also need
to add a small amount of configuration to ensure that your directory is
found and registered as a skin layer on installation.

Firstly, in [your theme package]/skins.zcml

<cmf:registerDirectory
 name="[Your Skin Directory Name]"/>

Next, in [your theme package]/profiles/default/skins.xml

<object name="[Your Skin Directory Name]"
 meta_type="Filesystem Directory View"
 directory="[your namespace].[your theme name]:skins/[Your Skin Directory Name]"/>

and

<skin-path name="[your skin name]" based-on="Plone Default">
 <layer name="[Your Skin Directory Name]"
 insert-after="custom"/>
 </skin-path>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Customizing through Order of Precedence

How skin layers work and how they can be used in customization.

If you've worked with Plone 2, you'll be familiar with this type of
customization. As we mentioned earlier, the order of layers in a skin
determines which page templates, CSS files and Python scripts are
processed first.

To inspect the order of precedence:

	Site > Zope Management Interface > portal_skins

	click the Properties tab

You should see the layers of the Plone Default skin listed there. Layers
such as 'plone_templates' come from the main Plone theme but there will
also be layers providing templates from specific add-on products (the
visual editor kupu for instance).

[image: screenshot of Skin layers in the ZMI]When asked to process a specific
template, Plone will work from the top of this list downwards, looking
in each layer in turn to retrieve the template.

At the top is a custom layer; any template placed in here will be found
and used first. So, to create your own version of a Plone template or
CSS file, give it the same name as the Plone version but put it in the
custom layer.

This is the simplest approach, but just ensuring that your version lives
in a layer higher in the order of precedence in a skin than the main
Plone theme layers will be enough to ensure that Plone finds it first
and ignores the original version.

This technique can be used in two ways

	using the custom folder

	through the Zope Management Interface, you can add your own versions
of templates, style sheets etc to the custom folder. This always
comes at the top, so you can be sure your versions will be found
first.

	adding your own skin layers

	in your own theme product on the file system, create one or two skin
layers, and ensure that on installation these layers are put just
below the custom folder in the order or precedence. There's more
information on how to do this in the next section.

Probably the most comprehensive description of skins, layers and order
or precedence can be found in the first two sections of Chapter 7 of
The Definitive Guide to
Plone [http://docs.neuroinf.de/PloneBook/ch7.rst] (note that most of
this book refers to Plone 2, but these sections are still relevant for
Plone 3).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Making and Naming your own Skin

How do you actually create a Skin?

Through the ZMI

	Go to Site Setup > Zope Management Interface > portal_skins

	Click the Properties tab

	Choose Add New and give your skin a name

	You can now type in a list of the layers you want to use, in the
order you want to use them

	Finally, at the bottom of the page, set your new skin as the default

On the File System

If you use the plone3_theme paster template, code will be provided
which, when your theme product is installed, will register your skin
directories as skin layers and put these together into a new skin.

The paster template gives you the option of basing your skin on Plone
Default. That is, when you install the theme in your site, the Plone
skin layers will be added to yours - but below yours in the order of
precedence. This is a good idea, you can then re-use bits of Plone
Default without duplicating it, and overwrite the bits you don't want.

The key steps are:

	Register your skin directories as Filesystem Directory Views, so that
they can become skin layers. This happens in two places:[your theme
package]/skins.zcml and [your theme
package]/profiles/default/skins.xml

<cmf:registerDirectory
 name="[Your Skin Directory Name]"/>

<object name="[Your Skin Directory Name]"
 meta_type="Filesystem Directory View"
 directory="[your namespace].[your theme name]:skins/[Your Skin Directory Name]"/>

	Add and organize your skin layers into a skin in [your theme
package]/profiles/default/skins.xml

<skin-path name="[your skin name" based-on="Plone Default">
 <layer name="[Your Skin Directory Name]"
 insert-after="custom"/>
 </skin-path>

	Set your skin as the default skin in [your theme
package]/profiles/default/skins.xml by wrapping this node around the
nodes in the previous two examples.

<object name="portal_skins" allow_any="False" cookie_persistence="False"
 default_skin="[your skin name]">

</object>

 About the Skin Name

The name of your skin is required in a few places in your theme product.
It is worth knowing where and why, so, for reference, the occurrences
are listed here.

Where

Attributes/Directives used

Use

profiles/default/skins.xml

<skin_path name="[your skin name]"

Used to name your set of skin layers.

profiles/default/skins.xml

<object name="portal_skins"

default_skin="[your skin name]">

Used to set your set of skin layers as the default skin.

browser/configure.zcml

<interface …

name="[your skin name]"

/>

Used to name the theme specific interface (see
Components [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/components]
section)

profiles/default/viewlets.xml

<order manager="plone.portalfooter" skinname="[your skin name]"

>

Used to specify the theme when reordering viewlets in viewlet managers

(see
Components [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/components]
section)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

The Custom Style Sheet and Base Properties

You can do a great deal by simply overriding Plone's existing styles.
There's a stylesheet available for just this purpose.

You'll find an empty stylesheet called ploneCustom.css in

	[your products directory]/CMFPlone/skins/plone_styles or

	Site Setup > Zope Management Interface > portal_skins >
plone_styles

This stylesheet is always loaded last on a page, and can be used,
therefore, to override any other styles. There's an excellent and
comprehensive tutorial on this here:

	http://plone.org/documentation/tutorial/working-with-css [http://plone.org/documentation/manual/tutorial/working-with-css]

DTML

You'll see that ploneCustom.css has a .dtml extension, and the CSS
inside is wrapped in

/* <dtml-with base_properties> */

/* </dtml-with> */

DTML is another Zope templating language, which in this case is deployed
so that particular variables can be picked up from a properties sheet
(base_properties.props) - for example:

#portal-column-one {
 vertical-align: top;
 width: <dtml-var columnOneWidth missing="16em">;
 border-collapse: collapse;
 padding: 0;
}

We wouldn't recommend using this technique as it is likely to be phased
out, but it is as well to know that it is there. You can sometimes get
caught out if you're customizing ploneCustom.css and accidentally delete
the top or bottom "dtml-with" statement, or forget to add the .dtml
extension.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Components

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Component Wiring and ZCML

About components and how they are wired together

[image: diagram of a component]Components are powerful and flexible tools in
Plone 3, but a little more abstract than page templates or Python
scripts. As the diagram on the right attempts to show, they are normally
combinations of Python classes and page templates wired together in Zope
Configuration Language (ZCML) and given a name.

There are two important things to remember about components

	Components are compounds of classes, templates, interfaces, permissions etc.

	To track components down you need to look in .zcml files first,
locate their names, and that will lead you to the classes and
templates that contribute to them.

	Components come into existence when your Zope Instance is started up

	Provided Zope has read the .zcml file, a component will be available
to use. You can't overwrite existing components, better to create
your own, reusing some of the parts.

Parts of a Component

A component comes into being via a ZCML "directive" (there's an example
of one of these below). The directive will have a series of "attributes"
which will point to the various parts that go into its creation. These
parts have four main functions.

	To identify the component (in the case of a viewlet this will
usually be done with a "name" attribute).

	To computethe information the component is supposed to display
(this is usually done with a Python class, and pointed to with a
"class" attribute). For example, in the case of the navigation tree,
this would be working out which part of the tree should be displayed
for each page.

	To display the information the component's class has computed
(this is usually done with a page template).

	To restrict the display of the component. In the case of a
viewlet, this could be restricting it to display only to certain
logged-in users (by using the "permission" attribute) or restricting
it to display only with specific content types (by using the "for"
attribute).

There's more about this in the Components
section.

Zope Configuration Language (ZCML)

The Five Tutorial on
WorldCookery.com [http://worldcookery.com/files/ploneconf05-five/step2.html]
will walk you through ZCML, and there are plenty of examples in
tutorials on the plone documentation site.

Here's a sample ZCML directive conjuring up the presentation viewlet
(which simply provides a link to a presentation version of a page):

<configure xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">
 <browser:viewlet
 name="plone.presentation"
 for="Products.ATContentTypes.interface.IATDocument"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".presentation.PresentationViewlet"
 permission="zope2.View"
 />
</configure>

There are three things to note:

	Like any kind of XML, ZCML uses namespaces - watch out for these if
you're writing your own ZCML file. For theme components, you'll
mostly use the browser namespace.

	ZCML attributes often refer to interfaces rather than actual content
types, classes or components (see the for and manager attributes
in the example above). You'll find more about interfaces in a later
section [http://plone.org/documentation/manual/theme-reference/buildingblocks/components/componentparts/interfaces].

	Look at the class attribute and you'll see it begins with a leading
dot. This means you can find it in the same directory as the ZCML
file itself. If it isn't within the same directory you'll need to
give the full name.

You can get detailed information about ZCML directives in the ZCML
Reference section of the Zope 3 API -
http://apidoc.zope.org/++apidoc++/.
If you want to be very disciplined and tidy, consult the ZCMLStyleGuide
http://wiki.zope.org/zope3/ZCMLStyleGuide.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Viewlets, Portlets and Other Components

Types of component.

Viewlet

This is a new feature in Plone 3 and is used to provide aspects of the
page furniture - those elements of the page which generally don't change
throughout the site. These are organized by another type of component -
a Viewlet Manager.

For more information you can look at

	Anatomy of a
Viewlet [http://plone.org/documentation/manual/theme-reference/elements/viewlet/anatomy]
section in this reference manual

	http://plone.org/documentation/tutorial/customizing-main-template-viewlets

	http://plone.org/documentation/tutorial/customization-for-developers/viewlets/

Portlet

Portlets in Plone are boxes of information, usually in the right or left
column of a page, containing aggregated content or additional
information, which may or may not be directly relevant to the content
item being displayed. Behind the scenes these used to be constructed
from ordinary page templates, but now, in Plone 3, they are wired
together as components and are managed by another component - a Portlet
Manager.

For more information take a look at:

	The Anatomy of a
Portlet [http://plone.org/documentation/manual/theme-reference/elements/portlet/anatomy]
section of this manual

	http://plone.org/documentation/how-to/override-the-portlets-in-plone-3.0/

	http://plone.org/documentation/tutorial/customization-for-developers/portlet-renderers/
(for a much more technical explanation)

	http://plone.org/documentation/how-to/adding-portlet-managers

View (Browser View)

We gave one definition of the term "view" above in the skin
section [http://plone.org/documentation/manual/theme-reference/buildingblocks/skin].
However, behind the scenes, in the context of components, View has a
more technical meaning. It refers to a component which is usually made
up of a Python class or a template or both and, put simply, processes
the data from a content item before it reaches the page. There's a
technical
explanation [http://plone.org/plone-developer-reference/patterns/views/]
in the Plone Developer Manual.

You'll sometimes see it referred to as BrowserView or <browser:page> and
in templates you'll see a browser view's name prefaced by @@. We look at
browser views again in the section on putting a page
together [http://plone.org/documentation/manual/theme-reference/page].

Note that the term browser and the browser namespace are used to
demarcate presentational components – that is, those bits of code
which go to make up elements which will find their way to a web
browser at some point.

Resource (Browser Resource) & ResourceDirectory

Although we've indicated that the skin and layers are the usual home of
page templates, images and style sheets, it is also possible to turn
them into components by registering them in ZCML. In this case you'll
see them referred to like this ++resource++[resource name]. The same can
be done for a directory containing templates and style sheets.

“Oh great”, I can hear you saying, “so which should I use, components or
skins?” Go to the section Skin or
Components? [http://plone.org/documentation/manual/theme-reference/buildingblocks/components/skinorcomponents]
for a discussion of the pros and cons. At the time of writing we suggest
the simpler option is to keep your templates, images and style sheets in
your skin. We're just mentioning browser resources so that you know what
they are if you encounter them.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Customizing or Creating New

You can customize through the web, but on the file system, the way to
customize or create components for your theme is to wire up new ones.

Through the Web

Just as for Skins and Layers, it is possible to customize the templates
used by components through the Zope Management Interface.

	Site Setup > Zope Management Interface > portal_view_customizations

You will need to know the name of your component (plone.presentation for
instance). The
Elements [http://plone.org/documentation/manual/theme-reference/elements/elementsindex]
section of this manual will help if the name isn't obvious. You can only
rewrite the template, which might be limiting.

On the File System

You can achieve much more if you are building your own theme product on
the file system, and in this case the approach is slightly different.

Rather than overwrite a component (as you could for skins), it is far
easier to create your own version. This involves some rewiring or new
wiring in your own .zcml file, but is actually simpler than it sounds.

Here's an example of the presentation viewlet - as it is used by Plone:

<browser:viewlet
 name="plone.presentation"
 for="Products.ATContentTypes.interface.IATDocument"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".presentation.PresentationViewlet"
 permission="zope2.View"
 />

Imagine, for your purposes, you need to use a new class to get this
viewlet as you want. In your own configure.zcml file, give it a new name
and wire in your own class.

<browser:viewlet
 name="[your namespace].[your presentation viewlet]"
 for="Products.ATContentTypes.interface.IATDocument"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".[your viewlet module].[your viewlet class]"
 permission="zope2.View"
 />

	Remember that the dot in front of your class namespace indicates that
it can be found in the same directory as this configure.zcml file.

	If you're not sure where your configure.zcml file lives, consult the
Where to Find What you
Need [http://plone.org/documentation/manual/theme-reference/buildingblocks/components/locations]
page of this section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Interfaces and why they matter

Interfaces are a bit techie and something a non-developer would probably
rather not think about. However, they are an important part of component
wiring, so it is as well to know a bit about what they are and do.

Interfaces as Markers

ZCML attributes often refer to interfaces rather than actual classes -
for instance the example below wires up the presentation viewlet for
content types that have the IATDocument interface.

<browser:viewlet
 name="plone.presentation"
 for="Products.ATContentTypes.interface.IATDocument"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".presentation.PresentationViewlet"
 permission="zope2.View"
 />

In effect this is saying that the presentation viewlet is available for
any content type which is ATDocument-like or behaves like an ATDocument.
So, in this case, the interface is a marker.

The convenience of this is that a content type can have one (or more)
interfaces, and several content types can share the same one. If you
develop a new content type and mark it with the IATDocument interface,
you can use this presentation viewlet with it - no extra wiring
required.

Components and Interfaces

Components themselves can be marked with an interface - the technical
term is "provides". Note that in the presentation viewlet example, the
viewlet manager is referred to by its interface, not its name:

manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"

To track down the actual component, look in the configure.zcml file in
the same directory as the interfaces. For instance, in
plone/app/layout/viewlets/configure.zcml you'll see the interface has
been wired up with a Python class to create a viewlet manager component:

<browser:viewletManager
 name="plone.abovecontentbody"
 provides=".interfaces.IAboveContentBody"
 permission="zope2.View"
 class="plone.app.viewletmanager.manager.OrderedViewletManager"
 />

How to spot an interface

It is usually fairly easy to spot a reference to an interface. By
convention, their names will be prefixed with an "I", and they will live
in an interface or interfaces namespace. If you investigate
interfaces.py or interface.py in any egg or product, you won't find very
much code, but you'll often find useful information – effectively it is
documentation about what a component providing (i.e. marked by) that
interface should do. For example:

class IAboveContentBody(IViewletManager):
 """A viewlet manager that sits above the content body in view templates """

If you've used the plone3_theme paster template, you'll find you have a
ready-made interfaces.py file to which you can add your own interfaces
if you need to create them.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Python Classes

You'll have noticed that Python classes are often part of the wiring of
Components, and you will find that you can't really avoid understanding
a little bit about them, particularly if you want to make your own
viewlets.

Having to deal with something as advanced as Python classes can be
daunting for the non-developer. The good news is that using Python
classes will be more a case of copying and changing little bits of code
than writing anything from scratch.

What's a Class?

It's best to think of a class as a discrete piece of code containing a
collection of methods ('actions' of some sort) and attributes
('variables' which can hold a value).

In the case of components, the main purpose of a class is to compute the
pieces of information a component needs to display. The class for the
logo viewlet is a good example. You can find it in:

	[your egg location]/plone/app/layout/viewlets/common.py - look for
LogoViewlet

After a bit of preparatory work, the LogoViewlet class first finds out
the name of the image that is to be used for the logo (and is defined in
the base_properties property sheet):

logoName = portal.restrictedTraverse('base_properties').logoName

Then it works out the logo's vital statistics, size, alt text etc and
turns this into an HTML anchor tag:

self.logo_tag = portal.restrictedTraverse(logoName).tag()

Finally, just in case you might need it, it looks up the title of the
site:

self.portal_title = self.portal_state.portal_title()

In the page template associated with this viewlet you can get hold of
this information (self.logo_tag, self.portal_title) using the variable
"view":

<img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

Do I have to use Classes?

Viewlets tend to be wired up with a Python class which points to a template.
So, even though you might only want to create a new template,
you'll find that you have to write a class to point to your new
template.
The Elements
section of this manual should help you by giving you a snippet of code
for each element to copy and paste into your own product.

Here's an example. The standard logo template doesn't actually make use
of view/portal_title. So if you wanted to incorporate this into your
logo in some way, then you would need to write your own template and
then also your own class:

from plone.app.layout.viewlets.common import LogoViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](LogoViewlet):
 render = ViewPageTemplateFile('[your template name]')

	First, pull in ("import") all the bits and pieces with which to build
your class using from ….. import …… .

	Next, define your class. The important thing here is to base it on a
pre-existing class so that you don't have to start from scratch. Put
the name of the pre-existing class in brackets after your class name
(make sure that you've imported it first). Don't forget the colon!

	Finally, rewrite any of the methods or attributes you need. Here,
we've just rewritten the render method to display our own template.

Note: indenting is very important in Python code, the convention is to
use four spaces (rather than a tab). If you are having problems, double
check the indentation first.

	http://wiki.python.org/moin/HowToEditPythonCode

If you're feeling brave or want to know more, a straightforward
introduction is here:
http://www.diveintopython.org/object_oriented_framework/defining_classes.html

	Dive Into Python - Defining
Classes [http://www.diveintopython.org/object_oriented_framework/defining_classes.html]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Permission

The permission attribute can be used to restrict visibility of a
component.

When a user logs in to a site, they will be given a role ('manager' or
'editor' for instance). This role is, effectively, a set of permissions,
giving them particular rights over particular aspects of the site.

To find out more about permissions consult the Understanding Permissions
and Security Tutorial:

	http://plone.org/documentation/tutorial/understanding-permissions/

In the case of components, the permission attribute allows the site to
decide whether a user has a right to see, or interact with a component.
Most viewlets have the permission Zope2.View or Zope2.Public, which are
permissions assigned to everyone, even anonymous visitors. However, look
at the Lock Info viewlet:

<browser:viewlet
 name="plone.lockinfo"
 manager=".interfaces.IAboveContent"
 class="plone.locking.browser.info.LockInfoViewlet"
 permission="cmf.ModifyPortalContent"
 for="plone.locking.interfaces.ITTWLockable"
 />

By using cmf.ModifyPortalContent, this viewlet is restricted only to
those who have the right to edit content (those who don't wouldn't be
interested in whether an item was locked or not).

The list of available permissions is buried rather deeply in the Five
product which comes with your installation of Zope - look in
permissions.zcml for the most up-to-date list.

zope2.Public

Public, everyone can access

zope2.Private

Private, only accessible from trusted code

zope2.AccessContentsInformation

Access contents information

zope2.ChangeImagesFiles

Change Images and Files

zope2.ChangeConfig

Change configuration

zope2.ChangePermissions

Change permissions

zope2.CopyOrMove

Copy or Move

zope2.DefinePermissions

Define permissions

zope2.DeleteObjects

Delete objects

zope2.FTPAccess

FTP access

zope2.ImportExport

Import/Export objects

zope2.ManageProperties

Manage properties

zope2.ManageUsers

Manage users

zope2.Undo

Undo changes

zope2.View

View

zope2.ViewHistory

View History

zope2.ViewManagementScreens

View management screens

zope2.WebDAVLock

WebDAV Lock items

zope2.WebDAVUnlock

WebDAV Unlock items

zope2.WebDAVAccess

WebDAV access

cmf.ListFolderContents

List folder contents

cmf.ListUndoableChanges

List undoable changes

cmf.AccessInactivePortalContent

Access inactive portal content

cmf.ManagePortal

Manage portal

cmf.ModifyPortalContent

Modify portal content

cmf.ManageProperties

Manage properties

cmf.ListPortalMembers

List portal members

cmf.AddPortalFolders

Add portal folders

cmf.AddPortalContent

Add portal content

cmf.AddPortalMember

Add portal member

cmf.SetOwnPassword

Set own password

cmf.SetOwnProperties

Set own properties

cmf.MailForgottonPassword

Mail forgotten password

cmf.RequestReview

Request review

cmf.ReviewPortalContent

Review portal content

cmf.AccessFuturePortalContent

Access future portal content

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Making Components Theme Specific

You may want to make components only available for your particular
theme. To do this you will need an interface.

As components come into being as soon as Zope starts up and reads the
.zcml files, they are available for every Plone site you have in a Zope
instance. You might not want this to happen.

A Theme Interface

You can specify that your components are available only for your theme
with a marker interface and a layer attribute in ZCML. Here's a rewired
version of the presentation viewlet:

<browser:viewlet
 name="[your namespace].[your presentation viewlet]"
 for="Products.ATContentTypes.interface.IATDocument"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".[your viewlet module].[your viewlet class]"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Note: Don't confuse the layer attribute with a skin layer. Here, layer
refers to the whole theme rather than just one slice of it.

There are two methods for creating a theme interface:

Using plone.theme

In Plone 3.0, plone.theme is used:

	A marker interface is defined in [your theme
package]/browser/interfaces.py:

from plone.theme.interfaces import IDefaultPloneLayer

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer. """

	and this is registered in ZCML in [your theme
package]/browser/configure.zcml

<interface
 interface=".interfaces.IThemeSpecific"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 name="[your skin name]"
 />

Note: [your skin name] crops up here; refer back to the skins section if
you are wondering what this is.

Using plone.browserlayer

In Plone 3.1, plone.browserlayer is available to you.

	Create your interface (e.g. in [your theme
package]/browser/interfaces.py)

from zope.interface import Interface
 class IThemeSpecific(Interface):
 """A layer specific to my product """

	Register this in the configuration (in [your theme
package]/profiles/default/browserlayer.xml):

<layers>
 <layer name="[your skin name]"
 interface="[your namespace].[your theme name].browser.interfaces.IThemeSpecific"
 />
</layers>

If you generate your file system product or egg using the plone3_theme
paster template, then the basics will be done for you (using the
plone.theme method), you will simply need to track down the interface to
find its name. Look in

	[your theme package]/browser/interfaces.py or configure.zcml

and you should find it with the name IThemeSpecific. When you refer to
it, use its path

layer=".interfaces.IThemeSpecific"

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Skin or Components?

You’ll have noticed that you can turn any template or css file, or any
directory containing these into a component. So why bother with the Skin
building block?

The product created by the plone3_theme paster template does the
following:

	overrides and rewrites of the standard Plone Default templates
and CSS files go in the Skin section – the skins directory.

	new style sheets and images go in the Components section –
the browser directory.

This manual suggests putting all your templates, style sheets and images
in the Skin section - leaving just the viewlet and portlet templates in
the components. There are a few reasons for this

	it is simpler to do this when you're just starting out

	it follows the way in which Plone Default is constructed

	it makes it quick and easy to adjust your theme on-the-fly after it's
installed. At that point, you can make further customizations of the
Skin through the Zope Management Interface.

At the time of writing there's a big
discussion [http://www.openplans.org/projects/ootb-plone-themes/lists/ootb-plone-themes-discussion/archive/2008/05/1209686168874/forum_view]
going on about this very question.

If you want to strip the browser resources out of the product created by
the plone3_theme paster template

	remove the images and stylesheets directories in the [your theme
package]/browser

	remove the <browser:resourceDirectory /> entries in [your theme
package]/browser/configure.zcml

	remove the register stylesheet entry for main.css in [your theme
package]/profiles/default/cssregistry.xml

	if you have already installed your product you may need to check the
CSS registry in the Zope Management Interface (portal_css) and
delete the main.css entry there too

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where to find what you need

Where to put components in your own product and how to track them down
in the Zope Management Interface and on the file system.

Through the Web

The templates for most components can be customized through the web:

	Site Setup > Zope Management Interface > portal_view_customizations

The Elements
section can help you identify the component you need.

Plone Default Components on the File system

If you're planning to wire up your own components, you may need to track
down the relevant files of existing components to copy. This can be
tricky. They are packaged up into a number of different eggs, so you
need first to locate where your eggs are stored, and then work out which
of these contains the component elements you need.

	To work out where your eggs are stored, look at the Where is what
section of this manual?

	The Elements
section of this manual will help you track down the egg containing
the component you need.

In your own Theme Product

[image: The browser folder in your theme product]/browser/viewlet.py |

	viewlet.pt

	An example viewlet component

	/browser/interfaces.py

	This is used to create your theme interface

	/profiles/default/viewlets.xml

	Use this file to order your viewlets within viewlet managers

	/browser/configure..zcml

	Use this file to wire up your components

	/browser/templates | styles

	These directories can be used for templates, styles, and images. You
will need to register these as directories as resources in
configure.zcml

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Profiles

Configuration and profiles

Configuration refers to the default behaviour of a site (for instance,
whether you allow people to sign up to your site, or how dates are
displayed). You're likely to want some of this behaviour to be embedded
in your theme.

There is also some overlap between Components, Skins, and Configuration.
For instance, the order of skin layers and the order in which viewlets
appear within a viewlet manager are considered aspects of configuration.

Profile

A profile is a set of configuration files. Each file is written in
fairly simple XML and refers to a particular group of components or page
elements. There are two different types of profile, base profiles and
extension profiles. For theme purposes you will only ever need to use an
extension profile (i.e., a profile that extends the configuration of an
existing site).

A profile comes into being when it is wired up by ZCML. Here's the
version created by the plone3_theme paster template:

<genericsetup:registerProfile
 name="default"
 title="[your skin name]"
 directory="profiles/default"
 description='Extension profile for the "[your skin name]" Plone theme.'
 provides="Products.GenericSetup.interfaces.EXTENSION"
/>

You'll see that it points at a directory for the location of the XML
files and indicates that it is an extension profile by using an
interface.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Generic Setup XML

The language used to define profiles.

The XML used for profile files is straightforward. There's no DTD
available, but there are plenty of examples to reuse or adapt for your
purposes. If all of this seems too much, the good news is that you can
get Generic Setup to write the files for you by exporting the
configuration from an existing site. There's more information on how to
do this on the Generic Setup Tool page.

The root node of an XML profile is usually an object:

<object name="portal_javascripts" meta_type="JavaScripts Registry">

</object>

which corresponds to a particular site tool (in this case the
JavaScripts registry). Sub-nodes represent sub-objects and XML
attributes correspond to the attributes of those classes.

<javascript cacheable="True" compression="none" cookable="True"
 enabled="True" expression="" id="jquery.js" inline="False"/>

So, in this case, the sub-node represents an entry in the JavaScripts
registry and its tick boxes.

[image: screenshot of the javascripts registry in the ZMI]
screenshot of the javascripts registry in the ZMI

In the very unlikely event that you need to work out for yourself what
attributes to use, you'll need to investigate the API (or the interfaces
and classes) of the tool in question. Use
http://api.plone.org or dig into the source
code.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

The Generic Setup Tool

The Generic Setup tool is used to apply your profiles to your site.

You can find the Generic Setup tool here

	Site Setup > Zope Management Interface > portal_setup

You can run the tool manually, but for theme purposes, if you have
created a product using the plone3_theme paster template, Generic Setup
will be triggered automatically when you install your theme in your
site.

You'll find more extensive information about the Generic Setup Tool in
this tutorial:

	Understanding and Using Generic Setup on
plone.org [http://plone.org/tutorial/genericsetup/exports-snapshots-and-comparisons]

However, there are two useful facts to know about it.

No Undo

Although you can uninstall your theme using portal_quickinstaller, at
present, you can't undo the profiles Generic Setup applied during
installation. For the most part, this isn't a problem, but it can get
confusing - if, for instance, you are experimenting with the order of
your viewlets and have tried several versions of viewlets.xml in
successive installations. In this case, exporting a profile (explained
below) can help you make sense of what you've done.

Exporting Profiles

You can export the current configuration of your site as a set of XML
files. This can be helpful if you're not quite sure what you've done, if
you're searching for a profile to base your own configuration on, or if
you just want the Generic Setup Tool to write out a configuration for
you.

	Site Setup > Zope Management Interface > portal_setup

	Click the Export tab

	Select the steps you wish to export

	Click the Export Selected Steps button

	You'll be given a zip file with the relevant XML files

It isn't always obvious which export step you need to get the exact
configuration you want, you may need to experiment.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where to find what you need

How configuration works through the web and how to track down files on
the file system.

Through the Web

There are a number of different routes to configure your site through
the web. The
Elements [http://plone.org/documentation/manual/theme-reference/elements/elementsindex]
section of this manual should give you pointers on where to look to
configure particular page elements. In general

	Site Setup leads you to configlets for the site settings

	Site Setup > Zope Management Interface will lead you to the style
sheet and JavaScript registry (portal_css and portal_javascripts)

	Adding /@@viewlet_manager to a URL will enable you to order viewlets

Plone Default Configuration on the File System

You will find most of the configuration files you need in:

	[your products location]/CMFPlone/profiles/default

However, be aware that some configuration files may be located in
third-party products. For instance, if you want to add some styles to
the visual editor, Kupu, as part of your theme, then you will need
kupu.xml which you'll find in [your products
location]/kupu/plone/profiles/default.

There's an alternative to hunting around the file system, and that's to
use the Generic Setup Tool to export the profile.

In your own Theme Product

	[image: The configuration directory in your theme product]/profiles/default/

	This directory holds the XML for Generic Setup. The plone3_theme
paster template will have provided you with some ready-made files -
for setting up your skin layers, registering your style sheets and
JavaScript, and ordering your viewlets.

	/profiles/default/import_steps.xml

	Is an essential file for installation, you shouldn't need to change
this.

	/profiles/default/cssregistry.xml | jssregistry.xml

	will register any style sheets and JavaScript in your skin. You will
have to edit these yourself if you have any css or Javascript files
to add.

	/profiles/default/skins.xml

	Will drop your skin layers into the right order of precedence. You
won't need to change this unless you've renamed, removed, or added
directories in the skins directory of your theme egg.

	/profiles/default/viewlets.xml

	will determine in what order viewlets appear in viewlet managers.
You will need to edit this yourself if you want to add your own
viewlets.

	/profiles.zcml

	When your Zope instance starts up, this file makes the profile
available for Generic Setup to use.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Content to Template

How content reaches a Page Template.

There are three ways in which content from your content items can reach
a page.

	directly from a content item

	from the catalog

	via a view component (using Python)

Getting content directly from a content item

A page template can pull data directly from the content item it is
displaying. Here’s a snippet of the RSS template, calling the
description field of a Collection content item:

<description>
 <metal:block define-slot="description">
 <tal:block content="context/Description">
 Default rss description goes here
 </tal:block>
 </metal:block>
</description>

	contextrefers to the current content item

	Descriptionis the accessor of the description field

Accessors

An accessor is simply the method by which data in a field is extracted.
In most cases the name of an accessor is the field name with the first
letter capitalized and prefaced by 'get' (e.g., getStartTime). There's
an exception to this rule. The title and description field, common to
most content types, have 'Title' and 'Description' as their accessors
(i.e. no 'get', but the first letter is capitalized).

Widgets

This snippet from the news item template does exactly the same thing but
calls a specific display "widget" macro for the field rather than just
the data.

<p class="documentDescription">
 <metal:field use-macro="python:here.widget('description', mode='view')">

</metal:field>
</p>

Getting content from the catalog

Every content item is catalogued on creation and editing. Some of its
fields are indexed for quick searching and sorting, while the values of
others are stored in what's called the "brains" or "metadata" for quick
access.

Pages pulling together a number of content types - a folder or
collection listing for instance - often get their content from a catalog
query and the brains, rather than waking up every content item in turn.
You'll normally find a variable defined somewhere which holds the
results of a catalog query:

folderContents here.queryCatalog(contentFilter);

Then the template will loop through the results and call values from the
brains/metadata:

item_url item/getURL;
item_id item/getId;

These look pretty much like normal accessors, in fact they are the names
of fields in the catalog brains/metadata. This can get confusing - if
you try to access a field which isn't in the brains/metadata you'll get
an error.

You can see what fields are available to you via

	Site Setup > Zope Management Interface > portal_catalog > metadata
tab

If you want to understand more about the catalog, there is a useful,
general overview in the Zope
book [http://www.plope.com/Books/2_7Edition/SearchingZCatalog.stx],
and a more Plone-specific runthrough in The Definitive Guide to
Plone [http://docs.neuroinf.de/PloneBook/ch11.rst#searching-and-categorizing-content]
(this book is for Plone 2 only, but the catalog section is still
relevant to Plone 3).

Getting content via Python (using a view component)

It is often more efficient to use a view to process the data from the
content item (or a group of content items) and then drop it into the
page template. In this case, by "view" we mean a specific component
defined in ZCML.

Here’s a snippet calling a view to render the sitemap:

<ul id="portal-sitemap"
 class="navTreeLevel0 visualNoMarker"
 tal:define="view context/@@sitemap_view;">
 <tal:sitemap replace="structure view/createSiteMap" />

	context/@@sitemap_view is assigned to a variable called
(helpfully) 'view'

	createSiteMap is a method of @@sitemap_view

	@@ indicates that this is a view component

Here's the wiring in ZCML that creates @@sitemap_view:

<browser:page
 for="*"
(there’s no restriction on where I can be used)
 name="sitemap_view"
(this is my name)
 class=".sitemap.SitemapView"
(this is where you can find the code to deliver my content)
 permission="zope.Public"
(you can see me if you have the Public permission)
 allowed_interface=".interfaces.ISitemapView"
/>

In summary

	the content is processed by a Python class

	ZCML wires this class up into a component

	the template calls this component

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Templates and Components to Page

An overview of how templates, viewlets, and portlets mesh together to
create a page.

Plone's page templates can be frustrating at first. There's no single
template which seems to contain everything you need.

Content Views

Since each content type is likely to have a different combination of
fields, each content type requires a separate template for display. As
we saw in the templates and templating
language [http://plone.org/documentation/manual/theme-reference/page/buildingblocks/skin/templates]
section, these usually have _view appended to their name. You can find
those for the standard Plone content types in

	[your zope instance]/Products/CMFPlone/Skins/plone_content.

main_template

Knowing about content views only gets you so far, however. It is the
main template (main_template.pt) which draws the content together with
the page furniture and design. You can find this in

	[your zope instance]/Products/CMFPlone/skins/plone_templates.

It is important to remember that the content view templates aren't
complete in themselves, they merely provide a snippet of content which
is dropped into a "slot" in the main_template - called 'main'.

[image:]

If you feel unsure about slots, then have a look back at the templates
and templating language
section [http://plone.org/documentation/manual/theme-reference/page/buildingblocks/skin/templates].

Around this main slot, the components - viewlets and portlets come into
play - supplying the page furniture and decoration around the content.
The main template simply pulls these in via viewlet managers and portlet
managers.

Viewlets are so flexible that they can even be pulled into the content
view. The abovecontentbody manager, for instance, is used in a number of
content views, and handles, amongst other things, the presentation
viewlet we looked at in previous sections.

In more detail

You might find it helpful to look at an example in context.

Have a look at:

	Products/CMFPlone/Skins/plone_templates/main_template

and

	Products/CMFPlone/Skins/plone_content/document_view

About document_view (a content view template)

1. Although document_view looks like a complete HTML page, ignore this.
Just note that right at the top it calls the main_template.

metal:use-macro="here/main_template/macros/master"

The code that gets used from document_view is actually the bit between
these tags:

<metal:main fill-slot="main"> …… </metal:main>

This gets dropped into a slot in the main_template:

<metal:bodytext metal:define-slot="main"
 tal:content="nothing">
...
</metal:bodytext>

2. Going back to the fill-slot in the document_view you’ll see a few
tags calling the relevant fields from the content type – like this:

<metal:field
 use-macro="python:here.widget('title', mode='view')">
</metal:field>

You’ll also see a few tags like calling viewlet managers which, in turn,
will summon up groups of viewlets:

<div tal:replace="structure provider:plone.abovecontentbody" />

These enable you to drop extra bits of page furniture around the
specific content from the fields (e.g., the presentation mode link).

About the main template

1. Jump back to main_template and you’ll see similar calls to other
viewlet managers managing groups of viewlets for more page furniture:

<div tal:replace="structure provider:plone.portaltop" />

2. And calls to portlet managers to pull up the portlets defined for
that particular page:

<tal:block replace="structure provider:plone.leftcolumn" />

3. You’ll also see a number of additional slots (define-slot), which
could also be filled (fill-slot) from the content view template if you
wanted. Here's one you could use to add a bit of css:

<metal:styleslot define-slot="style_slot" />

Jump back to your content view template and simply add an additional
fill-slot (outside of the main fill-slot):

<metal:mystyleslot fill-slot="style_slot">

</metal:mystyleslot>

We'll go into other ways of providing styles in more detail in the next
section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

How to show full content in folder views

This how-to only makes sense for folders, smart folder, or other similar
views with a reasonably small number of items. It shows how to display
the full view of content in listings by using the macros already defined
for the content types. The same approach can be used to define viewlets
for layout products like compositepack.

I was looking for a layout product for the front page of a site I am
working on, and the existing products did not meet my needs out of the
box because they only showed summary views of content rather than the
full view. Instead of writing viewlets for different content types from
scratch, I used the existing view macros of the content types as
follows, in a new folder view I called folder_full_view (this is just
a code snippet):

<tal:listing condition="folderContents">

 <div tal:repeat="item folderContents">
 <tal:block tal:define="here item/getObject;
 actions nothing;
 view here/defaultView;
 object_title item/pretty_title_or_id"
 tal:on-error="nothing">
 <div metal:use-macro="here/?view/macros/main"/>

 </tal:block>
 </div>

</tal:listing>

The setting of actions to nothing is so that the action icons are not
displayed for every content item. The on-error="nothing" may not be
necessary for you. I have it because I allow the catalog to return
results for which there is no View permission.

Similarly, for the CompositePack product, I defined a viewlet

<div class="viewlet default_view">
<tal:block on-error="nothing"
 tal:define="here nocall: context;
 actions nothing;
 view here/defaultView;
 object_title here/pretty_title_or_id">
 <metal:block use-macro="context/global_defines/macros/defines" />
 <div metal:use-macro="context/?view/macros/main"/>
</tal:block>
</div>

so that complete content can be displayed in a layout.

Use these ideas at your own risk. Seems to work for me so far.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

How to scale images using PiL in Page Templates

A quick description of how to scale images from an image field using the
Python Image Library in your Page Templates using TAL.

PROBLEM:

I have a custom type with an ImageField. I'm customizing a folder
listing of these types and I wanted a thumbnail of each image shown in
the folder listing. This is very straightforward using PiL (Python
Imaging Library), if you know what to do. I was also presented with the
problem of working with brains rather than the object itself.

ASSUMPTIONS:

	You have PiL installed and working.

	You know how to make a custom Archetype

OVERVIEW:

When you get the folder contents for a folder listing, brains objects
are returned and iterated over to produce the list. This is of course,
much more efficient than waking up each object. The problem being, you
cannot get to your Image field in a brain (that I know of). The
following is a snippet from 'folder_listing.pt' showing this.

<tal:foldercontents define="contentFilter contentFilter|request/contentFilter|nothing;

 contentsMethod python:test(here.portal_type=='Topic', here.queryCatalog, here.getFolderContents);

 folderContents folderContents|python:contentsMethod(contentFilter);">

 <tal:entry tal:repeat="item folderContents">

 <tal:block tal:define="item_url item/getURL|item/absolute_url;">

As you can see, while iterating over 'item' you're accessing brains-y
things in a brains-y way, like 'item/getURL'. But you'll notice that
you cannot do 'item/my_image' because it's not in the brain. What to
do?! you may wail. Well, you could wake up the objects, get the image
field, and then call the image scaling on it in a pythonic way, but this
is a performance hit, puts python in your TAL, which you should avoid.

Instead you'll just be crafty. You already have 'item_url' and you
know the name of your image field (my-image) so put those together and
you'll get right at the image. Try this in your browser:

http://full/url/to/your/object/my-image

and you should see your image! Translating this into TAL, you would go:

Now to add the image scaling bit, and this is where I went wrong. Much
of the Plone documentation about PiL assume you're working with an
ATImage object, but you're not. You're working with an AT ImageField.
An AT ImageField only defines ONE image scale size by default:

sizes = {'thumb': (80,80)}

 whereas ATImage defines a bunch:

sizes = {'large' : (768, 768),

 'preview' : (400, 400),

 'mini' : (200, 200),

 'thumb' : (128, 128),

 'tile' : (64, 64),

 'icon' : (32, 32),

 'listing' : (16, 16),

 },

To make matters worse, notice that the sizes defined for the same size
key are different. Bad dog. No cookie. Anyhow, what this means is
that in order to access the size you want, you have to define it in your
schema in advance, like so:

ImageField(

 name='my-image',

 widget=ImageWidget(

 label="My Image",

 description="An image!",

),

 storage=AttributeStorage(),

 sizes= {'large' : (768, 768),

 'preview' : (400, 400),

 'mini' : (200, 200),

 'thumb' : (128, 128),

 'tile' : (64, 64),

 'icon' : (32, 32),

 'listing' : (16, 16),

 },

),

Ok, so now that you have defined the sizes you want in your custom
type's schema, you're ready to use it in your Page Template. Remember
the way we accessed it before?

To access the sizes defined in your schema, just add the name to the end
of your image, preceded by an underscore.

It's that easy, and it should be. You shouldn't have to access and
therefore wake up your objects! There are also other ways to get at
PiL's image scaling, but this I found was easiest and didn't throw any
bizarro "Unauthorized" or "TypeError: a float is required" errors.

Enjoy!
~Spanky

ALSO SEE:

http://plone.org/documentation/manual/archetypes-developer-manual/fields/fields-reference [http://plone.org/kb/manual/archetypes-developer-manual/fields/fields-reference]http://plone.org/documentation/tutorial/richdocument/pil [http://plone.org/kb/tutorial/richdocument/pil]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Skin or Components?

You’ll have noticed that you can turn any template or css file, or any
directory containing these into a component. So why bother with the Skin
building block?

The product created by the plone3_theme paster template does the
following:

	overrides and rewrites of the standard Plone Default templates
and CSS files go in the Skin section – the skins directory.

	new style sheets and images go in the Components section –
the browser directory.

This manual suggests putting all your templates, style sheets and images
in the Skin section - leaving just the viewlet and portlet templates in
the components. There are a few reasons for this

	it is simpler to do this when you're just starting out

	it follows the way in which Plone Default is constructed

	it makes it quick and easy to adjust your theme on-the-fly after it's
installed. At that point, you can make further customizations of the
Skin through the Zope Management Interface.

At the time of writing there's a big
discussion [http://www.openplans.org/projects/ootb-plone-themes/lists/ootb-plone-themes-discussion/archive/2008/05/1209686168874/forum_view]
going on about this very question.

If you want to strip the browser resources out of the product created by
the plone3_theme paster template

	remove the images and stylesheets directories in the [your theme
package]/browser

	remove the <browser:resourceDirectory /> entries in [your theme
package]/browser/configure.zcml

	remove the register stylesheet entry for main.css in [your theme
package]/profiles/default/cssregistry.xml

	if you have already installed your product you may need to check the
CSS registry in the Zope Management Interface (portal_css) and
delete the main.css entry there too

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Using jQuery and jQuery Tools

Plone includes the jQuery and jQuery Tools JavaScript libraries out of
the box, which you can use in your own scripts right away.

jQuery [http://jquery.com/] is a popular JavaScript Library that
simplifies HTML document traversal, event handling, animating, and Ajax
interactions. jQuery Tools [http://flowplayer.org/tools/index.html]
is a collection of user-interface components including overlays, tabs,
accordions and tooltips.

jQuery has been shipped with Plone since 3.1. jQuery Tools was added
with Plone 4.0.

Using jQuery

jQuery has excellent documentation available at
http://api.jquery.com. Note, though, that it
is never wise to depend on the availability of the "$" alias for the
jQuery function since other libraries may redefine it.

So, Instead of:

$(document).ready(function(){
 $("a").click(function(event){
 alert("Thanks for visiting!");
 });
 });

you should embed and jQuery code that uses the "$" alias in a wrapper
like:

(function($) {
 $(document).ready(function(){
 $("a").click(function(event){
 alert("Thanks for visiting!");
 });
 });
})(jQuery);

Using jQuery Tools

jQuery Tools is a jQuery plugin, and Plone 4 includes the tabs, tooltip,
scrollable, overlay and expose toolset. The remainder of the jQuery
Tools kit plugins are available by enabling the
plone.app.jquerytools.plugins.js resource Plone's JavaScript registry.

The integration with jQuery Tools is provided through the package
plone.app.jquerytools [https://pypi.python.org/pypi/plone.app.jquerytools/],
which includes a set of overlay helpers for common AJAX overlay needs.
This kit is used to provide many of Plone's overlayed forms. See the
plone.app.jquerytools pypi
page [https://pypi.python.org/pypi/plone.app.jquerytools/] for
documentation and examples.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Using Other Information about your Site on a Page

How to get information about the state of your site and other global
variables.

At some point or other you'll find you need to use the title of your
site in a template; or you'll want your template to deliver something
depending on the roles or permissions of your visitor or user. There are
two approaches for obtaining this information:

1. Browser Views (recommended)

The first, newer, and recommended approach is to use the methods
available in one of three browser views:

	@@plone_portal_state

	@@plone_context_state

	@@plone_tools

These are kept in

	[your egg location]/plone/app/layout/globals OR

	[your egg
location]/plone.app.layout-[version]/plone/app/layout/globals

You can find a description of each method in interfaces.py in that
directory, but the main methods are outlined below. This excerpt from
the main_template in the core Plone Default templates in Plone 4,
demonstrates how these views, or their individual methods, are made
available to every page:

<html xmlns="http://www.w3.org/1999/xhtml"
 ...
 tal:define="portal_state context/@@plone_portal_state;
 context_state context/@@plone_context_state;
 ...
 lang portal_state/language;
 ...
 portal_url portal_state/portal_url;
 ..."
 ...
>

Here's an excerpt from the newsitem_view template in the core Plone
Default templates illustrating how the @@plone_context_state can be
used to establish whether an item is editable or not:

<p tal:define="is_editable context/@@plone_context_state/is_editable"
 tal:condition="python: not len_text and is_editable"
 i18n:translate="no_body_text"
 class="discreet">
 This item does not have any body text, click the edit tab to change it.
</p>

2. Global Defines (deprecated)

The second approach has been around for a long time, but is being phased
out (as it is slower) in Plone 3 and has been pretty much removed in
Plone 4. This is to use a set of variables that are available to every
single page.

In Plone 3:

These are called by main_template:

<metal:block use-macro="here/global_defines/macros/defines" />

If you want to investigate them further, you'll find them in

	[your products directory]/CMFPlone/browser/ploneview.py.

These variables are used in a number of the default Plone templates in
Plone 3 and so they are listed below alongside their equivalent in the
available views.

In Plone 4:

The global_defines macro is not used at all and the variables have been
entirely replaced in all Plone templates. However, should it be
required, the global_defines macro is still available in the core Plone
Default skin layers in the plone_deprecated folder. For more
information on making a Plone 3 theme compatible with Plone 4, consult
the upgrade
guide [http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/no-more-global-definitions-in-templates].

Available Views and Methods

About the site

View @@plone_portal_state

Method

What you get

global defines

portal

Portal Object

portal

portal_title

The title of your site

portal_title

portal_url

The URL of your site

portal_url

navigation_root_path

Path of the navigation root

navigation_root_url

The URL of the navigation root

navigation_root_url

default_language

The default language of the site

language

The current language

locale

The current locale

is_rtl

Whether the site is being viewed in an RTL language

isRTL

member

The current authenticated member

member

anonymous

Whether or not the current visitor is anonymous

isAnon

friendly_types

Get a list of types that can be deployed by a user

About the current context

View @@plone_context_state

Method

what you get

global defines

current_page_url

The URL of the current page

current_page_url

current_base_url

The actual URL of the current page

canonical_object

The current object itself

canonical_object_url

The URL of the current object

view_url

The URL used for viewing the object

view_template_id

The id of the view template

is_view_template

True if the current URL refers to the standard view

object_url

The URL of the current object

object_title

The 'prettified' title of the current object

workflow_state

The workflow state of the current object

wf_state

parent

The direct parent of the current object

folder

The current folder

is_folderish

True if this is a folderish object

isFolderish

is_structural_folder

True if this is a structural folder

isStructuralFolder

is_default_page

True if this is the default page in a folder

is_portal_root

True if this is the portal root or the default page in the portal root

is_editable

True if the current object is editable

is_editable

is_locked

True if the current object is locked

isLocked

 actions
(Plone 4)

The filtered actions in the context. You can restrict the actions to
just one category.

 portlet_assignable
(Plone 4)

 Whether or not the context is capable of having locally assigned
portlets.

Tools

view @@plone_tools

method

what you get

global defines

actions

The portal actions tool

atool

catalog

The portal_catalog tool

membership

The portal_membership tool

mtool

properties

The portal_properties tool

syndication

The portal_syndication tool

syntool

types

The portal_types tool

url

The portal_url tool

utool

workflow

The portal_workflow tool

wtool

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Anatomy of a Viewlet

The bits that go to make up a viewlet component.

Directive in ZCML

<browser:viewlet />

Attributes in ZCML

	name

	e.g. [your namespace].[your viewlet name]

	manager

	a manager interface

	layer

	a marker interface for your particular theme

	class

	a Python class. This class requires a 'render' attribute, which, in
most cases, will point to a template. You don't need to specify the
template in the ZCML, however, in Plone version 3.1.3 and higher,
you can override this template using the template attribute below

	template

	in Plone version 3.1.2 and lower, you can only use this if you
aren't using a class; in Plone version 3.1.3 and higher, you can use
this to override the template you've set in the class you specified
above

	permission

	in most cases this will be Zope.Public

	for

	specify an interface marking a group of content types, if you wish.
The viewlet will then be restricted to those content types (for an
example see the Presentation
viewlet [http://plone.org/documentation/manual/theme-reference/elements/visibleelements/plone.presentation]
in the Elements section)

	view

	specify an interface marking a specific browser view, if you wish.
The viewlet will be restricted to items with that specific view (for
an example investigate the source code of the Content Actions
viewlet - you'll find directions on where to locate this code on the
Content
Actions [http://plone.org/documentation/manual/theme-reference/elements/visibleelements/plone.contentactions]
page of the Elements section)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Override viewlet

A quick cheat sheet on how to customize or create a new viewlet.

You can customize a viewlet template through the web, but you can't
alter the underlying Python class.

On the file system, rather than customize, the process is to wire up a
new viewlet, or re-wire an existing viewlet.

You'll find a detailed tutorial on creating a viewlet in this
article [http://plone.org/documentation/kb/customizing-main-template-viewlets/adding-a-viewlet/].

Quick Cheat Sheet

Through the Web

	Use Site Setup > Zope Management Interfaces >
portal_view_customizations to customize the template of an existing
Plone Default viewlet.

	You cannot create a new viewlet through the web.

In your own product

You will need to know the name of:

	
	The viewlet manager interface

	Look this up in the Elements section of this manual

	
	Your theme specific interface

	This is optional, but ensures that your viewlet is only available
for your theme. If you used the plone3_theme paster template, then
the name will probably be IThemeSpecific.

You will need to create the following (you should be able to locate the
originals to copy by looking at the Elements section or by using
GloWorm [http://plone.org/documentation/products/gloworm]):

	
	browser viewlet directive

	This will go in [your theme package]/browser/configure.zcml

	
	configuration file

	[your theme package]/profiles/default/viewlets.xml

	
	page template

	[your theme package]/browser/[your template name].pt

	
	Python class

	This is optional (but see the note below for Plone version 3.1.2 or
lower)
put this in [your theme package]/browser/[your module].py

Sample configuration.zcml directives

Re-wiring a Plone Default viewlet to use your own template (note the
layer attribute is really important here)

<browser:viewlet
 name="plone.[viewlet name]"
 manager="[viewlet manager interface]"
 class="plone.app.layout.viewlets.common.[viewlet class name]"
 template="templates/[your template name]"
 layer="[your theme specific interface]"
 permission="zope2.View"
 />

Wiring up a new viewlet but borrowing a Plone Default viewlet class

<browser:viewlet
 name=[your namespace].[your viewlet name]"
 manager="[viewlet manager interface]"
 class="plone.app.layout.viewlets.common.[viewlet class name]"
 template="templates/[your template name]"
 layer="[your theme specific interface]"
 permission="zope2.View"
 />

Wiring up with a brand new viewlet with your own class or your own
template

<browser:viewlet
 name=[your namespace].[your viewlet name]"
 manager="[viewlet manager interface]"
 class=".[your module].[your class name]"
 (or: template="templates/[your template name]")
 layer="[your theme specific interface]"
 permission="zope2.View"
 />

Notes for Plone version 3.1.2 or lower:

Sample Python class

In Plone version 3.1.2 or lower, you will need to use this to override a
Plone Default viewlet, even if you only want to change the page
template.

from [element namespace] import [element class name]
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFileclass

[your class name]([element class name]):
 render = ViewPageTemplateFile("[your template name]")

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Move viewlet

A cheat sheet of what you need to do to move viewlets in your page
layout, or remove or hide them from your page.

You'll find detailed information and a tutorial on how to move viewlets
here:

	http://plone.org/documentation/tutorial/customizing-main-template-viewlets/reordering-and-hiding-viewlets [http://plone.org/documentation/manual/tutorial/customizing-main-template-viewlets/reordering-and-hiding-viewlets]

Quick Cheat Sheet of the Basics

Through the Web

	Add @@manage-viewlets to your site URL.

	If you want to move viewlets that only appear on a page, be sure to
append @@manage-viewlets to the URL of the page.

	You will find that you can move, hide or remove viewlets with this
method, but that you cannot move them from one viewlet manager to
another.

In your own product

Moving or removing viewlets is part of your site configuration:

	Add or edit [your theme package]/profiles/default/viewlets.xml

You'll find general information about the site configuration in the
Configuration [http://plone.org/documentation/manual/theme-reference/elements/buildingblocks/configuration]section
of this manual. It's worth reading this through before you launch in
here, as configuring viewlets and viewlet managers can be a bit tricky.
It will tell you

	how you can get the Generic Setup tool to write out the configuration
for you

	why things might not be working as you expect

GloWorm [http://plone.org/products/gloworm] is a useful tool here
too. It will help you move the viewlets around through the Plone user
interface and inspect the resulting configuration.

Removing a viewlet from a viewlet manager

You can't do anything more than hide your viewlet in the viewlet manager

<object>
 <hidden manager="[Viewlet Manager Name]" skinname="[your skin name]">
 <viewlet name="[Viewlet Name]" />
 </hidden>
</object>

Note that you can do this process through the web and then get the
Generic Setup tool to write out the configuration for you to transfer
into your own theme package.

Moving a viewlet within a viewlet manager

<object>
 <order manager="[Viewlet Manager Name]" skinname="[your skin name]">
Specify all the viewlets you want to see in this viewlet
in the order you want them with this directive:
 <viewlet name="[Viewlet Name]">
 </order>
</object>

Note that you can do this process through the web and then get the
Generic Setup tool to write out the configuration for you to transfer
into your own theme package.

Moving a viewlet from one viewlet manager to another

If you are basing your theme on the Plone Default theme, then you'll
find that reassigning a Plone Default viewlet is a two step process

	hide it in its current viewlet manager

	add it and give it a position in a different viewlet manager

<object>
Hide it from the current viewlet manager
 <hidden manager="[current Viewlet Manager Name]" skinname="[your skin name]">
 <viewlet name="[Viewlet Name]" />
 </hidden>
Add it to a different viewlet manager
 <order manager="[a different Viewlet Manager]" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[Viewlet Name]"
 insert-before="[Name of Viewlet Below]" />
 </order>
OR Add it to your own viewlet manager
 <order manager="[Your Viewlet Manager]" skinname="[your skin name]">
 <viewlet name="[Viewlet Name]"/>
 </order>
</object>

	you can also use 'insert-after="[Name of Viewlet Above]"' or use an
asterisk to place the viewlet at the top or bottom of the manager
(e.g 'insert-after'=*).

	based-on="Plone Default" means that it will take the Plone Default
ordering and then apply the insert-after and insert-before
adjustments you've specified.

Registering a viewlet / non-std. theme

If youare basing your theme on the Plone Default theme, then you'll
find that reassigning a Plone Default viewlet is a two step process
* hide it in its current viewlet manager
* add it and give it a position in a different viewlet manager
If your theme is not based on Plone Default you need to register the
viewlet in your
theme [http://collective-docs.readthedocs.org/en/latest/views/viewlets.html#creating-a-viewlet-manager-zcml-way].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Anatomy of a Viewlet Manager

The bits that go to make up a Viewlet Manager.

Directive in ZCML

<browser:viewletManager />

Attributes in ZCML

	name

	e.g., [your namespace].[your viewlet manager name]

	provides

	a marker interface defining what this manager does

	layer

	a marker interface for your particular theme

	class

	this will be plone.app.viewletmanager.manager.OrderedViewletManager

	permission

	in most cases this will be Zope.Public

	for

	specify an interface marking a group of content types, if you wish.
The viewlet manager will then be restricted to those content types

	view

	specify an interface marking a view, if you wish. The viewlet
manager will be restricted to items with those views.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Creating a New Viewlet Manager

A quick cheat sheet for creating a new viewlet manager.

Through the Web

You cannot create a new viewlet manager through the web. To override the
order in which viewlets appear in a viewlet manager, use the
instructions for viewlets.

In your own product

If you're basing your new viewlet manager on a Plone Default viewlet
manager, look up the details in the Elements section of this manual.

You will need to know the name of

	Your theme specific interface

	This is optional, but ensures that your viewlet is only available
for your theme. If you used the plone3_theme paster template, then
the name will probably be IThemeSpecific.

You will need to create the following (you should be able to locate the
originals to copy by looking them up in the elements section):

	browser viewletManager directive

	[your theme package]/browser/configure.zcml

	Your viewlet manager interface

	[your theme package]/browser/interfaces.py

	configuration file directives

	[your theme package]/profiles/default/viewlets.xml

Sample Interface

from zope.viewlet.interfaces import IViewletManager

class [your viewlet manager interface](IViewletManager):
 """ [A description of your viewlet manager goes here] """

Sample configure.zcml directive

<browser:viewletManager
 name=[your namespace].[your element name]"
 provides=".interfaces.[your viewlet manager interface]"
 class="plone.app.viewletmanager.manager.OrderedViewletManager"
 layer="[your theme interface]"
 permission="zope2.View"
 />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Moving, Removing or Hiding a Viewlet Manager

Some hints on moving or hiding viewlet managers.

Viewlet managers are called by page templates. Moving or removing them
is simply a case of customizing the template. Most are called by the
main_template, but you may also need to look into specific content
views for some of them.

Quick Cheat Sheet

Through the Web

	Site Setup > Zope Management Interface > portal_skins >
plone_templates or plone_content

	Click the Customize button, and look for

<div tal:replace="structure provider:[viewlet manager name]" />

	(use the Elements key to identify exactly which manager you're
interested in)

In your own product

	Put your own version of main_template or of the content views in
[your theme package]/skins.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Anatomy of a Portlet

The bits that go to make up a portlet renderer (which is the bit of a
portlet you'll want to customize).

Customizing a portlet is similar to overriding a viewlet, but rather
more straightforward. There is a specific ZCML directive for
customization.

Directive in ZCML

<plone:portletRenderer />

Attributes in ZCML

	layer

	a marker interface for your particular theme

	portlet

	the interface of the portlet you wish to customize

	template

	location of the template you wish to override

	class

	your custom class (use this if you don't specify a template) for
rendering the portlet

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Moving, Removing or Hiding a Portlet

Some tips on moving or hiding portlets.

Whether or not portlets appear on your site is highly customizable
through the web, you can use the manage portlets link in most contexts.
For more information:

	http://plone.org/documentation/tutorial/where-is-what/portlets-1/

It's assumed that you wouldn't want to fix portlets on a page
(otherwise they'd probably be viewlets). However, if you wish to set up
an initial assignment of portlets on installation of your theme product,
use

	[your theme package]/profiles/default/portlets.xml.

Here's an extract from the Plone Default portlets.xml, setting up the
login and navigation portlet for the left-hand column, and the review
and news portlets for the right-hand column.

<?xml version="1.0"?>
<portlets
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">

 <!-- Assign the standard portlets -->

 <assignment
 manager="plone.leftcolumn"
 category="context"
 key="/"
 type="portlets.Navigation"
 name="navigation"
 />

 <assignment
 manager="plone.leftcolumn"
 category="context"
 key="/"
 type="portlets.Login"
 name="login"
 />

 <assignment
 manager="plone.rightcolumn"
 category="context"
 key="/"
 type="portlets.Review"
 name="review"
 />

 <assignment
 manager="plone.rightcolumn"
 category="context"
 key="/"
 type="portlets.News"
 name="news"
 />

</portlets>

 The attributes for the assignment directive are described in full here:
http://plone.org/products/plone/roadmap/203/.
In brief:

	manager and type

	The names for these can be looked up in
plone.app.portlets.portlets.configure.zcml (for type of portlet) or
in the Plone Default profiles/default/portlets.xml file.

	category

	This can be one of four values "context", "content_type", "group"
or "user" - depending on where you wish to assign your portlets.

	key

	This will depend on the value given in category above. In the case
of "context", the location in the site is indicated (the examples
above specify the site root).

If you wish to configure the portlet in more detail, you can nest
property directives within the assignment directive. Here's a tweak to
ensure the navigation portlet appears at the root of the site:

<assignment name="navigation" category="context" key="/"
 manager="plone.leftcolumn" type="portlets.Navigation">
 <property name="topLevel">0</property>
 </assignment>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Overriding a Portlet

A quick cheat sheet of how to override or customize a portlet.

Through the Web

	Use Site Setup > Zope Management Interfaces >
portal_view_customizations to customize the template of an existing
Plone Default portlet.

In your own product

There is a detailed tutorial available here:

	http://plone.org/documentation/how-to/override-the-portlets-in-plone-3.0/

You can also look up the details of the portlet you want to override in
the Elements section of this manual.

Quick Cheat Sheet

You will need to know the name of

	Your theme-specific interface

	This is optional but ensures that your portlet is only available for
your theme. If you used the plone3_theme paster template, then the
name will probably be IThemeSpecific.

You will need to create the following (you should be able to locate the
originals to copy by looking them up in the Elements section):

	plone portlet renderer directive

	[your theme package]/browser/configure.zcml

	page template

	[your theme package]/browser/[your template name].pt

	Python class *

	[your theme package]/browser/[your module name].py

* in most cases you won't need a Python class

Sample configuration.zcml directive

<configure
 xmlns:plone="http://namespaces.plone.org/plone">
 <include package="plone.app.portlets" />
 <plone:portletRenderer
 portlet="[element interface]"
 template="[your template name].pt"
 (or class=".[your module].[your class name]")
 layer="[your theme specific interface]"
 />
</configure>

Sample Python class for navigation portlet override

If you want to customize the navigation portlet, you may need to supply
the class as well as the template. Two templates are involved: the first
is the usual display template; the second handles the recursion through
the navigation tree. If you need to make your own version of the second,
then you'll need to assign it to the recurse method in the class.

from plone.app.portlets.portlets.navigation import Renderer
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](Renderer):
 _template = ViewPageTemplateFile([your template name].pt)
 recurse = ViewPageTemplateFile([your recurse template name])

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Override the portlets in Plone 3.0

Customizing the portlets is a regular task, working with Plone theme. In
this how-to we will find out how-to do this in Plone 3.0 with it's new
mechanism for managing portlets (contributed by Denys Mishunov)

Purpose

It was pretty easy to customize one of the standard portlet in times of
Plone versions prior 3.0. You just had to copy a page template for
appropriate portlet to your theme product and do whatever you want,
changing it's XHTML. You could also create a new portlet the same easy
way - just create a template for the new portlet and register this
portlet with your site's Properties.

In Plone 3.0 portlets became slightly more complex. But don't be afraid.
They became much more powerful at the same time! The advantage becomes
obvious now, right? ;) They are served from separate python package and
have really flexible management possibilities. So, it's worth to try
this new mechanism to realize how powerful it is.

Prerequisities

First thing we should mention - this is not about TTW (Through The Web)
customization. If you need a fast and dirty trick, have a look at
portal_view_customizations tool. This how-to assumes you want to have
your changes in a repeatable way, so that you could have the same
changes on any site where you install your product.

Another thing you might consider is worth a mentioning - you don't need
this technique in any case you want to customize a portlet in Plone
3.0. If you have hardly customized portlets used in previous versions of
Plone or you want to continue using portlets in "pre-3.0-era-way" (that
we strongly don't recommend) you might need to have a look at
ClassicPortlet that is shipped with Plone 3.0. It deals with the regular
page templates the same way you have worked with portlets before Plone
3.0.

And the last before we move on. If you want to customize any of the
standard portlets removing all back-end logic from it (making a static
portlet), don't do this. We mean that - don't do this. Wise people
thought about you. Better install plone.portlet.static and play with it,
creating the static portlets when you need it.

So, for all those who are still with us... we move on finally.

We assume you have created MyTheme Plone 3 theme with either
DIYPloneStyle or ZopeSkel generators. We do not cover explanations of
all aspects of creating a theme for Plone 3.0. To find out more about
core ideas of making a theme, managing the viewlets in Plone 3.0 and
many more, check an excellent tutorial by David Convent - Customizing
the viewlets in
main_template [http://plone.org/how-to/override-the-portlets-in-plone-3.0/.org/documentation/tutorial/customizing-main-template-viewlets].

The key concept in working with portlets in Plone 3.0 is the use of Zope
3 skin layer - the same as we have when overriding a viewlet. We assume
you have at least the following minimum set of files in
MyTheme/browser folder:

- browser/ - __init__.py - configure.zcml - interfaces.py

In common, portlets' overriding process looks like this:

	choose the portlet you want to override;

	register a skin layer if you don't have one yet in interfaces.py;

	add the special <plone:portletRenderer/> directive to
MyTheme/browser/configure.zcml;

	define portlet attribute for <plone:portletRenderer /> directive.
This is a portlet data provider type for which this override is used.
This can be either class or interface. For example
plone.app.portlets.portlets.navigation.INewsPortlet;

	define a new template attribute for <plone:portletRenderer />
directive. When you add this the default renderer for portlet you are
overriding will be used, but with your template;

	in case you need to customize the default behavior for the portlet,
you should use class attribute instead of simple template. This
new class will be acting as the renderer for the portlet instead of
the default one;

	define layer attribute for <plone:portletRenderer /> directive
with MyTheme browser layer. The layer attribute of the
portletRenderer attribute associates a particular IPortletRenderer
with a particular browser layer (MyTheme layer in our case). When
our layer is in effect (i.e. MyTheme is installed) the new renderer
will be used instead of the default one;

	add a new template to MyTheme/browser that will implement the
renderer;

	restart Zope and enjoy.

Step by step

1. Choose the portlet

First of all we should decide what portlet we would like to customize.
Let's choose the News portlet. If you will have a look at the standard
news portlet, you will see those news_icon images in-front of the
titles. Let's get rid of them in the XHTML just for the test.

Plone default portlets are declared in the
plone.app.portlets.portlets package. The core Plone 3.0 portlets can
be found in $INSTANCE_HOME/lib/python/plone/app/portlets/portlets/.
It might be located somewhere else in the $PYTHONPATH though. Depending
on the zope installation (win32 or unix like operating system,
installation from source, installer, eggs or else…), you may need to use
the search tools available in your operating system to locate the
package.

plone.app.portlets.portlets package contains python modules, page
templates and ZCML configuration file - configure.zcml. This file
contains a set of <plone:portlet /> directives that define the standard
portlets like this:

<plone:portlet name="portlets.News" interface=".news.INewsPortlet" assignment=".news.Assignment" renderer=".news.Renderer" addview=".news.AddForm" editview=".news.EditForm" />

Attributes in the above code are pretty self-explanatory. But if they
are not clear to you or you want to know more about additional
attributes for <plone:portlet />, have a look at IPortletDirective
interface in metadirectives module inside the plone.app.portlets
package.

2. Register a skin layer if you don't have one yet

We can register an override for a portlet only for one theme (one skin
selection) thanks to the plone.theme package. Thanks to
plone.theme, we can set a Zope 3 skin layer that corresponds to a
particular skin selection in portal_skins (a theme).

Add the following code to MyTheme/browser/interfaces.py if you don't
have it yet:

from plone.theme.interfaces import IDefaultPloneLayerclass IThemeSpecific(IDefaultPloneLayer): """Marker interface that defines a Zope 3 skin layer bound to a Skin Selection in portal_skins. """

3. Add the directive to configure.zcml with appropriate attributes

Along with <plone:portlet /> directive, plone.app.portlets package
defines another one - <plone:portletRenderer />. The last one is used to
override the portlets, defined in your site. It has quite a few possible
attributes that can be found in metadirectives module inside the
plone.app.portlets package. We will not list them all here, so just
spend 5 minutes and have a look at those attributes, so that you could
understand the following code...

... 5 minutes later...

Ok, let's get back to work. So, to override the standard News portlet
for MyTheme product we should add <plone:portletRenderer /> directive to
MyTheme/browser/configure.zcml. Let's have a look how this should
look like (be sure you have
xmlns:plone="http://namespaces.plone.org/plone" namespace defined in
your <configure> top node.):

<include package="plone.app.portlets" /><interface interface=".interfaces.IThemeSpecific" type="zope.publisher.interfaces.browser.IBrowserSkinType" name="My Theme" /><plone:portletRenderer portlet="plone.app.portlets.portlets.news.INewsPortlet" template="mytheme_news.pt" layer=".interfaces.IThemeSpecific" />

First of all we include plone.app.portlets package to be sure that
default portlets are enabled before we override anything.

Then we make browser layer interface for MyTheme, defined in
MyTheme/browser/interfaces.py, available. If you have customized any
viewlet you should already have this in configure.zcml so no need to
add it twice in the same theme.

Next, let's sort out what attributes we use here:

	portlet - define the portlet that we are going to override. In
our case we define the full dotted path to INewsPortlet interface,
that is implemented by news portlet;

	template - the name of a template that implements the renderer.
The default renderer for this news portlet will be used, but with
"mytheme_news.pt template instead of the default one.

	layer - our browser layer for which this renderer is used.

	one more attribute you might need to remember here is class. You
will need to use it in case you want to change the default behavior
of the portlet. This attribute will define the class that will be
used as a renderer for this portlet instead of the default one.

That's it with configure.zcml. Let's move on.

4. Add a new template for portlet's renderer

So, in previous part we have defined mytheme_news.pt as a value for
template attribute. But we don't have that template on file-system.
Let's add it to MyTheme/browser/. Just copy news.pt template for
news portlet from plone.app.portlets.portlets to
MyTheme/browser/ and rename it to mytheme_news.pt. Open this
template in your favorite editor and let's play with it a little bit.

As you remember we should get rid of standard news_icon.gif icons we
get for news items by default. Find the following line in your template:

and comment it out so that we do not un-recoverable steps and could
revert our changes later. So, we get:

<!-- -->

That's all folks!

So, that's it. Restart your Zope and have a look at your news items
portlet - no images! Cool! Yeah! Actually not that cool just to remove
the images, that might be useful for community portals :)

What's next?

This example is really simple and not pretty useful for sure. But you
definitely can do much better customizations now. When using class
attribute in <plone:portletRenderer/> directive you can do portlets that
will really differ from default one. And that's where the beauty of
portlets in Plone 3.0 goes - you will not need to put a load of python
to your page templates as you had to do before. All python will be
exactly where it should be - in python class. And template will just get
the results from different python methods within that class.

Enjoy!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Creating a New Portlet Manager

How to create a new portlet manager.

A practical example of creating a new portlet manager can be found here

	http://plone.org/documentation/how-to/adding-portlet-managers

Here's a quick checklist of what you need to do.

Quick Cheat Sheet

Through the Web

You cannot create a new portlet manager through the web.

In your own product

You will need to provide the name of

	Your theme-specific interface

	This is optional but ensures that your portlet manager is available
for your theme only. If you used the plone3_theme paster template,
then the name will probably be IThemeSpecific.

You will need to create the following (you should be able to locate the
originals to copy by looking them up in the elements section):

	Interface

	This will go in [your theme package]/browser/interfaces.py. You can
give it any name you like, but by convention, it should be prefaced
with "I".

	configuration directive

	[your theme package]/profiles/default/portlets.xml

	browser:page directive (for the management view)

	[your theme package]/browser/configure.zcml

	page template (for the management view)

	[your theme package]/browser/[your template].pt

Sample interface

from plone.portlets.interfaces import IPortletManager

class [your portlet manager interface](IPortletManager):
 """A description goes here """

Sample portlets.xml

<?xml version="1.0"?>
<portlets>
 <portletmanager
 name="[your namespace].[your portlet manager]"
 type="[your namespace].[your theme name].browser.interfaces.[your portlet manager interface]"
 />
</portlets>

Sample configure.zcml directive (for the management view)

<browser:page
 for="plone.portlets.interfaces.ILocalPortletAssignable"
 class="plone.app.portlets.browser.manage.ManageContextualPortlets"
 name="[your view name]"
 template="[your template name].pt"
 permission="plone.app.portlets.ManagePortlets"
/>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Moving or Removing a Portlet Manager

Tips on how to move or remove portlet managers.

Portlet managers are called by main_template. Moving or removing them
is simply a case of customizing the template.

Through the Web

	Site Setup > Zope Management Interface > portal_skins >
plone_templates > main_template

	Customize this, and look for

<div tal:replace="structure provider:[portlet manager name]" />

	(use the Elements key to identify exactly which manager you're
interested in)

In your own product

	Put your own version of main_template in
[your theme product]/skins.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Hiding a Portlet Manager

There are several methods for hiding a portlet manager.

A portlet manager won't display if there are no portlets assigned to it
to display or if the assigned portlets have no data.

In the case of the portlet columns, if the portlet manager is empty,
then it is also useful to have the surrounding block elements disappear
too, so that you don't get a wide blank margin on your page. For this
reason, the columns containing the portlet managers in the
main_template are wrapped around with slots. Hiding the portlet
managers is, therefore, a matter or manipulating these slots. There are
various techniques:

	Defining an empty slot

	Use the following in a content view template to ensure that the
right hand column is removed:

	<metal:column_one fill-slot="column_one_slot" />

	Using the sl and sr global variables

	These are set as conditions on the slots; they check the respective
portlet managers for content and, if they are empty, evaluate to
false. You can override these in the template itself.

	Using show_portlets option

	show_portlets=false can be passed as an option to a template to set
both sl and sr to false. To see this in action, have a look at

	CMFPlone/skins/plone_templates/standard_error_message.py and

	CMFPlone/browser/ploneview.py

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Adding Portlet Managers

You need portlets at an additional place in your Plone. In this example
we put contextual portlets above the content (contributed by Jens Klein)

This is about adding Portlet MANAGERS, hint: PortletManager !=
Portlet.A PortletManager is a kind of container for the
portlets, like the ViewletManager is for Viewlets. So, after
reducing the momentum of misunderstanding, lets start:

Prerequsites

I assume you're familar with GenericSetup based setups for Plone 3. Take
a look at DIYPloneStyle and related tutorials if not.

You need Plone 3 installed and a Product NEWTHEME for your own skin
(based on DIYPloneStyle works fine).

Strategy

In my example I don't want to customize the main-template. So the idea
is to add a viewlet to the
plone.app.layout.viewlets.interfaces.IContentViews viewletmanager. So
the steps need to be done is

	Add a viewlet to the viewlet-manager

	Add a portlet-manager

	Add a management view for the portlet-manager.

Step One: Add a viewlet

in Products.NEWTHEME add a file abovecontentportlets.pt containing:

<tal:block replace="structure provider:my.abovecontentportlets" />

Here we call the portlet manager, we create it in step two.
But first lets register our new viewlet for the viewletmanager.
Edit your Products/NEWTHEME/configure.zcml and add:

<browser:viewlet
 name="my.abovecontentportlets"
 manager="plone.app.layout.viewlets.interfaces.IContentViews"
 template="abovecontentportlets.pt"
 permission="zope2.View"
/>

Step Two: Add a portlet manager

Create a marking interface for the manager and add or edit
Products/NEWTHEME/interfaces.py

from plone.portlets.interfaces import IPortletManager

class IMyAboveContent(IPortletManager):
 """we need our own portlet manager above the content area.
 """

Add (or edit) your Products/NEWTHEME/profiles/default/portlets.xml and
register a portlet manager:

<?xml version="1.0"?>
<portlets>
 <portletmanager
 name="my.abovecontentportlets"
 type="Products.NEWTHEME.interfaces.IMyAboveContent"
 />
</portlets>

Thats all you need if you don't want to manage the portlets through the
web. Oh, you want to? So you need a third step:

Step Three: Add a management view for the portlet manager

The management view is rendered for the left and right slots directly on
the main-template. But we use a viewlet and in here we have a different
view. so we need to call explicitly our view and call the our manager
within its context.

We need to register a new browser view for an own page template directly
calling our manager. Again add some lines to your configure.zcml:

<browser:page
 for="plone.portlets.interfaces.ILocalPortletAssignable"
 class="plone.app.portlets.browser.manage.ManageContextualPortlets"
 name="manage-myabove"
 template="templates/managemyabove.pt"
 permission="plone.app.portlets.ManagePortlets"
/>

And finally we need the template, so add an file managemyabove.pt and
edit it:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="plone">
<head>
 <div metal:fill-slot="javascript_head_slot" tal:omit-tag="">
 <link type="text/css" rel="kinetic-stylesheet"
 tal:attributes="href string:${context/absolute_url}/++resource++manage-portlets.kss"/>
 </div>
</head>
<body>
<div metal:fill-slot="main">
 <h1 class="documentFirstHeading">Manage My Portlets</h1>

</div>
</body>
</html>

That's it. After restarting your zope you can call
http://DOMAIN.TLD/plone/path/to/some/context/@@manage-myabove

and assign portlets over your content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Header

Calls the viewlet managers for the site header.

	Snippet:

	<div id="portal-header"> … </div>

	Name:

	plone.header

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.header

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	portal_header.pt

	Class Name:

	none

	Manager:

	plone.portaltop (name)
plone.app.layout.viewlets.interfaces.IPortalTop (interface)

Sample files & directives

Put a version of portal_header.pt in [your theme
package]/browser/templates)

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 template="templates/[your template name].pt"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portaltop" skinname="[your skin name]">
 <viewlet name="plone.header" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portaltop" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Document Actions

The Print and RSS links.

	Notes:

	You can reorder, add, or remove individual document actions

	through the web: Site Setup >Zope Management Interface >
portal_actions > document_actions

	In your product: profiles/default/actions.xml

	Snippet:

	<div class="documentActions"> … </div>

	CSS:

	public.css

	Name:

	plone.abovecontenttitle.documentactions

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.abovecontenttitle.documentactions

	Further information:

	http://plone.org/documentation/kb/where-is-what/document-actions [http://plone.org/documentation/kb/where-is-what/document-actions']

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	document_actions.pt

	Class Name:

	plone.app.layout.viewlets.content.DocumentActionsViewlet

	Manager:

	plone.belowcontentbody (name)
plone.app.layout.viewlets.interfaces.IBelowContentBody (interface)

Sample files & directives

Put a version of document_actions.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.content import DocumentActionsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](DocumentActionsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentBody"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontentbody" skinname="[your skin name]">
 <viewlet name="plone.abovecontenttitle.documentactions" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Language Selector

Provides a drop down list to select a different language.

	Snippet:

	<ul id="portal-languageselector"> …

	Name:

	plone.app.i18n.locales.languageselector

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.app.i18n.locales.languageselector

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/i18n/locales/browser/

	[your egg
location]/plone.app.i18n-[version].egg/plone/app/i18n/locales/browser/

	Template Name:

	languageselector.pt

	Class Name:

	plone.app.i18n.locales.browser.selector.LanguageSelector

	Manager:

	Portal Top (name)
plone.app.layout.viewlets.interfaces.IPortalTop (interface)

Sample files & directives

Put a version of languageselector.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.i18n.locales.browser.selector import LanguageSelector
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](LanguageSelector):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="Portal Top" skinname="[your skin name]">
 <viewlet name="plone.app.i18n.locales.languageselector" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="Portal Top" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Content History

Summarizes workflow transitions and version history on the current
content item (this replaces the workflow viewlet in Plone 3.3).

	Snippet:

	<div class="contentHistory" id="content-history">…</div>

	CSS:

	authoring.css

	Name:

	plone.belowcontentbody.contenthistory

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.belowcontentbody.contenthistory

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	content_history.pt

	Class Name:

	plone.app.layout.viewlets.content.ContentHistoryViewlet

	Manager:

	plone.belowcontentbody (name)
plone.app.layout.viewlets.interfaces.IBelowContentBody (interface)

Sample files & directives

Put a version of review_history.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.content import ContentHistoryViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](ContentHistoryViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentBody"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontentbody" skinname="[your skin name]">
 <viewlet name="plone.belowcontentbody.contenthistory" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Related Items

Items related to the content

	Notes:

	This viewlet displays links to additional content items selected by
the editor under the categorization tab.

	Snippet:

	<div class="relatedItems"> … </div>

	CSS:

	public.css

	Name:

	plone.belowcontentbody.relateditems

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.belowcontentbody.relateditems

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	document_relateditems.pt

	Class Name:

	plone.app.layout.viewlets.content.ContentRelatedItems

	Manager:

	plone.belowcontentbody (name)
plone.app.layout.viewlets.interfaces.IBelowContentBody (interface)

Sample files & directives

Put a version of document_relateditems.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.content import ContentRelatedItems
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](ContentRelatedItems):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentBody"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontentbody" skinname="[your skin name]">
 <viewlet name="plone.belowcontentbody.relateditems" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Workflow History

Summarizes workflow transitions on the current content item.

	Snippet:

	<div class="reviewHistory" id="review-history">…</div>

	CSS:

	authoring.css

	Name:

	plone.belowcontentbody.workflowhistory

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.belowcontentbody.workflowhistory

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	review_history.pt

	Class Name:

	plone.app.layout.viewlets.content.WorkflowHistoryViewlet

	Manager:

	plone.belowcontentbody (name)
plone.app.layout.viewlets.interfaces.IBelowContentBody (interface)

Sample files & directives

Put a version of review_history.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.content import WorkflowHistoryViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](WorkflowHistoryViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentBody"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontentbody" skinname="[your skin name]">
 <viewlet name="plone.belowcontentbody.workflowhistory" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Byline

The 'about' information (who created a content item and when it was
modified).

	Notes:

	You can turn off the Byline for anonymous viewers

	through the web: Site Setup > Security

	In your product: profiles/default/propertiestool.xml

	Snippet:

	<div id="plone-document-byline" class="documentByLine">... </div>

	CSS:

	public.css

	Name:

	plone.belowcontenttitle.documentbyline

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.belowcontenttitle.documentbyline

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	document_byline.pt

	Class Name:

	plone.app.layout.viewlets.content.DocumentBylineViewlet

	Manager:

	plone.belowcontenttitle (name)
plone.app.layout.viewlets.interfaces.IBelowContentTitle (interface)

Sample files & directives

Put a version of document_byline.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.content import DocumentBylineViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](DocumentBylineViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontenttitle" skinname="[your skin name]">
 <viewlet name="plone.belowcontenttitle.documentbyline" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontenttitle" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Keywords

The categories (a.k.a. keywords / tags / labels) that have been assigned
to the item.

	Notes:

	This will only appear if some categories have been assigned using
Edit > Categories.

	Snippet:

	<div id="category" class="documentByLine">…</div>

	CSS:

	public.css

	Name:

	plone.belowcontenttitle.keywords

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.belowcontenttitle.keywords

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	keywords.pt

	Class Name:

	none

	Manager:

	plone.belowcontenttitle (name)
plone.app.layout.viewlets.interfaces.IBelowContentTitle (interface)

Sample files & directives

Put a version of keywords.pt in [your theme package]/browser/templates)

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle"
 template="templates/[your template name].pt"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontenttitle" skinname="[your skin name]">
 <viewlet name="plone.belowcontenttitle.keywords" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontenttitle" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Colophon

Contains links to plone.org etc.

	Snippet:

	`` <div id="portal-colophon">…</div>``

	CSS:

	public.css

	Name:

	plone.colophon

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.colophon

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	colophon.pt

	Class Name:

	none

	Manager:

	plone.portalfooter (name)
plone.app.layout.viewlets.interfaces.IPortalFooter (interface)

Sample files & directives

Put a version of colophon.pt in [your theme package]/browser/templates)

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 template="templates/[your template name].pt"
 for="*"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalfooter" skinname="[your skin name]">
 <viewlet name="plone.colophon" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalfooter" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Comments

Supplies the commenting interface.

	Notes:

	Comments can be turned on or off

	through the web: on an individual item (Edit > Settings > Allow
Comments) or Site Setup > Types (site-wide per type)

	in your product: profiles/default/types (per type)

	Snippet:

	<div class="discussion"> … </div>

	CSS:

	public.css

	Name:

	plone.comments

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.comments

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	comments.pt

	Class Name:

	plone.app.layout.viewlets.comments.CommentsViewlet

	Manager:

	plone.belowcontent (name)
plone.app.layout.viewlets.interfaces.IBelowContent (interface)

Sample files & directives

Put a version of comments.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.comments import CommentsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](CommentsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContent"
 class=".[your module].[your class name]"
 for="Products.CMFCore.interfaces.IContentish"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontent" skinname="[your skin name]">
 <viewlet name="plone.comments" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontent" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Content Actions

Provides the display drop-down and other actions in editing mode. There
are three content actions components, registered for different view
interfaces (as different sets of actions are required in different
contexts).

	Name:

	plone.contentactions

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.contentactions

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	contentactions_blank.pt & contentactions.pt

	Class Name:

	plone.app.layout.viewlets.common.ContentActionsViewlet

	Manager:

	plone.contentviews (name)
plone.app.layout.viewlets.interfaces.IContentViews (interface)

Sample files & directives

Put a version of contentactions_blank.pt & contentactions.pt in [your
theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import ContentActionsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](ContentActionsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IContentViews"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.contentviews" skinname="[your skin name]">
 <viewlet name="plone.contentactions" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.contentviews" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Content Views

The View, Edit, and other tabs in the editing interface.

	Snippet:

	<ul class="contentViews"> …

	CSS:

	authoring.css

	Name:

	plone.contentviews

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.contentviews

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	contentviews.pt

	Class Name:

	none

	Manager:

	plone.contentviews (name)
plone.app.layout.viewlets.interfaces.IContentViews (interface)

Sample files & directives

Put a version of contentviews.pt in [your theme
package]/browser/templates)

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IContentViews"
 template="templates/[your template name].pt"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.contentviews" skinname="[your skin name]">
 <viewlet name="plone.contentviews" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.contentviews" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Footer

Contains copyright information.

	Snippet:

	<div id="portal-footer">…</div>

	CSS:

	public.css

	Name:

	plone.footer

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.footer

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	footer.pt

	Class Name:

	none

	Manager:

	plone.portalfooter (name)
plone.app.layout.viewlets.interfaces.IPortalFooter (interface)

Sample files & directives

Put a version of footer.pt in [your theme package]/browser/templates)

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 template="templates/[your template name].pt"
 for="*"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalfooter" skinname="[your skin name]">
 <viewlet name="plone.footer" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalfooter" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Global Sections

The top level sections of the site.

	Notes:

	The sections are either auto-generated from top level content items
or can be set up manually

	through the web: Site Setup > Navigation (for auto-generation)
Site Setup > Zope Management Interface > portal_tabs (for
manually defined sections)

	in your product: profiles/default/actions.xml and
propertiestool.xml

	Snippet:

	<h5 class="hiddenStructure">Sections</h5> <ul id="portal-globalnav"> …

	CSS:

	public.css

	Name:

	plone.global_sections

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.global_sections

	Further information:

	http://plone.org/documentation/kb/where-is-what/the-navigation-tabs

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	sections.pt

	Class Name:

	plone.app.layout.viewlets.common.GlobalSectionsViewlet

	Manager:

	plone.portalheader (name)
plone.app.layout.viewlets.interfaces.IPortalHeader (interface)

Sample files & directives

Put a version of sections.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import GlobalSectionsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](GlobalSectionsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalheader" skinname="[your skin name]">
 <viewlet name="plone.global_sections" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalheader" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Lock

Indicates that the content item is locked for editing.

	Snippet:

	<div id="plone-lock-status" />

	CSS:

	public.css

	Name:

	plone.lockinfo

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.lockinfo

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/locking/browser/

	[your egg
location]/plone.locking-[version].egg/plone/locking/browser/

	Template Name:

	info.pt

	Class Name:

	plone.locking.browser.info.LockInfoViewlet

	Manager:

	plone.abovecontent (name)
plone.app.layout.viewlets.interfaces.IAboveContent (interface)

Sample files & directives

Put a version of info.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.locking.browser.info import LockInfoViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](LockInfoViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IAboveContent"
 class=".[your module].[your class name]"
 for="plone.locking.interfaces.ITTWLockable"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.abovecontent" skinname="[your skin name]">
 <viewlet name="plone.lockinfo" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.abovecontent" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Logo

The site logo.

	Snippet:

	...

	CSS:

	public.css

	Name:

	plone.logo

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.logo

	Further information:

	http://plone.org/documentation/kb/where-is-what/the-logo
See also the Quick Start Section of this manual.

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	logo.pt

	Class Name:

	plone.app.layout.viewlets.common.LogoViewlet

	Manager:

	plone.portalheader (name)
plone.app.layout.viewlets.interfaces.IPortalHeader (interface)

Sample files & directives

Put a version of logo.pt in [your theme package]/browser/templates)

Modify the logo.pt to suit your needs. For example, if you want to use
an image named something other than logo.jpg, you could use this code
and style #header in your mytheme.css file.

<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <!-- <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" /> --> <!--commenting out the code that normally looks for logo.jpg -->
 <div id="banner"><!-- style this div in your mytheme.css --></div>

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import LogoViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](LogoViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalheader" skinname="[your skin name]">
 <viewlet name="plone.logo" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalheader" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Next Previous

Provides next/previous functionality for a folder.

	Notes:

	Turn this on per folder using Edit > Settings.

	Snippet:

	<div class="listingBar">…</div>

	CSS:

	public.css

	Name:

	plone.nextprevious

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.nextprevious

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/nextprevious/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/nextprevious/

	Template Name:

	nextprevious.pt

	Class Name:

	plone.app.layout.nextprevious.view.NextPreviousViewlet

	Manager:

	plone.belowcontent (name)
plone.app.layout.viewlets.interfaces.IBelowContent (interface)

Sample files & directives

Put a version of nextprevious.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.nextprevious.view import NextPreviousViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](NextPreviousViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IBelowContent"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.belowcontent" skinname="[your skin name]">
 <viewlet name="plone.nextprevious" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.belowcontent" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Path Bar (Portal Breadcrumbs)

Provides the breadcrumb trail.

	Snippet:

	<div id="portal-breadcrumbs">...</div>

	Note:

	In the Sunburst theme, the breadcrumbs have been styled not to
appear until the third level down. Customize the CSS to change this
behaviour.

	CSS:

	public.css

	Name:

	plone.path_bar

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.path_bar

	Further information:

	http://plone.org/documentation/kb/where-is-what/the-path-bar [http://plone.org/documentation/kb/where-is-what/the-path-bar']

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	path_bar.pt

	Class Name:

	plone.app.layout.viewlets.common.PathBarViewlet

	Manager:

	plone.portaltop (name)
plone.app.layout.viewlets.interfaces.IPortalTop (interface)

Sample files & directives

Put a version of path_bar.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import PathBarViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](PathBarViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portaltop" skinname="[your skin name]">
 <viewlet name="plone.path_bar" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portaltop" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Personal Bar

Provides the Log in link and further links for users once logged in.

	Notes:

	You can reorder, add, or remove specific links in the personal bar

	through the web: Site Setup >Zope Management Interface >
portal_actions > user

	In your product: profiles/default/actions.xml

	Snippet:

	<div id="portal-personaltools-wrapper"> …</div>

	CSS:

	public.css

	Name:

	plone.personal_bar

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.personal_bar

	Further information:

	http://plone.org/documentation/kb/where-is-what/the-personal-bar [http://plone.org/documentation/kb/where-is-what/the-personal-bar']

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	personal_bar.pt

	Class Name:

	plone.app.layout.viewlets.common.PersonalBarViewlet

	Manager:

	plone.portaltop (name)
plone.app.layout.viewlets.interfaces.IPortalTop (interface)

Sample files & directives

Put a version of personal_bar.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import PersonalBarViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](PersonalBarViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalTop"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portaltop" skinname="[your skin name]">
 <viewlet name="plone.personal_bar" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portaltop" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Presentation

Provides a link to a presentation view of a document.

	Notes:

	Only available for a document. The link to a presentation view can
be turned on or off

	through the web: on an individual item (Edit > Settings >
Presentation) or Site Setup > Types (site-wide per type)

	in your product: profiles/default/types (per type)

	Snippet:

	<p id="link-presentation">...</p>

	CSS:

	none

	Name:

	plone.presentation

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.presentation

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/presentation/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/presentation/

	Template Name:

	none

	Class Name:

	plone.app.presentation.PresentationViewlet

	Manager:

	plone.abovecontentbody (name)
plone.app.layout.viewlets.interfaces.IAboveContentBody (interface)

Sample files & directives

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.presentation import PresentationViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](PresentationViewlet):
 [your code here]

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".[your module].[your class name]"
 for="Products.ATContentTypes.interface.IATDocument"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.abovecontentbody" skinname="[your skin name]">
 <viewlet name="plone.presentation" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.abovecontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Search Box

Site search facility.

	Notes:

	To customise the search box behaviour

	through the web: Site Setup > Search

	in your product: profiles/default/propertiestool.xml

	Snippet:

	<div id="portal-searchbox">…</div>

	CSS:

	public.css

	Name:

	plone.searchbox

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.searchbox

	Further information:

	http://plone.org/documentation/kb/the-search-box [http://plone.org/documentation/tutorial/where-is-what/the-search-box]

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	searchbox.pt

	Class Name:

	plone.app.layout.viewlets.common.SearchBoxViewlet

	Manager:

	plone.portalheader (name)
plone.app.layout.viewlets.interfaces.IPortalHeader (interface)

Sample files & directives

Put a version of searchbox.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import SearchBoxViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](SearchBoxViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalheader" skinname="[your skin name]">
 <viewlet name="plone.searchbox" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalheader" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Site Actions

Links, available on every page, to provide specific functionality or
information.

	Notes:

	You can reorder, add, or remove individual site actions

	through the web: Site Setup >Zope Management Interface >
portal_actions > site_actions

	in your product: profiles/default/actions.xml

	Snippet:

	<ul id="portal-siteactions">...

	CSS:

	public.css

	Name:

	plone.site_actions

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.site_actions

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	site_actions.pt

	Class Name:

	plone.app.layout.viewlets.common.SiteActionsViewlet

	Manager:

	plone.portalheader (name)
plone.app.layout.viewlets.interfaces.IPortalHeader (interface)

Sample files & directives

Put a version of site_actions.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import SiteActionsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](SiteActionsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalheader" skinname="[your skin name]">
 <viewlet name="plone.site_actions" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalheader" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Table of Contents

Provides a set of bookmarks for the current page.

	Notes:

	Turned on per content item through Edit > Settings.

	Snippet:

	<dl id="document-toc" class="portlet toc" style="display: none"> … </dl>

	CSS:

	portlets.css

	Name:

	plone.tableofcontents

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.tableofcontents

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	toc.pt

	Class Name:

	plone.app.layout.viewlets.common.TableOfContentsViewlet

	Manager:

	plone.abovecontentbody (name)
plone.app.layout.viewlets.interfaces.IAboveContentBody (interface)

Sample files & directives

Put a version of toc.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import TableOfContentsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](TableOfContentsViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 class=".[your module].[your class name]"
 for="Products.ATContentTypes.interface.IATDocument"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.abovecontentbody" skinname="[your skin name]">
 <viewlet name="plone.tableofcontents" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.abovecontentbody" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Analytics

Google analytics code snippet.

	Notes:

	Provide the code snippet for your site through the web: Site Setup >
Site settings

	Snippet:

	(code snippet defined by the site manager)

	CSS:

	none

	Name:

	plone.analytics

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.analytics

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/analytics/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/analytics/

	Template Name:

	none

	Class Name:

	plone.app.layout.analytics.view.AnalyticsViewlet

	Manager:

	plone.portalfooter (name)
plone.app.layout.viewlets.interfaces.IPortalFooter (interface)

Sample files & directives

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.analytics.view import AnalyticsViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](AnalyticsViewlet):
 [your code here]

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalFooter"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalfooter" skinname="[your skin name]">
 <viewlet name="plone.analytics" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalfooter" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Dublin Core Metadata

The Dublin Core metadata in the HTML head.

	Snippet:

	<meta />

	CSS:

	none

	Name:

	plone.htmlhead.dublincore

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.htmlhead.dublincore

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	dublin_core.pt

	Class Name:

	plone.app.layout.viewlets.common.DublinCoreViewlet

	Manager:

	plone.htmlhead (name)
plone.app.layout.viewlets.interfaces.IHtmlHead (interface)

Sample files & directives

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import DublinCoreViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](DublinCoreViewlet):
 [your code here]

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead" skinname="[your skin name]">
 <viewlet name="plone.htmlhead.dublincore" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

KSS Base Url

Link rel tag in the HTML head with the real url of the published page.

	Snippet:

	<link rel="kss-base-url" />

	CSS:

	none

	Name:

	plone.htmlhead.kss-base-url

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.htmlhead.kss-base-url

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/kss/

	[your egg location]/plone.app.kss-[version].egg/plone/app/kss/

	Template Name:

	none

	Class Name:

	plone.app.kss.headerViewlet.KSSBaseUrlViewlet

	Manager:

	plone.htmlhead (name)
plone.app.layout.viewlets.interfaces.IHtmlHead (interface)

Sample files & directives

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.kss.headerViewlet import KSSBaseUrlViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](KSSBaseUrlViewlet):
 [your code here]

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead" skinname="[your skin name]">
 <viewlet name="plone.htmlhead.kss-base-url" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

HTML Head Title

The page title in the HTML head.

	Snippet:

	<title> ...</title>

	CSS:

	none

	Name:

	plone.htmlhead.title

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.htmlhead.title

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	none

	Class Name:

	plone.app.layout.viewlets.common.TitleViewlet

	Manager:

	plone.htmlhead (name)
plone.app.layout.viewlets.interfaces.IHtmlHead (interface)

Sample files & directives

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import TitleViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class [your class name](TitleViewlet):
 [your code here]

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead" skinname="[your skin name]">
 <viewlet name="plone.htmlhead.title" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Author Link

The author link in the HTML head.

	Snippet:

	<link rel="author" … />

	CSS:

	none

	Name:

	plone.links.author

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.links.author

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/links/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/links/

	Template Name:

	author.pt

	Class Name:

	plone.app.layout.links.viewlets.AuthorViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of author.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.links.viewlets import AuthorViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](AuthorViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.links.author" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Favicon Link

The favicon link in HTML head.

	Snippet:

	<link rel="shortcut icon" … />

	CSS:

	none

	Name:

	plone.links.favicon

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.links.favicon

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/links/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/links/

	Template Name:

	favicon.pt

	Class Name:

	plone.app.layout.links.viewlets.FaviconViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of favicon.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.links.viewlets import FaviconViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](FaviconViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.links.favicon" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Navigation Link

The navigation link in the HTML head.

	Snippet:

	<link title="Front Page" …> and <link title="Site Map" ..>

	CSS:

	none

	Name:

	plone.links.navigation

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.links.navigation

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/links/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/links/

	Template Name:

	navigation.pt

	Class Name:

	plone.app.layout.links.viewlets.NavigationViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of navigation.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.links.viewlets import NavigationViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](NavigationViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.links.navigation" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

RSS Link

The RSS link in the HTML head.

	Snippet:

	<link rel="alternate" title="RSS 1.0" ... />

	CSS:

	none

	Name:

	plone.links.RSS

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.links.RSS

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/links/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/links/

	Template Name:

	rsslink.pt

	Class Name:

	plone.app.layout.links.viewlets.RSSViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of navigation.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.links.viewlets import RSSViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](RSSViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.links.RSS" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Search Link

The search link in HTML head.

	Snippet:

	<link rel="search" … />

	CSS:

	none

	Name:

	plone.links.search

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.links.search

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/links/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/links/

	Template Name:

	search.pt

	Class Name:

	plone.app.layout.links.viewlets.SearchViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of search.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.links.viewlets import SearchViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](SearchViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.links.search" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Next Previous Links

Provides next/previous links in the HTML head.

	Snippet:

	<link title="Go to previous item" … />

	CSS:

	none

	Name:

	plone.nextprevious.links

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.nextprevious.links

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/nextprevious/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/nextprevious/

	Template Name:

	links.pt

	Class Name:

	plone.app.layout.nextprevious.view.NextPreviousLinksViewlet

	Manager:

	plone.htmlhead.links (name)
plone.app.layout.viewlets.interfaces.IHtmlHeadLinks (interface)

Sample files & directives

Put a version of links.pt in [your theme package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.nextprevious.view import NextPreviousLinksViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](NextPreviousLinksViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHeadLinks"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.htmlhead.links" skinname="[your skin name]">
 <viewlet name="plone.nextprevious.links" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.htmlhead.links" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Skip Links

Hidden links at the top of the page to skip to the content and the
navigation.

	Snippet:

	<p class="hiddenStructure"> … </p>

	CSS:

	invisibles.css

	Name:

	plone.skip_links

	Type:

	viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]

	Use:

	Site Setup > Zope Management Interface >
portal_view_customizations

	Go to:

	plone.skip_links

Customizing in your own product

The following details will help you locate the files that you will need
to copy into your own product. They will also help you to provide the
correct information to create your own zcml directives, Python classes,
and interfaces.See
viewlet [http://plone.org/documentation/manual/theme-reference/elements/elements/viewlet]
for more information.

Located in:

	[your egg location]/plone/app/layout/viewlets/

	[your egg
location]/plone.app.layout-[version].egg/plone/app/layout/viewlets/

	Template Name:

	skip_links.pt

	Class Name:

	plone.app.layout.viewlets.common.SkipLinksViewlet

	Manager:

	plone.portalheader (name)
plone.app.layout.viewlets.interfaces.IPortalHeader (interface)

Sample files & directives

Put a version of skip_links.pt in [your theme
package]/browser/templates)

Create your own version of the class in [your theme
package]/browser/[your module].py

from plone.app.layout.viewlets.common import SkipLinksViewlet
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class [your class name](SkipLinksViewlet):
 render = ViewPageTemplateFile("[your template name]")

Wire up your viewlet in [your theme package]/browser/configure.zcml

<browser:viewlet
 name="[your namespace].[your viewlet name]"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".[your module].[your class name]"
 layer=".interfaces.[your theme specific interface]"
 permission="zope2.View"
/>

In [your theme package]/profiles/default/viewlets.xml

Hide the original viewlet (if you wish)

<object>
 <hidden manager="plone.portalheader" skinname="[your skin name]">
 <viewlet name="plone.skip_links" />
 </hidden>

Insert your new viewlet in a viewlet manager

 <order manager="plone.portalheader" skinname="[your skin name]"
 based-on="Plone Default">
 <viewlet name="[your namespace].[your viewlet name]"
 insert-before="*" />
 </order>
</object>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Elements

A reference for the viewlets, portlets, viewlet managers, and portlet columns which make up a page.
There's a quick reference to each component type with links and reminders on how to handle them, a visual index of page elements plus code snippets to make your life easier.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Files for Components

These files and directories will be relevant when working on the
Components part of your theme.

/browser/viewlet.py | viewlet.pt

An example viewlet component

/browser/interfaces.py

This is used to create your theme interface (and any other interfaces
you might need)

/profiles/default/viewlets.xml

Use this file to order your viewlets within viewlet managers

/browser/configure.zcml

Use this file to wire up your components

/browser/templates | styles

These directories can be used for templates, styles, and images. You
will need to register these as directories as resources in
configure.zcml.

[image: your theme egg - the components files]
your theme egg - the components files

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Files for Configuration

These files and directories will be relevant when working on the
Configuration part of your theme.

/profiles/default/

This directory holds the xml for Generic Setup. The plone3_theme paster
template will have provided you with some ready-made files - for setting
up your skin layers, registering your style sheets and JavaScripts, and
ordering your viewlets.

/profiles.zcml

When your Zope instance starts up, this file makes the profile available
for Generic Setup to use.

[image: your theme egg - the configuration files]
your theme egg - the configuration files

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Files for Installing your Egg

These are the files and directories required to install your egg in your
python path and make it available to Zope on start up.

[image: your theme egg - the files used for installing the egg]
your theme egg - the files used for installing the egg

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where's my Egg Location?

It is easy enough for Zope to find your eggs, harder for humans.

Plone version 3.1.2 onwards

	Core Plone Default Products

	For core products used in the Plone Default Theme, buildout has an
eggs directory

	[your buildout]/eggs

which is where eggs are automatically dropped when Plone is
installed.

	Your own theme product

	Because your own theme product will be under development, this will
go in a separate place in your buildout

	[your buildout]/[zinstance|zeocluster|]/src

(note that to share eggs between buildouts you can specify a different
location for this in a buildout defaults file, check the buildout
tutorial on
plone.org [http://plone.org/documentation/tutorial/buildout/creating-a-buildout-defaults-file]
for more information).

Using Omelette to get at your eggs quickly

It is a bit of a drag navigating your way around all the eggs used by
Plone. David Glick's Omelette recipe creates a unified directory
structure of all namespace packages, symlinking to the actual contents,
via buildout. Full instructions and documentation on this can be found
here:

https://pypi.python.org/pypi/collective.recipe.omelette

Once you've re-run buildout with the omelette recipe, you'll find that
you have a new section here:

	[your buildout]/[zinstance|zeocluster]/parts/omelette

and eggs such as plone.app.layout can be found in:

	[your
buildout]/[zinstance|zeocluster]/parts/omelette/plone/app/layout

Plone version 3.1.1 or lower

	Plone Installer

	If you have installed Plone with an installer, then the eggs will
probably have been dropped into

	[your plone installation]/Python/Lib/site-packages.

However, if you've used the Plone 3.1 universal installer, then you
will have a buildout based installation.

	The Plone Product Package

	If you used the product package (i.e. installed from source), then
you may well find them in

	[your Zope instance]/lib/python.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where is What on the Page

How can you track down the files related to an individual page element?

At the time of writing, there's no in-built magic wand to point at an
element on a Plone web page and find out exactly what templates and code
are involved in its creation. There may be soon though, and the
adventurous might like to explore Weblion's Gloworm
tool [http://weblion.psu.edu/blog/esteele/gloworm-0-1-alpha1-now-available].

If you're not ready for an adventure yet, then there are a number of
good tutorials available with diagrams and guides to where is what.

Understanding how the CSS maps to the Page

The Weblion project has an excellent Wiki page to help you with this

	https://weblion.psu.edu/trac/weblion/wiki/PloneThreeWhereIsWhat

Firebug (an add-on for Firefox), of course, is an essential tool for
inspecting code and CSS for a page.

	http://www.getfirebug.com/

Page Elements

Page elements are consistently named in Plone, so once you know the name
of an area of the page, you're well on the way to tracking down the
relevant files

	you can find a visual key to page elements in the Elements section of
this manual

	you'll also find an excellent overview in the What Controls What You
See [http://plone.org/documentation/tutorial/where-is-what/introduction]tutorial
on Plone.org

	and a mapping of the viewlet and portlet managers on the Weblion
wiki [https://weblion.psu.edu/trac/weblion/wiki/PloneThreeWhereIsWhat]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Location of files in your own Theme Product

The egg created for you by the plone3_theme paster template should have
a file system layout very similar to this diagram.

If the diagram doesn't help, then consult the next few pages where
sections of the diagram are combined with a text explanation.

[image: your theme egg]
your theme egg

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where's my Products Directory?

How to track down your products directory. It'll differ according to the
Plone installer or installation process you used.

The products directory is where old-style 2.5 products live. To track
this down, you'll need to know where your Zope Instance or your Buildout
is first.

For theming purposes, the main reason you'll need to investigate the
products directory is to locate Plone Default theme files - as parts of
Plone are still in old-style product form.

Plone version 3.1.2 onwards

In a Buildout based installation, you'll find products in various
directories.

	Core Plone products (such as CMFPlone)

	For these, have a look in

	[your buildout]/parts/plone.

	Products you download yourself

	These should go in

	[your buildout]/products.

If you find you haven't got a products directory there, then it is
OK to create one yourself.

	Products you asked buildout to download

	If you asked buildout to go and fetch some old-style products, then
these will have been dropped into

	[your buildout]/parts/[directory name].

(Buildout will also have created the directory and will have called
it something like "productdistros").

Plone version 3.1.1 or lower

	Plone Installer and Plone Product Package

	It should be easy to locate all your products (those belonging to
the core Plone installation and those you've downloaded yourself) in

	[your zope instance]/products

However, if you used the Plone 3.1 Universal Installer your
installation will be buildout based.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Files for the Skin

These files and directories will be relevant when working on the Skin
part of your theme.

/skins/[your theme namespace].[your theme name]_custom_templates |
custom_images | styles

These directories will form your skin layers. Your templates, images,
and stylesheets can go here. If you asked it to, the plone3_theme
paster template will have provided blank style sheets to override the
Plone Default ones.

/skins.zcml

When your Zope instance starts up, this turns your directories into skin
layers

/profiles/default/skins.xml | cssregistry.xml | jsregistry.xml

When your theme is installed in your Plone site, this sets up the
hierarchy of skin layers, and registers your style sheets and JavaScript
with the registries

[image: your theme egg - the skin files]
your theme egg - the skin files

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Files for Installing your Theme

These are the files used when you install your theme product using Site
Setup > Add / Remove Products or Zope Management Interface >
portal_quickinstaller

/profiles/default/

Generic Setup will install your theme profile when your theme is
installed. import_steps.xml points to a 'handler' for installation
steps which aren't yet part of Generic Setup or can't be expressed as
XML.

/setuphandlers.py

This contains the handler for non-Generic Setup installation steps.

[image: your theme egg - the files used by quick installer]
your theme egg - the files used by quick installer

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where's my Zope Instance?

Where your Zope instance lives depends on the Plone installer or
installation process you used.

Plone Version 3.1.2 onwards

	Buildout

	In a Buildout based installation, you don't need to worry much about
your Zope instance. If you really want to investigate you'll find
the actual instance in [your buildout]/parts/instance. However most
of the key bits (your Plone products, 3rd party products,
your Data.fs) don't actually live there. They are all assembled
together from various parts of your file system by the zope.conf
file which is generated when you run buildout.

Plone Version 3.1.1 or lower

	Plone Installer

	The Plone installers (apart from the Plone 3.1 Universal Installer)
usually drop a Zope instance directory alongside the Zope and Python
software directories. So, for example, a standard Windows
installation, locates your Zope instance at c:\Program Files\Plone
3\Data. On a Mac, it will be called 'instance' and will probably
live in a Plone folder in your applications folder.
The Plone 3.1 Universal Installer, however, will have given you a
buildout based installation.

	Plone Product Package

	If you've installed Zope yourself, you'll have been prompted to
create a Zope instance, so you should have a good idea of where that
is on your system.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Theming Plone »

 	Old-Style Plone Theming »

 	Theming guide for Plone 3 »

Where is what

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

Configuration and Control panel

	Site-Configuration

	Add-ons

	Mail Configuration

	Enabling HTML embed codes

	TinyMCE visual editor for Plone

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

Site-Configuration

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

Add-ons

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

Mail Configuration

Completing this configuration allows your Plone site to send email.
If the mail settings are not configured properly, you will not be able to receive form submissions via email from your site.

Using localhost for email

One common way to configure mail for your Plone site is to use a mail server on the same machine that is hosting Plone.
To do this, you'll first need to configure a mail server, like Postfix [http://www.postfix.org/BASIC_CONFIGURATION_README.html].

SMTP Server: localhost

SMTP Port: 25

ESMTP Username: Leave this blank

ESMTP Password: Leave this blank

Site 'From' Name: [This will appear as the "From" address name]

Site 'From' Address: [emailaddress]@[yourdomain]

Using an external host

The following settings are an example of how you can configure your site to use your Gmail address.
You can also use any external mail server, such as your business or institution email (you can get your SMTP settings from your in-house IT department).

SMTP Server: smtp.gmail.com

SMTP Port: 587

ESMTP Username: [username]@gmail.com

ESMTP Password: [Your Gmail Password]

Site 'From' Name: [This will appear as the "From" address name]

Site 'From' Address: [Your Gmail Address]

Testing the Configuration

You can test the configuration by clicking the "Save and send test e-mail" button at the bottom of the form.
You should receive an email from the email address you specified with the subject "Test email from Plone."

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

Enabling HTML embed codes

Description

Normally, Plone will not allow you to paste the code necessary to embed videos, slideshows or music players from popular websites such as Flickr, YouTube, Google Maps and MySpace. Learn how to adjust the HTML filtering to allow this content.

Important security note

Making these configuration changes has serious security implications for your site.
Plone filters out the tags that are used for HTML embedding for a good reason:
they can be abused by your site users to create privilege escalation attacks.
If you have untrusted people allowed to create content on your Plone site,
then a malicious person could create some "nasty" Javascript in some content,
then trick a person with Admin rights into viewing that content.
That "nasty" Javascript can now do HTTP requests to interact with the Plone site with the full Admin rights granted to the trusted user.

Bottom line: do not use this technique to enable embeddable content in your Plone site unless you are certain that you absolutely trust all users who are allowed to create content in your site.

Plone 4

In Plone 4, there are two steps you need to take in order to easily embed content:

First, go to Site Setup>TinyMCE Visual Editor then click on the Toolbar tab.

	Enable the checkbox next to "Insert/edit Media"

	Scroll down to the bottom of the screen and click "Save"

Then, go to Site Setup>HTML Filtering

	Remove "Object" and "Embed" from the "Nasty Tags" list

	Remove "Object" and "Param" from the "Stripped Tags" list

	Add "Embed" and "iframe" to the "Custom Tags" list

	Scroll down to the bottom of the screen and click "Save"

With these changes made, you should be able to click newly-added "Embed Media" button in the TinyMCE toolbar. You can paste in the URL of a YouTube video, and TinyMCE will do the rest for you!

For a Flickr slideshow, and most other embeds, switch into HTML editing mode and paste in the raw embed code.

Note

To allow completely arbitrary HTML codes, see David Glick's blogpost [http://glicksoftware.com/blog/disable-html-filtering]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

TinyMCE visual editor for Plone

Contents:

	Overview
	Feedback

	Compatibility

	Installation
	Latest version

	Development version

	Usage
	Enable After the Deadline spelling and grammar checker

	Widget configuration

	Developing TinyMCE
	Prerequisites

	First start

	Upgrading

	After each change

	Debugging tinymce javascript

	Updating translations

	Update language files for TinyMCE core

	Compile translation files

	Common pitfalls

	Getting a new upstream version

	Releasing TinyMCE

	Javascript coding standards

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

 	TinyMCE visual editor for Plone »

Overview

Adds support for TinyMCE, a platform independent web based Javascript HTML
WYSIWYG editor, to Plone.

Feedback

Please send any changes, improvements, or suggestions regarding this Plone
product to Four Digits

Compatibility

TinyMCE is tested on Plone 4 and 3, please submit any compatibility issues
you may encounter.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

 	TinyMCE visual editor for Plone »

Installation

Latest version

	Add Products.TinyMCE in your buildout.cfg to the eggs attributes

	Run buildout and (re)start Zope

	Use the quick installer to (re)install the product

For basic installation use the following section in your buildout:

[buildout]
...
eggs =
 ...
 Products.TinyMCE

Development version

Please refer to Developing TinyMCE, it is really important to read and understand the whole section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

 	TinyMCE visual editor for Plone »

Usage

Enable After the Deadline spelling and grammar checker

	Go to the Plone control panel and click on "TinyMCE Visual Editor"

	Click on 'Toolbar' (middle left)

	Make sure that 'spellchecker' is checked.

	Click on 'Libraries' (top right)

	Under "Spellchecker plugin to use", choose 'After the deadline'

	Under AtD Service URL, choose your ATD server's URL. (The default is their
public service)

	It's however recommended that you install your own ATD spellchecker service
See here for more details: http://open.afterthedeadline.com/how-to/get-started/

You should now have AtD enabled and have a spellcheck button in TinyMCE.

Widget configuration

You can configure TinyMCE per-widget level for different fields.

TinyMCE's utility.getConfiguration() looks for a widget specific configuration [https://github.com/plone/Products.TinyMCE/blob/master/Products/TinyMCE/utility.py#L719].
The options below are provided. Please check the source code of getConfiguration()
above for the full list.

	filter_buttons

	allow_buttons

	redefine_parastyles

	parastyles

	rooted

	toolbar_width

Here is an example how to configure field specific TinyMCE button list with reduced
formatting options:

atapi.TextField(
 'text',
 allowable_content_types=('text/html',),
 default_output_type='text/html',
 widget=atapi.RichWidget(
 label=_(u"Long description"),
 description=_(u"Long descriiption about the product with links to the further information"),
 allow_buttons=(
 'pasteword',
 'bg-basicmarkup',
 'bold-button',
 'italic-button',
 'bg-drawers',
 'linklibdrawer-button',
 'linkdrawer-button',
 'removelink-button',
 'source',
 'list-ul-addbutton',
),
),
),

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Configuration and Control panel »

 	TinyMCE visual editor for Plone »

Developing TinyMCE

Prerequisites

If you are on a Mac, install apache-ant from macports. Otherwise:

	Install the Java JDK or JRE packages

	Install Apache Ant

	Add Apache Ant to your systems path environment variable. This is not
required but makes it easier to issue commands to Ant without having to type
the full path for it.

First start

TinyMCE integration in Plone has two core packages:

	Products.TinyMCE: Plone integration

	tinymce: raw tinymce source files

Fork both packages: https://github.com/plone/Products.TinyMCE and
https://github.com/collective/tinymce. Continue with cloning your fork
of Products.TinyMCE to your local machine:

$ git clone git@github.com:<your_git_username>/Products.TinyMCE.git
$ cd Products.TinyMCE

Now you need to tell buildout to use your fork of tinymce. Do that by
opening up buildout.cfg with your favorite editor and changing the
tinymce = ... line in [sources] section so it points to your fork:

- tinymce = git https://github.com/collective/tinymce.git egg=false branch=3.4.7-plone
+ tinymce = git https://github.com/<your_git_username>/tinymce.git egg=false branch=3.4.7-plone

Cool, you are now ready to build your development environment:

$ python2.6 bootstrap.py
$ bin/buildout

What follows is going into src/tinymce, running a script to build TinyMCE
and copy them in skisn directory where Plone can use them. To do so run:

$./upgrade_tinymce.sh

Ok, ready to start Zope and apply upgrade steps to your site. Once started go to
http://localhost:8080/Plone/portal_setup/manage_upgrades and choose
Products.TinyMCE:TinyMCE as a profile. If upgrades are available, run them.
If you see No upgrade avaiable you don't need to run anything.

TODO: difference using development version and developing tinymce

Upgrading

When you upgrade Products.TinyMCE you need to run
the upgrade steps in portal_setup in ZMI.

	Go to /Plone/portal_setup/manage_upgrades

	Run upgrade steps for Products.TinyMCE

After each change

If you change something in src/tinymce you need to rerun the tinymce builder script and
restart Plone

$./upgrade_tinymce.sh
$ bin/instance fg

Warning

Never change files directly in skins, but rather in src/tinymce/

Debugging tinymce javascript

You can have unobfuscated TinyMCE available for your Plone for debugging in two ways

	Separate files: TinyMCE uses internal script loader

	Merged as tiny_mce_full.js

The former is recommended.

Development build

All TinyMCE source code modules are separate in the orignal tree and must be copied for to skins structure:

cd src/tinymce/jscripts/tiny_mce
cp -r * ../../../../Products/TinyMCE/skins/tinymce

In portal_javascripts change tiny_mce.js -> tiny_mce_dev.js.

Fix definitionlist: in skins/tinymce/plugins/definitionlist copy editor_plug.js as editor_plugin_src.js.
Don't know why this thing is broken or what's the proper fix or why Sky is blue.

Uncompressed jQuery adapter must be manually installed too.
From skins/classes/adapter/jquery copy adapter.js as skins/jquery.tinymce.js.

Full concatenated build

Edit upgrade_tinymce.sh to do a full build:

ant -s $tinymce_git_root/build.xml build_full

This will create skins/tinymce/tiny_mce_full.js.

Copy in jquery.tinymce.js (where?)

More info about TinyMCE build process:

	https://github.com/tinymce/tinymce

Updating translations

We use two domains of translations:

	tinymce.po files which contain TinyMCE core translations and which are only
updated when we upgrade to a new version of TinyMCE (see below) - no touchy!

	plone.tinymce.po files which contain translations for our custom code.

Before editing translations

	install i18ndude by running buildout using instructions above.

	make sure your OS has msgfmt command installed

If you change some of our templates or control panels, make sure you rebuild our
plone.tinymce.pot file and re-sync all language files

export BIN=\`pwd\`/bin
cd Products/TinyMCE/locales
$BIN/i18ndude rebuild-pot --exclude "utils support" --pot plone.tinymce.pot --merge plone.tinymce-manual.pot --create plone.tinymce ../
$BIN/i18ndude sync --pot plone.tinymce.pot ./*/LC_MESSAGES/plone.tinymce.po

cd Products/TinyMCE/locales/<your_language>/LC_MESSAGES
msgfmt -o plone.tinymce.mo plone.tinymce.po

Update language files for TinyMCE core

Whenever we upgrade to a new version of TinyMCE, we also need to fetch
the latest language files for TinyMCE core and convert them to .po files,
that Plone can use. You do that by using the scripts in
Products/TinyMCE/utils:

download XML language files
$ cd Products/TinyMCE/utils
$ python wget-xml.py

convert downloaded xml files into .po files
$ python generate-po.py

compile .mo files out of .po files
$ python compile-po.py

create tinymce.pot which is needed for pobuddy.py support
$ cp ../locales/en/LC_MESSAGES/tinymce.po ../locales/tinymce.pot

Compile translation files

A one-liner to compile all translation files goes a little something like this:

$ cd Products/TinyMCE/locales
$ for po in `find . -name "*.po"` ; do msgfmt -o `dirname $po`/`basename $po .po`.mo $po; done

Translating style names

TODO: How????

Common pitfalls

If your TinyMCE is not working as excpected or is not displayed at all,
first check you haven't fallen in one of the following pits.

Building TinyMCE failed

Maybe the upgrade_tinymce.sh script failed halfway through its
process. Stop Zope and rerun the script until you see an output like this:

...
BUILD SUCCESSFUL
Total time: 4 seconds
*** Cleaning old tinymce version ...
*** Copying files ...
*** Removing unneeded files ...
*** Removing unneeded plugins ...
*** Removing unneeded skins ...
*** Updating language files ...
*** Translations already there, copy them over ***

Use correct tinymce branch

Go to src/tinymce/ and make sure you are using the latest plone branch
of TinyMCE. The output should look something like this, with * indicating
which branch you are on:

$ git branch
* 3.4.3-plone
 master

Getting a new upstream version

Let's say current version in Products.TinyMCE is 3.4.3 and upstream is 3.4.7:

$ cd src/tinymce
$ git checkout 3.4.3
$ git checkout -b 3.4.7
$ git rebase --ignore-whitespace --onto 3.4.7-plone 3.4.3 3.4.7

Ignore whitespace makes sure different lineendings are not an issue while merging.

PS: It is highly recommended to use meld for merging:

$ git config --global merge.tool meld

Releasing TinyMCE

	run ./upgrade_tinymce.sh

	rebuild pot and sync (look above)

	compile translation files (look above)

	commit all changes in skins directory with message like "sync with tinymce at revision x"

	increment version in setup.py

	run python setup.py sdist

Javascript coding standards

use jslint, if you don't have it integrated with editor yet, use http://www.jslint.com/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

Installing Add-ons

quick instructions

These instructions cover add-on installation process for Plone 3.3.x and 4 installation.

Introduction

This page covers add-on installation instructions for Plone 4 and Plone 3.3.x systems. Legacy systems are not covered in these instructions.

Prerequisitements

What you need to know in order to install add-ons for Plone

	How to use command line of your operating system. This is a hard requirement - you cannot achieve your goal unless you know how to interact with the command line. Here are basics tutorials for Windows [http://www.hacking-tutorial.com/tips-and-tricks/16-steps-tutorial-basic-command-prompt/] and Linux [http://linuxcommand.org/learning_the_shell.php]

	Working with plain text based configuration files and editing them with a text editor like Notepad

	First create a development / back-up copy of your site. Never install to the working production server directly, without first testing the add-on on a test instance.

Background

Since Plone 3, Plone installations are managed using Buildout. Plone add-ons are distributed as Python modules, also known as eggs.

	the Plone product [http://plone.org/products] download area contains popular add-ons for Plone

	Add-on file downloads are hosted on the PyPi Python package repository [https://pypi.python.org] - along with tons of other Python software

	the buildout.cfg file in your Plone configuration defines which add-ons are available for your sites to install in Site Setup > Add-ons control panel

	the bin/buildout command (or bin/buildout.exe on Windows) in your Plone installation reads buildout.cfg and automatically downloads required packages when run - you do not need to download any Plone add-ons manually

	Plone site setup -> Add ons control panel defines which add-ons are installed for the current Plone site (remember, there can be many Plone sites on a single Zope application server)

Note

Plone add-ons, though Python eggs, must be installed through buildout as only buildout will regenerate the config files reflecting newly downloaded and installed eggs. Other Python installation tools like easy_install and pip do not apply in a Plone context.

Finding add-ons

Browse the plone.org product area [http://plone.org/products] or search on PyPi [https://pypi.python.org/pypi?:action=search&term=plone&submit=search] for possible add-ons.

When you find a suitable add-on you must note down its Python package name. Quite often, this is in the form of a name with a dot in it. For example, for the add-on PloneFormGe the package id is Products.PloneFormGen. The id is visible in the PyPi page URL if it is not mentioned anywhere else. Capitalization is important here!

Before proceeding make sure that the add-on is compatible with your Plone version. If you cannot find this information on the package page please contact the add-on author.

Downloading and configuring an add-on package for Plone

Please do not directly test new add-ons on your production site. Instead, have a development copy of the site around where you can safely test the add-ons. Before proceeding to the production environment, always take a back up copy of your Plone site.

Edit the file buildout.cfg in your Plone folder with a text editor. Find line

eggs =
 Plone
 Pillow
 etc...

There you can include your package in the list.

eggs =
 Plone
 Pillow
 Products.PloneFormGen
 ...

Note

Some older Plone add-ons (released before Plone 3.3.x) also require you to add add-on package name to zcml= section in buildout.cfg. As a a rule of the thumb, all add-ons released since the second half of 2010 should no longer require this.

After the buildout.cfg has been changed run command buildout from the command line. The buildout command reads buildout.cfg and download the packages defined in the eggs section and makes them available for Plone.

Note: Run buildout from command line using the instructions below. You don't double click buildout.exe.

On UNIX

bin/buildout

On Windows (for Plone 4.1)

cd C:\Plone41
bin\buildout.exe

If buildout fails please see the troubleshooting buildout section.

Downloading and configuring add-on package from github

Sometimes you need the newest version of an add-on, this is only suggested for experienced developers or for testing purposes. See this section

Further help

More detailed instructions for installing Plone add-ons are available for dealing with legacy systems.

Please visit the help asking guidelines and Plone support [http://plone.org/support] options page to find further help if these instructions are not enough. Also, contact the add-on author, as listed on Plone product page, to ask specific instructions regarding a particular add-on.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

Custom Content-Types

The current recommended way to develop new custom content-types is by using Dexterity. You'll find the full manual here.

	Dexterity Developer Manual

Up until Plone 4.1, the standard way was to use Archetypes. You can still develop using Archetypes, if you prefer, and they will remain available.

	Content-types with Archetypes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

Dexterity Developer Manual

	Introduction
	History

	Designing with content types

	Prerequisites
	Preparing a development environment

	Creating a package

	Schema-driven types
	The schema

	The FTI

	Testing the type

	Model-driven types
	Adding the type

	Setting the field model

	Setting Factory Type Information

	Custom views
	Simple views

	Display view

	Advanced configuration
	Defaults

	Validators

	Vocabularies

	References

	Rich text, markup and transformations

	Files and images

	Static resources

	Using behaviors

	Event handlers

	Permissions

	Workflow

	Catalog indexing strategies

	Custom add and edit forms

	Custom content classes

	WebDAV and other file representations

	Testing Dexterity types
	Unit tests

	Integration tests

	Mock testing

	Reference
	Fields

	Widgets

	Standard behaviors

	Form schema hints

	Manipulating content objects

	Dexterity XML

	Miscellaneous

Appendixes

	Installing Dexterity

	Behaviors

	Dexterity Developer Manual

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Introduction

This manual will teach you how to build content types using the Dexterity system.

If you have decided that Dexterity is for you, and you are a programmer and comfortable
working on the filesystem, then this manual is a good place to start.

This manual will cover:

	Some basic design techniques for solving problems with content types in Plone

	Getting a Dexterity development environment set up

	Creating a package to house your types

	Building a custom type based on a schema

	Creating custom views and forms for your type

	Advanced customisation, including workflow and security

	Testing your types

	A quick reference to common fields, widgets and APIs

History

Why was Dexterity created?

Dexterity was created to serve two audiences: Administrators/integrators, and developers.

For administrators and integrators, Dexterity offers:

	the ability to create new content types through-the-web

	the ability to switch on/off various aspects (called "behaviors") on a per-type basis

	improved collaboration between integrators (who may define a type's schema, say) and programmers (who may provide re-usable behaviors that the administrator can plug in).

For developers, Dexterity promises:

	the ability to create content types more quickly and easily, and with less boilerplate and repetition, than what is possible with Archetypes or plain CMF types

	content objects with a smaller runtime footprint, to improve performance

	types that use the now-standard zope.interface/zope.schema style of schema, and more broadly support modern idioms that sit a little awkardly with Archetypes and its ilk

How is Dexterity different from Archetypes

Dexterity is an alternative to Archetypes, Plone's venerable content type framework. Being more recent, Dexterity has been able to learn from some of the mistakes that were made Archetypes, and - more importantly - leverage some of the technologies that did not exist when Archetypes was first conceived.

Some of the main differences include:

	Dexterity is able to leverage many technologies that come with newer versions of CMF and Zope 3. This means that the Dexterity framework contains significantly less code than Archetypes. Dexterity also has better automated test coverage.

	Dexterity is more modular where Archetypes is more monolithic. This promises to make it easier to support things like SQL database-backed types, alternative workflow systems, instance-specific sub-types and so on. It also means that many of the components developed for Dexterity, such as the through-the-web schema editor, the "behaviors" system, or the forms construction API (plone.autoform) are re-usable in other contexts, e.g. to build standalone forms or even to augment existing Archetypes-based types.

	Archetypes has its own Schema implementation which is incompatible with the interface-based approached found in zope.interface and zope.schema. The latter is used throughout the Zope stack to describe components and build forms. Various techniques exist to bridge the Archetypes schema to the Zope 3 schema notation, but none are particularly attractive.

	Archetypes uses accessor and mutator methods to get/set values. These are generated and scribbled onto a class at startup. Dexterity uses attribute notation, so whereas in Archetypes you may write context.getFirstName(), in Dexterity you would write context.first_name.

	Archetypes has its own implementation of fields and widgets. It is difficult to re-use these in standalone forms or templates, because they are tied to the idea of a content object. Dexterity uses the de-facto standard z3c.form library instead, which means that the widgets used for standalone forms are the same as those used for content type add- and edit forms.

	Archetypes does not support add forms. Dexterity does, via z3c.form. This means that Dexterity types do not need to use the portal_factory hack to avoid stale objects in content space, and are thus significantly faster and less error prone.

	Archetypes requires a chunk of boilerplate in your product's initialize() method (and requires that your package is registered as a Zope 2 product) and elsewhere. It requires a particular sequence of initialisation calls to register content classes, run the class generator to add accessors/mutators, and set up permissions. Dexterity does away with all that boilerplate, and tries to minimise repetition.

	It is possible to extend the schemata of existing Archetypes types with the archetypes.schemaextender product, although this adds some performance overhead and relies on a somewhat awkward programming technique. Dexterity types were built to be extensible from the beginning, and it is possible to declaratively turn on or off aspects of a type (such as Dublin Core metadata, locking support, ratings, tagging, etc) with re-usable "behaviors".

	Dexterity is built from the ground up to support through-the-web type creation. There are products that achieve the same thing with Archetypes types, but they have to work around a number of limitations in the design of Archetypes that make them somewhat brittle or slow. Dexterity also allows types to be developed jointly through-the-web and on the filesystem. For example, a schema can be written in Python and then extended through the web.

All that said, Archetypes is still an older and more mature framework. Dexterity is a viable alternative to Archetypes in many projects, but if you are happy with Archetypes, you should not immediately rush to rewrite your types to use Dexterity.

There are also some things that Dexterity does not yet support, or, more commonly, services that Plone ships with that currently assume all content objects are built using Archetypes. The current list of "gaps" can be found in the Dexterity issue tracker. You should take a look at this before deciding whether Dexterity will work for you. If in doubt, don't hesitate to write to the Dexterity mailing list and ask for advice.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Designing with content types

How to solve problems with content types

Before we dive into Dexterity, it is worth thinking about the way we design
solutions with content types in Plone. If you are familiar with Archetypes
based development, Grok or Zope 3, then much of this will probably be familiar.

Plone uses the ZODB, an object database, instead of a relational database as its
default content store. The ZODB is well suited to heterogeneous, loosely
structured content such as web pages.

Types in Plone are either containers or items (this distinction is sometimes
called folderish vs. non-folderish). A one-to-many type relationship is typically
modelled as a container (the "one") containing many items (the "many"), although
it is also possible to use references across the content hierarchy.

Each type has a schema – a set of fields with related properties such as a title,
default value, constraints, and so on. The schema is used to generate forms and
describe instances of the type. In addition to schema-driven forms, a type
typically comes with one or more views, and is subject to security (e.g. add
permissions, or per-field read/write permissions) and workflow.

When we attempt to solve a particular content management problem with Plone,
we will often design new content types. For the purposes of this tutorial,
we'll build a simple set of types to help conference organisers. We want to
manage a program consisting of multiple sessions. Each session should be listed
against a track, have a time slot, a title, a description and a presenter. We
also want to manage bios for presenters.

There are many ways to approach this, but here is one possible design:

	A content type Presenter is used to represent presenter bios. Fields
include name, description and professional experience.

	A content type Program represents a given conference program. Besides some
basic metadata, it will list the available tracks. This type is folderish.

	A content type Session represents a session. Sessions can only be added
inside Programs. A Session will contain some information about the session,
and allow the user to choose the track and associate a presenter.

Each type will also have custom views, and we will show how to configure
catalog indexers, security and workflow for the types.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Prerequisites

Setting up a Dexterity project

Preparing a development environment

First, get a working Plone installation. If you don't already have one, the
easiest way to do so is to use one of Plone's installers. Note that for
development purposes, you may use a standalone (non-ZEO), non-root install.

Second, add our standard development tools. If you've used one of our
installers, developer tool configurations are in a separate file,
develop.cfg. Once your site is running, you may activate the development
configuration by using the command:

bin/buildout -c develop.cfg

rather than simply running bin/buildout. The develop.cfg config file
extends the existing buildout.cfg.

If you've created yor own buildout.cfg file rather than using one of the
installers, you'll need to add an equivalent development configuration. The
easiest way to do so is to pick up a copy from the Unified Installer's github repository [https://github.com/plone/Installers-UnifiedInstaller/blob/master/base_skeleton/develop.cfg].

The key tools that you'll need, both supplied by develop.cfg, are:

	A ZopeSkel configuration to supply a package skeleton builder; and

	A test runner.

Note

If you are using Plone earlier than 4.3, you'll need to add
zopeskel.dexterity to the eggs list for the zopeskel part. This supplies
the Dexterity skeleton.

Creating a package

Setting up a package to house your content types

Note

We're going to build a package named example.conference. You may find a
completed version of it in the Collective repository [https://github.com/collective/example.conference].

Typically, our content types will live in a separate package to our theme and
other customisations.

To create a new package, we can start with ZopeSkel and the dexterity
template.

Note

Nothing that we're doing actually requires ZopeSkel or the zopeskel.dexterity skeleton package. It's just a quick way of getting started.

We run the following from the src/ directory

$../bin/zopeskel dexterity example.conference

You may accept all the default suggestions. This will create a directory named
example.conference inside ./src.

Now, take a look at the setup.py file in your new package. Edit the author,
author_email and description fields as you wish. Note a couple of parts of
the generated setup.py file:

install_requires=[
 ...
 'plone.app.dexterity',
 ...
],
...
entry_points="""
-*- Entry points: -*-
[z3c.autoinclude.plugin]
target = plone
""",

The addition of plone.app.dexterity to our install requirements
assures that we'll have dexterity loaded. Our example
code won't work without it. The specification of plone as a
z3c.autoinclude.plugin entry point ensures that we won't need to separately
specify our zcml in buildout.

Now, let's take a look at configure.zcml in the examples/conference directory of our project. Again, we want to note a few parts:

<configure ...>

 <includeDependencies package="." />

 <browser:resourceDirectory
 name="example.conference"
 directory="resources" />

 <genericsetup:registerProfile
 name="default"
 title="Example Dexterity Product"
 directory="profiles/default"
 description="Extension profile for Example Dexterity Product"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

Here, with the includeDependencies tag we automatically include the ZCML configuration for all
packages listed under install_requires in setup.py.
The alternative would be to manually add a line like
<include package="plone.app.dexterity" /> for each dependency.

The browser.resourceDirectory command creates a directory for static resources that we want to make available through the web.

Finally, we register a GenericSetup profile to make the type
installable, which we will build up over the next several sections.

When you've got your project tuned up, return to your buildout/instance directory and edit buildout.cfg to add example.conference to your eggs list and src/example.conference to your develop sources list:

eggs =
 Plone
 ...
 example.conference

...
develop =
 ...
 src/example.conference

Run bin/buildout -c develop.cfg to add your new product to the
configuration. (Or, just bin/buildout if you don't have a separate develop.cfg.)

The buildout should now configure Plone, Dexterity and the
example.conference package.

We are now ready to start adding types.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Schema-driven types

Creating a minimal type based on a schema

The schema

A simple Dexterity type consists of a schema and an FTI (Factory Type
Information, the object configured in portal_types in the ZMI).
We’ll create the schemata here, and the FTI on the next page.

Each schema is typically in a separate module. Thus, we will add three
files to our product: presenter.py, program.py, and session.py.
Each will start off with a schema interface.

Creating base files

Since we created our example.conference command via ZopeSkel, we'll be able to use its addcontent command to add base files for our content types. addcontent must be used from inside your new package.

Note

If you didn't use ZopeSkel, you'll need to add the files yourself. We'll supply the full source here, and you may refer to the example repository.

Typical addcontent use starting out at the buildout directory is:

$ cd src/example.conference/
$../../bin/paster addcontent -l
Available templates:
 dexterity_behavior: A behavior skeleton
 dexterity_content: A content type skeleton

The "-l" lists available content templates.

Note

At this point, you may receive an error message beginning with
pkg_resources.DistributionNotFound. Do not follow the error messages
advice to run python setup.py. Instead, check to make sure that you have
added your package to the eggs and develop sections of your buildout and
have run buildout. This loads package dependencies that are required to run
addcontent.

Now, let's add two of the three content types, for the conference sessions and programs.
We'll do presenters in the next section as a model-driven type.

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Session
Enter contenttype_description (Content type description) ['Description of the Example Type']: A session in a conference
Enter folderish (True/False: Content type should act as a container) [False]: False
Enter global_allow (True/False: Globally addable) [True]: False
Enter allow_discussion (True/False: Allow discussion) [False]:

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Program
Enter contenttype_description (Content type description) ['Description of the Example Type']: A conference program
Enter folderish (True/False: Content type should act as a container) [False]: True
Enter global_allow (True/False: Globally addable) [True]:
Enter allow_discussion (True/False: Allow discussion) [False]:

Notice that we chose to make the Conference type a container, because we will
want it to be able to contain sessions. Likewise, we set Globally addable` for
the Session type to False, as we'll only want to allow them to be added inside
programs.

If you check example.conference/example/conference, you'll discover that
Python source files program.py, session.py and presenter.py have been added. If
you explore example.conference/example/conference/profiles/default/types,
you'll also find XML files setting the Factory Type Information for each new
type. We'll customize all of these.

Setting the schema

Start with program.py. Notice the boilerplate:

If you want a schema-defined interface, delete the model.load
line below and delete the matching file in the models sub-directory.
If you want a model-based interface, edit
models/program.xml to define the content type
and add directives here as necessary.

model.load("models/program.xml")

Since we're going to be defining our fields via Zope schema rather than an XML model, delete all of that.

Next, add schema declarations for our fields. The top part of the file should look like:

from example.conference import MessageFactory as _
from plone.app.textfield import RichText
from plone.supermodel import model
from zope import schema

class IProgram(model.Schema):
 """A conference program. Programs can contain Sessions.
 """

 title = schema.TextLine(
 title=_(u"Program name"),
)

 description = schema.Text(
 title=_(u"Program summary"),
)

 start = schema.Datetime(
 title=_(u"Start date"),
 required=False,
)

 end = schema.Datetime(
 title=_(u"End date"),
 required=False,
)

 details = RichText(
 title=_(u"Details"),
 description=_(u"Details about the program"),
 required=False,
)

We've also removed unnecessary import declarations.

If you haven't developed for Plone before, take special note of the from example.conference import MessageFactory as _ code. This is to aid future
internationalisation of the package. Every string that is presented to
the user should be wrapped in _() as shown with the titles and
descriptions below.

The message factory lives in the package root __init__.py file:

from zope.i18nmessageid import MessageFactory

_ = MessageFactory("example.conference")

Notice how we use the package name as the translation domain.

Notice how we use the field names title and description for the name and
summary. We do this to provide values for the default title and
description metadata used in Plone’s folder listings and searches, which
defaults to these fields. In general, every type should have a title
field, although it could be provided by behaviors (more on those later).

Save program.py.

session.py for the Session type should look like this:

from example.conference import MessageFactory as _
from plone.app.textfield import RichText
from plone.supermodel import model
from zope import schema

class ISession(model.Schema):
 """A conference session. Sessions are managed inside Programs.
 """

 title = schema.TextLine(
 title=_(u"Title"),
 description=_(u"Session title"),
)

 description = schema.Text(
 title=_(u"Session summary"),
)

 details = RichText(
 title=_(u"Session details"),
 required=False
)

Note that we haven’t added information about speakers or tracks yet.
We’ll do that when we cover vocabularies and references later.

Schema interfaces vs. other interfaces

As you may have noticed, each schema is basically just an interface
(zope.interface.Interface) with fields.
The standard fields are found in the zope.schema [http://pypi.python.org/pypi/zope.schema] package.
You should look at its interfaces
(parts/omelette/zope/schema/interfaces.py) to learn about the various
schema fields available, and review the online documentation [http://pypi.python.org/pypi/zope.schema] for the
package. You may also want to look up plone.namedfile [http://pypi.python.org/pypi/plone.namedfile], which you can
use if you require a file field, plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield], which can be used
for references, and plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield], which supports rich text
with a WYSIWYG editor. We will cover these field types later in this
manual. They can also be found in the reference at the end.

Unlike a standard interface, however, we are deriving from model.Schema
(actually, plone.supermodel.model.Schema). This is just a marker
interface that allows us to add some form hints to the interface, which
are then used by Dexterity (actually, the plone.autoform [http://pypi.python.org/pypi/plone.autoform] package) to
construct forms. Take a look at the plone.autoform [http://pypi.python.org/pypi/plone.autoform]
documentation to learn more about the various hints that are possible.
The most common ones are from plone.autoform.directives.
Use fieldset() to define groups of fields,
widget() to set widgets for particular fields and
omitted() to hide one or more fields from the form.
We will see examples of these later in the manual.

The FTI

Adding a Factory Type Information object for the type

With the schema in place, we just need to make our types installable. We
do this with GenericSetup. Most of this was set up when we used addcontent to add the content type boilerplate.

Look in the types.xml file in your packages example/conference/profiles/default directory:

<object name="portal_types">
 <object name="example.conference.program" meta_type="Dexterity FTI" />
 <object name="example.conference.session" meta_type="Dexterity FTI" />
</object>

We use the package name as a prefix and the type name in lowercase to
create a unique name. It is important that the meta_type is
Dexterity FTI.

We then need to add/edit an XML file for each of the types, where the file
name matches the type name.

The Session type, in example.conference.session.xml, should look like this:

<?xml version="1.0"?>
<object name="example.conference.session"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Session</property>
 <property name="description"
 i18n:translate="">A session in a program</property>
 <property name="icon_expr">string:${portal_url}/document_icon.png</property>
 <property name="factory">example.conference.session</property>
 <property name="global_allow">False</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types" />
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.session.ISession</property>
 <property name="klass">example.conference.session.Session</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

There is a fair amount of boilerplate here which could actually be
omitted, because the Dexterity FTI defaults will take care of most of
this. However, it is useful to see the options available so that you
know what you can change.

The important lines here are:

	The name attribute on the root element must match the name in
types.xml and the filename.

	We use the package name as the translation domain again, via
i18n:domain.

	We set a title and description for the type

	We also specify an icon. Here, we use a standard icon from Plone’s
plone_images skin layer. You’ll learn more about static resources
later.

	We have set global_allow to False,
since these objects should only be addable inside a Program..

	The schema interface is referenced by the schema property.

	We set the klass property to the class defined in the boilerplate file.
If you were creating this yourself, you could have instead just used
plone.dexterity.content.Item or
plone.dexterity.content.Container.

	We specify the name of an add permission. The default
cmf.AddPortalContent should be used unless you configure a custom
permission. Custom permissions are convered later in this manual.

	We add a behavior. Behaviors are re-usable aspects providing
semantics and/or schema fields. Here, we add the INameFromTitle
behavior, which will give our content object a readable id based on
the title property. We’ll cover other behaviors later.
We removed the IBasic behavior (which would supply title and description fields)
as we have alternative fields.

The Program, in example.conference.program.xml, looks like this:

<?xml version="1.0"?>
<object name="example.conference.program"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Program</property>
 <property name="description"
 i18n:translate="">Conference Program</property>
 <property name="icon_expr">string:${portal_url}/folder_icon.png</property>
 <property name="factory">example.conference.program</property>
 <property name="global_allow">True</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types">
 <element value="example.conference.session" />
 </property>
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.program.IProgram</property>
 <property name="klass">example.conference.program.Program</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

We've edited this one a little from the boilplate: the difference here is that
we filter the containable types (filter_content_types and
allowed_content_types) to allow only Sessions to be added inside this
folder.

Testing the type

How to start up Plone and test the type, and some trouble-shooting tips.

With a schema and FTI for each type, and our GenericSetup profile
registered in configure.zcml, we should be able to test our type. Make
sure that you have run a buildout, and then start ./bin/instance fg as
normal. Add a Plone site, and go to the portal_quickinstaller in the
ZMI. You should see your package there and be able to install it.

Once installed, you should be able to add objects of the new content
types.

If Zope doesn’t start up:

	Look for error messages on the console, and make sure you start in
the foreground with ./bin/instance fg. You could have a syntax
error or a ZCML error.

If you don’t see your package in portal_quickinstaller:

	Ensure that the package is either checked out by mr.developer or
that you have a develop line in buildout.cfg to load it as a
develop egg. develop = src/* should suffice, but you can also add
the package explicitly, e.g. with
develop = src/example.conference.

	Ensure that the package is actually loaded as an egg. It should be
referenced in the eggs section under [instance] .

	You can check that the package is correctly configured in the
buildout by looking at the generated bin/instance script
(bin\instance-script.py on Windows). There should be a line for
your package in the list of eggs at the top of the file.

	Make sure that the package’s ZCML is loaded. You can do this by
installing a ZCML slug (via the zcml option in the [instance]
section of buildout.cfg) or by adding an <include /> line in
another package’s configure.zcml. However, the easiest way with
Plone 3.3 and later is to add the z3c.autoinclude.plugin entry
point to setup.py.

	Ensure that you have added a <genericsetup:registerProfile />
stanza to configure.zcml.

If the package fails to install in portal_quickinstaller:

	Look for errors in the error_log at the root of the Plone site, in
your console, or in your log files.

	Check the syntax and placement of the profile files. Remember that
you need a types.xml listing your types, and corresponding files in
types/*.xml.

If your forms do not look right (e.g. you are missing custom widgets):

	Make sure your schema derives from model.Schema.

	Remember that the directives require you to specify the correct field
name, even if they are placed before or after the relevant field.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Model-driven types

In the previous section, we defined two types by using Zope schema. In this
section, we're going to define a type's fields using an XML model file.

The great advantage of using a model file is that we can prototype the content
type in Dexterity's through-the-web field editor, then export the XML model file
for incorporation into our package.

XML may be used to do pretty much anything you could do via Zope schema. Many
users not already schooled in Zope schema will find this by far the easiest and
fastest way to create Dexterity content types.

Adding the type

As in the previous section, we'll use addcontent to add our content type to
the project. This type will be for conference presenters.

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Presenter
Enter contenttype_description (Content type description) ['Description of the Example Type']: A person presenting a conference session
Enter folderish (True/False: Content type should act as a container) [False]: False
Enter global_allow (True/False: Globally addable) [True]:
Enter allow_discussion (True/False: Allow discussion) [False]:

Setting the field model

Look in example.conference/example/conference/models/presenter.xml for a bare model file created by addcontent. Let's elaborate it:

<model xmlns:form="http://namespaces.plone.org/supermodel/form"
 xmlns:security="http://namespaces.plone.org/supermodel/security"
 xmlns:marshal="http://namespaces.plone.org/supermodel/marshal"
 xmlns="http://namespaces.plone.org/supermodel/schema">
 <schema>
 <field name="name" type="zope.schema.TextLine">
 <description/>
 <title>Name</title>
 </field>
 <field name="description" type="zope.schema.Text">
 <description/>
 <title>A short summary</title>
 </field>
 <field name="bio" type="plone.app.textfield.RichText">
 <description/>
 <required>False</required>
 <title>Bio</title>
 </field>
 <field name="photo" type="plone.namedfile.field.NamedBlobImage">
 <description>Please upload an image.</description>
 <required>False</required>
 <title>Photo</title>
 </field>I
 </schema>
</model>

The XML name spaces we use are described in the Dexterity XML reference
section.

That's all we need! To see why, look in the generated file presenter.py:

from example.conference import MessageFactory as _
from plone.supermodel import model
from zope import schema

class IPresenter(model.Schema):
 """
 Schema for Conference Presenter content type
 """

 model.load("models/presenter.xml")

Note the model.load directive. We'd deleted that when we created schema-driven field sets. Now, we leave it in to automatically load our model file.

Setting Factory Type Information

This part of the process is identical to what we explained for schema-driven
type.

Look in the types.xml file in your packages
example/conference/profiles/default directory. It should now contain:

<object name="portal_types">
 <object name="example.conference.program" meta_type="Dexterity FTI" />
 <object name="example.conference.session" meta_type="Dexterity FTI" />
 <object name="example.conference.presenter" meta_type="Dexterity FTI" />
</object>

For the Presenter type, we have example.conference.presenter.xml:

<?xml version="1.0"?>
<object name="example.conference.presenter"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Presenter</property>
 <property name="description"
 i18n:translate="">Conference Presenter</property>
 <property name="icon_expr">string:${portal_url}/document_icon.png</property>
 <property name="factory">example.conference.presenter</property>
 <property name="global_allow">True</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types" />
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.presenter.IPresenter</property>
 <property name="klass">example.conference.presenter.Presenter</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

Note that this is addable anywhere.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Custom views

Configuring custom views and using display forms

Simple views

Creating basic views

So far, our types have used the default views.
They use the display widgets from z3c.form [http://pypi.python.org/pypi/z3c.form], much like the add and edit forms use the edit widgets.
This is functional, but not very attractive.
Most types will need one or more custom view templates.

Dexterity types are no different from any other content type in Plone.
You can register a view for your schema interface, and it will be available on your type.
If the view is named view, it will be the default view, at least if you use the standard FTI configuration.
This is because the FTI’s default_view property is set to view, and view is in the list of view_methods.

Note

addcontent will have created a "SampleView" class in each content type's .py file. Just rename it to "View" to follow the example.

First create a view registration with a <browser:page /> ZCML directive in your `configure.zcml file:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 ...

 <browser:page
 name="view"
 for="example.conference.program.IProgram"
 class="example.conference.program.ProgramView"
 template="templates/programview.pt"
 permission="zope2.View"
 />

</configure>

Secondly add a browser view in program.py as follows:

from Acquisition import aq_inner
from Products.CMFCore.utils import getToolByName
from Products.Five import BrowserView

from example.conference.session import ISession

class ProgramView(BrowserView):

 def sessions(self):
 """Return a catalog search result of sessions to show
 """

 context = aq_inner(self.context)
 catalog = getToolByName(context, 'portal_catalog')

 return catalog(object_provides=ISession.__identifier__,
 path='/'.join(context.getPhysicalPath()),
 sort_on='sortable_title')

We have added sessions, a helper method which will be used in the view.

You can add any methods to the view.
They will be available to the template via the view variable.
The content object is available via context.

Finaly add a template in templates/programview.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main"
 tal:define="toLocalizedTime nocall:context/@@plone/toLocalizedTime">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 class="documentFirstHeading" tal:content="context/title" />

 <div class="discreet">
 <tal:block condition="context/start">
 From:

 </tal:block>
 <tal:block condition="context/end">
 To:

 </tal:block>
 </div>

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <p class="documentDescription" tal:content="context/description" />

 <div tal:replace="structure provider:plone.abovecontentbody" />

 <div tal:content="structure context/details/output" />

 <h2 i18n:translate="heading_sessions">Sessions</h2>
 <dl>
 <tal:block repeat="session view/sessions">
 <dt>
 <a tal:attributes="href session/getURL"
 tal:content="session/Title" />
 </dt>
 <dd tal:content="session/Description" />
 </tal:block>
 </dl>

 <div tal:replace="structure provider:plone.belowcontentbody" />

 </tal:main-macro>
</metal:main>

</body>
</html>

For the most part, this template outputs the values of the various fields, using the sessions() method on the view to obtain the sessions contained within the program.

Note

Notice how the details RichText field is output as tal:content="structure context/details/output".
The structure keyword ensures that the rendered HTML is not escaped.
The extra traversal to details/output is necessary because the RichText field actually stores a RichTextValue object that contains not only the raw text as entered by the user, but also a MIME type (e.g. text/html) and the rendered output text.
RichText fields are covered in more detail later in this manual.

The view for Presenter is even simpler:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 ...

 <browser:page
 name="view"
 for="example.conference.program.IPresenter"
 template="templates/presenterview.pt"
 permission="zope2.View"
 />

</configure>

The template, in templates/presenterview.pt, is similar to the previous template:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 class="documentFirstHeading" tal:content="context/title" />

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <p class="documentDescription" tal:content="context/description" />

 <div tal:replace="structure provider:plone.abovecontentbody" />

 <div tal:content="structure context/bio/output" />

 <div tal:replace="structure provider:plone.belowcontentbody" />

 </tal:main-macro>
</metal:main>

</body>
</html>

Obviously, these views are very basic.
Much more interesting views could be created by putting a little more work into the templates.

You should also realise that you can create any type of view using this technique.
Your view does not have to be related to a particular content type, even.
You could set the context to Interface, for example, to make a view that’s available on all types.

Display view

Using display widgets in your views

In the previous section, we created a browser view.
This kind of view is the most common.
Sometimes we want to make use of the widgets and information in the type’s schema more directly.
For example to invoke transforms or re-use more complex HTML.

To do this, you can use a display view.
This is really just a view base class that knows about the schema of a type.
We will use an example in session.py, with a template in templates/sessionview.pt.

Note

Display view involve the same type of overhead as add- and edit-forms.
If you have complex content type with many behaviors, fieldsets and
widget hints, you may notice a slow-down. This can be a problem
on high volume sites.

The new view class is pretty much the same as before, except that we derive from plone.dexterity.browser.view.DefaultView:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 ...

 <browser:page
 name="view"
 for="example.conference.program.ISession"
 class="example.conference.session.SessionView"
 template="templates/sessionview.pt"
 permission="zope2.View"
 />

</configure>

from plone.dexterity.browser.view import DefaultView

class SessionView(DefaultView):
 pass

This gives our view a few extra properties that we can use in the template:

	view.w

	a dictionary of all the display widgets, keyed by field names.
For fields provided by behaviors, that is usually prefixed with the behavior interface name (IBehaviorInterface.field_name).
For the default schema, unqualified names apply.

	view.widgets

	contains a list of widgets in schema order for the default fieldset.

	view.groups

	contains a list of fieldsets in fieldset order.

	view.fieldsets

	contains a dictionary mapping fieldset name to fieldset.

	widgets

	On a fieldset (group), you can access a widgets list to get widgets in that fieldset.

The w dict is the most commonly used.

The templates/sessionview.pt template contains the following:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main">
 <div tal:replace="structure provider:plone.abovecontenttitle" />
 <h1 class="documentFirstHeading" tal:content="context/title" />
 <div tal:replace="structure provider:plone.belowcontenttitle" />
 <p class="documentDescription" tal:content="context/description" />
 <div tal:replace="structure provider:plone.abovecontentbody" />
 <div tal:content="structure view/w/details/render" />
 <div tal:replace="structure provider:plone.belowcontentbody" />
 </tal:main-macro>
</metal:main>

</body>
</html>

Notice how we use expressions like view/w/details/render (where details is the field name) to get the rendering of a widget.
Other properties include __name__, the field name, and label, the field title.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Advanced configuration

Further configuration and tips

	Defaults

	Validators
	Constraints

	Invariants

	Form validators

	Vocabularies
	Static vocabularies

	Dynamic sources

	Parameterised sources

	Named vocabularies

	Some common vocabularies

	The autocomplete selection widget

	References
	Back references

	Rich text, markup and transformations
	The RichTextValue

	Using rich text fields in templates

	Alternative transformations

	Files and images

	Static resources
	Registering a static resource directory

	Importing CSS and JavaScript files in templates

	Registering resources with Plone’s resource registries

	Image resources

	Content type icons

	Using behaviors

	Event handlers

	Permissions
	Performing permission checks in code

	Content type add permissions

	Protecting views and forms

	Protecting form fields

	Workflow
	A DCWorkflow refresher

	Creating a new workflow

	A note about add permissions

	Catalog indexing strategies
	Making content searchable

	Creating and using custom indexes

	Custom add and edit forms
	Edit forms

	Content add sequence

	Custom add forms

	Custom content classes
	Custom class caveats

	WebDAV and other file representations
	Default WebDAV behaviour

	Customising WebDAV behaviour

	How it all works

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Defaults

Default values for fields on add forms

It is often useful to calculate a default value for a field. This value
will be used on the add form, before the field is set.

To continue with our conference example, let’s set the default values
for the start and end dates to one week in the future and ten days
in the future, respectively. We can do this by adding the following to
program.py:

import datetime

def startDefaultValue():
 return datetime.datetime.today() + datetime.timedelta(7)

def endDefaultValue():
 return datetime.datetime.today() + datetime.timedelta(10)

We also need to modify IProgram so the start and end fields
use these functions as their defaultFactory:

class IProgram(model.Schema):

 start = schema.Datetime(
 title=_(u"Start date"),
 required=False,
 defaultFactory=startDefaultValue,
)

 end = schema.Datetime(
 title=_(u"End date"),
 required=False,
 defaultFactory=endDefaultValue,
)

The defaultFactory is a function that will be called when the add form
is loaded to determine the default value.

The value returned by the method should be a value that’s allowable for
the field. In the case of Datetime fields, that’s a Python datetime
object.

It is also possible to write a context-aware default factory that will be
passed the container for which the add form is being displayed:

from zope.interface import provider
from zope.schema.interfaces import IContextAwareDefaultFactory

@provider(IContextAwareDefaultFactory)
def getContainerId(context):
 return context.getId()

It is possible to provide different default values depending on the type
of context, a request layer, the type of form, or the type of widget
used. See the z3c.form [https://pypi.python.org/pypi/z3c.form#look-up-value-from-default-adapter] documentation for more details.

We’ll cover creating custom forms later in this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Validators

Creating custom validators for your type

Many applications require some form of data entry validation. The
simplest form of validation you get for free – the z3c.form [http://pypi.python.org/pypi/z3c.form] library
ensures that all data entered on Dexterity add and edit forms is valid
for the field type.

It is also possible to set certain properties on the fields to add
further validation (or even create your own fields with custom
validation logic, although that is a lot less common). These properties
are set as parameters to the field constructor when the schema interface
is created. You should see the zope.schema [http://pypi.python.org/pypi/zope.schema] package for details, but
the most common constraints are:

	required=True/False

	to make a field required or optional;

	min and max

	used for Int, Float, Datetime, Date, and Timedelta
fields, specify the minimum and maximum (inclusive) allowed values of
the given type;

	min_length and max_length

	used for collection fields (Tuple, List, Set, Frozenset,
Dict) and text fields (Bytes, BytesLine, ASCII,
ASCIILine, Text, TextLine), set the minimum and maximum
(inclusive) length of a field.

Constraints

If this does not suffice, you can pass your own constraint function to a
field. The constraint function should take a single argument: the value
that is to be validated. This will be of the field’s type. The function
should return a boolean True or False.

def checkForMagic(value):
 return 'magic' in value

Note

Hint: The constraint function does not have access to the context, but
if you need to acquire a tool, you can use the
zope.app.component.hooks.getSite() method to obtain the site root.

To use the constraint, pass the function as the constraint argument to
the field constructor, e.g.:

my_field = schema.TextLine(title=_(u"My field"), constraint=checkForMagic)

Constraints are easy to write, but do not necessarily produce very
friendly error messages. It is however possible to customise these error
messages using z3c.form [http://pypi.python.org/pypi/z3c.form] error view snippets. See the z3c.form
documentation for more details.

Invariants

You’ll also notice that constraints only check a single field value. If
you need to write a validator that compares multiple values, you can use
an invariant. Invariants use exceptions to signal errors, which are
displayed at the top of the form rather than next to a particular field.

To illustrate an invariant, let’s make sure that the start date of a
Program is before the end date. In program.py, we add the following.
Code not relevant to this example is snipped with an ellipsis (…):

...

from zope.interface import invariant, Invalid

class StartBeforeEnd(Invalid):
 __doc__ = _(u"The start or end date is invalid")

class IProgram(model.Schema):

 ...

 start = schema.Datetime(
 title=_(u"Start date"),
 required=False,
)

 end = schema.Datetime(
 title=_(u"End date"),
 required=False,
)

 ...

 @invariant
 def validateStartEnd(data):
 if data.start is not None and data.end is not None:
 if data.start > data.end:
 raise StartBeforeEnd(_(u"The start date must be before the end date."))

...

Form validators

Finally, you can write more powerful validators by using the z3c.form [http://pypi.python.org/pypi/z3c.form]
widget validators. For details see the z3c.form validators section [http://docs.plone.org/develop/plone/forms/z3c.form.html#validators].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Vocabularies

Creating your own static and dynamic vocabularies

Vocabularies are normally used in conjunction with selection fields, and
are supported by the zope.schema [http://pypi.python.org/pypi/zope.schema] package, with widgets provided by
z3c.form [http://pypi.python.org/pypi/z3c.form].

Selection fields use the Choice field type. To allow the user to
select a single value, use a Choice field directly:

class IMySchema(model.Schema):
 myChoice = schema.Choice(...)

For a multi-select field, use a List, Tuple, Set or
Frozenset with a Choice as the value_type:

class IMySchema(model.Schema):
 myList = schema.List(..., value_type=schema.Choice(...))

The choice field must be passed one of the following arguments:

	values can be used to give a list of static values;

	source can be used to refer to an IContextSourceBinder or
ISource instance;

	vocabulary can be used to refer to an IVocabulary instance or
(more commonly) a string giving the name of an IVocabularyFactory
named utility.

In the remainder of this section, we will show the various techniques
for defining vocabularies through several iterations of a new field
added to the Program type allowing the user to pick the organiser
responsible for the program.

Static vocabularies

Our first attempt uses a static list of organisers. We use the message
factory to allow the labels (term titles) to be translated. The values
stored in the organizer field will be a unicode object representing
the chosen label, or None if no value is selected:

from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm

organizers = SimpleVocabulary(
 [SimpleTerm(value=u'Bill', title=_(u'Bill')),
 SimpleTerm(value=u'Bob', title=_(u'Bob')),
 SimpleTerm(value=u'Jim', title=_(u'Jim'))]
)

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=organizers,
 required=False,
)

Since required is False, there will be a no value option
in the drop-down list.

Dynamic sources

The static vocabulary is obviously a bit limited. Not only is it
hard-coded in Python, it also does not allow separation of the stored
values and the labels shown in the selection widget.

We can make a one-off dynamic vocabulary using a context source binder.
This is simply a callable (usually a function or an object with a
__call__ method) that provides the IContextSourceBinder
interface and takes a context parameter. The context argument is the
context of the form (i.e. the folder on an add form, and the content
object on an edit form). The callable should return a vocabulary, which
is most easily achieved by using the SimpleVocabulary class from
zope.schema [http://pypi.python.org/pypi/zope.schema].

Here is an example using a function to return all users in a particular
group:

from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary
from Products.CMFCore.utils import getToolByName
from zope.interface import directlyProvides

def possibleOrganizers(context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById('organizers')
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)
directlyProvides(possibleOrganizers, IContextSourceBinder)

We use the PAS API to get the group and its members, building a list,
which we then turn into a vocabulary.

When working with vocabularies, you’ll come across some terminology that
is worth explaining:

	A term is an entry in the vocabulary. The term has a value. Most
terms are tokenised terms which also have a token, and some terms
are titled, meaning they have a title that is different to the
token.

	The token must be an ASCII string. It is the value passed with the
request when the form is submitted. A token must uniquely identify a
term.

	The value is the actual value stored on the object. This is not
passed to the browser or used in the form. The value is often a
unicode object, but can be any type of object.

	The title is a unicode object or translatable message. It is used
in the form.

The SimpleVocabulary class contains two class methods that can be used
to create vocabularies from lists:

	fromValues()

	takes a simple list of values and returns a tokenised vocabulary where
the values are the items in the list, and the tokens are created by
calling str() on the values.

	fromItems()

	takes a list of (token, value) tuples and creates a tokenised
vocabulary with the token and value specified.

You can also instantiate a SimpleVocabulary yourself and pass a list
of terms in the initialiser.
The createTerm() class method can be used to create a term from a
value, token and title. Only the value is required.

In the example above, we have chosen to create a SimpleVocabulary from
terms with the user id used as value and token, and the user’s full name
as a title.

To use this context source binder, we use the source argument to the
Choice constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 source=possibleOrganizers,
 required=False,
)

Parameterised sources

We can improve this example by moving the group name out of the
function, allowing it to be set on a per-field basis. To do so, we turn
our IContextSourceBinder into a class that is initialised with the
group name:

from zope.interface import implements

class GroupMembers(object):
 """Context source binder to provide a vocabulary of users in a given
 group.
 """

 implements(IContextSourceBinder)

 def __init__(self, group_name):
 self.group_name = group_name

 def __call__(self, context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById(self.group_name)
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)

Again, the source is set using the source argument to the Choice
constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 source=GroupMembers('organizers'),
 required=False,
)

When the schema is initialised on startup, a GroupMembers object
is instantiated, storing the desired group name. Each time the
vocabulary is needed, this object will be called (i.e. the
__call__() method is invoked) with the context as an argument,
expected to return an appropriate vocabulary.

Named vocabularies

Context source binders are great for simple dynamic vocabularies. They
are also re-usable, since you can import the source from a single
location and use it in multiple instances.

Sometimes, however, we want to provide an additional level of
decoupling, by using named vocabularies. These are similar to context
source binders, but are components registered as named utilities,
referenced in the schema by name only. This allows local overrides of
the vocabulary via the Component Architecture, and makes it easier to
distribute vocabularies in third party packages.

Note

Named vocabularies cannot be parameterised in the way as we did
with the GroupMembers context source binder, since they are looked up
by name only.

We can turn our first "members in the organizers group" vocabulary
into a named vocabulary by creating a named utility providing
IVocabularyFactory. Add to your configure.zcml:

<utility
 name="example.conference.Organisers"
 provides="zope.schema.interfaces.IVocabularyFactory"
 component="example.conference.vocabularies.OrganizersVocabularyFactory"
/>

By convention, the vocabulary name is prefixed with the package name, to
ensure uniqueness.

Note

Then create a vocabulary factory in vocabularies.py:

...

class OrganizersVocabularyFactory(object):

 def __call__(self, context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById('organizers')
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)

We can make use of this vocabulary in any schema by passing its name to
the vocabulary argument of the Choice field constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=u"example.conference.Organizers",
 required=False,
)

Some common vocabularies

As you might expect, there are a number of standard vocabularies that
come with Plone. These are found in the plone.app.vocabularies [http://pypi.python.org/pypi/plone.app.vocabularies]
package. Some of the more useful ones include:

	plone.app.vocabularies.AvailableContentLanguages

	a list of all available content languages;

	plone.app.vocabularies.SupportedContentLanguages

	a list of currently supported content languages;

	plone.app.vocabularies.Roles

	the user roles available in the site;

	plone.app.vocabularies.PortalTypes

	a list of types installed in portal_types;

	plone.app.vocabularies.ReallyUserFriendlyTypes

	a list of those types that are likely to mean something to users;

	plone.app.vocabularies.Workflows

	a list of workflows;

	plone.app.vocabularies.WorkflowStates

	a list of all states from all workflows;

	plone.app.vocabularies.WorkflowTransitions

	a list of all transitions from all workflows.

In addition, the package plone.principalsource [http://pypi.python.org/pypi/plone.principalsource] provides several
vocabularies that are useful for selecting users and groups in a
Dexterity context:

	plone.principalsource.Users

	provides users

	plone.principalsource.Groups

	provides groups

	plone.principalsource.Principals

	provides security principals (users or groups)

Importantly, these sources are not iterable, which means that you cannot
use them to provide a list of all users in the site. This is
intentional: calculating this list can be extremely expensive if you
have a large site with many users, especially if you are connecting to
LDAP or Active Directory. Instead, you should use a search-based source
such as one of these.

We will use one of these together with an auto-complete widget to
finalise our organizer field. To do so, we need to add
plone.principalsource as a dependency of example.conference. In
setup.py, we add:

install_requires=[
 ...
 'plone.principalsource',
],

Note

Since we use an <includeDependencies /> line in configure.zcml,
we do not need a separate <include /> line in configure.zcml for
this new dependency.

The organizer field now looks like:

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=u"plone.principalsource.Users",
 required=False,
)

The autocomplete selection widget

The organizer field now has a query-based source. The standard
selection widget (a drop-down list) is not capable of rendering such a
source. Instead, we need to use a more powerful widget. For a basic
widget, see z3c.formwidget.query [http://pypi.python.org/pypi/z3c.formwidget.query], but in a Plone context, you will
more likely want to use plone.formwidget.autocomplete [http://pypi.python.org/pypi/plone.formwidget.autocomplete], which extends
z3c.formwidget.query to provide friendlier user interface.

The widget is provided with plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity], so we do not need to
configure it ourselves. We only need to tell Dexterity to use this
widget instead of the default, using a form widget hint as shown
earlier. At the top of program.py, we add the following import:

from plone.formwidget.autocomplete import AutocompleteFieldWidget

Note

If we were using a multi-valued field, such as a List with a
Choice value_type, we would use the
AutocompleteMultiFieldWidget instead.

In the IProgram schema (which, recall, derives from model.Schema and
is therefore processed for form hints at startup), we then add the
following:

.. code-block:: python

from plone.autoform import directives

directives.widget(organizer=AutocompleteFieldWidget)
organizer = schema.Choice(

title=_(u"Organiser"),
vocabulary=u"plone.principalsource.Users",
required=False,

)

You should now see a dynamic auto-complete widget on the form, so long
as you have JavaScript enabled. Start typing a user name and see what
happens. The widget also has fall-back for non-JavaScript capable
browsers.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

References

How to work with references between content objects

References are a way to maintain links between content that remain valid
even if one or both of the linked items are moved or renamed.

Under the hood, Dexterity’s reference system uses five.intid [http://pypi.python.org/pypi/five.intid], a Zope
2 integration layer for zope.intid [http://pypi.python.org/pypi/zope.intid], to give each content item a unique
integer id. These are the basis for relationships maintained with the
zc.relationship [http://pypi.python.org/pypi/zc.relationship] package, which in turn is accessed via an API
provided by z3c.relationfield [http://pypi.python.org/pypi/z3c.relationfield], integrated into Zope 2 with
plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield]. For most purposes, you need only to worry
about the z3c.relationfield API, which provides methods for finding
source and target objects for references and searching the relationship
catalog.

References are most commonly used in form fields with a selection or
content browser widget. Dexterity comes with a standard widget in
plone.formwidget.contenttree [http://pypi.python.org/pypi/plone.formwidget.contenttree] configured for the RelationList and
RelationChoice fields from z3c.relationfield.

To illustrate the use of references, we will allow the user to create a
link between a Session and its Presenter. Since Dexterity already
ships with and installs plone.formwidget.contenttree and
z3c.relationfield, we do not need to add any further setup code, and
we can use the field directly in session.py:

...

from z3c.relationfield.schema import RelationChoice
from plone.formwidget.contenttree import ObjPathSourceBinder
...

from example.conference.presenter import IPresenter

class ISession(form.Schema):
 """A conference session. Sessions are managed inside Programs.
 """
 ...

 presenter = RelationChoice(
 title=_(u"Presenter"),
 source=ObjPathSourceBinder(object_provides=IPresenter.__identifier__),
 required=False,
)

Note

Remeber that plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield] needs to be installed to use any
RelationChoice or RelationList field.

To allow multiple items to be selected, we could have used a
RelationList like:

relatedItems = RelationList(
 title=u"Related Items",
 default=[],
 value_type=RelationChoice(title=_(u"Related"),
 source=ObjPathSourceBinder()),
 required=False,
)

The ObjPathSourceBinder class is an IContextSourceBinder that returns
a vocabulary with content objects as values, object titles as term
titles and object paths as tokens.

You can pass keyword arguments to the constructor for
ObjPathSourceBinder() to restrict the selectable objects. Here, we
demand that the object must provide the IPresenter interface. The
syntax is the same as that used in a catalog search, except that only
simple values and lists are allowed (e.g. you can’t use a dict to
specify a range or values for a field index).

If you want to restrict the folders and other content shown in the
content browser, you can pass a dictionary with catalog search
parameters (and here, any valid catalog query will do) as the first
non-keyword argument (navigation_tree_query) to the
ObjPathSourceBinder() constructor.

You can also create the fields in an XML schema, however you have to provide a
pre-baked source instance. If you are happy with not restricting folders shown,
you can use some that plone.formwidget.contenttree makes for you. For example:

<field name="links" type="plone.app.relationfield.RelationList">
 <title>Related Items</title>
 <value_type type="plone.app.relationfield.Relation">
 <title>Related</title>
 <source>plone.formwidget.contenttree.obj_path_src_binder</source>
 </value_type>
</field>

Note

The pre-baked source binders were added in plone.formwidget.contenttree
1.0.7, which ships with Plone 4.3.2+.

If you want to use a different widget, you can use the same source (or a
custom source that has content objects as values) with something like
the autocomplete widget. The following line added to the interface will
make the presenter selection similar to the organizer selection widget
we showed in the previous section:

from plone.autoform import directives
directives.widget('presenter', AutocompleteFieldWidget)

Once the user has created some relationships, the value stored in the
relation field is a RelationValue object. This provides various
attributes, including:

	from_object, the object from which the relationship is made;

	to_object, the object to which the relationship is made;

	from_id and to_id, the integer ids of the source and target;

	from_path and to_path, the path of the source and target.

The isBroken() method can be used to determine if the relationship is
broken. This normally happens if the target object is deleted.

To display the relationship on our form, we can either use a display
widget on a display view, or use this API to find the object and
display it. We’ll do the latter in templates/sessionview.pt:

<div tal:condition="context/presenter">
 <label i18n:translate="presenter">Presenter:</label>

</div>

Back references

To retrieve back-reference (all objects pointing to particular object using specified attribute) you can't simply use from_object or from_path, because source object is stored in the relation without acquisition wrappers.
You should use from_id and helper method, which search the object in the IntId catalog:

from Acquisition import aq_inner
from zope.component import getUtility
from zope.intid.interfaces import IIntIds
from zope.security import checkPermission
from zc.relation.interfaces import ICatalog

def back_references(source_object, attribute_name):
 """
 Return back references from source object on specified attribute_name
 """
 catalog = getUtility(ICatalog)
 intids = getUtility(IIntIds)
 result = []
 for rel in catalog.findRelations(
 dict(to_id=intids.getId(aq_inner(source_object)),
 from_attribute=attribute_name)
):
 obj = intids.queryObject(rel.from_id)
 if obj is not None and checkPermission('zope2.View', obj):
 result.append(obj)
 return result

Please note, this method does not check effective and expiration date or content language.

Original issue: http://code.google.com/p/dexterity/issues/detail?id=234

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Rich text, markup and transformations

How to store markup (such as HTML or reStructuredText) and render it with a transformation

Many content items need to allow users to provide rich text in some kind
of markup, be that HTML (perhaps entered using a WYSIWYG editor),
reStructuredText, Markdown or some other format. This markup typically
needs to be transformed into HTML for the view template, but we also
want to keep track of the original “raw” markup so that it can be edited
again. Even when the input format is HTML, there is often a need for a
transformation to tidy up the HTML and strip out tags that are not
permitted.

It is possible to store HTML in a standard Text field. You can even
get a WYSIWYG widget, by using a schema such as this:

from plone.autoform import directives as form
from plone.supermodel import model
from zope import schema
from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

class ITestSchema(model.Schema):

 form.widget('body', WysiwygFieldWidget)
 body = schema.Text(title=u"Body text")

However, this approach does not allow for alternative markups or any
form of content filtering. For that, we need to use a more powerful
field: RichText from the plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield] package:

from plone.app.textfield import RichText
from plone.supermodel import model

class ITestSchema(model.Schema):

 body = RichText(title=u"Body text")

The RichText field constructor can take the following arguments in
addition to the usual arguments for a Text field:

	default_mime_type, a string representing the default MIME type of
the input markup. This defaults to text/html.

	output_mime_type, a string representing the default output MIME
type. This defaults to text/x-html-safe, which is a Plone-specific
MIME type that disallows certain tags. Use the HTML Filtering
control panel in Plone to control the tags.

	allowed_mime_types, a tuple of strings giving a vocabulary of
allowed input MIME types. If this is None (the default), the
allowable types will be restricted to those set in Plone’s
Markup control panel.

Also note: The default field can be set to either a unicode object (in
which case it will be assumed to be a string of the default MIME type)
or a RichTextValue object (see below).

Below is an example of a field allow StructuredText and
reStructuredText, transformed to HTML by default:

from plone.app.textfield import RichText
from plone.supermodel import model

defaultBody = """\
Background
==========

Please fill this in

Details
=======

And this
"""

class ITestSchema(model.Schema):

 body = RichText(
 title=u"Body text",
 default_mime_type='text/x-rst',
 output_mime_type='text/x-html',
 allowed_mime_types=('text/x-rst', 'text/structured',),
 default=defaultBody,
)

The RichTextValue

The RichText field does not store a string. Instead, it stores a
RichTextValue object. This is an immutable object that has the
following properties:

	raw

	a unicode string with the original input markup;

	mimeType

	the MIME type of the original markup, e.g. text/html or
text/structured;

	encoding

	the default character encoding used when transforming the input markup.
Most likely, this will be UTF-8;

	raw_encoded

	the raw input encoded in the given encoding;

	outputMimeType

	the MIME type of the default output, taken from the field at the time of
instantiation;

	output

	a unicode object representing the transformed output. If possible, this
is cached persistently until the RichTextValue is replaced with a
new one (as happens when an edit form is saved, for example).

The storage of the RichTextValue object is optimised for the case where
the transformed output will be read frequently (i.e. on the view screen
of the content object) and the raw value will be read infrequently (i.e.
on the edit screen). Because the output value is cached indefinitely,
you will need to replace the RichTextValue object with a new one if any
of the transformation parameters change. However, as we will see below,
it is possible to apply a different transformation on demand should you
need to.

The code snippet belows shows how a RichTextValue object can be
constructed in code. In this case, we have a raw input string of type
text/plain that will be transformed to a default output of
text/html. (Note that we would normally look up the default output
type from the field instance.):

from plone.app.textfield.value import RichTextValue
...

context.body = RichTextValue(u"Some input text", 'text/plain', 'text/html')

Of course, the standard widget used for a RichText field will
correctly store this type of object for you, so it is rarely necessary
to create one yourself.

Using rich text fields in templates

What about using the text field in a template? If you are using a
DisplayForm, the display widget for the RichText field will render
the transformed output markup automatically. If you are writing TAL
manually, you may try something like this:

<div tal:content="structure context/body" />

This, however, will render a string like:

RichTextValue object. (Did you mean <attribute>.raw or <attribute>.output?)

The correct syntax is:

<div tal:content="structure context/body/output" />

This will render the cached, transformed output. This operation is
approximately as efficient as rendering a simple Text field, since the
transformation is only applied once, when the value is first saved.

Alternative transformations

Sometimes, you may want to invoke alternative transformations. Under the
hood, the default implementation uses the portal_transforms tool to
calculate a transform chain from the raw value’s input MIME type to the
desired output MIME type. (Should you need to write your own transforms,
take a look at this tutorial [http://plone.org/documentation/kb/portal-transforms].) This is abstracted behind an
ITransformer adapter to allow alternative implementations.

To invoke a transformation in code, you can use the following syntax:

from plone.app.textfield.interfaces import ITransformer

transformer = ITransformer(context)
transformedValue = transformer(context.body, 'text/plain')

The __call__() method of the ITransformer adapter takes a
RichTextValue object and an output MIME type as parameters.

If you are writing a page template, there is an even more convenient
syntax:

<div tal:content="structure context/@@text-transform/body/text/plain" />

The first traversal name gives the name of the field on the context
(body in this case). The second and third give the output MIME type.
If the MIME type is omitted, the default output MIME type will be used.

Note

Unlike the output property, the value is not cached, and so
will be calculated each time the page is rendered.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Files and images

Working with file and image fields, including BLOBs

Plone has dedicated File and Image types, and it is often preferable
to use these for managing files and images. However, it is sometimes
useful to treat fields on an object as binary data. When working with
Dexterity, you can accomplish this by using plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] and
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].

The plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] package includes four field types, all found in
the plone.namedfile.field module:

	NamedFile stores non-BLOB files. This is useful for small files
when you don’t want to configure BLOB storage.

	NamedImage stores non-BLOB images.

	NamedBlobFile stores BLOB files (see note below). It is otherwise
identical to NamedFile.

	NamedBlobImage stores BLOB images (see note below). It is otherwise
identical to NamedImage.

In use, the four field types are all pretty similar. They actually store
persistent objects of type plone.namedfile.NamedFile,
plone.namedfile.NamedImage, plone.namedfile.NamedBlobFile and plone.namedfile.NamedBlobImage,
respectively. Note the different module! These objects have attributes
like data, to access the raw binary data, contentType, to get a MIME
type, and filename, to get the original filename. The image values
also support _height and _width to get image dimensions.

To use the non-BLOB image and file fields, it is sufficient to depend on
plone.formwidget.namedfile, since this includes plone.namefile as a
dependency. We prefer to be explicit in setup.py, however, since we
will actually import directly from plone.namedfile:

install_requires=[
 ...
 'plone.namedfile',
 'plone.formwidget.namedfile',
],

Note

Again, we do not need separate <include /> lines in
configure.zcml for these new dependencies, because we use
<includeDependencies />.

For the sake of illustration, we will add an image of the
speaker to the Presenter type. In presenter.py, we add:

from plone.namedfile.field import NamedBlobImage

class IPresenter(model.Schema):
 ...

 picture = NamedBlobImage(
 title=_(u"Please upload an image"),
 required=False,
)

To use this in a view, we can either use a display widget via a
DisplayForm, or construct a download URL manually. Since we don’t have
a DisplayForm for the Presenter type, we’ll do the latter (of
course, we could easily turn the view into a display form as well).

In presenter_templates/view.pt, we add this block of TAL:

<div tal:define="picture nocall:context/picture"
 tal:condition="nocall:picture">
 <img tal:attributes="src string:${context/absolute_url}/@@download/picture/${picture/filename};
 height picture/_height | nothing;
 width picture/_width | nothing;"
 />
</div>

This constructs an image URL using the @@download view from
plone.namedfile. This view takes the name of the field containing the
file or image on the traversal subpath (/picture), and optionally a
filename on a further sub-path. The filename is used mainly so that the
URL ends in the correct extension, which can help ensure web browsers
display the picture correctly. We also define the height and width
of the image based on the values set on the object.

Access to image scales is similar:

<div tal:define="picture nocall:context/picture"
 tal:condition="nocall:picture">

</div>

where scales is large, preview, mini, thumb, tile, icon, or a custom scale.
This code generates a full tag, including height and width attributes and alt and title based on the context title.
To generate just a URL, use code like:

For file fields, you can construct a download URL in a similar way,
using an <a /> tag, e.g.:

<a tal:attributes="href string:${context/absolute_url}/@@download/some_field/${context/some_field/filename}" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Static resources

Adding images and stylesheets

Earlier in this manual, we have seen how to create views, and how to use
file and image fields. These are all dynamic, however, and often we just
want to ship with a static image/icon, CSS or JavaScript file. For this,
we need to register static resources.

Registering a static resource directory

The easiest way to manage static resources is to create a
static resource directory in your Dexterity project using the ZCML resourceDirectory directive.

Registration of the resource directory is done using the
<browser:resourceDirectory /> ZCML directive. This requires two
attributes: name is the name that appears after the
++resource++ namespace; directory is a relative path to the
directory containing resources.

It's conventional to use "static" for the directory name and the dotted name of your package for the resource name.
You would use this zcml to register it:

<browser:resourceDirectory
 name="example.conference"
 directory="static" />

Then, if a "static" resource directory in the example.conference package
contains a file called conference.css, it will be accessible on a URL
like http://<server>/site/++resource++example.conference/conference.css.
The resource name is the same as the package name wherein the resources
directory appears.

Importing CSS and JavaScript files in templates

One common use of static resources is to add a static CSS or JavaScript
file to a specific template. We can do this by filling the style_slot
or javascript_slot in Plone’s main_template in our own view
template and using an appropriate resource link.

For example, we could add the following near the top of
presenter_templates/view.pt:

<head>
 <metal:block fill-slot="style_slot">
 <link rel="stylesheet" type="text/css"
 tal:define="navroot context/@@plone_portal_state/navigation_root_url"
 tal:attributes="href string:${navroot}/++resource++example.conference/conference.css"
 />
 </metal:block>
</head>

Note

Always create the resource URL relative to the navigation root as shown
here, so that the URL is the same for all content objects using this
view. This allows for efficient resource caching.

Registering resources with Plone’s resource registries

Sometimes it is more appropriate to register a stylesheet with Plone’s
portal_css registry (or a JavaScript file with
portal_javascripts), rather than add the registration on a
per-template basis. This ensures that the resource is available
site-wide.

Note

It may seem wasteful to include a resource that is not be used on all
pages in the global registry. Remember, however, that portal_css and
portal_javascripts will merge and compress resources, and set caching
headers such that browsers and caching proxies can cache resources well.
It is often more effective to have one slightly larger file that caches
well, than to have a variable number of files that may need to be loaded
at different times.

To add a static resource file, you can use the GenericSetup
cssregistry.xml or jsregistry.xml import steps in the
profiles/default directory. For example, an import step to add the
conference.css file site-wide may involve a cssregistry.xml file
that looks like this:

<?xml version="1.0"?>
<object name="portal_css">
 <stylesheet id="++resource++example.conference/conference.css"
 title="" cacheable="True" compression="safe" cookable="True"
 enabled="1" expression="" media="screen" rel="stylesheet" rendering="import"
 />
</object>

Similarly, a JavaScript resource could be imported with a
jsregistry.xml like:

<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript cacheable="True" compression="none" cookable="True"
 enabled="False" expression=""
 id="++resource++example.conference/conference.js" inline="False"/>
</object>

Image resources

Images can be added to resource directories just like any other type of
resource. To use the image in a view, you can construct an tag
like this:

<img style="float: left; margin-right: 2px; margin-top: 2px"
 tal:define="navroot context/@@plone_portal_state/navigation_root_url"
 tal:attributes="src string:${navroot}/++resource++example.conference/program.gif"
 />

Content type icons

Finally, to use an image resource as the icon for a content type, simply
list it in the FTI under the content_icon property. For example, in
profiles/default/types/example.conference.presenter.xml, we can use
the following line, presuming we have a presenter.gif in the example.conference resource
directory:

<property name="content_icon">++resource++example.conference/presenter.gif</property>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Using behaviors

Finding and adding behaviors

Dexterity introduces the concept of behaviors – re-usable bundles of
functionality and/or form fields which can be turned on or off on a
per-type basis.

Each behavior has a unique interface. When a behavior is enabled on a
type, you will be able to adapt that type to the behavior’s interface.
If the behavior is disabled, the adaptation will fail. The behavior
interface can also be marked as an IFormFieldsProvider, in which case
it will add fields to the standard add and edit forms. Finally, a
behavior may imply a sub-type: a marker interface which will be
dynamically provided by instances of the type for which the behavior is
enabled.

We will not cover writing new behaviors in this manual, but we will show
how to enable behaviors on a type. Writing behaviors is covered in the
Behaviors manual [http://docs.plone.org/external/plone.app.dexterity/docs/behaviors/index.html].

In fact, we’ve already seen one
standard behavior applied to our example types, registered in the FTI
and imported using GenericSetup:

<property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
</property>

Other behaviors are added in the same way, by listing additional
behavior interfaces as elements of the behaviors property.

Behaviors are normally registered with the <plone:behavior /> ZCML
directive. When registered, a behavior will create a global utility
providing IBehavior, which is used to provide some metadata, such as a
title and description for the behavior.

You can find and apply behaviors via the Dexterity Content Types
control panel that is installed with plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity]. For a list
of standard behaviors that ship with Dexterity, see the reference at the
end of this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Event handlers

Adding custom event handlers for your type

So far, we have mainly been concerned with content types’ schemata and
forms created from these. However, we often want to add more dynamic
functionality, reacting when something happens to objects of our type.
In Zope, that usually means writing event subscribers.

Zope’s event model is synchronous. When an event is broadcast (via the
notify() function from the zope.event [http://pypi.python.org/pypi/zope.event] package), for example from the
save action of an add form, all registered event handlers will be
called. There is no guarantee of which order the event handlers will be
called in, however.

Each event is described by an interface, and will typically carry some
information about the event. Some events are known as object events,
and provide zope.component.interfaces.IObjectEvent. These have an
object attribute giving access to the (content) object that the event
relates to. Object events allow event handlers to be registered for a
specific type of object as well as a specific type of event.

Some of the most commonly used event types in Plone are shown below.
They are all object events.

	zope.lifecycleevent.interfaces.IObjectCreatedEvent

	fired by the standard add form just after an object has been created,
but before it has been added on the container. Note that it is often
easier to write a handler for IObjectAddedEvent (see below), because
at this point the object has a proper acquisition context.

	zope.lifecycleevent.interfaces.IObjectModifiedEvent

	fired by the standard edit form when an object has been modified.

	zope.lifecycleevent.interfaces.IObjectAddedEvent

	fired when an object has been added to its container. The container is
available as the newParent attribute, and the name the new item holds
in the container is available as newName.

	zope.lifecycleevent.interfaces.IObjectRemovedEvent

	fired when an object has been removed from its container. The container
is available as the oldParent attribute, and the name the item held
in the container is available as oldName.

	zope.lifecycleevent.interfaces.IObjectMovedEvent

	fired when an object is added to, removed from, renamed in, or moved
between containers. This event is a super-type of IObjectAddedEvent
and IObjectRemovedEvent, shown above, so an event handler registered
for this interface will be invoked for the ‘added’ and ‘removed’ cases
as well. When an object is moved or renamed, all of oldParent,
newParent, oldName and newName will be set.

	Products.CMFCore.interfaces.IActionSucceededEvent

	fired when a workflow event has completed. The workflow attribute
holds the workflow instance involved, and the action attribute holds
the action (transition) invoked.

Event handlers can be registered using ZCML with the <subscriber />
directive.

As an example, let’s add an event handler to the Presenter type that
tries to find users with matching names matching the presenter id, and
send these users an email.

First, we require an additional import at the top of presenter.py:

from Products.CMFCore.utils import getToolByName

Then, we’ll add the following event subscriber after the schema
definition:

def notifyUser(presenter, event):
 acl_users = getToolByName(presenter, 'acl_users')
 mail_host = getToolByName(presenter, 'MailHost')
 portal_url = getToolByName(presenter, 'portal_url')

 portal = portal_url.getPortalObject()
 sender = portal.getProperty('email_from_address')

 if not sender:
 return

 subject = "Is this you?"
 message = "A presenter called %s was added here %s" % (presenter.title, presenter.absolute_url(),)

 matching_users = acl_users.searchUsers(fullname=presenter.title)
 for user_info in matching_users:
 email = user_info.get('email', None)
 if email is not None:
 mail_host.secureSend(message, email, sender, subject)

And register it in ZCML:

<subscriber
 for=".presenter.IPresenter zope.lifecycleevent.interfaces.IObjectAddedEvent"
 handler=".presenter.notifyUser"
 />

There are many ways to improve this rather simplistic event handler, but
it illustrates how events can be used. The first argument to
for is an interface describing the object type. The second argument
is the event type. The arguments to the function reflects these two,
so the first argument is the IPresenter instance and the second is an
IObjectAddedEvent instance.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Permissions

Setting up add permissions, view permissions and field view/edit permissions

Plone’s security system is based on the concept of
permissions protecting operations
(like accessing a view,
viewing a field,
modifying a field,
or adding a type of content)
that are granted to roles,
which in turn are granted to users and/or groups.
In the context of developing content types,
permissions are typically used in three different ways:

	A content type or group of related content types often has a custom
add permission which controls who can add this type of content.

	Views (including forms) are sometimes protected by custom
permissions.

	Individual fields are sometimes protected by permissions,
so that some users can view and edit fields that others can’t see.

It is easy to create new permissions.
However, be aware that it is considered good practice to use the standard permissions wherever possible and use workflow to control which roles are granted these permissions on a per-instance basis.

For more basic information on permissions and how to create custom permissions read the Security Section [http://docs.plone.org/develop/plone/security/index.html] in the Plone documentation.

Performing permission checks in code

It is sometimes necessary to check permissions explicitly in code, for
example in a view. A permission check always checks a permission on a
context object, since permissions can change with workflow.

Note

Never make security dependent on users’ roles directly.
Always check for a permission, and assign the permission to the appropriate role or roles.

As an example,
let’s display a message on the view of a Session type
if the user has the cmf.RequestReview permission.
In session.py, we update the View class with the following:

from zope.security import checkPermission

class View(BrowserView):

 def canRequestReview(self):
 return checkPermission('cmf.RequestReview', self.context)

And in the session_templates/view.pt template, we add:

<div class="discreet"
 tal:condition="view/canRequestReview"
 i18n:translate="suggest_review">
 Please submit this for review.
</div>

Content type add permissions

Dexterity content types’ add permissions are set in the FTI,
using the add_permission property.
This can be changed through the web
or in the GenericSetup import step for the content type.

To make the Session type use our new permission, we modify the
add_permission line in
profiles/default/example.conference.session.xml:

<property name="add_permission">example.conference.AddSession</property>

Protecting views and forms

Access to views and other browser resources (like viewlets or portlets)
can be protected by permissions, either using the permission attribute
on ZCML statements like:

<browser:page
 ...
 permission="zope.Public"
 ...
 />

We could also use the special zope.Public permission name to make the view accessible to anyone.

Protecting form fields

Individual fields in a schema may be associated with a read permission
and a write permission.
The read permission is used to control access to the field’s value via protected code
(e.g. scripts or templates created through the web)
and URL traversal,
and can be used to control the appearance of fields when using display forms
(if you use custom views that access the attribute directly, you’ll need to perform your own checks).
Write permissions can be used to control whether or not a given field appears on a type’s add and edit forms.

In both cases,
read and write permissions are annotated onto the schema using directives similar to those we’ve already seen for form widget hints.
The read_permission() and write_permission() directives are found in the plone.autoform [http://pypi.python.org/pypi/plone.autoform] package.

If XML-schemas are used for defintion see Dexterity XML: security attributes.

Simple example protecting a field to be readable for Site Administrators only:

from zope import schema
from plone.supermodel import model
from plone.autoform.directives import read_permission

class IExampleProtectedInformation(model):

 read_permission(info='cmf.ManagePortal')
 write_permission(info='cmf.ManagePortal')
 info = schema.Text(
 title=_(u"Information"),
)

As a complex example, let’s add a field for Session reviewers to record the track for a session.
We’ll store the vocabulary of available tracks on the parent Program object in a text field,
so that the creator of the Program can choose the available tracks.

First, we add this to the IProgram schema in program.py:

form.widget(tracks=TextLinesFieldWidget)
tracks = schema.List(
 title=_(u"Tracks"),
 required=True,
 default=[],
 value_type=schema.TextLine(),
)

The TextLinesFieldWidget is used to edit a list of text lines in a
text area. It is imported as:

from plone.z3cform.textlines.textlines import TextLinesFieldWidget

Next, we’ll add a vocabulary for this to session.py:

from Acquisition import aq_inner, aq_parent
from zope.component import provider
from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary
...

@provider(IContextSourceBinder)
def possibleTracks(context):

 # we put the import here to avoid a circular import
 from example.conference.program import IProgram
 while context is not None and not IProgram.providedBy(context):
 context = aq_parent(aq_inner(context))

 values = []
 if context is not None and context.tracks:
 values = context.tracks

 return SimpleVocabulary.fromValues(values)

This vocabulary finds the closest IProgram
(in the add form, the context will be the Program,
but on the edit form, it will be the Session,
so we need to check the parent)
and uses its tracks variable as the vocabulary.

Next, we add a field to the ISession interface in the same file and
protect it with the relevant write permission:

write_permission(track='example.conference.ModifyTrack')
track = schema.Choice(
 title=_(u"Track"),
 source=possibleTracks,
 required=False,
)

With this in place, users with the example.conference: Modify track
permission should be able to edit tracks for a session. For everyone
else, the field will be hidden in the edit form.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Workflow

Controlling security with workflow

Workflow is used in Plone for three distinct, but overlapping purposes:

	To keep track of metadata, chiefly an object’s state;

	to create content review cycles and model other types of processes;

	to manage object security.

When writing content types,
we will often create custom workflows to go with them.
In this section,
we will explain at a high level how Plone’s workflow system works,
and then show an example of a simple workflow to go with our example types.
An exhaustive manual on using workflows is beyond the scope of this manual,
but hopefully this will cover the basics.

Note

There is nothing Dexterity-specific in this section.
Everything here applies equally well to content objects
created with Archetypes or using CMF directly.

A DCWorkflow refresher

What follows is a fairly detailed description of DCWorkflow [http://pypi.python.org/pypi/Products.DCWorkflow],
originally posted here [http://www.martinaspeli.net/articles/dcworkflows-hidden-gems].
You may find some of this a little detailed on first reading,
so feel free to skip to the specifics later on.
However, it is useful to be familiar with the high level concepts.
You’re unlikely to need multi-workflow chains
in your first few attempts at workflow, for instance,
but it’s useful to know what it is if you come across the term.

Plone’s workflow system is known as DCWorkflow.
It is a states-and-transitions system,
which means that your workflow starts in a particular state
(the initial state) and then moves to other states via transitions
(also called actions in CMF).

When an object enters a particular state (including the initial state),
the workflow is given a chance to update permissions on the object.
A workflow manages a number of permissions –
typically the “core” CMF permissions
like View, Modify portal content and so on –
and will set those on the object at each state change.
Note that this is event-driven, rather than a real-time security check:
only by changing the state is the security information updated.
This is why you need to click Update security settings
at the bottom of the portal_workflow
screen in the ZMI when you change your workflows’ security settings and
want to update existing objects.

A state can also assign local roles to groups.
This is akin to assigning roles to groups on Plone’s Sharing tab,
but the mapping of roles to groups happens on each state change,
much like the mapping of roles to permissions.
Thus, you can say that in the pending_secondary state,
members of the Secondary reviewers group
have the Reviewer local role.
This is powerful stuff when combined with the more usual role-to-permission
mapping, although it is not very commonly used.

State changes result in a number of variables being recorded,
such as the actor (the user that invoked the transition),
the action (the name of the transition),
the date and time and so on.
The list of variables is dynamic,
so each workflow can define any number of variables
linked to TALES [http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-overview] expressions that are invoked
to calculate the current value at the point of transition.
The workflow also keeps track of the current state of each object.
The state is exposed as a special type of workflow variable
called the state variable.
Most workflows in Plone uses the name review_state as the state variable.

Workflow variables are recorded for each state change
in the workflow history.
This allows you to see when a transition occurred,
who effected it, and what state the object was in before or after.
In fact, the “current state” of the workflow is internally looked up
as the most recent entry in the workflow history.

Workflow variables are also the basis for worklists.
These are basically pre-defined catalog queries
run against the current set of workflow variables.
Plone’s review portlet shows all current worklists
from all installed workflows.
This can be a bit slow,
but it does mean that you can use a single portlet
to display an amalgamated list of all items on all worklists
that apply to the current user.
Most Plone workflows have a single worklist
that matches on the review_state variable,
e.g. showing all items in the pending state.

If states are the static entities in the workflow system,
transitions (actions) provide the dynamic parts.
Each state defines zero or more possible exit transitions,
and each transition defines exactly one target state,
though it is possible to mark a transition as “stay in current state”.
This can be useful if you want to do something in reaction to a transition
and record that the transition happened in the workflow history,
but not change the state (or security) of the object.

Transitions are controlled by one or more guards.
These can be permissions (the preferred approach),
roles (mostly useful for the Owner role –
in other cases it is normally better to use permissions)
or TALES [http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-overview] expressions.
A transition is available if all its guard conditions are true.
A transition with no guard conditions is available to everyone
(including anonymous!).

Transitions are user-triggered by default, but may be automatic.
An automatic transition triggers immediately following another transition
provided its guard conditions pass.
It will not necessarily trigger as soon as the guard condition becomes true,
as that would involve continually re-evaluating guards
for all active workflows on all objects!

When a transition is triggered,
the IBeforeTransitionEvent and IAfterTransitionEvent events
are triggered.
These are low-level events from Products.DCWorkflow that can tell you a
lot about the previous and current states.
There is a higher level IActionSucceededEvent in Products.CMFCore
that is more commonly used to react after a workflow action has completed.

In addition to the events, you can configure workflow scripts.
These are either created through-the-web
or (more commonly) as External Methods [*],
and may be set to execute before a transition is complete
(i.e. before the object enters the target state)
or just after it has been completed (the object is in the new state).
Note that if you are using event handlers,
you’ll need to check the event object to find out which transition was
invoked, since the events are fired on all transitions.
The per-transition scripts are only called for the specific transitions
for which they were configured.

	[*]	An External Method is a Python script evaluated in Zope context.
See Logic Objects [http://docs.zope.org/zope2/zope2book/BasicObject.html#logic-objects-script-python-objects-and-external-methods]
in the Zope 2 Book.

Multi-chain workflows

Workflows are mapped to types via the portal_workflow tool.
There is a default workflow, indicated by the string (Default).
Some types have no workflow,
which means that they hold no state information and
typically inherit permissions from their parent.
It is also possible for types to have multiple workflows.
You can list multiple workflows by separating their names by commas.
This is called a workflow chain.

Note that in Plone, the workflow chain of an object is looked up by
multi-adapting the object and the workflow to the IWorkflowChain
interface.
The adapter factory should return a tuple of string workflow names
(IWorkflowChain is a specialisation of IReadSequence, i.e. a tuple).
The default obviously looks at the mappings in the portal_workflow tool,
but it is possible to override the mapping,
e.g. by using a custom adapter registered for some marker interface,
which in turn could be provided by a type-specific behavior.

Multiple workflows applied in a single chain co-exist in time.
Typically, you need each workflow in the chain to have a different state
variable name.
The standard portal_workflow API (in particular,
doActionFor(), which is used to change the state of an object)
also assumes the transition ids are unique.
If you have two workflows in the chain and both currently have a submit
action available,
only the first workflow will be transitioned if you do
portal_workflow.doActionFor(context, ‘submit’).
Plone will show all available transitions from all workflows in the current
object’s chain in the State drop-down,
so you do not need to create any custom UI for this.
However, Plone always assumes the state variable is called review_state
(which is also the variable indexed in portal_catalog).
Therefore, the state of a secondary workflow won’t show up
unless you build some custom UI.

In terms of security, remember that the role-to-permission
(and group-to-local-role) mappings
are event-driven and are set after each transition.
If you have two concurrent workflows that manage the same permissions,
the settings from the last transition invoked will apply.
If they manage different permissions (or there is a partial overlap)
then only the permissions managed by the most-recently-invoked workflow
will change, leaving the settings for other permissions untouched.

Multiple workflows can be very useful in case you have concurrent processes.
For example, an object may be published, but require translation.
You can track the review state in the main workflow
and the translation state in another.
If you index the state variable for the second workflow in the catalog
(the state variable is always available on the indexable object wrapper
so you only need to add an index with the appropriate name
to portal_catalog)
you can search for all objects pending translation,
for example using a Collection.

Creating a new workflow

With the theory out of the way, let’s show how to create a new workflow.

Workflows are managed in the portal_workflow tool. You can use the ZMI
to create new workflows and assign them to types. However, it is usually
preferable to create an installable workflow configuration using
GenericSetup. By default, each workflow as well as the workflow
assignments are imported and exported using an XML syntax. This syntax
is comprehensive, but rather verbose if you are writing it manually.

For the purposes of this manual, we will show an alternative
configuration syntax based on spreadsheets (in CSV format). This is
provided by the collective.wtf [http://pypi.python.org/pypi/collective.wtf] package. You can read more about the
details of the syntax in its documentation. Here, we will only show how
to use it to create a simple workflow for the Session type, allowing
members to submit sessions for review.

To use collective.wtf, we need to depend on it.
In setup.py, we have:

install_requires=[
 ...
 'collective.wtf',
],

Note

As before, the <includeDependencies /> line in configure.zcml
takes care of configuring the package for us.

A workflow definition using collective.wtf consists of a CSV file in
the profiles/default/workflow_csv directory,
which we will create,
and a workflows.xml file in profiles/default
which maps types to workflows.

The workflow mapping in profiles/default/workflows.xml looks like
this:

<?xml version="1.0"?>
<object name="portal_workflow">
 <bindings>
 <type type_id="example.conference.session">
 <bound-workflow workflow_id="example.conference.session_workflow"/>
 </type>
 </bindings>
</object>

The CSV file itself is found in
profiles/default/workflow_csv/example.conference.session_workflow.csv.
It contains the following,
which was exported to CSV from an OpenOffice spreadsheet.
You can find the original spreadsheet with the
example.conference source code [http://svn.plone.org/svn/collective/example.conference/trunk/example/conference/profiles/default/workflow_csv]. This applies some useful formatting,
which is obviously lost in the CSV version.

Note

For your own workflows, you may want to use this template as a
starting point.

"[Workflow]"
"Id:","example.conference.session_workflow"
"Title:","Conference session workflow"
"Description:","Allows members to submit session proposals for review"
"Initial state:","draft"

"[State]"
"Id:","draft"
"Title:","Draft"
"Description:","The proposal is being drafted."
"Transitions","submit"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","N",,,,"X","X","X","X",,
"Access contents information","N",,,,"X","X","X","X",,
"Modify portal content","N",,,,"X","X","X",,,

"[State]"
"Id:","pending"
"Title:","Pending"
"Description:","The proposal is pending review"
"Worklist:","Pending review"
"Worklist label:","Conference sessions pending review"
"Worklist guard permission:","Review portal content"
"Transitions:","reject, publish"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","N",,,,"X","X","X","X",,"X"
"Access contents information","N",,,,"X","X","X","X",,"X"
"Modify portal content","N",,,,"X","X","X",,,"X"

"[State]"
"Id:","published"
"Title:","Published"
"Description:","The proposal has been accepted"
"Transitions:","reject"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","Y","X",,,,,,,,
"Access contents information","Y","X",,,,,,,,
"Modify portal content","Y",,,,"X","X","X",,,

"[Transition]"
"Id:","submit"
"Title:","Submit"
"Description:","Submit the session for review"
"Target state:","pending"
"Guard permission:","Request review"

"[Transition]"
"Id:","reject"
"Title:","Reject"
"Description:","Reject the session from the program"
"Target state:","draft"
"Guard permission:","Review portal content"

"[Transition]"
"Id:","publish"
"Title:","Publish"
"Description:","Accept and publish the session proposal"
"Target state:","published"
"Guard permission:","Review portal content"

Here, you can see several states and transitions.
Each state contains a role/permission map,
and a list of the possible exit transitions.
Each transition contains a target state and other meta-data such as a title
and a description, as well as guard permissions.

Note

Like most other GenericSetup import steps, the workflow uses
the Zope 2 permission title when referring to permissions.

When the package is (re-)installed, this workflow should be available
under portal_workflow and mapped to the Session type.

Note

If you have existing instances, don’t forget to go to portal_workflow
in the ZMI and click Update security settings
at the bottom of the page.
This ensures that existing objects reflect the most recent security
settings in the workflow.

A note about add permissions

This workflow assumes that regular members can add Session proposals to
Programs, which are then reviewed.
Previously, we granted the
example.conference: Add session permission to the Member role.
This is necessary, but not sufficient
to allow members to add sessions to programs.
The user will also need the generic Add portal content permission in the
Program folder.

There are two ways to achieve this:

	Build a workflow for the Program type that manages this permission

	Use the Sharing tab to grant Can add to the
Authenticated Users group.
This grants the Contributor local role to members.
By default, this role is granted the Add portal content
permission.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Catalog indexing strategies

You may have two different interests in regard to indexing your custom content type objects:

	Making particular fields searchable via Plone's main search facility;

	Indexing particular fields for custom lookup.

Making content searchable

Plone's main index is called SearchableText. This is the index which is searched when you use the main portal search. Fields in your custom content types are not necessarily added to SearchableText. Fields added via Dublin-core behaviors are automatically part of SearchableText; others are not.

So, you may need to explicitly add fields to SearchableText if you wish their information to be findable via the main search. There are all sorts of highly customizable ways to do this, but the easiest is to use the collective.dexteritytextindexer [https://github.com/collective/collective.dexteritytextindexer] add-on package.

Add collective.dexteritytextindexer to your buildout and you will gain a new Dexterity behavior that will allow you to easily add fields to SearchableText. Once you turn on this behavior, you will then need to specify fields for addition to SearchableText.

..Note:

Note that if you turn on the ``Dynamic SearchableText indexer behavior`` for a content type, then you must specify all fields that need SearchableText indexing. Dublin core fields like Title and Description are no longer automatically handled.

Once you have turned on the indexer behavior, edit the XML field model to add indexer:searchable="true" to the field tag for each field you wish to add to the SearchableText index.

See the collective.dexteritytextindexer [https://github.com/collective/collective.dexteritytextindexer] package documentation for details and for information on how to use it via Python schema.

Creating and using custom indexes

How to create custom catalog indexes

The ZODB is a hierarchical object store where objects of different schemata and sizes can live side by side.
This is great for managing individual content items, but not optimal for searching across the content repository.
A naive search would need to walk the entire object graph, loading each object into memory and comparing object metadata with search criteria.
On a large site, this would quickly become prohibitive.

Luckily, Zope comes with a technology called the ZCatalog, which is basically a table structure optimised for searching.
In Plone, there’s a ZCatalog instance called portal_catalog.
Standard event handlers will index content in the catalog when it is created or modified, and unindex when the content is removed.

The catalog manages indexes, which can be searched, and metadata (also known as columns), which are object attributes for which the value is copied into the catalog.
When we perform a search, the result is a lazily loaded list of objects known as catalog brains.
Catalog brains contain the value of metadata columns (but not indexes) as attributes.
The functions getURL(), getPath() and getObject() can be used to get the URL and path of the indexed content item, and to load the full item into memory.

Note

Dexterity objects are more lightweight than Archetypes objects.
This means that loading objects into memory is not quite as undesirable as is sometimes assumed.
If you’re working with references, parent objects, or a small number of child objects, it is usually OK to load objects directly to work with them.
However, if you are working with a large or unknown-but-potentially-large number of objects, you should consider using catalog searches to find them and use catalog metadata to store frequently used values.
There is an important trade-off to be made between limiting object access and bloating the catalog with unneeded indexes and metadata, though.
In particular, large strings (such as the body text of a document) or binary data (such as the contents of image or file fields) should not be stored as catalog metadata.

Plone comes with a number of standard indexes and metadata columns.
These correspond to much of the Dublin Core set of metadata as well as several Plone-specific attributes.
You can view the indexes, columns and the contents of the catalog through the ZMI pages of the portal_catalog tool.
If you’ve never done this, it is probably instructive to have a look, both to understand how the indexes and columns may apply to your own content types, and to learn what searches are already possible.

Indexes come in various types. The most common ones are:

	FieldIndex

	the most common type, used to index a single value.

	KeywordIndex

	used to index lists of values where you want to be able to search for a subset of the values.
As the name implies, commonly used for keyword fields, such as the Subject Dublin Core metadata field.

	DateIndex

	used to index Zope 2 DateTime objects.
Note that if your type uses a Python datetime object, you’ll need to convert it to a Zope 2 DateTime using a custom indexer!

	DateRangeIndex

	used mainly for the effective date range.

	ZCTextIndex

	used mainly for the SearchableText index.
This is the index used for full-text search.

	ExtendedPathIndex

	a variant of PathIndex, which is used for the path index.
This is used to search for content by path and optionally depth.

Adding new indexes and metadata columns

When an object is indexed, the catalog will by default attempt to find attributes and methods that match index and column names on the object. Methods will be called (with no arguments) in an attempt to get a value.
If a value is found, it is indexed.

Note

Objects are normally acquisition-wrapped when they are indexed, which means that an indexed value may be acquired from a parent.
This can be confusing, especially if you are building container types and creating new indexes for them.
If child objects don’t have attributes/methods with names corresponding to indexes, the parent object’s value will be indexed for all children as well.

Catalog indexes and metadata can be installed with the catalog.xml GenericSetup import step. It is useful to look at the one in Plone (parts/omelette/Products/CMFPlone/profiles/default/catalog.xml).

As an example, let’s index the track property of a Session in the catalog, and add a metadata column for this property as well. In
profiles/default/catalog.xml, we have:

<?xml version="1.0"?>
<object name="portal_catalog">
 <index name="track" meta_type="FieldIndex">
 <indexed_attr value="track"/>
 </index>
 <column value="track"/>
</object>

Notice how we specify both the index name and the indexed attribute.
It is possible to use an index name (the key you use when searching) that is different to the indexed attribute, although they are usually the same.
The metadata column is just the name of an attribute.

Creating custom indexers

Indexing based on attributes can sometimes be limiting.
First of all, the catalog is indiscriminate in that it attempts to index every attribute that’s listed against an index or metadata column for every object.
Secondly, it is not always feasible to add a method or attribute to a class just to calculate an indexed value.

Plone 3.3 and later ships with a package called plone.indexer [http://pypi.python.org/pypi/plone.indexer] to help make it easier to write custom indexers:
components that are invoked to calculate the value which the catalog sees when it tries to index a given attribute.
Indexers can be used to index a different value to the one stored on the object, or to allow indexing of a “virtual” attribute that does not actually exist on the object is question.
Indexers are usually registered on a per-type basis, so you can have different implementations for different types of content.

To illustrate indexers, we will add three indexers to program.py.
Two will provide values for the start and end indexes, normally used by Plone’s Event type.
We actually have attributes with the correct name for these already, but they use Python datetime objects whereas the DateIndex requires a
Zope 2 DateTime.DateTime object.
(Python didn’t have a datetime module when this part of Zope was created!)
The third indexer will be used to provide a value for the Subject index that takes its value from the tracks list.

from DateTime import DateTime
from plone.indexer import indexer
...

@indexer(IProgram)
def startIndexer(obj):
 if obj.start is None:
 return None
 return DateTime(obj.start.isoformat())

@indexer(IProgram)
def endIndexer(obj):
 if obj.end is None:
 return None
 return DateTime(obj.end.isoformat())

@indexer(IProgram)
def tracksIndexer(obj):
 return obj.tracks

And we need to register the indexers in ZCML:

<adapter factory=".indexers.startIndexer" name="start" />
<adapter factory=".indexers.endIndexer" name="end" />
<adapter factory=".indexers.tracksIndexer" name="Subject" />

Here, we use the @indexer decorator to create an indexer.
This doesn’t register the indexer component, though, so we need to use ZCML to finalise the registration.
Crucially, this is where the indexer’s name is defined.
This is the name of the indexed attribute for which the indexer is providing a value.

Note

Since all of these indexes are part of a standard Plone installation, we won’t register them in catalog.xml.
If you are creating custom indexers and need to add new catalog indexes or columns for them, remember that the “indexed attribute” name (and the column name) must match the name of the indexer as set in its adapter registration.

Searching using your indexes

Once we have registered our indexers and re-installed our product (to ensure that the catalog.xml import step is allowed to install new indexes in the catalog), we can use our new indexes just like we would any of the default indexes.

The pattern is always the same:

from Products.CMFCore.utils import getToolByName
get the tool
catalog = getToolByName(context, 'portal_catalog')
execute a search
results = catalog(track='Track 1')
examine the results
for brain in results:
 start = brain.start
 url = brain.getURL()
 obj = brain.getObject() # Performance hit!

This shows a simple search using the portal_catalog tool, which we look up from some context object.
We call the tool to perform a search, passing search criteria as keyword arguments, where the left hand side refers to an installed index and the right hand side is the search term.

Some of the more commonly used indexes are:

	Title

	the object’s title.

	Description

	the object’s description.

	path

	the object’s path. The argument is a string like /foo/bar.
To get the path of an object (e.g. a parent folder), do
'/'.join(folder.getPhysicalPath()).
Searching for an object’s path will return the object and any children.
To depth-limit the search, e.g. to get only those 1 level deep,
use a compound query, e.g.
path={'query': '/'.join(folder.getPhysicalPath()), 'depth': 1}.
If a depth is specified, the object at the given path is not returned
(but any children within the depth limit are).

	object_provides

	used to match interfaces provided by the object.
The argument is an interface name or list of interface names (of
which any one may match).
To get the name of a given interface, you can call
ISomeInterface.__identifier__.

	portal_type

	used to match the portal type.
Note that users can rename portal types,
so it is often better not to hardcode these.
Often, using an object_provides search for a type-specific
interface will be better.
Conversely, if you are asking the user to select a particular type to
search for, then they should be choosing from the currently installed
portal_types.

	SearchableText

	used for full-text searches.
This supports operands like AND and OR in the search string.

	Creator

	the username of the creator of a content item.

	Subject

	a KeywordIndex of object keywords.

	review_state

	an object’s workflow state.

In addition, the search results can be sorted based on any FieldIndex,
KeywordIndex or DateIndex using the following keyword arguments:

	Use sort_on='<index name>' to sort on a particular index.
For example, sort_on='sortable_title' will produce a sensible title-based sort.
sort_on='Date' will sort on the publication date, or the creation date if this is not set.

	Add sort_order='reverse' to sort in reverse.
The default is sort_order='ascending'.
'descending' can be used as an alias for 'reverse'.

	Add sort_limit=10 to limit to approximately 10 search results.
Note that it is possible to get more results due to index optimisations.
Use a list slice on the catalog search results to be absolutely sure that you have got the maximum number of results, e.g.
results = catalog(…, sort_limit=10)[:10].
Also note that the use of sort_limit requires a sort_on as well.

Some of the more commonly used metadata columns are:

	Creator

	the user who created the content object.

	Date

	the publication date or creation date, whichever is later.

	Title

	the object’s title.

	Description

	the object’s description.

	getId

	the object’s id (note that this is an attribute, not a function).

	review_state

	the object’s workflow state.

	portal_type

	the object’s portal type.

For more information about catalog indexes and searching, see the
ZCatalog chapter in the Zope 2 book [http://docs.zope.org/zope2/zope2book/SearchingZCatalog.html].

How to setup the index TTW:

Now that the fields are index-able, we need to create the index itself.

	Go to the Zope Management Interface

	Go on 'portal_catalog'

	Click 'Indexes' tab

	There's a drop down menu to the top right to let you choose what type of index to add - if you are using a plain text string field you would select 'FieldIndex'

	As the 'id' put in the programmatical name of your Dexterity type field that you want to index

	Hit OK, tick your new index and click 'Reindex'

You should now see content being indexed.

See the documentation for further information

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Custom add and edit forms

Using `z3c.form`_ to build custom forms

Until now, we have used Dexterity’s default content add and edit forms,
supplying form hints in our schemata to influence how the forms are
built.
For most types, that is all that’s ever needed.
In some cases, however, we want to build custom forms, or supply additional
forms.

Dexterity uses the z3c.form [http://docs.zope.org/z3c.form] library to build its forms, via the
plone.z3cform [http://pypi.python.org/pypi/plone.z3cform] integration package.

Dexterity also relies on plone.autoform [http://pypi.python.org/pypi/plone.autoform], in particular its
AutoExtensibleForm base class, which is responsible for processing
form hints and setting up z3c.form [http://docs.zope.org/z3c.form] widgets and groups (fieldsets).
A custom form, therefore, is simply a view that uses these libraries,
although Dexterity provides some helpful base classes that make it
easier to construct forms based on the schema and behaviors of a
Dexterity type.

Note

If you want to build standalone forms not related to content objects,
see the z3c.form [http://docs.zope.org/z3c.form] documentation.

Edit forms

An edit form is just a form that is registered for a particular type of
content and knows how to register its fields.
If the form is named edit, it will replace the default edit form,
which is registered with that name for the more general
IDexterityContent interface.

Dexterity provides a standard edit form base class that provides
sensible defaults for buttons, labels and so on.
This should be registered for a type schema (not a class).
To create an edit form that is identical to the default, we could do:

from plone.dexterity.browser import edit

class EditForm(edit.DefaultEditForm):
 pass

and register it in configure.zcml:

<browser:page
 for=".fs_page.IFSPage"
 name="edit"
 class=".fs_page.EditForm"
 permission="cmf.ModifyPortalContent"
 />

This form is of course not terribly interesting, since it is identical
to the default. However, we can now start changing fields and values.
For example, we could:

	Override the schema property to tell plone.autoform [http://pypi.python.org/pypi/plone.autoform] to use a
different schema interface (with different form hints) than the
content type schema.

	Override the additionalSchemata property to tell plone.autoform [http://pypi.python.org/pypi/plone.autoform]
to use different supplemental schema interfaces.
The default is to use all behavior interfaces that provide the
IFormFieldProvider marker from plone.autoform [http://pypi.python.org/pypi/plone.autoform].

	Override the label and description properties to provide
different a different title and description for the form.

	Set the z3c.form [http://docs.zope.org/z3c.form] fields and groups attributes directly.

	Override the updateWidgets() method to modify widget properties,
or one of the other update``() methods,
to perform additional processing on the fields.
In most cases, these require us to call the super version at the
beginning.
See the plone.autoform [http://pypi.python.org/pypi/plone.autoform] and z3c.form [http://docs.zope.org/z3c.form] documentation
to learn more about the sequence of calls that emanate from the form
update() method in the z3c.form.form.BaseForm class.

	Override the template attribute to specify a custom template.

Content add sequence

Add forms are similar to edit forms in that they are built from a type’s
schema and the schemata of its behaviors.
However, for an add form to be able to construct a content object,
it needs to know which portal_type to use.

You should realise that the FTIs in the portal_types tool can be
modified through the web.
It is even possible to create new types through the web that re-use existing
classes and factories.

For this reason, add forms are looked up via a namespace traversal
adapter alled ++add++.
You may have noticed this in the URLs to add forms already.
What actually happens is this:

	Plone renders the add menu.
- To do so, it looks, among other places, for actions in the folder/add category. This category is provided by the portal_types tool.
- The folder/add action category is constructed by looking up the add_view_expr property on the FTIs of all addable types. This is a TALES expression telling the add menu which URL to use.
- The default add_view_expr in Dexterity (and CMF 2.2) is string:${folder_url}/++add++${fti/getId}. That is, it uses the ++add++ traversal namespace with an argument containing the FTI name.

	
	A user clicks on an entry in the menu and is taken to a URL like /path/to/folder/++add++my.type.

	
	The ++add++ namespace adapter looks up the FTI with the given name, and gets its factory property.

	The factory property of an FTI gives the name of a particular zope.component.interfaces.IFactory utility, which is used later to construct an instance of the content object. Dexterity automatically registers a factory instance for each type, with a name that matches the type name, although it is possible to use an existing factory name in a new type.
This allows administrators to create new “logical” types that are
functionally identical to an existing type.

	The ++add++ namespace adapter looks up the actual form to render as
a multi-adapter from (context, request, fti) to Interface with
a name matching the factory property.
Recall that a standard view is a multi-adapter from
(context, request) to Interface with a name matching the URL
segment for which the view is looked up.
As such, add forms are not standard views, because they get the
additional fti parameter when constructed.

	If this fails, there is no custom add form for this factory (as is
normally the case).
The fallback is an unnamed adapter from (context, request, fti).
The default Dexterity add form is registered as such an adapter,
specific to the IDexterityFTI interface.

	The form is rendered like any other z3c.form form instance,
and is subject to validation,
which may cause it to be loaded several times.

	
	Eventually, the form is successfully submitted. At this point:

	
	The standard AddForm base class will look up the factory from the FTI reference it holds and call it to create an instance.

	The default Dexterity factory looks at the klass [*] attribute of the FTI to determine the actual content class to use, creates an object and initialises it.

	The portal_type attribute of the newly created instance is set to
the name of the FTI.
Thus, if the FTI is a “logical type” created through the web, but
using an existing factory, the new instance’s portal_type will be
set to the “logical type”.

	The object is initialised with the values submitted in the form.

	An IObjectCreatedEvent is fired.

	The object is added to its container.

	The user is redirected to the view specified in the immediate_view
property of the FTI.

	[*]	class is a reserved word in Python, so we use klass.

This sequence is pretty long, but thankfully we rarely have to worry
about it. In most cases, we can use the default add form, and when we
can’t, creating a custom add form is only a bit more difficult than
creating a custom edit form.

Custom add forms

As with edit forms, Dexterity provides a sensible base class for add
forms that knows how to deal with the Dexterity FTI and factory.

A custom form replicating the default would look like this:

from plone.dexterity.browser import add

class AddForm(add.DefaultAddForm):
 portal_type = 'example.fspage'

and be registered in ZCML like this:

<adapter
 for="Products.CMFCore.interfaces.IFolderish
 zope.publisher.interfaces.browser.IDefaultBrowserLayer
 ..interfaces.IDexterityFTI"
 provides="zope.publisher.interfaces.browser.IBrowserPage"
 factory=".fs_page.AddForm"
 name="example.fspage"
 />
<class class=".fs_page.AddForm">
 <require
 permission="cmf.AddPortalContent"
 interface="zope.publisher.interfaces.browser.IBrowserPage"
 />
</class>

The name here should match the factory name.
By default, Dexterity types have a factory called the same as the FTI name.
If no such factory exists
(i.e. you have not registered a custom IFactory utility),
a local factory utility will be created and managed by Dexterity when the
FTI is installed.

Also note that we do not specify a context here.
Add forms are always registered for any IFolderish context.

Note

If the permission used for the add form is different to the
add_permission set in the FTI, the user needs to have both
permissions to be able to see the form and add content.
For this reason, most add forms will use the generic
cmf.AddPortalContent permission.
The add menu will not render links to types where the user
does not have the add permission stated in the FTI,
even if this is different to cmf.AddPortalContent.

As with edit forms, we can customise this form by overriding z3c.form [http://docs.zope.org/z3c.form]
and plone.autoform [http://pypi.python.org/pypi/plone.autoform] properties and methods.
See the z3c.form [http://docs.zope.org/z3c.form] documentation on add forms for more details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

Custom content classes

Adding a custom implementation

When we learned about configuring the Dexterity FTI,
we saw the klass attribute and how it could be used to refer to either
the Container or Item content classes.
These classes are defined in the plone.dexterity.content [http://pypi.python.org/pypi/plone.dexterity.content] module,
and represent container (folder) and item (non-folder) types, respectively.

For most applications, these two classes will suffice.
We will normally use behaviors, adapters, event handlers and schema
interfaces to build additional functionality for our types.
In some cases, however, it is useful or necessary to override the class,
typically to override some method or property provided by the base class
that cannot be implemented with an adapter override.
A custom class may also be able to provide marginally better performance by
side-stepping some of the schema-dependent dynamic behavior found in the
base classes.
In real life, you are very unlikely to notice, though.

Creating a custom class is simple: simply derive from one of the
standard ones, e.g.:

from plone.dexterity.content import Item

class MyItem(Item):
 """A custom content class"""
 ...

For a container type, we’d do:

from plone.dexterity.content import Container

class MyContainer(Container):
 """A custom content class"""
 ...

You can now add any required attributes or methods to this class.

To make use of this class, set the klass attribute in the FTI to its
dotted name, e.g.

<property name="klass">my.package.myitem.MyItem</property>

This will cause the standard Dexterity factory to instantiate this class
when the user submits the add form.

Note

As an alternative to setting klass in the FTI,
you may provide your own IFactory utility for this type in lieu of
Dexterity’s default factory (see plone.dexterity.factory [http://pypi.python.org/pypi/plone.dexterity.factory]).
However, you need to be careful that this factory performs all necessary
initialisation, so it is normally better to use the standard factory.

Custom class caveats

There are a few important caveats when working with custom content classes:

	Make sure you use the correct base class: either
plone.dexterity.content.Item or
plone.dexterity.content.Container.

	If you mix in other base classes,
it is safer to put the Item or Container class first.
If another class comes first, it may override the __name__,
__providedBy__, __allow_access_to_unprotected_subobjects__ and/or
isPrincipiaFolderish properties, and possibly the __getattr__()
and __getitem__() methods,
causing problems with the dynamic schemata and/or folder item security.
In all cases, you may need to explicitly set these attributes to the ones
from the correct base class.

	If you define a custom constructor, make sure it can be called with
no arguments, and with an optional id argument giving the name.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Advanced configuration »

WebDAV and other file representations

Adding support for WebDAV and accessing and modifying a
content object using file-like operations

Zope supports WebDAV, a protocol that allows content objects to be
viewed, modified, copied, renamed, moved and deleted as if they were
files on the filesystem. WebDAV is also used to support saving to remote
locations from various desktop programs. In addition, WebDAV powers the
External Editor product, which allows users to launch a desktop
program from within Plone to edit a content object.

To configure a WebDAV server, you can add the following option to the
[instance] section of your buildout.cfg and re-run buildout.

webdav-address = 9800

See the documentation for plone.recipe.zope2instance [http://pypi.python.org/pypi/plone.recipe.zope2instance] for details.
When Zope is started, you should now be able to mount it as a WebDAV
server on the given port.

Most operating systems support mounting WebDAV servers as folders.
Unfortunately, not all WebDAV implementations are very good.
Dexterity content should work with Windows Web Folders [*]
and well-behaved clients such as Novell NetDrive.

	[*]	open Internet Explorer,
go to File | Open,
type in a WebDAV address, e.g. http://localhost:9800,
and then select Open as web folder before hitting
OK

On Mac OS X, the Finder claims to support WebDAV, but the implementation
is so flakey that it is just as likely to crash Mac OS X as it is to let
you browse files and folders. Use a dedicated WebDAV client instead,
such as Cyberduck [http://cyberduck.ch/].

Default WebDAV behaviour

By default, Dexterity content can be downloaded and uploaded using a
text format based on RFC 2822 [https://tools.ietf.org/html/rfc2822.html], the same standard used to encode email
messages.
Most fields are encoded in headers, whilst the field marked as “primary”
will be contained in the body of the message.
If there is more than one primary field, a multi-part message is created.

A field can be marked as “primary” using the primary() directive from
plone.supermodel [http://pypi.python.org/pypi/plone.supermodel]. For example:

from plone.autoform import directives as form
from plone.supermodel import directives

class ISession(model.Schema):
 """A conference session. Sessions are managed inside Programs.
 """

 title = schema.TextLine(
 title=_(u"Title"),
 description=_(u"Session title"),
)

 description = schema.Text(
 title=_(u"Session summary"),
)

 directives.primary('details')
 details = RichText(
 title=_(u"Session details"),
 required=False
)

 form.widget(presenter=AutocompleteFieldWidget)
 presenter = RelationChoice(
 title=_(u"Presenter"),
 source=ObjPathSourceBinder(object_provides=IPresenter.__identifier__),
 required=False,
)

 form.write_permission(track='example.conference.ModifyTrack')
 track = schema.Choice(
 title=_(u"Track"),
 source=possibleTracks,
 required=False,
)

This will actually apply the IPrimaryField marker interface from the
plone.rfc822 [http://pypi.python.org/pypi/plone.rfc822] package to the given field(s).

A WebDAV download of this content item will by default look like this:

title: Test session
description: First session
presenter: 713399904
track: Administrators
MIME-Version: 1.0
Content-Type: text/html; charset="utf-8"
Portal-Type: example.conference.session

<p>Details here</p>

Notice how most fields are encoded as header strings.
The presenter relation field stores a number,
which is the integer id of the target object.
Note that this id is generated when the content object is created,
and so is unlikely to be valid on a different site.
The details field, which we marked as primary,
is encoded in the body of the message.

It is also possible to upload such a file to create a new session.
In order to do that, the content_type_registry tool needs to be
configured with a predicate that can detect the type of content from the
uploaded file and instantiate the correct type of object.
Such predicates could be based on an extension or a filename pattern.
Below, we will see a different approach that uses a custom “file factory”
for the containing Program type.

Containers

Container objects will be shown as collections (WebDAV-speak for
folders) for WebDAV purposes.
This allows the WebDAV client to open the container and list its contents.
However, representing containers as collections makes it impossible to
access the data contained in the various fields of the content object.

To allow access to this information, a pseudo-file called _data will
be exposed inside a Dexterity container.
This file can be read and written like any other,
to access or modify the container’s data.
It cannot be copied, moved, renamed or deleted: those operations should be
performed on the container itself.

Customising WebDAV behaviour

There are several ways in which you can influence the WebDAV behaviour
of your type.

	If you are happy with the RFC 2822 [https://tools.ietf.org/html/rfc2822.html] format, you can provide your own
plone.rfc822.interfaces.IFieldMarshaler adapters to provide
alternate serialisations and parsers for fields.
See the plone.rfc822 [http://pypi.python.org/pypi/plone.rfc822] documentation for details.

	If you want to use a different file representation, you can provide
your own IRawReadFile and IRawWriteFile adapters.
For example, if you have a content object that stores binary data,
you could return this data directly, with an appropriate MIME type, to
allow it to be edited in a desktop program
(e.g. an image editor if the MIME type is image/jpeg).
The file plone.dexterity.filerepresentation contains
two base classes, ReadFileBase and WriteFileBase, which you may
be able to use to make it easier to implement these interfaces.

	If you want to control how content objects are created when a new
file or directory is dropped into a particular type of container, you
can provide your own IFileFactory or IDirectoryFactory adapters.
See plone.dexterity.filerepresentation [http://pypi.python.org/pypi/plone.dexterity.filerepresentation] for the default implementations.

As an example, let’s register a custom IFileFactory adapter for the
IProgram type.
This adapter will not rely on the content_type_registry tool to
determine which type to construct,
but will instead create a Session object,
since that is the only type that is allowed inside a Program container.

The code, in program.py, looks like this:

from zope.component import adapter
from zope.component import createObject
from zope.interface import implementer
from zope.event import notify
from zope.lifecycleevent import ObjectCreatedEvent
from zope.filerepresentation.interfaces import IFileFactory

@implementer(IFileFactory)
@adapter(IProgram)
class ProgramFileFactory(object):
 """Custom file factory for programs, which always creates a Session.
 """

 def __init__(self, context)
 self.context = context

 def __call__(self, name, contentType, data):
 session = createObject('example.conference.session', id=name)
 notify(ObjectCreatedEvent(session))
 return session

We need to register the adapter in configure.zcml:

<adapter factory=".program.ProgramFileFactory" />

This adapter overrides the DefaultFileFactory found in
plone.dexterity.filerepresentation [http://pypi.python.org/pypi/plone.dexterity.filerepresentation].
It creates an object of the designated type, fires an
IObjectModifiedEvent and then returns the object, which will then be
populated with data from the uploaded file.

To test this, you could write a text file like the one shown above in a
text editor and save it on your desktop, then drag it into the folder in
your WebDAV client representing a Program.

Here is a simple automated integration test for the same component:

def test_file_factory(self):
 self.folder.invokeFactory('example.conference.program', 'p1')
 p1 = self.folder['p1']
 fileFactory = IFileFactory(p1)
 newObject = fileFactory('new-session', 'text/plain', 'dummy')
 self.assertTrue(ISession.providedBy(newObject))

How it all works

The rest of this section describes in some detail how the various WebDAV
related components interact in Zope 2, CMF and Dexterity.
This may be helpful if you are trying to customise or debug WebDAV behaviour.

Background

Basic WebDAV support can be found in the webdav package.
This defines two base classes, webdav.Resource.Resource and
webdav.Collection.Collection.
Collection extends Resource.
These are mixed into item and container content objects, respectively.

The webdav package also defines the NullResource object.
A NullResource is a kind of placeholder,
which supports the HTTP verbs HEAD, PUT, and MKCOL.

Contents based on ObjectManager (including those in Dexterity) will
return a NullResource if they cannot find the requested object and the
request is a WebDAV request.

The zope.filerepresentation [http://pypi.python.org/pypi/zope.filerepresentation] package defines a number of interfaces
which are intended to help manage file representations of content
objects.
Dexterity uses these interfaces to allow the exact file read and write
operations to be overridden without subclassing.

HEAD

A HEAD request retrieves headers only.

Resource.HEAD() sets
Content-Type based on self.content_type(),
Content-Length based on self.get_size(),
Last-Modified based on self._p_mtime,
and an ETag based on self.http__etag(), if available.

Collection.HEAD() looks for self.index_html.HEAD() and returns its
value if that exists.
Otherwise, it returns a "405 Method Not Allowed" response. If there is no
index_html object, it returns "404 Not Found".

GET

A GET request retrieves headers and body.

Zope calls manage_DAVget() to retrieve the body.
The default implementation calls manage_FTPget().

In Dexterity, manage_FTPget() adapts self to IRawReadFile and
uses its mimeType and encoding properties to set the Content-Type
header, and its size() method to set Content-Length.

If the IRawReadFile adapter is also an IStreamIterator,
it will be returned for the publisher to consume directly.
This provides for efficient serving of large files,
although it does require that the file can be read in its entirety with the
ZODB connection closed.
Dexterity solves this problem by writing the file content to a temporary
file on the server.

If the IRawReadFile adapter is not a stream iterator, its contents are
returned as a string, by calling its read() method.
Note that this loads the entire file contents into memory on the server.

The default IRawReadFile implementation for Dexterity content returns
an RFC 2822 [https://tools.ietf.org/html/rfc2822.html]-style message document.
Most fields on the object and any enabled behaviours will be turned into
UTF-8 encoded headers.
The primary field, if any, will be returned in the body, also most likely
encoded as an UTF-8 encoded string.
Binary data may be base64-encoded instead.

A type which wishes to override this behaviour can provide its own adapter.
For example, an image type could return the raw image data.

PUT

A PUT request reads the body of a request and uses it to update a
resource that already exists, or to create a new object.

By default Resource.PUT() fails with "405 Method Not Allowed".
That is, it is not by default possible to PUT to a resource that already
exists.
The same is true of Collection.PUT().

In Dexterity, the PUT() method is overridden to adapt self to
zope.filerepresentation.IRawWriteFile, and call its write() method
one or more times, writing the contents of the request body, before
calling close().
The mimeType and encoding properties will also be
set based on the value of the Content-Type header, if available.

The default implementation of IRawWriteFile for Dexterity objects
assumes the input is an RFC 2822 style message document.
It will read header values and use them to set fields on the object or in
behaviours, and similarly read the body and update the corresponding primary
field.

NullResource.PUT() is responsible for creating a new content object
and initialising it (recall that a NullResource may be returned if a
WebDAV request attempts to traverse to an object which does not exist).
It sniffs the content type and body from the request,
and then looks for the PUT_factory() method on the parent folder.

In Dexterity, PUT_factory() is implemented to look up an
IFileFactory adapter on self and use it to create the empty file.
The default implementation will use the content_type_registry tool to
determine a type name for the request (e.g. based on its extension or
MIME type), and then construct an instance of that type.

Once an instance has been constructed, the object will be initialised by
calling its PUT() method, as above.

Note that when content is created via WebDAV,
an IObjectCreatedEvent will be fired from the IFileFactory adapter,
just after the object has been constructed.
At this point, none of its values will be set.
Subsequently, at the end of the PUT() method,
an IObjectModifiedEvent will be fired.
This differs from the event sequence of an object created through the web.
Here, only an IObjectCreatedEvent is fired,
and only after the object has been fully initialised.

DELETE

A DELETE request instructs the WebDAV server to delete a resource.

Resource.DELETE() calls manage_delObjects() on the parent folder to
delete an object.

Collection.DELETE() does the same,
but checks for write locks of all children of the collection, recursively,
before allowing the delete.

PROPFIND

A PROPFIND request returns all or a set of WebDAV properties.
WebDAV properties are metadata used to describe an object, such as the last
modified time or the author.

Resource.PROPFIND() parses the request and then looks for a
propertysheets attribute on self.

If an allprop request is received, it calls dav__allprop(),
if available, on each property sheet.
This method returns a list of name/value pairs in the correct WebDAV XML
encoding, plus a status.

If a propnames request is received, it calls dav__propnames(),
if available, on each property sheet.
This method returns a list of property names in the correct WebDAV XML
encoding, plus a status.

If a propstat request is received, it calls dav__propstats(),
if available, on each property sheet,
for each requested property.
This method returns a property name/value pair in the correct WebDAV XML
encoding, plus a status.

The PropertyManager mixin class defines the propertysheets variable
to be an instance of DefaultPropertySheets.
This in turn has two property sheets:
default, a DefaultProperties instance; and
webdav, a DAVProperties instance.

The DefaultProperties instance contains the main property sheet. This
typically has a title property, for example.

DAVProperties will provides various core WebDAV properties.
It defines a number of read-only properties:
creationdate, displayname,
resourcetype, getcontenttype, getcontentlength, source,
supportedlock, and lockdiscovery.
These in turn are delegated to methods prefixed with dav__, so e.g.
reading the creationdate property calls dav__creationdate() on the
property sheet instance.
These methods in turn return values based on the property manager instance
(i.e. the content object).
In particular:

	creationdate

	returns a fixed date (January 1st, 1970).

	displayname

	returns the value of the title_or_id() method.

	resourcetype

	returns an empty string or <n:collection/>.

	getlastmodified

	returns the ZODB modification time.

	getcontenttype

	delegates to the content_type() method, falling back on the
default_content_type() method.
In Dexterity, content_type() is implemented to look up the
IRawReadFile adapter on the context and return the value of its
mimeType property.

	getcontentlength

	delegates to the get_size() method (which is also used for the
“size” column in Plone folder listings).
In Dexterity, this looks up a zope.size.interfaces.ISized adapter on
the object and calls sizeForSorting().
If this returns a unit of 'bytes', the value portion is used.
Otherwise, a size of 0 is returned.

	source

	returns a link to /document_src, if that attribute exists.

	supportedlock

	indicates whether IWriteLock is supported by the content item.

	lockdiscovery

	returns information about any active locks.

Other properties in this and any other property sheets are returned as
stored when requested.

If the PROPFIND request specifies a depth of 1 or infinity
(i.e. the client wants properties for items in a collection),
the process is repeated for all items returned by the listDAVObjects()
methods,
which by default returns all contained items via the objectValues()
method.

PROPPATCH

A PROPPATCH request is used to update the properties on an existing
object.

Resource.PROPPATCH() deals with the same types of properties from
property sheets as PROPFIND().
It uses the PropertySheet API to add or update properties as
appropriate.

MKCOL

A MKCOL request is used to create a new collection resource,
i.e. create a new folder.

Resource.MKCOL() raises "405 Method Not Allowed",
because the resource already exists
(remember that in WebDAV, the MKCOL request, like a PUT
for a new resource, is sent with a location that specifies the desired
new resource location, not the location of the parent object).

NullResource.MKCOL() handles the valid case where a MKCOL request
has been sent to a new resource.
After checking that the resource does not already exist,
that the parent is indeed a collection (folderish item),
and that the parent is not locked,
it calls the MKCOL_handler() method on the parent folder.

In Dexterity, the MKCOL()_handler is overridden to adapt self to an
IDirectoryFactory from zope.filerepresentation [http://pypi.python.org/pypi/zope.filerepresentation] and use this to
create a directory.
The default implementation simply calls manage_addFolder() on the parent.
This will create an instance of the Folder type.

COPY

A COPY request is used to copy a resource.

Resource.COPY() implements this operation using the standard Zope
content object copy semantics.

MOVE

A MOVE request is used to relocate or rename a resource.

Resource.MOVE() implements this operation using the standard Zope
content-object move semantics.

LOCK

A LOCK request is used to lock a content object.

All relevant WebDAV methods in the webdav package are lock aware.
That is, they check for locks before attempting any operation that would
violate a lock.

Also note that plone.locking [http://pypi.python.org/pypi/plone.locking] uses the lock implementation from the
webdav package by default.

Resource.LOCK() implements locking and lock refresh support.

NullResource.LOCK() implements locking on a NullResource.
In effect, this means locking the name of the non-existent resource.
When a NullResource is locked, it is temporarily turned into a
LockNullResource object, which is a persistent object set onto the
parent (remember that a NullResource is a transient object returned
when a child object cannot be found in a WebDAV request).

UNLOCK

An UNLOCK request is used to unlock a locked object.

Resource.UNLOCK() handles unlock requests.

LockNullResource.UNLOCK() handles unlocking of a LockNullResource.
This deletes the LockNullResource object from the parent container.

Fields on container objects

When browsing content via WebDAV, a container object (folderish item)
will appear as a folder.
Most likely, this object will also have content in the form of schema
fields.
To make this accessible, Dexterity containers expose a pseudo-file with the
name _data, by injecting this into the return value of
listDAVObjects() and adding a special traversal hook to allow its
contents to be retrieved.

This file supports HEAD, GET, PUT, LOCK, UNLOCK,
PROPFIND and PROPPATCH requests (an error will be raised if the user
attempts to rename, copy, move or delete it).
These operate on the container object, obviously.
For example, when the data object is updated via a PUT request, the
PUT() method on the container is called, by default delegating to an
IRawWriteFile adapter on the container.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Testing Dexterity types

Writing unit and integration tests

	Unit tests

	Integration tests
	Faster tests with Roadrunner

	Mock testing
	Mock testing caveats

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Unit tests

Writing simple unit tests

As all good developers know, automated tests are very important!
If you are not comfortable with automated testing and test-driven
development, you should read the Plone testing tutorial.
In this section, we will assume you are familiar with Plone testing basics,
and show some tests that are particularly relevant to our example types.

Firstly, we will add a few unit tests.
Recall that unit tests are simple tests for a particular function or method,
and do not depend on an outside environment being set up.
As a rule of thumb, if something can be tested with a simple unit test, do
so, because:

	Unit tests are quick to write.

	They are also quick to run.

	Because they are more isolated, you are less likely to have tests
that pass or fail due to incorrect assumptions or by luck.

	You can usually test things more thoroughly and exhaustively with
unit tests than with (slower) integration tests.

You’ll typically supplement a larger number of unit tests with a smaller
number of integration tests, to ensure that your application’s correctly
wired up and working.

That’s the theory, at least. When we’re writing content types, we’re
often more interested in integration test, because a type schema and FTI
are more like configuration of the Plone and Dexterity frameworks than
imperative programming.
We can’t “unit test” the type’s schema interface, but we can and should test
that the correct schema is picked up and used when our type is installed.
We will often write unit tests (with mock objects, where required) for
custom event handlers, default value calculation functions and other
procedural code.

In that spirit, let’s write some unit tests for the default value
handler and the invariant in program.py.
We’ll add the directory tests, with an __init__.py and a file
test_program.py that looks like this:

import unittest
import datetime

from example.conference.program import startDefaultValue
from example.conference.program import endDefaultValue
from example.conference.program import IProgram
from example.conference.program import StartBeforeEnd

class MockProgram(object):
 pass

class TestProgramUnit(unittest.TestCase):
 """Unit test for the Program type
 """

 def test_start_defaults(self):
 data = MockProgram()
 default_value = startDefaultValue(data)
 today = datetime.datetime.today()
 delta = default_value - today
 self.assertEqual(6, delta.days)

 def test_end_default(self):
 data = MockProgram()
 default_value = endDefaultValue(data)
 today = datetime.datetime.today()
 delta = default_value - today
 self.assertEqual(9, delta.days)

 def test_validate_invariants_ok(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 1)
 data.end = datetime.datetime(2009, 1, 2)

 try:
 IProgram.validateInvariants(data)
 except:
 self.fail()

 def test_validate_invariants_fail(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 2)
 data.end = datetime.datetime(2009, 1, 1)

 try:
 IProgram.validateInvariants(data)
 self.fail()
 except StartBeforeEnd:
 pass

 def test_validate_invariants_edge(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 2)
 data.end = datetime.datetime(2009, 1, 2)

 try:
 IProgram.validateInvariants(data)
 except:
 self.fail()

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

This is a simple test using the Python standard library’s unittest
module. There are a few things to note here:

	We have created a dummy class to simulate a Program instance.
It doesn’t contain anything at all, but we set some attributes onto it
for certain tests.
This is a very simple way to do mocks.
There are much more sophisticated mock testing approaches, but starting
simple is good.

	Each test is self contained.
There is no test layer or test case setup/tear-down.

	We use the defaultTestLoader to load all test classes in the module
automatically.
The test runner will look for modules in the tests
package with names starting with test that have a test_suite()
method to get test suites.

To run the tests, we can do:

$./bin/text example.conference

Hopefully it should show five passing tests.

Note

This uses the testrunner configured via the [test] part in our
buildout.cfg.
This provides better test reporting and a few more advanced options
(like output colouring).
We could also use the built-in test runner in the instance script,
e.g. with ./bin/instance test -s example.conference.

To run just this test suite, we can do:

$./bin/test example.conference -t TestProgramUnit

This is useful when we have other test suites that we don’t want to run,
e.g. because they are integration tests and require lengthy setup.

To get a report about test coverage, we can run:

$./bin/test example.conference --coverage

Test coverage reporting is important. If you have a module with low test
coverage, it means that your tests do not cover many of the code paths
in those modules, and so are less useful for detecting bugs or guarding
against future problems. Aim for 100%.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Integration tests

Writing integration tests with plone.app.testing

We’ll now add some integration tests for our type.
These should ensure that the package installs cleanly, and that our custom
types are addable in the right places and have the right schemata, at the
very least.

To help manage test setup, we’ll make use of the Zope test runner’s
concept of layers.
Layers allow common test setup (such as configuring a Plone site and
installing a product) to take place once and be re-used by multiple test
cases.
Those test cases can still modify the environment, but their changes will be
torn down and the environment reset to the layer’s initial state between
each test, facilitating test isolation.

As the name implies, layers are, erm, layered.
One layer can extend another.
If two test cases in the same test run use two different layers with a
common ancestral layer, the ancestral layer is only set up and torn down
once.

plone.app.testing [http://pypi.python.org/pypi/plone.app.testing] provides tools for writing integration and functional
tests for code that runs on top of Plone, so we’ll use it.

In setup.py, we will add the extras_require option, like so:

extras_require = {
 'test': ['plone.app.testing']
},

Note

Don’t forget to re-run buildout after making changes to setup.py.

plone.app.testing [http://pypi.python.org/pypi/plone.app.testing] includes a set of layers that set up fixtures
containing a Plone site, intended for writing integration and functional
tests.

We need to create a custom fixture.
The usual pattern is to create a new layer class that has PLONE_FIXTURE
as its default base, instantiating that as a separate "fixture" layer.
This layer is not to be used in tests directly,
since it won't have test/transaction lifecycle management, but represents a
shared fixture, potentially for both functional and integration testing.
It is also the point of extension for other layers that follow the same
pattern.

Once this fixture has been defined, "end-user" layers can be defined using the
IntegrationTesting and FunctionalTesting classes. We’ll add this in a
testing.py file:

from plone.app.testing import PloneSandboxLayer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting
from plone.app.testing import FunctionalTesting

class Fixture(PloneSandboxLayer):

 defaultBases = (PLONE_FIXTURE,)

 def setUpZope(self, app, configurationContext):
 # Load ZCML
 import example.conference
 self.loadZCML(package=example.conference)

 def setUpPloneSite(self, portal):
 # Install the example.conference product
 self.applyProfile(portal, 'example.conference:default')

FIXTURE = Fixture()
INTEGRATION_TESTING = IntegrationTesting(
 bases=(FIXTURE,),
 name='example.conference:Integration',
)
FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(FIXTURE,),
 name='example.conference:Functional',
)

This extends a base layer that sets up Plone, and adds some custom layer
setup for our package,
in this case installing the example.conference extension profile.
We could also perform additional setup here, such as creating some initial
content or setting the default roles for the test run.
See the plone.app.testing documentation for more details.

To use the layer, we can create a new test case based on unittest.TestCase
that uses our layer. We’ll add one to test_program.py first.
(In the code snippet below, the unit test we created previously has been
removed to conserve space.):

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.program import IProgram
from example.conference.testing import INTEGRATION_TESTING

class TestProgramIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 self.assertTrue(IProgram.providedBy(p1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 schema = fti.lookupSchema()
 self.assertEqual(IProgram, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(IProgram.providedBy(new_object))

 def test_view(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 view = p1.restrictedTraverse('@@view')
 sessions = view.sessions()
 self.assertEqual(0, len(sessions))

 def test_start_end_dates_indexed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.start = datetime.datetime(2009, 1, 1, 14, 01)
 p1.end = datetime.datetime(2009, 1, 2, 15, 02)
 p1.reindexObject()

 result = self.portal.portal_catalog(path='/'.join(p1.getPhysicalPath()))

 self.assertEqual(1, len(result))
 self.assertEqual(result[0].start, DateTime('2009-01-01T14:01:00'))
 self.assertEqual(result[0].end, DateTime('2009-01-02T15:02:00'))

 def test_tracks_indexed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.tracks = ['Track 1', 'Track 2']
 p1.reindexObject()

 result = self.portal.portal_catalog(Subject='Track 2')

 self.assertEqual(1, len(result))
 self.assertEqual(result[0].getURL(), p1.absolute_url())

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

This illustrates a basic set of tests that make sense for most content
types.
There are many more things we could test
(for example, we could test the add permissions more thoroughly,
and we ought to test the sessions() method on the view with some actual
content!),
but even this small set of integration tests tells us that
our product has installed,
that the content type is addable,
that it has the right factory, and
that instances of the type provide the right schema interface.

There are some important things to note about this test case:

	We extend unittest.TestCase, which means we have access to a full Plone
integration test environment.
See the testing tutorial for more details.

	We set the layer attribute to our custom layer.
This means that all tests in our test case will have the
example.conference:default profile installed.

	We need to create a test user's member folder as self.folder because
plone.app.testing takes a minimalist approach and no content is available
by default.

	We test that the content is addable (here, as a normal member in
their member folder, since that is the default security context for
the test – use self.setRoles([‘Manager’]) to get the Manager role
and self.portal to access the portal root),
that the FTI is installed and can be located, and
that both the FTI and instances of the type know about the correct type
schema.

	We also test that the view can be looked up and has the correct methods.
We’ve not included a fully functional test (e.g. using
zope.testbrowser) or any other front-end testing here.
If you require those, take a look at the testing tutorial.

	We also test that our custom indexers are working,
by creating an appropriate object and searching for it.
Note that we need to reindex the object after we’ve modified it so that
the catalog is up to date.

	The defaultTestLoader will find this test and load it, just as it
found the TestProgramUnit test case.

To run our tests, we can still do.

$./bin/test example.conference

You should now notice layers being set up and torn down.
Again, use the -t option to run a particular test case (or test method)
only.

The other tests are similar. We have tests/test_session.py to test
the Session type:

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.session import ISession
from example.conference.session import possible_tracks
from example.conference.testing import INTEGRATION_TESTING

class TestSessionIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):

 # We can't add this directly
 self.assertRaises(ValueError, self.folder.invokeFactory, 'example.conference.session', 'session1')

 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']
 self.assertTrue(ISession.providedBy(s1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 schema = fti.lookupSchema()
 self.assertEqual(ISession, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(ISession.providedBy(new_object))

 def test_tracks_vocabulary(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.tracks = ['T1', 'T2', 'T3']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']

 vocab = possible_tracks(s1)

 self.assertEqual(['T1', 'T2', 'T3'], [t.value for t in vocab])
 self.assertEqual(['T1', 'T2', 'T3'], [t.token for t in vocab])

 def test_catalog_index_metadata(self):
 self.assertTrue('track' in self.portal.portal_catalog.indexes())
 self.assertTrue('track' in self.portal.portal_catalog.schema())

 def test_workflow_installed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']

 chain = self.portal.portal_workflow.getChainFor(s1)
 self.assertEqual(('example.conference.session_workflow',), chain)

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Notice here how we test
that the Session type cannot be added directly to a folder, and
that it can be added inside a program.
We also add a test for the possible_tracks() vocabulary method,
as well as tests for the installation of the track index and metadata
column and the custom workflow:

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.presenter import IPresenter
from example.conference.testing import INTEGRATION_TESTING

class TestPresenterIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):
 self.folder.invokeFactory('example.conference.presenter', 'presenter1')
 p1 = self.folder['presenter1']
 self.assertTrue(IPresenter.providedBy(p1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 schema = fti.lookupSchema()
 self.assertEqual(IPresenter, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(IPresenter.providedBy(new_object))

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Faster tests with Roadrunner

Warning

Roadrunner development halted in 2009. The following is only useful if you
are using Plone 3.x.

You will have noticed that running unit tests was much quicker than
running integration tests. That is unfortunate, but to be expected: the
integration test setup basically requires starting all of Zope and
configuring a Plone site.

Luckily, there is a tool that we can use to speed things up, and if
you’ve been following along the tutorial, you already have it in your
buildout: Roadrunner [http://pypi.python.org/pypi/roadrunner].
This is a command that takes the place of ./bin/instance test that
preloads the Zope environment and allows you to re-run tests much faster.

To run our tests with roadrunner, we would do:

$./bin/roadrunner -s example.conference

This runs the tests once, and then drops to the Roadrunner prompt:

rr>

Simply hitting enter here, or typing a command like
test -s example.conference will re-run your tests,
this time taking much less time.

Roadrunner works best when you are adding and debugging your tests.
For example, it’s a very quick way to get to a pdb prompt: just set a
breakpoint in your test with import pdb; pdb.set_trace() and re-run
it in roadrunner.
You can then step into your test code and the code under test.

Roadrunner should pick up changes to your tests automatically. However,
it may not pick up changes to your application code, grokked components
or ZCML files. If it doesn’t, you’ll need to exit the Roadrunner prompt
and restart.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Mock testing

Using a mock objects framework to write mock based tests

Mock testing is a powerful approach to testing that lets you make
assertions about how the code under test is interacting with other
system modules. It is often useful when the code you want to test is
performing operations that cannot be easily asserted by looking at its
return value.

In our example product, we have an event handler like this:

def notifyUser(presenter, event):
 acl_users = getToolByName(presenter, 'acl_users')
 mail_host = getToolByName(presenter, 'MailHost')
 portal_url = getToolByName(presenter, 'portal_url')

 portal = portal_url.getPortalObject()
 sender = portal.getProperty('email_from_address')

 if not sender:
 return

 subject = "Is this you?"
 message = "A presenter called %s was added here %s" % (presenter.title, presenter.absolute_url(),)

 matching_users = acl_users.searchUsers(fullname=presenter.title)
 for user_info in matching_users:
 email = user_info.get('email', None)
 if email is not None:
 mail_host.secureSend(message, email, sender, subject)

If we want to test that this sends the right kind of email message,
we’ll need to somehow inspect what is passed to secureSend(). The only
way to do that is to replace the MailHost*object that is acquired when
*getToolByName(presenter, ‘MailHost’) is called, with something that
performs that assertion for us.

If we wanted to write an integration test, we could use PloneTestCase
to execute this event handler, e.g. by firing the event manually, and
temporarily replace the MailHost object in the root of the test case
portal (self.portal) with a dummy that raised an exception if the
wrong value was passed.

However, such integration tests can get pretty heavy handed, and
sometimes it is difficult to ensure that it works in all cases. In the
approach outlined above, for example, we would miss cases where no mail
was sent at all.

Enter mock objects. A mock object is a “test double” that knows how and
when it ought to be called. The typical approach is as follows:

	Create a mock object.

	The mock object starts out in “record” mode.

	Record the operations that you expect the code under test perform on
the mock object. You can make assertions about the type and value of
arguments, the sequence of calls, or the number of times a method is
called or an attribute is retrieved or set.

	You can also give your mock objects behaviour, e.g. by specifying
return values or exceptions to be raised in certain cases.

	Initialise the code under test and/or the environment it runs in so
that it will use the mock object rather than the real object.
Sometimes this involves temporarily “patching” the environment.

	Put the mock framework into “replay” mode.

	Run the code under test.

	Apply any assertions as you normally would.

	The mock framework will raise exceptions if the mock objects are
called incorrectly (e.g. with the wrong arguments, or too many times)
or insufficiently (e.g. an expected method was not called).

There are several Python mock object frameworks. Dexterity itself users
a powerful one called mocker [http://labix.org/mocker], via the plone.mocktestcase [http://pypi.python.org/pypi/plone.mocktestcase]
integration package. You are encouraged to read the documentation for
those two packages to better understand how mock testing works, and what
options are available.

Note

Take a look at the tests in plone.dexterity if you’re looking for more
examples of mock tests using plone.mocktestcase.

To use the mock testing framework, we first need to depend on
plone.mocktestcase. As usual, we add it to setup.py and re-run
buildout.

install_requires=[
 ...
 'plone.mocktestcase',
],

As an example test case, consider the following class in
test_presenter.py:

import unittest

...

from plone.mocktestcase import MockTestCase
from zope.app.container.contained import ObjectAddedEvent
from example.conference.presenter import notifyUser

class TestPresenterUnit(MockTestCase):

 def test_notify_user(self):

 # dummy presenter
 presenter = self.create_dummy(
 __parent__=None,
 __name__=None,
 title="Jim",
 absolute_url = lambda: 'http://example.org/presenter',
)

 # dummy event
 event = ObjectAddedEvent(presenter)

 # search result for acl_users
 user_info = [{'email': 'jim@example.org', 'id': 'jim'}]

 # email data
 message = "A presenter called Jim was added here http://example.org/presenter"
 email = "jim@example.org"
 sender = "test@example.org"
 subject = "Is this you?"

 # mock tools/portal

 portal_mock = self.mocker.mock()
 self.expect(portal_mock.getProperty('email_from_address')).result('test@example.org')

 portal_url_mock = self.mocker.mock()
 self.mock_tool(portal_url_mock, 'portal_url')
 self.expect(portal_url_mock.getPortalObject()).result(portal_mock)

 acl_users_mock = self.mocker.mock()
 self.mock_tool(acl_users_mock, 'acl_users')
 self.expect(acl_users_mock.searchUsers(fullname='Jim')).result(user_info)

 mail_host_mock = self.mocker.mock()
 self.mock_tool(mail_host_mock, 'MailHost')
 self.expect(mail_host_mock.secureSend(message, email, sender, subject))

 # put mock framework into replay mode
 self.replay()

 # call the method under test
 notifyUser(presenter, event)

 # we could make additional assertions here, e.g. if the function
 # returned something. The mock framework will verify the assertions
 # about expected call sequences.

...

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Note that the other tests in this module have been removed for the sake
of brevity.

If you are not familiar with mock testing, it may take a bit of time to
get your head around what’s going on here. Let’s run though the test:

	First, we create a dummy presenter object. This is not a mock
object, it’s just a class with the required minimum set of
attributes, created using the create_dummy() helper method from
the MockTestCase base class. We use this type of dummy because we
are not interested in making any assertions on the presenter
object: it is used as an “input” only.

	Next, we create a dummy event. Here we have opted to use a standard
implementation from zope.app.container.

	We then define a few variables that we will use in the various
assertions and mock return values: the user data that will form our
dummy user search results, and the email data passed to the mail
host.

	Next, we create mocks for each of the tools that our code needs to
look up. For each, we use the expect() method from MockTestCase
to make some assertions. For example, we expect that
getPortalObject() will be called (once) on the portal_url tool,
and it should return another mock object, the portal_mock. On
this, we expect that getProperty() is called with an argument equal
to “email_from_address”. The mock will then return
“test@example.org”. Take a look at the mocker and
plone.mocktestcase documentation to see the various other types of
assertions you can make.

	The most important mock assertion is the line
self.expect(mail_host_mock.secureSend(message, email, sender,
subject)). This asserts that the secureSend() method gets called
with the required message, recipient address, sender address and
subject, exactly once.

	We then put the mock into replay mode, using self.replay(). Up
until this point, any calls on our mock objects have been to record
expectations and specify behaviour. From now on, any call will count
towards verifying those expectations.

	Finally, we call the code under test with our dummy presenter and
event.

	In this case, we don’t have any “normal” assertions, although the
usual unit test assertion methods are all available if you need them,
e.g. to test the return value of the method under test. The
assertions in this case are all coming from the mock objects. The
tearDown() method of the MockTestCase class will in fact check
that all the various methods were called exactly as expected.

To run these tests, use the normal test runner, e.g.:

$./bin/test example.conference -t TestPresenterMock

Note that mock tests are typically as fast as unit tests, so there is
typically no need for something like roadrunner.

Mock testing caveats

Mock testing is a somewhat controversial topic. On the one hand, it
allows you to write tests for things that are often difficult to test,
and a mock framework can - once you are familiar with it - make child’s
play out of the often laborious task of creating reliable test doubles.
On the other hand, mock based tests are inevitably tied to the
implementation of the code under test, and sometimes this coupling can
be too tight for the test to be meaningful. Using mock objects normally
also means that you need a very good understanding of the external APIs
you are mocking. Otherwise, your mock may not be a good representation
of how these systems would behave in the real world. Much has been
written on this, for example by Martin Fowler [http://www.martinfowler.com/articles/mocksArentStubs.html].

As always, it pays to be pragmatic. If you find that you can’t write a
mock based test without reading every line of code in the method under
test and reverse engineering it for the mocks, then an integration test
may be more appropriate. In fact, it is prudent to have at least some
integration tests in any case, since you can never be 100% sure your
mocks are valid representations of the real objects they are mocking.

On the other hand, if the code you are testing is using well-defined
APIs in a relatively predictable manner, mock objects can be a valuable
way to test the “side effects” of your code, and a helpful tool to
simulate things like exceptions and input values that may be difficult
to produce otherwise.

Remember also that mock objects are not necessarily an “all or nothing”
proposition. You can use simple dummy objects or “real” instances in
most cases, and augment them with a few mock objects for those
difficult-to-replicate test cases.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Reference

Useful references for things like field types, wigets and APIs

	Fields
	Field properties

	Field types

	Widgets

	Standard behaviors

	Form schema hints
	Form directives

	Security directives

	Manipulating content objects
	Content object creation and folder manipulation

	Object introspection

	Workflow

	Cataloging and indexing

	Security

	Content object properties and methods

	Dexterity XML
	Introduction

	XML Document Structure

	supermodel/schema fields

	supermodel/form attributes

	supermodel/security attributes

	Miscellaneous
	User contributed recipes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Fields

The standard schema fields

The following tables shows the most common field types for use in
Dexterity schemata.
See the documentation on creating schemata for information about how to
use these.

Field properties

Fields are initialised with properties passed in their constructors.
To avoid having to repeat the available properties for each field, we’ll
list them once here, grouped into the interfaces that describe them.
You’ll see those interfaces again in the tables below that describe the
various field types.
Refer to the table below to see what properties a particular interface
implies.

	Interface
	Property
	Type
	Description

	IField
	title
	unicode
	The title of the field. Used in the widget.

	
	description
	unicode
	A description for the field. Used in the widget.

	
	required
	bool
	Whether or not the field is required. Used for
form validation. The default is True.

	
	readonly
	bool
	Whether or not the field is read-only. Default
is False.

	
	default
	
	The default value for the field. Used in forms
and sometimes as a fallback value. Must be a
valid value for the field if set. The default
is None.

	
	missing_value
	
	A value that represents "this field is not set".
Used by form validation. Defaults to None. For
lists and tuples, it is sometimes useful to set
this to an empty list/tuple.

	IMinMaxLen
	min_length
	int
	The minimum required length. Used for string
fields. Default is 0.

	
	max_length
	int
	The maximum allowed length. Used for string
fields. Default is None (no check).

	IMinMax
	min
	
	The minimum allowed value. Must be a valid value
for the field, e.g. for an Int field this
should be an integer. Default is None (no
check).

	
	max
	
	The maximum allowed value. Must be a valid value
for the field, e.g. for an Int field this should
be an integer. Default is None (no check).

	ICollection
	value_type
	
	Another Field instance that describes the
allowable values in a list, tuple or other
collection. Must be set for any collection field.
One common usage is to set this to a Choice,
to model a multi-selection field with a vocabulary.

	
	unique
	bool
	Whether or not values in the collection must be
unique. Usually not set directly – use a Set
or Frozenset to guarantee uniqueness in an
efficient way.

	IDict
	key_type
	
	Another Field instance that describes the
allowable keys in a dictionary. Similar to the
value_type of a collection. Must be set.

	
	value_type
	
	Another Field instance that describes the
allowable values in a dictionary. Similar to the
value_type of a collection. Must be set.

	IObject
	schema
	Interface
	An interface that must be provided by any object
stored in this field.

	IRichText
	default_mime_type
	str
	Default MIME type for the input text of a rich
text field. Defaults to text/html.

	
	output_mime_type
	str
	Default output MIME type for the transformed
value of a rich text field. Defaults to
text/x-html-safe. There must be a
transformation chain in the portal_transforms
tool that can transform from the input value to
the output value for the output property of
the RichValue object to contain a value.

	
	allowed_mime_types
	tuple
	A list of allowed input MIME types. The default
is None, in which case the site-wide settings
(from the Markup control panel) will be used.

Field types

The following tables describe the most commonly used field types,
grouped by the module from which they can be imported.

Fields in zope.schema

	Name
	Type
	Description
	Properties

	Choice
	N/A
	Used to model selection from a vocabulary, which must be supplied.
Often used as the value_type of a selection field. The value
type is the value of the terms in the vocabulary.
	See vocabularies.

	Bytes
	str
	Used for binary data.
	IField, IMinMaxLen

	ASCII
	str
	ASCII text (multi-line).
	IField, IMinMaxLen

	BytesLine
	str
	A single line of binary data, i.e. a Bytes with newlines
disallowed.
	IField, IMinMaxLen

	ASCIILine
	str
	A single line of ASCII text.
	IField, IMinMaxLen

	Text
	unicode
	Unicode text (multi-line). Often used with a WYSIWYG widget,
although the default is a text area.
	IField, IMinMaxLen

	TextLine
	unicode
	A single line of Unicode text.
	IField, IMinMaxLen

	Bool
	bool
	True or False.
	IField

	Int
	int, long
	An integer number. Both ints and longs are allowed.
	IField, IMinMax

	Float
	float
	A floating point number.
	IField, IMinMax

	Tuple
	tuple
	A tuple (non-mutable).
	IField, ICollection, IMinMaxLen

	List
	list
	A list.
	IField, ICollection, IMinMaxLen

	Set
	set
	A set.
	IField, ICollection, IMinMaxLen

	Frozenset
	frozenset
	A frozenset (non-mutable).
	IField, ICollection, IMinMaxLen

	Password
	unicode
	Stores a simple string, but implies a password widget.
	IField, IMinMaxLen

	Dict
	dict
	Stores a dictionary. Both key_type and value_type must be set to fields.
	IField, IMinMaxLen, IDict

	Datetime
	datetime
	Stores a Python datetime (not a Zope 2 DateTime).
	IField, IMinMax

	Date
	date
	Stores a python date.
	IField, IMinMax

	Timedelta
	timedelta
	Stores a python timedelta.
	IField, IMinMax

	SourceText
	unicode
	A textfield intended to store source text (e.g. HTML or Python code).
	IField, IMinMaxLen

	Object
	N/A
	Stores a Python object that conforms to the interface given as the
schema. There is no standard widget for this.
	IField, IObject

	URI
	str
	A URI (URL) string.
	IField, MinMaxLen

	Id
	str
	A unique identifier – either a URI or a dotted name.
	IField, IMinMaxLen

	DottedName
	str
	A dotted name string.
	IField, IMinMaxLen

	InterfaceField
	Interface
	A Zope interface.
	IField

	Decimal
	Decimal
	Stores a Python Decimal. Requires version 3.4 or later of
zope.schema [http://pypi.python.org/pypi/zope.schema]. Not available by default in Zope 2.10.
	IField, IMinMax

Fields in plone.namedfile.field

See plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] and plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile] for more
details.

	Name
	Type
	Description
	Properties

	NamedFile
	NamedFile
	A binary uploaded file. Normally used with the widget from
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].
	IField

	NamedImage
	NamedImage
	A binary uploaded image. Normally used with the widget from
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].
	IField

	NamedBlobFile
	NamedBlobFile
	A binary uploaded file stored as a ZODB BLOB. Requires the [blobs] extra to
plone.namedfile [http://pypi.python.org/pypi/plone.namedfile]. Otherwise identical to NamedFile.
	IField

	NamedBlobImage
	NamedBlobImage
	A binary uploaded image stored as a ZODB BLOB. Requires the [blobs] extra to
plone.namedfile [http://pypi.python.org/pypi/plone.namedfile]. Otherwise identical to NamedImage.
	IField

Fields in z3c.relationfield.schema

See z3c.relationfield [http://pypi.python.org/pypi/z3c.relationfield] for more details.

	Name
	Type
	Description
	Properties

	Relation
	RelationValue
	Stores a single RelationValue.
	IField

	RelationList
	list
	A List field that defaults to Relation as the value type
	See List

	RelationChoice
	RelationValue
	A Choice field intended to store RelationValue’s
	See Choice

Fields in plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield]

See plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield] for more details.

	Name
	Type
	Description
	Properties

	RichText
	RichTextValue
	Stores a RichTextValue, which encapsulates a raw text value, the source MIME type,
and a cached copy of the raw text transformed to the default output MIME type.
	IField, IRichText

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Widgets

Standard and common third party widgets

Most of the time, you will use the standard widgets provided by
z3c.form. To learn more about z3c.form widgets, see the z3c.form
documentation [http://docs.zope.org/z3c.form/widget.html]. To learn about setting custom widgets for Dexterity
content types, see the schema introduction.

The table below shows some commonly used custom widgets.

	Widget
	Imported from
	Field
	Description

	WysiwygFieldWidget
	plone.app.z3cform.wysiwyg
	Text
	Use Plone’s standard WYSIWYG HTML editor on a standard text field. Note that if you used a RichText field, you will get the WYSIWYG editor automatically.

	RichTextWidget
	plone.app.textfield.widget
	RichText
	Use Plone’s standard WYSIWYG HTML editor on a RichText field. This also allows text-based markup such as reStructuredText.

	AutocompleteFieldWidget
	plone.formwidget.autocomplete
	Choice
	Autocomplete widget based on jQuery Autocomplete. Requires a Choice field with a query source. See vocabularies.

	AutocompleteMultiFieldWidget
	plone.formwidget.autocomplete
	Collection
	Multi-select version of the above. Used for a List, Tuple, Set or Frozenset with a Choice value_type.

	ContentTreeFieldWidget
	plone.formwidget.contenttree
	RelationChoice
	Content browser. Requires a query source with content objects as values.

	MultiContentTreeFieldWidget
	plone.formwidget.contenttree
	RelationList
	Content browser. Requires a query source with content objects as values.

	NamedFileFieldWidget
	plone.formwidget.namedfile
	NamedFile/NamedBlobFile
	A file upload widget

	NamedImageFieldWidget
	plone.formwidget.namedfile
	NamedImage/NamedBlobImage
	An image upload widget

	TextLinesFieldWidget
	plone.z3cform.textlines
	Collection
	One-per-line list entry for List, Tuple, Set or Frozenset fields. Requires a value_type of TextLine or ASCIILine.

	SingleCheckBoxFieldWidget
	z3c.form.browser.checkbox
	Bool
	A single checkbox for true/false.

	CheckBoxFieldWidget
	z3c.form.browser.checkbox
	Collection
	A set of checkboxes. Used for Set or Frozenset fields with a Choice value_type and a vocabulary.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Standard behaviors

A list of common behaviors that ship with Dexterity

Dexterity ships with several standard behaviors. The following table
shows the interfaces you can list in the FTI behaviors properties and
the resultant form fields and interfaces.

	Interface
	Description

	plone.app.dexterity.behaviors.metadata.IBasic
	Basic metadata: Adds title and description fields.

	plone.app.dexterity.behaviors.metadata.ICategorization
	Categorization: Adds keywords and language fields.

	plone.app.dexterity.behaviors.metadata.IPublication
	Date range: Adds effective date and expiration date fields.

	plone.app.dexterity.behaviors.metadata.IOwnership
	Ownership: Adds creator, contributor, and rights fields.

	plone.app.dexterity.behaviors.metadata.IDublinCore
	Dublin Core metadata: Adds standard metadata fields (equals Basic metadata + Categorization + Effective range + Ownership)

	plone.app.content.interfaces.INameFromTitle
	Name from title: Automatically generate short URL name for content based on its initial title. Not a form field provider.

	plone.app.dexterity.behaviors.filename.INameFromFileName
	Name from file name: Automatically generate short URL name for content based on its primary field file name

	plone.app.layout.navigation.interfaces.INavigationRoot
	Navigation root: Make all items of this type a navigation root

	plone.app.dexterity.behaviors.exclfromnav.IExcludeFromNavigation
	Exclude From navigation: Allow items to be excluded from navigation

	plone.app.dexterity.behaviors.nextprevious.INextPreviousToggle
	Next previous navigation toggle: Allow items to have next previous navigation enabled

	plone.app.dexterity.behaviors.discussion.IAllowDiscussion
	Allow discussion: Allow discussion on this item

	plone.app.dexterity.behaviors.id.IShortName
	Short name: Gives the ability to rename an item from its edit form.

	plone.app.dexterity.behaviors.nextprevious.INextPreviousEnabled
	Next previous navigation: Enable next previous navigation for all items of this type

	Products.CMFPlone.interfaces.constrains.ISelectableConstrainTypes
	Folder Addable Constrains: Restrict the content types that can be added to folderish content

	plone.app.relationfield.behavior.IRelatedItems
	Adds the Related items field to the Categorization fieldset.

	plone.app.contenttypes.behaviors.leadimage.ILeadImage
	Adds a LeadImage field like used for News item.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Form schema hints

Directives which can be used to configure forms from schemata

Dexterity uses the plone.autoform [http://pypi.python.org/pypi/plone.autoform] package to configure its
z3c.form [http://docs.zope.org/z3c.form]-based add and edit forms. This allows a schema to be
annotated with “form hints”, which are used to configure the form.

The easiest way to apply form hints in Python code is to use the
directives from plone.autoform and plone.supermodel.
For the directives to work, the schema
must derive from plone.supermodel.model.Schema. Directives can be
placed anywhere in the class body. By convention they are kept next to
the fields they apply to.

For example, here is a schema that omits a field:

from plone.autoform import directives as form
from plone.supermodel import model
from zope import schema

class ISampleSchema(model.Schema):

 title = schema.TextLine(title=u"Title")

 form.omitted('additionalInfo')
 additionalInfo = schema.Bytes()

The form directives take parameters in the form of a list of field
names, or a set of field name/value pairs as keyword arguments. Each
directive can be used zero or more times.

Form directives

These form directives are included in the plone.autoform.directives module:

	Name
	Description

	widget
	Specify an alternate widget for a field. Pass the field name as a key and a widget as the value. The widget can either be a z3c.form widget instance or a string giving the dotted name to one.

	omitted
	Omit one or more fields from forms. Takes a sequence of field names as parameters.

	mode
	Set the widget mode for one or more fields. Pass the field name as a key and the string ‘input’, ‘display’ or ‘hidden’ as the value.

	order_before
	Specify that a given field should be rendered before another. Pass the field name as a key and name of the other field as a value. If the other field is in a supplementary schema (i.e. one from a behaviour), its name will be e.g. “IOtherSchema.otherFieldName”. Alternatively, pass the string “*” to put a field first in the form.

	order_after
	The inverse of order_before(), putting a field after another. Passing “*” will put the field at the end of the form.

These form directives are included in the plone.supermodel.directives module:

	primary
	Designate a given field as the primary field in the schema. This is not used for form rendering, but is used for WebDAV marshaling of the content object.

	fieldset
	Creates a fieldset (rendered in Plone as a tab on the edit form).

The code sample below illustrates each of these directives:

from plone.autoform import directives as form
from plone.supermodel import model
from plone.app.z3cform.wysiwyg import WysiwygFieldWidget
from zope import schema

class ISampleSchema(model.Schema):

 # A fieldset with id 'extra' and label 'Extra information' containing
 # the 'footer' and 'dummy' fields. The label can be omitted if the
 # fieldset has already been defined.

 form.fieldset('extra',
 label=u"Extra information",
 fields=['footer', 'dummy']
)

 # Here a widget is specified as a dotted name.
 # The body field is also designated as the priamry field for this schema

 form.widget(body='plone.app.z3cform.wysiwyg.WysiwygFieldWidget')
 model.primary('body')
 body = schema.Text(
 title=u"Body text",
 required=False,
 default=u"Body text goes here"
)

 # The widget can also be specified as an object

 form.widget(footer=WysiwygFieldWidget)
 footer = schema.Text(
 title=u"Footer text",
 required=False
)

 # An omitted field. Use form.omitted('a', 'b', 'c') to omit several fields

 form.omitted('dummy')
 dummy = schema.Text(
 title=u"Dummy"
)

 # A field in 'hidden' mode

 form.mode(secret='hidden')
 secret = schema.TextLine(
 title=u"Secret",
 default=u"Secret stuff"
)

 # This field is moved before the 'description' field of the standard
 # IBasic behaviour, if this is in use.

 form.order_before(importantNote='IBasic.description')
 importantNote = schema.TextLine(
 title=u"Important note",
)

Security directives

The security directives in the plone.autoform.directives module are
shown below. Note that these are also used to control reading and
writing of fields on content instances.

	Name
	Description

	read_permission
	Set the (Zope 3) name of a permission required to read the field’s value. Pass the field name as a key and the permission name as a string value. Among other things, this controls the field’s appearance in display forms.

	write_permission
	Set the (Zope 3) name of a permission required to write the field’s value. Pass the field name as a key and the permission name as a string value. Among other things, this controls the field’s appearance in add and edit forms.

The code sample below illustrates each of these directives:

from plone.autoform import directives as form
from plone.supermodel import model
from zope import schema

class ISampleSchema(model.Schema):

 # This field requires the 'cmf.ReviewPortalContent' to be read and
 # written

 form.read_permission(reviewNotes='cmf.ReviewPortalContent')
 form.write_permission(reviewNotes='cmf.ReviewPortalContent')
 reviewNotes = schema.Text(
 title=u"Review notes",
 required=False,
)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Manipulating content objects

Note

Here the low level api is shown.
When writing Plone Add-Ons consider using plone.api, because it covers several standard cases and is a simple, future proof and stable api.

Common APIs used to manipulate Dexterity content objects

In this section, we will describe some of the more commonly used APIs
that can be used to inspect and manipulate Dexterity content objects. In
most cases, the content object is referred to as context, its parent
folder is referred to as folder, and the type name is example.type.
Relevant imports are shown with each code snippet, though of course you
are more likely to place those at the top of the relevant code module.

Content object creation and folder manipulation

This section describes means to create objects and manipulate folders.

Creating a content object

The simplest way to create a content item is via its factory:

from zope.component import createObject
context = createObject('example.type')

At this point, the object is not acquisition wrapped. You can wrap it
explicitly by calling:

wrapped = context.__of__(folder)

However, it’s normally better to add the item to a folder and then
re-get it from the folder.

Note that the factory is normally installed as a local utility, so the
createObject() call will only work once you’ve traversed over the
Plone site root.

There is a convenience method that can be used to create a Dexterity
object. It is mostly useful in tests:

from plone.dexterity.utils import createContent
context = createContent('example.type', title=u"Foo")

Any keyword arguments are used to set properties on the new instance
(via setattr() on the newly created object). This method relies on
being able to look up the FTI as a local utility, so again you must be
inside the site for it to work.

Adding an object to a container

Once an object has been created, it can be added to a container. If the
container is a Dexterity container, or another container that supports a
dict API (e.g. a Large Plone Folder in Plone 3 or a container based on
plone.folder), you can do:

folder['some_id'] = context

You should normally make sure that the id property of the object is
the same as the id used in the container.

If the object only supports the basic OFS API (as is the case with
standard Plone Folders in Plone 3), you can use the _setObject()
method:

folder._setObject('some_id') = context

Note that both of these approaches bypass any type checks, i.e. you can
add items to containers that would not normally allow this type of
content. Dexterity comes with a convenience function, useful in tests,
to simulate the checks performed when content is added through the web:

from plone.dexterity.utils import addContentToContainer
addContentToContainer(folder, context)

This will also invoke a name chooser and set the object’s id
accordingly, so things like the title-to-id behavior should work. As
before, this relies on local components, so you must have traversed into
a Plone site (PloneTestCase takes care of this for you).

To bypass folder constraints, you can use this function and pass
checkConstraints=False.

You can also both create and add an object in one call:

from plone.dexterity.utils import createContentInContainer
createContentInContainer(folder, 'example.type', title=u"Foo")

Again, you can pass checkConstraints=False to bypass folder
constraints, and pass object properties as keyword arguments.

Finally, you can use the invokeFactory() API, which is similar, but
more generic in that it can be used for any type of content, not just
Dexterity content:

new_id = folder.invokeFactory('example.type', 'some_id')
context = folder['new_id']

This always respects add constraints, including add permissions and the
current user’s roles.

Getting items from a folder

Dexterity containers and other containers based on plone.folder
support a dict-like API to obtain and manipulate items in folders. For
example, to obtain an (acquisition-wrapped) object by name:

context = folder['some_id']

Folders can also be iterated over, and you can all items(), keys(),
values() and so on, treating the folder as a dict with string keys and
content objects as values.

Dexterity containers also support the more basic OFS API. You can call
objectIds() to get keys, objectValues() to get a list of content
objects, objectItems() to get an items()-like dict,and
hasObject(id) to check if an object exists in a container.

Removing items from a folder

Again, Dexterity containers act like dictionaries, and so implement
__delitem__:

del folder['some_id']

The OFS API uses the _delObject() function for the same purpose:

folder._delObject('some_id')

Object introspection

This section describes means of getting information about an object.

Obtaining an object’s schema interface

A content object’s schema is an interface, i.e. an object of type
zope.interface.interface.InterfaceClass.

from zope.app.content import queryContentType
schema = queryContentType(context)

The schema can now be inspected. For example:

from zope.schema import getFieldsInOrder
fields = getFieldsInOrder(schema)

Finding an object’s behaviors

To find all behaviors supported by an object, use the plone.behavior
API:

from plone.behavior.interfaces import IBehaviorAssignable
assignable = IBehaviorAssignable(context)
for behavior in assignable.enumerateBehaviors():
 behavior_schema = behavior.interface
 adapted = behavior_schema(context)
 ...

The objects returned are instances providing
plone.behavior.interfaces.IBehavior. To get the behavior schema, use
the interface property of this object. You can inspect this and use it
to adapt the context if required.

Getting the FTI

To obtain a Dexterity FTI, look it up as a local utility:

from zope.component import getUtility
from plone.dexterity.interfaces import IDexterityFTI
fti = getUtility(IDexterityFTI, name='example.type')

The returned object provides plone.dexterity.interfaces.IDexterityFTI.
To get the schema interface for the type from the FTI, you can do:

schema = fti.lookupSchema()

Getting the object’s parent folder

A Dexterity item in a Dexterity container should have the
__parent__ property set, pointing to its containment parent:

folder = context.__parent__

Items in standard Plone folders won’t have this property set, at least
not in Plone 3.x.

The more general approach relies on acquisition:

from Acquisition import aq_inner, aq_parent
folder = aq_parent(aq_inner(context))

Workflow

This section describes ways to inspect an object’s workflow state and
invoke transitions.

Obtaining the workflow state of an object

To obtain an object’s workflow state, ask the*portal_workflow* tool:

from Products.CMFCore.utils import getToolByName
portal_workflow = getToolByName(context, 'portal_workflow')
review_state = portal_workflow.getInfoFor(context, 'review_state')

This assumes that the workflow state variable is called review_state,
as is the case for almost all workflows.

Invoking a workflow transition

To invoke a transition:

portal_workflow.doActionFor(context, 'some_transition')

The transition must be available in the current workflow state, for the
current user. Otherwise, an error will be raised.

Cataloging and indexing

This section describes ways of indexing an object in the portal_catalog
tool.

Reindexing the object

Objects may need to be reindexed if they are modified in code. The best
way to reindex them is actually to send an event and let Dexterity’s
standard event handlers take care of this:

from zope.lifecycleevent import modified
modified(context)

In tests, it is sometimes necessary to reindex explicitly. This can be
done with:

context.reindexObject()

You can also pass specific index names to reindex, if you don’t want to
reindex everything:

context.reindexObject(idxs=['Title', 'sortable_title'])

This method comes from the
Products.CMFCore.CMFCatalogAware.CMFCatalogAware mix-in class.

Security

This section describes ways to check and modify permissions. For more
information, see the section on permissions.

Checking a permission

To check a permission by its Zope 3 name:

from zope.security import checkPermission
checkPermission('zope2.View', context)

Note: In a test, you may get an AttributeError when calling this method.
To resolve this, call newInteraction() from Products.Five.security
in your test setup (e.g. the afterSetUp() method).

To use the Zope 2 permission title:

from AccessControl import getSecurityManager
getSecurityManager().checkPermission('View', context)

Sometimes, normally in tests, you want to know which roles have a
particular permission. To do this, use:

roles = [r['name'] for r in context.rolesOfPermission('View') if r['selected']]

Again, note that this uses the Zope 2 permission title.

Changing permissions

Normally, permissions should be set with workflow, but in tests it is
often useful to manipulate security directly:

context.manage_permission('View', roles=['Manager', 'Owner'], acquire=True)

Again note that this uses the Zope 2 permission title.

Content object properties and methods

The following table shows the more important properties and methods
available on Dexterity content objects. In addition, any field described
in the type’s schema will be available as a property, and can be read
and set using normal attribute access.

	Property/method
	Type
	Description

	__name__
	unicode
	The name (id) of the object in its container. This is a unicode string to be consistent with the Zope 3 IContained interface, although in reality it will only ever contain ASCII characters, since Zope 2 does not support non-ASCII URLs.

	id
	str
	The name (id) of the object in its container. This is an ASCII string encoding of the __name__.

	getId()
	str
	Returns the value of the id*property.*

	isPrincipaFolderish
	bool/int
	True (or 1) if the object is a folder. False (or 0) otherwise.

	portal_type
	str
	The portal_type of this instance. Should match an FTI in the portal_types tool. For Dexterity types, should match a local utility providing IDexterityFTI. Note that the portal_type is a per-instance property set upon creation (by the factory), and should not be set on the class.

	meta_type
	str
	A Zope 2 specific way to describe a class. Rarely, if ever, used in Dexterity. Do not set it on your own classes unless you know what you’re doing.

	title_or_id()
	str
	Returns the value of the title property or, if this is not set, the id property.

	absolute_url()
	str
	The full URL to the content object. Will take virtual hosting and the current domain into account.

	getPhysicalPath()
	tuple
	A sequence of string path elements from the application root. Stays the same regardless of virtual hosting and domain. A common pattern is to use ‘/’.join(context.getPhysicalPath()) to get a string representing the path to the Zope application root. Note that it is not safe to construct a relative URL from the path, because it does not take virtual hosting into account.

	getIcon()
	str
	Returns a string suitable for use in the src attribute of an tag to get the icon of the content object.

	title
	unicode/str
	Property representing the title of the content object. Usually part of an object’s schema or provided by the IBasic behavior. The default is an empty string.

	Title()
	unicode/str
	Dublin Core accessor for the title property. Set the title by modifying this property. You can also use setTitle().

	listCreators()
	tuple
	A list of user ids for object creators. The first creator is normally the owner of the content object. You can set this list using the setCreators() method.

	Creator()
	str
	The first creator returned by the listCreators() method. Usually the owner of the content object.

	Subject()
	tuple
	Dublin Core accessor for item keywords. You can set this list using the setSubject() method.

	Description()
	unicode/str
	Dublin Core accessor for the description property, which is usually part of an object’s schema or provided by the IBasic behavior. You can set the description by setting the description attribute, or using the setDescription() method.

	listContributors()
	tuple
	Dublin Core accessor for the list of object contributors. You can set this with setContributors().

	Date()
	str
	Dublin Core accessor for the default date of the content item, in ISO format. Uses the effective date is set, falling back on the modification date.

	CreationDate()
	str
	Dublin Core accessor for the creation date of the content item, in ISO format.

	EffectiveDate()
	str
	Dublin Core accessor for the effective publication date of the content item, in ISO format. You can set this by passing a DateTime object to setEffectiveDate().

	ExpirationDate()
	str
	Dublin Core accessor for the content expiration date, in ISO format. You can set this by passing a DateTime object to setExpirationDate().

	ModificationDate()
	str
	Dublin Core accessor for the content last-modified date, in ISO format.

	Language()
	str
	Dublin Core accessor for the content language. You can set this using setLanguage().

	Rights()
	str
	Dublin Core accessor for content copyright information. You can set this using setRights().

	created()
	DateTime
	Returns the Zope 2 DateTime for the object’s creation date. If not set, returns a “floor” date of January 1st, 1970.

	modified()
	DateTime
	Returns the Zope 2 DateTime for the object’s modification date. If not set, returns a “floor” date of January 1st, 1970.

	effective()
	DateTime
	Returns the Zope 2 DateTime for the object’s effective date. If not set, returns a “floor” date of January 1st, 1970.

	expires()
	DateTime
	Returns the Zope 2 DateTime for the object’s expiration date. If not set, returns a “floor” date of January 1st, 1970.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Dexterity XML

A reference for Dexterity's XML name spaces

Introduction

The schema (structure) of a Dexterity content type may be detailed in two very different ways:

	In Python as a Zope schema; or,

	In XML

When you are using Dexterity's through-the-web schema editor, all your work is being saved in the content type's Factory Type Information (FTI) as XML.
plone.supermodel dynamically translates that XML into Python objects which are used to display and edit your content objects.

The XML model of your content object may be exported from Dexterity and incorporated into a Python package.
That's typically done with code like:

class IExampleType(form.Schema):

 form.model("models/example_type.xml")

or:

from plone.supermodel import xmlSchema

IExampleType = xmlSchema("models/example_type.xml")

XML models in a package may be directly edited.

This document is a reference to the tags and attributes you may use in model XML files.
This includes several form-control and security-control attributes that are not available through the TTW schema editor.

XML Document Structure

Dexterity requires that its model XML be well-formed XML, including name space declarations.
The typical structure of a Dexterity XML document is:

<?xml version="1.0" encoding="UTF-8"?>
<model xmlns="http://namespaces.plone.org/supermodel/schema"
 xmlns:form="http://namespaces.plone.org/supermodel/form"
 xmlns:security="http://namespaces.plone.org/supermodel/security">
 <schema>
 <field type="zope.schema.TextLine" name="one">
 <title>One</title>
 ... More field attributes
 </field>
 ... More fields
 </schema>
</model>

Only the default name space (.../supermodel/schema) is required for basic schema.
The supermodel/form and supermodel/schema provide additional attributes to control form presentation and security.

supermodel/schema fields

Most of the supermodel/schema field tag and its attributes map directly to what's available via the TTW schema editor:

<field name="dummy" type="zope.schema.TextLine">
 <default>abc</default>
 <description>Test desc</description>
 <max_length>10</max_length>
 <min_length>2</min_length>
 <missing_value>m</missing_value>
 <readonly>True</readonly>
 <required>False</required>
 <title>Test</title>
</field>

The field type needs to be the full dotted name (as if it was being imported in Python) of the field type.

Fieldsets

It's easy to add fieldsets by surrounding embedding fields tags in a fieldset block:

<schema>
 ...
 <fieldset name="test"
 label="Test Fieldset"
 description="Description of test fieldset">
 <field name="three" type="zope.schema.TextLine">
 <description/>
 <title>Three</title>
 </field>
 <field name="four" type="zope.schema.TextLine">
 <description/>
 <title>Four</title>
 </field>
 </fieldset>
 ...
</schema>

Vocabularies

Vocabularies may be specified via dotted names using the source tag:

<field name="dummy" type="zope.schema.Choice">
 <default>a</default>
 <description>Test desc</description>
 <missing_value/>
 <readonly>True</readonly>
 <required>False</required>
 <title>Test</title>
 <source>plone.supermodel.tests.dummy_vocabulary_instance</source>
</field>

Where the full Python dotted-name of a Zope vocabulary in a package:

from zope.schema.vocabulary import SimpleVocabulary

dummy_vocabulary_instance = SimpleVocabulary.fromItems([(1, 'a'), (2, 'c')])

Or, a source binder:

<field name="dummy" type="zope.schema.Choice">
 ...
 <source>plone.supermodel.tests.dummy_binder</source>
</field>

With Python like:

from zope.schema.interfaces import IContextSourceBinder

class Binder(object):
 implements(IContextSourceBinder)

 def __call__(self, context):
 return SimpleVocabulary.fromValues(['a', 'd', 'f'])

dummy_binder = Binder()

You may also use the vocabulary tag rather than source to refer to named vocabularies registered via the ZCA.

Internationalization

Translation domains and message ids can be specified for text
that is interpreted as unicode. This will result in deserialization
as a zope.i18nmessageid message id rather than a basic Unicode string.

Note that we need to add the i18n namespace and a domain specification:

<model xmlns="http://namespaces.plone.org/supermodel/schema"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="your.application">
 <schema>

 <field type="zope.schema.TextLine" name="title">
 <title i18n:translate="yourapp_test_title">Title</title>
 </field>

 </schema>
</model>

supermodel/form attributes

supermodel/form provides attributes that govern presentation and editing.

after/before

To re-order fields, use form:after or form:before.

The value should be either '*', to put the field first/last in the form,
or the name of a another field. Use '.fieldname' to refer to field in the
current schema (or a base schema). Use a fully prefixed name (e.g.
'my.package.ISomeSchema') to refer to a field in another schema. Use an
unprefixed name to refer to a field in the default schema for the form.

Example:

<field type="zope.schema.TextLine"
 name="one"
 form:after="two">
 <title>One</title>
</field>

mode

To turn a field into a view mode or hidden field, use form:mode. The
mode may be set for only some forms by specifying a form interface in the
same manner as for form:omitted.

Example:

<field type="zope.schema.TextLine"
 name="three"
 form:mode="z3c.form.interfaces.IEditForm:input">
 <title>Three</title>
</field>

omitted

To omit a field from all forms, use form:omitted="true". To omit a field
only from some forms, specify a form interface like
form:omitted="z3c.form.interfaces.IForm:true". Multiple interface:value
settings may be specified, separated by spaces.

Examples:

<field type="zope.schema.TextLine"
 name="one"
 form:omitted="true">
 <title>One</title>
</field>

<field type="zope.schema.TextLine" name="three"
 form:omitted="z3c.form.interfaces.IForm:true z3c.form.interfaces.IEditForm:false"
 >
 <title>Three</title>
</field>

The latter example hides the field on everything except the edit form.

widget

To set a custom widget for a field, use form:widget to give a fully
qualified name to the field widget factory.

Example:

<field type="zope.schema.TextLine"
 name="password"
 form:widget="z3c.form.browser.password.PasswordFieldWidget">
 <title>One</title>
</field>

Dynamic Defaults

To set a dynamic default for a field, use a defaultFactory tag to
give a fully qualified name for a callable. The defaultFactory callable must
provide either plone.supermodel.interfaces.IDefaultFactory or
zope.schema.interfaces.IContextAwareDefaultFactory.

Example:

<field type="zope.schema.TextLine" name="three">
 <title>Three</title>
 <defaultFactory>plone.supermodel.tests.dummy_defaultFactory</defaultFactory>
</field>

Sample Python for the validator factory:

@provider(IDefaultFactory)
def dummy_defaultFactory():
 return u'something'

For a callable using context:

@provider(IContextAwareDefaultFactory)
def dummy_defaultCAFactory(context):
 return context.something

Note

The defaultFactory tag was added in plone.supermodel 1.2.3,
shipping with Plone 4.3.2+.

validator

To set a custom validator for a field, use form:validator to give a fully
qualified name to the field validator factory. The validator factory should be
a class derived from one of the validators in z3c.form.validator.

Example:

<field type="zope.schema.TextLine"
 name="three"
 form:validator="plone.autoform.tests.test_utils.TestValidator">
 <title>Three</title>
</field>

Sample Python for the validator factory:

class TestValidator(z3c.form.validator.SimpleFieldValidator):

 def validate(self, value):
 super(TestValidator, self).validate(value)
 raise Invalid("Test")

supermodel/security attributes

read-permission/write-permission

To set a read or write permission, use security:read-permission or
security:write-permission. The value should be the name of an
IPermission utility.

Example:

<field type="zope.schema.TextLine"
 name="one"
 security:read-permission="zope2.View"
 security:write-permission="cmf.ModifyPortalContent">
 <title>One</title>
</field>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Reference »

Miscellaneous

User contributed recipes

How to hide a field on a schema if we do not want to or cannot modify the original schema

To do this one can use tagged values on the schema. In this case want to hide 'introduction' and 'answers' fields:

from example.package.content.assessmentitem import IAssessmentItem
from plone.autoform.interfaces import OMITTED_KEY
IAssessmentItem.setTaggedValue(OMITTED_KEY,
 [(Interface, 'introduction', 'true'),
 (Interface, 'answers', 'true')])

This code can sit in another.package.__init__.py for example.

See also: Original thread on coredev mailinglist [http://plone.293351.n2.nabble.com/plone-autoform-why-use-tagged-values-td7560956.html]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Installing Dexterity

How to install Dexterity and use it in your project

Dexterity is distributed as a number of eggs, published on
PyPI [http://pypi.python.org]. The
plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity]
egg pulls in all the required dependencies and should get you up and
running. This how-to explains what you need to do use Dexterity in a
standard Plone buildout.

Installing Dexterity on Plone 4.3

Note: Plone 4.3 is the latest release of Plone. Dexterity is included
with Plone 4.3, but must be activated via the "Add-ons" configlet in site setup.

If you are using grok-style configuration, you must do one extra
installation step: activate the grok extra for Dexterity.
To do so, add the following line to the eggs section of your buildout:

eggs =
 Plone
 ...
 plone.app.dexterity [grok]

Important: If you installed Dexterity on a Plone site that you
upgraded to Plone 4.3, you must include the relations extra. Otherwise
your site will have a broken intid utility.

	eggs =

	Plone
...
plone.app.dexterity [grok,relations]

Installing Dexterity on Plone 4.2

Plone 4.2 is the previous stable release of Plone. The Plone KGS (known
good set of package versions) includes version pins for the packages
that make up Dexterity, so all you need to do is add plone.app.dexterity
to the eggs in your buildout, and re-run the buildout:

[buildout]
extensions = buildout.dumppickedversions
unzip = true
parts = instance
extends =
 http://dist.plone.org/release/4.2.1/versions.cfg
versions = versions
develop =

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8080
debug-mode = on
verbose-security = on
eggs =
 Plone
 plone.app.dexterity

Note that:

	We use the
buildout.dumppickedversions [http://pypi.python.org/pypi/buildout.dumppickedversions]
extension to help show what versions buildout picked for any
dependencies not pinned in the buildout. This helps trace any
dependency issues.

	We extend the official Plone release known good set for Plone 4.2.1.

	In the instance configuration, we load the Plone egg and
plone.app.dexterity. The latter will pull in all the Dexterity
dependencies.

	Since plone.app.dexterity configures a z3c.autoinclude entry
point, there is no need to load a separate ZCML slug.

Your own buildout may be more extensive. The developer manual shows a
more comprehensive one with some debugging tools, for example. However,
the buildout above should be enough for creating types through the web.
If you are using a package that itself depends on plone.app.dexterity,
then the second eggs line becomes superfluous as well, of course.

Installing Dexterity on older versions of Plone

Prior to Plone 4.2, the official Plone KGS did not include version pins
for the packages that make up Dexterity. Instead, you can extend a KGS
from the good-py service [http://good-py.appspot.com]. That looks like
this:

[buildout]
extensions = buildout.dumppickedversions
unzip = true
parts = instance
extends =
 http://good-py.appspot.com/release/dexterity/1.2.1?plone=4.1.6
versions = versions
develop =

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8080
debug-mode = on
verbose-security = on
eggs =
 Plone
 plone.app.dexterity

Notice that the extends line has been changed to point at good-py and
specify both a particular version of Dexterity and a particular version
of Plone. good-py returns a set of versions that will work for that
combination.

Dexterity 1.2.1 is the last version of Dexterity supported for Plone <
4.2. No version of Dexterity is compatible with Plone < 3.3.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Behaviors

How to create re-usable behaviors for Dexterity types

	Introduction

	Behavior basics

	Creating and registering behaviors

	Providing marker interfaces
	Primary marker behaviors

	Supplementary marker behaviors

	Schema-only behaviors using annotations or attributes
	Using annotations

	Storing attributes

	Testing behaviors
	A note about marker interfaces

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Introduction

About this manual

This manual should teach you everything you need to know to write your own behaviors, but not how to integrate them into another framework.

Behaviors are re-usable bundles of functionality that can be enabled or disabled on a per-content type basis.
Examples might include:

	A set of form fields (on standard add and edit forms),

	Enabling particular event handler,

	Enabling one or more views, viewlets or other UI components,

	Anything else which may be expressed in code via an adapter and/or marker interface.

You would typically not write a behavior as a one-off.
Behaviors are normally used when:

	You want to share fields and functionality across multiple types easily.
Behaviors allow you to write a schema and associated components (e.g. adapters, event handlers, views, viwelets) once and re-use them easily.

	A more experienced developer is making functionality available for re-use by less experienced integrators.
For example, a behavior can be packaged up and release as an add-on product.
Integators can then install that product and use the behavior in their own types, either in code or through-the-web.

This manual is aimed at developers who want to write new behaviors.
This is a slightly more advanced topic than the writing of custom content types.
It assumes you are familiar with buildout, know how to create a custom package, understand interfaces and have a basic understanding of Zope’s component architecture.

Behaviors are not tied to Dexterity, but Dexterity provides behavior support for its types via the behaviors FTI property.
In fact, if you’ve used Dexterity before, you’ve probably used some behaviors.
Take a look at the Dexterity Developer Manual for more information about how to enable behaviors on a type and for a list of standard behaviors.

To learn more about how behaviors in detail are implemented, see the plone.behavior [http://pypi.python.org/pypi/plone.behavior] package.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Behavior basics

The fundamental concepts behind behaviors

Before we dive into the practical examples, we need to explain a few of the concepts that underpin behaviors.

At the most basic level, a behavior is like a ‘conditional’ adapter.
For a Dexterity content type, the default condition is, "is this behavior listed in the behaviors property in the FTI?"
But the condition itself is an adapter, in rare cases this can be overruled.
When a behavior is enabled for a particular object, it will be possible to adapt that object to the behavior’s interface.
If the behavior is disabled, adaptation will fail.

A behavior consist at the very least of an interface and some metadata, namely a title and a description.
In most cases, there is also a factory, akin to an adapter factory, which will be invoked to get an appropriate adapter when requested.
This is usually just a class that looks like any other adapter factory, although it will tend to be applicable to Interface, IContentish or a similarly broad context.

Behaviors may specify a marker interface, which will be directly provided by instances for which the behavior is enabled.
This is useful if you want to conditionally enable event handlers or view components, which are registered for this marker interface.
Some behaviors have no factory. In this case, the behavior interface and the marker interface must be one and the same.
If a factory is given a marker interface different from the behavior interface must be declared.

Behaviors are registered globally, using the <plone.behavior /> ZCML directive.
This results in, among other things, a named utility providing plone.behavior.interfaces.IBehavior being registered.
This utility contains various information about the behavior, such as its name, title, interface and (optional) marker interface.
The utility name is the full dotted name to the behavior interface.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Creating and registering behaviors

How to create a basic behavior that provides form fields

The following example is based on the collective.gtags [http://svn.plone.org/svn/collective/collective.gtags] product.
It comes with a behavior that adds a tags field to the “Categorization” fieldset, storing the actual tags in the Dublin Core Subject field.

collective.gtags is a standard package, with a configure.zcml, a GenericSetup profile, and a number of modules.
We won’t describe those here, though, since we are only interested in the behavior.

First, there are a few dependencies in setup.py:

install_requires=[
 ...,
 'plone.behavior',
 'zope.schema',
 'zope.interface',
 'zope.component',
],

Next, we have behaviors.zcml, which is included from configure.zcml and contains all necessary configuration to set up the behaviors.
It looks like this:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="collective.gtags">

 <include package="plone.behavior" file="meta.zcml" />

 <plone:behavior
 title="GTags"
 description="Use the Dublin Core Subject (keywords) field for Google Code like tags."
 provides=".behaviors.ITags"
 factory=".behaviors.Tags"
 />

</configure>

We first include the plone.behavior meta.zcml file, so that we get access to the <plone:behavior /> ZCML directive.

The behavior itself is registered with the <plone:behavior /> directive.
We set a title and a description, and then speicfy the behavior interface with the provides attribute.
This attribute is required, and is used to construct the unique name for the behavior.
In this case, the behavior name is collective.gtags.behaviors.ITags, the full dotted name to the behavior interface.
When the behavior is enabled for a type, it will be possible to adapt instances of that type to ITags.
That adaptation will invoke the factory specified by the factory attribute.

The behaviors.py module looks like this:

"""Behaviours to assign tags (to ideas).

Includes a form field and a behaviour adapter that stores the data in the
standard Subject field.
"""

from Products.CMFCore.interfaces import IDublinCore
from collective.gtags import MessageFactory as _
from collective.gtags.field import Tags
from plone.autoform import directives
from plone.autoform.interfaces import IFormFieldProvider
from plone.supermodel import model
from zope.component import adapter
from zope.interface import implementer
from zope.interface import provider

@provider(IFormFieldProvider)
class ITags(model.Schema):
 """Add tags to content
 """

 directives.fieldset(
 'categorization',
 label=_(u'Categorization'),
 fields=('tags',),
)

 tags = Tags(
 title=_(u"Tags"),
 description=_(u"Applicable tags"),
 required=False,
 allow_uncommon=True,
)

@implementer(ITags)
@adapter(IDublinCore)
class Tags(object):
 """Store tags in the Dublin Core metadata Subject field. This makes
 tags easy to search for.
 """

 def __init__(self, context):
 self.context = context

 @property
 def tags(self):
 return set(self.context.Subject())
 @tags.setter
 def tags(self, value):
 if value is None:
 value = ()
 self.context.setSubject(tuple(value))

We first define the ITags interface, which is also the behavior interface.
Here, we define a single attribute, tags, but we could also have added methods and additional fields if required.
Naturally, these need to be implemented by the behavior adapter.

Since we want this behavior to provide form fields, we derive the behavior interface from model.Schema and set form hints using
plone.autoform.directives.
We also mark the ITags interface with IFormFieldProvider to signal that it should be processed for form fields by the standard forms.
See the Dexterity Developer Manual for more information about setting form hints in schema interfaces.

If your behavior does not provide form fields, you can just derive from zope.interface.Interface and omit the alsoProvides() line.

Next, we write the class that implements the behavior adapter and acts the adapter factory.
Notice how it implements the behavior interface (ITags), and adapts a broad interface (IDublinCore).
The behavior cannot be enabled on types not supporting this interface.
In many cases, you will omit the adapter() line, provided your behavior is generic enough to work on any context.

The adapter is otherwise identical to any other adapter.
It implements the interface, here by storing values in the Subject field.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Providing marker interfaces

How to use behaviors to set marker interfaces on instances of a given type.

Sometimes, it is useful for objects that provide a particular behavior to also provide a specific marker interface.
For example, you can register a viewlet for a particular marker and use a behavior to enable that marker on all instances of a particular content type.
The viewlet will then only show up when the behavior is enabled.
The same principle can be applied to event handlers, views and other components.

Note

There is usually no need to use markers to enable a custom adapter since a standard behavior is already a conditional adapter.
However, in certain cases, you may want to provide one or more adapters to an interface that is not the behavior interface.
E.g. to use a particular extension point provided by another component.
In this case, it may easier to set a marker interface and provide an adapter from this marker.

plone.behavior’s marker support can be used in two ways:

	As the behavior interface itself. In this case, there is no behavior adapter factory.
The behavior interface and the marker interface are one and the same.

	As a supplement to a standard behavior adapter.
In this case, a factory is provided, and the behavior interface (which the behavior adapter factory implements) is different to the marker interface.

Primary marker behaviors

In the first case, where the behavior interface and the marker interface are the same, you can simply use the <plone:behavior />*directive without a *factory.
For example:

<plone:behavior
 title="Pony viewlet"
 description="Shows a pony next to the content"
 provides=".behaviors.IWantAPony"
 />

One could imagine a viewlet based on plone.pony [http://pypi.python.org/pypi/plone.pony] registered for the IWantAPony marker interface.
If the behavior is enabled for a particular object, IWantAPony.providedBy(object) would be true.

Supplementary marker behaviors

In the second case, we want to provide a behavior interface with a behavior adapter factory as usual (e.g. with some form fields and a
custom storage or a few methods implemented in an adapter), but we also need a custom marker.
Here, we use both the provides and marker attributes to <plone:behavior /> to reference the two interfaces, as well as a factory.

To a more interesting example, here is a behavior from a project that lets content authors with particular permissions (iz.EditOfficialReviewers and iz.EditUnofficialReviewers), nominate the “official” and any “unofficial” reviewers for a given content item.
The behavior provides the necessary form fields to support this.
It also sets a marker interface that enables

	an ILocalRoleProvider adapter to automatically grant local roles to the chosen reviewers,

	a custom indexer that lists the reviewers.

The ZCML registration looks like this:

<plone:behavior
 title="Reviewers"
 description="The ability to assign a list of official and/or unofficial reviewers to an item, granting those users special powers."
 provides=".reviewers.IReviewers"
 factory="plone.behavior.AnnotationStorage"
 marker=".reviewers.IReviewersMarker"
 />

Notice the use of the AnnotationStorage factory.
This is a re-usable factory that can be used to easily create behaviors from schema interfaces that store their values in annotations.
We’ll describe this in more detail later.
We could just as easily have provided our own factory in this example.

The reviewers.py module contains the following:

"""Behavior to enable certain users to nominate reviewers

Includes form fields, an indexer to make it easy to find the items with
specific reviewers, and a local role provider to grant the Reviewer and
OfficialReviewer roles appropriately.
"""

from Products.ZCatalog.interfaces import IZCatalog
from borg.localrole.interfaces import ILocalRoleProvider
from iz.behaviors import MessageFactory as _
from plone.autoform import directives
from plone.autoform.interfaces import IFormFieldProvider
from plone.formwidget.autocomplete.widget import AutocompleteMultiFieldWidget
from plone.indexer.interfaces import IIndexer
from plone.supermodel import model
from zope import schema
from zope.component import adapter
from zope.interface import Interface
from zope.interface import provider

@provider(IFormFieldProvider)
class IReviewers(model.Schema):
 """Support for specifying official and unofficial reviewers
 """

 directives.fieldset(
 'ownership',
 label=_(u'Ownership'),
 fields=(
 'official_reviewers',
 'unofficial_reviewers'
),
)

 directives.widget(official_reviewers=AutocompleteMultiFieldWidget)
 directives.write_permission(official_reviewers='iz.EditOfficialReviewers')
 official_reviewers = schema.Tuple(
 title=_(u'Official reviewers'),
 description=_(
 u'People or groups who may review this item in an official '
 u'capacity.'
),
 value_type=schema.Choice(
 title=_(u"Principal"),
 source="plone.principalsource.Principals"
),
 required=False,
 missing_value=(), # important!
)

 directives.widget(unofficial_reviewers=AutocompleteMultiFieldWidget)
 directives.write_permission(unofficial_reviewers='iz.EditUnofficialReviewers')
 unofficial_reviewers = schema.Tuple(
 title=_(u'Unofficial reviewers'),
 description=_(
 u'People or groups who may review this item in a supplementary '
 u'capacity'
),
 value_type=schema.Choice(
 title=_(u"Principal"),
 source="plone.principalsource.Principals"
),
 required=False,
 missing_value=(), # important!
)

class IReviewersMarker(Interface):
 """Marker interface that will be provided by instances using the
 IReviewers behavior. The ILocalRoleProvider adapter is registered for
 this marker.
 """

@implementer(ILocalRoleProvider)
@adapter(IReviewersMarker)
class ReviewerLocalRoles(object):
 """Grant local roles to reviewers when the behavior is used.
 """

 def __init__(self, context):
 self.context = context

 def getRoles(self, principal_id):
 """If the user is in the list of reviewers for this item, grant
 the Reader, Editor and Contributor local roles.
 """

 c = IReviewers(self.context, None)
 if c is None or (not c.official_reviewers and not c.unofficial_reviewers):
 return ()

 if principal_id in c.official_reviewers:
 return ('Reviewer', 'OfficialReviewer',)
 elif principal_id in c.unofficial_reviewers:
 return ('Reviewer',)

 return ()

 def getAllRoles(self):
 """Return a list of tuples (principal_id, roles), where roles is a
 list of roles for the given user id.
 """

 c = IReviewers(self.context, None)
 if c is None or (not c.official_reviewers and not c.unofficial_reviewers):
 return

 seen = set ()

 for principal_id in c.official_reviewers:
 seen.add(principal_id)
 yield (principal_id, ('Reviewer', 'OfficialReviewer'),)

 for principal_id in c.unofficial_reviewers:
 if principal_id not in seen:
 yield (principal_id, ('Reviewer',),)

@implementer(IIndexer)
@adapter(IReviewersMarker, IZCatalog)
class ReviewersIndexer(object):
 """Catalog indexer for the 'reviewers' index.
 """

 def __init__(self, context, catalog):
 self.reviewers = IReviewers(context)

 def __call__(self):
 official = self.reviewers.official_reviewers or ()
 unofficial = self.reviewers.unofficial_reviewers or ()
 return tuple(set(official + unofficial))

Note that the iz.EditOfficialReviewers and iz.EditUnofficialReviewers permissions are defined and granted elsewhere.

We need to register these components in configure.zcml:

<adapter factory=".reviewers.ReviewerLocalRoles" name="iz.behaviors.reviewers" />
<adapter factory=".reviewers.ReviewersIndexer" name="reviewers" />

This is quite a complex behavior, but hopefully you can see what’s going on:

	There is a standard schema interface, which includes form hints using plone.autoform.directives and is marked as an IFormFieldProvider.
It uses plone.formwidget.autocomplete and plone.principalsource to implement the fields.

	We define a marker interface (IReviewersMarker) and register this with the marker attribute of the <plone:behavior /> directive.

	We define and register an adapter from this marker to ILocalRoles from borg.localrole.

	Similarly, we register a multi-adapter to IIndexer, as provided by plone.indexer.

Although this behavior provides a lot of functionality, it is no more difficult for integrators to use than any other:
they would simply list the behavior interface (iz.behaviors.reviewers.IReviewers in this case) in the FTI, and all this functionality comes to life. This is the true power of behaviors: developers can bundle up complex functionality into re-usable behaviors, which can then be enabled on a per-type basis by integrators (or the same developers in lazier moments).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Schema-only behaviors using annotations or attributes

Writing behaviors that provide schema fields

Oftentimes, we simply want a behavior to be a reusable collection of form fields.
Integrators can then compose their types by combining different schemata.
Writing the behavior schema is no different to writing any other schema interface.
But how and where do we store the values?
By default, plone.behavior provides two alternatives.

Using annotations

Annotations, as provided by the zope.annotation [http://pypi.python.org/pypi/zope.annotation] package, are a standard means of storing of key/value pairs on objects.
In the default implementation (so-called attribute annotation), the values are stored in a BTree on the object called __annotations__.
The raw annotations API involves adapting the object to the IAnnotations interface, which behaves like a dictionary, and storing values under unique keys here.
plone.behavior comes with a special type of factory that means you can simply adapt an object to its behavior interface to get an adapter providing this interface, on which you can get and set values, which are eventually stored in annotations.

We’ve already seen an example of this factory:

<plone:behavior
 title="Reviewers"
 description="The ability to assign a list of official and/or unofficial reviewers to an item, granting those users special powers."
 provides=".reviewers.IReviewers"
 factory="plone.behavior.AnnotationStorage"
 marker=".reviewers.IReviewersMarkere"
 />

Here, plone.behavior.AnnotationStorage is a behavior factory that can be used by any behavior with an interface that consists entirely of zope.schema fields.
It simply stores those items in object annotations, saving you the trouble of writing your own annotation storage adapter.
If you adapt an object for which the behavior is enabled to the behavior interface, you will be able to read and write values off the resultant adapter as normal.

Storing attributes

This approach is convenient, but there is another approach that is even more convenient, and, contrary to what you may think, may be more
efficient:
simply store the attributes of the schema interface directly on the content object.

As an example, here’s the standard IRelatedItems behavior from plone.app.dexerity:

<plone:behavior
 title="Related items"
 description="Adds the ability to assign related items"
 provides=".related.IRelatedItems"
 for="plone.dexterity.interfaces.IDexterityContent"
 />

The IRelatedItems schema looks like this:

form plone.autoform.interfaces import IFormFieldProvider
from plone.autoform.directives import form
from plone.formwidget.contenttree import ObjPathSourceBinder
from plone.supermodel import model
from z3c.relationfield.schema import RelationChoice,
from z3c.relationfield.schema import RelationList
from zope.interface import provider

@provider(IFormFieldProvider)
class IRelatedItems(model.Schema):
 """Behavior interface to make a type support related items.
 """

 form.fieldset('categorization', label=u"Categorization",
 fields=['relatedItems'])

 relatedItems = RelationList(
 title=u"Related Items",
 default=[],
 value_type=RelationChoice(title=u"Related",
 source=ObjPathSourceBinder()),
 required=False,
)

This is a standard schema using plone.autoform.directives.
However, notice the lack of a behavior factory.
This is a directly provided “marker” interface, except that it has attributes, and so it is not actually a marker interface.
The result is that the relatedItems attribute will be stored directly onto a content object when first set (usually in the add form).

This approach has a few advantages:

	There is no need to write or use a separate factory, so it is a little easier to use.

	The attribute is available on the content object directly, so you can write context/relatedItems in a TAL expression, for example.
This does require that it has been set at least once, though!
If the schema is used in the type’s add form, that will normally suffice, but old instances of the same type may not have the attribute and could raise an AttributeError.

	If the value is going to be used frequently, and especially if it is read when viewing the content object, storing it in an attribute is more efficient than storing it in an annotation.
Background: This is because the __annotations__ BTree is a separate persistent object which has to be loaded into memory, and may push something else out of the ZODB cache.

The possible disadvantages are:

	The attribute name may collide with another attribute on the object, either from its class, its base schema, or another behavior.
Whether this is a problem in practice depends largely on whether the name is likely to be unique.
In most cases, it will probably be sufficiently unique.

	If the attribute stores a large value, it will increase memory usage, as it will be loaded into memory each time the object is fetched from the ZODB.
However, you should use BLOBs to store large values and BTrees to store many values anyway.
Loading an object with a BLOB or BTree does not mean loading the entire data, so the memory overhead does not occur unless the whole BLOB or BTree is actually used.

Note

“The moral of this story? BTrees do not always make things more efficient!” ~ Laurence Rowe

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Behaviors »

Testing behaviors

How to write unit tests for behaviors

Behaviors, like any other code, should be tested.
If you are writing a behavior with just a marker interface or schema interface, it is probably not necessary to test the interface.
However, any actual code, such as a behavior adapter factory, ought to be tested.

Writing a behavior integration test is not very difficult if you are happy to depend on Dexterity in your test.
You can create a dummy type by instantiating a Dexterty FTI in portal_types.
Then enable your behavior by adding its interface name to the behaviors property.

In many cases, however, it is better not to depend on Dexterity at all.
It is not too difficult to mock what Dexterity does to enable behaviors on its types.
The following example is taken from collective.gtags and tests the ITags behavior we saw on the first page of this manual.

Behaviors
=========

This package provides a behavior called `collective.gtags.behaviors.ITags`.
This adds a `Tags` field called `tags` to the "Categorization" fieldset, with
a behavior adapter that stores the chosen tags in the Subject metadata field.

To learn more about the `Tags` field and how it works, see `tagging.rst`.

Test setup

Before we can run these tests, we need to load the collective.gtags
configuration. This will configure the behavior.

 >>> configuration = """\
 ... <configure
 ... xmlns="http://namespaces.zope.org/zope"
 ... i18n_domain="collective.gtags">
 ...
 ... <include package="Products.Five" file="meta.zcml" />
 ... <include package="collective.gtags" file="behaviors.zcml" />
 ...
 ... </configure>
 ... """

 >>> from StringIO import StringIO
 >>> from zope.configuration import xmlconfig
 >>> xmlconfig.xmlconfig(StringIO(configuration))

This behavior can be enabled for any `IDublinCore`. For the purposes of
testing, we will use the CMFDefault Document type and a custom
IBehaviorAssignable adapter to mark the behavior as enabled.

 >>> from Products.CMFDefault.Document import Document

 >>> from plone.behavior.interfaces import IBehaviorAssignable
 >>> from collective.gtags.behaviors import ITags
 >>> from zope.component import adapter
 >>> from zope.interface import implementer
 >>> @adapter(Document)
 ... @implementer(IBehaviorAssignable)
 ... class TestingAssignable(object):
 ...
 ... enabled = [ITags]
 ...
 ... def __init__(self, context):
 ... self.context = context
 ...
 ... def supports(self, behavior_interface):
 ... return behavior_interface in self.enabled
 ...
 ... def enumerate_behaviors(self):
 ... for e in self.enabled:
 ... yield queryUtility(IBehavior, name=e.__identifier__)

 >>> from zope.component import provideAdapter
 >>> provideAdapter(TestingAssignable)

Behavior installation

We can now test that the behavior is installed when the ZCML for this package
is loaded.

 >>> from zope.component import getUtility
 >>> from plone.behavior.interfaces import IBehavior
 >>> tags_behavior = getUtility(IBehavior, name='collective.gtags.behaviors.ITags')
 >>> tags_behavior.interface
 <InterfaceClass collective.gtags.behaviors.ITags>

We also expect this behavior to be a form field provider. Let's verify that.

 >>> from plone.autoform.interfaces import IFormFieldProvider
 >>> IFormFieldProvider.providedBy(tags_behavior.interface)
 True

Using the behavior

Let's create a content object that has this behavior enabled and check that
it works.

 >>> doc = Document('doc')
 >>> tags_adapter = ITags(doc, None)
 >>> tags_adapter is not None
 True

We'll check that the `tags` set is built from the `Subject()` field:

 >>> doc.setSubject(['One', 'Two'])
 >>> doc.Subject()
 ('One', 'Two')

 >>> tags_adapter.tags == set(['One', 'Two'])
 True

 >>> tags_adapter.tags = set(['Two', 'Three'])
 >>> doc.Subject() == ('Two', 'Three')
 True

This test tries to prove that the behavior is correctly installed and works as intended on a suitable content class.
It is not a true unit test, of course.
For that, we would simply test the Tags adapter directly on a dummy context, but that is not terribly interesting, since all it does is convert sets to tuples.

First, we configure the package.
To keep the test small, we limit ourselves to the behaviors.zcml file, which in this case will suffice.
We still need to include a minimal set of ZCML from Five.

Next, we implement an IBehaviorAssignable*adapter.
This is a low-level component used by *plone.behavior to determine if a behavior is enabled on a particular object.
Dexterity provides an implementation that checks the type’s FTI. Our test version is much simpler - it hardcodes the
supported behaviors.

With this in place, we first check that the IBehavior utility has been correctly registered.
This is essentially a test to show that we’ve used the <plone:behavior /> directive as intended.
We also verify that our schema interface is an IFormFieldsProvider.
For a non-form behavior, we’d obviously omit this.

Finally, we test the behavior.
We’ve chosen to use CMFDefault’s Document type for our test, as the behavior adapter requires an object providing IDublinCore.
If we were less lazy, we’d write our own class and implement IDublinCore directly.
However, in many cases, the types from CMFDefault are going to provide convenient test fodder.

Obviously, if our behavior was more complex, we’d add more intricate tests.
By the last section of the doctest, we have enough context to test the adapter factory.

To run the test, we need a test suite. In tests.py, we have:

from zope.app.testing import setup
from zope.testing import doctestunit
import doctest
import unittest

def setUp(test):
 pass

def tearDown(test):
 setup.placefulTearDown()

def test_suite():
 return unittest.TestSuite((
 doctestunit.DocFileSuite(
 'behaviors.rst',
 setUp=setUp, tearDown=tearDown,
 optionflags=doctest.NORMALIZE_WHITESPACE|doctest.ELLIPSIS),
))

This runs the behaviors.rst doctest from the same directory as the tests.py file.
To run the test, we can use the usual test runner:

$./bin/instance test -s collective.gtags

A note about marker interfaces

Note that marker interface support depends on code that is implemented in Dexterity and is non-trivial to reproduce in a test.
If you need a marker interface in a test, set it manually with zope.interface.alsoProvides, or write an integration test with Dexterity content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

Dexterity Developer Manual

Note

Grok is no longer part of Plone nor is it recommended to use Grok in Plone.
This part of a manual needs a complete rewrite to not use grok.
All grok does can be done easily with zcml and standard decorators.

	Introduction
	History

	Designing with content types

	Prerequisites
	Preparing a development environment

	Creating a package

	Schema-driven types
	The schema

	The FTI

	Testing the type

	Model-driven types
	Adding the type

	Setting the field model

	Setting Factory Type Information

	Custom views
	Simple views

	Display forms

	Advanced configuration
	Defaults

	Validators

	Vocabularies

	References

	Rich text, markup and transformations

	Files and images

	Static resources

	Using behaviors

	Event handlers

	Permissions

	Workflow

	Catalog indexing strategies

	Custom add and edit forms

	Custom content classes

	WebDAV and other file representations

	Testing Dexterity types
	Unit tests

	Integration tests

	Mock testing

	Reference
	Fields

	Widgets

	Standard behaviors

	Form schema hints

	Value and validator adaptors

	Manipulating content objects

	Dexterity XML

	Miscellaneous

Appendixes

	Installing Dexterity

	Behaviors

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Introduction

This manual will teach you how to build content types using the Dexterity system.

If you have decided that Dexterity is for you, and you are a programmer and comfortable
working on the filesystem, then this manual is a good place to start.

This manual will cover:

	Some basic design techniques for solving problems with content types in Plone

	Getting a Dexterity development environment set up

	Creating a package to house your types

	Building a custom type based on a schema

	Creating custom views and forms for your type

	Advanced customisation, including workflow and security

	Testing your types

	A quick reference to common fields, widgets and APIs

History

Why was Dexterity created?

Dexterity was created to serve two audiences: Administrators/integrators, and developers.

For administrators and integrators, Dexterity offers:

	the ability to create new content types through-the-web

	the ability to switch on/off various aspects (called "behaviors") on a per-type basis

	improved collaboration between integrators (who may define a type's schema, say) and programmers (who may provide re-usable behaviors that the administrator can plug in).

For developers, Dexterity promises:

	the ability to create content types more quickly and easily, and with less boilerplate and repetition, than what is possible with Archetypes or plain CMF types

	content objects with a smaller runtime footprint, to improve performance

	types that use the now-standard zope.interface/zope.schema style of schema, and more broadly support modern idioms that sit a little awkardly with Archetypes and its ilk

How is Dexterity different from Archetypes

Dexterity is an alternative to Archetypes, Plone's venerable content type framework. Being more recent, Dexterity has been able to learn from some of the mistakes that were made Archetypes, and - more importantly - leverage some of the technologies that did not exist when Archetypes was first conceived.

Some of the main differences include:

	Dexterity is able to leverage many technologies that come with newer versions of CMF and Zope 3. This means that the Dexterity framework contains significantly less code than Archetypes. Dexterity also has better automated test coverage.

	Dexterity is more modular where Archetypes is more monolithic. This promises to make it easier to support things like SQL database-backed types, alternative workflow systems, instance-specific sub-types and so on. It also means that many of the components developed for Dexterity, such as the through-the-web schema editor, the "behaviors" system, or the forms construction API (plone.autoform) are re-usable in other contexts, e.g. to build standalone forms or even to augment existing Archetypes-based types.

	Archetypes has its own Schema implementation which is incompatible with the interface-based approached found in zope.interface and zope.schema. The latter is used throughout the Zope stack to describe components and build forms. Various techniques exist to bridge the Archetypes schema to the Zope 3 schema notation, but none are particularly attractive.

	Archetypes uses accessor and mutator methods to get/set values. These are generated and scribbled onto a class at startup. Dexterity uses attribute notation, so whereas in Archetypes you may write context.getFirstName(), in Dexterity you would write context.first_name.

	Archetypes has its own implementation of fields and widgets. It is difficult to re-use these in standalone forms or templates, because they are tied to the idea of a content object. Dexterity uses the de-facto standard z3c.form library instead, which means that the widgets used for standalone forms are the same as those used for content type add- and edit forms.

	Archetypes does not support add forms. Dexterity does, via z3c.form. This means that Dexterity types do not need to use the portal_factory hack to avoid stale objects in content space, and are thus significantly faster and less error prone.

	Archetypes requires a chunk of boilerplate in your product's initialize() method (and requires that your package is registered as a Zope 2 product) and elsewhere. It requires a particular sequence of initialisation calls to register content classes, run the class generator to add accessors/mutators, and set up permissions. Dexterity does away with all that boilerplate, and tries to minimise repetition.

	It is possible to extend the schemata of existing Archetypes types with the archetypes.schemaextender product, although this adds some performance overhead and relies on a somewhat awkward programming technique. Dexterity types were built to be extensible from the beginning, and it is possible to declaratively turn on or off aspects of a type (such as Dublin Core metadata, locking support, ratings, tagging, etc) with re-usable "behaviors".

	Dexterity is built from the ground up to support through-the-web type creation. There are products that achieve the same thing with Archetypes types, but they have to work around a number of limitations in the design of Archetypes that make them somewhat brittle or slow. Dexterity also allows types to be developed jointly through-the-web and on the filesystem. For example, a schema can be written in Python and then extended through the web.

All that said, Archetypes is still an older and more mature framework. Dexterity is a viable alternative to Archetypes in many projects, but if you are happy with Archetypes, you should not immediately rush to rewrite your types to use Dexterity.

There are also some things that Dexterity does not yet support, or, more commonly, services that Plone ships with that currently assume all content objects are built using Archetypes. The current list of "gaps" can be found in the Dexterity issue tracker. You should take a look at this before deciding whether Dexterity will work for you. If in doubt, don't hesitate to write to the Dexterity mailing list and ask for advice.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Designing with content types

How to solve problems with content types

Before we dive into Dexterity, it is worth thinking about the way we design
solutions with content types in Plone. If you are familiar with Archetypes
based development, Grok or Zope 3, then much of this will probably be familiar.

Plone uses the ZODB, an object database, instead of a relational database as its
default content store. The ZODB is well suited to heterogeneous, loosely
structured content such as web pages.

Types in Plone are either containers or items (this distinction is sometimes
called folderish vs. non-folderish). A one-to-many type relationship is typically
modelled as a container (the "one") containing many items (the "many"), although
it is also possible to use references across the content hierarchy.

Each type has a schema – a set of fields with related properties such as a title,
default value, constraints, and so on. The schema is used to generate forms and
describe instances of the type. In addition to schema-driven forms, a type
typically comes with one or more views, and is subject to security (e.g. add
permissions, or per-field read/write permissions) and workflow.

When we attempt to solve a particular content management problem with Plone,
we will often design new content types. For the purposes of this tutorial,
we'll build a simple set of types to help conference organisers. We want to
manage a program consisting of multiple sessions. Each session should be listed
against a track, have a time slot, a title, a description and a presenter. We
also want to manage bios for presenters.

There are many ways to approach this, but here is one possible design:

	A content type Presenter is used to represent presenter bios. Fields
include name, description and professional experience.

	A content type Program represents a given conference program. Besides some
basic metadata, it will list the available tracks. This type is folderish.

	A content type Session represents a session. Sessions can only be added
inside Programs. A Session will contain some information about the session,
and allow the user to choose the track and associate a presenter.

Each type will also have custom views, and we will show how to configure
catalog indexers, security and workflow for the types.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Prerequisites

Setting up a Dexterity project

Preparing a development environment

First, get a working Plone installation. If you don't already have one, the
easiest way to do so is to use one of Plone's installers. Note that for
development purposes, you may use a standalone (non-ZEO), non-root install.

Second, add our standard development tools. If you've used one of our
installers, developer tool configurations are in a separate file,
develop.cfg. Once your site is running, you may activate the development
configuration by using the command:

bin/buildout -c develop.cfg

rather than simply running bin/buildout. The develop.cfg config file
extends the existing buildout.cfg.

If you've created yor own buildout.cfg file rather than using one of the
installers, you'll need to add an equivalent development configuration. The
easiest way to do so is to pick up a copy from the Unified Installer's github repository [https://github.com/plone/Installers-UnifiedInstaller/blob/master/base_skeleton/develop.cfg].

The key tools that you'll need, both supplied by develop.cfg, are:

	A ZopeSkel configuration to supply a package skeleton builder; and

	A test runner.

Note

If you are using Plone earlier than 4.3, you'll need to add
zopeskel.dexterity to the eggs list for the zopeskel part. This supplies
the Dexterity skeleton.

Creating a package

Setting up a package to house your content types

Note

We're going to build a package named example.conference. You may find a
completed version of it in the Collective repository [https://github.com/collective/example.conference].

Typically, our content types will live in a separate package to our theme and
other customisations.

To create a new package, we can start with ZopeSkel and the dexterity
template.

Note

Nothing that we're doing actually requires ZopeSkel or the zopeskel.dexterity skeleton package. It's just a quick way of getting started.

We run the following from the src/ directory

$../bin/zopeskel dexterity example.conference

You may accept all the default suggestions. This will create a directory named
example.conference inside ./src.

Now, take a look at the setup.py file in your new package. Edit the author,
author_email and description fields as you wish. Note a couple of parts of
the generated setup.py file:

install_requires=[
 ...
 'plone.app.dexterity [grok]',
 ...
],
...
entry_points="""
-*- Entry points: -*-
[z3c.autoinclude.plugin]
target = plone
""",

The addition of plone.app.dexterity [grok] to our install requirements
assures that we'll have dexterity loaded with the grok extra. Our example
code won't work without it. The specification of plone as a
z3c.autoinclude.plugin entry point ensures that we won't need to separately
specify our zcml in buildout.

Now, let's take a look at configure.zcml in the examples/conference directory of our project. Again, we want to note a few parts:

<configure ...>

 <includeDependencies package="." />

 <grok:grok package="." />

 <browser:resourceDirectory
 name="example.conference"
 directory="resources" />

 <genericsetup:registerProfile
 name="default"
 title="Example Dexterity Product"
 directory="profiles/default"
 description="Extension profile for Example Dexterity Product"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

Here, with the includeDependencies tag we automatically include the ZCML configuration for all
packages listed under install_requires in setup.py.
The alternative would be to manually add a line like
<include package="plone.app.dexterity" /> for each dependency.

Next, we grok the package to construct and register schemata, views,
forms and so on based on conventions used in the various files we will
add throughout this tutorial.

The browser.resourceDirectory command creates a directory for static resources that we want to make available through the web.

Finally, we register a GenericSetup profile to make the type
installable, which we will build up over the next several sections.

When you've got your project tuned up, return to your buildout/instance directory and edit buildout.cfg to add example.conference to your eggs list and src/example.conference to your develop sources list:

eggs =
 Plone
 ...
 example.conference

...
develop =
 ...
 src/example.conference

Run bin/buildout -c develop.cfg to add your new product to the
configuration. (Or, just bin/buildout if you don't have a separate develop.cfg.)

The buildout should now configure Plone, Dexterity and the
example.conference package.

We are now ready to start adding types.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Schema-driven types

Creating a minimal type based on a schema

The schema

A simple Dexterity type consists of a schema and an FTI (Factory Type
Information, the object configured in portal_types in the ZMI).
We’ll create the schemata here, and the FTI on the next page.

Each schema is typically in a separate module. Thus, we will add three
files to our product: presenter.py, program.py, and session.py.
Each will start off with a schema interface.

Creating base files

Since we created our example.conference command via ZopeSkel, we'll be able to use its addcontent command to add base files for our content types. addcontent must be used from inside your new package.

Note

If you didn't use ZopeSkel, you'll need to add the files yourself. We'll supply the full source here, and you may refer to the example repository.

Typical addcontent use starting out at the buildout directory is:

$ cd src/example.conference/
$../../bin/paster addcontent -l
Available templates:
 dexterity_behavior: A behavior skeleton
 dexterity_content: A content type skeleton

The "-l" lists available content templates.

Note

At this point, you may receive an error message beginning with
pkg_resources.DistributionNotFound. Do not follow the error messages
advice to run python setup.py. Instead, check to make sure that you have
added your package to the eggs and develop sections of your buildout and
have run buildout. This loads package dependencies that are required to run
addcontent.

Now, let's add two of the three content types, for the conference sessions and programs.
We'll do presenters in the next section as a model-driven type.

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Session
Enter contenttype_description (Content type description) ['Description of the Example Type']: A session in a conference
Enter folderish (True/False: Content type should act as a container) [False]: False
Enter global_allow (True/False: Globally addable) [True]: False
Enter allow_discussion (True/False: Allow discussion) [False]:

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Program
Enter contenttype_description (Content type description) ['Description of the Example Type']: A conference program
Enter folderish (True/False: Content type should act as a container) [False]: True
Enter global_allow (True/False: Globally addable) [True]:
Enter allow_discussion (True/False: Allow discussion) [False]:

Notice that we chose to make the Conference type a container, because we will
want it to be able to contain sessions. Likewise, we set Globally addable` for
the Session type to False, as we'll only want to allow them to be added inside
programs.

If you check example.conference/example/conference, you'll discover that
Python source files program.py, session.py and presenter.py have been added. If
you explore example.conference/example/conference/profiles/default/types,
you'll also find XML files setting the Factory Type Information for each new
type. We'll customize all of these.

Setting the schema

Start with program.py. Notice the boilerplate:

If you want a schema-defined interface, delete the model.load
line below and delete the matching file in the models sub-directory.
If you want a model-based interface, edit
models/program.xml to define the content type
and add directives here as necessary.

model.load("models/program.xml")

Since we're going to be defining our fields via Zope schema rather than an XML model, delete all of that.

Next, add schema declarations for our fields. The top part of the file should look like:

from example.conference import MessageFactory as _
from five import grok
from plone.app.textfield import RichText
from plone.supermodel import model
from zope import schema

class IProgram(model.Schema):
 """A conference program. Programs can contain Sessions.
 """

 title = schema.TextLine(
 title=_(u"Program name"),
)

 description = schema.Text(
 title=_(u"Program summary"),
)

 start = schema.Datetime(
 title=_(u"Start date"),
 required=False,
)

 end = schema.Datetime(
 title=_(u"End date"),
 required=False,
)

 details = RichText(
 title=_(u"Details"),
 description=_(u"Details about the program"),
 required=False,
)

We've also removed unnecessary import declarations.

If you haven't developed for Plone before, take special note of the from example.conference import MessageFactory as _ code. This is to aid future
internationalisation of the package. Every string that is presented to
the user should be wrapped in _() as shown with the titles and
descriptions below.

The message factory lives in the package root __init__.py file:

from zope.i18nmessageid import MessageFactory

_ = MessageFactory("example.conference")

Notice how we use the package name as the translation domain.

Notice how we use the field names title and description for the name and
summary. We do this to provide values for the default title and
description metadata used in Plone’s folder listings and searches, which
defaults to these fields. In general, every type should have a title
field, although it could be provided by behaviors (more on those later).

Save program.py.

session.py for the Session type should look like this:

from example.conference import MessageFactory as _
from five import grok
from plone.app.textfield import RichText
from plone.supermodel import model
from zope import schema

class ISession(model.Schema):
 """A conference session. Sessions are managed inside Programs.
 """

 title = schema.TextLine(
 title=_(u"Title"),
 description=_(u"Session title"),
)

 description = schema.Text(
 title=_(u"Session summary"),
)

 details = RichText(
 title=_(u"Session details"),
 required=False
)

Note that we haven’t added information about speakers or tracks yet.
We’ll do that when we cover vocabularies and references later.

Schema interfaces vs. other interfaces

As you may have noticed, each schema is basically just an interface
(zope.interface.Interface) with fields.
The standard fields are found in the zope.schema [http://pypi.python.org/pypi/zope.schema] package.
You should look at its interfaces
(parts/omelette/zope/schema/interfaces.py) to learn about the various
schema fields available, and review the online documentation [http://pypi.python.org/pypi/zope.schema] for the
package. You may also want to look up plone.namedfile [http://pypi.python.org/pypi/plone.namedfile], which you can
use if you require a file field, plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield], which can be used
for references, and plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield], which supports rich text
with a WYSIWYG editor. We will cover these field types later in this
manual. They can also be found in the reference at the end.

Unlike a standard interface, however, we are deriving from model.Schema
(actually, plone.supermodel.model.Schema). This is just a marker
interface that allows us to add some form hints to the interface, which
are then used by Dexterity (actually, the plone.autoform [http://pypi.python.org/pypi/plone.autoform] package) to
construct forms. Take a look at the plone.autoform [http://pypi.python.org/pypi/plone.autoform]
documentation to learn more about the various hints that are possible.
The most common ones are form.fieldset(), to define groups of fields,
form.widget(), to set a widget for a particular field, and
form.omit() to hide one or more fields from the form.
We will see examples of these later in the manual.

The FTI

Adding a Factory Type Information object for the type

With the schema in place, we just need to make our types installable. We
do this with GenericSetup. Most of this was set up when we used addcontent to add the content type boilerplate.

Look in the types.xml file in your packages example/conference/profiles/default directory:

<object name="portal_types">
 <object name="example.conference.program" meta_type="Dexterity FTI" />
 <object name="example.conference.session" meta_type="Dexterity FTI" />
</object>

We use the package name as a prefix and the type name in lowercase to
create a unique name. It is important that the meta_type is
Dexterity FTI.

We then need to add/edit an XML file for each of the types, where the file
name matches the type name.

The Session type, in example.conference.session.xml, should look like this:

<?xml version="1.0"?>
<object name="example.conference.session"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Session</property>
 <property name="description"
 i18n:translate="">A session in a program</property>
 <property name="icon_expr">string:${portal_url}/document_icon.png</property>
 <property name="factory">example.conference.session</property>
 <property name="global_allow">False</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types" />
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.session.ISession</property>
 <property name="klass">example.conference.session.Session</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

There is a fair amount of boilerplate here which could actually be
omitted, because the Dexterity FTI defaults will take care of most of
this. However, it is useful to see the options available so that you
know what you can change.

The important lines here are:

	The name attribute on the root element must match the name in
types.xml and the filename.

	We use the package name as the translation domain again, via
i18n:domain.

	We set a title and description for the type

	We also specify an icon. Here, we use a standard icon from Plone’s
plone_images skin layer. You’ll learn more about static resources
later.

	We have set global_allow to False,
since these objects should only be addable inside a Program..

	The schema interface is referenced by the schema property.

	We set the klass property to the class defined in the boilerplate file.
If you were creating this yourself, you could have instead just used
plone.dexterity.content.Item or
plone.dexterity.content.Container.

	We specify the name of an add permission. The default
cmf.AddPortalContent should be used unless you configure a custom
permission. Custom permissions are convered later in this manual.

	We add a behavior. Behaviors are re-usable aspects providing
semantics and/or schema fields. Here, we add the INameFromTitle
behavior, which will give our content object a readable id based on
the title property. We’ll cover other behaviors later.
We removed the IBasic behavior (which would supply title and description fields)
as we have alternative fields.

The Program, in example.conference.program.xml, looks like this:

<?xml version="1.0"?>
<object name="example.conference.program"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Program</property>
 <property name="description"
 i18n:translate="">Conference Program</property>
 <property name="icon_expr">string:${portal_url}/folder_icon.png</property>
 <property name="factory">example.conference.program</property>
 <property name="global_allow">True</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types">
 <element value="example.conference.session" />
 </property>
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.program.IProgram</property>
 <property name="klass">example.conference.program.Program</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

We've edited this one a little from the boilplate: the difference here is that
we filter the containable types (filter_content_types and
allowed_content_types) to allow only Sessions to be added inside this
folder.

Testing the type

How to start up Plone and test the type, and some trouble-shooting tips.

With a schema and FTI for each type, and our GenericSetup profile
registered in configure.zcml, we should be able to test our type. Make
sure that you have run a buildout, and then start ./bin/instance fg as
normal. Add a Plone site, and go to the portal_quickinstaller in the
ZMI. You should see your package there and be able to install it.

Once installed, you should be able to add objects of the new content
types.

If Zope doesn’t start up:

	Look for error messages on the console, and make sure you start in
the foreground with ./bin/instance fg. You could have a syntax
error or a ZCML error.

If you have a failed import for plone.directives.form, make sure that you
specified the [grok] extra for plone.app.dexterity in your setup.py
install_requires.

If you don’t see your package in portal_quickinstaller:

	Ensure that the package is either checked out by mr.developer or
that you have a develop line in buildout.cfg to load it as a
develop egg. develop = src/* should suffice, but you can also add
the package explicitly, e.g. with
develop = src/example.conference.

	Ensure that the package is actually loaded as an egg. It should be
referenced in the eggs section under [instance] .

	You can check that the package is correctly configured in the
buildout by looking at the generated bin/instance script
(bin\instance-script.py on Windows). There should be a line for
your package in the list of eggs at the top of the file.

	Make sure that the package’s ZCML is loaded. You can do this by
installing a ZCML slug (via the zcml option in the [instance]
section of buildout.cfg) or by adding an <include /> line in
another package’s configure.zcml. However, the easiest way with
Plone 3.3 and later is to add the z3c.autoinclude.plugin entry
point to setup.py.

	Ensure that you have added a <genericsetup:registerProfile />
stanza to configure.zcml.

If the package fails to install in portal_quickinstaller:

	Look for errors in the error_log at the root of the Plone site, in
your console, or in your log files.

	Check the syntax and placement of the profile files. Remember that
you need a types.xml listing your types, and corresponding files in
types/*.xml.

If your forms do not look right (e.g. you are missing custom widgets):

	Make sure your schema derives from model.Schema.

	Remember that the directives require you to specify the correct field
name, even if they are placed before or after the relevant field.

	Check that you have a <grok:grok package="." /> line in
configure.zcml.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Model-driven types

In the previous section, we defined two types by using Zope schema. In this
section, we're going to define a type's fields using an XML model file.

The great advantage of using a model file is that we can prototype the content
type in Dexterity's through-the-web field editor, then export the XML model file
for incorporation into our package.

XML may be used to do pretty much anything you could do via Zope schema. Many
users not already schooled in Zope schema will find this by far the easiest and
fastest way to create Dexterity content types.

Adding the type

As in the previous section, we'll use addcontent to add our content type to
the project. This type will be for conference presenters.

$../../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Presenter
Enter contenttype_description (Content type description) ['Description of the Example Type']: A person presenting a conference session
Enter folderish (True/False: Content type should act as a container) [False]: False
Enter global_allow (True/False: Globally addable) [True]:
Enter allow_discussion (True/False: Allow discussion) [False]:

Setting the field model

Look in example.conference/example/conference/models/presenter.xml for a bare model file created by addcontent. Let's elaborate it:

<model xmlns:form="http://namespaces.plone.org/supermodel/form"
 xmlns:security="http://namespaces.plone.org/supermodel/security"
 xmlns:marshal="http://namespaces.plone.org/supermodel/marshal"
 xmlns="http://namespaces.plone.org/supermodel/schema">
 <schema>
 <field name="name" type="zope.schema.TextLine">
 <description/>
 <title>Name</title>
 </field>
 <field name="description" type="zope.schema.Text">
 <description/>
 <title>A short summary</title>
 </field>
 <field name="bio" type="plone.app.textfield.RichText">
 <description/>
 <required>False</required>
 <title>Bio</title>
 </field>
 <field name="photo" type="plone.namedfile.field.NamedBlobImage">
 <description>Please upload an image.</description>
 <required>False</required>
 <title>Photo</title>
 </field>I
 </schema>
</model>

The XML name spaces we use are described in the Dexterity XML reference
section.

That's all we need! To see why, look in the generated file presenter.py:

from example.conference import MessageFactory as _
from five import grok
from plone.supermodel import model
from zope import schema

class IPresenter(model.Schema):
 """
 Schema for Conference Presenter content type
 """

 model.load("models/presenter.xml")

Note the model.load directive. We'd deleted that when we created schema-driven field sets. Now, we leave it in to automatically load our model file.

Setting Factory Type Information

This part of the process is identical to what we explained for schema-driven
type.

Look in the types.xml file in your packages
example/conference/profiles/default directory. It should now contain:

<object name="portal_types">
 <object name="example.conference.program" meta_type="Dexterity FTI" />
 <object name="example.conference.session" meta_type="Dexterity FTI" />
 <object name="example.conference.presenter" meta_type="Dexterity FTI" />
</object>

For the Presenter type, we have example.conference.presenter.xml:

<?xml version="1.0"?>
<object name="example.conference.presenter"
 meta_type="Dexterity FTI"
 i18n:domain="example.conference" xmlns:i18n="http://xml.zope.org/namespaces/i18n">

 <!-- Basic metadata -->
 <property name="title" i18n:translate="">Presenter</property>
 <property name="description"
 i18n:translate="">Conference Presenter</property>
 <property name="icon_expr">string:${portal_url}/document_icon.png</property>
 <property name="factory">example.conference.presenter</property>
 <property name="global_allow">True</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types" />
 <property name="allow_discussion">False</property>

 <!-- schema and class used for content items -->
 <property name="schema">example.conference.presenter.IPresenter</property>
 <property name="klass">example.conference.presenter.Presenter</property>

 <property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 </property>

 <!-- View information -->
 <property name="link_target"></property>
 <property name="immediate_view">view</property>
 <property name="default_view">view</property>
 <property name="view_methods">
 <element value="view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <property name="add_permission">cmf.AddPortalContent</property>

 <!-- Method aliases -->
 <alias from="(Default)" to="(dynamic view)" />
 <alias from="view" to="(selected layout)" />
 <alias from="edit" to="@@edit" />
 <alias from="sharing" to="@@sharing" />

 <!-- Actions -->
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

Note that this is addable anywhere.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Custom views

Configuring custom views and using display forms

Simple views

Creating basic views

So far, our types have used the default views, which use the display
widgets from z3c.form [http://pypi.python.org/pypi/z3c.form], much like the add and edit forms use the edit
widgets. This is functional, but not very attractive. Most types will
need one or more custom view templates.

Dexterity types are no different from any other content type in Plone. You
can register a view for your schema interface, and it will be available
on your type. If the view is named view, it will be the default view,
at least if you use the standard FTI configuration. This is because the
FTI’s default_view property is set to view, and view is in the
list of view_methods.

When working with Dexterity, we will typically configure our views using
the five.grok [http://pypi.python.org/pypi/five.grok] configuration system, eschewing ZCML configuration.
Below, we will show how to add simple views for the Program and
Speaker types. Next, we will show how to use display forms to take
advantage of the standard widgets if required.

The five.grok [http://pypi.python.org/pypi/five.grok] view approach uses a class in the content type’s module,
which is automatically associated with a template in an accompanying
directory. These directories should be created next to the module files,
so we will have program_templates, presenter_templates and
session_templates.

(Note for newbies:
A view will have update() and render() methods. We will inherit these,
with the result that our view will render a similarly-named page template.
If you wanted, you could provide your own update and/or render methods.
The sessions() method you will see defined below exists to provide
information that will be referenced by the page template.)

Note

addcontent will have created a "SampleView" class in each content type's .py file. Just rename it to "View" to follow the example.

In program.py, the view is registered as follows:

class View(grok.View):
 grok.context(IProgram)
 grok.require('zope2.View')

 def sessions(self):
 """Return a catalog search result of sessions to show
 """

 context = aq_inner(self.context)
 catalog = getToolByName(context, 'portal_catalog')

 return catalog(object_provides=ISession.__identifier__,
 path='/'.join(context.getPhysicalPath()),
 sort_on='sortable_title')

This creates a view registration similar to what you may do with a
<browser:page /> ZCML directive. We have also added a helper method
which will be used in the view. Note that this requires some imports at
the top of the file:

from Acquisition import aq_inner
from Products.CMFCore.utils import getToolByName

from example.conference.session import ISession

The view registration works as follows:

	The view name will be @@view, taken from the class name in
lowercase. You can specify an alternative name with
grok.name('some-name') if required.

	The grok.context() directive specifies that this view is used for
objects providing IProgram.

	You can add a grok.layer() directive if you want to specify a
browser layer.

	The grok.require() directive specifies the required permission for
this view.
It uses the Zope 3 permission name.
zope2.View and zope.Public are the most commonly used permissions
(in fact, zope.Public is not actually a permission, it just means “no
permission required”).
For a list of other standard permissions, see
parts/omelette/Products/Five/permissions.zcml.
We will cover
creating custom permissions later in this manual.

	Any methods added to the view will be available to the template via
the view variable. The content object is available via context,
as usual.

This is associated with a file in program_templates/view.pt. The file name
matches the class name (even if a different view name was specified).
addcontent will have created a sampleview.pt file. Just rename it to
continue with the example. This contains:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main"
 tal:define="toLocalizedTime nocall:context/@@plone/toLocalizedTime">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 class="documentFirstHeading" tal:content="context/title" />

 <div class="discreet">
 <tal:block condition="context/start">
 From:

 </tal:block>
 <tal:block condition="context/end">
 To:

 </tal:block>
 </div>

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <p class="documentDescription" tal:content="context/description" />

 <div tal:replace="structure provider:plone.abovecontentbody" />

 <div tal:content="structure context/details/output" />

 <h2 i18n:translate="heading_sessions">Sessions</h2>
 <dl>
 <tal:block repeat="session view/sessions">
 <dt>
 <a tal:attributes="href session/getURL"
 tal:content="session/Title" />
 </dt>
 <dd tal:content="session/Description" />
 </tal:block>
 </dl>

 <div tal:replace="structure provider:plone.belowcontentbody" />

 </tal:main-macro>
</metal:main>

</body>
</html>

For the most part, this template outputs the values of the various
fields, using the sessions() method on the view to obtain the sessions
contained within the program.

Note

Notice how the details RichText field is output as
tal:content="structure context/details/output".
The structure keyword ensures that the rendered HTML is not escaped.
The extra traversal to details/output is necessary because the
RichText field actually stores a RichTextValue object that
contains not only the raw text as entered by the user, but also a
MIME type (e.g. text/html) and the rendered output text.
RichText fields are covered in more detail later in this manual.

The view for Presenter, in presenter.py, is even simpler:

class View(grok.View):
 grok.context(IPresenter)
 grok.require('zope2.View')

Its template, in presenter_templates/view.pt, is similar to the
previous template:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 class="documentFirstHeading" tal:content="context/title" />

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <p class="documentDescription" tal:content="context/description" />

 <div tal:replace="structure provider:plone.abovecontentbody" />

 <div tal:content="structure context/bio/output" />

 <div tal:replace="structure provider:plone.belowcontentbody" />

 </tal:main-macro>
</metal:main>

</body>
</html>

Obviously, these views are very basic. Much more interesting views could
be created by putting a little more work into the templates.

You should also realise that you can create any type of view using this
technique. Your view does not have to be related to a particular content
type, even. You could set the context to Interface, for example, to
make a view that’s available on all types.

Display forms

Using display widgets in your views

In the previous section, we created a view extending grok.View. This
kind of view is the most common, but sometimes we want to make use of
the widgets and information in the type’s schema more directly, for
example to invoke transforms or re-use more complex HTML.

To do this, you can use a display form. This is really just a view
base class that knows about the schema of a type. We will use an example
in session.py, with a template in session_templates/view.pt.

Note

Display forms involve the same type of overhead as add- and
edit-forms. If you have complex forms with many behaviors, fieldsets and
widget hints, you may notice a slow-down compared to standard views, at
least on high volume sites.

The new view class is pretty much the same as before, except that we
derive from dexterity.DisplayForm
(plone.directives.dexterity.DisplayForm):

class View(dexterity.DisplayForm):
 grok.context(ISession)
 grok.require('zope2.View')

This gives our view a few extra properties that we can use in the
template:

	view.w

	a dictionary of all the display widgets, keyed by field names.
For fields provided by behaviors, that is usually prefixed with the
behavior interface name (IBehaviorInterface.field_name).
For the default schema, unqualified names apply.

	view.widgets

	contains a list of widgets in schema order for the default fieldset.

	view.groups

	contains a list of fieldsets in fieldset order.

	view.fieldsets

	contains a dictionary mapping fieldset name to fieldset.

	widgets

	On a fieldset (group), you can access a widgets list to get widgets
in that fieldset.

The w dict is the most commonly used.

The session_templates/view.pt template contains the following:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="example.conference">
<body>

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main">
 <div tal:replace="structure provider:plone.abovecontenttitle" />
 <h1 class="documentFirstHeading" tal:content="context/title" />
 <div tal:replace="structure provider:plone.belowcontenttitle" />
 <p class="documentDescription" tal:content="context/description" />
 <div tal:replace="structure provider:plone.abovecontentbody" />
 <div tal:content="structure view/w/details/render" />
 <div tal:replace="structure provider:plone.belowcontentbody" />
 </tal:main-macro>
</metal:main>

</body>
</html>

Notice how we use expressions like view/w/details/render (where
details is the field name) to get the rendering of a widget. Other
properties include __name__, the field name, and label, the
field title.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Advanced configuration

Further configuration and tips

	Defaults

	Validators
	Constraints

	Invariants

	Form validators

	Vocabularies
	Static vocabularies

	Dynamic sources

	Parameterised sources

	Named vocabularies

	Some common vocabularies

	The autocomplete selection widget

	References
	Back references

	Rich text, markup and transformations
	The RichTextValue

	Using rich text fields in templates

	Alternative transformations

	Files and images

	Static resources
	Registering a static resource directory

	Importing CSS and JavaScript files in templates

	Registering resources with Plone’s resource registries

	Image resources

	Content type icons

	Using behaviors

	Event handlers

	Permissions
	Performing permission checks in code

	Content type add permissions

	Protecting views and forms

	Protecting form fields

	Workflow
	A DCWorkflow refresher

	Creating a new workflow

	A note about add permissions

	Catalog indexing strategies
	Making content searchable

	Creating and using custom indexes

	Custom add and edit forms
	Edit forms

	Content add sequence

	Custom add forms

	Custom content classes
	Custom class caveats

	WebDAV and other file representations
	Default WebDAV behaviour

	Customising WebDAV behaviour

	How it all works

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Defaults

Default values for fields on add forms

It is often useful to calculate a default value for a field. This value
will be used on the add form, before the field is set.

To continue with our conference example, let’s set the default values
for the start and end dates to one week in the future and ten days
in the future, respectively. We can do this by adding the following to
program.py:

@form.default_value(field=IProgram['start'])
def startDefaultValue(data):
 # To get hold of the folder, do: context = data.context
 return datetime.datetime.today() + datetime.timedelta(7)

@form.default_value(field=IProgram['end'])
def endDefaultValue(data):
 # To get hold of the folder, do: context = data.context
 return datetime.datetime.today() + datetime.timedelta(10)

We also need to import datetime at the top of the file, of course.

Notice how the functions specify a particular schema field that they
provide the default value for. The decorator will actually register
these as “value adapters” for z3c.form [http://pypi.python.org/pypi/z3c.form], but you probably don’t need to
worry about that.

The data argument is an object that contains an attribute for each
field in the schema. On the add form, most of these are likely to be
None, but on a different form, the values may be populated from the
context. The data object also has a context attribute that you can
use to get the form’s context. For add forms, that’s the containing
folder; for other forms, it is normally a content object being edited or
displayed. If you need to look up tools (getToolByName) or acquire a
value from a parent object, use data.context as the starting point,
e.g.:

from Products.CMFCore.utils import getToolByName
...
catalog = getToolByName(data.context, 'portal_catalog')

The value returned by the method should be a value that’s allowable for
the field. In the case of Datetime fields, that’s a Python datetime
object.

It is possible to provide different default values depending on the type
of context, a request layer, the type of form, or the type of widget
used. See the plone.directives.form [http://pypi.python.org/pypi/plone.directives.form] documentation for more details.

For example, if you wanted to have a differently calculated default for
a particular form, you could use a decorator like:

@form.default_value(field=IProgram['start'], form=FormClass)

We’ll cover creating custom forms later in this manual.

If the default_value decorator is not working, check that you have installed
plone.directives.form installed with buildout or in your setup.py. Further
ensure that you have "groked" your package.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Validators

Creating custom validators for your type

Many applications require some form of data entry validation. The
simplest form of validation you get for free – the z3c.form [http://pypi.python.org/pypi/z3c.form] library
ensures that all data entered on Dexterity add and edit forms is valid
for the field type.

It is also possible to set certain properties on the fields to add
further validation (or even create your own fields with custom
validation logic, although that is a lot less common). These properties
are set as parameters to the field constructor when the schema interface
is created. You should see the zope.schema [http://pypi.python.org/pypi/zope.schema] package for details, but
the most common constraints are:

	required=True/False

	to make a field required or optional;

	min and max

	used for Int, Float, Datetime, Date, and Timedelta
fields, specify the minimum and maximum (inclusive) allowed values of
the given type;

	min_length and max_length

	used for collection fields (Tuple, List, Set, Frozenset,
Dict) and text fields (Bytes, BytesLine, ASCII,
ASCIILine, Text, TextLine), set the minimum and maximum
(inclusive) length of a field.

Constraints

If this does not suffice, you can pass your own constraint function to a
field. The constraint function should take a single argument: the value
that is to be validated. This will be of the field’s type. The function
should return a boolean True or False.

def checkForMagic(value):
 return 'magic' in value

Note

Hint: The constraint function does not have access to the context, but
if you need to acquire a tool, you can use the
zope.app.component.hooks.getSite() method to obtain the site root.

To use the constraint, pass the function as the constraint argument to
the field constructor, e.g.:

my_field = schema.TextLine(title=_(u"My field"), constraint=checkForMagic)

Constraints are easy to write, but do not necessarily produce very
friendly error messages. It is however possible to customise these error
messages using z3c.form [http://pypi.python.org/pypi/z3c.form] error view snippets. See the z3c.form
documentation for more details.

Invariants

You’ll also notice that constraints only check a single field value. If
you need to write a validator that compares multiple values, you can use
an invariant. Invariants use exceptions to signal errors, which are
displayed at the top of the form rather than next to a particular field.

To illustrate an invariant, let’s make sure that the start date of a
Program is before the end date. In program.py, we add the following.
Code not relevant to this example is snipped with an ellipsis (…):

...

from zope.interface import invariant, Invalid

class StartBeforeEnd(Invalid):
 __doc__ = _(u"The start or end date is invalid")

class IProgram(model.Schema):

 ...

 start = schema.Datetime(
 title=_(u"Start date"),
 required=False,
)

 end = schema.Datetime(
 title=_(u"End date"),
 required=False,
)

 ...

 @invariant
 def validateStartEnd(data):
 if data.start is not None and data.end is not None:
 if data.start > data.end:
 raise StartBeforeEnd(_(u"The start date must be before the end date."))

...

Form validators

Finally, you can write more powerful validators by using the z3c.form [http://pypi.python.org/pypi/z3c.form]
widget validators. See :ref:`the z3c.form documentation <z3c.form>`_ for
details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Vocabularies

Creating your own static and dynamic vocabularies

Vocabularies are normally used in conjunction with selection fields, and
are supported by the zope.schema [http://pypi.python.org/pypi/zope.schema] package, with widgets provided by
z3c.form [http://pypi.python.org/pypi/z3c.form].

Selection fields use the Choice field type. To allow the user to
select a single value, use a Choice field directly:

class IMySchema(model.Schema):
 myChoice = schema.Choice(...)

For a multi-select field, use a List, Tuple, Set or
Frozenset with a Choice as the value_type:

class IMySchema(model.Schema):
 myList = schema.List(..., value_type=schema.Choice(...))

The choice field must be passed one of the following arguments:

	values can be used to give a list of static values;

	source can be used to refer to an IContextSourceBinder or
ISource instance;

	vocabulary can be used to refer to an IVocabulary instance or
(more commonly) a string giving the name of an IVocabularyFactory
named utility.

In the remainder of this section, we will show the various techniques
for defining vocabularies through several iterations of a new field
added to the Program type allowing the user to pick the organiser
responsible for the program.

Static vocabularies

Our first attempt uses a static list of organisers. We use the message
factory to allow the labels (term titles) to be translated. The values
stored in the organizer field will be a unicode object representing
the chosen label, or None if no value is selected:

from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm

organizers = SimpleVocabulary(
 [SimpleTerm(value=u'Bill', title=_(u'Bill')),
 SimpleTerm(value=u'Bob', title=_(u'Bob')),
 SimpleTerm(value=u'Jim', title=_(u'Jim'))]
)

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=organizers,
 required=False,
)

Since required is False, there will be a no value option
in the drop-down list.

Dynamic sources

The static vocabulary is obviously a bit limited. Not only is it
hard-coded in Python, it also does not allow separation of the stored
values and the labels shown in the selection widget.

We can make a one-off dynamic vocabulary using a context source binder.
This is simply a callable (usually a function or an object with a
__call__ method) that provides the IContextSourceBinder
interface and takes a context parameter. The context argument is the
context of the form (i.e. the folder on an add form, and the content
object on an edit form). The callable should return a vocabulary, which
is most easily achieved by using the SimpleVocabulary class from
zope.schema [http://pypi.python.org/pypi/zope.schema].

Here is an example using a function to return all users in a particular
group:

from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary
from Products.CMFCore.utils import getToolByName

@grok.provider(IContextSourceBinder)
def possibleOrganizers(context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById('organizers')
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)

We use the PAS API to get the group and its members, building a list,
which we then turn into a vocabulary.

When working with vocabularies, you’ll come across some terminology that
is worth explaining:

	A term is an entry in the vocabulary. The term has a value. Most
terms are tokenised terms which also have a token, and some terms
are titled, meaning they have a title that is different to the
token.

	The token must be an ASCII string. It is the value passed with the
request when the form is submitted. A token must uniquely identify a
term.

	The value is the actual value stored on the object. This is not
passed to the browser or used in the form. The value is often a
unicode object, but can be any type of object.

	The title is a unicode object or translatable message. It is used
in the form.

The SimpleVocabulary class contains two class methods that can be used
to create vocabularies from lists:

	fromValues()

	takes a simple list of values and returns a tokenised vocabulary where
the values are the items in the list, and the tokens are created by
calling str() on the values.

	fromItems()

	takes a list of (token, value) tuples and creates a tokenised
vocabulary with the token and value specified.

You can also instantiate a SimpleVocabulary yourself and pass a list
of terms in the initialiser.
The createTerm() class method can be used to create a term from a
value, token and title. Only the value is required.

In the example above, we have chosen to create a SimpleVocabulary from
terms with the user id used as value and token, and the user’s full name
as a title.

To use this context source binder, we use the source argument to the
Choice constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 source=possibleOrganizers,
 required=False,
)

Parameterised sources

We can improve this example by moving the group name out of the
function, allowing it to be set on a per-field basis. To do so, we turn
our IContextSourceBinder into a class that is initialised with the
group name:

class GroupMembers(object):
 """Context source binder to provide a vocabulary of users in a given
 group.
 """

 grok.implements(IContextSourceBinder)

 def __init__(self, group_name):
 self.group_name = group_name

 def __call__(self, context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById(self.group_name)
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)

Again, the source is set using the source argument to the Choice
constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 source=GroupMembers('organizers'),
 required=False,
)

When the schema is initialised on startup, a GroupMembers object
is instantiated, storing the desired group name. Each time the
vocabulary is needed, this object will be called (i.e. the
__call__() method is invoked) with the context as an argument,
expected to return an appropriate vocabulary.

Named vocabularies

Context source binders are great for simple dynamic vocabularies. They
are also re-usable, since you can import the source from a single
location and use it in multiple instances.

Sometimes, however, we want to provide an additional level of
decoupling, by using named vocabularies. These are similar to context
source binders, but are components registered as named utilities,
referenced in the schema by name only. This allows local overrides of
the vocabulary via the Component Architecture, and makes it easier to
distribute vocabularies in third party packages.

Note

Named vocabularies cannot be parameterised in the way as we did
with the GroupMembers context source binder, since they are looked up
by name only.

We can turn our first "members in the organizers group" vocabulary
into a named vocabulary by creating a named utility providing
IVocabularyFactory, like so:

from zope.schema.interfaces import IVocabularyFactory
...

class OrganizersVocabulary(object):
 grok.implements(IVocabularyFactory)

 def __call__(self, context):
 acl_users = getToolByName(context, 'acl_users')
 group = acl_users.getGroupById('organizers')
 terms = []

 if group is not None:
 for member_id in group.getMemberIds():
 user = acl_users.getUserById(member_id)
 if user is not None:
 member_name = user.getProperty('fullname') or member_id
 terms.append(SimpleVocabulary.createTerm(member_id, str(member_id), member_name))

 return SimpleVocabulary(terms)

grok.global_utility(OrganizersVocabulary, name=u"example.conference.Organizers")

Note

By convention, the vocabulary name is prefixed with the package name, to
ensure uniqueness.

We can make use of this vocabulary in any schema by passing its name to
the vocabulary argument of the Choice field constructor:

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=u"example.conference.Organizers",
 required=False,
)

Some common vocabularies

As you might expect, there are a number of standard vocabularies that
come with Plone. These are found in the plone.app.vocabularies [http://pypi.python.org/pypi/plone.app.vocabularies]
package. Some of the more useful ones include:

	plone.app.vocabularies.AvailableContentLanguages

	a list of all available content languages;

	plone.app.vocabularies.SupportedContentLanguages

	a list of currently supported content languages;

	plone.app.vocabularies.Roles

	the user roles available in the site;

	plone.app.vocabularies.PortalTypes

	a list of types installed in portal_types;

	plone.app.vocabularies.ReallyUserFriendlyTypes

	a list of those types that are likely to mean something to users;

	plone.app.vocabularies.Workflows

	a list of workflows;

	plone.app.vocabularies.WorkflowStates

	a list of all states from all workflows;

	plone.app.vocabularies.WorkflowTransitions

	a list of all transitions from all workflows.

In addition, the package plone.principalsource [http://pypi.python.org/pypi/plone.principalsource] provides several
vocabularies that are useful for selecting users and groups in a
Dexterity context:

	plone.principalsource.Users

	provides users

	plone.principalsource.Groups

	provides groups

	plone.principalsource.Principals

	provides security principals (users or groups)

Importantly, these sources are not iterable, which means that you cannot
use them to provide a list of all users in the site. This is
intentional: calculating this list can be extremely expensive if you
have a large site with many users, especially if you are connecting to
LDAP or Active Directory. Instead, you should use a search-based source
such as one of these.

We will use one of these together with an auto-complete widget to
finalise our organizer field. To do so, we need to add
plone.principalsource as a dependency of example.conference. In
setup.py, we add:

install_requires=[
 ...
 'plone.principalsource',
],

Note

Since we use an <includeDependencies /> line in configure.zcml,
we do not need a separate <include /> line in configure.zcml for
this new dependency.

The organizer field now looks like:

organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=u"plone.principalsource.Users",
 required=False,
)

The autocomplete selection widget

The organizer field now has a query-based source. The standard
selection widget (a drop-down list) is not capable of rendering such a
source. Instead, we need to use a more powerful widget. For a basic
widget, see z3c.formwidget.query [http://pypi.python.org/pypi/z3c.formwidget.query], but in a Plone context, you will
more likely want to use plone.formwidget.autocomplete [http://pypi.python.org/pypi/plone.formwidget.autocomplete], which extends
z3c.formwidget.query to provide friendlier user interface.

The widget is provided with plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity], so we do not need to
configure it ourselves. We only need to tell Dexterity to use this
widget instead of the default, using a form widget hint as shown
earlier. At the top of program.py, we add the following import:

from plone.formwidget.autocomplete import AutocompleteFieldWidget

Note

If we were using a multi-valued field, such as a List with a
Choice value_type, we would use the
AutocompleteMultiFieldWidget instead.

In the IProgram schema (which, recall, derives from model.Schema and
is therefore processed for form hints at startup), we then add the
following:

form.widget(organizer=AutocompleteFieldWidget)
organizer = schema.Choice(
 title=_(u"Organiser"),
 vocabulary=u"plone.principalsource.Users",
 required=False,
)

You should now see a dynamic auto-complete widget on the form, so long
as you have JavaScript enabled. Start typing a user name and see what
happens. The widget also has fall-back for non-JavaScript capable
browsers.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

References

How to work with references between content objects

References are a way to maintain links between content that remain valid
even if one or both of the linked items are moved or renamed.

Under the hood, Dexterity’s reference system uses five.intid [http://pypi.python.org/pypi/five.intid], a Zope
2 integration layer for zope.intid [http://pypi.python.org/pypi/zope.intid], to give each content item a unique
integer id. These are the basis for relationships maintained with the
zc.relationship [http://pypi.python.org/pypi/zc.relationship] package, which in turn is accessed via an API
provided by z3c.relationfield [http://pypi.python.org/pypi/z3c.relationfield], integrated into Zope 2 with
plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield]. For most purposes, you need only to worry
about the z3c.relationfield API, which provides methods for finding
source and target objects for references and searching the relationship
catalog.

References are most commonly used in form fields with a selection or
content browser widget. Dexterity comes with a standard widget in
plone.formwidget.contenttree [http://pypi.python.org/pypi/plone.formwidget.contenttree] configured for the RelationList and
RelationChoice fields from z3c.relationfield.

To illustrate the use of references, we will allow the user to create a
link between a Session and its Presenter. Since Dexterity already
ships with and installs plone.formwidget.contenttree and
z3c.relationfield, we do not need to add any further setup code, and
we can use the field directly in session.py:

...

from z3c.relationfield.schema import RelationChoice
from plone.formwidget.contenttree import ObjPathSourceBinder
...

from example.conference.presenter import IPresenter

class ISession(form.Schema):
 """A conference session. Sessions are managed inside Programs.
 """
 ...

 presenter = RelationChoice(
 title=_(u"Presenter"),
 source=ObjPathSourceBinder(object_provides=IPresenter.__identifier__),
 required=False,
)

Note

Remeber that plone.app.relationfield [http://pypi.python.org/pypi/plone.app.relationfield] needs to be installed to use any
RelationChoice or RelationList field.

To allow multiple items to be selected, we could have used a
RelationList like:

relatedItems = RelationList(
 title=u"Related Items",
 default=[],
 value_type=RelationChoice(title=_(u"Related"),
 source=ObjPathSourceBinder()),
 required=False,
)

The ObjPathSourceBinder class is an IContextSourceBinder that returns
a vocabulary with content objects as values, object titles as term
titles and object paths as tokens.

You can pass keyword arguments to the constructor for
ObjPathSourceBinder() to restrict the selectable objects. Here, we
demand that the object must provide the IPresenter interface. The
syntax is the same as that used in a catalog search, except that only
simple values and lists are allowed (e.g. you can’t use a dict to
specify a range or values for a field index).

If you want to restrict the folders and other content shown in the
content browser, you can pass a dictionary with catalog search
parameters (and here, any valid catalog query will do) as the first
non-keyword argument (navigation_tree_query) to the
ObjPathSourceBinder() constructor.

You can also create the fields in an XML schema, however you have to provide a
pre-baked source instance. If you are happy with not restricting folders shown,
you can use some that plone.formwidget.contenttree makes for you. For example:

<field name="links" type="plone.app.relationfield.RelationList">
 <title>Related Items</title>
 <value_type type="plone.app.relationfield.Relation">
 <title>Related</title>
 <source>plone.formwidget.contenttree.obj_path_src_binder</source>
 </value_type>
</field>

Note

The pre-baked source binders were added in plone.formwidget.contenttree
1.0.7, which ships with Plone 4.3.2+.

If you want to use a different widget, you can use the same source (or a
custom source that has content objects as values) with something like
the autocomplete widget. The following line added to the interface will
make the presenter selection similar to the organizer selection widget
we showed in the previous section:

form.widget('presenter', AutocompleteFieldWidget)

Once the user has created some relationships, the value stored in the
relation field is a RelationValue object. This provides various
attributes, including:

	from_object, the object from which the relationship is made;

	to_object, the object to which the relationship is made;

	from_id and to_id, the integer ids of the source and target;

	from_path and to_path, the path of the source and target.

The isBroken() method can be used to determine if the relationship is
broken. This normally happens if the target object is deleted.

To display the relationship on our form, we can either use a display
widget on a DisplayForm, or use this API to find the object and
display it. We’ll do the latter in session_templates/view.pt:

<div tal:condition="context/presenter">
 <label i18n:translate="presenter">Presenter:</label>

</div>

Back references

To retrieve back-reference (all objects pointing to particular object using specified attribute) you can't simply use from_object or from_path, because source object is stored in the relation without acquisition wrappers.
You should use from_id and helper method, which search the object in the IntId catalog.:

from Acquisition import aq_inner
from zope.component import getUtility
from zope.intid.interfaces import IIntIds
from zope.security import checkPermission
from zc.relation.interfaces import ICatalog

def back_references(source_object, attribute_name):
""" Return back references from source object on specified attribute_name """
catalog = getUtility(ICatalog)
intids = getUtility(IIntIds)
result = []
for rel in catalog.findRelations(
dict(to_id=intids.getId(aq_inner(source_object)),
from_attribute=attribute_name)
):
obj = intids.queryObject(rel.from_id)
if obj is not None and checkPermission('zope2.View', obj):
result.append(obj)
return result

Please note, this method does not check effective and expiration date or content language.

Original issue: http://code.google.com/p/dexterity/issues/detail?id=234

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Rich text, markup and transformations

How to store markup (such as HTML or reStructuredText) and render it with a transformation

Many content items need to allow users to provide rich text in some kind
of markup, be that HTML (perhaps entered using a WYSIWYG editor),
reStructuredText, Markdown or some other format. This markup typically
needs to be transformed into HTML for the view template, but we also
want to keep track of the original “raw” markup so that it can be edited
again. Even when the input format is HTML, there is often a need for a
transformation to tidy up the HTML and strip out tags that are not
permitted.

It is possible to store HTML in a standard Text field. You can even
get a WYSIWYG widget, by using a schema such as this:

from plone.autoform import directives as form
from plone.supermodel import model
from zope import schema
from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

class ITestSchema(model.Schema):

 form.widget('body', WysiwygFieldWidget)
 body = schema.Text(title=u"Body text")

However, this approach does not allow for alternative markups or any
form of content filtering. For that, we need to use a more powerful
field: RichText from the plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield] package:

from plone.app.textfield import RichText
from plone.supermodel import model

class ITestSchema(model.Schema):

 body = RichText(title=u"Body text")

The RichText field constructor can take the following arguments in
addition to the usual arguments for a Text field:

	default_mime_type, a string representing the default MIME type of
the input markup. This defaults to text/html.

	output_mime_type, a string representing the default output MIME
type. This defaults to text/x-html-safe, which is a Plone-specific
MIME type that disallows certain tags. Use the HTML Filtering
control panel in Plone to control the tags.

	allowed_mime_types, a tuple of strings giving a vocabulary of
allowed input MIME types. If this is None (the default), the
allowable types will be restricted to those set in Plone’s
Markup control panel.

Also note: The default field can be set to either a unicode object (in
which case it will be assumed to be a string of the default MIME type)
or a RichTextValue object (see below).

Below is an example of a field allow StructuredText and
reStructuredText, transformed to HTML by default:

from plone.app.textfield import RichText
from plone.supermodel import model

defaultBody = """\
Background
==========

Please fill this in

Details
=======

And this
"""

class ITestSchema(model.Schema):

 body = RichText(
 title=u"Body text",
 default_mime_type='text/x-rst',
 output_mime_type='text/x-html',
 allowed_mime_types=('text/x-rst', 'text/structured',),
 default=defaultBody,
)

The RichTextValue

The RichText field does not store a string. Instead, it stores a
RichTextValue object. This is an immutable object that has the
following properties:

	raw

	a unicode string with the original input markup;

	mimeType

	the MIME type of the original markup, e.g. text/html or
text/structured;

	encoding

	the default character encoding used when transforming the input markup.
Most likely, this will be UTF-8;

	raw_encoded

	the raw input encoded in the given encoding;

	outputMimeType

	the MIME type of the default output, taken from the field at the time of
instantiation;

	output

	a unicode object representing the transformed output. If possible, this
is cached persistently until the RichTextValue is replaced with a
new one (as happens when an edit form is saved, for example).

The storage of the RichTextValue object is optimised for the case where
the transformed output will be read frequently (i.e. on the view screen
of the content object) and the raw value will be read infrequently (i.e.
on the edit screen). Because the output value is cached indefinitely,
you will need to replace the RichTextValue object with a new one if any
of the transformation parameters change. However, as we will see below,
it is possible to apply a different transformation on demand should you
need to.

The code snippet belows shows how a RichTextValue object can be
constructed in code. In this case, we have a raw input string of type
text/plain that will be transformed to a default output of
text/html. (Note that we would normally look up the default output
type from the field instance.):

from plone.app.textfield.value import RichTextValue
...

context.body = RichTextValue(u"Some input text", 'text/plain', 'text/html')

Of course, the standard widget used for a RichText field will
correctly store this type of object for you, so it is rarely necessary
to create one yourself.

Using rich text fields in templates

What about using the text field in a template? If you are using a
DisplayForm, the display widget for the RichText field will render
the transformed output markup automatically. If you are writing TAL
manually, you may try something like this:

<div tal:content="structure context/body" />

This, however, will render a string like:

RichTextValue object. (Did you mean <attribute>.raw or <attribute>.output?)

The correct syntax is:

<div tal:content="structure context/body/output" />

This will render the cached, transformed output. This operation is
approximately as efficient as rendering a simple Text field, since the
transformation is only applied once, when the value is first saved.

Alternative transformations

Sometimes, you may want to invoke alternative transformations. Under the
hood, the default implementation uses the portal_transforms tool to
calculate a transform chain from the raw value’s input MIME type to the
desired output MIME type. (Should you need to write your own transforms,
take a look at this tutorial [http://plone.org/documentation/kb/portal-transforms].) This is abstracted behind an
ITransformer adapter to allow alternative implementations.

To invoke a transformation in code, you can use the following syntax:

from plone.app.textfield.interfaces import ITransformer

transformer = ITransformer(context)
transformedValue = transformer(context.body, 'text/plain')

The __call__() method of the ITransformer adapter takes a
RichTextValue object and an output MIME type as parameters.

If you are writing a page template, there is an even more convenient
syntax:

<div tal:content="structure context/@@text-transform/body/text/plain" />

The first traversal name gives the name of the field on the context
(body in this case). The second and third give the output MIME type.
If the MIME type is omitted, the default output MIME type will be used.

Note

Unlike the output property, the value is not cached, and so
will be calculated each time the page is rendered.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Files and images

Working with file and image fields, including BLOBs

Plone has dedicated File and Image types, and it is often preferable
to use these for managing files and images. However, it is sometimes
useful to treat fields on an object as binary data. When working with
Dexterity, you can accomplish this by using plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] and
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].

The plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] package includes four field types, all found in
the plone.namedfile.field module:

	NamedFile stores non-BLOB files. This is useful for small files
when you don’t want to configure BLOB storage.

	NamedImage stores non-BLOB images.

	NamedBlobFile stores BLOB files (see note below). It is otherwise
identical to NamedFile.

	NamedBlobImage stores BLOB images (see note below). It is otherwise
identical to NamedImage.

In use, the four field types are all pretty similar. They actually store
persistent objects of type plone.namedfile.NamedFile,
plone.namedfile.NamedImage, plone.namedfile.NamedBlobFile and plone.namedfile.NamedBlobImage,
respectively. Note the different module! These objects have attributes
like data, to access the raw binary data, contentType, to get a MIME
type, and filename, to get the original filename. The image values
also support _height and _width to get image dimensions.

To use the non-BLOB image and file fields, it is sufficient to depend on
plone.formwidget.namedfile, since this includes plone.namefile as a
dependency. We prefer to be explicit in setup.py, however, since we
will actually import directly from plone.namedfile:

install_requires=[
 ...
 'plone.namedfile',
 'plone.formwidget.namedfile',
],

Note

Again, we do not need separate <include /> lines in
configure.zcml for these new dependencies, because we use
<includeDependencies />.

For the sake of illustration, we will add an image of the
speaker to the Presenter type. In presenter.py, we add:

from plone.namedfile.field import NamedImage

class IPresenter(model.Schema):
 ...

 picture = NamedBlobImage(
 title=_(u"Please upload an image"),
 required=False,
)

To use this in a view, we can either use a display widget via a
DisplayForm, or construct a download URL manually. Since we don’t have
a DisplayForm for the Presenter type, we’ll do the latter (of
course, we could easily turn the view into a display form as well).

In presenter_templates/view.pt, we add this block of TAL:

<div tal:define="picture nocall:context/picture"
 tal:condition="nocall:picture">
 <img tal:attributes="src string:${context/absolute_url}/@@download/picture/${picture/filename};
 height picture/_height | nothing;
 width picture/_width | nothing;"
 />
</div>

This constructs an image URL using the @@download view from
plone.namedfile. This view takes the name of the field containing the
file or image on the traversal subpath (/picture), and optionally a
filename on a further sub-path. The filename is used mainly so that the
URL ends in the correct extension, which can help ensure web browsers
display the picture correctly. We also define the height and width
of the image based on the values set on the object.

For file fields, you can construct a download URL in a similar way,
using an <a /> tag, e.g.:

<a tal:attributes="href string:${context/absolute_url}/@@download/some_field/${context/some_field/filename}" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Static resources

Adding images and stylesheets

Earlier in this manual, we have seen how to create views, and how to use
file and image fields. These are all dynamic, however, and often we just
want to ship with a static image/icon, CSS or JavaScript file. For this,
we need to register static resources.

Registering a static resource directory

The easiest way to manage static resources is to create a
static resource directory in your Dexterity project using the ZCML resourceDirectory directive.

Registration of the resource directory is done using the
<browser:resourceDirectory /> ZCML directive. This requires two
attributes: name is the name that appears after the
++resource++ namespace; directory is a relative path to the
directory containing resources.

It's conventional to use "static" or "resources" for the directory name and the dotted name of your package for the resource name.
If you create a directory named "resources", you would use this zcml to register it:

<browser:resourceDirectory
 name="dotted.projectname"
 directory="resources" />

Then, if a resources resource directory in the example.conference package
contains a file called conference.css, it will be accessible on a URL
like http://<server>/site/++resource++example.conference/conference.css.
The resource name is the same as the package name wherein the resources
directory appears.

Note

Grok used to automatically register any directory named static.
That behavior no longer works. If you're updating a Dexterity project
from < Plone 4.3, add to your configure.zcml a stanza like:

<browser:resourceDirectory
 name="dotted.projectname"
 directory="static" />

Importing CSS and JavaScript files in templates

One common use of static resources is to add a static CSS or JavaScript
file to a specific template. We can do this by filling the style_slot
or javascript_slot in Plone’s main_template in our own view
template and using an appropriate resource link.

For example, we could add the following near the top of
presenter_templates/view.pt:

<head>
 <metal:block fill-slot="style_slot">
 <link rel="stylesheet" type="text/css"
 tal:define="navroot context/@@plone_portal_state/navigation_root_url"
 tal:attributes="href string:${navroot}/++resource++example.conference/conference.css"
 />
 </metal:block>
</head>

Note

Always create the resource URL relative to the navigation root as shown
here, so that the URL is the same for all content objects using this
view. This allows for efficient resource caching.

Registering resources with Plone’s resource registries

Sometimes it is more appropriate to register a stylesheet with Plone’s
portal_css registry (or a JavaScript file with
portal_javascripts), rather than add the registration on a
per-template basis. This ensures that the resource is available
site-wide.

Note

It may seem wasteful to include a resource that is not be used on all
pages in the global registry. Remember, however, that portal_css and
portal_javascripts will merge and compress resources, and set caching
headers such that browsers and caching proxies can cache resources well.
It is often more effective to have one slightly larger file that caches
well, than to have a variable number of files that may need to be loaded
at different times.

To add a static resource file, you can use the GenericSetup
cssregistry.xml or jsregistry.xml import steps in the
profiles/default directory. For example, an import step to add the
conference.css file site-wide may involve a cssregistry.xml file
that looks like this:

<?xml version="1.0"?>
<object name="portal_css">
 <stylesheet id="++resource++example.conference/conference.css"
 title="" cacheable="True" compression="safe" cookable="True"
 enabled="1" expression="" media="screen" rel="stylesheet" rendering="import"
 />
</object>

Similarly, a JavaScript resource could be imported with a
jsregistry.xml like:

<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript cacheable="True" compression="none" cookable="True"
 enabled="False" expression=""
 id="++resource++example.conference/conference.js" inline="False"/>
</object>

Image resources

Images can be added to resource directories just like any other type of
resource. To use the image in a view, you can construct an tag
like this:

<img style="float: left; margin-right: 2px; margin-top: 2px"
 tal:define="navroot context/@@plone_portal_state/navigation_root_url"
 tal:attributes="src string:${navroot}/++resource++example.conference/program.gif"
 />

Content type icons

Finally, to use an image resource as the icon for a content type, simply
list it in the FTI under the content_icon property. For example, in
profiles/default/types/example.conference.presenter.xml, we can use
the following line, presuming we have a presenter.gif in the static
directory:

<property name="content_icon">++resource++example.conference/presenter.gif</property>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Using behaviors

Finding and adding behaviors

Dexterity introduces the concept of behaviors – re-usable bundles of
functionality and/or form fields which can be turned on or off on a
per-type basis.

Each behavior has a unique interface. When a behavior is enabled on a
type, you will be able to adapt that type to the behavior’s interface.
If the behavior is disabled, the adaptation will fail. The behavior
interface can also be marked as an IFormFieldsProvider, in which case
it will add fields to the standard add and edit forms. Finally, a
behavior may imply a sub-type: a marker interface which will be
dynamically provided by instances of the type for which the behavior is
enabled.

We will not cover writing new behaviors in this manual, but we will show
how to enable behaviors on a type. Writing behaviors is covered in the
Behaviors manual [http://docs.plone.org/external/plone.app.dexterity/docs/behaviors/index.html].

In fact, we’ve already seen one
standard behavior applied to our example types, registered in the FTI
and imported using GenericSetup:

<property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
</property>

Other behaviors are added in the same way, by listing additional
behavior interfaces as elements of the behaviors property.

Behaviors are normally registered with the <plone:behavior /> ZCML
directive. When registered, a behavior will create a global utility
providing IBehavior, which is used to provide some metadata, such as a
title and description for the behavior.

You can find and apply behaviors via the Dexterity Content Types
control panel that is installed with plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity]. For a list
of standard behaviors that ship with Dexterity, see the reference at the
end of this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Event handlers

Adding custom event handlers for your type

So far, we have mainly been concerned with content types’ schemata and
forms created from these. However, we often want to add more dynamic
functionality, reacting when something happens to objects of our type.
In Zope, that usually means writing event subscribers.

Zope’s event model is synchronous. When an event is broadcast (via the
notify() function from the zope.event [http://pypi.python.org/pypi/zope.event] package), for example from the
save action of an add form, all registered event handlers will be
called. There is no guarantee of which order the event handlers will be
called in, however.

Each event is described by an interface, and will typically carry some
information about the event. Some events are known as object events,
and provide zope.component.interfaces.IObjectEvent. These have an
object attribute giving access to the (content) object that the event
relates to. Object events allow event handlers to be registered for a
specific type of object as well as a specific type of event.

Some of the most commonly used event types in Plone are shown below.
They are all object events.

	zope.lifecycleevent.interfaces.IObjectCreatedEvent

	fired by the standard add form just after an object has been created,
but before it has been added on the container. Note that it is often
easier to write a handler for IObjectAddedEvent (see below), because
at this point the object has a proper acquisition context.

	zope.lifecycleevent.interfaces.IObjectModifiedEvent

	fired by the standard edit form when an object has been modified.

	zope.lifecycleevent.interfaces.IObjectAddedEvent

	fired when an object has been added to its container. The container is
available as the newParent attribute, and the name the new item holds
in the container is available as newName.

	zope.lifecycleevent.interfaces.IObjectRemovedEvent

	fired when an object has been removed from its container. The container
is available as the oldParent attribute, and the name the item held
in the container is available as oldName.

	zope.lifecycleevent.interfaces.IObjectMovedEvent

	fired when an object is added to, removed from, renamed in, or moved
between containers. This event is a super-type of IObjectAddedEvent
and IObjectRemovedEvent, shown above, so an event handler registered
for this interface will be invoked for the ‘added’ and ‘removed’ cases
as well. When an object is moved or renamed, all of oldParent,
newParent, oldName and newName will be set.

	Products.CMFCore.interfaces.IActionSucceededEvent

	fired when a workflow event has completed. The workflow attribute
holds the workflow instance involved, and the action attribute holds
the action (transition) invoked.

Event handlers can be registered using ZCML with the <subscriber />
directive, but when working with Dexterity types, we’ll more commonly
use the grok.subscriber() in Python code.

As an example, let’s add an event handler to the Presenter type that
tries to find users with matching names matching the presenter id, and
send these users an email.

First, we require a few additional imports at the top of presenter.py:

from zope.lifecycleevent.interfaces import IObjectAddedEvent
from Products.CMFCore.utils import getToolByName

Then, we’ll add the following event subscriber after the schema
definition:

@grok.subscribe(IPresenter, IObjectAddedEvent)
def notifyUser(presenter, event):
 acl_users = getToolByName(presenter, 'acl_users')
 mail_host = getToolByName(presenter, 'MailHost')
 portal_url = getToolByName(presenter, 'portal_url')

 portal = portal_url.getPortalObject()
 sender = portal.getProperty('email_from_address')

 if not sender:
 return

 subject = "Is this you?"
 message = "A presenter called %s was added here %s" % (presenter.title, presenter.absolute_url(),)

 matching_users = acl_users.searchUsers(fullname=presenter.title)
 for user_info in matching_users:
 email = user_info.get('email', None)
 if email is not None:
 mail_host.secureSend(message, email, sender, subject)

There are many ways to improve this rather simplistic event handler, but
it illustrates how events can be used. The first argument to
grok.subscribe() is an interface describing the object type. For
non-object events, this is omitted. The second argument is the event
type. The arguments to the function reflects these two, so the first
argument is the IPresenter instance and the second is an
IObjectAddedEvent instance.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Permissions

Setting up add permissions, view permissions and field view/edit permissions

Plone’s security system is based on the concept of
permissions protecting operations
(like accessing a view,
viewing a field,
modifying a field,
or adding a type of content)
that are granted to roles,
which in turn are granted to users and/or groups.
In the context of developing content types,
permissions are typically used in three different ways:

	A content type or group of related content types often has a custom
add permission which controls who can add this type of content.

	Views (including forms) are sometimes protected by custom
permissions.

	Individual fields are sometimes protected by permissions,
so that some users can view and edit fields that others can’t see.

It is easy to create new permissions.
However, be aware that it is considered good practice to use the standard permissions wherever possible and use workflow to control which roles are granted these permissions on a per-instance basis.

For more basic information on permissions and how to create custom permissions read the Security Section [http://docs.plone.org/develop/plone/security/index.html] in the Plone documentation.

Performing permission checks in code

It is sometimes necessary to check permissions explicitly in code, for
example in a view. A permission check always checks a permission on a
context object, since permissions can change with workflow.

Note

Never make security dependent on users’ roles directly.
Always check for a permission, and assign the permission to the appropriate role or roles.

As an example,
let’s display a message on the view of a Session type
if the user has the cmf.RequestReview permission.
In session.py, we update the View class with the following:

from zope.security import checkPermission

class View(BrowserView):

 def canRequestReview(self):
 return checkPermission('cmf.RequestReview', self.context)

And in the session_templates/view.pt template, we add:

<div class="discreet"
 tal:condition="view/canRequestReview"
 i18n:translate="suggest_review">
 Please submit this for review.
</div>

Content type add permissions

Dexterity content types’ add permissions are set in the FTI,
using the add_permission property.
This can be changed through the web
or in the GenericSetup import step for the content type.

To make the Session type use our new permission, we modify the
add_permission line in
profiles/default/example.conference.session.xml:

<property name="add_permission">example.conference.AddSession</property>

Protecting views and forms

Access to views and other browser resources (like viewlets or portlets)
can be protected by permissions, either using the permission attribute
on ZCML statements like:

<browser:page
 ...
 permission="zope.Public"
 ...
 />

We could also use the special zope.Public permission name to make the view accessible to anyone.

Protecting form fields

Individual fields in a schema may be associated with a read permission
and a write permission.
The read permission is used to control access to the field’s value via protected code
(e.g. scripts or templates created through the web)
and URL traversal,
and can be used to control the appearance of fields when using display forms
(if you use custom views that access the attribute directly, you’ll need to perform your own checks).
Write permissions can be used to control whether or not a given field appears on a type’s add and edit forms.

In both cases,
read and write permissions are annotated onto the schema using directives similar to those we’ve already seen for form widget hints.
The read_permission() and write_permission() directives are found in the plone.autoform.directives [http://pypi.python.org/pypi/plone.directives.dexterity] package.

If XML-schemas are used for defintion see Dexterity XML: security attributes.

Simple example protecting a field to be readable for Site Administrators only:

from zope import schema
from plone.supermodel import model
from plone.autoform.directives import read_permission

class IExampleProtectedInformation(model):

 read_permission(info='cmf.ManagePortal')
 write_permission(info='cmf.ManagePortal')
 info = schema.Text(
 title=_(u"Information"),
)

As a complex example, let’s add a field for Session reviewers to record the track for a session.
We’ll store the vocabulary of available tracks on the parent Program object in a text field,
so that the creator of the Program can choose the available tracks.

First, we add this to the IProgram schema in program.py:

form.widget(tracks=TextLinesFieldWidget)
tracks = schema.List(
 title=_(u"Tracks"),
 required=True,
 default=[],
 value_type=schema.TextLine(),
)

The TextLinesFieldWidget is used to edit a list of text lines in a
text area. It is imported as:

from plone.z3cform.textlines.textlines import TextLinesFieldWidget

Next, we’ll add a vocabulary for this to session.py:

from Acquisition import aq_inner, aq_parent
from zope.component import provider
from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary
...

@provider(IContextSourceBinder)
def possibleTracks(context):

 # we put the import here to avoid a circular import
 from example.conference.program import IProgram
 while context is not None and not IProgram.providedBy(context):
 context = aq_parent(aq_inner(context))

 values = []
 if context is not None and context.tracks:
 values = context.tracks

 return SimpleVocabulary.fromValues(values)

This vocabulary finds the closest IProgram
(in the add form, the context will be the Program,
but on the edit form, it will be the Session,
so we need to check the parent)
and uses its tracks variable as the vocabulary.

Next, we add a field to the ISession interface in the same file and
protect it with the relevant write permission:

write_permission(track='example.conference.ModifyTrack')
track = schema.Choice(
 title=_(u"Track"),
 source=possibleTracks,
 required=False,
)

With this in place, users with the example.conference: Modify track
permission should be able to edit tracks for a session. For everyone
else, the field will be hidden in the edit form.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Workflow

Controlling security with workflow

Workflow is used in Plone for three distinct, but overlapping purposes:

	To keep track of metadata, chiefly an object’s state;

	to create content review cycles and model other types of processes;

	to manage object security.

When writing content types,
we will often create custom workflows to go with them.
In this section,
we will explain at a high level how Plone’s workflow system works,
and then show an example of a simple workflow to go with our example types.
An exhaustive manual on using workflows is beyond the scope of this manual,
but hopefully this will cover the basics.

Note

There is nothing Dexterity-specific in this section.
Everything here applies equally well to content objects
created with Archetypes or using CMF directly.

A DCWorkflow refresher

What follows is a fairly detailed description of DCWorkflow [http://pypi.python.org/pypi/Products.DCWorkflow],
originally posted here [http://www.martinaspeli.net/articles/dcworkflows-hidden-gems].
You may find some of this a little detailed on first reading,
so feel free to skip to the specifics later on.
However, it is useful to be familiar with the high level concepts.
You’re unlikely to need multi-workflow chains
in your first few attempts at workflow, for instance,
but it’s useful to know what it is if you come across the term.

Plone’s workflow system is known as DCWorkflow.
It is a states-and-transitions system,
which means that your workflow starts in a particular state
(the initial state) and then moves to other states via transitions
(also called actions in CMF).

When an object enters a particular state (including the initial state),
the workflow is given a chance to update permissions on the object.
A workflow manages a number of permissions –
typically the “core” CMF permissions
like View, Modify portal content and so on –
and will set those on the object at each state change.
Note that this is event-driven, rather than a real-time security check:
only by changing the state is the security information updated.
This is why you need to click Update security settings
at the bottom of the portal_workflow
screen in the ZMI when you change your workflows’ security settings and
want to update existing objects.

A state can also assign local roles to groups.
This is akin to assigning roles to groups on Plone’s Sharing tab,
but the mapping of roles to groups happens on each state change,
much like the mapping of roles to permissions.
Thus, you can say that in the pending_secondary state,
members of the Secondary reviewers group
have the Reviewer local role.
This is powerful stuff when combined with the more usual role-to-permission
mapping, although it is not very commonly used.

State changes result in a number of variables being recorded,
such as the actor (the user that invoked the transition),
the action (the name of the transition),
the date and time and so on.
The list of variables is dynamic,
so each workflow can define any number of variables
linked to TALES [http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-overview] expressions that are invoked
to calculate the current value at the point of transition.
The workflow also keeps track of the current state of each object.
The state is exposed as a special type of workflow variable
called the state variable.
Most workflows in Plone uses the name review_state as the state variable.

Workflow variables are recorded for each state change
in the workflow history.
This allows you to see when a transition occurred,
who effected it, and what state the object was in before or after.
In fact, the “current state” of the workflow is internally looked up
as the most recent entry in the workflow history.

Workflow variables are also the basis for worklists.
These are basically pre-defined catalog queries
run against the current set of workflow variables.
Plone’s review portlet shows all current worklists
from all installed workflows.
This can be a bit slow,
but it does mean that you can use a single portlet
to display an amalgamated list of all items on all worklists
that apply to the current user.
Most Plone workflows have a single worklist
that matches on the review_state variable,
e.g. showing all items in the pending state.

If states are the static entities in the workflow system,
transitions (actions) provide the dynamic parts.
Each state defines zero or more possible exit transitions,
and each transition defines exactly one target state,
though it is possible to mark a transition as “stay in current state”.
This can be useful if you want to do something in reaction to a transition
and record that the transition happened in the workflow history,
but not change the state (or security) of the object.

Transitions are controlled by one or more guards.
These can be permissions (the preferred approach),
roles (mostly useful for the Owner role –
in other cases it is normally better to use permissions)
or TALES [http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-overview] expressions.
A transition is available if all its guard conditions are true.
A transition with no guard conditions is available to everyone
(including anonymous!).

Transitions are user-triggered by default, but may be automatic.
An automatic transition triggers immediately following another transition
provided its guard conditions pass.
It will not necessarily trigger as soon as the guard condition becomes true,
as that would involve continually re-evaluating guards
for all active workflows on all objects!

When a transition is triggered,
the IBeforeTransitionEvent and IAfterTransitionEvent events
are triggered.
These are low-level events from Products.DCWorkflow that can tell you a
lot about the previous and current states.
There is a higher level IActionSucceededEvent in Products.CMFCore
that is more commonly used to react after a workflow action has completed.

In addition to the events, you can configure workflow scripts.
These are either created through-the-web
or (more commonly) as External Methods [*],
and may be set to execute before a transition is complete
(i.e. before the object enters the target state)
or just after it has been completed (the object is in the new state).
Note that if you are using event handlers,
you’ll need to check the event object to find out which transition was
invoked, since the events are fired on all transitions.
The per-transition scripts are only called for the specific transitions
for which they were configured.

	[*]	An External Method is a Python script evaluated in Zope context.
See Logic Objects [http://docs.zope.org/zope2/zope2book/BasicObject.html#logic-objects-script-python-objects-and-external-methods]
in the Zope 2 Book.

Multi-chain workflows

Workflows are mapped to types via the portal_workflow tool.
There is a default workflow, indicated by the string (Default).
Some types have no workflow,
which means that they hold no state information and
typically inherit permissions from their parent.
It is also possible for types to have multiple workflows.
You can list multiple workflows by separating their names by commas.
This is called a workflow chain.

Note that in Plone, the workflow chain of an object is looked up by
multi-adapting the object and the workflow to the IWorkflowChain
interface.
The adapter factory should return a tuple of string workflow names
(IWorkflowChain is a specialisation of IReadSequence, i.e. a tuple).
The default obviously looks at the mappings in the portal_workflow tool,
but it is possible to override the mapping,
e.g. by using a custom adapter registered for some marker interface,
which in turn could be provided by a type-specific behavior.

Multiple workflows applied in a single chain co-exist in time.
Typically, you need each workflow in the chain to have a different state
variable name.
The standard portal_workflow API (in particular,
doActionFor(), which is used to change the state of an object)
also assumes the transition ids are unique.
If you have two workflows in the chain and both currently have a submit
action available,
only the first workflow will be transitioned if you do
portal_workflow.doActionFor(context, ‘submit’).
Plone will show all available transitions from all workflows in the current
object’s chain in the State drop-down,
so you do not need to create any custom UI for this.
However, Plone always assumes the state variable is called review_state
(which is also the variable indexed in portal_catalog).
Therefore, the state of a secondary workflow won’t show up
unless you build some custom UI.

In terms of security, remember that the role-to-permission
(and group-to-local-role) mappings
are event-driven and are set after each transition.
If you have two concurrent workflows that manage the same permissions,
the settings from the last transition invoked will apply.
If they manage different permissions (or there is a partial overlap)
then only the permissions managed by the most-recently-invoked workflow
will change, leaving the settings for other permissions untouched.

Multiple workflows can be very useful in case you have concurrent processes.
For example, an object may be published, but require translation.
You can track the review state in the main workflow
and the translation state in another.
If you index the state variable for the second workflow in the catalog
(the state variable is always available on the indexable object wrapper
so you only need to add an index with the appropriate name
to portal_catalog)
you can search for all objects pending translation,
for example using a Collection.

Creating a new workflow

With the theory out of the way, let’s show how to create a new workflow.

Workflows are managed in the portal_workflow tool. You can use the ZMI
to create new workflows and assign them to types. However, it is usually
preferable to create an installable workflow configuration using
GenericSetup. By default, each workflow as well as the workflow
assignments are imported and exported using an XML syntax. This syntax
is comprehensive, but rather verbose if you are writing it manually.

For the purposes of this manual, we will show an alternative
configuration syntax based on spreadsheets (in CSV format). This is
provided by the collective.wtf [http://pypi.python.org/pypi/collective.wtf] package. You can read more about the
details of the syntax in its documentation. Here, we will only show how
to use it to create a simple workflow for the Session type, allowing
members to submit sessions for review.

To use collective.wtf, we need to depend on it.
In setup.py, we have:

install_requires=[
 ...
 'collective.wtf',
],

Note

As before, the <includeDependencies /> line in configure.zcml
takes care of configuring the package for us.

A workflow definition using collective.wtf consists of a CSV file in
the profiles/default/workflow_csv directory,
which we will create,
and a workflows.xml file in profiles/default
which maps types to workflows.

The workflow mapping in profiles/default/workflows.xml looks like
this:

<?xml version="1.0"?>
<object name="portal_workflow">
 <bindings>
 <type type_id="example.conference.session">
 <bound-workflow workflow_id="example.conference.session_workflow"/>
 </type>
 </bindings>
</object>

The CSV file itself is found in
profiles/default/workflow_csv/example.conference.session_workflow.csv.
It contains the following,
which was exported to CSV from an OpenOffice spreadsheet.
You can find the original spreadsheet with the
example.conference source code [http://svn.plone.org/svn/collective/example.conference/trunk/example/conference/profiles/default/workflow_csv]. This applies some useful formatting,
which is obviously lost in the CSV version.

Note

For your own workflows, you may want to use this template as a
starting point.

"[Workflow]"
"Id:","example.conference.session_workflow"
"Title:","Conference session workflow"
"Description:","Allows members to submit session proposals for review"
"Initial state:","draft"

"[State]"
"Id:","draft"
"Title:","Draft"
"Description:","The proposal is being drafted."
"Transitions","submit"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","N",,,,"X","X","X","X",,
"Access contents information","N",,,,"X","X","X","X",,
"Modify portal content","N",,,,"X","X","X",,,

"[State]"
"Id:","pending"
"Title:","Pending"
"Description:","The proposal is pending review"
"Worklist:","Pending review"
"Worklist label:","Conference sessions pending review"
"Worklist guard permission:","Review portal content"
"Transitions:","reject, publish"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","N",,,,"X","X","X","X",,"X"
"Access contents information","N",,,,"X","X","X","X",,"X"
"Modify portal content","N",,,,"X","X","X",,,"X"

"[State]"
"Id:","published"
"Title:","Published"
"Description:","The proposal has been accepted"
"Transitions:","reject"
"Permissions","Acquire","Anonymous","Authenticated","Member","Manager","Owner","Editor","Reader","Contributor","Reviewer"
"View","Y","X",,,,,,,,
"Access contents information","Y","X",,,,,,,,
"Modify portal content","Y",,,,"X","X","X",,,

"[Transition]"
"Id:","submit"
"Title:","Submit"
"Description:","Submit the session for review"
"Target state:","pending"
"Guard permission:","Request review"

"[Transition]"
"Id:","reject"
"Title:","Reject"
"Description:","Reject the session from the program"
"Target state:","draft"
"Guard permission:","Review portal content"

"[Transition]"
"Id:","publish"
"Title:","Publish"
"Description:","Accept and publish the session proposal"
"Target state:","published"
"Guard permission:","Review portal content"

Here, you can see several states and transitions.
Each state contains a role/permission map,
and a list of the possible exit transitions.
Each transition contains a target state and other meta-data such as a title
and a description, as well as guard permissions.

Note

Like most other GenericSetup import steps, the workflow uses
the Zope 2 permission title when referring to permissions.

When the package is (re-)installed, this workflow should be available
under portal_workflow and mapped to the Session type.

Note

If you have existing instances, don’t forget to go to portal_workflow
in the ZMI and click Update security settings
at the bottom of the page.
This ensures that existing objects reflect the most recent security
settings in the workflow.

A note about add permissions

This workflow assumes that regular members can add Session proposals to
Programs, which are then reviewed.
Previously, we granted the
example.conference: Add session permission to the Member role.
This is necessary, but not sufficient
to allow members to add sessions to programs.
The user will also need the generic Add portal content permission in the
Program folder.

There are two ways to achieve this:

	Build a workflow for the Program type that manages this permission

	Use the Sharing tab to grant Can add to the
Authenticated Users group.
This grants the Contributor local role to members.
By default, this role is granted the Add portal content
permission.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Catalog indexing strategies

You may have two different interests in regard to indexing your custom content type objects:

	Making particular fields searchable via Plone's main search facility;

	Indexing particular fields for custom lookup.

Making content searchable

Plone's main index is called SearchableText. This is the index which is searched when you use the main portal search. Fields in your custom content types are not necessarily added to SearchableText. Fields added via Dublin-core behaviors are automatically part of SearchableText; others are not.

So, you may need to explicitly add fields to SearchableText if you wish their information to be findable via the main search. There are all sorts of highly customizable ways to do this, but the easiest is to use the collective.dexteritytextindexer [https://github.com/collective/collective.dexteritytextindexer] add-on package.

Add collective.dexteritytextindexer to your buildout and you will gain a new Dexterity behavior that will allow you to easily add fields to SearchableText. Once you turn on this behavior, you will then need to specify fields for addition to SearchableText.

..Note:

Note that if you turn on the ``Dynamic SearchableText indexer behavior`` for a content type, then you must specify all fields that need SearchableText indexing. Dublin core fields like Title and Description are no longer automatically handled.

Once you have turned on the indexer behavior, edit the XML field model to add indexer:searchable="true" to the field tag for each field you wish to add to the SearchableText index.

See the collective.dexteritytextindexer [https://github.com/collective/collective.dexteritytextindexer] package documentation for details and for information on how to use it via Python schema.

Creating and using custom indexes

How to create custom catalog indexes

The ZODB is a hierarchical object store where objects of different schemata and sizes can live side by side.
This is great for managing individual content items, but not optimal for searching across the content repository.
A naive search would need to walk the entire object graph, loading each object into memory and comparing object metadata with search criteria.
On a large site, this would quickly become prohibitive.

Luckily, Zope comes with a technology called the ZCatalog, which is basically a table structure optimised for searching.
In Plone, there’s a ZCatalog instance called portal_catalog.
Standard event handlers will index content in the catalog when it is created or modified, and unindex when the content is removed.

The catalog manages indexes, which can be searched, and metadata (also known as columns), which are object attributes for which the value is copied into the catalog.
When we perform a search, the result is a lazily loaded list of objects known as catalog brains.
Catalog brains contain the value of metadata columns (but not indexes) as attributes.
The functions getURL(), getPath() and getObject() can be used to get the URL and path of the indexed content item, and to load the full item into memory.

Note

Dexterity objects are more lightweight than Archetypes objects.
This means that loading objects into memory is not quite as undesirable as is sometimes assumed.
If you’re working with references, parent objects, or a small number of child objects, it is usually OK to load objects directly to work with them.
However, if you are working with a large or unknown-but-potentially-large number of objects, you should consider using catalog searches to find them and use catalog metadata to store frequently used values.
There is an important trade-off to be made between limiting object access and bloating the catalog with unneeded indexes and metadata, though.
In particular, large strings (such as the body text of a document) or binary data (such as the contents of image or file fields) should not be stored as catalog metadata.

Plone comes with a number of standard indexes and metadata columns.
These correspond to much of the Dublin Core set of metadata as well as several Plone-specific attributes.
You can view the indexes, columns and the contents of the catalog through the ZMI pages of the portal_catalog tool.
If you’ve never done this, it is probably instructive to have a look, both to understand how the indexes and columns may apply to your own content types, and to learn what searches are already possible.

Indexes come in various types. The most common ones are:

	FieldIndex

	the most common type, used to index a single value.

	KeywordIndex

	used to index lists of values where you want to be able to search for a subset of the values.
As the name implies, commonly used for keyword fields, such as the Subject Dublin Core metadata field.

	DateIndex

	used to index Zope 2 DateTime objects.
Note that if your type uses a Python datetime object, you’ll need to convert it to a Zope 2 DateTime using a custom indexer!

	DateRangeIndex

	used mainly for the effective date range.

	ZCTextIndex

	used mainly for the SearchableText index.
This is the index used for full-text search.

	ExtendedPathIndex

	a variant of PathIndex, which is used for the path index.
This is used to search for content by path and optionally depth.

Adding new indexes and metadata columns

When an object is indexed, the catalog will by default attempt to find attributes and methods that match index and column names on the object. Methods will be called (with no arguments) in an attempt to get a value.
If a value is found, it is indexed.

Note

Objects are normally acquisition-wrapped when they are indexed, which means that an indexed value may be acquired from a parent.
This can be confusing, especially if you are building container types and creating new indexes for them.
If child objects don’t have attributes/methods with names corresponding to indexes, the parent object’s value will be indexed for all children as well.

Catalog indexes and metadata can be installed with the catalog.xml GenericSetup import step. It is useful to look at the one in Plone (parts/omelette/Products/CMFPlone/profiles/default/catalog.xml).

As an example, let’s index the track property of a Session in the catalog, and add a metadata column for this property as well. In
profiles/default/catalog.xml, we have:

<?xml version="1.0"?>
<object name="portal_catalog">
 <index name="track" meta_type="FieldIndex">
 <indexed_attr value="track"/>
 </index>
 <column value="track"/>
</object>

Notice how we specify both the index name and the indexed attribute.
It is possible to use an index name (the key you use when searching) that is different to the indexed attribute, although they are usually the same.
The metadata column is just the name of an attribute.

Creating custom indexers

Indexing based on attributes can sometimes be limiting.
First of all, the catalog is indiscriminate in that it attempts to index every attribute that’s listed against an index or metadata column for every object.
Secondly, it is not always feasible to add a method or attribute to a class just to calculate an indexed value.

Plone 3.3 and later ships with a package called plone.indexer [http://pypi.python.org/pypi/plone.indexer] to help make it easier to write custom indexers:
components that are invoked to calculate the value which the catalog sees when it tries to index a given attribute.
Indexers can be used to index a different value to the one stored on the object, or to allow indexing of a “virtual” attribute that does not actually exist on the object is question.
Indexers are usually registered on a per-type basis, so you can have different implementations for different types of content.

To illustrate indexers, we will add three indexers to program.py.
Two will provide values for the start and end indexes, normally used by Plone’s Event type.
We actually have attributes with the correct name for these already, but they use Python datetime objects whereas the DateIndex requires a
Zope 2 DateTime.DateTime object.
(Python didn’t have a datetime module when this part of Zope was created!)
The third indexer will be used to provide a value for the Subject index that takes its value from the tracks list.

from DateTime import DateTime
from plone.indexer import indexer
...

@indexer(IProgram)
def startIndexer(obj):
 if obj.start is None:
 return None
 return DateTime(obj.start.isoformat())
grok.global_adapter(startIndexer, name="start")

@indexer(IProgram)
def endIndexer(obj):
 if obj.end is None:
 return None
 return DateTime(obj.end.isoformat())
grok.global_adapter(endIndexer, name="end")

@indexer(IProgram)
def tracksIndexer(obj):
 return obj.tracks
grok.global_adapter(tracksIndexer, name="Subject")

Here, we use the @indexer decorator to create an indexer.
This doesn’t register the indexer component, though, so we need to use grok.global_adapter() to finalise the registration.
Crucially, this is where the indexer’s name is defined.
This is the name of the indexed attribute for which the indexer is providing a value.

Note

Since all of these indexes are part of a standard Plone installation, we won’t register them in catalog.xml.
If you are creating custom indexers and need to add new catalog indexes or columns for them, remember that the “indexed attribute” name (and the column name) must match the name of the indexer as set in its adapter registration.

Searching using your indexes

Once we have registered our indexers and re-installed our product (to ensure that the catalog.xml import step is allowed to install new indexes in the catalog), we can use our new indexes just like we would any of the default indexes.

The pattern is always the same:

from Products.CMFCore.utils import getToolByName
get the tool
catalog = getToolByName(context, 'portal_catalog')
execute a search
results = catalog(track='Track 1')
examine the results
for brain in results:
 start = brain.start
 url = brain.getURL()
 obj = brain.getObject() # Performance hit!

This shows a simple search using the portal_catalog tool, which we look up from some context object.
We call the tool to perform a search, passing search criteria as keyword arguments, where the left hand side refers to an installed index and the right hand side is the search term.

Some of the more commonly used indexes are:

	Title

	the object’s title.

	Description

	the object’s description.

	path

	the object’s path. The argument is a string like /foo/bar.
To get the path of an object (e.g. a parent folder), do
'/'.join(folder.getPhysicalPath()).
Searching for an object’s path will return the object and any children.
To depth-limit the search, e.g. to get only those 1 level deep,
use a compound query, e.g.
path={'query': '/'.join(folder.getPhysicalPath()), 'depth': 1}.
If a depth is specified, the object at the given path is not returned
(but any children within the depth limit are).

	object_provides

	used to match interfaces provided by the object.
The argument is an interface name or list of interface names (of
which any one may match).
To get the name of a given interface, you can call
ISomeInterface.__identifier__.

	portal_type

	used to match the portal type.
Note that users can rename portal types,
so it is often better not to hardcode these.
Often, using an object_provides search for a type-specific
interface will be better.
Conversely, if you are asking the user to select a particular type to
search for, then they should be choosing from the currently installed
portal_types.

	SearchableText

	used for full-text searches.
This supports operands like AND and OR in the search string.

	Creator

	the username of the creator of a content item.

	Subject

	a KeywordIndex of object keywords.

	review_state

	an object’s workflow state.

In addition, the search results can be sorted based on any FieldIndex,
KeywordIndex or DateIndex using the following keyword arguments:

	Use sort_on='<index name>' to sort on a particular index.
For example, sort_on='sortable_title' will produce a sensible title-based sort.
sort_on='Date' will sort on the publication date, or the creation date if this is not set.

	Add sort_order='reverse' to sort in reverse.
The default is sort_order='ascending'.
'descending' can be used as an alias for 'reverse'.

	Add sort_limit=10 to limit to approximately 10 search results.
Note that it is possible to get more results due to index optimisations.
Use a list slice on the catalog search results to be absolutely sure that you have got the maximum number of results, e.g.
results = catalog(…, sort_limit=10)[:10].
Also note that the use of sort_limit requires a sort_on as well.

Some of the more commonly used metadata columns are:

	Creator

	the user who created the content object.

	Date

	the publication date or creation date, whichever is later.

	Title

	the object’s title.

	Description

	the object’s description.

	getId

	the object’s id (note that this is an attribute, not a function).

	review_state

	the object’s workflow state.

	portal_type

	the object’s portal type.

For more information about catalog indexes and searching, see the
ZCatalog chapter in the Zope 2 book [http://docs.zope.org/zope2/zope2book/SearchingZCatalog.html].

How to setup the index TTW:

Now that the fields are index-able, we need to create the index itself.

	Go to the Zope Management Interface

	Go on 'portal_catalog'

	Click 'Indexes' tab

	There's a drop down menu to the top right to let you choose what type of index to add - if you are using a plain text string field you would select 'FieldIndex'

	As the 'id' put in the programmatical name of your Dexterity type field that you want to index

	Hit OK, tick your new index and click 'Reindex'

You should now see content being indexed.

See the documentation for further information

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Custom add and edit forms

Using `z3c.form`_ to build custom forms

Until now, we have used Dexterity’s default content add and edit forms,
supplying form hints in our schemata to influence how the forms are
built.
For most types, that is all that’s ever needed.
In some cases, however, we want to build custom forms, or supply additional
forms.

Dexterity uses the z3c.form [http://docs.zope.org/z3c.form] library to build its forms, via the
plone.z3cform [http://pypi.python.org/pypi/plone.z3cform] integration package.

Note

the plone.z3cform [http://pypi.python.org/pypi/plone.z3cform] package requires that standard z3c.form [http://docs.zope.org/z3c.form]
forms are used via a form wrapper view.
In Dexterity, this wrapper is normally applied automatically by the form
grokkers in plone.directives.form [http://pypi.python.org/pypi/plone.directives.form] and plone.directives.dexterity [http://pypi.python.org/pypi/plone.directives.dexterity].

Dexterity also relies on plone.autoform [http://pypi.python.org/pypi/plone.autoform], in particular its
AutoExtensibleForm base class, which is responsible for processing
form hints and setting up z3c.form [http://docs.zope.org/z3c.form] widgets and groups (fieldsets).
A custom form, therefore, is simply a view that uses these libraries,
although Dexterity provides some helpful base classes that make it
easier to construct forms based on the schema and behaviors of a
Dexterity type.

Note

If you want to build standalone forms not related to content objects,
see the z3c.form [http://docs.zope.org/z3c.form] documentation.
For convenience, you may want to use the base classes and schema support
in plone.directives.form [http://pypi.python.org/pypi/plone.directives.form].

Edit forms

An edit form is just a form that is registered for a particular type of
content and knows how to register its fields.
If the form is named edit, it will replace the default edit form,
which is registered with that name for the more general
IDexterityContent interface.

Dexterity provides a standard edit form base class that provides
sensible defaults for buttons, labels and so on.
This should be registered for a type schema (not a class).
To create an edit form that is identical to the default, we could do:

class EditForm(dexterity.EditForm):
 grok.context(IFSPage)

The dexterity module is plone.directives.dexterity [http://pypi.python.org/pypi/plone.directives.dexterity] and
the grok module is five.grok [http://docs.zope.org/five.grok].

The default name for the form is edit, but we could supply a different
name using grok.name().
The default permission is cmf.ModifyPortalContent,
but we could require a different permission with grok.require().
We could also register the form for a particular browser layer,
using grok.layer().

This form is of course not terribly interesting, since it is identical
to the default. However, we can now start changing fields and values.
For example, we could:

	Override the schema property to tell plone.autoform [http://pypi.python.org/pypi/plone.autoform] to use a
different schema interface (with different form hints) than the
content type schema.

	Override the additionalSchemata property to tell plone.autoform [http://pypi.python.org/pypi/plone.autoform]
to use different supplemental schema interfaces.
The default is to use all behavior interfaces that provide the
IFormFieldProvider marker from plone.directives.form [http://pypi.python.org/pypi/plone.directives.form].

	Override the label and description properties to provide
different a different title and description for the form.

	Set the z3c.form [http://docs.zope.org/z3c.form] fields and groups attributes directly.

	Override the updateWidgets() method to modify widget properties,
or one of the other update``() methods,
to perform additional processing on the fields.
In most cases, these require us to call the super version at the
beginning.
See the plone.autoform [http://pypi.python.org/pypi/plone.autoform] and z3c.form [http://docs.zope.org/z3c.form] documentation
to learn more about the sequence of calls that emanate from the form
update() method in the z3c.form.form.BaseForm class.

Content add sequence

Add forms are similar to edit forms in that they are built from a type’s
schema and the schemata of its behaviors.
However, for an add form to be able to construct a content object,
it needs to know which portal_type to use.

You should realise that the FTIs in the portal_types tool can be
modified through the web.
It is even possible to create new types through the web that re-use existing
classes and factories.

For this reason, add forms are looked up via a namespace traversal
adapter alled ++add++.
You may have noticed this in the URLs to add forms already.
What actually happens is this:

	Plone renders the add menu.
- To do so, it looks, among other places, for actions in the folder/add category. This category is provided by the portal_types tool.
- The folder/add action category is constructed by looking up the add_view_expr property on the FTIs of all addable types. This is a TALES expression telling the add menu which URL to use.
- The default add_view_expr in Dexterity (and CMF 2.2) is string:${folder_url}/++add++${fti/getId}. That is, it uses the ++add++ traversal namespace with an argument containing the FTI name.

	
	A user clicks on an entry in the menu and is taken to a URL like /path/to/folder/++add++my.type.

	
	The ++add++ namespace adapter looks up the FTI with the given name, and gets its factory property.

	The factory property of an FTI gives the name of a particular zope.component.interfaces.IFactory utility, which is used later to construct an instance of the content object. Dexterity automatically registers a factory instance for each type, with a name that matches the type name, although it is possible to use an existing factory name in a new type.
This allows administrators to create new “logical” types that are
functionally identical to an existing type.

	The ++add++ namespace adapter looks up the actual form to render as
a multi-adapter from (context, request, fti) to Interface with
a name matching the factory property.
Recall that a standard view is a multi-adapter from
(context, request) to Interface with a name matching the URL
segment for which the view is looked up.
As such, add forms are not standard views, because they get the
additional fti parameter when constructed.

	If this fails, there is no custom add form for this factory (as is
normally the case).
The fallback is an unnamed adapter from (context, request, fti).
The default Dexterity add form is registered as such an adapter,
specific to the IDexterityFTI interface.

	The form is rendered like any other z3c.form form instance,
and is subject to validation,
which may cause it to be loaded several times.

	
	Eventually, the form is successfully submitted. At this point:

	
	The standard AddForm base class will look up the factory from the FTI reference it holds and call it to create an instance.

	The default Dexterity factory looks at the klass [*] attribute of the FTI to determine the actual content class to use, creates an object and initialises it.

	The portal_type attribute of the newly created instance is set to
the name of the FTI.
Thus, if the FTI is a “logical type” created through the web, but
using an existing factory, the new instance’s portal_type will be
set to the “logical type”.

	The object is initialised with the values submitted in the form.

	An IObjectCreatedEvent is fired.

	The object is added to its container.

	The user is redirected to the view specified in the immediate_view
property of the FTI.

	[*]	class is a reserved word in Python, so we use klass.

This sequence is pretty long, but thankfully we rarely have to worry
about it. In most cases, we can use the default add form, and when we
can’t, creating a custom add form is no more difficult than creating a
custom edit form. The add form grokker take care of registering the add
view appropriately.

Custom add forms

As with edit forms, Dexterity provides a sensible base class for add
forms that knows how to deal with the Dexterity FTI and factory.

A custom form replicating the default would look like this:

class AddForm(dexterity.AddForm):
 grok.name('example.fspage')

The name here should match the factory name.
By default, Dexterity types have a factory called the same as the FTI name.
If no such factory exists
(i.e. you have not registered a custom IFactory utility),
a local factory utility will be created and managed by Dexterity when the
FTI is installed.

Also note that we do not specify a context here.
Add forms are always registered for any IFolderish context.
We can specify a layer with grok.layer() and a permission other than the
default cmf.AddPortalContent with grok.require().

Note

If the permission used for the add form is different to the
add_permission set in the FTI, the user needs to have both
permissions to be able to see the form and add content.
For this reason, most add forms will use the generic
cmf.AddPortalContent permission.
The add menu will not render links to types where the user
does not have the add permission stated in the FTI,
even if this is different to cmf.AddPortalContent.

As with edit forms, we can customise this form by overriding z3c.form [http://docs.zope.org/z3c.form]
and plone.autoform [http://pypi.python.org/pypi/plone.autoform] properties and methods.
See the z3c.form [http://docs.zope.org/z3c.form] documentation on add forms for more details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

Custom content classes

Adding a custom implementation

When we learned about configuring the Dexterity FTI,
we saw the klass attribute and how it could be used to refer to either
the Container or Item content classes.
These classes are defined in the plone.dexterity.content [http://pypi.python.org/pypi/plone.dexterity.content] module,
and represent container (folder) and item (non-folder) types, respectively.

For most applications, these two classes will suffice.
We will normally use behaviors, adapters, event handlers and schema
interfaces to build additional functionality for our types.
In some cases, however, it is useful or necessary to override the class,
typically to override some method or property provided by the base class
that cannot be implemented with an adapter override.
A custom class may also be able to provide marginally better performance by
side-stepping some of the schema-dependent dynamic behavior found in the
base classes.
In real life, you are very unlikely to notice, though.

Creating a custom class is simple: simply derive from one of the
standard ones, e.g.:

from plone.dexterity.content import Item

class MyItem(Item):
 """A custom content class"""
 ...

For a container type, we’d do:

from plone.dexterity.content import Container

class MyContainer(Container):
 """A custom content class"""
 ...

You can now add any required attributes or methods to this class.

To make use of this class, set the klass attribute in the FTI to its
dotted name, e.g.

<property name="klass">my.package.myitem.MyItem</property>

This will cause the standard Dexterity factory to instantiate this class
when the user submits the add form.

Note

As an alternative to setting klass in the FTI,
you may provide your own IFactory utility for this type in lieu of
Dexterity’s default factory (see plone.dexterity.factory [http://pypi.python.org/pypi/plone.dexterity.factory]).
However, you need to be careful that this factory performs all necessary
initialisation, so it is normally better to use the standard factory.

Custom class caveats

There are a few important caveats when working with custom content classes:

	Make sure you use the correct base class: either
plone.dexterity.content.Item or
plone.dexterity.content.Container.

	If you mix in other base classes,
it is safer to put the Item or Container class first.
If another class comes first, it may override the __name__,
__providedBy__, __allow_access_to_unprotected_subobjects__ and/or
isPrincipiaFolderish properties, and possibly the __getattr__()
and __getitem__() methods,
causing problems with the dynamic schemata and/or folder item security.
In all cases, you may need to explicitly set these attributes to the ones
from the correct base class.

	If you define a custom constructor, make sure it can be called with
no arguments, and with an optional id argument giving the name.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Advanced configuration »

WebDAV and other file representations

Adding support for WebDAV and accessing and modifying a
content object using file-like operations

Zope supports WebDAV, a protocol that allows content objects to be
viewed, modified, copied, renamed, moved and deleted as if they were
files on the filesystem. WebDAV is also used to support saving to remote
locations from various desktop programs. In addition, WebDAV powers the
External Editor product, which allows users to launch a desktop
program from within Plone to edit a content object.

To configure a WebDAV server, you can add the following option to the
[instance] section of your buildout.cfg and re-run buildout.

webdav-address = 9800

See the documentation for plone.recipe.zope2instance [http://pypi.python.org/pypi/plone.recipe.zope2instance] for details.
When Zope is started, you should now be able to mount it as a WebDAV
server on the given port.

Most operating systems support mounting WebDAV servers as folders.
Unfortunately, not all WebDAV implementations are very good.
Dexterity content should work with Windows Web Folders [*]
and well-behaved clients such as Novell NetDrive.

	[*]	open Internet Explorer,
go to File | Open,
type in a WebDAV address, e.g. http://localhost:9800,
and then select Open as web folder before hitting
OK

On Mac OS X, the Finder claims to support WebDAV, but the implementation
is so flakey that it is just as likely to crash Mac OS X as it is to let
you browse files and folders. Use a dedicated WebDAV client instead,
such as Cyberduck [http://cyberduck.ch/].

Default WebDAV behaviour

By default, Dexterity content can be downloaded and uploaded using a
text format based on RFC 2822 [https://tools.ietf.org/html/rfc2822.html], the same standard used to encode email
messages.
Most fields are encoded in headers, whilst the field marked as “primary”
will be contained in the body of the message.
If there is more than one primary field, a multi-part message is created.

A field can be marked as “primary” using the primary() directive from
plone.directives.form [http://pypi.python.org/pypi/plone.directives.form]. For example:

class ISession(form.Schema):
 """A conference session. Sessions are managed inside Programs.
 """

 title = schema.TextLine(
 title=_(u"Title"),
 description=_(u"Session title"),
)

 description = schema.Text(
 title=_(u"Session summary"),
)

 form.primary('details')
 details = RichText(
 title=_(u"Session details"),
 required=False
)

 form.widget(presenter=AutocompleteFieldWidget)
 presenter = RelationChoice(
 title=_(u"Presenter"),
 source=ObjPathSourceBinder(object_provides=IPresenter.__identifier__),
 required=False,
)

 dexterity.write_permission(track='example.conference.ModifyTrack')
 track = schema.Choice(
 title=_(u"Track"),
 source=possibleTracks,
 required=False,
)

This will actually apply the IPrimaryField marker interface from the
plone.rfc822 [http://pypi.python.org/pypi/plone.rfc822] package to the given field(s).

A WebDAV download of this content item will by default look like this:

title: Test session
description: First session
presenter: 713399904
track: Administrators
MIME-Version: 1.0
Content-Type: text/html; charset="utf-8"
Portal-Type: example.conference.session

<p>Details here</p>

Notice how most fields are encoded as header strings.
The presenter relation field stores a number,
which is the integer id of the target object.
Note that this id is generated when the content object is created,
and so is unlikely to be valid on a different site.
The details field, which we marked as primary,
is encoded in the body of the message.

It is also possible to upload such a file to create a new session.
In order to do that, the content_type_registry tool needs to be
configured with a predicate that can detect the type of content from the
uploaded file and instantiate the correct type of object.
Such predicates could be based on an extension or a filename pattern.
Below, we will see a different approach that uses a custom “file factory”
for the containing Program type.

Containers

Container objects will be shown as collections (WebDAV-speak for
folders) for WebDAV purposes.
This allows the WebDAV client to open the container and list its contents.
However, representing containers as collections makes it impossible to
access the data contained in the various fields of the content object.

To allow access to this information, a pseudo-file called _data will
be exposed inside a Dexterity container.
This file can be read and written like any other,
to access or modify the container’s data.
It cannot be copied, moved, renamed or deleted: those operations should be
performed on the container itself.

Customising WebDAV behaviour

There are several ways in which you can influence the WebDAV behaviour
of your type.

	If you are happy with the RFC 2822 [https://tools.ietf.org/html/rfc2822.html] format, you can provide your own
plone.rfc822.interfaces.IFieldMarshaler adapters to provide
alternate serialisations and parsers for fields.
See the plone.rfc822 [http://pypi.python.org/pypi/plone.rfc822] documentation for details.

	If you want to use a different file representation, you can provide
your own IRawReadFile and IRawWriteFile adapters.
For example, if you have a content object that stores binary data,
you could return this data directly, with an appropriate MIME type, to
allow it to be edited in a desktop program
(e.g. an image editor if the MIME type is image/jpeg).
The file plone.dexterity.filerepresentation contains
two base classes, ReadFileBase and WriteFileBase, which you may
be able to use to make it easier to implement these interfaces.

	If you want to control how content objects are created when a new
file or directory is dropped into a particular type of container, you
can provide your own IFileFactory or IDirectoryFactory adapters.
See plone.dexterity.filerepresentation [http://pypi.python.org/pypi/plone.dexterity.filerepresentation] for the default implementations.

As an example, let’s register a custom IFileFactory adapter for the
IProgram type.
This adapter will not rely on the content_type_registry tool to
determine which type to construct,
but will instead create a Session object,
since that is the only type that is allowed inside a Program container.

The code, in program.py, looks like this:

from five import grok
...

from zope.component import createObject
from zope.event import notify
from zope.lifecycleevent import ObjectCreatedEvent
from zope.filerepresentation.interfaces import IFileFactory
...

class ProgramFileFactory(grok.Adapter):
 """Custom file factory for programs, which always creates a Session.
 """

 grok.implements(IFileFactory)
 grok.context(IProgram)

 def __call__(self, name, contentType, data):
 session = createObject('example.conference.session', id=name)
 notify(ObjectCreatedEvent(session))
 return session

This adapter overrides the DefaultFileFactory found in
plone.dexterity.filerepresentation [http://pypi.python.org/pypi/plone.dexterity.filerepresentation].
It creates an object of the designated type, fires an
IObjectModifiedEvent and then returns the object, which will then be
populated with data from the uploaded file.

To test this, you could write a text file like the one shown above in a
text editor and save it on your desktop, then drag it into the folder in
your WebDAV client representing a Program.

Here is a simple automated integration test for the same component:

def test_file_factory(self):
 self.folder.invokeFactory('example.conference.program', 'p1')
 p1 = self.folder['p1']
 fileFactory = IFileFactory(p1)
 newObject = fileFactory('new-session', 'text/plain', 'dummy')
 self.assertTrue(ISession.providedBy(newObject))

How it all works

The rest of this section describes in some detail how the various WebDAV
related components interact in Zope 2, CMF and Dexterity.
This may be helpful if you are trying to customise or debug WebDAV behaviour.

Background

Basic WebDAV support can be found in the webdav package.
This defines two base classes, webdav.Resource.Resource and
webdav.Collection.Collection.
Collection extends Resource.
These are mixed into item and container content objects, respectively.

The webdav package also defines the NullResource object.
A NullResource is a kind of placeholder,
which supports the HTTP verbs HEAD, PUT, and MKCOL.

Contents based on ObjectManager (including those in Dexterity) will
return a NullResource if they cannot find the requested object and the
request is a WebDAV request.

The zope.filerepresentation [http://pypi.python.org/pypi/zope.filerepresentation] package defines a number of interfaces
which are intended to help manage file representations of content
objects.
Dexterity uses these interfaces to allow the exact file read and write
operations to be overridden without subclassing.

HEAD

A HEAD request retrieves headers only.

Resource.HEAD() sets
Content-Type based on self.content_type(),
Content-Length based on self.get_size(),
Last-Modified based on self._p_mtime,
and an ETag based on self.http__etag(), if available.

Collection.HEAD() looks for self.index_html.HEAD() and returns its
value if that exists.
Otherwise, it returns a "405 Method Not Allowed" response. If there is no
index_html object, it returns "404 Not Found".

GET

A GET request retrieves headers and body.

Zope calls manage_DAVget() to retrieve the body.
The default implementation calls manage_FTPget().

In Dexterity, manage_FTPget() adapts self to IRawReadFile and
uses its mimeType and encoding properties to set the Content-Type
header, and its size() method to set Content-Length.

If the IRawReadFile adapter is also an IStreamIterator,
it will be returned for the publisher to consume directly.
This provides for efficient serving of large files,
although it does require that the file can be read in its entirety with the
ZODB connection closed.
Dexterity solves this problem by writing the file content to a temporary
file on the server.

If the IRawReadFile adapter is not a stream iterator, its contents are
returned as a string, by calling its read() method.
Note that this loads the entire file contents into memory on the server.

The default IRawReadFile implementation for Dexterity content returns
an RFC 2822 [https://tools.ietf.org/html/rfc2822.html]-style message document.
Most fields on the object and any enabled behaviours will be turned into
UTF-8 encoded headers.
The primary field, if any, will be returned in the body, also most likely
encoded as an UTF-8 encoded string.
Binary data may be base64-encoded instead.

A type which wishes to override this behaviour can provide its own adapter.
For example, an image type could return the raw image data.

PUT

A PUT request reads the body of a request and uses it to update a
resource that already exists, or to create a new object.

By default Resource.PUT() fails with "405 Method Not Allowed".
That is, it is not by default possible to PUT to a resource that already
exists.
The same is true of Collection.PUT().

In Dexterity, the PUT() method is overridden to adapt self to
zope.filerepresentation.IRawWriteFile, and call its write() method
one or more times, writing the contents of the request body, before
calling close().
The mimeType and encoding properties will also be
set based on the value of the Content-Type header, if available.

The default implementation of IRawWriteFile for Dexterity objects
assumes the input is an RFC 2822 style message document.
It will read header values and use them to set fields on the object or in
behaviours, and similarly read the body and update the corresponding primary
field.

NullResource.PUT() is responsible for creating a new content object
and initialising it (recall that a NullResource may be returned if a
WebDAV request attempts to traverse to an object which does not exist).
It sniffs the content type and body from the request,
and then looks for the PUT_factory() method on the parent folder.

In Dexterity, PUT_factory() is implemented to look up an
IFileFactory adapter on self and use it to create the empty file.
The default implementation will use the content_type_registry tool to
determine a type name for the request (e.g. based on its extension or
MIME type), and then construct an instance of that type.

Once an instance has been constructed, the object will be initialised by
calling its PUT() method, as above.

Note that when content is created via WebDAV,
an IObjectCreatedEvent will be fired from the IFileFactory adapter,
just after the object has been constructed.
At this point, none of its values will be set.
Subsequently, at the end of the PUT() method,
an IObjectModifiedEvent will be fired.
This differs from the event sequence of an object created through the web.
Here, only an IObjectCreatedEvent is fired,
and only after the object has been fully initialised.

DELETE

A DELETE request instructs the WebDAV server to delete a resource.

Resource.DELETE() calls manage_delObjects() on the parent folder to
delete an object.

Collection.DELETE() does the same,
but checks for write locks of all children of the collection, recursively,
before allowing the delete.

PROPFIND

A PROPFIND request returns all or a set of WebDAV properties.
WebDAV properties are metadata used to describe an object, such as the last
modified time or the author.

Resource.PROPFIND() parses the request and then looks for a
propertysheets attribute on self.

If an allprop request is received, it calls dav__allprop(),
if available, on each property sheet.
This method returns a list of name/value pairs in the correct WebDAV XML
encoding, plus a status.

If a propnames request is received, it calls dav__propnames(),
if available, on each property sheet.
This method returns a list of property names in the correct WebDAV XML
encoding, plus a status.

If a propstat request is received, it calls dav__propstats(),
if available, on each property sheet,
for each requested property.
This method returns a property name/value pair in the correct WebDAV XML
encoding, plus a status.

The PropertyManager mixin class defines the propertysheets variable
to be an instance of DefaultPropertySheets.
This in turn has two property sheets:
default, a DefaultProperties instance; and
webdav, a DAVProperties instance.

The DefaultProperties instance contains the main property sheet. This
typically has a title property, for example.

DAVProperties will provides various core WebDAV properties.
It defines a number of read-only properties:
creationdate, displayname,
resourcetype, getcontenttype, getcontentlength, source,
supportedlock, and lockdiscovery.
These in turn are delegated to methods prefixed with dav__, so e.g.
reading the creationdate property calls dav__creationdate() on the
property sheet instance.
These methods in turn return values based on the property manager instance
(i.e. the content object).
In particular:

	creationdate

	returns a fixed date (January 1st, 1970).

	displayname

	returns the value of the title_or_id() method.

	resourcetype

	returns an empty string or <n:collection/>.

	getlastmodified

	returns the ZODB modification time.

	getcontenttype

	delegates to the content_type() method, falling back on the
default_content_type() method.
In Dexterity, content_type() is implemented to look up the
IRawReadFile adapter on the context and return the value of its
mimeType property.

	getcontentlength

	delegates to the get_size() method (which is also used for the
“size” column in Plone folder listings).
In Dexterity, this looks up a zope.size.interfaces.ISized adapter on
the object and calls sizeForSorting().
If this returns a unit of 'bytes', the value portion is used.
Otherwise, a size of 0 is returned.

	source

	returns a link to /document_src, if that attribute exists.

	supportedlock

	indicates whether IWriteLock is supported by the content item.

	lockdiscovery

	returns information about any active locks.

Other properties in this and any other property sheets are returned as
stored when requested.

If the PROPFIND request specifies a depth of 1 or infinity
(i.e. the client wants properties for items in a collection),
the process is repeated for all items returned by the listDAVObjects()
methods,
which by default returns all contained items via the objectValues()
method.

PROPPATCH

A PROPPATCH request is used to update the properties on an existing
object.

Resource.PROPPATCH() deals with the same types of properties from
property sheets as PROPFIND().
It uses the PropertySheet API to add or update properties as
appropriate.

MKCOL

A MKCOL request is used to create a new collection resource,
i.e. create a new folder.

Resource.MKCOL() raises "405 Method Not Allowed",
because the resource already exists
(remember that in WebDAV, the MKCOL request, like a PUT
for a new resource, is sent with a location that specifies the desired
new resource location, not the location of the parent object).

NullResource.MKCOL() handles the valid case where a MKCOL request
has been sent to a new resource.
After checking that the resource does not already exist,
that the parent is indeed a collection (folderish item),
and that the parent is not locked,
it calls the MKCOL_handler() method on the parent folder.

In Dexterity, the MKCOL()_handler is overridden to adapt self to an
IDirectoryFactory from zope.filerepresentation [http://pypi.python.org/pypi/zope.filerepresentation] and use this to
create a directory.
The default implementation simply calls manage_addFolder() on the parent.
This will create an instance of the Folder type.

COPY

A COPY request is used to copy a resource.

Resource.COPY() implements this operation using the standard Zope
content object copy semantics.

MOVE

A MOVE request is used to relocate or rename a resource.

Resource.MOVE() implements this operation using the standard Zope
content-object move semantics.

LOCK

A LOCK request is used to lock a content object.

All relevant WebDAV methods in the webdav package are lock aware.
That is, they check for locks before attempting any operation that would
violate a lock.

Also note that plone.locking [http://pypi.python.org/pypi/plone.locking] uses the lock implementation from the
webdav package by default.

Resource.LOCK() implements locking and lock refresh support.

NullResource.LOCK() implements locking on a NullResource.
In effect, this means locking the name of the non-existent resource.
When a NullResource is locked, it is temporarily turned into a
LockNullResource object, which is a persistent object set onto the
parent (remember that a NullResource is a transient object returned
when a child object cannot be found in a WebDAV request).

UNLOCK

An UNLOCK request is used to unlock a locked object.

Resource.UNLOCK() handles unlock requests.

LockNullResource.UNLOCK() handles unlocking of a LockNullResource.
This deletes the LockNullResource object from the parent container.

Fields on container objects

When browsing content via WebDAV, a container object (folderish item)
will appear as a folder.
Most likely, this object will also have content in the form of schema
fields.
To make this accessible, Dexterity containers expose a pseudo-file with the
name _data, by injecting this into the return value of
listDAVObjects() and adding a special traversal hook to allow its
contents to be retrieved.

This file supports HEAD, GET, PUT, LOCK, UNLOCK,
PROPFIND and PROPPATCH requests (an error will be raised if the user
attempts to rename, copy, move or delete it).
These operate on the container object, obviously.
For example, when the data object is updated via a PUT request, the
PUT() method on the container is called, by default delegating to an
IRawWriteFile adapter on the container.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Testing Dexterity types

Writing unit and integration tests

	Unit tests

	Integration tests
	Faster tests with Roadrunner

	Mock testing
	Mock testing caveats

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Unit tests

Writing simple unit tests

As all good developers know, automated tests are very important!
If you are not comfortable with automated testing and test-driven
development, you should read the Plone testing tutorial.
In this section, we will assume you are familiar with Plone testing basics,
and show some tests that are particularly relevant to our example types.

Firstly, we will add a few unit tests.
Recall that unit tests are simple tests for a particular function or method,
and do not depend on an outside environment being set up.
As a rule of thumb, if something can be tested with a simple unit test, do
so, because:

	Unit tests are quick to write.

	They are also quick to run.

	Because they are more isolated, you are less likely to have tests
that pass or fail due to incorrect assumptions or by luck.

	You can usually test things more thoroughly and exhaustively with
unit tests than with (slower) integration tests.

You’ll typically supplement a larger number of unit tests with a smaller
number of integration tests, to ensure that your application’s correctly
wired up and working.

That’s the theory, at least. When we’re writing content types, we’re
often more interested in integration test, because a type schema and FTI
are more like configuration of the Plone and Dexterity frameworks than
imperative programming.
We can’t “unit test” the type’s schema interface, but we can and should test
that the correct schema is picked up and used when our type is installed.
We will often write unit tests (with mock objects, where required) for
custom event handlers, default value calculation functions and other
procedural code.

In that spirit, let’s write some unit tests for the default value
handler and the invariant in program.py.
We’ll add the directory tests, with an __init__.py and a file
test_program.py that looks like this:

import unittest
import datetime

from example.conference.program import startDefaultValue
from example.conference.program import endDefaultValue
from example.conference.program import IProgram
from example.conference.program import StartBeforeEnd

class MockProgram(object):
 pass

class TestProgramUnit(unittest.TestCase):
 """Unit test for the Program type
 """

 def test_start_defaults(self):
 data = MockProgram()
 default_value = startDefaultValue(data)
 today = datetime.datetime.today()
 delta = default_value - today
 self.assertEqual(6, delta.days)

 def test_end_default(self):
 data = MockProgram()
 default_value = endDefaultValue(data)
 today = datetime.datetime.today()
 delta = default_value - today
 self.assertEqual(9, delta.days)

 def test_validate_invariants_ok(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 1)
 data.end = datetime.datetime(2009, 1, 2)

 try:
 IProgram.validateInvariants(data)
 except:
 self.fail()

 def test_validate_invariants_fail(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 2)
 data.end = datetime.datetime(2009, 1, 1)

 try:
 IProgram.validateInvariants(data)
 self.fail()
 except StartBeforeEnd:
 pass

 def test_validate_invariants_edge(self):
 data = MockProgram()
 data.start = datetime.datetime(2009, 1, 2)
 data.end = datetime.datetime(2009, 1, 2)

 try:
 IProgram.validateInvariants(data)
 except:
 self.fail()

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

This is a simple test using the Python standard library’s unittest
module. There are a few things to note here:

	We have created a dummy class to simulate a Program instance.
It doesn’t contain anything at all, but we set some attributes onto it
for certain tests.
This is a very simple way to do mocks.
There are much more sophisticated mock testing approaches, but starting
simple is good.

	Each test is self contained.
There is no test layer or test case setup/tear-down.

	We use the defaultTestLoader to load all test classes in the module
automatically.
The test runner will look for modules in the tests
package with names starting with test that have a test_suite()
method to get test suites.

To run the tests, we can do:

$./bin/text example.conference

Hopefully it should show five passing tests.

Note

This uses the testrunner configured via the [test] part in our
buildout.cfg.
This provides better test reporting and a few more advanced options
(like output colouring).
We could also use the built-in test runner in the instance script,
e.g. with ./bin/instance test -s example.conference.

To run just this test suite, we can do:

$./bin/test example.conference -t TestProgramUnit

This is useful when we have other test suites that we don’t want to run,
e.g. because they are integration tests and require lengthy setup.

To get a report about test coverage, we can run:

$./bin/test example.conference --coverage

Test coverage reporting is important. If you have a module with low test
coverage, it means that your tests do not cover many of the code paths
in those modules, and so are less useful for detecting bugs or guarding
against future problems. Aim for 100%.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Integration tests

Writing integration tests with plone.app.testing

We’ll now add some integration tests for our type.
These should ensure that the package installs cleanly, and that our custom
types are addable in the right places and have the right schemata, at the
very least.

To help manage test setup, we’ll make use of the Zope test runner’s
concept of layers.
Layers allow common test setup (such as configuring a Plone site and
installing a product) to take place once and be re-used by multiple test
cases.
Those test cases can still modify the environment, but their changes will be
torn down and the environment reset to the layer’s initial state between
each test, facilitating test isolation.

As the name implies, layers are, erm, layered.
One layer can extend another.
If two test cases in the same test run use two different layers with a
common ancestral layer, the ancestral layer is only set up and torn down
once.

plone.app.testing [http://pypi.python.org/pypi/plone.app.testing] provides tools for writing integration and functional
tests for code that runs on top of Plone, so we’ll use it.

In setup.py, we will add the extras_require option, like so:

extras_require = {
 'test': ['plone.app.testing']
},

Note

Don’t forget to re-run buildout after making changes to setup.py.

plone.app.testing [http://pypi.python.org/pypi/plone.app.testing] includes a set of layers that set up fixtures
containing a Plone site, intended for writing integration and functional
tests.

We need to create a custom fixture.
The usual pattern is to create a new layer class that has PLONE_FIXTURE
as its default base, instantiating that as a separate "fixture" layer.
This layer is not to be used in tests directly,
since it won't have test/transaction lifecycle management, but represents a
shared fixture, potentially for both functional and integration testing.
It is also the point of extension for other layers that follow the same
pattern.

Once this fixture has been defined, "end-user" layers can be defined using the
IntegrationTesting and FunctionalTesting classes. We’ll add this in a
testing.py file:

from plone.app.testing import PloneSandboxLayer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting
from plone.app.testing import FunctionalTesting

class Fixture(PloneSandboxLayer):

 defaultBases = (PLONE_FIXTURE,)

 def setUpZope(self, app, configurationContext):
 # Load ZCML
 import example.conference
 self.loadZCML(package=example.conference)

 def setUpPloneSite(self, portal):
 # Install the example.conference product
 self.applyProfile(portal, 'example.conference:default')

FIXTURE = Fixture()
INTEGRATION_TESTING = IntegrationTesting(
 bases=(FIXTURE,),
 name='example.conference:Integration',
)
FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(FIXTURE,),
 name='example.conference:Functional',
)

This extends a base layer that sets up Plone, and adds some custom layer
setup for our package,
in this case installing the example.conference extension profile.
We could also perform additional setup here, such as creating some initial
content or setting the default roles for the test run.
See the plone.app.testing documentation for more details.

To use the layer, we can create a new test case based on unittest.TestCase
that uses our layer. We’ll add one to test_program.py first.
(In the code snippet below, the unit test we created previously has been
removed to conserve space.):

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.program import IProgram
from example.conference.testing import INTEGRATION_TESTING

class TestProgramIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 self.assertTrue(IProgram.providedBy(p1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 schema = fti.lookupSchema()
 self.assertEqual(IProgram, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.program')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(IProgram.providedBy(new_object))

 def test_view(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 view = p1.restrictedTraverse('@@view')
 sessions = view.sessions()
 self.assertEqual(0, len(sessions))

 def test_start_end_dates_indexed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.start = datetime.datetime(2009, 1, 1, 14, 01)
 p1.end = datetime.datetime(2009, 1, 2, 15, 02)
 p1.reindexObject()

 result = self.portal.portal_catalog(path='/'.join(p1.getPhysicalPath()))

 self.assertEqual(1, len(result))
 self.assertEqual(result[0].start, DateTime('2009-01-01T14:01:00'))
 self.assertEqual(result[0].end, DateTime('2009-01-02T15:02:00'))

 def test_tracks_indexed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.tracks = ['Track 1', 'Track 2']
 p1.reindexObject()

 result = self.portal.portal_catalog(Subject='Track 2')

 self.assertEqual(1, len(result))
 self.assertEqual(result[0].getURL(), p1.absolute_url())

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

This illustrates a basic set of tests that make sense for most content
types.
There are many more things we could test
(for example, we could test the add permissions more thoroughly,
and we ought to test the sessions() method on the view with some actual
content!),
but even this small set of integration tests tells us that
our product has installed,
that the content type is addable,
that it has the right factory, and
that instances of the type provide the right schema interface.

There are some important things to note about this test case:

	We extend unittest.TestCase, which means we have access to a full Plone
integration test environment.
See the testing tutorial for more details.

	We set the layer attribute to our custom layer.
This means that all tests in our test case will have the
example.conference:default profile installed.

	We need to create a test user's member folder as self.folder because
plone.app.testing takes a minimalist approach and no content is available
by default.

	We test that the content is addable (here, as a normal member in
their member folder, since that is the default security context for
the test – use self.setRoles([‘Manager’]) to get the Manager role
and self.portal to access the portal root),
that the FTI is installed and can be located, and
that both the FTI and instances of the type know about the correct type
schema.

	We also test that the view can be looked up and has the correct methods.
We’ve not included a fully functional test (e.g. using
zope.testbrowser) or any other front-end testing here.
If you require those, take a look at the testing tutorial.

	We also test that our custom indexers are working,
by creating an appropriate object and searching for it.
Note that we need to reindex the object after we’ve modified it so that
the catalog is up to date.

	The defaultTestLoader will find this test and load it, just as it
found the TestProgramUnit test case.

To run our tests, we can still do.

$./bin/test example.conference

You should now notice layers being set up and torn down.
Again, use the -t option to run a particular test case (or test method)
only.

The other tests are similar. We have tests/test_session.py to test
the Session type:

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.session import ISession
from example.conference.session import possible_tracks
from example.conference.testing import INTEGRATION_TESTING

class TestSessionIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):

 # We can't add this directly
 self.assertRaises(ValueError, self.folder.invokeFactory, 'example.conference.session', 'session1')

 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']
 self.assertTrue(ISession.providedBy(s1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 schema = fti.lookupSchema()
 self.assertEqual(ISession, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.session')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(ISession.providedBy(new_object))

 def test_tracks_vocabulary(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']
 p1.tracks = ['T1', 'T2', 'T3']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']

 vocab = possible_tracks(s1)

 self.assertEqual(['T1', 'T2', 'T3'], [t.value for t in vocab])
 self.assertEqual(['T1', 'T2', 'T3'], [t.token for t in vocab])

 def test_catalog_index_metadata(self):
 self.assertTrue('track' in self.portal.portal_catalog.indexes())
 self.assertTrue('track' in self.portal.portal_catalog.schema())

 def test_workflow_installed(self):
 self.folder.invokeFactory('example.conference.program', 'program1')
 p1 = self.folder['program1']

 p1.invokeFactory('example.conference.session', 'session1')
 s1 = p1['session1']

 chain = self.portal.portal_workflow.getChainFor(s1)
 self.assertEqual(('example.conference.session_workflow',), chain)

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Notice here how we test
that the Session type cannot be added directly to a folder, and
that it can be added inside a program.
We also add a test for the possible_tracks() vocabulary method,
as well as tests for the installation of the track index and metadata
column and the custom workflow:

import unittest2 as unittest

from zope.component import createObject
from zope.component import queryUtility

from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from example.conference.presenter import IPresenter
from example.conference.testing import INTEGRATION_TESTING

class TestPresenterIntegration(unittest.TestCase):

 layer = INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])
 self.folder = self.portal['test-folder']

 def test_adding(self):
 self.folder.invokeFactory('example.conference.presenter', 'presenter1')
 p1 = self.folder['presenter1']
 self.assertTrue(IPresenter.providedBy(p1))

 def test_fti(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 self.assertNotEquals(None, fti)

 def test_schema(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 schema = fti.lookupSchema()
 self.assertEqual(IPresenter, schema)

 def test_factory(self):
 fti = queryUtility(IDexterityFTI, name='example.conference.presenter')
 factory = fti.factory
 new_object = createObject(factory)
 self.assertTrue(IPresenter.providedBy(new_object))

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Faster tests with Roadrunner

Warning

Roadrunner development halted in 2009. The following is only useful if you
are using Plone 3.x.

You will have noticed that running unit tests was much quicker than
running integration tests. That is unfortunate, but to be expected: the
integration test setup basically requires starting all of Zope and
configuring a Plone site.

Luckily, there is a tool that we can use to speed things up, and if
you’ve been following along the tutorial, you already have it in your
buildout: Roadrunner [http://pypi.python.org/pypi/roadrunner].
This is a command that takes the place of ./bin/instance test that
preloads the Zope environment and allows you to re-run tests much faster.

To run our tests with roadrunner, we would do:

$./bin/roadrunner -s example.conference

This runs the tests once, and then drops to the Roadrunner prompt:

rr>

Simply hitting enter here, or typing a command like
test -s example.conference will re-run your tests,
this time taking much less time.

Roadrunner works best when you are adding and debugging your tests.
For example, it’s a very quick way to get to a pdb prompt: just set a
breakpoint in your test with import pdb; pdb.set_trace() and re-run
it in roadrunner.
You can then step into your test code and the code under test.

Roadrunner should pick up changes to your tests automatically. However,
it may not pick up changes to your application code, grokked components
or ZCML files. If it doesn’t, you’ll need to exit the Roadrunner prompt
and restart.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Testing Dexterity types »

Mock testing

Using a mock objects framework to write mock based tests

Mock testing is a powerful approach to testing that lets you make
assertions about how the code under test is interacting with other
system modules. It is often useful when the code you want to test is
performing operations that cannot be easily asserted by looking at its
return value.

In our example product, we have an event handler like this:

@grok.subscribe(IPresenter, IObjectAddedEvent)
def notifyUser(presenter, event):
 acl_users = getToolByName(presenter, 'acl_users')
 mail_host = getToolByName(presenter, 'MailHost')
 portal_url = getToolByName(presenter, 'portal_url')

 portal = portal_url.getPortalObject()
 sender = portal.getProperty('email_from_address')

 if not sender:
 return

 subject = "Is this you?"
 message = "A presenter called %s was added here %s" % (presenter.title, presenter.absolute_url(),)

 matching_users = acl_users.searchUsers(fullname=presenter.title)
 for user_info in matching_users:
 email = user_info.get('email', None)
 if email is not None:
 mail_host.secureSend(message, email, sender, subject)

If we want to test that this sends the right kind of email message,
we’ll need to somehow inspect what is passed to secureSend(). The only
way to do that is to replace the MailHost*object that is acquired when
*getToolByName(presenter, ‘MailHost’) is called, with something that
performs that assertion for us.

If we wanted to write an integration test, we could use PloneTestCase
to execute this event handler, e.g. by firing the event manually, and
temporarily replace the MailHost object in the root of the test case
portal (self.portal) with a dummy that raised an exception if the
wrong value was passed.

However, such integration tests can get pretty heavy handed, and
sometimes it is difficult to ensure that it works in all cases. In the
approach outlined above, for example, we would miss cases where no mail
was sent at all.

Enter mock objects. A mock object is a “test double” that knows how and
when it ought to be called. The typical approach is as follows:

	Create a mock object.

	The mock object starts out in “record” mode.

	Record the operations that you expect the code under test perform on
the mock object. You can make assertions about the type and value of
arguments, the sequence of calls, or the number of times a method is
called or an attribute is retrieved or set.

	You can also give your mock objects behaviour, e.g. by specifying
return values or exceptions to be raised in certain cases.

	Initialise the code under test and/or the environment it runs in so
that it will use the mock object rather than the real object.
Sometimes this involves temporarily “patching” the environment.

	Put the mock framework into “replay” mode.

	Run the code under test.

	Apply any assertions as you normally would.

	The mock framework will raise exceptions if the mock objects are
called incorrectly (e.g. with the wrong arguments, or too many times)
or insufficiently (e.g. an expected method was not called).

There are several Python mock object frameworks. Dexterity itself users
a powerful one called mocker [http://labix.org/mocker], via the plone.mocktestcase [http://pypi.python.org/pypi/plone.mocktestcase]
integration package. You are encouraged to read the documentation for
those two packages to better understand how mock testing works, and what
options are available.

Note

Take a look at the tests in plone.dexterity if you’re looking for more
examples of mock tests using plone.mocktestcase.

To use the mock testing framework, we first need to depend on
plone.mocktestcase. As usual, we add it to setup.py and re-run
buildout.

install_requires=[
 ...
 'plone.mocktestcase',
],

As an example test case, consider the following class in
test_presenter.py:

import unittest

...

from plone.mocktestcase import MockTestCase
from zope.app.container.contained import ObjectAddedEvent
from example.conference.presenter import notifyUser

class TestPresenterUnit(MockTestCase):

 def test_notify_user(self):

 # dummy presenter
 presenter = self.create_dummy(
 __parent__=None,
 __name__=None,
 title="Jim",
 absolute_url = lambda: 'http://example.org/presenter',
)

 # dummy event
 event = ObjectAddedEvent(presenter)

 # search result for acl_users
 user_info = [{'email': 'jim@example.org', 'id': 'jim'}]

 # email data
 message = "A presenter called Jim was added here http://example.org/presenter"
 email = "jim@example.org"
 sender = "test@example.org"
 subject = "Is this you?"

 # mock tools/portal

 portal_mock = self.mocker.mock()
 self.expect(portal_mock.getProperty('email_from_address')).result('test@example.org')

 portal_url_mock = self.mocker.mock()
 self.mock_tool(portal_url_mock, 'portal_url')
 self.expect(portal_url_mock.getPortalObject()).result(portal_mock)

 acl_users_mock = self.mocker.mock()
 self.mock_tool(acl_users_mock, 'acl_users')
 self.expect(acl_users_mock.searchUsers(fullname='Jim')).result(user_info)

 mail_host_mock = self.mocker.mock()
 self.mock_tool(mail_host_mock, 'MailHost')
 self.expect(mail_host_mock.secureSend(message, email, sender, subject))

 # put mock framework into replay mode
 self.replay()

 # call the method under test
 notifyUser(presenter, event)

 # we could make additional assertions here, e.g. if the function
 # returned something. The mock framework will verify the assertions
 # about expected call sequences.

...

def test_suite():
 return unittest.defaultTestLoader.loadTestsFromName(__name__)

Note that the other tests in this module have been removed for the sake
of brevity.

If you are not familiar with mock testing, it may take a bit of time to
get your head around what’s going on here. Let’s run though the test:

	First, we create a dummy presenter object. This is not a mock
object, it’s just a class with the required minimum set of
attributes, created using the create_dummy() helper method from
the MockTestCase base class. We use this type of dummy because we
are not interested in making any assertions on the presenter
object: it is used as an “input” only.

	Next, we create a dummy event. Here we have opted to use a standard
implementation from zope.app.container.

	We then define a few variables that we will use in the various
assertions and mock return values: the user data that will form our
dummy user search results, and the email data passed to the mail
host.

	Next, we create mocks for each of the tools that our code needs to
look up. For each, we use the expect() method from MockTestCase
to make some assertions. For example, we expect that
getPortalObject() will be called (once) on the portal_url tool,
and it should return another mock object, the portal_mock. On
this, we expect that getProperty() is called with an argument equal
to “email_from_address”. The mock will then return
“test@example.org”. Take a look at the mocker and
plone.mocktestcase documentation to see the various other types of
assertions you can make.

	The most important mock assertion is the line
self.expect(mail_host_mock.secureSend(message, email, sender,
subject)). This asserts that the secureSend() method gets called
with the required message, recipient address, sender address and
subject, exactly once.

	We then put the mock into replay mode, using self.replay(). Up
until this point, any calls on our mock objects have been to record
expectations and specify behaviour. From now on, any call will count
towards verifying those expectations.

	Finally, we call the code under test with our dummy presenter and
event.

	In this case, we don’t have any “normal” assertions, although the
usual unit test assertion methods are all available if you need them,
e.g. to test the return value of the method under test. The
assertions in this case are all coming from the mock objects. The
tearDown() method of the MockTestCase class will in fact check
that all the various methods were called exactly as expected.

To run these tests, use the normal test runner, e.g.:

$./bin/test example.conference -t TestPresenterMock

Note that mock tests are typically as fast as unit tests, so there is
typically no need for something like roadrunner.

Mock testing caveats

Mock testing is a somewhat controversial topic. On the one hand, it
allows you to write tests for things that are often difficult to test,
and a mock framework can - once you are familiar with it - make child’s
play out of the often laborious task of creating reliable test doubles.
On the other hand, mock based tests are inevitably tied to the
implementation of the code under test, and sometimes this coupling can
be too tight for the test to be meaningful. Using mock objects normally
also means that you need a very good understanding of the external APIs
you are mocking. Otherwise, your mock may not be a good representation
of how these systems would behave in the real world. Much has been
written on this, for example by Martin Fowler [http://www.martinfowler.com/articles/mocksArentStubs.html].

As always, it pays to be pragmatic. If you find that you can’t write a
mock based test without reading every line of code in the method under
test and reverse engineering it for the mocks, then an integration test
may be more appropriate. In fact, it is prudent to have at least some
integration tests in any case, since you can never be 100% sure your
mocks are valid representations of the real objects they are mocking.

On the other hand, if the code you are testing is using well-defined
APIs in a relatively predictable manner, mock objects can be a valuable
way to test the “side effects” of your code, and a helpful tool to
simulate things like exceptions and input values that may be difficult
to produce otherwise.

Remember also that mock objects are not necessarily an “all or nothing”
proposition. You can use simple dummy objects or “real” instances in
most cases, and augment them with a few mock objects for those
difficult-to-replicate test cases.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Reference

Useful references for things like field types, wigets and APIs

	Fields
	Field properties

	Field types

	Widgets

	Standard behaviors

	Form schema hints
	Form directives

	Security directives

	Value and validator adaptors
	Defaults

	Validators

	Manipulating content objects
	Content object creation and folder manipulation

	Object introspection

	Workflow

	Cataloging and indexing

	Security

	Content object properties and methods

	Dexterity XML
	Introduction

	XML Document Structure

	supermodel/schema fields

	supermodel/form attributes

	supermodel/security attributes

	Miscellaneous
	User contributed recipes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Fields

The standard schema fields

The following tables shows the most common field types for use in
Dexterity schemata.
See the documentation on creating schemata for information about how to
use these.

Field properties

Fields are initialised with properties passed in their constructors.
To avoid having to repeat the available properties for each field, we’ll
list them once here, grouped into the interfaces that describe them.
You’ll see those interfaces again in the tables below that describe the
various field types.
Refer to the table below to see what properties a particular interface
implies.

	Interface
	Property
	Type
	Description

	IField
	title
	unicode
	The title of the field. Used in the widget.

	
	description
	unicode
	A description for the field. Used in the widget.

	
	required
	bool
	Whether or not the field is required. Used for
form validation. The default is True.

	
	readonly
	bool
	Whether or not the field is read-only. Default
is False.

	
	default
	
	The default value for the field. Used in forms
and sometimes as a fallback value. Must be a
valid value for the field if set. The default
is None.

	
	missing_value
	
	A value that represents "this field is not set".
Used by form validation. Defaults to None. For
lists and tuples, it is sometimes useful to set
this to an empty list/tuple.

	IMinMaxLen
	min_length
	int
	The minimum required length. Used for string
fields. Default is 0.

	
	max_length
	int
	The maximum allowed length. Used for string
fields. Default is None (no check).

	IMinMax
	min
	
	The minimum allowed value. Must be a valid value
for the field, e.g. for an Int field this
should be an integer. Default is None (no
check).

	
	max
	
	The maximum allowed value. Must be a valid value
for the field, e.g. for an Int field this should
be an integer. Default is None (no check).

	ICollection
	value_type
	
	Another Field instance that describes the
allowable values in a list, tuple or other
collection. Must be set for any collection field.
One common usage is to set this to a Choice,
to model a multi-selection field with a vocabulary.

	
	unique
	bool
	Whether or not values in the collection must be
unique. Usually not set directly – use a Set
or Frozenset to guarantee uniqueness in an
efficient way.

	IDict
	key_type
	
	Another Field instance that describes the
allowable keys in a dictionary. Similar to the
value_type of a collection. Must be set.

	
	value_type
	
	Another Field instance that describes the
allowable values in a dictionary. Similar to the
value_type of a collection. Must be set.

	IObject
	schema
	Interface
	An interface that must be provided by any object
stored in this field.

	IRichText
	default_mime_type
	str
	Default MIME type for the input text of a rich
text field. Defaults to text/html.

	
	output_mime_type
	str
	Default output MIME type for the transformed
value of a rich text field. Defaults to
text/x-html-safe. There must be a
transformation chain in the portal_transforms
tool that can transform from the input value to
the output value for the output property of
the RichValue object to contain a value.

	
	allowed_mime_types
	tuple
	A list of allowed input MIME types. The default
is None, in which case the site-wide settings
(from the Markup control panel) will be used.

Field types

The following tables describe the most commonly used field types,
grouped by the module from which they can be imported.

Fields in zope.schema

	Name
	Type
	Description
	Properties

	Choice
	N/A
	Used to model selection from a vocabulary, which must be supplied.
Often used as the value_type of a selection field. The value
type is the value of the terms in the vocabulary.
	See vocabularies.

	Bytes
	str
	Used for binary data.
	IField, IMinMaxLen

	ASCII
	str
	ASCII text (multi-line).
	IField, IMinMaxLen

	BytesLine
	str
	A single line of binary data, i.e. a Bytes with newlines
disallowed.
	IField, IMinMaxLen

	ASCIILine
	str
	A single line of ASCII text.
	IField, IMinMaxLen

	Text
	unicode
	Unicode text (multi-line). Often used with a WYSIWYG widget,
although the default is a text area.
	IField, IMinMaxLen

	TextLine
	unicode
	A single line of Unicode text.
	IField, IMinMaxLen

	Bool
	bool
	True or False.
	IField

	Int
	int, long
	An integer number. Both ints and longs are allowed.
	IField, IMinMax

	Float
	float
	A floating point number.
	IField, IMinMax

	Tuple
	tuple
	A tuple (non-mutable).
	IField, ICollection, IMinMaxLen

	List
	list
	A list.
	IField, ICollection, IMinMaxLen

	Set
	set
	A set.
	IField, ICollection, IMinMaxLen

	Frozenset
	frozenset
	A frozenset (non-mutable).
	IField, ICollection, IMinMaxLen

	Password
	unicode
	Stores a simple string, but implies a password widget.
	IField, IMinMaxLen

	Dict
	dict
	Stores a dictionary. Both key_type and value_type must be set to fields.
	IField, IMinMaxLen, IDict

	Datetime
	datetime
	Stores a Python datetime (not a Zope 2 DateTime).
	IField, IMinMax

	Date
	date
	Stores a python date.
	IField, IMinMax

	Timedelta
	timedelta
	Stores a python timedelta.
	IField, IMinMax

	SourceText
	unicode
	A textfield intended to store source text (e.g. HTML or Python code).
	IField, IMinMaxLen

	Object
	N/A
	Stores a Python object that conforms to the interface given as the
schema. There is no standard widget for this.
	IField, IObject

	URI
	str
	A URI (URL) string.
	IField, MinMaxLen

	Id
	str
	A unique identifier – either a URI or a dotted name.
	IField, IMinMaxLen

	DottedName
	str
	A dotted name string.
	IField, IMinMaxLen

	InterfaceField
	Interface
	A Zope interface.
	IField

	Decimal
	Decimal
	Stores a Python Decimal. Requires version 3.4 or later of
zope.schema [http://pypi.python.org/pypi/zope.schema]. Not available by default in Zope 2.10.
	IField, IMinMax

Fields in plone.namedfile.field

See plone.namedfile [http://pypi.python.org/pypi/plone.namedfile] and plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile] for more
details.

	Name
	Type
	Description
	Properties

	NamedFile
	NamedFile
	A binary uploaded file. Normally used with the widget from
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].
	IField

	NamedImage
	NamedImage
	A binary uploaded image. Normally used with the widget from
plone.formwidget.namedfile [http://pypi.python.org/pypi/plone.formwidget.namedfile].
	IField

	NamedBlobFile
	NamedBlobFile
	A binary uploaded file stored as a ZODB BLOB. Requires the [blobs] extra to
plone.namedfile [http://pypi.python.org/pypi/plone.namedfile]. Otherwise identical to NamedFile.
	IField

	NamedBlobImage
	NamedBlobImage
	A binary uploaded image stored as a ZODB BLOB. Requires the [blobs] extra to
plone.namedfile [http://pypi.python.org/pypi/plone.namedfile]. Otherwise identical to NamedImage.
	IField

Fields in z3c.relationfield.schema

See z3c.relationfield [http://pypi.python.org/pypi/z3c.relationfield] for more details.

	Name
	Type
	Description
	Properties

	Relation
	RelationValue
	Stores a single RelationValue.
	IField

	RelationList
	list
	A List field that defaults to Relation as the value type
	See List

	RelationChoice
	RelationValue
	A Choice field intended to store RelationValue’s
	See Choice

Fields in plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield]

See plone.app.textfield [http://pypi.python.org/pypi/plone.app.textfield] for more details.

	Name
	Type
	Description
	Properties

	RichText
	RichTextValue
	Stores a RichTextValue, which encapsulates a raw text value, the source MIME type,
and a cached copy of the raw text transformed to the default output MIME type.
	IField, IRichText

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Widgets

Standard and common third party widgets

Most of the time, you will use the standard widgets provided by
z3c.form. To learn more about z3c.form widgets, see the z3c.form
documentation [http://docs.zope.org/z3c.form/widget.html]. To learn about setting custom widgets for Dexterity
content types, see the schema introduction.

The table below shows some commonly used custom widgets.

	Widget
	Imported from
	Field
	Description

	WysiwygFieldWidget
	plone.app.z3cform.wysiwyg
	Text
	Use Plone’s standard WYSIWYG HTML editor on a standard text field. Note that if you used a RichText field, you will get the WYSIWYG editor automatically.

	RichTextWidget
	plone.app.textfield.widget
	RichText
	Use Plone’s standard WYSIWYG HTML editor on a RichText field. This also allows text-based markup such as reStructuredText.

	AutocompleteFieldWidget
	plone.formwidget.autocomplete
	Choice
	Autocomplete widget based on jQuery Autocomplete. Requires a Choice field with a query source. See vocabularies.

	AutocompleteMultiFieldWidget
	plone.formwidget.autocomplete
	Collection
	Multi-select version of the above. Used for a List, Tuple, Set or Frozenset with a Choice value_type.

	ContentTreeFieldWidget
	plone.formwidget.contenttree
	RelationChoice
	Content browser. Requires a query source with content objects as values.

	MultiContentTreeFieldWidget
	plone.formwidget.contenttree
	RelationList
	Content browser. Requires a query source with content objects as values.

	NamedFileFieldWidget
	plone.formwidget.namedfile
	NamedFile
	A file upload widget

	NamedImageFieldWidget
	plone.formwidget.namedimage
	NamedImage
	An image upload widget

	TextLinesFieldWidget
	plone.z3cform.textlines
	Collection
	One-per-line list entry for List, Tuple, Set or Frozenset fields. Requires a value_type of TextLine or ASCIILine.

	SingleCheckBoxFieldWidget
	z3c.form.browser.checkbox
	Bool
	A single checkbox for true/false.

	CheckBoxFieldWidget
	z3c.form.browser.checkbox
	Collection
	A set of checkboxes. Used for Set or Frozenset fields with a Choice value_type and a vocabulary.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Standard behaviors

A list of common behaviors that ship with Dexterity

Dexterity ships with several standard behaviors. The following table
shows the interfaces you can list in the FTI behaviors properties and
the resultant form fields and interfaces.

	Interface
	Description

	plone.app.dexterity.behaviors.metadata.IBasic
	Basic metadata: Adds title and description fields.

	plone.app.dexterity.behaviors.metadata.ICategorization
	Categorization: Adds keywords and language fields.

	plone.app.dexterity.behaviors.metadata.IPublication
	Date range: Adds effective date and expiration date fields.

	plone.app.dexterity.behaviors.metadata.IOwnership
	Ownership: Adds creator, contributor, and rights fields.

	plone.app.dexterity.behaviors.metadata.IDublinCore
	Dublin Core metadata: Adds standard metadata fields (equals Basic metadata + Categorization + Effective range + Ownership)

	plone.app.content.interfaces.INameFromTitle
	Name from title: Automatically generate short URL name for content based on its initial title. Not a form field provider.

	plone.app.dexterity.behaviors.filename.INameFromFileName
	Name from file name: Automatically generate short URL name for content based on its primary field file name

	plone.app.layout.navigation.interfaces.INavigationRoot
	Navigation root: Make all items of this type a navigation root

	plone.app.dexterity.behaviors.exclfromnav.IExcludeFromNavigation
	Exclude From navigation: Allow items to be excluded from navigation

	plone.app.dexterity.behaviors.nextprevious.INextPreviousToggle
	Next previous navigation toggle: Allow items to have next previous navigation enabled

	plone.app.dexterity.behaviors.discussion.IAllowDiscussion
	Allow discussion: Allow discussion on this item

	plone.app.dexterity.behaviors.id.IShortName
	Short name: Gives the ability to rename an item from its edit form.

	plone.app.dexterity.behaviors.nextprevious.INextPreviousEnabled
	Next previous navigation: Enable next previous navigation for all items of this type

	Products.CMFPlone.interfaces.constrains.ISelectableConstrainTypes
	Folder Addable Constrains: Restrict the content types that can be added to folderish content

	plone.app.relationfield.behavior.IRelatedItems
	Adds the Related items field to the Categorization fieldset.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Form schema hints

Directives which can be used to configure forms from schemata

Dexterity uses the plone.autoform [http://pypi.python.org/pypi/plone.autoform] package to configure its
z3c.form [http://docs.zope.org/z3c.form]-based add and edit forms. This allows a schema to be
annotated with “form hints”, which are used to configure the form.

The easiest way to apply form hints in Python code is to use the
directives from plone.directives.form [http://pypi.python.org/pypi/plone.directives.form] and
plone.directives.dexterity [http://pypi.python.org/pypi/plone.directives.dexterity]. These directives are used when the
package is “grokked” (via the <grok:grok package=“.” />*ZCML directive)
to apply the form hints to the interface where they are found. For this
process to work, the schema must derive from
*plone.directives.form.Schema. Directives can be placed anywhere in the
class body. By convention they are kept next to the fields they apply
to.

For example, here is a schema that omits a field:

from plone.directives import form
from zope import schema

class ISampleSchema(form.Schema):

 title = schema.TextLine(title=u"Title")

 form.omitted('additionalInfo')
 additionalInfo = schema.Bytes()

The form directives take parameters in the form of a list of field
names, or a set of field name/value pairs as keyword arguments. Each
directive can be used zero or more times.

Form directives

The form directives in the plone.directives.form package are shown
below.

	Name
	Description

	widget
	Specify an alternate widget for a field. Pass the field name as a key and a widget as the value. The widget can either be a z3c.form widget instance or a string giving the dotted name to one.

	omitted
	Omit one or more fields from forms. Takes a sequence of field names as parameters.

	mode
	Set the widget mode for one or more fields. Pass the field name as a key and the string ‘input’, ‘display’ or ‘hidden’ as the value.

	order_before
	Specify that a given field should be rendered before another. Pass the field name as a key and name of the other field as a value. If the other field is in a supplementary schema (i.e. one from a behaviour), its name will be e.g. “IOtherSchema.otherFieldName”. Alternatively, pass the string “*” to put a field first in the form.

	order_after
	The inverse of order_before(), putting a field after another. Passing “*” will put the field at the end of the form.

	primary
	Designate a given field as the primary field in the schema. This is not used for form rendering, but is used for WebDAV marshaling of the content object.

	fieldset
	Creates a fieldset (rendered in Plone as a tab on the edit form).

The code sample below illustrates each of these directives:

from plone.directives import form
from zope import schema
from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

class ISampleSchema(form.Schema):

 # A fieldset with id 'extra' and label 'Extra information' containing
 # the 'footer' and 'dummy' fields. The label can be omitted if the
 # fieldset has already been defined.

 form.fieldset('extra',
 label=u"Extra information",
 fields=['footer', 'dummy']
)

 # Here a widget is specified as a dotted name.
 # The body field is also designated as the priamry field for this schema

 form.widget(body='plone.app.z3cform.wysiwyg.WysiwygFieldWidget')
 form.primary('body')
 body = schema.Text(
 title=u"Body text",
 required=False,
 default=u"Body text goes here"
)

 # The widget can also be specified as an object

 form.widget(footer=WysiwygFieldWidget)
 footer = schema.Text(
 title=u"Footer text",
 required=False
)

 # An omitted field. Use form.omitted('a', 'b', 'c') to omit several fields

 form.omitted('dummy')
 dummy = schema.Text(
 title=u"Dummy"
)

 # A field in 'hidden' mode

 form.mode(secret='hidden')
 secret = schema.TextLine(
 title=u"Secret",
 default=u"Secret stuff"
)

 # This field is moved before the 'description' field of the standard
 # IBasic behaviour, if this is in use.

 form.order_before(importantNote='IBasic.description')
 importantNote = schema.TextLine(
 title=u"Important note",
)

Security directives

The security directives in the plone.directives.dexterity package are
shown below. Note that these are also used to control reading and
writing of fields on content instances.

	Name
	Description

	read_permission
	Set the (Zope 3) name of a permission required to read the field’s value. Pass the field name as a key and the permission name as a string value. Among other things, this controls the field’s appearance in display forms.

	write_permission
	Set the (Zope 3) name of a permission required to write the field’s value. Pass the field name as a key and the permission name as a string value. Among other things, this controls the field’s appearance in add and edit forms.

The code sample below illustrates each of these directives:

from plone.directives import form, dexterity
from zope import schema

class ISampleSchema(form.Schema):

 # This field requires the 'cmf.ReviewPortalContent' to be read and
 # written

 dexterity.read_permission(reviewNotes='cmf.ReviewPortalContent')
 dexterity.write_permission(reviewNotes='cmf.ReviewPortalContent')
 reviewNotes = schema.Text(
 title=u"Review notes",
 required=False,
)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Value and validator adaptors

Handy Decorators to set computed defaults and dynamic validators

Decorators from plone.directives.form [http://pypi.python.org/pypi/plone.directives.form] allow you to set dynamic
defaults and validators for schema fields. These are used outside the
interface class, after its declaration.

Defaults

Use the plone.directives.form.default_value decorator to create an
adaptor to dynamically set a default. For example, to set a Datetime
field to default to the current time:

import datetime
from plone.directives import form
from zope import schema

class IMySchema(form.Schema):

 start = schema.Datetime(title=u"Start Date")

@form.default_value(field=IMySchema['start'])
def startDefaultValue(data):
 return datetime.datetime.today()

Validators

Use the plone.directives.form.validator decorator to create an adaptor
to validate field input. For example, to validate that a field is not
entered all uppercase:

from plone.directives import form
from zope import schema

class IMySchema(form.Schema):

 title = schema.TextLine(title=u"Title")

@form.validator(field=IMySchema['title'])
def validateTitle(value):
 if value and value == value.upper():
 raise schema.ValidationError(u"Please don't shout")

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Manipulating content objects

Common APIs used to manipulate Dexterity content objects

In this section, we will describe some of the more commonly used APIs
that can be used to inspect and manipulate Dexterity content objects. In
most cases, the content object is referred to as context, its parent
folder is referred to as folder, and the type name is example.type.
Relevant imports are shown with each code snippet, though of course you
are more likely to place those at the top of the relevant code module.

Content object creation and folder manipulation

This section describes means to create objects and manipulate folders.

Creating a content object

The simplest way to create a content item is via its factory:

from zope.component import createObject
context = createObject('example.type')

At this point, the object is not acquisition wrapped. You can wrap it
explicitly by calling:

wrapped = context.__of__(folder)

However, it’s normally better to add the item to a folder and then
re-get it from the folder.

Note that the factory is normally installed as a local utility, so the
createObject() call will only work once you’ve traversed over the
Plone site root.

There is a convenience method that can be used to create a Dexterity
object. It is mostly useful in tests:

from plone.dexterity.utils import createContent
context = createContent('example.type', title=u"Foo")

Any keyword arguments are used to set properties on the new instance
(via setattr() on the newly created object). This method relies on
being able to look up the FTI as a local utility, so again you must be
inside the site for it to work.

Adding an object to a container

Once an object has been created, it can be added to a container. If the
container is a Dexterity container, or another container that supports a
dict API (e.g. a Large Plone Folder in Plone 3 or a container based on
plone.folder), you can do:

folder['some_id'] = context

You should normally make sure that the id property of the object is
the same as the id used in the container.

If the object only supports the basic OFS API (as is the case with
standard Plone Folders in Plone 3), you can use the _setObject()
method:

folder._setObject('some_id') = context

Note that both of these approaches bypass any type checks, i.e. you can
add items to containers that would not normally allow this type of
content. Dexterity comes with a convenience function, useful in tests,
to simulate the checks performed when content is added through the web:

from plone.dexterity.utils import addContentToContainer
addContentToContainer(folder, context)

This will also invoke a name chooser and set the object’s id
accordingly, so things like the title-to-id behavior should work. As
before, this relies on local components, so you must have traversed into
a Plone site (PloneTestCase takes care of this for you).

To bypass folder constraints, you can use this function and pass
checkConstraints=False.

You can also both create and add an object in one call:

from plone.dexterity.utils import createContentInContainer
createContentInContainer(folder, 'example.type', title=u"Foo")

Again, you can pass checkConstraints=False to bypass folder
constraints, and pass object properties as keyword arguments.

Finally, you can use the invokeFactory() API, which is similar, but
more generic in that it can be used for any type of content, not just
Dexterity content:

new_id = folder.invokeFactory('example.type', 'some_id')
context = folder['new_id']

This always respects add constraints, including add permissions and the
current user’s roles.

Getting items from a folder

Dexterity containers and other containers based on plone.folder
support a dict-like API to obtain and manipulate items in folders. For
example, to obtain an (acquisition-wrapped) object by name:

context = folder['some_id']

Folders can also be iterated over, and you can all items(), keys(),
values() and so on, treating the folder as a dict with string keys and
content objects as values.

Dexterity containers also support the more basic OFS API. You can call
objectIds() to get keys, objectValues() to get a list of content
objects, objectItems() to get an items()-like dict,and
hasObject(id) to check if an object exists in a container.

Removing items from a folder

Again, Dexterity containers act like dictionaries, and so implement
__delitem__:

del folder['some_id']

The OFS API uses the _delObject() function for the same purpose:

folder._delObject('some_id')

Object introspection

This section describes means of getting information about an object.

Obtaining an object’s schema interface

A content object’s schema is an interface, i.e. an object of type
zope.interface.interface.InterfaceClass.

from zope.app.content import queryContentType
schema = queryContentType(context)

The schema can now be inspected. For example:

from zope.schema import getFieldsInOrder
fields = getFieldsInOrder(schema)

Finding an object’s behaviors

To find all behaviors supported by an object, use the plone.behavior
API:

from plone.behavior.interfaces import IBehaviorAssignable
assignable = IBehaviorAssignable(context)
for behavior in assignable.enumerateBehaviors():
 behavior_schema = behavior.interface
 adapted = behavior_schema(context)
 ...

The objects returned are instances providing
plone.behavior.interfaces.IBehavior. To get the behavior schema, use
the interface property of this object. You can inspect this and use it
to adapt the context if required.

Getting the FTI

To obtain a Dexterity FTI, look it up as a local utility:

from zope.component import getUtility
from plone.dexterity.interfaces import IDexterityFTI
fti = getUtility(IDexterityFTI, name='example.type')

The returned object provides plone.dexterity.interfaces.IDexterityFTI.
To get the schema interface for the type from the FTI, you can do:

schema = fti.lookupSchema()

Getting the object’s parent folder

A Dexterity item in a Dexterity container should have the
__parent__ property set, pointing to its containment parent:

folder = context.__parent__

Items in standard Plone folders won’t have this property set, at least
not in Plone 3.x.

The more general approach relies on acquisition:

from Acquisition import aq_inner, aq_parent
folder = aq_parent(aq_inner(context))

Workflow

This section describes ways to inspect an object’s workflow state and
invoke transitions.

Obtaining the workflow state of an object

To obtain an object’s workflow state, ask the*portal_workflow* tool:

from Products.CMFCore.utils import getToolByName
portal_workflow = getToolByName(context, 'portal_workflow')
review_state = portal_workflow.getInfoFor(context, 'review_state')

This assumes that the workflow state variable is called review_state,
as is the case for almost all workflows.

Invoking a workflow transition

To invoke a transition:

portal_workflow.doActionFor(context, 'some_transition')

The transition must be available in the current workflow state, for the
current user. Otherwise, an error will be raised.

Cataloging and indexing

This section describes ways of indexing an object in the portal_catalog
tool.

Reindexing the object

Objects may need to be reindexed if they are modified in code. The best
way to reindex them is actually to send an event and let Dexterity’s
standard event handlers take care of this:

from zope.lifecycleevent import modified
modified(context)

In tests, it is sometimes necessary to reindex explicitly. This can be
done with:

context.reindexObject()

You can also pass specific index names to reindex, if you don’t want to
reindex everything:

context.reindexObject(idxs=['Title', 'sortable_title'])

This method comes from the
Products.CMFCore.CMFCatalogAware.CMFCatalogAware mix-in class.

Security

This section describes ways to check and modify permissions. For more
information, see the section on permissions.

Checking a permission

To check a permission by its Zope 3 name:

from zope.security import checkPermission
checkPermission('zope2.View', context)

Note: In a test, you may get an AttributeError when calling this method.
To resolve this, call newInteraction() from Products.Five.security
in your test setup (e.g. the afterSetUp() method).

To use the Zope 2 permission title:

from AccessControl import getSecurityManager
getSecurityManager().checkPermission('View', context)

Sometimes, normally in tests, you want to know which roles have a
particular permission. To do this, use:

roles = [r['name'] for r in context.rolesOfPermission('View') if r['selected']]

Again, note that this uses the Zope 2 permission title.

Changing permissions

Normally, permissions should be set with workflow, but in tests it is
often useful to manipulate security directly:

context.manage_permission('View', roles=['Manager', 'Owner'], acquire=True)

Again note that this uses the Zope 2 permission title.

Content object properties and methods

The following table shows the more important properties and methods
available on Dexterity content objects. In addition, any field described
in the type’s schema will be available as a property, and can be read
and set using normal attribute access.

	Property/method
	Type
	Description

	__name__
	unicode
	The name (id) of the object in its container. This is a unicode string to be consistent with the Zope 3 IContained interface, although in reality it will only ever contain ASCII characters, since Zope 2 does not support non-ASCII URLs.

	id
	str
	The name (id) of the object in its container. This is an ASCII string encoding of the __name__.

	getId()
	str
	Returns the value of the id*property.*

	isPrincipaFolderish
	bool/int
	True (or 1) if the object is a folder. False (or 0) otherwise.

	portal_type
	str
	The portal_type of this instance. Should match an FTI in the portal_types tool. For Dexterity types, should match a local utility providing IDexterityFTI. Note that the portal_type is a per-instance property set upon creation (by the factory), and should not be set on the class.

	meta_type
	str
	A Zope 2 specific way to describe a class. Rarely, if ever, used in Dexterity. Do not set it on your own classes unless you know what you’re doing.

	title_or_id()
	str
	Returns the value of the title property or, if this is not set, the id property.

	absolute_url()
	str
	The full URL to the content object. Will take virtual hosting and the current domain into account.

	getPhysicalPath()
	tuple
	A sequence of string path elements from the application root. Stays the same regardless of virtual hosting and domain. A common pattern is to use ‘/’.join(context.getPhysicalPath()) to get a string representing the path to the Zope application root. Note that it is not safe to construct a relative URL from the path, because it does not take virtual hosting into account.

	getIcon()
	str
	Returns a string suitable for use in the src attribute of an tag to get the icon of the content object.

	title
	unicode/str
	Property representing the title of the content object. Usually part of an object’s schema or provided by the IBasic behavior. The default is an empty string.

	Title()
	unicode/str
	Dublin Core accessor for the title property. Set the title by modifying this property. You can also use setTitle().

	listCreators()
	tuple
	A list of user ids for object creators. The first creator is normally the owner of the content object. You can set this list using the setCreators() method.

	Creator()
	str
	The first creator returned by the listCreators() method. Usually the owner of the content object.

	Subject()
	tuple
	Dublin Core accessor for item keywords. You can set this list using the setSubject() method.

	Description()
	unicode/str
	Dublin Core accessor for the description property, which is usually part of an object’s schema or provided by the IBasic behavior. You can set the description by setting the description attribute, or using the setDescription() method.

	listContributors()
	tuple
	Dublin Core accessor for the list of object contributors. You can set this with setContributors().

	Date()
	str
	Dublin Core accessor for the default date of the content item, in ISO format. Uses the effective date is set, falling back on the modification date.

	CreationDate()
	str
	Dublin Core accessor for the creation date of the content item, in ISO format.

	EffectiveDate()
	str
	Dublin Core accessor for the effective publication date of the content item, in ISO format. You can set this by passing a DateTime object to setEffectiveDate().

	ExpirationDate()
	str
	Dublin Core accessor for the content expiration date, in ISO format. You can set this by passing a DateTime object to setExpirationDate().

	ModificationDate()
	str
	Dublin Core accessor for the content last-modified date, in ISO format.

	Language()
	str
	Dublin Core accessor for the content language. You can set this using setLanguage().

	Rights()
	str
	Dublin Core accessor for content copyright information. You can set this using setRights().

	created()
	DateTime
	Returns the Zope 2 DateTime for the object’s creation date. If not set, returns a “floor” date of January 1st, 1970.

	modified()
	DateTime
	Returns the Zope 2 DateTime for the object’s modification date. If not set, returns a “floor” date of January 1st, 1970.

	effective()
	DateTime
	Returns the Zope 2 DateTime for the object’s effective date. If not set, returns a “floor” date of January 1st, 1970.

	expires()
	DateTime
	Returns the Zope 2 DateTime for the object’s expiration date. If not set, returns a “floor” date of January 1st, 1970.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Dexterity XML

A reference for Dexterity's XML name spaces

Introduction

The schema (structure) of a Dexterity content type may be detailed in two very
different ways:

	In Python as a Zope schema; or,

	In XML

When you are using Dexterity's through-the-web schema editor, all your work is
being saved in the content type's Factory Type Information (FTI) as XML.
plone.supermodel dynamically translates that XML into Python objects which
are used to display and edit your content objects.

The XML model of your content object may be exported from Dexterity and
incorporated into a Python package. That's typically done with code like:

class IExampleType(form.Schema):

 form.model("models/example_type.xml")

or:

from plone.supermodel import xmlSchema

IExampleType = xmlSchema("models/example_type.xml")

XML models in a package may be directly edited. (Dexterity will probably also
include a TTW XML-model editor at some point in the future.)

This document is a reference to the tags and attributes you may use in model
XML files. This includes several form-control and security-control attributes
that are not available through the TTW schema editor.

XML Document Structure

Dexterity requires that its model XML be well-formed XML, including name space
declarations. The typical structure of a Dexterity XML document is:

<?xml version="1.0" encoding="UTF-8"?>
<model xmlns="http://namespaces.plone.org/supermodel/schema"
 xmlns:form="http://namespaces.plone.org/supermodel/form"
 xmlns:security="http://namespaces.plone.org/supermodel/security">
 <schema>
 <field type="zope.schema.TextLine" name="one"
 <title>One</title>
 ... More field attributes
 </field>
 ... More fields
 </schema>
</model>

Only the default name space (.../supermodel/schema) is required for basic
schema. The supermodel/form and supermodel/schema provide additional
attributes to control form presentation and security.

supermodel/schema fields

Most of the supermodel/schema field tag and its attributes map directly to what's available via the TTW schema editor:

<field name="dummy" type="zope.schema.TextLine">
 <default>abc</default>
 <description>Test desc</description>
 <max_length>10</max_length>
 <min_length>2</min_length>
 <missing_value>m</missing_value>
 <readonly>True</readonly>
 <required>False</required>
 <title>Test</title>
</field>

The field type needs to be the full dotted name (as if it was being
imported in Python) of the field type.

Fieldsets

It's easy to add fieldsets by surrounding embedding fields tags in a fieldset block:

<schema>
 ...
 <fieldset name="test"
 label="Test Fieldset"
 description="Description of test fieldset">
 <field name="three" type="zope.schema.TextLine">
 <description/>
 <title>Three</title>
 </field>
 <field name="four" type="zope.schema.TextLine">
 <description/>
 <title>Four</title>
 </field>
 </fieldset>
 ...
</schema>

Vocabularies

Vocabularies may be specified via dotted names using the source tag:

<field name="dummy" type="zope.schema.Choice">
 <default>a</default>
 <description>Test desc</description>
 <missing_value/>
 <readonly>True</readonly>
 <required>False</required>
 <title>Test</title>
 <source>plone.supermodel.tests.dummy_vocabulary_instance</source>
</field>

Where the full Python dotted-name of a Zope vocabulary in a package:

from zope.schema.vocabulary import SimpleVocabulary

dummy_vocabulary_instance = SimpleVocabulary.fromItems([(1, 'a'), (2, 'c')])

Or, a source binder:

<field name="dummy" type="zope.schema.Choice">
 ...
 <source>plone.supermodel.tests.dummy_binder</source>
</field>

With Python like:

from zope.schema.interfaces import IContextSourceBinder

class Binder(object):
 implements(IContextSourceBinder)

 def __call__(self, context):
 return SimpleVocabulary.fromValues(['a', 'd', 'f'])

dummy_binder = Binder()

You may also use the vocabulary tag rather than source to refer to named vocabularies registered via the ZCA.

Internationalization

Translation domains and message ids can be specified for text
that is interpreted as unicode. This will result in deserialization
as a zope.i18nmessageid message id rather than a basic Unicode string.

Note that we need to add the i18n namespace and a domain specification:

<model xmlns="http://namespaces.plone.org/supermodel/schema"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="your.application">
 <schema>

 <field type="zope.schema.TextLine" name="title">
 <title i18n:translate="yourapp_test_title">Title</title>
 </field>

 </schema>
</model>

supermodel/form attributes

supermodel/form provides attributes that govern presentation and editing.

after/before

To re-order fields, use form:after or form:before.

The value should be either '*', to put the field first/last in the form,
or the name of a another field. Use '.fieldname' to refer to field in the
current schema (or a base schema). Use a fully prefixed name (e.g.
'my.package.ISomeSchema') to refer to a field in another schema. Use an
unprefixed name to refer to a field in the default schema for the form.

Example:

<field type="zope.schema.TextLine"
 name="one"
 form:after="two">
 <title>One</title>
</field>

mode

To turn a field into a view mode or hidden field, use form:mode. The
mode may be set for only some forms by specifying a form interface in the
same manner as for form:omitted.

Example:

<field type="zope.schema.TextLine"
 name="three"
 form:mode="z3c.form.interfaces.IEditForm:input">
 <title>Three</title>
</field>

omitted

To omit a field from all forms, use form:omitted="true". To omit a field
only from some forms, specify a form interface like
form:omitted="z3c.form.interfaces.IForm:true". Multiple interface:value
settings may be specified, separated by spaces.

Examples:

<field type="zope.schema.TextLine"
 name="one"
 form:omitted="true">
 <title>One</title>
</field>

<field type="zope.schema.TextLine" name="three"
 form:omitted="z3c.form.interfaces.IForm:true z3c.form.interfaces.IEditForm:false"
 >
 <title>Three</title>
</field>

The latter example hides the field on everything except the edit form.

widget

To set a custom widget for a field, use form:widget to give a fully
qualified name to the field widget factory.

Example:

<field type="zope.schema.TextLine"
 name="password"
 form:widget="z3c.form.browser.password.PasswordFieldWidget">
 <title>One</title>
</field>

Dynamic Defaults

To set a dynamic default for a field, use a defaultFactory tag to
give a fully qualified name for a callable. The defaultFactory callable must
provide either plone.supermodel.interfaces.IDefaultFactory or
zope.schema.interfaces.IContextAwareDefaultFactory.

Example:

<field type="zope.schema.TextLine" name="three">
 <title>Three</title>
 <defaultFactory>plone.supermodel.tests.dummy_defaultFactory</defaultFactory>
</field>

Sample Python for the validator factory:

@provider(IDefaultFactory)
def dummy_defaultFactory():
 return u'something'

For a callable using context:

@provider(IContextAwareDefaultFactory)
def dummy_defaultCAFactory(context):
 return context.something

Note

The defaultFactory tag was added in plone.supermodel 1.2.3,
shipping with Plone 4.3.2+.

validator

To set a custom validator for a field, use form:validator to give a fully
qualified name to the field validator factory. The validator factory should be
a class derived from one of the validators in z3c.form.validator.

Example:

<field type="zope.schema.TextLine"
 name="three"
 form:validator="plone.autoform.tests.test_utils.TestValidator">
 <title>Three</title>
</field>

Sample Python for the validator factory:

class TestValidator(z3c.form.validator.SimpleFieldValidator):

 def validate(self, value):
 super(TestValidator, self).validate(value)
 raise Invalid("Test")

supermodel/security attributes

read-permission/write-permission

To set a read or write permission, use security:read-permission or
security:write-permission. The value should be the name of an
IPermission utility.

Example:

<field type="zope.schema.TextLine"
 name="one"
 security:read-permission="zope2.View"
 security:write-permission="cmf.ModifyPortalContent">
 <title>One</title>
</field>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Reference »

Miscellaneous

User contributed recipes

How to hide a field on a schema if we do not want to or cannot modify the original schema

To do this one can use tagged values on the schema. In this case want to hide 'introduction' and 'answers' fields:

from example.package.content.assessmentitem import IAssessmentItem
from plone.autoform.interfaces import OMITTED_KEY
IAssessmentItem.setTaggedValue(OMITTED_KEY,
 [(Interface, 'introduction', 'true'),
 (Interface, 'answers', 'true')])

This code can sit in another.package.__init__.py for example.

See also: Original thread on coredev mailinglist [http://plone.293351.n2.nabble.com/plone-autoform-why-use-tagged-values-td7560956.html]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Installing Dexterity

How to install Dexterity and use it in your project

Dexterity is distributed as a number of eggs, published on
PyPI [http://pypi.python.org]. The
plone.app.dexterity [http://pypi.python.org/pypi/plone.app.dexterity]
egg pulls in all the required dependencies and should get you up and
running. This how-to explains what you need to do use Dexterity in a
standard Plone buildout.

Installing Dexterity on Plone 4.3

Note: Plone 4.3 is the latest release of Plone. Dexterity is included
with Plone 4.3, but must be activated via the "Add-ons" configlet in site setup.

If you wish to follow the examples in this manual, you must do one extra
installation step: activate the grok extra for Dexterity.
To do so, add the following line to the eggs section of yor buildout:

eggs =
 Plone
 ...
 plone.app.dexterity [grok]

Important: If you installed Dexterity on a Plone site that you
upgraded to Plone 4.3, you must include the relations extra. Otherwise
your site will have a broken intid utility.

	eggs =

	Plone
...
plone.app.dexterity [grok,relations]

Installing Dexterity on Plone 4.2

Plone 4.2 is the previous stable release of Plone. The Plone KGS (known
good set of package versions) includes version pins for the packages
that make up Dexterity, so all you need to do is add plone.app.dexterity
to the eggs in your buildout, and re-run the buildout:

[buildout]
extensions = buildout.dumppickedversions
unzip = true
parts = instance
extends =
 http://dist.plone.org/release/4.2.1/versions.cfg
versions = versions
develop =

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8080
debug-mode = on
verbose-security = on
eggs =
 Plone
 plone.app.dexterity

Note that:

	We use the
buildout.dumppickedversions [http://pypi.python.org/pypi/buildout.dumppickedversions]
extension to help show what versions buildout picked for any
dependencies not pinned in the buildout. This helps trace any
dependency issues.

	We extend the official Plone release known good set for Plone 4.2.1.

	In the instance configuration, we load the Plone egg and
plone.app.dexterity. The latter will pull in all the Dexterity
dependencies.

	Since plone.app.dexterity configures a z3c.autoinclude entry
point, there is no need to load a separate ZCML slug.

Your own buildout may be more extensive. The developer manual shows a
more comprehensive one with some debugging tools, for example. However,
the buildout above should be enough for creating types through the web.
If you are using a package that itself depends on plone.app.dexterity,
then the second eggs line becomes superfluous as well, of course.

Installing Dexterity on older versions of Plone

Prior to Plone 4.2, the official Plone KGS did not include version pins
for the packages that make up Dexterity. Instead, you can extend a KGS
from the good-py service [http://good-py.appspot.com]. That looks like
this:

[buildout]
extensions = buildout.dumppickedversions
unzip = true
parts = instance
extends =
 http://good-py.appspot.com/release/dexterity/1.2.1?plone=4.1.6
versions = versions
develop =

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8080
debug-mode = on
verbose-security = on
eggs =
 Plone
 plone.app.dexterity

Notice that the extends line has been changed to point at good-py and
specify both a particular version of Dexterity and a particular version
of Plone. good-py returns a set of versions that will work for that
combination.

Dexterity 1.2.1 is the last version of Dexterity supported for Plone <
4.2. No version of Dexterity is compatible with Plone < 3.3.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

Behaviors

How to create re-usable behaviors for Dexterity types

	Introduction

	Behavior basics

	Creating and registering behaviors

	Providing marker interfaces
	Primary marker behaviors

	Supplementary marker behaviors

	Schema-only behaviors using annotations or attributes
	Using annotations

	Storing attributes

	Testing behaviors
	A note about marker interfaces

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Introduction

About this manual

Behaviors are re-usable bundles of functionality that can be enabled
or disabled on a per-content type basis. Examples might include:

	A set of form fields (on standard add and edit forms)

	Enabling particular event handler

	Enabling one or more views, viewlets or other UI components

	Anything else which may be expressed in code via an adapter and/or
marker interface

You would typically not write a behavior as a one-off. Behaviors are
normally used when:

	You want to share fields and functionality across multiple types
easily. Behaviors allow you to write a schema and associated
components (e.g. adapters, event handlers, views, viwelets) once and
re-use them easily.

	A more experienced developer is making functionality available for
re-use by less experienced integrators. For example, a behavior can
be packaged up and release as an add-on product. Integators can then
install that product and use the behavior in their own types, either
in code or through-the-web.

This manual is aimed at developers who want to write new behaviors. This
is a slightly more advanced topic than the writing of custom content
types, and we will assume that you are familiar with buildout, know how
to create a custom package, understand interfaces and have a basic
understanding of Zope’s adapter concept.

Behaviors are not tied to Dexterity, but Dexterity provides behavior
support for its types via the behaviors FTI property. In fact, if
you’ve used Dexterity before, you’ve probably used some behaviors. Take
a look at the Dexterity Developer Manual for more information about
how to enable behaviors on a type and for a list of standard behaviors.

To learn more about how behaviors are implemented, see the
plone.behavior [http://pypi.python.org/pypi/plone.behavior] package. This manual should teach you everything you
need to know to write your own behaviors, but not how to integrate them
into another framework.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Behavior basics

The fundamental concepts behind behaviors

Before we dive into the practical examples, we need to explain a few of
the concepts that underpin behaviors.

At the most basic level, a behavior is like a ‘conditional’ adapter. For
a Dexterity content type, the condition is, "is this behavior listed in
the behaviors property in the FTI?" When a behavior is enabled for a
particular object, it will be possible to adapt that object to the
behavior’s interface. If the behavior is disabled, adaptation will fail.

A behavior consist at the very least of an interface and some metadata,
namely a title and a description. In most cases, there is also a
factory, akin to an adapter factory, which will be invoked to get an
appropriate adapter when requested. This is usually just a class that
looks like any other adapter factory, although it will tend to be
applicable to Interface, IContentish or a similarly broad context.

In some cases, behaviors specify a marker interface, which will be
directly provided by instances for which the behavior is enabled. This
is useful if you want to conditionally enable event handlers or view
components, which are registered for this marker interface. Some
behaviors have no factory. In this case, the behavior interface and the
marker interface must be one and the same.

Behaviors are registered globally, using the <plone.behavior /> ZCML
directive. This results in, among other things, a named utility
providing plone.behavior.interfaces.IBehavior being registered. This
utility contains various information about the behavior, such as its
name, title, interface and (optional) marker interface. The utility name
is the full dotted name to the behavior interface.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Creating and registering behaviors

How to create a basic behavior that provides form fields

The following example is based on the collective.gtags [http://svn.plone.org/svn/collective/collective.gtags] product, which
comes with a behavior that adds a tags field to the “Categorization”
fieldset, storing the actual tags in the Dublin Core Subject field.

collective.gtags is a standard package, with a configure.zcml, a
GenericSetup profile, and a number of modules. We won’t describe those
here, though, since we are only interested in the behavior.

First, there are a few dependencies in setup.py:

install_requires=[
 ...,
 'plone.behavior',
 'plone.directives.form',
 'zope.schema',
 'zope.interface',
 'zope.component',
 'rwproperty',
],

The dependency on plone.directives.form is there to support form
fields. If your behavior does not require form fields, you can skip this
dependency. The rwproperty dependency provides some convenience
decorators that are used in the behavior adapter factory class.

Next, we have behaviors.zcml, which is included from configure.zcml
and contains all necessary configuration to set up the behaviors. It
looks like this:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:plone="http://namespaces.plone.org/plone"
 xmlns:grok="http://namespaces.zope.org/grok"
 i18n_domain="collective.gtags">

 <include package="plone.behavior" file="meta.zcml" />

 <include package="plone.directives.form" file="meta.zcml" />
 <include package="plone.directives.form" />

 <grok:grok package=".behaviors" />

 <plone:behavior
 title="GTags"
 description="Use the Dublin Core Subject (keywords) field for Google Code like tags."
 provides=".behaviors.ITags"
 factory=".behaviors.Tags"
 />

</configure>

We first include the plone.behavior meta.zcml file, so that we get
access to the <plone:behavior /> ZCML directive.

The next three lines include plone.directives.form and its meta.zcml
file, and then invoke the grok action on the behaviors module. This
is not directly related to the behavior, but rather to the configuration
of a schema interface that provides form fields and display hints to
plone.autoform (and thus Dexterity’s standard add and edit forms). If
your behavior is not a form field provider, you can omit these lines.
Similarly, if you have grokked the entire package elsewhere with
<grok:grok package=“.” />, you can omit the <grok:grok
package=“.behaviors” /> line. Otherwise, adjust it to reflect the
module or package where your behaviors are kept.

The behavior itself is registered with the <plone:behavior />
directive. We set a title and a description, and then speicfy the
behavior interface with the provides attribute. This attribute is
required, and is used to construct the unique name for the behavior. In
this case, the behavior name is collective.gtags.behaviors.ITags, the
full dotted name to the behavior interface. When the behavior is enabled
for a type, it will be possible to adapt instances of that type to
ITags. That adaptation will invoke the factory specified by the
factory attribute.

The behaviors.py module looks like this:

"""Behaviours to assign tags (to ideas).

Includes a form field and a behaviour adapter that stores the data in the
standard Subject field.
"""

from rwproperty import getproperty, setproperty

from zope.interface import implements, alsoProvides
from zope.component import adapts

from plone.directives import form
from collective.gtags.field import Tags

from Products.CMFCore.interfaces import IDublinCore

from collective.gtags import MessageFactory as _

class ITags(form.Schema):
 """Add tags to content
 """

 form.fieldset(
 'categorization',
 label=_(u'Categorization'),
 fields=('tags',),
)

 tags = Tags(
 title=_(u"Tags"),
 description=_(u"Applicable tags"),
 required=False,
 allow_uncommon=True,
)

alsoProvides(ITags, form.IFormFieldProvider)

class Tags(object):
 """Store tags in the Dublin Core metadata Subject field. This makes
 tags easy to search for.
 """
 implements(ITags)
 adapts(IDublinCore)

 def __init__(self, context):
 self.context = context

 @getproperty
 def tags(self):
 return set(self.context.Subject())
 @setproperty
 def tags(self, value):
 if value is None:
 value = ()
 self.context.setSubject(tuple(value))

We first define the ITags interface, which is also the behavior
interface. Here, we define a single attribute, tags, but we could also
have added methods and additional fields if required. Naturally, these
need to be implemented by the behavior adapter.

Since we want this behavior to provide form fields, we derive the
behavior interface from form.Schema and set form hints using
plone.directives.form*(remember that these will only take effect if the
package is *grokked). We also mark the ITags interface with
IFormFieldProvider to signal that it should be processed for form
fields by the standard forms. See the Dexterity Developer Manual for
more information about setting form hints in schema interfaces.

If your behavior does not provide form fields, you can just derive from
zope.interface.Interface and omit the alsoProvides() line.

Next, we write the class that implements the behavior adapter and acts
the adapter factory. Notice how it implements the behavior interface
(ITags), and adapts a broad interface (IDublinCore). The behavior
cannot be enabled on types not supporting this interface. In many cases,
you will omit the adapts() line, provided your behavior is generic
enough to work on any context.

The adapter is otherwise identical to any other adapter. It implements
the interface, here by storing values in the Subject field. The use of
getproperty and setproperty from the rwproperty [http://pypi.python.org/pypi/rwproperty] package is for
convenience only.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Providing marker interfaces

How to use behaviors to set marker interfaces on instances of a given type.

Sometimes, it is useful for objects that provide a particular behavior
to also provide a specific marker interface. For example, you can
register a viewlet for a particular marker and use a behavior to enable
that marker on all instances of a particular content type. The viewlet
will then only show up when the behavior is enabled. The same principle
can be applied to event handlers, views and other components.

Note

There is usually no need to use markers to enable a custom adapter since
a standard behavior is already a conditional adapter. However, in
certain cases, you may want to provide one or more adapters to an
interface that is not the behavior interface, e.g. to use a particular
extension point provided by another component. In this case, it may
easier to set a marker interface and provide an adapter from this
marker.

plone.behavior’s marker support can be used in two ways:

	As the behavior interface itself. In this case, there is no behavior
adapter factory. The behavior interface and the marker interface are
one and the same.

	As a supplement to a standard behavior adapter. In this case, a
factory is provided, and the behavior interface (which the behavior
adapter factory implements) is different to the marker interface.

Primary marker behaviors

In the first case, where the behavior interface and the marker interface
are the same, you can simply use the <plone:behavior />*directive
without a *factory. For example:

<plone:behavior
 title="Pony viewlet"
 description="Shows a pony next to the content"
 provides=".behaviors.IWantAPony"
 />

One could imagine a viewlet based on plone.pony [http://pypi.python.org/pypi/plone.pony] registered for the
IWantAPony marker interface. If the behavior is enabled for a
particular object, IWantAPony.providedBy(object) would be true.

Supplementary marker behaviors

In the second case, we want to provide a behavior interface with a
behavior adapter factory as usual (e.g. with some form fields and a
custom storage or a few methods implemented in an adapter), but we also
need a custom marker. Here, we use both the provides and marker
attributes to <plone:behavior /> to reference the two interfaces, as
well as a factory.

To show a slightly more interesting example, here is a behavior from a
project that lets content authors with particular permissions
(iz.EditOfficialReviewers and iz.EditUnofficialReviewers), nominate
the “official” and any “unofficial” reviewers for a given content item.
The behavior provides the necessary form fields to support this, but it
also sets a marker interface that enables an ILocalRoleProvider
adapter to automatically grant local roles to the chosen reviewers, as
well as a custom indexer that lists the reviewers.

The ZCML registration looks like this:

<plone:behavior
 title="Reviewers"
 description="The ability to assign a list of official and/or unofficial reviewers to an item, granting those users special powers."
 provides=".reviewers.IReviewers"
 factory="plone.behavior.AnnotationStorage"
 marker=".reviewers.IReviewersMarker"
 />

Notice the use of the AnnotationStorage factory. This is a re-usable
factory that can be used to easily create behaviors from schema
interfaces that store their values in annotations. We’ll describe this
in more detail later. We could just as easily have provided our own
factory in this example.

This whole package is grokked, so in configure.zcml we have:

<grok:grok package="." />

The reviewers.py module contains the following:

"""Behavior to enable certain users to nominate reviewers

Includes form fields, an indexer to make it easy to find the items with
specific reviewers, and a local role provider to grant the Reviewer and
OfficialReviewer roles appropriately.
"""

from five import grok

from zope.interface import alsoProvides, Interface

from plone.directives import form
from zope import schema

from plone.formwidget.autocomplete.widget import AutocompleteMultiFieldWidget

from borg.localrole.interfaces import ILocalRoleProvider
from plone.indexer.interfaces import IIndexer
from Products.ZCatalog.interfaces import IZCatalog

from iz.behaviors import MessageFactory as _

class IReviewers(form.Schema):
 """Support for specifying official and unofficial reviewers
 """

 form.fieldset(
 'ownership',
 label=_(u'Ownership'),
 fields=('official_reviewers', 'unofficial_reviewers'),
)

 form.widget(official_reviewers=AutocompleteMultiFieldWidget)
 form.write_permission(official_reviewers='iz.EditOfficialReviewers')
 official_reviewers = schema.Tuple(
 title=_(u'Official reviewers'),
 description=_(u'People or groups who may review this item in an official capacity.'),
 value_type=schema.Choice(title=_(u"Principal"), source="plone.principalsource.Principals"),
 required=False,
 missing_value=(), # important!
)

 form.widget(unofficial_reviewers=AutocompleteMultiFieldWidget)
 form.write_permission(unofficial_reviewers='iz.EditUnofficialReviewers')
 unofficial_reviewers = schema.Tuple(
 title=_(u'Unofficial reviewers'),
 description=_(u'People or groups who may review this item in a supplementary capacity'),
 value_type=schema.Choice(title=_(u"Principal"), source="plone.principalsource.Principals"),
 required=False,
 missing_value=(), # important!
)

alsoProvides(IReviewers, form.IFormFieldProvider)

class IReviewersMarker(Interface):
 """Marker interface that will be provided by instances using the
 IReviewers behavior. The ILocalRoleProvider adapter is registered for
 this marker.
 """

class ReviewerLocalRoles(grok.Adapter):
 """Grant local roles to reviewers when the behavior is used.
 """

 grok.implements(ILocalRoleProvider)
 grok.context(IReviewersMarker)
 grok.name('iz.behaviors.reviewers')

 def getRoles(self, principal_id):
 """If the user is in the list of reviewers for this item, grant
 the Reader, Editor and Contributor local roles.
 """

 c = IReviewers(self.context, None)
 if c is None or (not c.official_reviewers and not c.unofficial_reviewers):
 return ()

 if principal_id in c.official_reviewers:
 return ('Reviewer', 'OfficialReviewer',)
 elif principal_id in c.unofficial_reviewers:
 return ('Reviewer',)

 return ()

 def getAllRoles(self):
 """Return a list of tuples (principal_id, roles), where roles is a
 list of roles for the given user id.
 """

 c = IReviewers(self.context, None)
 if c is None or (not c.official_reviewers and not c.unofficial_reviewers):
 return

 seen = set ()

 for principal_id in c.official_reviewers:
 seen.add(principal_id)
 yield (principal_id, ('Reviewer', 'OfficialReviewer'),)

 for principal_id in c.unofficial_reviewers:
 if principal_id not in seen:
 yield (principal_id, ('Reviewer',),)

class ReviewersIndexer(grok.MultiAdapter):
 """Catalog indexer for the 'reviewers' index.
 """

 grok.implements(IIndexer)
 grok.adapts(IReviewersMarker, IZCatalog)
 grok.name('reviewers')

 def __init__(self, context, catalog):
 self.reviewers = IReviewers(context)

 def __call__(self):
 official = self.reviewers.official_reviewers or ()
 unofficial = self.reviewers.unofficial_reviewers or ()
 return tuple(set(official + unofficial))

Note that the iz.EditOfficialReviewers and
iz.EditUnofficialReviewers permissions are defined and granted
elsewhere.

This is quite a complex behavior, but hopefully you can see what’s going
on:

	There is a standard schema interface, which is grokked for form hints
using plone.directives.form and marked as an IFormFieldProvider.
It uses plone.formwidget.autocomplete and plone.principalsource
to implement the fields.

	We define a marker interface (IReviewersMarker) and register this
with the marker attribute of the <plone:behavior /> directive.

	We define an adapter from this marker to ILocalRoles from
borg.localrole. Here, we have chosen to use grokcore.component
(via five.grok) to register the adapter. We could have used an
<adapter /> ZCML statement as well, of course.

	Similarly, we define a multi-adapter to IIndexer, as provided by
plone.indexer. Again, we’ve chosen to use
convention-over-configuration via five.grok to register this.

Although this behavior provides a lot of functionality, it is no more
difficult for integrators to use than any other: they would simply list
the behavior interface (iz.behaviors.reviewers.IReviewers in this
case) in the FTI, and all this functionality comes to life. This is the
true power of behaviors: developers can bundle up complex functionality
into re-usable behaviors, which can then be enabled on a per-type basis
by integrators (or the same developers in lazier moments).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Schema-only behaviors using annotations or attributes

Writing behaviors that provide schema fields

Oftentimes, we simply want a behavior to be a reusable collection of
form fields. Integrators can then compose their types by combining
different schemata. Writing the behavior schema is no different to
writing any other schema interface. But how and where do we store the
values? By default, plone.behavior provides two alternatives.

Using annotations

Annotations, as provided by the zope.annotation [http://pypi.python.org/pypi/zope.annotation] package, are a
standard means of storing of key/value pairs on objects. In the default
implementation (so-called attribute annotation), the values are stored
in a BTree on the object called __annotations__. The raw
annotations API involves adapting the object to the IAnnotations
interface, which behaves like a dictionary, and storing values under
unique keys here. plone.behavior comes with a special type of factory
that means you can simply adapt an object to its behavior interface to
get an adapter providing this interface, on which you can get and set
values, which are eventually stored in annotations.

We’ve already seen an example of this factory:

<plone:behavior
 title="Reviewers"
 description="The ability to assign a list of official and/or unofficial reviewers to an item, granting those users special powers."
 provides=".reviewers.IReviewers"
 factory="plone.behavior.AnnotationStorage"
 marker=".reviewers.IReviewersMarkere"
 />

Here, plone.behavior.AnnotationStorage is a behavior factory that can
be used by any behavior with an interface that consists entirely of
zope.schema fields. It simply stores those items in object
annotations, saving you the trouble of writing your own annotation
storage adapter. If you adapt an object for which the behavior is
enabled to the behavior interface, you will be able to read and write
values off the resultant adapter as normal.

Storing attributes

This approach is convenient, but there is another approach that is even
more convenient, and, contrary to what you may think, may be more
efficient: simply store the attributes of the schema interface directly
on the content object.

As an example, here’s the standard IRelatedItems behavior from
plone.app.dexerity:

<plone:behavior
 title="Related items"
 description="Adds the ability to assign related items"
 provides=".related.IRelatedItems"
 for="plone.dexterity.interfaces.IDexterityContent"
 />

The IRelatedItems schema looks like this:

from zope.interface import alsoProvides

from z3c.relationfield.schema import RelationChoice, RelationList

from plone.formwidget.contenttree import ObjPathSourceBinder
from plone.directives import form

class IRelatedItems(form.Schema):
 """Behavior interface to make a type support related items.
 """

 form.fieldset('categorization', label=u"Categorization",
 fields=['relatedItems'])

 relatedItems = RelationList(
 title=u"Related Items",
 default=[],
 value_type=RelationChoice(title=u"Related",
 source=ObjPathSourceBinder()),
 required=False,
)

alsoProvides(IRelatedItems, form.IFormFieldProvider)

This is a standard schema using plone.directives.form (the package is
also grokked). However, notice the lack of a behavior factory. This is a
directly provided “marker” interface, except that it has attributes, and
so it is not actually a marker interface. The result is that the
relatedItems attribute will be stored directly onto a content object
when first set (usually in the add form).

This approach has a few advantages:

	There is no need to write or use a separate factory, so it is a
little easier to use.

	The attribute is available on the content object directly, so you can
write context/relatedItems in a TAL expression, for example. This
does require that it has been set at least once, though! If the
schema is used in the type’s add form, that will normally suffice,
but old instances of the same type may not have the attribute and
could raise an AttributeError.

	If the value is going to be used frequently, and especially if it is
read when viewing the content object, storing it in an attribute is
more efficient than storing it in an annotation. (This is because the
__annotations__ BTree is a separate persistent object which has
to be loaded into memory, and may push something else out of the ZODB
cache.)

The possible disadvantages are:

	The attribute name may collide with another attribute on the object,
either from its class, its base schema, or another behavior. Whether
this is a problem in practice depends largely on whether the name is
likely to be unique. In most cases, it will probably be sufficiently
unique.

	If the attribute stores a large value, it will increase memory usage,
as it will be loaded into memory each time the object is fetched from
the ZODB. However, you should use BLOBs or BTrees to store large
values anyway. Loading an object with a BLOB or BTree does not mean
loading the entire BLOB or Btree, so the memory overhead does not
occur unless the whole BLOB or BTree is actually used.

Note

“The moral of this story? BTrees do not always make things more
efficient!” ~ Laurence Rowe

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Dexterity Developer Manual »

 	Dexterity Developer Manual »

 	Behaviors »

Testing behaviors

How to write unit tests for behaviors

Behaviors, like any other code, should be tested. If you are writing a
behavior with just a marker interface or schema interface, it is
probably not necessary to test the interface. However, any actual code,
such as a behavior adapter factory, ought to be tested.

Writing a behavior integration test is not very difficult if you are
happy to depend on Dexterity in your test. You can create a dummy type
by instantiating a Dexterty FTI in portal_types and enable your
behavior by adding its interface name to the behaviors property.

In many cases, however, it is better not to depend on Dexterity at all.
It is not too difficult to mock what Dexterity does to enable behaviors
on its types. The following example is taken from collective.gtags and
tests the ITags behavior we saw on the first page of this manual.

Behaviors
=========

This package provides a behavior called `collective.gtags.behaviors.ITags`.
This adds a `Tags` field called `tags` to the "Categorization" fieldset, with
a behavior adapter that stores the chosen tags in the Subject metadata field.

To learn more about the `Tags` field and how it works, see `tagging.rst`.

Test setup

Before we can run these tests, we need to load the collective.gtags
configuration. This will configure the behavior.

 >>> configuration = """\
 ... <configure
 ... xmlns="http://namespaces.zope.org/zope"
 ... i18n_domain="collective.gtags">
 ...
 ... <include package="Products.Five" file="meta.zcml" />
 ... <include package="collective.gtags" file="behaviors.zcml" />
 ...
 ... </configure>
 ... """

 >>> from StringIO import StringIO
 >>> from zope.configuration import xmlconfig
 >>> xmlconfig.xmlconfig(StringIO(configuration))

This behavior can be enabled for any `IDublinCore`. For the purposes of
testing, we will use the CMFDefault Document type and a custom
IBehaviorAssignable adapter to mark the behavior as enabled.

 >>> from Products.CMFDefault.Document import Document

 >>> from plone.behavior.interfaces import IBehaviorAssignable
 >>> from collective.gtags.behaviors import ITags
 >>> from zope.component import adapts
 >>> from zope.interface import implements
 >>> class TestingAssignable(object):
 ... implements(IBehaviorAssignable)
 ... adapts(Document)
 ...
 ... enabled = [ITags]
 ...
 ... def __init__(self, context):
 ... self.context = context
 ...
 ... def supports(self, behavior_interface):
 ... return behavior_interface in self.enabled
 ...
 ... def enumerate_behaviors(self):
 ... for e in self.enabled:
 ... yield queryUtility(IBehavior, name=e.__identifier__)

 >>> from zope.component import provideAdapter
 >>> provideAdapter(TestingAssignable)

Behavior installation

We can now test that the behavior is installed when the ZCML for this package
is loaded.

 >>> from zope.component import getUtility
 >>> from plone.behavior.interfaces import IBehavior
 >>> tags_behavior = getUtility(IBehavior, name='collective.gtags.behaviors.ITags')
 >>> tags_behavior.interface
 <InterfaceClass collective.gtags.behaviors.ITags>

We also expect this behavior to be a form field provider. Let's verify that.

 >>> from plone.directives.form import IFormFieldProvider
 >>> IFormFieldProvider.providedBy(tags_behavior.interface)
 True

Using the behavior

Let's create a content object that has this behavior enabled and check that
it works.

 >>> doc = Document('doc')
 >>> tags_adapter = ITags(doc, None)
 >>> tags_adapter is not None
 True

We'll check that the `tags` set is built from the `Subject()` field:

 >>> doc.setSubject(['One', 'Two'])
 >>> doc.Subject()
 ('One', 'Two')

 >>> tags_adapter.tags == set(['One', 'Two'])
 True

 >>> tags_adapter.tags = set(['Two', 'Three'])
 >>> doc.Subject() == ('Two', 'Three')
 True

This test tries to prove that the behavior is correctly installed and
works as intended on a suitable content class. It is not a true unit
test, of course. For that, we would simply test the Tags adapter
directly on a dummy context, but that is not terribly interesting, since
all it does is convert sets to tuples.

First, we configure the package. To keep the test small, we limit
ourselves to the behaviors.zcml file, which in this case will suffice.
We still need to include a minimal set of ZCML from Five.

Next, we implement an IBehaviorAssignable*adapter. This is a low-level
component used by *plone.behavior to determine if a behavior is enabled
on a particular object. Dexterity provides an implementation that checks
the type’s FTI. Our test version is much simpler - it hardcodes the
supported behaviors.

With this in place, we first check that the IBehavior utility has been
correctly registered. This is essentially a test to show that we’ve used
the <plone:behavior /> directive as intended. We also verify that our
schema interface is an IFormFieldsProvider. For a non-form behavior,
we’d obviously omit this.

Finally, we test the behavior. We’ve chosen to use CMFDefault’s
Document type for our test, as the behavior adapter requires an object
providing IDublinCore. If we were less lazy, we’d write our own class
and implement IDublinCore directly. However, in many cases, the types
from CMFDefault are going to provide convenient test fodder.

Obviously, if our behavior was more complex, we’d add more intricate
tests. By the last section of the doctest, we have enough context to
test the adapter factory.

To run the test, we need a test suite. In tests.py, we have:

import doctest
import unittest
from zope.testing import doctestunit
from zope.app.testing import setup

def setUp(test):
 pass

def tearDown(test):
 setup.placefulTearDown()

def test_suite():
 return unittest.TestSuite((
 doctestunit.DocFileSuite(
 'behaviors.rst',
 setUp=setUp, tearDown=tearDown,
 optionflags=doctest.NORMALIZE_WHITESPACE|doctest.ELLIPSIS),
))

This runs the behaviors.rst doctest from the same directory as the
tests.py file. To run the test, we can use the usual test runner:

$./bin/instance test -s collective.gtags

A note about marker interfaces

Note that marker interface support depends on code that is implemented
in Dexterity and is non-trivial to reproduce in a test. If you need a
marker interface in a test, set it manually with
zope.interface.alsoProvides, or write an integration test with
Dexterity content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

Content-types with Archetypes

Description

How to create new content-types in Plone using the Archetypes
framework.

	ATContentTypes

	The 'display' menu

	Restricting addable types

	From Zope to the Browser
	Calling content objects

	Introduction
	What is Archetypes?

	Archetypes schemas

	What is ATContentTypes?

	A Simple AT Product
	Introduction

	Product package layout

	The interfaces module

	The configuration module

	The startup module

	The content package and its modules

	Adding a custom view for the content

	Installing the product

	Basic integration tests

	Troubleshooting

	Fields (Archetypes)
	Fields Reference

	Widgets Reference

	Validator Reference

	Advanced: Understanding Storage

	Other Useful Archetypes Features
	How to use events to hook the Archetypes creation process

	Prerequisites

	Step by step

	Warnings from your future

	Further information

	How to use events to hook the Archetypes creation process
	Introduction

	Prerequisites

	Step by step

	Warnings from your future

	Further information

	Appendix: Practicals
	1. How-To Extend A Basic Archetype Content Type

	2. Implement Archetypes ComputedField and ComputedWidget on your Product and reference other Fields

	3. Making the view page of a content type use your schemata declarations

	Introduction

	Python class and schema

	View template

	Conclusion

	4. Enabling versioning on your custom content-types

	5. b-org: Creating content types the Plone 2.5 way

	5.1. Introduction

	5.2. A whirlwind tour of Zope 3

	5.3. Overview of b-org

	5.4. To Archetype or not to Archetype

	5.5. The extension story

	5.6. Filesystem organisation

	5.7. Interfaces

	5.8. Test-driven development

	5.9. Setup using GenericSetup

	5.10. Using membrane to provide membership behaviour

	5.11. Writing a custom PAS plug-in

	5.12. Placeful workflow

	5.13. Sending and handling events

	5.14. Annotations

	5.15. Zope 3 Views

	5.16. The schema extension mechanism

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

ATContentTypes

Description

Since Plone 2.1, Plone has shipped with ATContentTypes for its
default content types

“ATContentTypes”:/products/atcontenttypes is a re-implementation of the
standard CMF types as Archetypes content. It adds a numer of features to
the standard CMF types and offers more flexibility in extending and
re-using content types. The “RichDocument
tutorial”:/documentation/tutorial/richdocument explains how
ATContentTypes are subclassed and how they make use of the latest
conventions in Archetypes and CMF.
The ATContentTypes product is installed during the creation of a Plone
site. It will migrate the base CMF content types to its own equivalents
using its own highly generic migration framework.
Please note that ATContentTypes aims to be usable in plain CMF. It has a
number of optional Plone dependencies, in the form:

if HAS_PLONE21:
…
else:
…

Plone has no direct dependencies on ATContentTypes, nor on Archetypes.
There are a few generic interfaces in ‘CMFPlone.interfaces’ that are
used by both Archetypes/ATContentTypes and Plone, but we do not wish to
have any direct dependency on Archetypes, since Archetypes is
essentially just a development framework to make developing CMF content
types easier. By minimising the number of dependencies, we ensure that
plain-CMF (and in the future, plain-Zope 3) content types are still
usable within Plone.
ATContentTypes and Plone both depend on ‘CMFDynamicViewFTI’. This is a
wrapper on the standard CMF FTI type that adds support for the ‘display’
menu by recording a few extra properties for the available and
currently-selected view methods. It also provides a mixin class,
‘CMFDynamicViewFTI.browserdefault.BrowserDefaultMixin’, which enables
support for the ‘display’ menu (or rather, the interface
‘CMFDynamicViewFTI.interfaces.ISelectableBrowserDefault’).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

The 'display' menu

Description

The 'display' menu is the drop-down that lets content authors select
which view template to use, or which object to set as a default-page
in a folder.

The display menu is found in global_contentmenu.pt and supports
three different functions:
- Set the display template (aka “layout”) of the current content object,
provided that object supports this.
- Set the default-page of a folder, provided the folder supports this
- If viewing a folder with a default-page, allow selecting the standard
view template/layout for that folder, thus unsetting the default-page.
There are two interfaces in CMFDynamicViewFTI.interfaces that are used
to support this functionality:
IBrowserDefault – Provides information about the layout current
selection of a given content object, including any selected deafult-page
ISelectableBrowserDefault – Extends IBrowserDeafult with methods to
manipulate the current selection
The canonical implementation of both these interfaces is in
CMFDynamicViewFTI.browserdefault.BrowserDefaultMixin. This in turn
gets the vocabulary of available view methods from the FTI (and hence
this can be edited through-the-web in portal_types), and stores the
current selection in two properties on each content object: layout,
for the currently selected view template, and default_page if any
default page is selected. If both are set, the default-page will take
precedence.
BrowserDefaultMixin actually provides a __call__ method which
means that will render the object with its default layout template.
However, PloneTool.browserDefault() will actually query the interface
directly to find out which template to display - please see the next
page for the gory details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

Restricting addable types

Description

The constrain-types machinery and how it drives the "restrict..."
option under the "add item" menu.

As of Plone 2.1, the “add item” menu supports a “restrict…” page that
lets the user decide which items can and cannot be added to that folder.
This functionality is defined in a pair of interfaces in
CMFPlone.interfaces.constrains, IConstrainTypes for read-only access
and ISelectableConstrainTypes for the mutators.
The canonical implementation of these interfaces is in
ATContentTypes.lib.constraintypes. This provides storage for the
constraint mode (more below) and the list of locally allowed and
“preferred” types. The preferred types are the ones that appear in the
list immediately, and the rest of the allowed types appear behind a
“more…” item.
The constraint type mode can be ACQUIRE (the default), DISABLED or
ENABLED. When disabled, the settings in portal_types are used. When
enabled, the list of types explicitly set are used. When set to acquire,
the parent folder`s types will be used *if* the parent is of the same
portal type as the folder in question. If they are of different types
the settings in portal_types apply.
The rest of the ConstrainTypesMixin class overrides CMFCore`s
allowedContentTypes and invokeFactory methods to ensure the
constraints are enforced.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

From Zope to the Browser

Description

How do content types get "published" (in the Zope sense, not
the workflow sense) to the web browser?

There is a fairly complex mechanism that determines how a content object
ends up being displayed in the browser. The following is an adaptation
of an email to the plone-devel list which aims to untangle this
complexity. It pertains to Plone 2.1 only.
Assumptions:

	You want the 'view' action to be the same as what happens when you go to the object directly for most content types...

	...but for some types, like File and Image, you want the "view" action to display a template, whereas if you go straight to the object, you get the file's contents

	You want to be able to redefine the 'view' action in your custom content types or TTW in portal_types explicitly. This will essentially override the current layout template selection. Probably this won't be done very often for things deriving from ATContentTypes, since here you can register new templates with the FTI and have those be used (via the "display" menu) in a more flexible (e.g. per-instance, user-selectable) way, but you still want the "view" action to give the same power to change the default view of an object as it always has.

	When you use the "display" menu (implemented with IBrowserDefault) to set a default page in a folderish container, you want it to display that item always, unless there is an index_html - index_html always wins (note - the "display" menu is disabled when there is an index_html in he folder, precisely because it will have no effect)

	When you use the "display" menu to set a layout template for an object (folderish or not), you want that to be displayed on the "view" tab (action), as well as by default when the object is traversed to without a template/action specified...

	...except for ATFile and ATImage, which use a method index_html() to cut in when you don't explicitly specify an item. However, these types will *still* want their "view" action to show the selected layout, but will want a no-template invocation to result in the file content

Some implementation detail notes:
There are two distinct cases:

CASE I: "New-style" content types using the paradigms of ATContentTypes
-- These implement ISelectableBrowserDefault, now found in the generic
CMFDynamicViewFTI product. They support the "display" menu with
per-instance selectable views, including the ability to select a
default-page for folders via the GUI. These use CMF 1.5 features
explicitly.

CASE II: "Old-style" content types, including CMF types and old AT types
-- These do not implement this interface. The "display" menu is not
used. The previous behavior of Plone still holds.
The "old-style" behavior is implemented using the Zope hook
__browser_default__(), which exists to define what happens when you
traverse to an object without an explicit page template or method. This
is used to look up the default-page (e.g. index_html) or discover what
page template to render. In Plone, __browser_default__() calls
PloneTool.browserDefault() to give us a single place to keep track of
this logic. The rules are (slightly simplified):

1. A method, attribute or contained object 'index_html' will always
win. Files and Images use this to dump content (via a method
index_html()); creating a content object index_html in a folder as a
default page is the now-less-encouraged way, but should still be the
method that trumps all others.

2. A property 'default_page' set on a folderish object giving the id of
a contained object to be the default-page is checked next.

3. A property 'default_page' in 'site_properties' gives us a list of
ids to check and treat similarly to index_html. If a folder contains
items with any of these magic ids, the first one found will be used as a
default-page.

4. If the object has a 'folderlisting' action, use this. This is a funny
fallback which is necessary for old-style folders to work (see below).

5. Look up the object's 'view' action and use this if none of the above
hold true.

In addition, we test for ITranslatable to allow the correct translation
of returned pages to be selected (LinguaPlone), and have some WebDAV
overrides.
Lastly, it has always been possible to put "/view" at the end of a URL
and get the view of the object, regardless of any index_html() method.
This means that you can go to /path/to/file/view and get the view of the
file, even if /path/to/file would dump the content (since it has an
index_html() method that does that).
This mechanism uses the method view(), defined in PortalContent in CMF
(and also in BaseFolder in Archetypes). view() returns 'self()', which
results in a call to __call__(). In CMF 1.4, this would look up the
'view' action and resolve this. Note that for *folders* in Plone 2.0,
the 'view' action is just 'string:${object_url}/', which in turn
results in __browser_default__() and the above rules. This means
that /path/to/folder/view will render a default-page such as a content
object index_html. The fallback on the 'folderlisting' action in
PloneTool.browserDefault() mentioned above is there to ensure that when
there *isn't* an index_html or other default-page, we get
'folder_listing' (instead of an infinite loop), essentially making the
'folderlisting' action on Folders the canonical place to specify the view
template. If you think that sounds messy, you're right. (With CMF 1.5
types, things are little different - more on that later.)

Enter CMF 1.5. CMF 1.5 introduces "Method Aliases". It is important to
separate these from actions:

Actions -- These generate the content action tabs (the green ones). You
almost always have 'view' and 'edit'. Other standard actions are
'properties' and 'sharing'. Each action has a target, which is typically
something like 'string:${object_url}/base_edit' for the edit tab.
'base_edit' here is a page template.

Method aliases -- These let you generalize actions. The alias 'edit' can
point to 'atct_edit' for an ATContentTypes document, for example, and
point to 'document_edit_form' for a CMF document. Aliases can be
traversed to, so /path/to/object/edit will send you to 'atct_edit' on
the object if the object is an ATContentTypes document, and to
'document_edit_form' if it is a CMF Document.
This level of indirection is actually quite useful. First of all, we get
a standard set of URLs, so /path/to/object/edit is always edit,
/path/to/object/view is always view. The actions (tabs) can point to
these, meaning that we can pretty much use the same set of actions for
all common types, with the variation happening in the aliases instead.
Secondly, a method alias with the name "(Default)" specifies what
happens when you browse to the object without any template or action
specified. That is, /path/to/object will look up the "(Default)" alias.
This may specify a page template, for example, or a method (such as a
file-dumping index_html()) to call.
Crucially, if "(Default)" is not set or is an empty string, CMF falls
back on the old behavior of calling the __browser_default__()
method. In PloneFolder.py, this is defined to call
PloneTool.browserDefault(), as mentioned above, which implements the
Plone-specific rules for the lookup. Hence, if we need the old
behavior, we can just unset "(Default)"! This is what happens with
old-style content types (that is, it is the default if you're not using
ATContentTypes' base classes or setting up the aliases yourself).
Now, CMFDynamicViewFTI, which is used by ATContentTypes, extends the
standard CMF FTI and a adds a few things:

1. A pair of interfaces, ISelectableBrowserDefault and IBrowserDefault
(the former extends the latter) describing various methods for getting
dynamic views, as found in Plone in the "display" menu.

2. A class BrowserDefaultMixin which gives you a sensible implementation
of these. This uses two properties, "default_page" and "layout" to keep
track of which default-page and/or view template (aka layout) is
currently selected on an object.

3. Two new properties in the FTI in portal_types - the default view,
and the list of available views.

4. A special *target* for a method alias called '(selected layout)',
which will return the
selected view template (layout).

5. Another special alias target called '(dynamic view)', which will
return a default-page, if set, or else the selected view template
(layout) - you can think of "(dynamic view)" as a superset of "(selected
layout)".

ATContentTypes uses BrowserDefaultMixin from CMFDynamicViewFTI, and sets
up the standard aliases for "(Default)" and "view" to point to "(dynamic
view)". The exceptions are File and Image, which have the "(Default)"
alias pointing to "index_html", and the "view" alias pointing to
"(selected layout)". This way, /path/to/file results in the file content
(via the index_html() method) and /path/to/file/view shows the selected
layout inside Plone. (Note that using "(dynamic view)" for the "view"
alias would *not* work, because the index_html attribute would take
precedence over the layout when testing for a default-page.)
Additionally, the 'view' action (tab) for each of these types must be
'string:${object_url}/view' to ensure it invokes the "view" alias, not
the "(Default)" alias.
For Folders, the use of "(dynamic view)" takes care of the default-page
and the selected view template. The 'folderlisting' fallback is no
longer needed - the 'view' action can still be "string:${object_url}",
and the "(Default)" alias pointing to "(dynamic view)" takes care of the
rest.
In order for the "(dynamic view)" target to work as expected, it needs
to delegate to PloneTool so that Plone's rules for lookup order and
(especially) ITranslatable/LinguaPlone support are used. However,
delegating to PloneTool.browserDefault() is not an option, because this
does other checks which are not relevant (this essentially stems from
the fact that browserDefault() is implementing *both* the "(Default)"
and "view" cases above in a single method). Thus, the code for
determining which, if any, contained content object should be used as a
default-page has been factored out to its own method,
PloneTool.getDefaultPage(). Helpfully, this can also be used by
PloneTool.isDefaultPage(), radically simplifying that method.

Calling content objects

The last issue is what happens with view() and __call__() in this
equation. The first thing to note is that view() method is masked by the
'view' method alias. Hence, /path/to/object/view will invoke the method
alias 'view' if it exists, not call view(), making that method a lot
less relevant.
However, we still want __call__() to have a well-defined behavior.
In CMF 1.4, __call__()used to look up the 'view' action, and this is
still the default fallback, but if the "(Default)" alias is set, this is
used instead. This may give somewhat unexpected behavior, however: From
the comments in the source code and the behavior in Zope, where
__call__() is the last fallback if neither
__browser_default__() nor index_html are found, and to ensure that
the "view() --> __call__()" mechanism always returns the object
itself, never dumped file content, it seems to be the intention that
__call__() should always return the object, never a default-page or
file content dumped via an index_html() method. For *Folders* in
Plone 2.0, this was actually not the case: __call__() would look up
the 'view' action, which was "string:${object_url}", which with the use
of __browser_default__() resulted in a lookup of a default-page if
one was present. With the CMF 1.5 behavior, the use of the "(Default)"
alias in __call__() will mean that calling a File returns the dumped
file content. Calling a Folder will return the default-page (or the
Folder in its view if no default page is set) as in Plone 2.0.
The behavior in Plone 2.1 is that __call__(), as overridden in
BrowserDefaultMixin, should always return the object itself as it would
be rendered in Plone without any index_html or default-page magic.
Hence, __call__() in CMFDynamicViewFTI looks up the "(selected
layout)" target and resolves this. This behavior is thus consistent
with the old behavior of Documents and Files, but whereas Folders with
a default-page in 2.0 used to return that default page from
__call__(), in 2.1, it returns the Folder itself rendered in its
selected layout. Again remember that this method will rarely if ever be
called, since /path/to/object is intercepted by CMF's pre-traversal hook
and ends up looking up the "(Default)" method alias (which *does*
honor default-page for Folders), and /path/to/object/view uses the
"view" method alias, as described above.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

Introduction

What is Archetypes?

Description

Brief presentation of Archetypes.

Archetypes is a framework for developing new content types for a Plone
project. Most content management projects involve introducing new types
of content, which in the non-trivial case requires an informed
understanding of how Zope and the CMF work. Archetypes provides a
simple, extensible framework that can ease both the development and
maintenance costs of CMF content types while reducing the learning curve
for the simpler cases.

Compared to building content types using the stock CMF (through
subclassing), Archetypes gives you the following advantages:

	automatically generates forms and views;

	provides a library of stock field types, form widgets, and field
validators;

	allows defining custom fields, widgets, and validators;

	automates transformations of rich content;

	a built-in reference engine that gives the ability to link two
objects together with a relation; such a “link” from a given object
to another one is a Python object called a reference.

Since Plone 2.1, Archetypes has become the de-facto way of developing
new content types, and a majority of third party products that are
released these days use Archetypes.

Archetypes schemas

Description

Introducing Archetypes-based schemas and fields.

Archetypes provides a robust framework for storing data attributes on
content objects. This framework consist of a number of Fields
stored in a container called a Schema. Fields are simply specialized
Python classes that allow you to store and retrieve data associated with
an Archetypes object.

Fields provide a few functionalities. First, there are specialized field
types for strings, lists of strings, integers, floating-point numbers,
etc., that allow special handling of fields based on the type of data
stored.

Some definitions

Before we go diving in, let’s define some often-used terms:

	Field: An Archetypes Field. This refers to an instance of a Field
class defined in a Schema.

	Schema: The “container” that Archetypes uses to store fields.

	Schemata: A named grouping of fields. One Schema can have many
schematas.

	AT: Abbreviation for Archetypes.

Fields, Classes, and Objects

Archetypes Fields are Python objects contained within the Schema. A
Field is defined once for an Archetypes content class. This single Field
instance is used for every instance of that class. Therefore, the
relationship between Field instances and content classes is described as
such: “A field instance belongs to exactly one class.” A class, however,
can have many different Field instances. Furthermore, every instance
of an AT class uses the same set of Fields. AT objects themselves do
not contain unique Fields.

When Zope starts up, during product initialization, Archetypes reads the
schema of the registered classes and “automagically” generates methods
to read (the accessor) and change (the mutator) each of the fields
defined.

Stock schemas

Archetypes includes three stock schemas:

	BaseSchema: defines a normal content type,

	BaseFolderSchema: defines a folderish content type (object can
contain other objects),

	BaseBTreeFolderSchema: for folders which need to handle hundreds or
thousands of objects (even up to millions).

All three include two fields, id and title, as well as the
standard Dublin Core metadata fields.

Modifying the fields of an existing schema

Modifying an existing schema field is possible using the syntax
schema['<field_name>'].attribute = value. For example, to change the
label of the description field widget (already available in
BaseSchema), you can write (in your defined schema definition that
reuses BaseSchema):

schema['description'].widget.label = u'Summary'

The fields in the schema are ordered, and normally first fields come
first in “add” and “edit” forms. To rearrange a field within the schema
use the moveField method:

	Place it before a specific field:
schema.moveField('<field_to_move>', before='<field_to_place_it_before>')

	Place it after a specific field:
`` schema.moveField('<field_to_move>', after='<field_to_place_it_after>')``

	Place it at the top of the schema:
`` schema.moveField('<field_to_move>', pos='top')``

	Place it at the bottom:
`` schema.moveField('<field_to_move>', pos='bottom')``

	Place it in a specific position:
`` schema.moveField('<field_to_move>', pos=0)``

What is ATContentTypes?

Description

ATContentTypes is the Plone core product that provides the default
content types (since Plone 2.1).

One of the major changes introduced in Plone 2.1 was that the core
content types (Page, Image, etc) were changed from being based on stock
CMF types, to using Archetypes. The new core types are housed in the
ATContentTypes product.

ATContentTypes introduces a number of base classes and tools that
provide common “Plone-ish” behaviour. This includes things like support
for the “display” menu and the “more…” menu and restrictions for the
“add item” menu.

You can use ATContentTypes’ base classes and tools in your own products.
The RichDocument tutorial covers the core techniques, and is probably
a good place to go when you have finished this reference.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

A Simple AT Product

Description

A semi-realistic example Archetypes-based content type product.

	Introduction

	Product package layout

	The interfaces module
	Why do you need interfaces?

	The interface for the Instant Message class

	The configuration module

	The startup module

	The content package and its modules
	The message module

	The __init__ module

	Adding a custom view for the content
	The browser layer concept

	Defining the browser layer interface

	Adding and registering the browser template

	Installing the product
	The setup profile files (profiles/default)

	Registering our setup profile

	Restarting Zope

	Quick-installing the product

	Basic integration tests

	Troubleshooting

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Introduction

Description

Introducing a sample AT Product and the contents of the tutorial.

In this part of the manual, we discuss a sample AT Product to explain
CMF/Archetypes practices. We will be building a product called
example.archetype, which will implement a content type
(InstantMessage) that members with specific rights can use to add
messages readable by other members. However, as you may have guessed,
this is more a learning example than a usable product for a real website
application.

What is a Product ? A product - a Zope product to be precise - is a
third party add-on that can be integrated to provide additional
functionality. It is a code package written using the Python language
and conventions.

In order to understand this section you will need to have some prior
knowledge of working on the file system and programming protocols common
to Python and Zope.

The example.archetype product features the following CMF and
Archetypes capabilities:

	basic fields and widgets;

	defining and using a vocabulary for a field with a selection widget;

	defining specific “Add” permissions for the contents.

The code of the product can be downloaded here:
http://plone.org/products/example.archetype/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Product package layout

Description

Conventions and techniques for organizing the package for an AT product.

Following Zope, Plone and AT’s conventions, the content of our example
product pakage will look like this:

- __init__.py
- configure.zcml
- config.py
- interfaces.py
- content
 - __init__.py
 - message.py
- profiles
 - default
- browser
 - __init__.py
 - configure.zcml
 - instantmessage.pt
- tests
 - __init__.py
 - base.py
 - test_setup.py

What is the purpose of these files and directories?

	__init__.py: The usual “Python package” initialization module;

	configure.zcml: Using Zope’s new Configuration Markup Language
(ZCML), this file configures the services or behaviour the Zope
server needs to load at startup;

	config.py: Provides configuration variables for the product;

	interfaces.py: Where you define interfaces describing what the
packages’ classes will do;

	content: Contains the modules providing the implementation of the
content types. In this case, it contains the message.py file where
the ‘InstantMessage’ class should be defined;

	profiles/default: Contains a set of XML files that are needed to
provide the settings that will be used by Plone’s Quick-Installer
tool when installing the product within Plone; this is what we call
an Extension Profile, an artifact of Zope CMF’s GenericSetup
technology. Note that this replaces the old way of doing based on
the Extensions/Install. More precisely, since Plone 3.0, you do not
need that old-style technique;

	browser: The sub-package where the developer can add specific
presentation code such as browser views and templates; the contained
configure.zcml is used to provide these components registration.

	tests: Contains the unit tests code for the product.

If you have ZopeSkel installed, you can use the following command to
create a similar structure:

paster create -t archetype example.archetype

Now we will go through the files one by one and add what we need to
produce our application.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

The interfaces module

Description

The module where you define interfaces describing what
your content class(es) will do.

Why do you need interfaces?

Interfaces are useful to describe what a class will do. They are a kind
of contract between a class and the components that class interact with.
Starting a content management functionality package with writing
interfaces is recommended practice as it helps document your code. In
addition to that, Zope Component Architecture (ZCA) allows us to use
interfaces as components for adapting a class (which is useful as new
user requirements appear) and thus specializing its behaviour.

The interface for the Instant Message class

This is done by convention in the interfaces.py file, that you need
to add at the root of the package.

First, we need an import from Zope’s zope.interface module, which is
included into Zope 2’s distribution since version 2.8:

from zope.interface import Interface

Following ZCA naming conventions (interface names start with an I), we
define the IInstantMessage interface we need for the
InstantMessage class that we will define later:

class IInstantMessage(Interface):
 """
 Interface for the InstantMessage class.
 """

That’s it!

We could add attribute definitions to it using the
zope.interface.Attribute class, but this is not mandatory. When an
interface is defined as above, without any function nor attribute, we
call it a “marker interface” meaning that it will be used simply to
“mark” the instances of the class that implements it.

More information about interfaces in the context of Archetypes can be
found in the b-org tutorial - Interfaces section. For a detailed
presentation of interfaces and their usage patterns, read the doctests
document available from Zope’s documentation site [http://docs.zope.org/zope3/Code/zope/interface/README.txt].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

The configuration module

Description

The configuration details for your content type, in config.py.

First, we have to import a class from Archetypes:

from Products.Archetypes.atapi import DisplayList

Displaylist is a data container we use when displaying
pulldowns/radiobuttons/checkmarks with different choices. Let’s say we
wanted priorities on our instant messages, and we wanted those to be
High, Normal and Low. We will specify these later in the
file.

The next two lines set the project (Product in Zope) name, and point to
the skin directory. PROJECTNAME should reference the name of the
package: example.archetype.

PROJECTNAME = "example.archetype"

Now, we need to specify our ‘Priority’ pulldown. It should look like
this, using the DisplayList utility class that Archetypes has provided
for exactly that purpose:

MESSAGE_PRIORITIES = DisplayList((
 ('high', 'High Priority'),
 ('normal', 'Normal Priority'),
 ('low', 'Low Priority'),
))

Python notes:

	The reason for double parantheses is that DisplayList is a class that
you pass a tuple of tuples to.

We also need to define the “Add” permission(s) for the content type(s):

ADD_CONTENT_PERMISSIONS = {
 'InstantMessage': 'example.archetype: Add InstantMessage',
 }

We recommend using the standard way of naming permissions:
‘<ProductName>: <Permission>’. This will group the related permissions
together within the ZMI (Security tab), and allow the Administrator to
recognize which permissions belong to which Product.

Note that, unless you have an advanced case which needs custom security
settings, you don’t need to define your own permissions for the “edit”
and “view” of the content. In this simple case you will just reuse, in
the modules where needed, the generic permissions defined in
CMFCore.permissions: “View”, “Modify portal content”…

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

The startup module

Description

The initialization module (__init__.py) provides the script
that is run when Zope is started.

Before starting the usual Zope product initialization code, we need to
define a Message Factory for when this product is internationalized.

from zope.i18nmessageid import MessageFactory

exampleMessageFactory = MessageFactory('example.archetype')

The defined MessageFactory object will be imported with the special
name “_” in most modules, and strings like _(u“message”) will then be
extracted by i18n tools for translation.

Now, we import some useful stuff from the Archetypes
API:process_types is useful to get the product’s content types,
associated constructors, and Factory Type Information (FTI) data
structures, while listTypes can be used to list the types available
in the product.

We also need to import the utils module from CMFCore to be able
to use its ContentInit class later.

from Products.Archetypes.atapi import process_types
from Products.Archetypes.atapi import listTypes

from Products.CMFCore import utils

Python notes:

	Factory Type Information (FTI): Part of a CMF portal’s configuration,
the FTI for a content type is the data structure that holds the
information needed to expose a content type within the portal. From
the integrator’s perspective, the FTI is the object (Factory-based
Type Information object) within the portal_types component that
tells CMF and Plone how to create a content from the type and how to
display it.

	How exactly does ‘listTypes’ work: See those registerType() calls in
your content type modules? Notice how we also import those modules
(but do nothing with the import) in the ‘content’ package’s
__init__.py. The registerType() call tells AT about the type so
that listTypes() can find it later.

One of the important import steps : we import everything that is defined
in the content sub-package, i.e. all its modules:

from content import message

Now, we import the configuration module, in order to have access to the
variables it contains, such as the “Add” permission setting:

import config

Now for the real action. You define a function that is required by Zope
and CMF internals to initialize our content type(s):

def initialize(context):

The first part of the code of this function generates the content
types, the constructors and the Factory-based Type Informations (or
FTIs) required to make your types work with the CMF:

content_types, constructors, ftis = process_types(
 listTypes(config.PROJECTNAME),
 config.PROJECTNAME)

The second part instantiates an object of the class ContentInit (from
CMFCore), and registers your types in the CMF:

utils.ContentInit(
 "%s Content" % config.PROJECTNAME,
 content_types = content_types,
 permission = config.ADD_CONTENT_PERMISSIONS['InstantMessage'],
 extra_constructors = constructors,
 fti = ftis,
).initialize(context)

Handling several content types

There is a better way to write the code that initializes the content
type class with its “Add” permission and constructor, so that it still
works if you define several content types. This is useful if you plan to
later augment your product with additional types.

Here is the improved code:

def initialize(context):

 content_types, constructors, ftis = process_types(
 listTypes(config.PROJECTNAME),
 config.PROJECTNAME)

 # We want to register each type with its own permission,
 # this will afford us greater control during system
 # configuration/deployment (credit : Ben Saller)

 allTypes = zip(content_types, constructors)
 for atype, constructor in allTypes:
 kind = "%s: %s" % (config.PROJECTNAME, atype.portal_type)
 utils.ContentInit(kind,
 content_types = (atype,),
 permission = config.ADD_CONTENT_PERMISSIONS[atype.portal_type],
 extra_constructors = (constructor,),
 fti = ftis,
).initialize(context)

Python notes:

	We can use the “ADD_CONTENT_PERMISSIONS[atype.portal_type]”
construct because ADD_CONTENT_PERMISSIONS references a dictionary
in which the keys are the potential content types names.

	The zip() function is a Python built-in that pairs up elements of two
lists. In this case, “allTypes” will be a list of tuples containing a
content type from “content_types” and the corresponding constructor
from “constructors”.

	If you have several content types, you should not forget to import
each content module, as is done for the message example discussed
here !

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

The content package and its modules

Description

Now we are ready for the core of the product, i.e. the
content class definition module (content/message.py).

Since it provides a Python (sub)package, the ‘content’ directory
contains 2 modules:

	the usual __init__ module that initializes the package,

	the message module (message.py) where we will define the
‘InstantMessage’ class.

The message module

First imports we need

We start the message module by adding the general Zope-related imports
we need, such as the implements function from the zope.interface
module:

from zope.interface import implements

We need to use a few classes and/or functions provided by the core of
our codebase, i.e. CMF/Archetypes. It is possible to have access to all
the classes and helper functions made publicly available by Archetypes,
by importing its façade or API module (Products.Archetypes.atapi)
this way:

from Products.Archetypes import atapi

i18n support

It is always a good idea to have an i18n-enabled application. To start
using Zope’s i18n support, let’s import the MessageFactory object
created in the product’s startup module:

from example.archetype import exampleMessageFactory as _

The MessageFactory referenced with the _ symbol can now be used to
provide i18nized labels, descriptions, and all the miscellaneous text
snippets that are injected in the UI, also known as “messages”. For a
content type implementation, this is useful for UI widgets; for example
to define the label of the content title field widget, we could define
label = _(u'Title'). (See later for how we make use of this
tool/practice.)

ATContentTypes-based schema definition

You can base your implementation directly on these stock Archetypes
schemas. But you can add better support for Plone’s UI and content
management policies (such as the parameters that allow showing/hiding
contents in the navigation menu), by basing the implementation on
ATContentTypes’ base schema, ATContentTypeSchema. To be compatible
with that schema, you will also need to inherit from ATContentTypes’
ATCTContent base class.

Let’s add the import of modules we need for that:

from Products.ATContentTypes.content import base
from Products.ATContentTypes.content import schemata

Then, we import things internal to our product package, such as our
defined interface(s) and the configuration module (for access to things
such as PROJECTNAME and MESSAGE_PRIORITIES):

from example.archetype.interfaces import IInstantMessage

from example.archetype import config

Now, we have everything we need to start building the schema, and then
the class that will use it. We start out by copying ATContentTypes’
ATContentTypeSchema, and we extend it by adding our specific fields
and/or overriden field properties.

schema = schemata.ATContentTypeSchema.copy() + atapi.Schema((

 atapi.StringField('priority',
 vocabulary = config.MESSAGE_PRIORITIES,
 default = 'normal',
 widget = atapi.SelectionWidget(label = _(u'Priority')),
),

 atapi.TextField('body',
 searchable = 1,
 required = 1,
 allowable_content_types = ('text/plain',
 'text/structured',
 'text/html',),
 default_output_type = 'text/x-html-safe',
 widget = atapi.RichWidget(label = _(u'Message body')),
),

))

Notes:

	To instantiate an Archetypes schema object, you pass a tuple of field
objects to the ‘Schema’ class.

We define the body of the InstantMessage object using a RichWidget, so
the user can use formatting with a WYSIWYG editor.

The full list of out-of-the-box available Fields and Widgets can be
found in the Fields section at the end of the manual. You can find
more 3rd party fields and widgets here.

Content-type class definition

The last step is to create the class for the InstantMessage content. It
inherits from ATContentTypes’ ATCTContent, which itself is based on AT’s
BaseContent, which automatically gives its ‘id’ and ‘title’ attributes,
and the entire Dublin Core metadata set (Title, Description, Creator,
CreationDate, etc):

class InstantMessage(base.ATCTContent):
 """An Archetype for an InstantMessage application"""

 implements(IInstantMessage)

 schema = schema

The first information we add for the class definition is saying that it
implements the IInstantMessage interface that we have previously
defined (in interfaces.py) and imported.

implements(IInstantMessage)

The next thing is assigning the reference of the Archetypes schema,
using the schema class attribute.

schema = schema

The content class definition is done. Now, we are ready to activate the
content type in Archetypes’ internal types registry. This is done using
the helper function called registerType.

atapi.registerType(InstantMessage, config.PROJECTNAME)

Congratulations! You have just created your first Archetype for Plone!
It allows you to handle the content of an instant message with
Zope-based persistent objects which:

	can be added within your Plone site,

	published by the Zope Publisher, which means you can visit them via
their URLs, etc…

	searched since they are automatically indexed,

	etc…

But wait! You have some final packaging work to do to ease installation
of the product within your Plone site.

Notes:

	At the content class level, you could also provide the ‘actions’
attribute useful for defining the settings of the type’s actions (for
the portal_actions tool). In Plone 3, this is no more needed, since
this is part of the FTI’s configuration details, and should be
provided using GenericSetup, in the types-related XML files (i.e.
‘profiles/default/types/InstantMessage.xml’). Same for the aliases.

The __init__ module

The trick here is to simply import the message module so that all the
code of that module gets interpreted as soon as the Python interpreter
initializes the package.

import message

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Adding a custom view for the content

Description

Providing the custom presentation template for the
InsantMessage, using Zope's browser layer mechanism.

The browser layer concept

A browser layer is a concept introduced by Zope Component Architecture
(Zope 3), and which can be used in Plone. It is useful for registering
views and resources (images, CSS, JS) for the site, in a way that they
can override default elements (which are implicitly registered for the
default browser layer) or be overriden when needed, even through the
ZMI. A browser layer is similar in purpose to a CMF skin layer, but is
implemented differently.

To add a browser layer to your product, you need 3 steps:

	Define the marker interface for the browser layer (for example,
example.archetype.interfaces.IInstantMessageSpecific.)

	Add an XML file in your extension profile named browserlayer.xml
providing the browser layer settings to the site. (This step is
covered later as part of the various product setup details.)

	Register (using ZCML) your browser views, templates and resources.

For more about browser layer techniques, check this tutorial.

Defining the browser layer interface

Add a marker interface for the browser layer (in interfaces.py):

from plone.theme.interfaces import IDefaultPloneLayer

class IInstantMessageSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 skin layer for this product.
 """

Adding and registering the browser template

To provide a custom view template for your content type, you need a page
template called instantmessage.pt in the browser/ directory, and
a ZCML declaration in the configure.zcml to associate the template
to the IInstantMessageSpecific Zope 3 skin layer.

<configure xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.archetype" >
 <browser:page
 for="example.archetype.interfaces.IInstantMessage"
 layer="example.archetype.interfaces.IInstantMessageSpecific"
 name="instantmessage_view"
 template="instantmessage.pt"
 permission="zope2.View"
 />
</configure>

Here is the example template code:

<html metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone" >
<body>

<div metal:fill-slot="main"
 tal:define="priority here/getPriority;
 priority_color python:(priority == 'high' and 'red') or (priority == 'low' and 'green') or ''" >

 <h1 tal:content="context/Title"
 tal:attributes="style string:color:$priority_color" >
 Title
 </h1>

 <p tal:content="structure here/getBody" />

 <div class="documentByLine">
 Message by
 with <strong tal:content="priority" /> priority.
 -

 </div>

</div>

</body>
</html>

Python notes:

	The new methods we use on the content object (getPriority, getBody,
etc), called the “accessors”, are generated by Archetypes as part of
its internal mechanisms, based on the field definition in the content
schema; so if the field is called ‘priority’, there is a generated
method called ‘getPriority’ responsible to return the stored value on
the object. Note that the code of the method is not available
somewhere for modification ; “generated” here means it is available
in the server’s memory, within Archetypes engine’s registries, when
the Zope server has started.

After the product installation step, which we still have to discuss (see
later), Plone should be able to find this template and use it as the
content object’s default view when you invoke the content’s URL.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Installing the product

Description

Ensuring the product elements (types, browser layers,
resources) are correctly installed.

In this part, we will provide the code to be executed when the
integrator “adds”, i.e. installs, the InstantMessage product to the
Plone site. This aspect of the product code is called the “Extension
Profile” (or “Setup Profile”) and is managed under the hood by a
machinery called GenericSetup.

For more about GenericSetup, its possibilities, and how a developer uses
it, read the GenericSetup tutorial.

The setup profile files (profiles/default)

The setup profile is composed of a set of GenericSetup XML files
containing setup declarations.

Type declaration and definition

First, we provide the files needed for adding the types to CMF’s types
registry (portal_types): types.xml and
types/InstantMessage.xml.

In types.xml, within the <object name="portal_types" ... />
element, add the setup code for the type(s) you want to install:

<?xml version="1.0"?>
<object name="portal_types" meta_type="Plone Types Tool">
 <property
 name="title">Controls the available content types in your portal</property>
 <object name="InstantMessage"
 meta_type="Factory-based Type Information with dynamic views"/>
</object>

The name property of the <object> node constitutes the called
portal type name of the content-type, a CMF concept which supports two
things:

	Dynamic typing: objects can change their content type during their
lifetime. To do this use _setPortalTypeName(<type>).

	You can have arbitrarily many different content types using the same
base class (and having therefore the same meta_type) but
differing in their Factory Type Information (FTI) settings.

The portal type name was formerly set in a content-type class
attribute called portal_type, which is no longer necessary.

The name of the file inside the profiles/default/types folder must
match the portal type name, with spaces converted to underscores
whenever necessary. So, in`` types/InstantMessage.xml``, add the code
for the InstantMessage FTI object:

<?xml version="1.0"?>
<object name="InstantMessage"
 meta_type="Factory-based Type Information with dynamic views"
 i18n:domain="example.archetype" xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <property name="title" i18n:translate="">Example AT - InstantMessage</property>
 <property name="description"
 i18n:translate="">An example type (InstantMessage) discussed in the AT Developer Manual.</property>

In these first lines we give the content-type a title and a description.

The title property indicates the user-friendly name of the
content-type. This is what’s supposed to be used in the user interface,
and can be accessed using the <fti>.title_or_id() or the Type()
methods, which both return the content-type title if it exists or the
content-type id otherwise. Like portal type, this property was formerly
set in a the content-type class attribute called archetype_name,
which is no longer neccessary.

<property name="content_meta_type">InstantMessage</property>
<property name="content_icon">document_icon.gif</property>
<property name="product">example.archetype</property>
<property name="factory">addInstantMessage</property>

The meta_type property of the object is a Zope concept to organize
object classification or containment. For historical reasons, it is used
in CMF in some places because first versions of CMF didn’t have today’s
portal_type. Also note that Archetypes uses the content-type class
name as the meta_type value, unless given explicitly.

The content_icon property specifies the icon image file which will
be shown in the Plone UI for this content-type. This icon image file
must be accessible from the context of the content-type, and therefore
should be placed into a CMF skin layer (the CMF way) or in a browser
resource directory (the Zope 3 way).

The factory property indicates the factory function which will be
used to create and initialize new content objects of this type. This
factory is automatically generated by the Archetypes framework, when the
product is initialized (via the code in the startup module), and is
always named add<content-meta-type>. The factory is also associated
with a certain product by means of the product property.

<property name="immediate_view">atct_edit</property>
<property name="global_allow">True</property>
<property name="filter_content_types">False</property>
<property name="allow_discussion">False</property>

The global_allow property determines if the content-type will be
available to be added from anywhere in the site.

The filter_content_types property, paired with
allowed_content_types, controls what content-types will be addable
inside the current one.

With allow_discussion, we specify whether or not comments will be
allowed by default on this content-type.

<property name="default_view">@@instantmessage_view</property>
<property name="view_methods">
 <element value="@@instantmessage_view" />
</property>
<alias from="(Default)" to="@@instantmessage_view" />
<alias from="edit" to="atct_edit" />
<alias from="sharing" to="@@sharing" />
<alias from="view" to="@@instantmessage_view" />

Here we define CMF views (templates) and aliases that map content-type
methods to views.

 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

The <action> elements register type-specific actions for the
content-type. The object category makes the render as tabs in the
Plone UI.

	The url_expr is a TALES expression that defines the URL from
where the action will be triggered and should match one of the method
aliases defined above. Hence, the edit action points to
string:${object_url}/edit, which means that if you are at
/path/to/object and click edit, you will go to
/path/to/object/edit. /edit then gets recognized as a method
alias, which points to the page template atct_edit, causing Zope
to render /path/to/object/atct_edit.

	The <permission /> element specifies a guard permission for this
action. If the user’s role doesn’t have this permission, the action
won’t be available and the corresponding action tab won’t be shown.

	In addition to the former criteria, the condition_expr is a TALES
expression which will be evaluated to decide if the action is
available or not.

	The visible attribute indicates wheter the action tab will be
visible or hidden. If it’s set to False, the tab won’t appear even
when the action is available, but the exposed page will still be
accesible from the associated URL.

Notes:

	Defining new content-type actions this way, i.e. using GenericSetup,
supersedes the old updateActions function from
ATContentTypes.content.base.

	Don’t worry. You don’t have to type all this XML each time you create
a new content-type; since most of it is boilerplate (XML is very
verbose) you can copy & paste an already working example (like the
CMFPlone ones [http://dev.plone.org/plone/browser/CMFPlone/tags/3.1.4/profiles/default/types]) and modify only the changing bits.

Roles - Permissions mapping

For our content type(s) to be usable, we need to assign the required
“Add” permission to the Plone site’s default roles: Contributor, Owner,
and Manager. This is done using the rolemap.xml file as follows:

<?xml version="1.0"?>
<rolemap>
 <permissions>
 <permission name="example.archetype: Add InstantMessage" acquire="True">
 <role name="Manager"/>
 <role name="Owner"/>
 <role name="Contributor"/>
 </permission>
 </permissions>
</rolemap>

Browser skin layer

In order to install our browser skin layer, we also add a
browserlayer.xml file with the following code:

<?xml version="1.0"?>
<layers>
 <layer name="example.archetype"
 interface="example.archetype.interfaces.IInstantMessageSpecific" />
</layers>

Registering our setup profile

This last step ensures everything can work. We update the package’s
configure.zcml file with the code snippet that will load the
extension profile:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="example.archetype" >

 <five:registerPackage package="." initialize=".initialize" />

 <include package=".browser" />

 <genericsetup:registerProfile
 name="default"
 title="Example Archetype content - InstantMessage"
 directory="profiles/default"
 description="Extension profile for Example AT - InstantMessage"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

Restarting Zope

Now that you have a first version of your product ready to be tested,
and installed via your buildout, you need to (re)start Zope.

Quick-installing the product

Back in the Plone configuration (or Plone control panel), when you visit
the “Add/Remove Products” interface or the portal_quickinstaller tool
through the ZMI (at the root of the site), you can see the product show
up under the category of “installable products”.

Select and click the button to install the product. If everything goes
fine, the product should be installed, and you’re ready to start using
it!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Basic integration tests

Description

No product is complete without tests.

To build high-quality software, you must provide automatic tests -
often known as “unit” tests (though tests for Archetypes products tend
to be “integration” tests, strictly speaking).

The tutorial on testing and test-driven development is essential
reading if you want to write high-quality software (and you don’t know
the techniques it advocates already). Please refer to it for details.

The example.archetype product contains basic tests that prove that the
product is properly installed, that it registers its types, and that an
InstantMessage object can actually be instantiated. If it contained more
functionality, there would have been more tests, but even simple
integration tests like this can be surprisingly useful - if you
accidentally broke the content type with some change, you’d notice that
it failed to install or instantiate.

The tests are in the “tests” directory. The file “base.py” contains some
base classes that are used for tests, to ensure the site is properly set
up:

import unittest

from zope.testing import doctestunit
from zope.component import testing
from Testing import ZopeTestCase as ztc

from Products.Five import zcml
from Products.Five import fiveconfigure
from Products.PloneTestCase import PloneTestCase as ptc
from Products.PloneTestCase.layer import PloneSite
from Products.PloneTestCase.layer import onsetup

@onsetup
def setup_product():
 """Set up the package and its dependencies.

 The @onsetup decorator causes the execution of this body to be deferred
 until the setup of the Plone site testing layer. We could have created our
 own layer, but this is the easiest way for Plone integration tests.
 """

 fiveconfigure.debug_mode = True
 import example.archetype
 zcml.load_config('configure.zcml', example.archetype)
 fiveconfigure.debug_mode = False

 ztc.installPackage('example.archetype')

setup_product()
ptc.setupPloneSite(products=['example.archetype'])

class InstantMessageTestCase(ptc.PloneTestCase):
 """Base class for integration tests.

 This may provide specific set-up and tear-down operations, or provide
 convenience methods.
 """

The actual tests are in “test_setup.py”:

from base import InstantMessageTestCase
from example.archetype.interfaces import IInstantMessage

class TestProductInstall(InstantMessageTestCase):

 def afterSetUp(self):
 self.types = ('InstantMessage',)

 def testTypesInstalled(self):
 for t in self.types:
 self.assertIn(t, self.portal.portal_types.objectIds(),
 '%s content type not installed' % t)

 def testPortalFactoryEnabled(self):
 for t in self.types:
 self.assertIn(t, self.portal.portal_factory.getFactoryTypes().keys(),
 '%s content type not installed' % t)

class TestInstantiation(InstantMessageTestCase):

 def afterSetUp(self):
 # Adding an InstantMessage anywhere - can only be done by a Manager or Portal Owner
 self.setRoles(['Manager'])
 self.portal.invokeFactory('InstantMessage', 'im1')

 def testCreateInstantMessage(self):
 self.assertIn('im1', self.portal.objectIds())

 def testInstantMessageInterface(self):
 im = self.portal.im1
 self.assertTrue(IInstantMessage.providedBy(im))

def test_suite():
 from unittest import TestSuite, makeSuite
 suite = TestSuite()
 suite.addTest(makeSuite(TestProductInstall))
 suite.addTest(makeSuite(TestInstantiation))
 return suite

To run these tests within your buildout environment:

./bin/instance test -s example.archetype

You may see output like:

Ran 4 tests with 0 failures and 0 errors in 0.119 seconds.

If there was an error with one or more of the tests, you’d be told here!

Please refer to the testing tutorial for more about writing tests -
and writing good tests - and how to run them.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	A Simple AT Product »

Troubleshooting

Description

When creating new content types, many factors can silently fail due
to human errors in the complex content type setup chain and security
limitations. The effect is that you don't see your content type in
Add drop down menu. Here are some tips for debugging.

1. Is your product broken due to Python import time errors? Check the
*Zope Management Interface (ZMI from now on) → Control Panel →
Products*. Turn on Zope debugging mode to trace import errors. To see
error messages directly in the console with buildout, use *bin/instance
fg*.

2. Have you rerun the quick installer (GenericSetup) after
creating/modifying the content type? If not, (re)install the product
from the *Plone Control Panel → Add-on Products* or from the *ZMI →
portal_quickinstaller*.

3. Do you have a correct Add permission for the product? Check the call
of the ``ContentInit()`` method inside the *__init__.py* file.
See The startup module [http://plone.org/documentation/manual/archetypes-developer-manual/a-semi-realistic-example/the-startup-module].

4. Does it show up in the portal factory? Check *ZMI →
portal_factory* and *factorytool.xml*.

5. Is it correctly registered as a portal type and implictly addable?
Check *ZMI → portal_types*. Check
default/profiles/type/yourtype.xml.

6. Does it have a correct product name defined? Check *ZMI →
portal_types*.

7. Does it have a proper factory method? Check *ZMI → types_tool*.
Check Zope logs for ``_queryFactory`` and import errors.

8. Does it register itself with Archetypes? Check *ZMI →
archetypes_tool*. Make sure that you have ``ContentInit`` properly
run in your *__init__.py*. Make sure that all modules having
Archetypes content types defined and ``registerType()`` calls are
imported in *__init__py*.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

Fields (Archetypes)

Description

Plone Developer Manual is a comprehensive guide to Plone programming.

	Fields Reference

	Widgets Reference

	Validator Reference
	Using Validators

	Registered Validators

	Advanced: Understanding Storage

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	Fields (Archetypes) »

Fields Reference

Description

Attributes of standard Archetypes fields.

	
Topics

	
Common Field Attributes

BooleanField

ComputedField

CMFObjectField

DateTimeField

	
FileField

FixedPointField

FloatField

ImageField

IntegerField

	
LinesField

ReferenceField

StringField

TextField

Common Field Attributes

These attributes are common to nearly all fields. Field-specific attributes follow, and are listed by field. Particular fields have different defaults, types, and some other specialized attributes.

	Name  	Description  	Possible Values  	Default 

	accessor
	The name of a class method that will return the value of the field. Use this to change how the field is retrieved. If you don't provide a custom method name here, a default accessor, named getYourFieldName, is going to be created that just returns the value of the Field.

	A class method name; for example, specialGetMethod
	None

	default

	The default value for the field.

	Type should be appropriate to the field.

	None

	default_method

	The name of a class method returning a value for the field.
	A class method name; for example, getSpecialDescription.

	None

	edit_accessor
	The name of a class method that returns the raw value of a field.
	Any method name (for example, rawGetMethod).

	None

	enforceVocabulary
	Determines whether or not values outside the vocabulary will be accepted. If True, Archetypes will validate input for the field against the vocabulary. Only values already in the vocabulary will be accepted.

	True or False.

	False

	index
(Plone < 3 only)

	If you want this field to be placed in its own catalog index, then specify the type of index here as a string. If you append :schema onto the end of the schema, then this will also be added as a metadata column. (The actual index will be on the field accessor, typically "getFieldName".)
Ignored in Plone 3+; use GenericSetup profile for similar functionality.

	The name of any index, such as KeywordIndex or KeywordIndex:schema.

	None

	index_method
	May be used to specify the method called when indexing a field. Use '_at_accessor' to use the default accessor, '_at_edit_accessor' to use the edit accessor, or the name of a method returning the value to be indexed.
	_at_accessor, _at_edit_accessor, getIndexAccessor and getIndexAccessorName

	_at_accessor

	languageIndependent

	Flag for Fields that are independent of the language, such as dates. True tells LinguaPlone that no translation is necessary for this field.
	True or False
	False

	isMetadata

	Marks metadata fields. This is currently only needed as a convenience for the filterFields method of Schema. Fields marked as metadata are not displayed in the uncustomized base view.
	True or False
	False

	mode

	The read/write mode of field, as a string; the default is to be read and write. Accessors will not be created without the read mode, and Mutators will not be created without the write mode.

	For read only: r, for write only: w, for read and write: rw.

	rw

	multiValued

	Set this to True if the field can have multiple values. This is the case for fields like multiple-selection lists that allow the selection of multiple values.
	True or False.

	False

	mutator

	The string name of a class method that changes the value of the Field. If you don't provide a special method name here, a default mutator is generated with the name 'setYourFieldName' to simply store the value.
	A class method name; for example, specialSetMethod.

	None

	name
	A unique name for this field. Usually specified as the first item in the field definition.

	Any string. Strongly recommended: lowercase, no punctuation or spaces, conforming to standard Python identifier rules. For example, description, user_name, or coffee_bag_6.

	No default.

	primary
	If True, this will be the field that used for File Transfer Protocol (FTP) and WebDAV requests. There can be only field that does this; if multiple are defined, the first one in the schema will be used. You normally set this for the main body attribute. Only used for TextField and FileField field types.
	True or False
	False

	read_permission

	The permission required for the current user to allowed to view or access the field. Only useful if the read mode is activated. This read permission is checked when rendering the widget in read mode.
	A permission identifier imported from Products.CMFCore.permissions
	View

	required

	Specifies that some value for this field required.
	True or False.
	False

	schemata

	Use named schematas to organize fields into grouped views.
	A short string that labels the group.

	default

	searchable

	Specifies whether or not the field value will be indexed as part of the SearchableText for the content object. SearchableText is what is checked by the portal's main search.
	True or False.
	False

	storage

	The storage mechanism for the field. The default is Attribute Storage, which stores the field as an attribute of the object.
	Any valid storage object such as AttributeStorage or SQLStorage. You can find these in the Archetypes Application Programming Interface (API).

	AttributeStorage

	type

	Provided by the field class.. Should never be changed in a Schema.
	None

	None

	validators

	A list or tuple of strings naming validators that will check field input. If you only have one validator, you may specify it as a string.
 Validators may also be instances of a class implementing the IValidator interface from from Products.validation.interfaces.IValidator. Providing a class instance allows you more flexibility as you may set additional parameters.
 Validators are checked in order specified.
	The names of validators registered via Products.validation; for example, isEmail.
	()

	vocabulary

	Provides the values shown in selection and multi-selection inputs. This may be specified as a static list or as the name of a class method returning the choice list.

	A list of strings (in which case keys and values will be the same); a list of 2-tuples of strings [("key1","value 1"),("key 2","value 2"),...]; a Products.Archetypes.utils.DisplayList. Or, the name of a class method returning any of the above.
	()

	vocabulary_factory
	Like the vocabulary attribute, in Plone 3 provides the values shown in selection and multi-selection inputs.
	A string name of a Zope 3 style vocabulary factory (a named utility providing zope.schema.interfaces.IVocabularyFactory)
	None

	widget
	The widget that will be used to render the field for viewing and editing. See the widget reference for a list of available widgets.

	An instance of a widget; for example, StringWidget().

	StringWidget()

	write_permission

	The permission required for the current user to edit the field value. Only interesting if the write mode is activated. The write permission is checked when rendering the widget in write mode.
	A permission identifier imported from Products.CMFCore.permissions
	ModifyPortalContent

Standard Fields

BooleanField

Simple storage of True or False for a field.

Standard properties

	Name  	Type  	Default  	Description  	example values 

	widget
	widget
	BooleanWidget
	Implemented as a check box.
	
	 LabelWidget

	 BooleanWidget

	default
	boolean
	False
	

	

	type
	

	boolean
	

	

Note: The required attribute for the boolean field is often confusing. It does not require that the box be checked. Use a validator if you need to require the box be checked.

ComputedField

Read-only field, whose content cannot be edited directly by users, but is computed instead from a Python expression. For example, it can be the result of an operation on the contents from some other fields in the same schema, e.g. calculating the sum of two or more currency amounts, or composing a full name from first name and surname.
 This field is usually not stored in the database, because its content is calculated on the fly when the object is viewed.

Standard properties

	Name  	Type  	Default  	description  	some possible values
 

	widget
	widget
	ComputedWidget
	

	
	 LabelWidget

	 ComputedWidget

	storage
	storage
	ReadOnlyStorage
	

	

	type
	

	computed
	

	

	mode
	string
	r
	

	

Special properties

	Name  	Type  	Default  	Description  	 some possible values
 

	expression
	

	

	Evaluated on the object to compute a value.
	

CMFObjectField

Used for storing values inside a CMF Object, which can have workflow. Can only be used for BaseFolder-based content objects.

Standard properties

	Name  	Type  	Default  	description  	some possible values
 

	widget
	widget
	FileWidget
	

	
	LabelWidget

	FileWidget

	storage
	storage
	ObjectManagedStorage
	

	

	type
	

	object
	

	

Special properties

	Name  	Type  	Default  	Description  	some possible values
 

	portal_type
	

	File
	

	

	workflowable
	

	True
	

	

	default_mime_type
	

	application/octet-stream
	

	

DateTimeField

Used for storing dates and times.

Standard properties

	Name  	Type  	Default  	Description  	some possible values 

	widget
	widget
	CalendarWidget
	

	
	 LabelWidget

	 CalendarWidget

	default
	DateTime
	

	

	

	type
	

	datetime
	

	

Note: The default for the DateTimeField needs to be specified as a DateTime object. If you need to set the current date/time as the default, you'll need to use the default_method attribute to specify a class method returning the current date/time as a DateTime object.

Example:

from DateTime.DateTime import DateTime

inside the schema definiton
 DateTimeField('dateAdded',
 searchable = 1,
 required = 0,
 default_method = 'getDefaultTime',
 widget = CalendarWidget(
 label = 'Date Added'
),
),

...

#inside the content class definition
 def getDefaultTime(self): # function to return the current date and time
 return DateTime()

FileField

Storage for large chunks of data such as plain-text files, office-automation documents, and so on. If you're using Plone 4 or newer, consider using plone.app.blob.field.BlobField instead, that stores the file data outside of the ZODB and accepts the same parameters as atapi.FileField. See this page for info about migration.

Standard properties

	Name  	Type  	Default  	Description  	some possible values
 

	widget
	widget
	FileWidget
	

	
	 FileWidget

	 LabelWidget

	default
	string
	

	

	

	type
	

	file
	

	

Special properties

	Name  	Type  	Default  	Description  	some possible values
 

	primary
	

	False
	

	

	default_content_type
	

	application/octet
	

	

	primary
	boolean
	False
	Set this True to mark the field as primary for FTP or WebDAV.
	

Note: File field values are stored as strings. It's a common practice to use streams to read/write the values as if they were files.

FixedPointField

For storing numerical data with fixed points.

Standard properties

	Name  	Type  	Default  	Description  	 some possible values 

	widget
	widget
	DecimalWidget
	

	
	 LabelWidget

	DecimalWidget

	validators
	validators
	isDecimal
	

	

	default
	string
	0.00
	

	

	type
	

	fixedpoint
	

	

Special properties

	Name  	Type  	Default  	Description  	some possible values
 

	precision
	

	2
	

	

FloatField

For storing numerical data with floating points.

Standard properties

	Name  	Type  	Default  	Description  	some possible values
 

	default
	string
	0.0
	

	

	type
	

	float
	

	

ImageField

Stores an image and allows dynamic resizing of the image. If you're using Plone 4 or newer, consider using plone.app.blob.field.ImageField instead, that stores the image data outside of the ZODB, and accepts the same parameters as atapi.ImageField. See this page for info about migration.

Standard properties

	Name  	Type  	Default  	Description  	 some possible values 

	widget
	widget
	ImageWidget
	

	
	 ImageWidget

	 LabelWidget

	default
	string
	

	

	

	type
	

	image
	

	

	allowable_content_types
	tuple of MIME strings
	Specifies the types of images that will be allowed.
	('image/gif','image/jpeg','image/png')
	('image/jpeg','image/png')

Note: Archetypes Image field values are stored as strings. It's a common practice to use streams to read/write the values as if they were files.

Special properties

	Name  	Type  	Default  	Description  	some possible values
 

	original_size
	tuple (w,h)
	None
	The size to which the original image will be scaled. If it's None, then no scaling will take place; the original size will be retained. Caution: the aspect ratio of the image may be changed.
	(640,480)

	max_size
	tuple (w,h)
	None
	If specified then the image is scaled to be no bigger than either of the given values of width or height. Aspect ratio is preserved. Useful to prevent storage of megabytes of unnecessary image data.
	(1024,768)

	sizes
	dict
	{'thumb':(80,80)}
	A dictionary specifying any additional scales in which the image will be available. Dictionary entries should be of the form 'scaleName':(width,height). The scaled versions will be accessible as object/<imagename>_<scalename>, e.g. object/image_mini.

	{ 'mini' : (80,80), 'normal' : (200,200), 'big' : (300,300), 'maxi' : (500,500)}

	pil_quality
	integer
	88
	A JPEG quality setting (range 0 to 100). Lower numbers yield high compression and low image quality. High numbers yield low compression and better quality.
	50 (a medium quality)

Using Image Scales

To display the original image (possibly rescaled if you used original_size or max_size attributes), you may use a URL like "http://url_of_content_object/imageFieldName" as the SRC attribute of an IMG tag where url_of_content_object is the URL of the content object and imageFieldName is the name of the image field.

To display one of the scales, use a URL like "http://url_of_content_object/imageFieldName_scale",
 where scale is one of the keys of the sizes dictionary.

Attention: The direct attribute access as shown above works only together with AttributeStorage, which will be used by default. To avoid heavy memory consumption on sites with many images it is recommended to use AnnotationStorage for the ImageField.

You may also generate a ready-to-insert IMG tag with the python code:

obj.getField('image').tag(obj, scale='mini')

if obj is your content object, image the name of your image field, and mini the name of your scale.

You may rescale to other sizes than those in the sizes field attribute with code like:

obj.getField('image').tag(obj, height=480, width=640, alt='alt text',
 css_class='css_class_selector', title='html title attribute')

From Plone 4 on, the plone.app.imaging package introduces a new way to control image scales, factoring this functionality out of Archetypes for reutilization. For example:

<img tal:define="scales context/@@images;
 thumbnail python: scales.scale('image', width=64, height=64);"
 tal:condition="thumbnail"
 tal:attributes="src thumbnail/url;
 width thumbnail/width;
 height thumbnail/height" />

Would create an up to 64 by 64 pixel scaled down version of the image stored in the "image" field of the context. For further info, check the plone.app.imaging README file.

IntegerField

For storing numerical data as integers.

Standard properties

	Name  	Type  	Default  	Description  	some possible values
 

	widget
	widget
	IntegerWidget
	

	
	 LabelWidget

	 IntegerWidget

	default
	integer
	0
	

	

	type
	

	integer
	

	

Special properties

	Name  	Type  	Default  	Description  	 some possible values 

	size
	

	10
	Sets the size of the input field.
	

LinesField

Used for storing text as a list, for example a list of data such as keywords.

Standard properties

	Name  	Type  	Default  	Description  	some possible values
 

	widget
	widget
	LinesWidget
	

	
	 KeywordWidget

	 LinesWidget

	 LabelWidget

	 MultiSelectionWidget

	 PicklistWidget

	 InAndOutWidget

	default
	string
	()
	

	

	type
	

	lines
	

	

ReferenceField

Used for storing references to other Archetypes Objects.

Standard properties

	Name  	Type  	Default  	Description  	some possible values
 

	widget
	widget
	ReferenceWidget
	

	
	 ReferenceWidget

	 ReferenceBrowserWidget

	 LabelWidget

	 InAndOutWidget

	index_method
	

	_at_edit_accessor
	

	

	type
	

	reference
	

	

	multiValued
	boolean
	False
	Set multiValued True to allow multiple references (one-to-many), or False to allow only a single reference (one-to-one).
	

Special properties

	Name  	Type  	Default  	Description  	some possible values
 

	relationship
	

	

	Specifes an identifier for the type of relationships associated with the field. This should be unique within your content type, but has no larger meaning. A ReferenceField allows you to edit the set of references with a particular relationship identifier from the current content object to other objects.
	'KnowsAbout', 'Owns', 'WorksWith'

	allowed_types
	tuple of portal types
	()
	Determines all the portal types that will be searched to find objects that the user can make a reference to. It also specifies the Types that should be allowed to be added directly from the reference widget. This is only activated if the addable property is set. An empty list or tuple will allow references to all portal types.
	('Document', 'File')

	allowed_types_method
	string
	None
	A string containing the name of a class method that will return a list of portal types to which references are allowed.
	

	vocabulary_display_path_bound
	integer
	5
	Sets a limit for presentation of reference items. Up to this limit, only titles are displayed. Above the limit, the path to the referenced object is also displayed. The idea is that if there are a large number of referenced items, the user will need help to differentiate them.
	

	vocabulary_custom_label
	string
	None
	A string containing a python expression that will be evaluated to get the displayed text for a referenced item. Your expression may use the variable "b" which will be a reference to the catalog brain returned by the reference lookup.
	"b.getObject().title_or_id()"

More about References

Archetypes References work with any object providing the IReferenceable interface. They are mantained in the uid_catalog and reference_catalog catalogs. You can find both at the root of your Plone site. Check them to see their indexes and metadata.

Althought you could use the ZCatalogs API to manage Archetypes references, these catalogs are rarely used directly. A ReferenceField and its API is used instead.

To set a reference, you can use the setter method with either a list of UIDs or one UID string, or one object or a list of objects (in the case the ReferenceField is multi-valued) to which you want to add a reference to. Note that None and [] are equal.
For example, to set a reference from the myct1 object to the areferenceableobject object using the MyReferenceField field:

 >>> myct1.setMyReferenceField(areferenceableobject)

To get the referenced object(s), just use the getter method. Note that what you get are
the objects themselves, not their catalog brains.

 >>> myct1.getMyReferenceField()

StringField

A field for plain-text, unformatted strings.

Standard properties

	Name  	Type  	Default  	Description  	some possible values 

	default
	string
	

	

	

	type
	

	string
	

	

	widget
	widget
	StringWidget
	

	
	LabelWidget

	StringWidget

	SelectionWidget

Special properties

	Name  	Type  	Default  	Description  	some possible values 

	default_content_type
	string MIME type
	text/plain
	

	Rarely changed.

TextField

A string field typically used for longer, multi-line strings. The string may also be transformed into alternative formats.

Standard properties

	Name  	Type  	Default  	Description  	some possible values 

	default
	string
	

	

	

	type
	

	text
	

	

	widget
	widget
	StringWidget
	

	
	LabelWidget

	TextAreaWidget

	RichWidget

Special properties

	Name  	Type  	Default  	Description  	some possible values 

	primary
	boolean
	False
	Set this True to mark the field as primary for FTP or WebDAV.

	

	default_content_type
	string MIME type
	text/plain
	A string designating MIME the default input type for the field.
	text/plain, text/html

	allowable_content_types
	tuple of MIME-type strings
	('text/plain',)
	Used in the TextArea and Rich widgets to let the user choose between different text formats in which the content is entered.
	('text/plain', 'text/html',)

	default_output_type
	string MIME type
	text/plain
	This is used by the accessor (get) method to and decides which MIME-Type the content should be transformed into if no special MIME-Type is demanded.
	'text/html', 'text/x-html-safe'

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	Fields (Archetypes) »

Widgets Reference

Description

This page is a syntax reference and general guide for defining and using Widgets.

	
	
Widget Attribute Topics

 

	
Common Widget Attributes

BooleanWidget

CalendarWidget

ComputedWidget

DecimalWidget

FileWidget

ImageWidget

	
InAndOutWidget

IntegerWidget

KeywordWidget

LabelWidget

LinesWidget

MultiSelectionWidget

PasswordWidget

	
PicklistWidget

ReferenceWidget

ReferenceBrowserWidget

RichWidget

SelectionWidget

StringWidget

TextAreaWidget

Common Widget Attributes

The table below describes attributes common to nearly all widgets. Illustrations
and special attributes listings for each of the standard widgets follows.

	Name 
	Description 
	Possible Values 

	condition

	A string containing a TALES expression to determine whether or not a field/widget is
included on a view or edit page.
This does not distinguish between view and edit mode.

	Your TALES expression may referenc the current context as 'object' and the Plone site root as 'portal'

	description

	Help or explanatory text for the field. Usually shown on the edit form under the label and above the input field.
	

	description_msgid
	The i18n identifier for the description message. Used to translate the message. Should be unique within your product's i18n domain.
	'help_type_field'

	label
	The label that will appear in the field.
	 Any string, for example, Start Date for a field start_date. Also label_msgid (takes string message ids for i18n.)

	label_msgid
	The i18n identifier for the label message. Should be unique within your product's i18n domain.
	'label_type_field'

	i18n_domain
	The i18n domain specifier for your product. This should be unique for your product, and will be used to find the translation catalogs for your product.
	'productname'

	 modes
	 The modes that this widget will be shown in; by default there are two modes: view and edit.
	 A list of modes as strings; by default ("view", "edit").

	 populate
	 If this is enabled, the view and edit fields will be populated. Usually this is enabled, but for fields such as a password field, this shouldn't
be the case. Usually this is true by default.
	 True or False

	 postback
	 If this is enabled, then when an error is raised, the field is
repopulated; for fields such as a password field, this shouldn't be the
case. Usually this is True by default.
	 True or False

	 visible
	 Determines whether or not the field is visible view and edit mode.
This is a
dictionary mapping the view mode to a string describing the
visibility.
Choices are visible, hidden (rendered in an HTML hidden form value), invisible (not rendered at all).
	For example, {'view': 'visible', 'edit': 'hidden' } means that the view will show, but the edit page will hide the value.

Standard Widgets

BooleanWidget

Renders an HTML checkbox, from which users can choose between two values such as on/off, true/false, yes/no.

[image: booleanwidget.png]

CalendarWidget

Renders a HTML input box with a helper popup box for choosing dates.

[image: datetimewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	

	Defines the date/time format using strftime, e.g. '%d.%m.%Y', for the view.
(See the strftime section of the Python time documentation.

If this is not specified, the long form of the portal's local time format is used.

	future_years
	integer
	
5
	Specifies the number of future years offered by the year drop-down portion
of the date widget. Do not use both future_year and end_year.
(Plone 2.5+)

	starting_year
	integer
	1999
	The first year offered by the year drop-down. (Plone 2.5+)

	ending_year
	integer
	
None
	The final year offered by the year drop-down.
Do not use both future_years and end_year. (Plone 2.5+)

	show_hm
	boolean
	True
	Should the widget ask for a time as well as a date? (Plone 2.5+)

ComputedWidget

Generally used for ComputedField field type, it renders the computed value.
Note that if your field has a vocabulary, and the field value is a key in that
vocabulary, the widget will lookup the key in the vocabulary and show the result.

Standard Properties

	Name 
	Type 
	Default 
	Description 

	modes
	tuple
	
('view', 'edit')
	As ComputedField is a read-only field, this property can be used to prevent
the widget from appearing in edit templates, by setting it to just ('view',).

DecimalWidget

In edit mode, renders an HTML text input box which accepts a fixed point value.

Special Properties

	Name 
	Type 
	Default 
	Description 

	thousands_commas
	boolean
	False
	In view mode, formats the value to shows commas for thousands.
For example, when thousands_commas is True, "7632654849635.02" is displayed as "7,632,654,849,635.02".
(Note: this feature is not localized; it uses commas independent of locale.

	whole_dollars
	boolean
	
False
	Shows whole dollars in view, leaving out the cents. Enter "1.123", and "$1" is shown.
(Note: this feature is not localized; it uses the dollar sign independent of locale.)

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute.

	dollars_and_cents
	boolean
	False
	In view mode, shows dollars and cents. Enter "123.123" and "$123.12" is shown.
(Note: this feature is not localized; it always uses the dollar sign, period,
and two digits precision.)

	size
	

	5
	Size of the input field; sets the HTML input tag's size attribute.

FileWidget

Renders an HTML widget so a user can upload a file.

[image: filewidget.png]

ImageWidget

Renders an HTML widget that can be used to upload, display, delete, and
replace images. You can provide a display_threshold that allows
you to set the size of an image; if it's below this
size, the image will display in the Web page.

[image: imagewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	display_threshold
	integer
	102400
	Only display the image inline if img.getSize() <= display_threshold

InAndOutWidget

In edit mode, renders a widget for moving items from one list to another.
Items are removed from the source list.
This can be used to choose multiple values from a list. This provides a good
alternative to the MultiSelectionWidget when the vocabulary is too long for checkboxes.

[image: inandoutwidget.png]

Special Properties

IntegerWidget

A simple HTML input box for a string.

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	

	
6
	Size of the select widget; sets the HTML select tag's size attribute.

	Name 
	Type 
	Default 
	Description 

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute

	size
	

	5
	Size of the input field; sets the HTML input tag's size attribute.

KeywordWidget

This widget allows the user to select keywords or categories from a list. It is
used for the Categories field in the Categorization Schema (Plone 3+)
or the equivalent Keywords field on the Properties Tab (Plone < 3)
of a content object.

Keywords are drawn from the field vocabulary and/or the unique values for the
field in a specified catalog.

Additional keywords may be added unless the enforceVocabulary property of the
field is True.

Special Properties

	Name 
	Type 
	Default 
	Description 

	vocab_source
	

	
portal_catalog
	Sets
the catalog to search for additional vocabulary to be combined with the
vocabulary defined for the field. Additional keywords from existing content are
found using catalog.uniqueValuesFor(fieldName).

	roleBasedAdd
	

	True
	Only
shows the "New keywords" input for adding keywords if the current user
has one of the roles stored in the allowRolesToAddKeywords property in
the site_properties property sheet in portal_properties

LabelWidget

Used to display labels on forms -- without values or form input elements.

LinesWidget

Displays a text area so that users can enter a list of values, one per line.

[image: lineswidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	
5
	Rows of the lines widget; sets the HTML textarea tag's rows attribute.

	cols
	integer
	
40
	Columns of the lines widget; sets the HTML textarea tag's cols attribute.

MultiSelectionWidget

A selection widget; by default it's an
HTML select widget which can be used to choose multiple values. As a
checkbox users can choose one or more values from a list (useful if the
list is short).

[image: multiselectionwidget-listbox.png]

[image: multiselectionwidget-checkbox.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	select
	Possible values: 'select' or 'checkbox'. Uses a either a series of checkboxes or
a multi-selection list. Note that checkboxes have much better usability for short
vocabularies. Consider using the InAndOutWidget for longer vocabularies.

	size
	

	
5
	Defines the size of the multi-select list. Does not apply for checkboxes.

PasswordWidget

Renders an HTML password input.

Special Properties

	Name 
	Type 
	Default 
	Description 

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute.

	size
	

	20
	Size of the input field; sets the HTML input tag's size attribute.

Standard Properties

	Name 
	Type 
	Default 

	populate
	boolean
	False

	postback
	boolean
	False

	modes
	

	('edit',)

PicklistWidget

Similar to the InAndOutWidget, but the values stay in the source list after
selection.

[image: picklistwidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	integer
	6
	Size of the selection box; sets the HTML select tag's size attribute.

ReferenceWidget

Renders an HTML text input box which accepts a list of possible reference
 values. Used in combination with the Reference Field.
Note: In Plone 2.5 and above, the ReferenceBrowserWidget is
 a usually a better choice for a reference widget due to its ability to browse for content
 referenceable objects.

[image: referencewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	checkbox_bound
	

	5
	When the number of items exceeds this value, multi-selection lists are used. Otherwise, radio buttons or checkboxes are used.

	destination
	

	None
	May be:
	".", context object;
	None, any place where Field.allowed_types can be added;
	string path;
	name of method on instance (it can be a combination list);
	a list, combining all item above;
	a dict, where {portal_type:} destination is relative to portal root

	addable
	

	False
	Create createObject link for every addable type

	destination_types
	

	None
	Either
a single type given as a string, or a list of types given as a string,
defining what types we allow adding to. Only applies when addable is
set on the widget.

ReferenceBrowserWidget

A sophisticated widget for browsing, adding and deleting references.
Standard in Plone 2.5+, available for earlier versions as an add-on product.
Import from Products.ATReferenceBrowserWidget.ATReferenceBrowserWidget in Plone 2.5 and 3. In Plone 4, this widget has been improved and now lives inarchetypes.referencebrowserwidget.ReferenceBrowserWidget.

[image:]

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	integer
	

	Size of the field if not multiValued; sets the HTML input tag's size attribute.

	default_search_index
	string
	SearchableText
	when a user searches in the popup, this index is used by default

	show_indexes
	boolean
	False
	If True, a drop-down list is shown in the popup to select the index used for searching. If set to False, default_search_index will be used.

	available_indexes
	dict
	{}
	Optional dictionary containing all the indexes that can be used for searching along with their friendly names. Format: {'catalogindex':'Friendly Name of Index', ... } The friendly names are shown in the widget.
Caution: If you set show_indexes True, but do not use this property to specify indexes, then all the indexes will be shown.

	allow_search
	boolean
	True
	If True, a search form is included in the popup.

	allow_browse
	True
	Allows the user to browse content to find referenceable content.
	

	startup_directory
	string
	''
	Directory shown when the popup opens. Optional. When empty, the current folder is used. See the ATReferenceBrowser readme.txt for advanced usage.

	base_query
	dict or name of method
	

	Defines query terms that will apply to all searches, mainly useful to create specific restrictions when allow_browse=0. Can be either a dictonary with query parameters, or the name of a method or callable available in cotext that will return such a dictionary.

	force_close_on_insert
	boolean
	False
	If true, closes the popup when the user choses insert. This overrides the default behavior in multiselect mode.

	search_catalog
	string
	'portal_catalog'
	Specifies the catalog used for searches

	allow_sorting
	boolean
	False
	Allows changing the order of referenced objects (requires multiValued).

	show_review_state
	boolean
	False
	If True, popup will display the workflow state for objects.

	show_path
	boolean
	False
	If True, display the relative path (relative to the portal object) of referenced objects.

	only_for_review_states
	

	None
	If set, content items are only referenceable if their workflow state matches one of the specified states. If None there will be no filtering by workflow state.

	image_portal_types
	sequence
	()
	Use to specify a list of image portal_types. Instances of these portal types are previewed within the popup widget

	image_method
	string
	None
	Specifies the name of a method that is added to the image URL to preview the image in a particular resolution (e.g. 'mini' for thumbnails).

	history_length
	integer
	0
	If not zero, enables a history feature that show the paths of the last N visited folders.

	restrict_browsing_to_startup_directory
	boolean
	False
	If True, the user will not be able to browse above the starting directory.

The cited Plone 4 implementation of this widget includes the following additional properties:

Special Properties

	Name 
	Type 
	Default 
	Description 

	startup_directory_method
	string
	''

	The name of a method or variable that, if available at the instance, will be used to obtain the path of the startup directory. If present, 'startup_directory' will be ignored.

	show_results_without_query
	bool

	False

	Don't ignore empty queries, but display results.

	hide_inaccessible
	bool

	False

	Don't show inaccessible objects (no permission) in view mode.

	popup_width
	integer

	500

	Width of popup window in pixels.

	popup_height
	integer

	550

	Height of popup window in pixels

	popup_name
	string

	'popup'

	Name of template to be used for popup. To use another template you have to register a named adapter for this template.

Example of registering a popup in ZCML:

<zope:adapter
 for="Products.Five.BrowserView"
 factory=".view.default_popup_template"
 name="popup"
 provides="zope.formlib.namedtemplate.INamedTemplate" />

RichWidget

Allows the input of text, or upload of a file, in multiple formats
that are then transformed as necessary for display.
For example, allows you to type some content, choose formatting and/or upload a file.
If available, the visual editor set in personal preferences is used for editing
and formatting.

[image: richwidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	5
	Number of rows. (Since the visual mode of the RichWidget is controlled by JavaScript,
this is not very useful.)

	cols
	integer
	40
	Number of columns. (Since the visual mode of the RichWidget is controlled by JavaScript,
this is not very useful.)

	allow_file_upload
	boolean
	True
	If True, a file upload option is included with the field.

SelectionWidget

Renders an HTML selection widget, which can be represented as a dropdown, or as a group of radio buttons.

[image: selectionwidget-dropdown.png]

[image: selectionwidget-radio.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	'flex'
	Possible
values: 'flex', 'select', 'radio'. Uses radio buttons when set to radio, and
a single-selection list when set to select. Using flex will
automatically use single-selection lists for more than three settings
at a time, and a single-select list for up to three settings.

StringWidget

Renders an HTML text input box which accepts a single line of text. For simple text lines such as author.

[image: stringwidget.png]

Special Properties
	Name 
	Type 
	Default 
	Description 

	maxlength
	integer
	255
	Maximum input length in characters; sets the HTML input tag's maxlength attribute.

	size
	

	30
	Size of the input widget; sets the HTML input tag's size attribute.

TextAreaWidget

Renders an HTML text area for typing a few lines of text. Also provides for the entry of
the content in multiple formats when allowed_content_types in the enclosing TextField allows it.

[image: textareawidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	
5
	Number of rows for the edit widget; sets the HTML textarea tag's rows attribute.

	cols
	integer
	
40
	Column width of the edit widget; sets the HTML textarea tag's cols attribute.

	append_only
	boolean
	
False
	Set this attribute to True to make an append-only TextArea widget. New text gets
added to the top of the existing text, dividing the new text from the
existing text using the divider property. The existing text is shown
below the TextArea, and is not editable. This currently works with
TextArea widgets and using plain text format.

	divider
	string
	========================
	Divider text marker to use for append only text areas. Only used then the append_only property is True.

	maxlength
	integer
	False
	
If non-zero, sets a maximum input length in characters. Since the HTML textarea tag
has no maxlength property, this is enforced via a JavaScript snippet. So, it is is
not applicable when JavaScript is unavailable.

Add-on Widgets

To find all available add-on widgets contributed by the community, follow this link.
Widget Attribute Topics

 

	
Common Widget Attributes

BooleanWidget

CalendarWidget

ComputedWidget

DecimalWidget

FileWidget

ImageWidget

	
InAndOutWidget

IntegerWidget

KeywordWidget

LabelWidget

LinesWidget

MultiSelectionWidget

PasswordWidget

	
PicklistWidget

ReferenceWidget

ReferenceBrowserWidget

RichWidget

SelectionWidget

StringWidget

TextAreaWidget

Common Widget Attributes

The table below describes attributes common to nearly all widgets. Illustrations
and special attributes listings for each of the standard widgets follows.

	Name 
	Description 
	Possible Values 

	condition

	A string containing a TALES expression to determine whether or not a field/widget is
included on a view or edit page.
This does not distinguish between view and edit mode.

	Your TALES expression may referenc the current context as 'object' and the Plone site root as 'portal'

	description

	Help or explanatory text for the field. Usually shown on the edit form under the label and above the input field.
	

	description_msgid
	The i18n identifier for the description message. Used to translate the message. Should be unique within your product's i18n domain.
	'help_type_field'

	label
	The label that will appear in the field.
	 Any string, for example, Start Date for a field start_date. Also label_msgid (takes string message ids for i18n.)

	label_msgid
	The i18n identifier for the label message. Should be unique within your product's i18n domain.
	'label_type_field'

	i18n_domain
	The i18n domain specifier for your product. This should be unique for your product, and will be used to find the translation catalogs for your product.
	'productname'

	 modes
	 The modes that this widget will be shown in; by default there are two modes: view and edit.
	 A list of modes as strings; by default ("view", "edit").

	 populate
	 If this is enabled, the view and edit fields will be populated. Usually this is enabled, but for fields such as a password field, this shouldn't
be the case. Usually this is true by default.
	 True or False

	 postback
	 If this is enabled, then when an error is raised, the field is
repopulated; for fields such as a password field, this shouldn't be the
case. Usually this is True by default.
	 True or False

	 visible
	 Determines whether or not the field is visible view and edit mode.
This is a
dictionary mapping the view mode to a string describing the
visibility.
Choices are visible, hidden (rendered in an HTML hidden form value), invisible (not rendered at all).
	For example, {'view': 'visible', 'edit': 'hidden' } means that the view will show, but the edit page will hide the value.

Standard Widgets

BooleanWidget

Renders an HTML checkbox, from which users can choose between two values such as on/off, true/false, yes/no.

[image: booleanwidget.png]

CalendarWidget

Renders a HTML input box with a helper popup box for choosing dates.

[image: datetimewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	

	Defines the date/time format using strftime, e.g. '%d.%m.%Y', for the view.
(See the strftime section of the Python time documentation.

If this is not specified, the long form of the portal's local time format is used.

	future_years
	integer
	
5
	Specifies the number of future years offered by the year drop-down portion
of the date widget. Do not use both future_year and end_year.
(Plone 2.5+)

	starting_year
	integer
	1999
	The first year offered by the year drop-down. (Plone 2.5+)

	ending_year
	integer
	
None
	The final year offered by the year drop-down.
Do not use both future_years and end_year. (Plone 2.5+)

	show_hm
	boolean
	True
	Should the widget ask for a time as well as a date? (Plone 2.5+)

ComputedWidget

Generally used for ComputedField field type, it renders the computed value.
Note that if your field has a vocabulary, and the field value is a key in that
vocabulary, the widget will lookup the key in the vocabulary and show the result.

Standard Properties

	Name 
	Type 
	Default 
	Description 

	modes
	tuple
	
('view', 'edit')
	As ComputedField is a read-only field, this property can be used to prevent
the widget from appearing in edit templates, by setting it to just ('view',).

DecimalWidget

In edit mode, renders an HTML text input box which accepts a fixed point value.

Special Properties

	Name 
	Type 
	Default 
	Description 

	thousands_commas
	boolean
	False
	In view mode, formats the value to shows commas for thousands.
For example, when thousands_commas is True, "7632654849635.02" is displayed as "7,632,654,849,635.02".
(Note: this feature is not localized; it uses commas independent of locale.

	whole_dollars
	boolean
	
False
	Shows whole dollars in view, leaving out the cents. Enter "1.123", and "$1" is shown.
(Note: this feature is not localized; it uses the dollar sign independent of locale.)

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute.

	dollars_and_cents
	boolean
	False
	In view mode, shows dollars and cents. Enter "123.123" and "$123.12" is shown.
(Note: this feature is not localized; it always uses the dollar sign, period,
and two digits precision.)

	size
	

	5
	Size of the input field; sets the HTML input tag's size attribute.

FileWidget

Renders an HTML widget so a user can upload a file.

[image: filewidget.png]

ImageWidget

Renders an HTML widget that can be used to upload, display, delete, and
replace images. You can provide a display_threshold that allows
you to set the size of an image; if it's below this
size, the image will display in the Web page.

[image: imagewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	display_threshold
	integer
	102400
	Only display the image inline if img.getSize() <= display_threshold

InAndOutWidget

In edit mode, renders a widget for moving items from one list to another.
Items are removed from the source list.
This can be used to choose multiple values from a list. This provides a good
alternative to the MultiSelectionWidget when the vocabulary is too long for checkboxes.

[image: inandoutwidget.png]

Special Properties

IntegerWidget

A simple HTML input box for a string.

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	

	
6
	Size of the select widget; sets the HTML select tag's size attribute.

	Name 
	Type 
	Default 
	Description 

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute

	size
	

	5
	Size of the input field; sets the HTML input tag's size attribute.

KeywordWidget

This widget allows the user to select keywords or categories from a list. It is
used for the Categories field in the Categorization Schema (Plone 3+)
or the equivalent Keywords field on the Properties Tab (Plone < 3)
of a content object.

Keywords are drawn from the field vocabulary and/or the unique values for the
field in a specified catalog.

Additional keywords may be added unless the enforceVocabulary property of the
field is True.

Special Properties

	Name 
	Type 
	Default 
	Description 

	vocab_source
	

	
portal_catalog
	Sets
the catalog to search for additional vocabulary to be combined with the
vocabulary defined for the field. Additional keywords from existing content are
found using catalog.uniqueValuesFor(fieldName).

	roleBasedAdd
	

	True
	Only
shows the "New keywords" input for adding keywords if the current user
has one of the roles stored in the allowRolesToAddKeywords property in
the site_properties property sheet in portal_properties

LabelWidget

Used to display labels on forms -- without values or form input elements.

LinesWidget

Displays a text area so that users can enter a list of values, one per line.

[image: lineswidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	
5
	Rows of the lines widget; sets the HTML textarea tag's rows attribute.

	cols
	integer
	
40
	Columns of the lines widget; sets the HTML textarea tag's cols attribute.

MultiSelectionWidget

A selection widget; by default it's an
HTML select widget which can be used to choose multiple values. As a
checkbox users can choose one or more values from a list (useful if the
list is short).

[image: multiselectionwidget-listbox.png]

[image: multiselectionwidget-checkbox.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	select
	Possible values: 'select' or 'checkbox'. Uses a either a series of checkboxes or
a multi-selection list. Note that checkboxes have much better usability for short
vocabularies. Consider using the InAndOutWidget for longer vocabularies.

	size
	

	
5
	Defines the size of the multi-select list. Does not apply for checkboxes.

PasswordWidget

Renders an HTML password input.

Special Properties

	Name 
	Type 
	Default 
	Description 

	maxlength
	

	
255
	Maximum input size; sets the HTML input tag's maxlength attribute.

	size
	

	20
	Size of the input field; sets the HTML input tag's size attribute.

Standard Properties

	Name 
	Type 
	Default 

	populate
	boolean
	False

	postback
	boolean
	False

	modes
	

	('edit',)

PicklistWidget

Similar to the InAndOutWidget, but the values stay in the source list after
selection.

[image: picklistwidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	integer
	6
	Size of the selection box; sets the HTML select tag's size attribute.

ReferenceWidget

Renders an HTML text input box which accepts a list of possible reference
 values. Used in combination with the Reference Field.
Note: In Plone 2.5 and above, the ReferenceBrowserWidget is
 a usually a better choice for a reference widget due to its ability to browse for content
 referenceable objects.

[image: referencewidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	checkbox_bound
	

	5
	When the number of items exceeds this value, multi-selection lists are used. Otherwise, radio buttons or checkboxes are used.

	destination
	

	None
	May be:
	".", context object;
	None, any place where Field.allowed_types can be added;
	string path;
	name of method on instance (it can be a combination list);
	a list, combining all item above;
	a dict, where {portal_type:} destination is relative to portal root

	addable
	

	False
	Create createObject link for every addable type

	destination_types
	

	None
	Either
a single type given as a string, or a list of types given as a string,
defining what types we allow adding to. Only applies when addable is
set on the widget.

ReferenceBrowserWidget

A sophisticated widget for browsing, adding and deleting references.
Standard in Plone 2.5+, available for earlier versions as an add-on product.
Import from Products.ATReferenceBrowserWidget.ATReferenceBrowserWidget in Plone 2.5 and 3. In Plone 4, this widget has been improved and now lives inarchetypes.referencebrowserwidget.ReferenceBrowserWidget.

[image:]

Special Properties

	Name 
	Type 
	Default 
	Description 

	size
	integer
	

	Size of the field if not multiValued; sets the HTML input tag's size attribute.

	default_search_index
	string
	SearchableText
	when a user searches in the popup, this index is used by default

	show_indexes
	boolean
	False
	If True, a drop-down list is shown in the popup to select the index used for searching. If set to False, default_search_index will be used.

	available_indexes
	dict
	{}
	Optional dictionary containing all the indexes that can be used for searching along with their friendly names. Format: {'catalogindex':'Friendly Name of Index', ... } The friendly names are shown in the widget.
Caution: If you set show_indexes True, but do not use this property to specify indexes, then all the indexes will be shown.

	allow_search
	boolean
	True
	If True, a search form is included in the popup.

	allow_browse
	True
	Allows the user to browse content to find referenceable content.
	

	startup_directory
	string
	''
	Directory shown when the popup opens. Optional. When empty, the current folder is used. See the ATReferenceBrowser readme.txt for advanced usage.

	base_query
	dict or name of method
	

	Defines query terms that will apply to all searches, mainly useful to create specific restrictions when allow_browse=0. Can be either a dictonary with query parameters, or the name of a method or callable available in cotext that will return such a dictionary.

	force_close_on_insert
	boolean
	False
	If true, closes the popup when the user choses insert. This overrides the default behavior in multiselect mode.

	search_catalog
	string
	'portal_catalog'
	Specifies the catalog used for searches

	allow_sorting
	boolean
	False
	Allows changing the order of referenced objects (requires multiValued).

	show_review_state
	boolean
	False
	If True, popup will display the workflow state for objects.

	show_path
	boolean
	False
	If True, display the relative path (relative to the portal object) of referenced objects.

	only_for_review_states
	

	None
	If set, content items are only referenceable if their workflow state matches one of the specified states. If None there will be no filtering by workflow state.

	image_portal_types
	sequence
	()
	Use to specify a list of image portal_types. Instances of these portal types are previewed within the popup widget

	image_method
	string
	None
	Specifies the name of a method that is added to the image URL to preview the image in a particular resolution (e.g. 'mini' for thumbnails).

	history_length
	integer
	0
	If not zero, enables a history feature that show the paths of the last N visited folders.

	restrict_browsing_to_startup_directory
	boolean
	False
	If True, the user will not be able to browse above the starting directory.

The cited Plone 4 implementation of this widget includes the following additional properties:

Special Properties

	Name 
	Type 
	Default 
	Description 

	startup_directory_method
	string
	''

	The name of a method or variable that, if available at the instance, will be used to obtain the path of the startup directory. If present, 'startup_directory' will be ignored.

	show_results_without_query
	bool

	False

	Don't ignore empty queries, but display results.

	hide_inaccessible
	bool

	False

	Don't show inaccessible objects (no permission) in view mode.

	popup_width
	integer

	500

	Width of popup window in pixels.

	popup_height
	integer

	550

	Height of popup window in pixels

	popup_name
	string

	'popup'

	Name of template to be used for popup. To use another template you have to register a named adapter for this template.

Example of registering a popup in ZCML:

<zope:adapter
 for="Products.Five.BrowserView"
 factory=".view.default_popup_template"
 name="popup"
 provides="zope.formlib.namedtemplate.INamedTemplate" />

RichWidget

Allows the input of text, or upload of a file, in multiple formats
that are then transformed as necessary for display.
For example, allows you to type some content, choose formatting and/or upload a file.
If available, the visual editor set in personal preferences is used for editing
and formatting.

[image: richwidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	5
	Number of rows. (Since the visual mode of the RichWidget is controlled by JavaScript,
this is not very useful.)

	cols
	integer
	40
	Number of columns. (Since the visual mode of the RichWidget is controlled by JavaScript,
this is not very useful.)

	allow_file_upload
	boolean
	True
	If True, a file upload option is included with the field.

SelectionWidget

Renders an HTML selection widget, which can be represented as a dropdown, or as a group of radio buttons.

[image: selectionwidget-dropdown.png]

[image: selectionwidget-radio.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	format
	string
	'flex'
	Possible
values: 'flex', 'select', 'radio'. Uses radio buttons when set to radio, and
a single-selection list when set to select. Using flex will
automatically use single-selection lists for more than three settings
at a time, and a single-select list for up to three settings.

StringWidget

Renders an HTML text input box which accepts a single line of text. For simple text lines such as author.

[image: stringwidget.png]

Special Properties
	Name 
	Type 
	Default 
	Description 

	maxlength
	integer
	255
	Maximum input length in characters; sets the HTML input tag's maxlength attribute.

	size
	

	30
	Size of the input widget; sets the HTML input tag's size attribute.

TextAreaWidget

Renders an HTML text area for typing a few lines of text. Also provides for the entry of
the content in multiple formats when allowed_content_types in the enclosing TextField allows it.

[image: textareawidget.png]

Special Properties

	Name 
	Type 
	Default 
	Description 

	rows
	integer
	
5
	Number of rows for the edit widget; sets the HTML textarea tag's rows attribute.

	cols
	integer
	
40
	Column width of the edit widget; sets the HTML textarea tag's cols attribute.

	append_only
	boolean
	
False
	Set this attribute to True to make an append-only TextArea widget. New text gets
added to the top of the existing text, dividing the new text from the
existing text using the divider property. The existing text is shown
below the TextArea, and is not editable. This currently works with
TextArea widgets and using plain text format.

	divider
	string
	========================
	Divider text marker to use for append only text areas. Only used then the append_only property is True.

	maxlength
	integer
	False
	
If non-zero, sets a maximum input length in characters. Since the HTML textarea tag
has no maxlength property, this is enforced via a JavaScript snippet. So, it is is
not applicable when JavaScript is unavailable.

Add-on Widgets

To find all available add-on widgets contributed by the community, follow this link.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	Fields (Archetypes) »

Validator Reference

Description

A quick reference to the built-in Archetypes validators.

Using Validators

Archetypes fields may have validators specified in the Field schema. For
example, the schema for the basic page type includes the stanza:

ATDocumentSchema = ATContentTypeSchema.copy() + Schema((
 TextField('text',
...
 validators = ('isTidyHtmlWithCleanup',),
...
),

This specifies that the isTidyHtmlWithCleanup test will be applied to
validate form input.

You may specify a sequence of validators:

validators = ('isMaxSize', 'isTidyHtmlWithCleanup',),

and the validators will tested in order.

The validators sequence may contain two kinds of entries:

	The string names of validators registered with the validation service
(see Products.validation);

	Instances of classes implementing the IValidator interface
(Products.validation.interfaces.IValidator.IValidator).

A validation specification using a validator class instance can look
like:

validators = (ExpressionValidator('python: int(value) == 5'),)

Registered Validators

These are validators pre-registered with the validation service. They
may be specified by name.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

 	Fields (Archetypes) »

Advanced: Understanding Storage

Description

This page describes the basic mechanism for the Field storage
mechanism, a powerful Archetypes feature that allows you to store
field data somewhere besides the ZODB.

TBD: write the page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

Other Useful Archetypes Features

Description

Complementary features you'd be pleased to know about.

How to use events to hook the Archetypes creation process

Description

Times have changed since the days of at_post_create_script(). Here is the
way to hook into Zope3 (or Five's) event system in order to execute code
during the Archetypes content creation and or editing process.

In the old days the only way to execute code during the object creation
process for Archetypes was to add a method to your content type called
at_post_create_script. In this script you would add any code that
should execute after Archetypes was done creating the object.

The new method for hooking the Archetypes object creation and editing
process is to use Zope3 style events,
like Products.Archetypes.interfaces.IObjectInitializedEvent.

Prerequisites

Have a content type handy so we can add a post creation hook to it. To
learn how to create a content type, check previous sections of this
manual.

We’re going to use a content type called ExampleContent with the
interface IExampleContent for this how to. The code structure will
look like this:

tutorial/configure.zcml
tutorial/interfaces.py
tutorial/content/examplecontent.py

Step by step

First let’s create the interface for our ExampleContent type. In
interfaces.py, add:

from zope.interfaces import Interface

class IExampleContent(Interface):
 ''' Interface for the ExampleContent type
 '''

You can store the implementation for your event handlers anywhere but
for the purpose of this example we’re going to put it in the same module
as the ExampleContent type:

from zope.interface import implements
from Products.ATContentTypes import atct

def addSubFolder(obj, event):
 obj.invokeFactory(type_name='Folder', id='subfolder')

class ExampleContent(atct.ATFolder):
 implements(IExampleContent)
 portal_type = archetype_name = 'ExampleContent' # <-- this is no longer needed with GenericSetup.

All we need to do now is register the addSubFolder method as a handler
for Products.Archetypes.interfaces.IObjectInitializedEvent and for
anything implementing the IExampleContent interface. We do this in a
configure.zcml file:

<subscriber for=".interfaces.IExampleContent
 Products.Archetypes.interfaces.IObjectInitializedEvent"
 handler=".content.examplecontent.addSubFolder" />

Notice that there are two interfaces in the “for” attribute. This is
because we are registering a multi-adapter. Now when you add an
ExampleContent type the addSubFolder method will be executed after
Archetypes has created the object. The object itself will be passed to
the handler and we can use the object reference to make additional
modifications, in this case adding a sub folder.
You can register as many handlers as you need.

Warnings from your future

Having implemented all of your content type’s event hooks you might then
run off and try using invokeFactory somewhere in your code only to
realize that your IObjectInitializedEvent handlers are not being
executed. This is because invokeFactory does not notify Zope’s event
system that new objects are being created. You have to provide these
notifications yourself. So here is an example:

import zope.event
from Products.Archetypes.event import ObjectInitializedEvent
some_folder.invokeFactory(type_name='ExampleContent', id='foobar')
obj = getattr(some_folder, 'foobar')
zope.event.notify(ObjectInitializedEvent(obj))

This will both create your object and invoke
any IObjectInitializedEvent handlers you have registered. Notice
that we are importing ObjectInitializedEvent, not the interface
IObjectInitializedEvent. We want to actually instantiate an event
passing it our newly created object as the single parameter and then
pass the event to zope.event.notify. From there, Zope takes care of
figuring out which handlers need to execute.

So for example, in our addSubFolder method above, any events
registered for the folder we created would not fire. To complete our
hook in this case we should provide a notification for our newly created
folder. Archetypes or other products may be expecting notifications so
when using invokeFactory, always send an IObjectInitializedEventfor
the object.The complete method looks like this:

def addSubFolder(obj, event):
 obj.invokeFactory(type_name='Folder', id='subfolder')
 folder = getattr(obj, 'subfolder')
 zope.event.notify(ObjectInitializedEvent(folder))

Further information

The IObjectInitializedEvent is fired once during the objects
creation process. To hook the editing process for an object
use IObjectEditedEvent.

The Sending and handling events tutorial is a little out of date
but provides a broader explanation of the underlying mechanics. Walking
through Five to Zope 3 - Events is another great introduction to
events handling.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

How to use events to hook the Archetypes creation process

Introduction

Times have changed since the days of at_post_create_script(). Here is the way to hook into Zope3 (or Five's) event system in order to execute code during the Archetypes content creation and or editing process.

In the old days the only way to execute code during the object creation process for Archetypes was to add a method to your content type called at_post_create_script. In this script you would add any code that should execute after Archetypes was done creating the object.

The new method for hooking the Archetypes object creation and editing process is to use Zope3 style events, like Products.Archetypes.interfaces.IObjectInitializedEvent.

Prerequisites

Have a content type handy so we can add a post creation hook to it. To learn how to create a content type, check previous sections of this manual.

We're going to use a content type called ExampleContent with the interface IExampleContent for this how to. The code structure will look like this:

tutorial/configure.zcml
tutorial/interfaces.py
tutorial/content/examplecontent.py

Step by step

First let's create the interface for our ExampleContent type. In interfaces.py, add:

from zope.interfaces import Interface

class IExampleContent(Interface):
 ''' Interface for the ExampleContent type
 '''

You can store the implementation for your event handlers anywhere but for the purpose of this example we're going to put it in the same module as the ExampleContent type:

from zope.interface import implements
from Products.ATContentTypes import atct

def addSubFolder(obj, event):
 obj.invokeFactory(type_name='Folder', id='subfolder')

class ExampleContent(atct.ATFolder):
 implements(IExampleContent)
 portal_type = archetype_name = 'ExampleContent' # <-- this is no longer needed with GenericSetup.

All we need to do now is register the addSubFolder method as a handler for Products.Archetypes.interfaces.IObjectInitializedEvent and for anything implementing the IExampleContent interface. We do this in a configure.zcml file:

<subscriber for=".interfaces.IExampleContent
 Products.Archetypes.interfaces.IObjectInitializedEvent"
 handler=".content.examplecontent.addSubFolder" />

Notice that there are two interfaces in the "for" attribute. This is because we are registering a multi-adapter. Now when you add an ExampleContent type the addSubFolder method will be executed after Archetypes has created the object. The object itself will be passed to the handler and we can use the object reference to make additional modifications, in this case adding a sub folder.

You can register as many handlers as you need.

Warnings from your future

Having implemented all of your content type's event hooks you might then run off and try using invokeFactory somewhere in your code only to realize that your IObjectInitializedEvent handlers are not being executed. This is because invokeFactory does not notify Zope's event system that new objects are being created. You have to provide these notifications yourself. So here is an example:

import zope.event
from Products.Archetypes.event import ObjectInitializedEvent
some_folder.invokeFactory(type_name='ExampleContent', id='foobar')
obj = getattr(some_folder, 'foobar')
zope.event.notify(ObjectInitializedEvent(obj))

This will both create your object and invoke any IObjectInitializedEvent handlers you have registered. Notice that we are importing ObjectInitializedEvent, not the interface IObjectInitializedEvent. We want to actually instantiate an event passing it our newly created object as the single parameter and then pass the event to zope.event.notify. From there, Zope takes care of figuring out which handlers need to execute.

So for example, in our addSubFolder method above, any events registered for the folder we created would not fire. To complete our hook in this case we should provide a notification for our newly created folder. Archetypes or other products may be expecting notifications so when using invokeFactory, always send an IObjectInitializedEvent for the object. The complete method looks like this:

	def addSubFolder(obj, event):

	obj.invokeFactory(type_name='Folder', id='subfolder')
folder = getattr(obj, 'subfolder')
zope.event.notify(ObjectInitializedEvent(folder))

Further information

The IObjectInitializedEvent is fired once during the objects creation process. To hook the editing process for an object use IObjectEditedEvent.

The Sending and handling events tutorial is a little out of date but provides a broader explanation of the underlying mechanics. Walking through Five to Zope 3 - Events is another great introduction to events handling.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Adapting & Extending Plone »

 	Custom Content-Types »

 	Content-types with Archetypes »

Appendix: Practicals

Description

Plone Developer Manual is a comprehensive guide to Plone programming.

1. How-To Extend A Basic Archetype Content Type

This How-To describes what to do next after you've gotten the basic
Archetype examples working. You can add functions, views, actions,
and edit-page validation.

Ok, so you've got the Archetype examples to work, and now you'd
like to know how to flesh out the basic example into something
useful. (That's how I started; I knew I needed to make new Content
Types, but didn't know how they worked. I got the examples going,
then tried to figure out how to modify them to do what I wanted.) I
found learning Plone/Zope very frustrating until I got to this
point. Then, once I figured out how to make Content Types do what I
wanted, it all made sense.

Adding Functions
This is probably one of the first things on your mind. Where do I
add functions to my Content Type? How do I call them? What syntax
do I use? Well, these were the things that I wondered about. I
figured out how to do them after some trial and error. I never made
a real website before, where I had to write scripts (a blog doesn't
count). So even though I had a lot of python experience, I was
confused at first.
[First, know that the Zope server converts a URL path into an object path, to find the object that will render your page. This is covered in the Zope Developer's guide. The key point you need to know is that there's a parallel between the URL and your object hierarchy, but it's not exactly the same.]

To cut to the chase, Zope figures out which object/function the URL
is pointing to, and it takes the query string (?arg=val,arg2=val2,
etc.) and uses it to figure out all the right arguments for the
function call. So, you define your function in the usual way,
i.e.,

class MyExample (BaseContent):
 """ My example Archetype Content Type. """

 # define the schema
 # override the default actions

 def my_function (self, foo1, foo2):
 """ You need a doc string here!! I lost a lot of time finding this out.
 Archetypes needs this when registering the function in the framework.
 You'll get a 404 error if you forget the doc string. """
 temp1 = "foo" # this is not persisted in the ZODB
 self.this_is_a_persisted_member_in_the_ZODB = "I'm here to stay %s" % (foo1,)
 # if you don't return anything, then the Zope server will not re-render a page
 # anything you return will be rendered
 # return "got here" will show up as text
 # return context.index_html() will return the default page (should be reasonable in any content; people won't get lost)
 # return context.base_edit() has the effect of "jumping" to the edit page

Adding Actions
I was confused when I saw the description of actions in the Plone
manual. Here's how I think of them: they're just the hyper-linked
tabs along the top of the Content Type (content actions) or
horizontal site navigation (site actions). The links are typically
to a Content Type function (that returns a page), or to a page
template (I only know how to make .pt and .cpt types so far). The
actions for the Content Type are defined (overridden) using the
Factory Type Information format, and the process well described in
the Archetype tutorials. I'll just add that you can make most of
the tabs (actions) visible=True or visible=False. You can append
your own actions that show up as tabs for your content type.

Changing Page Views
You can change the various views of your content type by defining
new page templates to display your data. Typically, these page
templates (.pt) are placed within the skins/ directory of your
product. I can't fill you in on exactly how Zope maps the URL
(http://.../myArchExample/my_view) to the my_view.pt, but the
details are taken care of (by the Install.py script?) and you
should put your page templates in the skins/ directory.
[This section needs updating, as soon as I learn how it's done.]

Validating the Edit Form
You probably have a need to validate the data that users enter on
the edit page. This process is called validation, and the scripts
that implement the rules are called validators. There's a clean
way to do this in Archetypes using built-in field validators and
your own post_validation() function for the Content Type. You
don't have to write any (.cpt,.cpy,.vpy) form templates, or
controller scripts. Of course, validation is optional, so you can
skip either step.

	Use field validators on individual entries (see the validator =
(,) field attribute). This is the first-line of validation.

	Define a post_validation() function. This allows you to
validate fields in the context of the entire class, and set error
(re-do) flags for individual fields.

After the user hits the 'submit' button on the edit page, the field
validators are run first. If any validators fail, the input field
is highlighted, and the user is sent back to the edit page to fix
the errors.

If all the field validators pass, then your post_validate(self,
REQUEST, errors) is called. The form keys and data are passed to
you in the REQUEST dictionary. Your code will validate the edit
form values in the REQUEST dictionary. If you see errors that
require fixing, you'll set them in the errors dictionary (using the
corresponding key in the REQUEST). For example, here's a

class MyExample (BaseContent):
 """ My example Archetype Content Type. """

 # define the schema
 # override the default actions

 def post_validate (self, REQUEST, errors):
 """ This function checks the edit form values in context.
 It's called after the field validation passes. """
 if REQUEST['type'] == 'buy' and REQUEST['quantity'] == 0:
 error['quantity'] = "Quantity must be non-zero."

Adding Child Members
If your content type is a folder-like object, you can write
functions that will add child objects. This may be useful, for
example, if your Content Type is a ledger, and you need to add new
transactions when the user hits an action. The following example
code shows how to do this.

class MyExample (BaseFolder):
 """ My example Archetype Content Type. """

 # define the schema
 # override the default actions

 def addTransaction (self, type, quantity):
 """ This function creates a new MyTransaction object in the folder. """
 # create a unique id for this transaction
 newId = self.generateUniqueId('MyTransaction')
 # create a new MyTransaction object
 self.invokeFactory(id=newId, type_name='MyTransaction')
 myTransaction = getattr(self, newId)
 return myTransaction.base_edit() # send the user to the edit page

2. Implement Archetypes ComputedField and ComputedWidget on your Product and reference other Fields

A simple use of ComputedField and ComputedWidget referencing other
fields, built-in or 3rd party, in the same Plone product

Motivation

There are many reasons why this how-to exists:

	Almost no Archetypes examples using ComputedField and
ComputedWidget

	We want our product to process some data on itself, but reload
isn't a matter of concern

	We love PZP (Python-Zope-Plone)!

What do we need?

	A Plone installation

	A nice text editor (my wintel box runs SciTE)

	Some product (for real dummies like me, try
http://plone.org/documentation/tutorial/anonymously-adding-custom-content-types-with-argouml-and-archgenxml/view)

What we are going to achieve?

	Make a page process it's own information

Let's say you created a product, maybe using ArgoUML (an UML
editor) and ArchGenXML. One thing you might realize it's missing on
creating UML's is that: we create classes (Plone products), their
types are also classes (Archetypes' fields and widgets) and
Attributes (Fields and Widgets' properties) as TD's (tagged data)
for Archetypes' types, but we have no methods!
But we could do more if we inserted code: classes are made of
attributes and methods (code). But as UML editors are not that
Python friendly, we do that by hand.

So, how?

If you already have navigated the path of a product, you've
stumbled on some source files (.py) inside, so take some time to
read their source (Read the source, Luke!). Probably you've seen
some like this (for example, MyOrder.py):

from AccessControl import ClassSecurityInfo
from Products.Archetypes.atapi import *
from Products.Laborde.config import *

from Products.DataGridField import DataGridField, DataGridWidget # we talk about this later
from Products.DataGridField.Column import Column #really!

schema = Schema((
 StringField(
 name='PurchaseOrderID',
 widget=StringWidget(
 label="PurchaseOrderID",
 description="Enter this purchase order unique identification number.",
 label_msgid='MyOrder_label_PurchaseOrderID',
 description_msgid='MyOrder_help_PurchaseOrderID',
 i18n_domain='MyOrder',
),
 required=True,
 searchable= True
),
 DataGridField(
 name='PurchaseOrderItems',
 required=True,
 searchable=True,
 widget=DataGridWidget(),
 allow_empty_rows = False,
 columns=(
 "Maker",
 "Model",
 "Description",
 "UnitaryCost",
 "Quantity"
),
),

 ComputedField(
 name='TotalCost',
 searchable=True,
 expression="context.calculateTotal()",
 widget=ComputedWidget(
 label="Total",
 modes=('view')
),
),

),
)

PurchaseOrder_schema = BaseSchema.copy() + \
 schema.copy()

class PurchaseOrder(BaseContent):
 """
 """

 # some class definitions

 # a function that calculates total
 # but it doesn't even check (try-except) data it uses

 def calculateTotal(self):
 Total = 0.0
 for n in self.PurchaseOrderItems:
 Quantity = float(n['Quantity'])
 UnitaryCost = float(n['UnitaryCost'])
 Total = Total + Quantity * UnitaryCost
 Total = '%1.2f' % Total # this makes our total have 2 decimals for display
 return Total

registerType(PurchaseOrder, PROJECTNAME)

Aargh! I've just core dumped and almost killed 30!
The above code can be divided in two parts: Schema and Class
(Product). We have declared 3 different fields in the schema: the
first is a build in trivial Archetype field; the second is imported
from the Product DataGridField (you need installed on your
Plone instance to work); the third is our the field we want to
change as someone changes values on the form.

expression="dir()" # useful to check available objects

,

expression="1+1" # 10 if you have two neurons, like me. Otherwise, 2.

,

expression="dir(context)" # available context child objects

or

expression="context.calculateTotal()" # VoilÃ¡! Reference to some real(?) code!

We've just called something (a function, in fact) named
calculateTotal.
But smart as we are, we realized that expressions called this way
must be somewhere in our context scope. I mean, inside our class
definition.
The function definition itself isn't that simple: it adds up the
total and returns its value. What isn't simple? Our generous
DataGridField returns a tuple of dictionaries like:

(
 {"Maker":"HP","Model":"scanjet 4670","Description":"scanner","UnitaryCost":"99.00","Quantity":"1"},
 {"Maker":"LG","Model":"L173SA","Description":"17 LCD monitor","UnitaryCost":"299.95","Quantity":"2"},
 {"Maker":"Seagate","Model":"SA32300","Description":"Hard drive","UnitaryCost":"134.50","Quantity":"2"}
)

The for loop iterates over every item on the tuple and searches
for two dictionary items. Other field are rather simple to retrieve
data: just use field's name attribute.
The widget=SomeWidget(modes='view',...) realizes the feat of
showing this field only on the view mode: not when adding the item
and editing, nor when editing an existing item.

What's next?

	What could we do with PhotoField (ImageWidget)?

	try-except is always recommended

	Could this better than mutate ?

	Can we make a file available for download with some strange mime
type based on the information of this product?

3. Making the view page of a content type use your schemata declarations

How to make the schemata declarations in a Archetypes schema be
used in the view page of a content type.

Introduction

Declaring schematas in your Archetype schema has the nice effect of
displaying the fields of the different schemas on different edit
pages (very much like a "wizard" for adding a new content type
instance). Often times you might like to also have the view page be
divided according to the different schemas you have declared. This
is not done automatically by Archetypes so in this document I'll
show you how to do it yourself. Don't worry! It's really quite
easy.

Python class and schema

I'll be using a simple article content type I have constructed for
this how-to to show you how the schematas can be used on your
content type's view page. The example type is really not very
usable, but just complex enough to show you how to do this. It has
a schema of four fields in addition to the default id and title
fields: abstract, body, firstname, lastname. The abstract and body
fields are in a schemata named article and the firstname and
lastname field in a schemata named author.

I have also defined the title and id fields to be in schemata
article. This was done so I won't have an extra schemata called
default and so I can use the title field for the title of the
article. (Remember to use BaseSchema.copy()!)

The class itself has just the schema declaration and a new view
action definition. I have defined the view action to use a template
called article_view that we'll be getting to shortly.

Here is the file in it's entirety:

from Products.Archetypes.public import *

from Products.CMFCore import CMFCorePermissions

from config import PKG_NAME

schema = BaseSchema.copy() + Schema((

 TextField('abstract',

 required=1,

 searchable=1,

 widget = TextAreaWidget(description="Abstract", label="Abstract"),

 schemata = 'article'),

 TextField('body',

 required=1,

 searchable=1,

 widget = TextAreaWidget(description="Body", label="Body"),

 schemata = 'article'),

 TextField('firstname',

 required=1,

 searchable=1,

 widget = StringWidget(description="First name", label="First name"),

 schemata = 'author'),

 TextField('lastname',

 required=1,

 searchable=1,

 widget = StringWidget(description="Last name", label="Last name"),

 schemata = 'author'),

))

schema['title'].schemata = 'article'

schema['id'].schemata = 'article'

class Article(BaseContent):

 schema = schema

 actions = (

 {'id': 'view',

 'name': 'View',

 'action': 'string:${object_url}/article_view',

 'permissions': (CMFCorePermissions.View,)

 },

)

registerType(Article, PKG_NAME)

View template

The view template article_view is the main part of this how-to. It
has the page template code to generate the different pages for the
different schematas.

First you should copy the base.pt file from the Archetypes skins
folder (on my Debian GNU/Linux unstable it's in
/usr/share/zope/Products/Archetypes:1.3/skins/archetypes) to your
product's skins folder. It has most of the template code you'll
need ready, so you'll only need to make some minor changes to make
this work. Also it uses all the default macros and such, so you'll
view page will look like a real plone page.

The base.pt template just goes through all the fields of your
content type and shows their widgets. What we want to do is to have
it only go through the fields of one schemata at a time and give us
links to see the others. This will be done using REQUEST parameters
to the scripts.

I'll go though the changes from the top of the file downwards so
you'll have a easier time keeping up and making the changes to your
own template.

Links to the different schematas

We'll want the list of different schematas to be at the top of the
page, so that'll go in first. Find the line that says
'<metal:main_macro define-macro="main">'. This is where the
body of the template starts. After this line is the header with the
title and the little icons for edit, print and such, and I want to
have my links to show up above that. So after the beginning of the
body and above the header add the following code:

<div style="margin-bottom: 1em">

 <b tal:condition="python: schemata != 'metadata'">[<a tal:attributes="href string:?page=${schemata}">]

</div>

This just repeats over our schematas' names (we get them with
here.Schemata().keys()) and prints all of them on one line as
links, each one in square brackets. The links are to the same view
page, but they all set a parameter in REQUEST called page that
points to the schemata we are linking to. This isn't very pretty so
you'll probably want to make them look nicer if you like. The
'schemata != 'metadata'' part is because there's a schemata
called metadata created automatically for your content type to
support default standard metadata which can be set via the
properties tab and that we do not want to include here.

Showing only the schemata we want

In the next part we'll be diving deeper into the code. You're
looking for a part that says
'tal:repeat="field python:here.Schema().filterFields(isMetadata=0)"'.
This repeats through the fields of your content type and the
following parts show their widgets. What we want to do here is to
have it repeat through the fields of the schemata we want instead
of all of them. In the previous part we set a parameter in REQUEST
called page that points to the schemata we want to see, and here we
want to use that to pick which schemata's fields to loop over. So
just go ahead and replace the part with
'tal:repeat="field python:here.Schemata()[here.REQUEST.get('page', here.Schemata().keys()[0])].filterFields(isMetadata=0)"'.
This just gets the page parameter from REQUEST (if page is not
found, ie. the template is called with no parameters, then first
schemata, in this case article, is used) and loops through the
fields of the schemata with that name.

The completed article_view.pt looks like this:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

 lang="en"

 xmlns:tal="http://xml.zope.org/namespaces/tal"

 xmlns:metal="http://xml.zope.org/namespaces/metal"

 xmlns:i18n="http://xml.zope.org/namespaces/i18n"

 metal:use-macro="here/main_template/macros/master">

 <head><title></title></head>

 <body>

 <div metal:fill-slot="main">

 <metal:main_macro define-macro="main">

 <div style="margin-bottom: 1em">

 <b tal:condition="python: schemata != 'metadata'">[<a tal:attributes="href string:?page=${schemata}">]

 </div>

 <metal:header_macro define-macro="header">

 <div metal:use-macro="here/document_actions/macros/document_actions">

 Document actions (print, rss, etc)

 </div>

 <h1 tal:content="title_string | here/title_or_id" />

 <tal:has_document_byline tal:condition="exists:here/document_byline">

 <div metal:use-macro="here/document_byline/macros/byline">

 Get the byline - contains details about author and modification date.

 </div>

 </tal:has_document_byline>

 </metal:header_macro>

 <metal:body_macro metal:define-macro="body"

 tal:define="field_macro field_macro | here/widgets/field/macros/view;"

 tal:repeat="field python:here.Schemata()[here.REQUEST.get('page', here.Schemata().keys()[0])].filterFields(isMetadata=0)">

 <tal:if_visible define="mode string:view;

 visState python:field.widget.isVisible(here, mode);

 visCondition python:field.widget.testCondition(here, portal, template);"

 condition="python:visState == 'visible' and visCondition">

 <metal:use_field use-macro="field_macro" />

 </tal:if_visible>

 </metal:body_macro>

 <metal:folderlisting_macro metal:define-macro="folderlisting"

 tal:define="fl_macro here/folder_listing/macros/listing | nothing;

 folderish here/isPrincipiaFolderish | nothing;">

 <tal:if_folderlisting condition="python:folderish and fl_macro">

 <metal:use_macro use-macro="fl_macro" />

 </tal:if_folderlisting>

 </metal:folderlisting_macro>

 <metal:footer_macro define-macro="footer">

 </metal:footer_macro>

 </metal:main_macro>

 </div>

 </body>

</html>

Conclusion

So that was it. I told you it was going to be easy!

Happy hacking!

4. Enabling versioning on your custom content-types

Plone 3 includes a robust versioning system as well as a tool for
viewing diffs, which allows you to easily see the changes between
two revisions. This document explains how to integrate versioning
and diff functionality with your custom Archetypes-based
content-types.

Prerequisites

You'll need a Plone 3 instance and a custom product which contains
at least one Archetypes-based content-type on which you want to
enable versioning.

You'll also need to have the Working Copy Support (Iterate)
product installed. This product is part of the Plone core so to
install it, all you need to do it visit
the Add-on Products section (a.k.a. Quickinstaller) of the
Plone control panel and select it for installation.

Creating a setup handler script for GenericSetup

The integration code we'll be writing here is best run as a setup
handler using GenericSetup. If your product doesn't already have a
GenericSetup profile and a custom setup handler,
this tutorial [https://plone.org/tutorial/borg/setup-using-genericsetup]
provides instructions on how to create those.

Declaring versionable types in your setup handler

The portal_repository tool stores a list of content-types on which
version is enabled. With the following code we create a list of
the custom types on we which we want to activate versioning and
then notify the repository tool to start versioning the types in
this list.

If you copy the code below, make sure to edit the
TYPES_TO_VERSION setting so that it contains a list of the types
on which you want to activate versioning.

from Products.CMFCore.utils import getToolByName
from Products.CMFEditions.setuphandlers import DEFAULT_POLICIES

put your custom types in this list
TYPES_TO_VERSION = ('Scientist', 'Article', 'Presentation')

def setVersionedTypes(portal):
 portal_repository = getToolByName(portal, 'portal_repository')
 versionable_types = list(portal_repository.getVersionableContentTypes())
 for type_id in TYPES_TO_VERSION:
 if type_id not in versionable_types:
 # use append() to make sure we don't overwrite any
 # content-types which may already be under version control
 versionable_types.append(type_id)
 # Add default versioning policies to the versioned type
 for policy_id in DEFAULT_POLICIES:
 portal_repository.addPolicyForContentType(type_id, policy_id)
 portal_repository.setVersionableContentTypes(versionable_types)

Now we call this function from the importVarious() function in our
setup handler script. Make sure to pass the portal object as a
parameter.

def importVarious(context):
 """Miscellanous steps import handle"""
 portal = context.getSite()
 setVersionedTypes(portal)

Enabling visual diffs on your versioned types

Now that you've enabled versioning, you'll probably want to enable
visual diffs so you can compare the changes made between different
versions of an object.

Starting in Plone 3.2 the diff tool can be configured via a
GenericSetup configuration file. You'll want to create or edit the
diff_tool.xml file in the /profiles directory of your product.
 Here's an example confirmation file that enables compound diffs on
the 3 content-types used in the example above.

<?xml version="1.0"?>
<object>
 <difftypes>
 <type portal_type="Scientist">
 <field name="any" difftype="Compound Diff for AT types"/>
 </type>

 <type portal_type="Article">
 <field name="any" difftype="Compound Diff for AT types"/>
 </type>

 <type portal_type="Presentation">
 <field name="any" difftype="Compound Diff for AT types"/>
 </type>
 </difftypes>
</object>

For Plone versions earlier than 3.2, there is not a GenericSetup
handler for configuring the diff tool, but you can create these
settings through the ZMI using the portal_diff tool. In the
Portal Type drop-down menu select the content-type on which you
want to enable diffs. In the Field name box type "any". For
the Diff Type select "Compound Diff for AT Types". Finally
click the Add Field button. Repeat these steps for each
content-type.

Deploying your new versioning and diffs policy

To deploy these changes you'll need to re-run you product's
GenericSetup policy. If your instance is not running in debug
mode, you'll first need to restart your Zope instance to make your
new filesystem code available.

Assuming you've used paster to create your product package,
reinstalling your product in the Add-on Products section of the
Plone control panel should be sufficient to re-run
your** GenericSetup policy** . If your product's install method
does not run your GenericSetup policy, you may need to visit the
portal_setup tool in the ZMI and run it manually.

Verifying that versioning and visual diffs are now enabled

Visit an instance of one of the types on which you've enabled
versioning. Make some edits to one or more of the fields save
those changes. Next, visit the history tab for the item you
just edited. You should see a list showing two versions. Click the
link to compare versions you should see a diff showing you what has
been changed between the two revisions.

5. b-org: Creating content types the Plone 2.5 way

Plone 2.5 brings us closer to the promised land of Zope 3. Zope 3
brings us a new way of working. This tutorial will show how to
marry the old and the new, to make Plone products that are more
extensible, better tested and easier to maintain.

5.1. Introduction

What is b-org, and what will you learn here?

b-org stands for "base-organisation". The name had nothing
whatsoever to do with my desire to get an svn URL of
http://svn.plone.org/svn/collective/borg.
Promise. In fact, it used to be called company , which some people
rightly pointed out is a bit too generic and opens up the
possibility of conflicts with other people's code. It just proves
that naming generic components is difficult.

Generic is the key word here. Functionally, b-org provides
infrastructure to help you manage Departments , Employees
and Projects in a natural way. Departments are containers for
employees, employees are linked to projects by references. Using
membrane , these objects become sources for users and groups, so
that a department is a group for all the employees in it, and
employees become real users of the system, with usernames and
passwords. Projects manage local roles, so that employees that have
been associated with the project are able to add and modify content
in it. Other users may or may not be able to view content in a
project, depending on its workflow state.

However, b-org makes no assumptions about which metadata you want
to associate with departments, employees or projects. For that, it
expects you to plug in your own content schema. It also delegates
almost all its functionality to smaller components, so that if you,
for example, want to store authentication details via LDAP or
change the way in which users are employees to projects, you can do
so by implementing small, isolated components rather than
sub-classing and re-implementing large chunks of the three basic
content types.

That's all well and good, but you're probably not going to want to
read a lengthy tutorial just about how great b-org is. As the title
promises, this tutorial is about
leveraging new technologies available in Plone 2.5 to write
better content types and other software in Plone. Hopefully, you
will find the techniques described here useful whether you are
writing a member management module using membrane (mmmm), or other
code. I for one, want to go and rewrite several of my products
(like Poi) to make them more extensible and flexible after having
adopted these techniques. Hopefully, you will also learn something
about the development process , in particular
test-driven development , that I followed, and how the future of
Plone is entangled in Zope 3 .

This tutorial should be viewed as complementary to, rather than
superceding, my earlier tutorial entitled
RichDocument - Creating Content Types the Plone 2.1 way [https://plone.org/documentation/manual/developer-manual/archetypes/appendix-practicals/richdocument].
The techniques of RichDocument, in particular relating to extending
ATContentTypes, are still valid in Plone 2.5. What Plone 2.5 allows
us to do, however, is to achieve better separation of concerns
between content storage, business logic and view logic, due to the
added spices of Zope 3. For RichDocument, the gain wouldn't be that
great since it's relatively simple (and focuses on doing as little
as possible by re-using as much as possible from ATContentTypes).
Hence, I didn't update the RichDocument tutorial, nor do I feel as
compelled to update RichDocument itself (yet). b-org is a more
ambitious example which allows us to illustrate the new techniques
more fully.

One thing to note is that this tutorial is still centered on
Archetypes , and assumes you know the basics of Archetypes
development on the filesystem. Archetypes is rooted in a pre-Zope 3
world, and there are times when we have to accommodate it in ways
that make our clean patterns a bit messier - luckily, not too
often. There are ways of managing content in Zope 3 that can be
applied to Plone, for example by way of
zope.formlib [https://plone.org/documentation/manual/developer-manual/archetypes/appendix-practicals/using-zope-formlib-with-plone],
but these are generally not quite ready to replace what we can do
today with Archetypes. In the future, they may be, but more likely
Archetypes will converge a bit more with its Zope 3 equivalents and
blur the lines between the two approaches. The upshot is that what
you know about Archetypes today continues to be relevant, and is
augmented by the Zope 3-inspired techniques you will find here.

5.2. A whirlwind tour of Zope 3

Zope 3 is still fairly new. After reading this tutorial, it should
hopefully start to feel a bit more familiar. In this section, we
will give a brief overview of what is different in Zope 3 and how
it fits into Plone.

The name Zope 3 is a lie. True - it is brought to you by many of
the same clever people who built Zope 2, one of the most advanced
open source app servers of its day. True, it is still Python, it
still publishes things over the web, and there are still Zope Page
Templates. However, Zope 3 is about small, re-usable components
orchestrated into a flexible framework. It is this flexibility that
allows us to use Zope 3 technologies in Zope 2 applications like
Plone.

A piece of wizardry called Five (Zope 2 + Zope 3 = Five, geddit?)
makes a number of Zope 3 components directly available in Zope 2,
and since Zope 2.8, almost all of Zope 3 has shipped with Zope 2 as
a python library. Plone 2.5's primary purpose was to lay the
foundations for taking advantage of Zope 3 technologies in Plone.

Zope 3 may seem a bit alien at first, because it uses strange
concepts such as adapters and utilities . Luckily, these are
not so difficult to understand, and once you do, you will find that
they help you focus your development on smaller and more manageable
components. You will also find that these basic concepts underpin
most of the innovative parts of Zope 3.

Interfaces

Everything in Zope 3 starts with interfaces. Unlike Java or C#,
say, Python does not have a native type for an interface, so an
interface in Zope 3 is basically a class that contains only empty
methods and attributes, and inherits from Interface . Here is a
basic example:

from zope.interface import Interface, Attribute

class IShoe(Interface):
 """A shoe
 """

 color = Attribute("Color of the shoe")
 size = Attribute("Shoe size")

class IShoeWearing(Interface):
 """An object that may wear shoes
 """

 def wear(left, right):
 """Wear the given pair of shoes
 """

Interfaces are primarily documentation - everything has docstrings.
Also note that the wear() method lacks a body (there is not even
a pass statement - the docstring is enough to keep the syntax
valid), and does not take a self parameter. That is because you
will never instantiate or use an interface directly, only use it to
specify the behaviour of an object.

An object can be associated with an interface in a few different
ways. The most common way is via its class. We say that the class
implements an interface, and objects of that class provide that
interface:

from zope.interface import implements

class Shoe(object):
 """A regular shoe
 """

 implements(IShoe)

 color = u''
 size = 0

The implements(IShoe) line means that objects of this class will
provide IShoe. Further, we fulfill the interface by setting the two
attributes (we could have implemented them as properties or used a
an __init__() method as well). The IShoeWearing interface
will be implemented in the section on adapters below.

We use interfaces to model components. Interfaces are normally the
first stage of design , in that you should define clear
interfaces and write actual classes to fulfill those interfaces.
This formalism makes for great documentation - interfaces are
conventionally found in an interfaces module, and this is
typically the first place you look after browsing a package's
documentation. It also underpins the adapter and utility system -
otherwise known as the Component Architecture - as described
below.

Note that you can use common OOP techniques in designing
interfaces. If one interface describes a component that has an
"is-a" or "has-a" relationship to another component, you can let
interfaces subclass or reference each other. An object will provide
the interfaces of its class, and all its base-classes, and all
base-interfaces of those interfaces. Don't worry about untangling
that - it works the way you would expect.

You can also apply interfaces directly to an object. Of course, if
that interface has methods and attributes, they must be provided by
the object, and unless you resort to crazy dynamic programming, the
object will get those from its class, which means that you may as
well have applied the interface to the class. However, some
interfaces don't have methods or attributes, but are used as
markers to distinguish a particular feature of an object. Such
marker interfaces may be used as follows:

class IDamaged(Interface):
 """A shoe that is damaged
 """

>>> from zope.interface import alsoProvides
>>> boot = Shoe()
>>> IDamaged.providedBy(boot)
False
>>> alsoProvides(boot, IDamaged)
>>> IDamaged.providedBy(boot)
True

Marker interfaces are very useful for things that change at
run-time in response to some event (e.g. some user action), and
thus cannot be determined in advance. In a moment, you see that
what you will learn about adapters and adapter factories below also
applies to marker interfaces - it is possible to alter which
adapter factory is invoked by applying a different marker
interface.

It's also possible to apply interfaces directly to classes (that is
the class itself provides the interface, as opposed to the more
usual case where the class implements the interface so that objects
of that class provides it - this is useful because it allows you to
group those classes together and describe the type of class they
are) and to modules (where you want to describe the public methods
and variables of a module). These constructs are less common, so
don't worry about them for now. Look at the documentation and
interfaces (!) in the zope.interface package for more.

Adapters

The most important thing that Zope 3 promises is
separation of concerns . In Zope 2, almost everything has a base
class that pulls in a number of mix-in classes, such as
SimpleItem (surely, the most ironically named class in Zope 2)
and its plethora of base classes that include RoleManager ,
Acquisition.Implicit and many others. This means that a class
written for Zope 2 is nearly impossible to re-use outside of Zope.

Furthermore, in Zope 2 we are tightly wedded to the context (aka
here) because it is so convenient to use in page templates,
workflow scripts etc. For example, people often write an Archetypes
class that contains a schema (storage logic), methods for providing
various operations (business logic) and methods for preparing
things to display in a page template (view logic). Often, people do
this simply because they can't think of a better place to put
things, but it does mean that re-using any part of the
functionality becomes impossible without importing the whole class
- and its base classes, which include Archetypes' BaseObject, CMF's
DynamicType, and Zope's SimpleItem - to name a few!

Think about the example above. The Shoe class is well-contained
and only concerned with one thing - storing the attributes of
shoes. It can be used as an abstraction of shoe anywhere, and is
very lightweight. Now let's consider that we may want to wear shoes
as well. We can create a pair of shoes easily enough:

>>> left = Shoe()
>>> right = Shoe()
>>> left.size = right.size = 10
>>> left.color = right.color = u"brown"

Now we want someone to wear these shoes. Let's say we have a
person:

class IPerson(Interface):
 """A person
 """

 name = Attribute("The person's name")
 apparel = Attribute("A list of things this person is wearing")

class Person(object):

 implements(IPerson)

 name = u''
 apparel = ()

In a Zope 2 world, we may have required Person to mix in some
ShoeWearingMixin class that specified exactly how shoes should be
worn. That makes for fat interfaces that are difficult to
understand. In a Zope 3 world, we would more likely use an
adapter.

An adapter is a glue component that can adapt an object providing
one interface (or a particular combination of interfaces, in the
case of a multi-adapter) to another interface. We already have a
specification for something that wears shoes, in the form of
IShoeWearing . Here is a snippet of code that may use this
interface:

>>> wearing = ...
>>> wearing.wear(left, right)

The question is what to do with the '...' - how do we obtain an
object that provides IShoeWearing? Code like this is normally
operating on some context, which in this case may be a Person . If
that Person implemented IShoeWearing (or at least the
wear()*method), it would work, but then we are making undue
demands on Person. What we need is a way to *adapt this IPerson to
something that is IShoeWearing. To do that, we need to write an
adapter:

from zope.interface import implements
from zope.component import adapts

class PersonWearingShoes(object):
 """Adapter allowing a person to wear shoes
 """
 implements(IShoeWearing)
 adapts(IPerson)

 def __init__(self, context):
 self.context = context

 def wear(self, left, right):
 self.context.apparel += (left, right)

Here, we implement the IShoeWearing interface. Note how the
wear() method now has a self parameter, since this is a real
object. Also note the __init__() method, which takes a
parameter conventionally called context . This is
the thing that is being adapted, in this case an object providing
IPerson. We store this as an instance variable and then reference
it later. Note that adapters are almost always transient objects
that are created on the fly (we will see how in a second).

We could now do something like this:

>>> wearing = PersonWearingShoes(person)
>>> wearing.wear(left, right)

However, this still requires that we know exactly which adapter to
invoke for the particular object (person in this case),
effectively creating a tight coupling between the adapter, the
thing being adapted, and the code using the adapter.

Luckily, the Zope 3 Component Architecture knows how to find the
right adapter if you only tell it about the available adapters. We
do that using ZCML , the Zope Configuration Markup Language.
This is an XML dialect that is used to configure many aspects of
Zope 3 code, such as permissions and component registration. You
can do what ZCML does in Python code as well, but typically it's
more convenient to use ZCML because it allows you to separate your
logic from your configuration.

ZCML directives are stored in file called configure.zcml, which
itself may include other files. A configure.zcml file in your
product directory (Products/myproduct/configure.zcml) will be
picked up automatically by Five. Here is a snippet that will
register the above adapter:

<adapter factory=".shoes.PersonWearingShoes" />

You will sometimes see a fuller form of this directive, like:

<adapter
 factory=".shoes.PersonWearingShoes"
 for=".interfaces.IPerson"
 provides=".interfaces.IShoeWearing"
 />

Here, we are specifying full dotted names to interfaces in the
for or provides attributes. These are equivalent to the
adapts() and implements() calls we used when defining the
adapter. Note that adapts() did not work prior to Zope 2.9 (so
the ZCML for attribute is mandatory), and that if your adapter
class for some reason implements more than one interface (e.g.
because it's inheriting another adapter that has its own
implements() call), you may need to specify provides to let
Zope 3 know which interface you're really adapting to.

Notice here that the dotted names begin with dot. This means
"relative to the current package". You can write "..foo.bar" to
reference the parent package as well. You could specify an absolute
path instead, e.g. Products.Archetypes.interfaces.IBaseObject*or
*zope.app.annotation.interfaces.IAttributeAnnotatable. Typically,
you use the full dotted name for things in other packages and the
relative name for things in your own package.

The factory attribute normally references a class. In Python, a
class is just a callable (taking the parameters specified in its
__init__()*method) that returns an instance of itself. You can
reference another callable as well if you need to, such as a
function that takes the same parameters (only *context in this
case - obviously there is no self for functions), finds or
constructs and object (which must provide IShoeWearing) and then
returns it. This is rarely used, but can be very powerful (for
example, it could find an object providing the given interface in
the adapted object's annotations - but don't worry if you don't
understand that for now).

With this wiring in place, we can now find an adapter for an
IPerson to IShoeWearing. The Component Architecture will ensure
that we find the correct adapter:

>>> wearing = IShoeWearing(person)
>>> wearing.wear(left, right)
>>> person.apparel == (left, right,)
True

We are "calling" the interface, which is a convenience syntax for
an adapter lookup. If an adapter cold not be found, you will get
a ComponentLookupError . There are plenty of functions in
zope.component to discover adapters and other components - see
zope.component.interfaces for the full story.

It is important to realise that the adapter lookup is essentially a
search. The Component Architecture will look at the interfaces
provided by person and look for a suitable adapter to
IShoeWearing. As mentioned before, it's possible for an object to
provide many interfaces, e.g. inherited from its base classes,
implemented explicitly by the object (by declaring
implements(IFoo, IBar)), via ZCML or because an object directly
provides an interface. It is therefore possible that there are
multiple adapters that could be applicable. In this case, Zope 3
will use the interface resolution order (IRO) to find
the**most specific** adapter. The IRO is much like you would expect
of polymorphism in traditional OOP:

	an interface directly provided by the object is more specific
than one provided by its class

	an object provided by an object's class is more specific than
that provided by a base class

	if an object has multiple base classes, interfaces are inherited
in the same order as methods are inherited

	if a class implements multiple interfaces, the first one
specified is more specific than the second one, and so on

Remember marker interfaces? One use of marker interfaces is to
imply a particular adapter. Think about the case where you may
have specific adapter to IShoeWearing for some marker interface
IAmputee. If you mark a person as an IAmputee due to some
unforunate accident, the IShoeWearing adapter may raise a warning
rather than modify the apparel list.

All of this may seem a little roundabout and unfamiliar, but you'll
get to grips with it soon enough. Let's re-cap how we arrived at
this:

	We modelled our application domain with some interfaces -
IPerson, IShoe

	We modelled an aspect of a person (or other object) for wearing
shoes - IShoeWearing

	We wrote some simple classes that implemented the domain
interfaces IPerson and IShoe

	We wrote and registered a simple adapter that could adapt an
IPerson to IShoeWearing

Then we showed how this could be used by some hypothetical client
code. The upshot is that the client code only needed to know about
IPerson and IShoeWearing, not how the aspect of a person that
involves wearing shoes is implemented. The Component Architecture
will ensure that the appropriate adapter is found, regardless of
whether the person is a vanilla IPerson, a sub-class with a more
specific sub-interface, or an instance with a marker interface
applied.

Multi-adapters, named adapters and views

In the example above, we used an adapter with a single context.
That is the most common form of adapter, but sometimes there is
more than one object that forms the context of an adapter. As a
rule of thumb, if you find yourself passing a particular parameter
into every method of an adapter, it should probably be a
multi-adapter.

The most common example of a multi-adapter that you will come
across is that of a view, which incidentally is also how Zope 3
solves the "where do I put my view logic" code. We will cover views
in detail later, but for now think of them as a python class that
is automatically instantiated and bound to a page template when
it's rendered. In the template, the variable view refers to the
view instance and can be used in TAL expressions to gain things to
render or loop on.

When dealing with a view, there are two things that make up its
context - the context content object (conventionally called
context) and the current request (conventionally called
request). Thus, a view class is a multi-adapter from the tuple
(context, request) to IBrowserView. As it happens, there are ZCML
directives called browser:page*and *browser:view that make it
easier to register a view and bind a page template to it, handle
security etc. However, abstractly a view looks like this:

class PersonView(object):
 implements(IBrowserView)
 adapts(IPerson, IHttpRequest)

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def name(self):
 return self.context.name

 def requested_shoes(self):
 return self.request.get('requested_shoes', [])

Notice how this adapts both IPerson and IHttpRequest, and thus
takes two parameters in its __init__()*method. As you will
learn later, views typically inherit the *BrowserView base class
for convenience, but the principle is the same.

To obtain a multi-adapter, you can't use the "calling an interface"
syntax that you use for a regular adapter. Instead, you must use
the getMultiAdapter() method:

>>> from zope.component import getMultiAdapter
 ...
>>> personView = getMultiAdapter((person, request,), IBrowserView)

You could use queryMultiAdapter() instead if you wanted it to
return None instead of raise a ComponentLookupError when it fails
to find the adapter.

The above code has a problem, however (apart from being an
incomplete example) - what if you have more than one view on the
same object, say for two different tabs? To resolve this ambiguity,
views are actually named multi-adapters. The names correspond to
the names used as part a URL, and are registered using the name
attribute in ZCML. This is used in browser:page and
browser:view directives, but can also be used in the standard
adapter directive:

<adapter factory=".sampleviews.PersonView" name="index.html" />

To get this particular view, we can write:

>>> personView = getMultiAdapter((person, request,), name=u'index.html')

conventionally, we leave off the required interface when we used
named adapters, although you can supply it if necessary.

Multi-adapters are useful for other things as well. If you have an
adapter and find that every method takes at a common parameter,
it's a good candidate for a multi-adapter. Also observe that in the
case above, we could register a different adapter for a different
type of request as well as for a different type of object. Again,
the Component Architecture will find the most specific one looking
at both interfaces.

Named adapters do not have to be multi-adapters, of course. They
are typically used in cases where something (e.g. the user) is
making a selection from a set of possible choices (such as choosing
the particular view among many possible views).

Utilities

In the CMF, we have tools, which are essentially singletons. They
contain various methods and attributes and may be found using the
ubiquitous getToolByName() function. The main problem with tools
is that they live in content space, as objects in the ZODB, and
require a lot of Zope 2 specific things.

Let's say we had a shoe locating service (very useful when you
can't find your shoes):

class IShoeLocator(Interface):
 """A service for finding your shoes
 """

 def findShoes(owner):
 """Find all shoes for the given owner.
 """

class DefaultShoeLocator(object):
 implements(IShoeLocator)

 def findShoes(self, owner):
 return ...

The Component Architecture contains a very flexible
utility registry, which lets you look up things by interface and
possibly by name. Unlike adapters, utilities do not have context,
and they are instantiated only once, when Zope starts up. Global
utilities are not persistent (but local utilities are - see
below).

As with adapters, we register utilities with ZCML:

<utility factory=".locator.DefaultShoeLocator" />

Alternatively, you could skip the implements() call on the
factory and set it in ZCML. This may also be necessary in order to
disambiguate if you have more than one interface being provided by
the utility component:

<utility
 factory=".locator.DefaultShoeLocator"
 provides=".interfaces.IShoeLocator
 />

Now you can find the utility using getUtility():

>>> from zope.component import getUtility
>>> locator = getUtility(IShoeLocator)
>>> locator.findShoes(u"optilude")
 ...

The utility registry turns out to be a very useful generic
registry, because like the adapter registry, it can manage
named utilities. Let's say that you had a few different shoes you
wanted to keep around:

>>> left = Shoe()
>>> right = Shoe()
 ...

>>> from zope.component import provideUtility
>>> provideUtility(left, name=u'left-shoe')
>>> provideUtility(right, name=u'right-shoe')

We can now find these utilities again using the name argument to
getUtility().

>>> to_put_on = getUtility(IShoe, name=u'left-shoe')

Of course, we are still using the transient global utility
registry, so these will diseappear when Zope is restarted. We could
use local components instead (see below), or we could register them
using ZCML. If we had defined the shoes left and right in a
module shoes.py, we could write:

<utility
 component=".shoes.left"
 name="left"
 />

<utility
 component=".shoes.right"
 name="right"
 />

An alternative would have been to define two classes LeftShoe and
RightShoe and use the factory attribute of the directive
instead of component (which refers to an instance, rather than a
class/factory).

Local components

The examples above all use global, transient registries that are
reloaded each time Zope is restarted. That is certainly what you
want for code and functionality. Sometimes, you would like for
utilities to be a bit more like their CMF cousins and also manage
persistent state. To achieve that you need to use local components,
which are stored in the ZODB.

Prior to Zope 3.3, which is included in Zope 2.10, local components
were a bit of a black art. Then came the jim-adapter branch and
everything was greatly simplified. The theory is still the same,
the API is just much more sane. Each time Zope executes a request
(or if you implicitly invoke zope.component.setSite(), for
example in a test), it discovers which is the nearest site to the
context. In Plone, the site is normally the root of the Plone
instance, but in theory any folder could be turned into a site.

A site has a local component registry, where local utilities and
adapters may be defined. This means that a particular utility or
adapter can be specific to a particular Plone site, not affecting
other Plone instances in the same Zope instance. You cannot use
ZCML to register local components, since ZCML is inherently global
(at least for now) - it does not know anything about your
particular sites. However, you can register them with Python code,
e.g. in an Install.py or a GenericSetup profile, using calls like
provideUtility() (and its equivalent, provideAdapter()) called
on a local site manager instance:

>>> from zope.component import getSiteManager

>>> getUtility(IShoe, name=u'left-shoe) is left
True

>>> sm = getSiteManager(context)
>>> sm.provideUtility(myShoe, name=u'left-shoe')
>>> getUtility(IShoe, name=u'left-shoe) is myShoe
True

Unfortunately, Plone 2.5 does not run on Zope 2.10. We won't cover
local components here, because, well, I never learnt how to do it
the Zope 2.9 way, and what I saw of it scared me. I'm told it's not
that bad, and there is documentation in Five and in Zope 3
itself. Local components will become more important in Plone 3.0,
where Zope 2.10 or later will be required and more things that use
local components will be part of the core.

b-org does not use local components yet, and we will see how the
extension mechanism would benefit from local components so that you
could have one b-org extension installed in one Plone instance and
another extension installed in another Plone instance, without the
two interfering. Luckily, to code that uses adapters and
utilities, it is completely transparent whether they are global or
local.

Conclusion

That's it! If you can master the concepts of interfaces, adapters
and utilities you will go far in a Zope 3 world. They will become
much more natural as you use them a few times, and you'll probably
wonder how you ever managed without them. Hopefully, that point
will come before the end of this tutorial, which is largely focused
on showing how the principle of separation of concerns can be
imposed upon your Archetypes and Plone code.

5.3. Overview of b-org

The big picture

To the user, b-org presents itself as three content types:

	Department

	A container for employees, and a source of groups. That is, each
department becomes a group, and the employees within that
department become group members.

	Employee

	Information about employees, and a source of users. That is, each
active employee object becomes a user who can log in and interact
with the portal.

	Project

	A project workspace - a folder where employees can collaborate on
content. Content inside the project folder has a custom workflow,
and employees who are related to the project (by reference) have
elevated permissions over this content.

Out of the box, these are not terribly interesting, because they
have only the minimum of metadata required to function. The task of
providing actual schema fields, view templates, content type names
(if Department, Employee and Project are not appropriate) and other
application-specific facets is left up to simpler third-party
products that plug into b-org. One example of such a product is
included, which models a hypothetical charity use case and is
called charity.
This seemingly innocuous orchestration of functionality is achieved
by a variety of means:

	Archetypes

	Used to build the actual content types and their schemata.

	The Zope 3 Component Architecture

	Is used to make all this exensibility possible - you will see lots
of examples of interfaces, adapters and utilities.

	Membrane

	The content types are registered with membrane to be able to act
as groups and users

	PAS and PlonePAS

	The Pluggable Authentication Service is used by membrane to
actually provide user sources. A custom PAS plug-in is also used to
manage local roles for members and managers within projects and
departments.

	GenericSetup

	The next-generation set-up and installation framework is used to
install and configure b-org. charity demonstrates how
GenericSetup XML profiles can be used directly, without depending
on the actual GenericSetup import mechanism.

	Zope 3 events

	Zope 3's event dispatch mechanism is used to ensure employee users
actually own their own Employee objects, among other things.

	Zope 3 views

	The charity demo uses views for its display templates.

	Annotations

	Employees' passwords are hashed and stored in an annotation

	Placeful workflow

	To let content inside projects have a different workflow to that of
the rest of the site, each project uses a CMFPlacefulWorkflow
policy.

On the following pages, you will learn about each of these
components and how it fits together. Meanwhile, you can follow
along the code by looking in the
subversion repository [http://svn.plone.org/svn/collective/borg/trunk],
or getting b-org from its
product page [https://plone.org/documentation/manual/developer-manual/products/borg].

5.4. To Archetype or not to Archetype

Archetypes is still the most complete framework for building
content types quickly. With the advent of Zope 3, there is an
alternative in Zope 3 schemas. Here's why b-org doesn't use them.

There is a growing consensus that Archetypes has grown a little too
organically. On the one hand, Archetypes has given us a lot of
flexibility, and made many of us more productive than we would ever
have thought possible (for those who remember the heady days of
plain Zope 2, and then plain CMF development). On the other hand,
Archetypes has become fairly monolithic. The reference engine, for
example, is woven tightly into the field type machinery, and the
way that views are composed from widgets makes these almost
impossible to re-use outside of Archetypes.

In practical terms, the biggest headache that arises from
Archetypes' evolution is the very same problem we identified when
introducing Zope 3 concepts - it's hard to re-use Archetypes-based
components without sub-classing and repeating a large portion of a
type's configuration. Take
the Poi issue tracker [https://plone.org/products/poi], for
example - I frequently get requests from people who want to add a
few use-case specific fields to each issue, or add some new
functionality such as having private issues or issues submitted on
behalf of someone else. The problem is that I don't want to put all
this functionality in Poi itself, because this would increase the
complexity of the product and thus the maintenance burden and
probably impact the intuitiveness of the UI, when in reality not
everyone would benefit from such new features.

Ideally, someone would be able to plug in their own schema fields
and add some logic in well-defined places without having to
re-invent all of Poi. However, this is difficult, because, for
example, the "add issue" button assumes you are adding a PoiIssue
object, which has a schema defined wholly in
Products/Poi/content/PoiIssue.py. There are custom form
controller scripts to handle saving of issues, and a lot of methods
are found in the various content classes to do things like send
mail notifications or perform issue searches for various lists.
Again, changing the logic of who gets an email notification or how
a particular list of open issues is calculated may involve
subclassing one or all of Poi's content types, re-registering view
templates and other content type information, and possibly
customise a number of templates and scripts to reference the new
subclassed types. Of course, when Poi itself changes, keeping these
customisations up-to-date becomes difficult.

Zope 3 has, in keeping with its philosophy, approached these
problems by promising separation of concerns. In Zope 3, you would
typically define an interface that specifies the schema of a
content type, and then create a class that is only concerned with
holding and persisting the data for this schema:

from zope.interface import Interfacefrom zope import schemaclass IIssue(Interface): """A tracker issue """ title = schema.TextLine(title=u"The short title of this issue", required=True) severity = schema.Int(title=u"The severity of this issue", required=True, default=3)...from persistent import Persistentfrom zope.interface import implementsclass Issue(Persistent): implementS(IIssue) title = u"" severity = 0

The actual functionality for sending notifications etc would be in
various adapters (e.g to INotifying), the view logic in views.
Forms can be created from schema interfaces like IIssue above,
using zope.formlib. This can handle proper add forms (so the
object is not created until the form has been filled in, which is
another headache with CMF content types and therefore also
Archetypes), validation, edit forms etc. Each form, adapter and
menu entry (for the "add" menu, say) is registered separately,
meaning that they can also be overridden and customised separately.
Rocky Burt has written an excellent tutorial on
how to use formlib in a Plone context [https://plone.org/documentation/manual/developer-manual/archetypes/appendix-practicals/using-zope-formlib-with-plone] that
may be enlightening.

There are voices that say we should dump Archetypes entirely in
favour of Zope 3-style content objects. Other voices (including my
own) say that this may be a bit premature. Certainly, Zope 3
schemas and content objects are not yet fully integrated into CMF
and Plone, so you end up depending on some CMF base classes at the
very least. Moreover, the number and richness of widgets available
for Zope 3 forms does not yet match that of Archetypes.
Fundamentally, Archetypes has been around for a long time and has
grown to meet a wide variety of use cases, whereas in the context
of Plone at least, Zope 3 schemas are a new kid on the block.

The point is - Archetypes is not going to go away, not for a long
time anyway, and are still the right choice for many types of
applications. Almost all of Plone's add-on products use Archetypes,
and it is well-understood by our developer community. The more
likely scenario is that Archetypes will evolve in the same way that
Zope 2 is evolving, by seeing its internals refactored piecemeal
and pragmatically to take advantage of Zope 3 equivalents and
concepts, until theoretically an Archetypes schema and content
object is just a different spelling for what Zope 3 is doing, and
Zope 3's content type story offers the same richness as Archetypes
does (and more).

In the meantime, Archetypes is the right choice for b-org (and for
other membrane-based systems). What we will try to do, however, is
to alleviate the aforementioned problems by making use of Zope 3
design techniques, in order to make b-org extensible and flexible.

5.5. The extension story

One of the main drivers behind the componentisation of b-org is
that it should be easy to extend and customise for third party
developers. We'll take a look at how such customisations may look,
before considering how we made it possible.

b-org ships with an example called charity, found in the
examples/charity directory, which demonstrates one use-case
specific implementation of b-org. This is quite simple, consisting
of the following top-level files and directories:

	configure.zcml

	Registers the schema extension adapters (see below) and references
the browser package

	Extensions/

	Contains an Install.py script that configures the Factory Type
Information for the Department, Employee and Project content types.
It does so by using GenericSetup XML files, but invokes the import
handlers explicitly rather than through a GenericSetup profile.

	Â browser/

	Contains Zope 3 views for the charity department, employee and
project content types, and a configure.zcml to register these.
More on views in a later section.

	schema/

	Contains adapters that extend the schemas for Departments,
Employees and Projects with use-case specific fields.

To use charity you should copy or symlink it from
Products/borg/examples/charity*to *Products/charity. It can be
installed as normal, but you must install b-org first. See
borg/README.txt for the full install instructions!

A key aim is to make it possible to meaningfully extend b-org
without needing to subclass all its types. Of course, you can do
that, but in most cases it's not necessary. Unfortunately, the
mechanisms and techniques described here will be "global" in
nature. That is, you will not be able to have two different modes
of customisation for two different Plone instances in the same Zope
instance. This is because prior to Zope 2.10 (which Plone 2.5 does
not support - it wasn't out until several months after Plone 2.5
was released), the "local" components story in Zope 3 was not fully
developed. There is also a specific problem with the way the schema
extension mechanism works which makes it inherently global.

When Plone 3.0 rolls around, it will support local components much
better, and Archetypes 1.5, in conjunction with a third-party
product called ContentFlavors (or possibly another similar tool),
will enable the kind of extension story described here to work on
almost any type. At that point, the forerunner you see in b-org now
will be obsolete.

Of course, if you don't need two different b-org customisations for
two different Plone sites in the same Zope instance (which I
suspect most people can work around - having two separate Zope
instances of course isolates you from all of this), you should be
fine.

The schemas extenders

If you look at charity/configure.zcml you will see the following
registrations:

<adapter factory=".schema.department.DepartmentSchemaExtender" />
<adapter factory=".schema.employee.EmployeeSchemaExtender" />
<adapter factory=".schema.project.ProjectSchemaExtender" />

These schema extenders are adapters that hook into a specific part
of b-org. We will describe this in more detail later, but here is
how they look from the point of view of the extending product:

from zope.interface import implementsfrom zope.component import adaptsfrom Products.Archetypes.atapi import *from Products.borg.interfaces import IEmployeeContentfrom Products.borg.interfaces import ISchemaExtenderCharityEmployeeSchema = Schema((StringField('title', accessor='Title', required=True, user_property='fullname', widget=StringWidget(label=u"Full name", description=u"Full name of this employee",),), StringField('email', validators=('isEmail',), required=True, searchable=True, user_property=True, widget=StringWidget(label=u"Email address", description=u"Enter the employee's email address",),), StringField('phone', required=False, searchable=True, user_property=True, widget=StringWidget(label=u"Phone number", description=u"Enter the employee's phone number",),), StringField('mobilePhone', required=False, searchable=True, user_property=True, widget=StringWidget(label=u"Mobile phone number", description=u"Enter the employee's mobile phone number",),), StringField('location', searchable=True, user_property=True, widget=StringWidget(label=u"Location", description=u"Your location - either city and country - or in a company setting, where your office is located.",),), StringField('language', user_property=True, vocabulary="availableLanguages", widget=SelectionWidget(label=u"Language", description=u"Your preferred language.",),), TextField('description', required=True, searchable=True, user_property=True, default_content_type='text/html', default_output_type = 'text/x-html-safe', allowable_content_types = ('text/html', 'text/structured', 'text/x-web-intelligent',), widget=RichWidget(label=u"Biography", description=u"Enter a short biography of the employee",),),))class EmployeeSchemaExtender(object): """Extend the schema of an employee to include additional fields. """ implements(ISchemaExtender) adapts(IEmployeeContent) def __init__(self, context): self.context = context def extend(self, schema): schema = schema + CharityEmployeeSchema # Reorder some fields schema.moveField('description', after='mobilePhone') schema.moveField('location', before='description') schema.moveField('language', before='description') schema.moveField('roles_', after='description') return schema

This example is employee.py. The other extensions are simpler,
and work on the exact same principle. When calculating the schema
of a content type, the b-org types (by virtue of
Products.borg.content.schema.ExtensibleSchemaSupport, a mix-in
class that all the b-org types uses, and which the aforementioned
changes to Archetypes should make obsolete) will look up an adapter
from the content object (which is marked with IEmployeeContent,
in this case), to ISchemaExtender. This will be given the chance
to extend (and modify) the schema of the type.

The returned value is cached (to avoid an expensive re-calculation
each time the schema is used). This cache can be invalidated upon
an event, which you will see in charity/Extensions/Install.py:

from zope.event import notify
from Products.borg.content.schema import SchemaInvalidatedEvent
from Products.borg.content.employee import Employee
...

def install(self, reinstall=False):
 ...
 notify(SchemaInvalidatedEvent(Employee))

The event is an instance of a class that implements
ISchemaInvalidatedEvent, and takes a class as an argument to know
which class the schema is being invalidated for.

Defining new views and type information

We have now managed to add new schema fields to Department,
Employee and Project. The auto-generated edit form will pick these
up for editing, but we probably also want some custom views. We may
also want to change other aspects of the Factory Type Information
(FTI) which controls how the type is presented within Plone's UI
(an FTI is an object in portal_types).
First, we define some views in the browser package. These are
described in a later section, but lookin at
charity/configure.zcml, you will see:

<include package=".browser" />

This will bring in charity/browser/configure.zcml, which contains
several directives like:

<page
 name="charity_employee_view"
 for="Products.borg.interfaces.IEmployeeContent"
 class=".employee.EmployeeView"
 template="employee.pt"
 permission="zope2.View"
 />

This, along with the class
Products.charity.browser.employee.EmployeeView*and the
template*charity/browser/employee.pt will make a view
@@charity_employee_view (the @@ is optional, but serves to
disambiguate views from content objects, for example) available on
any employee (or rather, any object providing IEmployeeContent).
We then need to tell Plone that this view should be invoked when
you view an Employee object or click its 'View' tab. This is done
by setting the (Default) and view method aliases for the
Employee type. See
this page of the RichDocument tutorial [https://plone.org/documentation/tutorial/richdocument/actions-and-aliases]
for some background.
To achieve this, we could modify portal_types/Employee in Python
during the Install.py script. However, to make it easier to
define the FTI, we use a GenericSetup XML file instead. Take a look
at charity/Extensions/setup/types/Employee.py, for example:

<object name="Employee" meta_type="Factory-based Type Information"
xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <property name="title">Employee</property>
 <property name="description">A charity employee or
 volunteer.</property>
 <property name="content_icon">employee.gif</property>
 <property name="content_meta_type">Employee</property>
 <property name="product">borg</property>
 <property name="factory">addEmployee</property>
 <property name="immediate_view">base_edit</property>
 <property name="global_allow">False</property>
 <property name="filter_content_types">False</property>
 <property name="allowed_content_types" />
 <property name="allow_discussion">False</property>
 <alias from="(Default)" to="@@charity_employee_view" />
 <alias from="view" to="@@charity_employee_view" />
 <alias from="edit" to="base_edit" />
 <alias from="properties" to="base_metadata" />
 <alias from="sharing" to="folder_localrole_form" />
 <action title="View" action_id="view" category="object"
 condition_expr="" url_expr="string:${object_url}" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object"
 condition_expr="" url_expr="string:${object_url}/edit"
 visible="True">
 <permission value="Modify portal content" />
 </action>
 <action title="Properties" action_id="metadata" category="object"
 condition_expr="" url_expr="string:${object_url}/properties"
 visible="True">
 <permission value="Modify portal content" />
 </action>
 <action title="Sharing" action_id="local_roles" category="object"
 condition_expr="" url_expr="string:${object_url}/sharing"
 visible="True">
 <permission value="Modify portal content" />
 </action>
</object>

To learn more about HTML Tidy see http://tidy.sourceforge.net
Please fill bug reports and queries using the "tracker" on the Tidy web site.
Additionally, questions can be sent to html-tidy@w3.org
HTML and CSS specifications are available from http://www.w3.org/
Lobby your company to join W3C, see http://www.w3.org/Consortium

This defines the various aspects of the FTI, and is basically a
modified copy of the equivalent file from the b-org extension
profile. You'll learn more about these in the section on
GenericSetup, but for now observe that we invoke this explicitly in
Install.py, via some boilerplate utility code:

from Products.charity.Extensions.utils import updateFTIdef install(self, reinstall=False): ... if not reinstall: updateFTI(self, charity, 'Department') updateFTI(self, charity, 'Employee') updateFTI(self, charity, 'Project')

This will update the FTIs by examing
Products/charity/Extensions/setup/types. Each file there is named
corresponding to the name of the FTI it modifies.

Adding new functionality

Extending the schema and modifying the FTI to support different
views is probably enough for a large number of use cases. If you
find yourself thinking "I wish I could add a method to the Employee
class to support ...", take your left hand, hold it out, raise you
right hand and slap your left wrist sternly, then read the section
on adapters again.
For example, let's say you wanted to send an email to
administrators when a particular button in the view was clicked.
You could do that in an adapter. For examples, in your
interfaces module, you could could have:

from zope.interface import Interfaceclass IAdministratorNagging(Interface): """Someone who will nag the admin """ def nag(message): """Send nagging email """

Then, an adapter from IEmployee in module nag.py:

from zope.interface import implementsfrom zope.component import adaptsfrom interfaces import IAdministratorNaggingfrom Products.borg.interfaces import IEmployeeContentfrom Products.CMFCore.utils import getToolByNameclass NaggingEmployee(object): implements(IAdministratorNagging) adapts(IEmployeeContent) def __init__(self, context): self.context = context def nag(self, message): mailHost = getToolByName(self.context, 'MailHost') ...

And finally, in your configure.zcml:

<adapter factory=".nag.NaggingEmployee" />

Then, in the form handler that is about to nag the employee, you
would do:

from Products.myproduct.interfaces import IAdministratorNaggingnagger = IAdministratorNagging(employee)nagger.nag("Give me more disk space!")

Obviously, this is a somewhat contrived example, but hopefully you
get the gist.

Modifying workflow and other configuration

The b-org workflows are not special. In your Install.py, you could
modify them or change the workflow assignments as you would any
other content type. You can also use CMFPlacefulWorkflow to
assign different workflows depending on context, if need be.

Similarly, if you need to modify the behaviour of the Department,
Employee and Project types in other ways, for example by modifying
settings in portal_properties, you are of course free to do so.
The intended pattern is that your b-org customisation product
encapsulates the various settings and extensions that describe your
use case.

Changing fundamental b-org behaviour

Lastly, as you learn about b-org you will see how it uses adapters
to hook into membrane. If you need to override its behaviour, you
can add an overrides.zcml to your product, which is otherwise
identical to a configure.zcml in format, but is able to override
earlier registrations (such s those in b-org). For example, you
could override the adapter from IEmployeeContent to IUseRelated
to change the way in which user ids is assigned, or the adapter to
IUserAuthentication to change the way in which authentication is
performed.

5.6. Filesystem organisation

b-org attempts to adhere to modern ideal about how code should be
laid out on the filesystem.

In the Zope 3 world, the Products pseudo-namespace is frowned
upon. In Zope 2, every extension module lives in the Products/
folder. This raises some obvious namespace clash concerns, but also
separates Zope modules further from plain-Python modules. In Zope
3, you can install a module anywhere in your PYTHONPATH. For
example, in Plone 3.0, there will be a module called
plone.portlets, normally installed in
lib/python/plone/portlets.

For modules that need to act like Zope products (i.e. they need an
initialize() method, they install content types, they register a
GenericSetup profile or CMF skins or use an Extensions/Install.py
method, say), this works in Zope 2.10 and later. It can also be
made to work in earlier version of Zope using a product
(ironically) called pythonproducts.

For the purposes of borg, we stick with the traditional Products/
installation. It's nice to have imports like
from borg import ..., but fundamentally, b-org is very closely
tied to Zope (2) and Plone, so the re-use argument goes away, and
that nice import syntax is not really worth the extra dependency
and configuration.

One thing you may notice, though, is that the borg product is
named in lowercase, in keeping with Zope 3 and Python naming
conventions. Looking inside it, you will see the following key
files and directories:

	__init__.py

	Initialises the Zope 2 product machinery, registers content types,
the skin layer and the GenericSetup extension profile that is used
to install b-org.

	config.py

	Holds various constants

	configure.zcml

	Starts the Zope 3 snowball going. This references other packages
with their own configure.zcml files.

	content/

	Contains the Archetypes content types for Department, Employee and
Project. Also contains some utilities, like EmployeeLocator, an
adapter to find employees, two utilities used to provide
vocabularies AddableTypesProvider and ValidRolesProvider, and
the the schema extension mechanism in schema.py.

	events/

	Contains event subscribers which modify ownership of an Employee
object so that the employee user owns it (and can thus edit their
own profiles, for example), as well as to set up the local workflow
when a Project is created.

	interfaces/

	Contains all the interfaces that b-org defines, in various
sub-modules like interfaces/employee.py for the Employee-related
interfaces. All of these are imported into
interfaces/__init__.py, so that you can write
from Products.borg.interfaces import

	membership/

	Contains various adapters for plugging into membrane which enable
b-orgs user-and-group functionality.

	pas/

	Contains a custom PAS plug-in which is used to manage the local
roles for Project members

	permissions.py

	Contains custom add-content permissions, so that the ability to add
Department, Employee and Project content objects can be controlled
by different permissions.

	profiles/

	Contains the GenericSetup extension profile that sets up b-org.
This is registered in the borg/__init__.py*.*

	setuphandlers.py

	Defines a custom GenericSetup "import step" which configures
aspects of b-org that cannot be expressed in the existing
GenericSetup XML formats.

	skins/

	Contains the borg skin layer, which is registered in
borg/__init__.py. This contains only the b-org icons. These
could potentially have been defined in a browser package using
Zope 3 resources, but are included in a traditional skin layer to
make them easier to customise using conventional methods. See the
section on Zope 3 views for more details.

	 tests/

	Contains unit and integration tests.

	zmi/

	Defines a ZMI page for adding the PAS plug-in, for completeness'
sake.

You will notice that there are many directories, and many of these
directories contain the same set of files - employee.py,
department.py and project.py. This is a side-effect of the
finer-grained components and increased separation of concerns that
stem from Zope 3 design concepts. For products that act less as
framework, the degree of separation may be lower, and thus the
product may appear smaller. However, as you browse b-org's source
code, it should become obvious why things are placed where they
are, and how code is grouped together by logical functionality
rather than a tight coupling to Archetypes content types.

5.7. Interfaces

In Zope 3, everything is connected to an interface in some way.
Sure enough, b-org has a slew of them. Getting the interface design
right is often more than half the battle, so pay attention to this
part.

If you were trying to understand b-org without a comprehensive
tutorial to hand, you would do well to look at the interfaces
package. You will notice that this is subdivided into various
files

	interfaces/department.py

	Contains a description of a department (IDepartment) and a marker
interface for the content object that stores the department
(IDepartmentContent).

	interfaces/employee.py

	Contains the equivalent interfaces, IEmployee and
IEmployeeContent, as well as the definition of a specific event
interface, IEmployeeModified.

	interfaces/project.py

	Again contains IProject and IProjectContent, as well
ILocalWorkflowSelection, which is used to denote a utility that
defines the placeful workflow policy that projects will use.

	interfaces/workspace.py

	Holds the interface IWorkspace, which is used by the local-role
PAS plug-in to extract which users should have which local roles in
a project.

	interfaces/schema.py

	Contains interfaces relevant to the custom schema extension
mechanism - ISchemaExtender, IExtensibleSchemaProvider and
ISchemaInvalidatedEvent.

	interfaces/utils.py

	Defines interfaces that are used as input to various vocabularies -
IEmployeeLocator, IAddableTypesProvider and
IValidRolesProvider.

In order to understand what each of these interfaces describes in
more detail, look at the files above. Recall that interfaces are
mainly documentation - these interfaces are accompanied by
docstrings and generally self-documenting code.

The various interfaces intended for public consumption are imported
to interfaces/__init__.py, so that client code can write,
e.g.:

from Products.borg.interfaces import IEmployee

This is a common idiom. If you find yourself with too many
interfaces to manage in interfaces/__init__.py, you don't
necessarily need to do this, but it's probably a sign that you
should be breaking your code into smaller packages!
Remember that unless you have a particular need to depend on Zope
2, then you don't need to pollute the Products namespace with
such components! (and even if you do, with PythonProducts or Zope
2.10, you can do without the Products/ namespace too). For example,
we could have placed the employee functionality in a package
borg.employee, found in lib/python/borg/employee as a
plain-python library, possibly depending on Zope 3 components (i.e.
packages in the zope.* namespace).
Conversely, if you have relatively few interfaces, you can simply
have an interfaces.py module without a directory.

Separating Archetypes from real components

One thing you may notice is that we have split the interface
describing the concept of e.g. an employee (IEmployee) from the
interface that describes the employee content object in the ZODB
(IEmployeeContent). Whether this is always the right thing to do
is debatable, but the reasoning goes something like this:
Archetypes objects contain a very large API. Archetypes schemas
and the infamous ClassGen generate methods on the content objects
corresponding to schema fields, so that a field name gets an
accessor called getName() and a mutator called setName(). This
is all rather Archetypes-specific, and in Zope 3 schemas, we
typically prefer simple properties (a name attribute) to pairs of
methods. To avoid being constrained by the Archetypes when defining
interfaces (Archetypes is just one implementation choice), we
created IEmployee as follows:

class IEmployee(Interface): """An employee, which is also a user. """ id = schema.TextLine(title=u'Identifier', description=u'An identifier for the employee', required=True, readonly=True) fullname = schema.TextLine(title=u'Full name', description=u"The employee's full name for display purposes", required=True, readonly=True)

To support this, we could put the relevant properties into the
Archetypes content object, but this is cumbersome, since the
property() declaration normally used to convert methods to
properties will only work when those methods actually exist, not
when they are created by ClassGen.
Instead, we mark the content object with a marker interface,
IEmployeeContent and then register an adapter to IEmployee.
Strictly speaking, this is cheating, since the adapter makes
assumptions about its context (such as which methods are available,
and the fact that it uses Archetypes) that are not formally defined
in the interface. To save excessive typing and retain some sanity
in the interface definitions, it's not a terrible compromise
though. Here's the adapter, from membership/employee.py:

class Employee(object): """Provide department information. """ implements(IEmployee) adapts(IEmployeeContent) def __init__(self, context): self.context = context @property def id(self): return self.context.getId() @property def fullname(self): return self.context.Title()

Now, you can write:

emp = IEmployee(some_employee_content_object)print emp.fullname

Another side-effect of this pattern is that we can separate things
that are Archetypes-dependent from things that operate on the more
general notion of an employee. For example, membrane generally
makes assumptions about operating on Archetypes content objects, so
the various membrane adapters adapt IEmployeeContent, whereas the
view for charity employees is only concerned with "real" employees
and so adapts the context to IEmployee.

This pattern is repeated for Departments and Projects as well.

Interfaces intended for utilities and adapters

Although interface design should generally not be too concerned
with how those interfaces are implemented, you will often think
"this is going to be used a a utility" or "this will most likely be
an adapter". In this case, you may want to make some reference in
the doc-string at least. For example, the ILocalWorkflowSelection
interface states:

class ILocalWorkflowSelection(Interface): """A selection of a local workflow for projects. This will normally be looked up as a utility. """ workflowPolicy = schema.TextLine(title=u'Workflow policy identifier', description=u'The id of the placeful workflow policy to use', required=True, readonly=True)

Conversely, many interfaces are context-dependent, which means that
most likely they will either be directly provided by a particular
object or adaptable to it. Take the IAddableTypesProvider:

class IAddableTypesProvider(Interface): """A component capable of finding addable types in a given context. """ availableTypes = schema.Tuple(title=u'Available types', description=u'A list of all addable types', value_type=schema.Object(ITypeInformation)) defaultAddableTypes = schema.Tuple(title=u'Default addable types', description=u'A list of types to be addable by default', value_type=schema.Object(ITypeInformation))

The implication here is that client code will do something like:

from Products.borg.interfaces import IAddableTypesProvideraddableTypes = IAddableTypesProvider(context).availableTypes

Whether IAddableTypesProvider was provided directly by the context
or (more likely) provided via an adapter is not important. The only
time this distinction is really useful is in the case of marker
interfaces, such as IEmployeeContent:

class IEmployeeContent(Interface): """Marker interface for employee content objects"""

These are often checked with providedBy():

assert IEmployeeContent.providedBy(employeeContentObject)# we've got an employee, good

Again, the guiding principle here is separation of concerns. The
aspect of a component that can provide a list of addable types
(IAddableTypesProvider) is logically distinct from (and could be
varied independently of) the aspect of a component that specifies
it represents a project (IProject), even though it so happens
that at present projects are the only time we concern ourselves
with restricting addable types.
In the olden days, we would probably have put methods like
getAvailableProjectAddableTypes()*into the *Project content type.
Hopefully, you'll see why this is less optimal than having it in a
separate component (hint: what if you in your customisation of
b-org wanted to be much more particular about which types were
addable?). You will hopefully start to pick up "fat" interfaces
during interface design - if you had a neat IProject interface
that described attributes of a project that were to be saved
alongside the project object, and then found a couple of methods
about defining addable types that were related to one another but
not so much to the data of a project in general, you would
hopefully reach for a new interface. If so - well done, you're
getting there.

5.8. Test-driven development

Testing should come first, not last, when doing development.

One of the greatest things that Zope 3 has established is a culture
of test-driven development. Because Zope 3 components tend to be
small and not dependent on a large framework or (typically) a
running application server, tests are easier to write and execute
faster. Most Zope 3 testing happens in the form of testable
documentation - DocTests - which tell the story of how a component
should be used along with testable examples.

The
testing tutorial [https://plone.org/documentation/tutorial/testing]
explains the philosophy behind test-driven development and the
tools and techniques available in Zope. It is required reading
if you are not familiar with testing in Zope, and probably quite
useful even if you are.

Testing strategy

Tests were (largely) written against interfaces and stub
implementations, before the actual functionality was written. One
of the first test cases to be created was test_adapters.py,
which simply verifies that the various adapter registrations are in
effect. This is obviously an integration test (using
PloneTestCase), since it is verifying what happens on a "normal"
Zope start-up.
You will also notice tests named after the three content types,
test_department.py, test_employee.py and test_project.py.
Each of these contains tests that verify the given type is
available and can be instantiated and edited. This catches errors
in Archetypes registrations or schemas. There are then further
tests for the membrane*integration and for the adapters to the
canonical interfaces *IDepartment, IEmployee and IProject.
Lastly, non-trivial methods in content types and relevant adapters
are given their own test fixtures.
By being systematic and diligent with tests, many, many bugs were
caught and dealt with before they ever hit a live system. Of
course, this does not replace in-browser acceptance testing, which
was also performed regularly.
At the time of writing, there are no zope.testbrowser based
functional tests for the user interface. That is regrettable - and
this is an open source project after all, so feel free to
contribute some!

Test set-up

You will find b-org's tests in the tests module. Most of these
use are DocTest integration tests, using PloneTestCase. Make sure
you use a recent version of PloneTestCase (or svn trunk) since
there have been some recent changes in how Zope 3 components (or
rather, ZCML registrations) are loaded for test runs. The upshot is
that with PloneTestCase, things should "just work" for integration
testing - components you have defined in ZCML in your products will
be loaded as they would when Zope is started.

The file base.py contains an insulating base class for b-org
tests, called BorgTestCase and its sister-class
BorgFunctionalTesetCase. When imported, this file will trigger
the setup of a Plone site with the membrane and borg extension
profiles installed, as such:

from Testing import ZopeTestCase# Let Zope know about the two products we require above-and-beyond a basic# Plone install (PloneTestCase takes care of these).ZopeTestCase.installProduct('membrane')ZopeTestCase.installProduct('borg')# Import PloneTestCase - this registers more products with Zope as a side effectfrom Products.PloneTestCase.PloneTestCase import PloneTestCasefrom Products.PloneTestCase.PloneTestCase import FunctionalTestCasefrom Products.PloneTestCase.PloneTestCase import setupPloneSite# Set up a Plone site, and apply the membrane and borg extension profiles# to make sure they are installed.setupPloneSite(extension_profiles=('membrane:default', 'borg:default'))

Integration and unit tests

Most of the tests are integration test that are set up like so:

import unittestfrom Testing.ZopeTestCase import ZopeDocTestSuitefrom base import BorgTestCasefrom utils import optionflagsdef test_creation(): """Test that departments can be created an initiated. >>> self.setRoles(('Manager',)) >>> id = self.portal.invokeFactory('Department', 'dept') >>> dept = self.portal.dept Set roles. >>> dept.setRoles(('Reviewer',)) >>> tuple(dept.getRoles()) ('Reviewer',) Add an employee and set it as a manager. >>> id = dept.invokeFactory('Employee', 'emp') >>> dept.setManagers((dept.emp.UID(),)) >>> tuple(dept.getManagers()) (<Employee at ...>,) """...def test_suite(): return unittest.TestSuite((ZopeDocTestSuite(test_class=BorgTestCase, optionflags=optionflags),))

There is also a plain-python (no loading of Zope necessary, which
is much faster) unit test for the password digest in
test_passwords.py. This is appropriate because the functionality
under test does not depend on the Zope application server or
database being loaded. Use plain-python (or perhaps rather, plain
Zope 3) tests whenever you can to reduce interdependencies and test
load times:

import unittestfrom zope.testing.doctestunit import DocTestSuitefrom utils import configurationSetUp, configurationTearDown, optionflagsdef test_passwords_hashed(): """Check that passwords are hashed We expect that the password will be saved as a SHA-1 digest. >>> import sha >>> digest = sha.sha('secret').digest() Set a password. >>> from Products.borg.content.employee import Employee >>> e = Employee('emp') >>> e.setPassword('secret') The value is stored in an annotation, and there is no direct way to access it (deliberately). Thus, check the annotation directly. >>> from zope.app.annotation.interfaces import IAnnotations >>> from Products.borg.config import PASSWORD_KEY >>> annotations = IAnnotations(e) >>> password = annotations[PASSWORD_KEY] Ensure it is what we expected: >>> password == digest True """...def test_suite(): return unittest.TestSuite((DocTestSuite(setUp=configurationSetUp, tearDown=configurationTearDown, optionflags=optionflags),))

The functions configurationSetUp() and configurationTearDown()
are defined in utils.py and are used to load specific ZCML files
that enable the test environment to function. This is necessary
because without PloneTestCase's integration test layer in effect,
there will be no compnent registrations when the tests are run!
This may be more cumbersome (though in reality, the same set of
components tend to be used), but also allows better control over
the environment in which test are run, in addition to (much) faster
test execution times.

From utils.py:

import doctestfrom zope.app.tests import placelesssetupfrom zope.configuration.xmlconfig import XMLConfig# Standard options for DocTestsoptionflags = (doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_ONLY_FIRST_FAILURE)def configurationSetUp(self): """Set up Zope 3 test environment """ placelesssetup.setUp() # Ensure that the ZCML registrations in membrane and borg are in effect # Also ensure the Five directives and permissions are available import Products.Five import Products.membrane import Products.borg XMLConfig('configure.zcml', Products.Five)() XMLConfig('meta.zcml', Products.Five)() XMLConfig('configure.zcml', Products.membrane)() XMLConfig('configure.zcml', Products.borg)()def configurationTearDown(self): """Tear down Zope 3 test environment """ placelesssetup.tearDown()

You will also find a regular unit test in test_setup.py, simply
because this was quicker to write:

from base import BorgTestCasefrom Products.membrane.interfaces import ICategoryMapperfrom Products.membrane.config import ACTIVE_STATUS_CATEGORYfrom Products.membrane.utils import generateCategorySetIdForTypefrom Products.borg.config import LOCALROLES_PLUGIN_NAME, PLACEFUL_WORKFLOW_POLICYclass TestProductInstall(BorgTestCase): def afterSetUp(self): self.types = ('Department', 'Employee', 'Project',) def testTypesInstalled(self): for t in self.types: self.failUnless(t in self.portal.portal_types.objectIds(), '%s content type not installed' % t) ...def test_suite(): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(TestProductInstall)) return suite

Finally, there is an docstring DocTest for the
ExtensibleSchemaSupport class. This is because this class if
largely standalone (it probably shouldn't be b-org at all, but in a
more general module, except Archetypes will gain similar
functionality of its own for Plone 3.0) and the test provided
important documentation in the class' docstring.

The class looks like this:

class ExtensibleSchemaSupport(Base): """Mixin class to support instance-based schemas. Note: you must mix this in before BaseFolder or BaseContent, e.g.: class Foo(ExtensibleSchemaSupport, BaseContent): ... This is based on Archetype's VariableSchemaSupport. Define a content type with a marker interface: >>> from zope.interface import Interface, implements >>> class IMyType(Interface): ... pass >>> from Products.Archetypes.atapi import * >>> from Products.borg.content.schema import ExtensibleSchemaSupport >>> class MyType(ExtensibleSchemaSupport, BaseObject): ... implements(IMyType) ... schema = BaseSchema.copy() + Schema((StringField('foo'),)) >>> registerType(MyType, 'testing') Create a schema extender: ... """ implements(IExtensibleSchemaProvider) ...

And the test runner, in test_schema.py, contains:

import unittestfrom Testing.ZopeTestCase import ZopeDocTestSuitefrom base import BorgTestCasefrom utils import optionflagsdef test_suite(): return unittest.TestSuite((ZopeDocTestSuite('Products.borg.content.schema', test_class=BorgTestCase, optionflags=optionflags),))

5.9. Setup using GenericSetup

b-org uses GenericSetup to impose itself on your Plone instance.
Here's how it works.

Hands up if you have ever written a workflow definition in Python
and tried to figure out how to install it in your Extensions.py
and thought, this is the least useful API I have ever had to deal
with. Actually, the API is not that bad, it's just not very good
for performing set-up. Similarly, it may start to make your
separation-of-concerns-brainwashed mind a little uneasy that we
tend to define aspects of the type's configuration as class
attributes in an Archetypes class (though of course it's better
than using a CMF FTI dict or mangling portal_types directly).

The fine folks who gave us the CMF came up with another way, called
GenericSetup (after a few name changes - you may see the names
CMFSetup and ContentSetup as well, which refer to predecessors
of what is not GenericSetup). This is based on a declarative XML
syntax that can represent site configuration. The configuration of
an entire site is called a profile and can be imported and
exported to replicate state across multiple Plone (or CMF) sites.
There is a smaller version of a profile called an
extension profile which can be used to extend a base profile.
Both membrane and b-org use extension profiles to install
themselves.

GenericSetup is described a
tutorial [https://plone.org/documentation/tutorial/understanding-and-using-genericsetup-in-plone]
by Rob Miller, cheif GenericSetup protagonist, so we won't repeat
too much of the detail here. However, you should be aware that in
Plone 2.5, GenericSetup has a slightly awkward user experience and
does not have any well-defined way of performing uninstall, which
stems from the fact that it was originally designed for the use
case of taking a snapshot of the configuration of an entire site,
not for installing and uninstalling products and extensions!

The other main shortcoming at the moment is that there is no way to
specify interdependencies between profiles. It is important that
membrane is installed before b-org, but if you're not careful it
will happen the other way around. When you create a Plone site, you
will be able to choose a number of extension profiles to apply
(including meaningless ones like Archetypes - meaningless because
Plone already invokes those when you set up a site). In this list,
"Base organisation" comes before "membrane" by virtue of
alphabetical sorting. Therefore, you can't just choose both and
click "Add". Instead, you should select "membrane" first, and then
add "Base organisation" via portal_setup, as described in the
b-org README.txt:

	Go to portal_setup in the ZMI

	Click the Properties tab

	Select "Base organisation" as the active profile (since this is
an extension profile, it won't override the base profile that set
up your Plone site) and click Update.

	Go to the Import tab and click Import all steps at the
bottom. Note that although it seems like this will re-install a
whole bunch of stuff, it will only execute those steps that are
actually listed in the import_steps.xml for the
active profile, which in this case is b-org's.

If you didn't already set up membrane and you created a Plone site
without the membrane extension profile, follow the same steps to
install membrane before you install b-org.
So why did we do all this? Firt of all, both membrane and b-org are
really infrastructure that fundamentally influence how you build
your site, so the lack of uninstall isn't as bad as it would have
been for more user-facing products. Secondly, with Plone 3.0, this
will become easier, as the QuckInstaller (and hence the
Add/Remove Products control panel page) becomes Extension Profile
aware and gives some uninstall support.
At the end of this section, you will see how you can use a
traditional QuickInstaller Install.py method and still get the
nice XML syntax, with a bit of extra work.

Import steps

To GenericSetup, the installation of a third party product via an
extension profile is considered to be the importing of that
profile. A file import_steps.xml is used to determine which
actual import steps will be executed. First, we need to tell
GenericSetup where the import steps are defined, though, by
registering the extension profile. This is done in the product's
__init__.py:

from Products.CMFPlone.interfaces import IPloneSiteRootfrom Products.GenericSetup import EXTENSION, profile_registry...def initialize(context): ... profile_registry.registerProfile('default', 'Base organisation', 'Organisation and project infrastructure', 'profiles/default', 'borg', EXTENSION, for_=IPloneSiteRoot)

This references the directory profiles/default, which contains
various files:

	import_steps.xml

	Lists the steps to be performed during import (set-up)

	export_steps.xml

	Lists the steps to be performed during export - that is, if the
configuration is changed in the ZODB and the site admin wishes to
export the configuration to a file, these steps will be performed.

	membrane_tool.xml

	Configuration for membrane tools

	skins.xml

	Sets up skins in portal_types

	types.xml

	Configures FTIs (Factory Type Information settings) for the content
types that b-org ships with. Each of the types listed here has a
corresponding file in profiles/default/types (the name of the
type and the name of the file should match). This file contains all
the various FTI settings, such as friendly name, meta type, actions
and aliases.

	workflows.xml

	Configures workflows. This works in the same way as types.xml -
the main file configures the names of the workflows and the
bindings of workflows to content types. The actual workflow
definitions, including states and transitions, are found in
profiles/default/workflows.

The import_steps.xml which orchistrates all this looks like
follows:

<?xml version="1.0"?><import-steps> <import-step id="borg_various" version="20060803-01" handler="Products.borg.setuphandlers.importVarious" title="Various base-org Settings"> <dependency step="typeinfo"/> <dependency step="skins"/> <dependency step="workflow"/> </import-step></import-steps>

Note that we don't actually specify most of the files - they are
referenced by the base profile that was used to set up Plone or
the extension profile for membrane. GenericSetup knows all the
registered profiles' steps, and looks for the corresponding files.

Various setup handlers

The one setup handler you do see is the "various" handler. This is
dependent on the set-up of type info, skins and workflow.
Ordinarily, setup handlers will utilise GenericSetup base classes,
adapters and utility functions to parse XML files. However, it's
not always convenient to invent a generic XML syntax for all types
of configuration. The importVarious pattern is used by many
products that need to perform some custom set-up in Python. It is
invoked as if it were a handler for an XML file, but it just
happens to have different side-effects. The main caveat with this
type of set-up, of course, is that it cannot symmetrically export
(and then re-import) the configuration, and it is more difficult to
re-use.

importVarious looks as follows:

from StringIO import StringIO...def setupPlugins(portal, out): """Install and prioritize the project local-role PAS plug-in. """ ...def setupPortalFactory(portal, out): """Add borg types to portal_factory """ ...def addProjectPlacefulWorkflowPolicy(portal, out): """Add the placeful workflow policy used by project spaces. """ def importVarious(context): """ Import various settings. Provisional handler that does initialization that is not yet taken care of by other handlers. """ site = context.getSite() out = StringIO() setupPlugins(site, out) setupPortalFactory(site, out) addProjectPlacefulWorkflowPolicy(site, out) logger = context.getLogger("borg") logger.info(out.getvalue())

We set up the PAS plugins, register our types with
portal_factory*and add a placeful workflow policy. The exact code
to perform each of these steps is not listed here to save space,
but they use the same techniques you would use in an *Install.py
file. Note that the portal_factory setup is available in a more
friendly XML format in Plone 2.5.1 and later, which was released
after b-org.

GenericSetup without portal_setup

When Plone 3.0 arrives, it will make the Add/Remove Products
control panel aware of extension profiles, and thus provide a more
user friendly way of performing install using GenericSetup. It will
also support uninstall. Until that time, however, it is possible to
re-use the GenericSetup XML handlers to parse files like
types.xml*Â and *workflow.xml from a regular Install.py
installation. We do this in the charity example.
When importing, GenericSetup requires a setup environment, and
usually an object to work on. A simple SetupEnviron is found in
charity/Extensions/utils.py, along with a method called
updateFTI() which can take an FTI object and update its settings
based on a types.xml-like file. This method takes a module and
the id of an FTI to update, and finds the corresponding file.
It is used in charity/Extensions/Install.py as follows:

from Products import charityfrom Products.charity.Extensions.utils import updateFTIdef install(self, reinstall=False): ... if not reinstall: updateFTI(self, charity, 'Department') updateFTI(self, charity, 'Employee') updateFTI(self, charity, 'Project')

The relevant files may be found in
charity/Extensions/setup/types/.

5.10. Using membrane to provide membership behaviour

How b-org uses membrane to let employees be users and departments
be groups

Since version 2.5, the user management infrastructure in Plone has
been replaced by PAS, the Zope Pluggable Authentication Service,
and PlonePAS, a Plone integration layer for this. PAS offers
several advantages over plain user folders, mainly in terms of
flexibility. Unfortunately, it is also more difficult to work with
through-the-web and has a very decentralised API, based on the
notion of plugin components, that can be difficult to understand at
first.

Membrane (or rather, membrane with a lowercase m) is a component
first developed by Plone Solutions and later improved by Rob Miller
and others. It is similar to CMFMember in that it can turn
content objects into users, although it is less concerned with
replicating existing Plone functionality and more concerned with
making a thin integration layer to plug into. It therefore fits
b-org very well.

Membrane works on Archetypes objects (though theoretically it could
be used with other objects as well). It adds a tool called
membrane_tool which contains a registry of content types that
are member- or group-sources, as well as a special catalog. Using
the Archetypes catalog multiplex, it is able to catalog objects
(which may also be cataloged in portal_catalog) and find them
again based on various interfaces (that is, it catalogs the
interfaces provided by an object). membrane provides a number of
PAS plug-ins that will search this catalog when looking for users
and delegate to the content objects (or rather, adapters on the
content object) for obtaining user information, performing
authentication and so on.

Registering with membrane

membrane_tool contains an API for registering content types as
membership providers, but the easiest option is to use a
GenericSetup profile (see the section on GenericSetup for the full
story). In profiles/default/membrane_tool.xml, you will find:

<?xml version="1.0"?><object name="membrane_tool" meta_type="MembraneTool"> <membrane-type name="Department"> <active-workflow-state name="active" /> </membrane-type> <membrane-type name="Employee"> <active-workflow-state name="active" /> </membrane-type> <membrane-type name="Project"> <active-workflow-state name="published" /> <active-workflow-state name="private" /> </membrane-type></object>

This registers the three content types (by their portal type), and
specifies the workflow states in which they are "active" as member
and group sources.

Applying marker interfaces

When looking for content objects that provide group and member
information, membrane will use a number of marker interfaces that
indicate support for various types of behaviour. These are
implemented by the three content type classes.
In content/department.py, you will find:

from Products.membrane.interfaces import IPropertiesProvider...class Department(ExtensibleSchemaSupport, BaseFolder): """A borg department. Departments can contain other employees. """ implements(IDepartmentContent, IPropertiesProvider)

All this means is that the Department's schema is capable of
providing properties to PAS. Properties (normally related to users,
but groups can have properties as well) are just metadata about the
user or group. Membrane supports as PAS properties plugin that will
look for Archetypes schema fields with member_property=True set
and report these back as user properties. Although Department
does not use any such properties at the moment, we add this marker
so that extension modules that use the schema extension mechanism
can benefit from this.
The equivalent setup for Employees, in content/employee.py, is a
little more interesting.

from Products.membrane.interfaces import IUserAuthProviderfrom Products.membrane.interfaces import IPropertiesProviderfrom Products.membrane.interfaces import IGroupsProviderfrom Products.membrane.interfaces import IGroupAwareRolesProvider...class Employee(ExtensibleSchemaSupport, BaseContent): """A borg employee. Employees are also users. """ implements(IEmployeeContent, IUserAuthProvider, IPropertiesProvider, IGroupsProvider, IGroupAwareRolesProvider, IAttributeAnnotatable)

Here, we are saying that:

	An Employee can be used as a source of authentication (i.e. as a
user), since it is marked with IUserAuthProvider. Note that the
actual authentication is performed by a different adapter.

	An Employee can provide user properties to PAS via membrane,
following IPropertiesProvider.

	An Employee can be part of a group, because of
IGroupsProvider.

	An employee can be given roles. There is an IRolesProvider
interface that we cold use for basic role awareness. The
IGroupAwareRolesProvider is a sub-interface that will cause
membrane to also look at the user's groups.

The IAttributeAnnotatable interface is part of Zope 3's
annotations framework, discussed in a later section.
Projects does not require any particular marker interfaces.

Providing membership behaviour

When membrane looks for objects to provide membership-related
behaviour, it will not only look for objects directly providing a
particular interface, but also for objects that can be adapted to
that interface. For example, the presence of the interface IGroup
informs membrane that an object can act as a group, and contains
methods that describe the members of that group.
Of course, we could have declared that Department implemented
IGroup and written these methods directly in the Department
content object. Hopefully you'll agree now that this would not be
optimal, since it mixes the content-object aspect and the
group-behaviour aspect of Department into a single monolithic
object. Instead, we will use an adapter, which also means that if
you require different behaviour in an extension to b-org, you have
only to override the adapter, leaving the core content object
alone.
In membership/department.py, you will see:

class Group(object): """Allow departments to act as groups for contained employees """ implements(IGroup) adapts(IDepartmentContent) def __init__(self, context): self.context = context def Title(self): return self.context.Title() def getRoles(self): """Get roles for this department-group. Return an empty list of roles if the department is in a workflow state that is not active in membrane_tool. """ mb = getToolByName(self.context, MEMBRANE_TOOL) wf = getToolByName(self.context, 'portal_workflow') reviewState = wf.getInfoFor(self.context, 'review_state') wfmapper = ICategoryMapper(mb) categories = generateCategorySetIdForType(self.context.portal_type) if wfmapper.isInCategory(categories, ACTIVE_STATUS_CATEGORY, reviewState): return self.context.getRoles() else: return () def getGroupId(self): return self.context.getId() def getGroupMembers(self): mt = getToolByName(self.context, MEMBRANE_TOOL) usr = mt.unrestrictedSearchResults members = {} for m in usr(object_implements=IMembraneUserAuth.__identifier__, path='/'.join(self.context.getPhysicalPath())): members[m.getUserId] = 1 return tuple(members.keys())

Mostly, this is about examining the Department content object to
find roles (which are listed in an Archetypes field, editable by
the Manager role). When calculating roles, we make sure that we
don't give roles if the Department group-source is actually
disabled (by virtue of its workflow state and the settings in
membrane_tool). The group title and id are taken from the object
as well.
The most interesting method is getGroupMembers(). Here, we
perform a search in the membrane_tool catalog for objects
adaptable to*IMembraneUserAuth*. This interface is the basic
interface in membrane describing things that can act as users -
there is an adapter from IUserAuthProvider to
IMembraneUserAuth. We restrict this to objects inside the
Department object. The net effect is that all Employee objects
inside the Department are returned.
Now, let's say you had a need for a Department which in addition to
acting as a group for all members inside it, also allowed some
members from other departments to be in that group. In this case,
you could use a schema extender to add a ReferenceField to the
schema of Department that allowed the Department owner to reference
other Employees. You would then provide an override adapter,
perhaps subclassing Products.borg.membership.department.Group but
overriding getGroupMembers() to append the ids of the referenced
users as well as the contained ones ... or instead of, depending on
your needs.
As it happens, Projects also act as groups, with members being
assigned by reference, using two reference fields - one for project
members, and one for project manangers. Here is the equivalent
adapter from membership/project.py:

class Group(object): """Allow projects to be groups for related members and managers """ implements(IGroup) adapts(IProjectContent) def __init__(self, context): self.context = context def Title(self): return self.context.Title() def getRoles(self): # The project does not imply any special roles *globally*, although # the IWorkspace adapter above enables some local roles return () def getGroupId(self): return self.context.getId() def getGroupMembers(self): return [IUserRelated(m).getUserId() for m in self.context.getRefs(PROJECT_RELATIONSHIP) + self.context.getRefs(PROJECT_MANAGER_RELATIONSHIP)]

As may be expected, the membrane adapters for Employee are a bit
more involved. They consist of the following:

	IUserRelated adapter

	Provides a user id for employees. Note that user ids and user names
are possibly different when PAS is used: the user id must be
globally unique; the user name is the named used for logging in.

	IUserAuthentication adapter

	Used to perform actual authentication by validating a supplied
username and password.

	IUserRoles adapter

	Used to determine which roles the particular user is given.

	IMembraneUserManagement

	Used by membrane and Plone's UI to deal with changes to the user,
such as the adding of a new user (not implemented here, since we

All these adapters are found in membership/employee.py.
The IUserRelated adapter is the simplest, as it simply invokes
the user name. Note that by default, membrane will use the
Archetypes UID() function as the user id. This is sensible, but
unfortunately Plone's UI (and that of third party products) is not
always aware of the distinction between user id and user name.
Ideally, only the user name would ever be displayed, the user id
being an internal concept, but in practice you may end up with
things like member folder names that are long, unfriendly UID
strings. Sometimes this may even be unavoidable in the general
case, because it's possible that two different sources of users
could use the same user name for two different user ids! For the
purposes of b-org, however, we assume user names are unique and
well-defined. The adapter is therefore quite trivial:

class UserRelated(object): """Provide a user id for employees. The user id will simply be the id of the member object. This overrides the use of UIDs """ implements(IUserRelated) adapts(IEmployeeContent) def __init__(self, context): self.context = context def getUserId(self): return self.context.getId()

The id of the content object that represents the employee is used
as the user id. This is also used as the user name, as defined in
the IUserAuthentication adapter:

class UserAuthentication(object): """Provide authentication against employees. """ implements(IUserAuthentication) adapts(IEmployeeContent) def __init__(self, context): self.context = context def getUserName(self): return self.context.getId() def verifyCredentials(self, credentials): login = credentials.get('login', None) password = credentials.get('password', None) if login is None or password is None: return False digest = sha(password).digest() annotations = IAnnotations(self.context) passwordDigest = annotations.get(PASSWORD_KEY, None) return (login == self.getUserName() and digest == passwordDigest)

In the verifyCredentials() method, the adapter is passed the
login and password as entered by the user in a dict (credentials)
and then compares those to the values stored on its context (the
Employee content object). The password is stored as a SHA1 digest
in an annotation to make sure it cannot be read back by examining
the content object - more on this in the section on annotations. Be
aware also that the IUserAuthentication adapter is called on
every request after a user is logged in and can deny access for
whatever reason by returning non-True. This means that it is
important that the method is as efficient as possible - expensive
database lookups, for example, are probably not a good idea here!
The IUserRoles adapter is trivial. Roles are stored on the
content object in a field that is editable only by managers. Of
course, we could have picked roles from some other rule if
necessary:

class UserRoles(object): """Provide roles for employee users. Roles may be set (by sufficiently privilged users) on the user object. """ implements(IUserRoles) adapts(IEmployeeContent) def __init__(self, context): self.context = context def getRoles(self): return self.context.getRoles()

The getRoles() method returns an iterable of strings representing
applicable roles. Note that depending on group membership (and the
IGroupAwareRolesProvider marker as described above) and local
roles the user may in fact have more roles than what this method
returns! The IUserRoles interface is concerned only with global
roles intrinsic to the user.
Finally, we have the IMembraneUserManagement adapter. This lets
membrane know what to do when it is asked by Plone's UI to add,
edit or remove users. In particular, the doChangeUser() method
enables the PasswordResetTool to do its magic. Note that we have
not implemented doAddUser(), because there is no well-defined
global policy for where the actual Employee content object should
be added! Recently membrane has gained some functionality whereby a
site-local utility providing IUserAdder** from membrane can be
queried for this policy. That may be useful for b-org extension
products, but b-org is still not in a position to make a general
policy for this, so it is not implemented out of the box.

class UserManagement(object): """Provides methods for adding deleting and changing users This is an implementation of IUserManagement from PlonePAS """ implements(IMembraneUserManagement) adapts(IEmployeeContent) def __init__(self, context): self.context = context def doAddUser(self, login, password): """This can't be done unless we have a canonical place to store users some implementations may wish to define one and implement this. """ raise NotImplementedError def doChangeUser(self, login, password, **kw): self.context.setPassword(password) if kw: self.context.edit(**kw) def doDeleteUser(self, login): parent = aq_parent(aq_inner(self.context)) parent.manage_delObjects([self.context.getId()])

That's it! Through these adapters, the three b-org content types
are able to act as sources of groups and users. Hopefully, you will
appreciate the flexibility of the separation of concerns into
adapters for things like editing user properties, determining user
id, calculating roles and performing authentication. If you extend
b-org, you can provide a more specific adapter to any of the above
interfaces to customise the membership behaviour.

5.11. Writing a custom PAS plug-in

Projects require that members are given particular local roles
within a project space. This is achieved using a custom PAS
plug-in.

PAS was introduced in the previous section on membrane. Truth be
told, it can be a bit of a jungle of plug-ins and delegation
because it is so very generic. Luckily, Plone (and membrane) takes
care of most of the complexity for us. Sometimes, however, it is
desirable to influence the authentication and role management at a
lower level.

Workspace adapters

b-org ships with a bit of framework, adapted from some similar code
in an unreleased version of teamspace by Wichert Akkerman, which
can provide local roles in a "workspace" - in this case a Project.
It relies on an adapter to the IWorkspace interface to determine
the mapping of users and roles in the particular context. Before
showing how this plug-in is written and registered, however, let's
look at how it is used by a Project.
In membership/project.py you will find:

class LocalRoles(object): """Provide a local role manager for projects """ implements(IWorkspace) adapts(IProjectContent) def __init__(self, context): self.context=context def getLocalRoles(self): project = IProject(self.context) roles = {} for m in project.getManagers(): roles[m.id] = ('Manager',) for m in project.getMembers(): if m.id in roles: roles[m.id] += ('TeamMember',) else: roles[m.id] = ('TeamMember',) return roles def getLocalRolesForPrincipal(self, principal): r = self.getLocalRoles() return r.get(principal, ())

This queries the lists of managers and members assigned (by
reference) to the project and specifies that both managers and
members should get the role TeamMember and managers should also
get the role Manager.
As it turns out, this behaviour is also useful in Departments,
which can be given one or more department managers by reference.
The idea is that department managers should be allowed to add and
remove Employees within that Department (recall that Department
is a folderish container for Employee objects). The analogous
adapter in membership/department.py reads:

class LocalRoles(object): """Provide a local role manager for departments """ implements(IWorkspace) adapts(IDepartmentContent) def __init__(self, context): self.context = context def getLocalRoles(self): project = IDepartment(self.context) roles = {} for m in project.getManagers(): roles[m.id] = ('Manager',) return roles def getLocalRolesForPrincipal(self, principal): r = self.getLocalRoles() return r.get(principal, ())

Thus, a container wanting to use the PAS plug-in we're about to see
to manage local roles only need to be adaptable to IWorkspace. In
fact, this whole machinery ought to be factored out into a separate
component, possibly sharing code to teamspace, another product
which provides similar functionality. Mostly, this is down to
laziness - creating another product (with all its boilerplate) and
managing another dependency in the Products folder seemed too
onerous when b-org was being developed. Hopefully, with Zope
2.10/Plone 3.0 and a growing preference for plain-Python packages
and "eggs", it will seem a little less of an obstacle to split
products up into multiple smaller pieces. So much for making
excuses.

The plug-in

The PAS plug-in that uses the IWorkspace interface can be found
in pas/localrole.py. It looks like this:

Borrowed from Project pasification branch - written primarily by# Wichert Akkerman and Copyright Amaze Internet Services# This module is releasd under the Zope Public Licensefrom sets import Setfrom Globals import InitializeClassfrom Acquisition import aq_inner, aq_chain, aq_parentfrom AccessControl import ClassSecurityInfofrom Products.PageTemplates.PageTemplateFile import PageTemplateFilefrom Products.PluggableAuthService.utils import classImplementsfrom Products.PluggableAuthService.plugins.BasePlugin import BasePluginfrom Products.PlonePAS.interfaces.plugins import ILocalRolesPluginfrom Products.borg.interfaces import IWorkspacemanage_addWorkspaceLocalRoleManagerForm = PageTemplateFile("../zmi/WorkspaceLocalRoleManagerForm.pt", globals(), __name__="manage_addProjectRoleManagerForm")def manage_addWorkspaceLocalRoleManager(dispatcher, id, title=None, REQUEST=None): """Add a WorkspaceLocalRoleManager to a Pluggable Authentication Services.""" plrm = WorkspaceLocalRoleManager(id, title) dispatcher._setObject(plrm.getId(), plrm) if REQUEST is not None: REQUEST.RESPONSE.redirect('%s/manage_workspace?manage_tabs_message=WorkspaceLocalRoleManager+added.' % dispatcher.absolute_url())class WorkspaceLocalRoleManager(BasePlugin): meta_type = "Workspace Roles Manager" security = ClassSecurityInfo() def __init__(self, id, title=None): self.id = id self.title = title # # ILocalRolesPlugin implementation # security.declarePrivate("getRolesInContext") def getRolesInContext(self, user, object): roles = [] uid = user.getId() obj, workspace = self._findWorkspace(object) if workspace is not None: if user._check_context(obj): roles.extend(workspace.getLocalRolesForPrincipal(uid)) return roles security.declarePrivate("checkLocalRolesAllowed") def checkLocalRolesAllowed(self, user, object, object_roles): roles = [] uid = user.getId() obj, workspace = self._findWorkspace(object) if workspace is not None: if not user._check_context(obj): return 0 roles = workspace.getLocalRolesForPrincipal(uid) for role in roles: if role in object_roles: return 1 return None security.declarePrivate("getAllLocalRolesInContext") def getAllLocalRolesInContext(self, object): rolemap = {} obj, workspace = self._findWorkspace(object) if workspace is not None: localRoleMap = workspace.getLocalRoles() for (principal, roles) in localRoleMap.items(): rolemap.setdefault(principal, Set()).update(roles) return rolemap # Helper methods security.declarePrivate("_findWorkspace") def _findWorkspace(self, object): """Find the first workspace, if any, in the acquistion chain of this object. Returns a tuple obj, workspace where workspace is the adapted IWorkspace. """ for obj in self._chain(object): workspace = IWorkspace(obj, None) if workspace is not None: return obj, workspace return None, None security.declarePrivate("_chain") def _chain(self, object): """Generator to walk the acquistion chain of object, considering that it could be a function. """ # Walk up the acquisition chain of the object, to be able to check # each one for IWorkspace. # If the thing we are accessing is actually a bound method on an # instance, then after we've checked the method itself, get the # instance it's bound to using im_self, so that we can continue to # walk up the acquistion chain from it (incidentally, this is why we # can't juse use aq_chain()). context = aq_inner(object) while context is not None: yield context funcObject = getattr(context, 'im_self', None) if funcObject is not None: context = aq_inner(funcObject) else: # Don't use aq_inner() since portal_factory (and probably other) # things, depends on being able to wrap itself in a fake context. context = aq_parent(context)classImplements(WorkspaceLocalRoleManager, ILocalRolesPlugin)InitializeClass(WorkspaceLocalRoleManager)

On first glance, there is quite a lot going on here, but it is not
so hard to understand. First, we define a good old-fashioned Zope 2
factory and ZMI add form. This is good practice, because PAS
plug-ins can be managed via acl_users in the ZMI. If you find
yourself wandering there, however, remember to bring a torch and
keep a trail of breadcrumbs to find your way out. A backup wouldn't
hurt either if you try to change things. It is, unfortunately, not
the most intuitive of interfaces.
We will see how the plug-in is registered and activated in a
moment, but first notice that the plug-in implements an interface,
ILocalRolesPlugin,Â which is defined by PlonePAS, the
PAS-in-Plone integration layer. This defines methods that will be
called by the PAS machinery to determine, in this case, local
roles. Note that this is not an adapter (perhaps it would have
been if PAS had been invented in Zope 3, though Zope 3 has its own
authentication machinery that is evolved from PAS and works
slightly differently). When created, the ProjectLocalRoleManager
is an Zope 2 object that lives in the ZODB in acl_users.
The methods of the ILocalRolesPlugin interface are fairly
self-explanatory in purpose. They allow PAS to extract the local
roles for a particular user in a particular context
(getRolesInContext()), to check whether a user in fact has one of
the roles required to access a particular method attribute in a
particular context (checkLocalRolesAllowed()), and to get a map
of users-to-roles in a particular context.
The complex parts are, as often is the case, concerned with
acquistion. The helper method _findWorkspace() attempts to walk
up the object hierarchy to find the first possible IWorkspace (it
will only consider one) to get hold of the appropriate IWorkspace
adapter that is then used to determine the actual roles that apply,
as above. Without walking up the content hierarchy, it would not be
possible to let the local roles of a particular project apply when
in the context of a piece of content inside that project (i.e. a
sub-object of the folderish Project object). There is some
reasonably hairy acqusition-juggling going on in the _*chain()*
method to return this chain as a generator. The hairiness comes
from the fact that the thing that is being checked may in fact be a
method that is being accessed, and aqusition chains can get
themselves in all kinds of knots, especially when Five is in the
mix.
Lastly, we need to declare a ClassSecurityInfo and call
InitializeClass to get Zope 2 to play ball.

Registering the plug-in

To be able to use this plug-in, we must first register it with PAS.
This is done when the product is loaded, in borg/__init__.py:

from Products.PluggableAuthService import registerMultiPlugin...from pas import localrole...registerMultiPlugin(localrole.WorkspaceLocalRoleManager.meta_type)def initialize(context): context.registerClass(localrole.WorkspaceLocalRoleManager, permission = AddUserFolders, constructors = (localrole.manage_addWorkspaceLocalRoleManagerForm, localrole.manage_addWorkspaceLocalRoleManager), visibility = None) ...

This is similar to how CMF content types are initialised with
ContentInit().initialize() and context.registerClass(). In
other words, copy-and-paste and the less you know the happier you
will be.
By registering the plug-in, we could now ask our users to
instantiate a Workspace Roles Manager*within *acl_users....
er... somwhere. Like we said - not necessarily obvious. Better to
do it once, in the setup code for b-org. Please refer to the
section on GenericSetup to learn how b-org is actually installed,
but notice that the relevant code is in setuphandlers.py:

from Products.CMFCore.utils import getToolByNamefrom Products.PlonePAS.Extensions.Install import activatePluginInterfacesfrom config import LOCALROLES_PLUGIN_NAME...def setupPlugins(portal, out): """Install and prioritize the project local-role PAS plug-in. """ uf = getToolByName(portal, 'acl_users') borg = uf.manage_addProduct['borg'] existing = uf.objectIds() if LOCALROLES_PLUGIN_NAME not in existing: borg.manage_addWorkspaceLocalRoleManager(LOCALROLES_PLUGIN_NAME) print >> out, "Added Local Roles Manager." activatePluginInterfaces(portal, LOCALROLES_PLUGIN_NAME, out)

All we do here is get hold of the factory dispatcher for the user
folder (from manage_addProduct, which has something to do with
that registerClass call for the WorkspaceLocalRoleManager seen
in the previous code example, but like we said, it's dont-ask,
don't-tell) and if it is not there already, we create an instance
of the plugin using the factory. We then need to activate it so
that it actually takes effect. out is a StringIO output stream
used for logging.

5.12. Placeful workflow

b-org uses CMFPlacefulWorkflow, which ships with Plone 2.5, to
manage the workflow of content objects inside a project.

Placeful workflows are based on the concept of policies. You can
think of a policy as a mapping of workflows to types, in the same
way as you could control from the portal_workflow tool. Policies
are created, normally by copying an existing policy (possibly the
default, global policy), and then applied to a context. In Plone,
this can be done using the policy*option in the *state menu.

Placeful workflows are used in b-org Projects. Inside a project,
project members should have elevated view and modify permissions
over content. This is achieved using the following technique:

	A new role TeamMember is made available within any Project*.*

	A custom workflow, borg_project_default_workflow is a
customisation of the default Plone workflow that has a simplified
set of states and actions, and is aware of the TeamMember role.

	A placeful workflow policy sets the default workflow, as well as
the workflow for folders, to this one.

	When a Project is created, this placeful workflow policy is
enabled for the project.

The custom workflow is defined using GenericSetup, in
profiles/default/workflows/borg_project_default_workflow/definition.xml.
You can of course install your own workflow if necessary. The
workflow policy is set up in the importVarious setup step, in
setuphandlers.py:

from Products.CMFCore.utils import getToolByNamefrom config import LOCALROLES_PLUGIN_NAME, PLACEFUL_WORKFLOW_POLICY...def addProjectPlacefulWorkflowPolicy(portal, out): """Add the placeful workflow policy used by project spaces. """ placeful_workflow = getToolByName(portal, 'portal_placeful_workflow') if PLACEFUL_WORKFLOW_POLICY not in placeful_workflow.objectIds(): placeful_workflow.manage_addWorkflowPolicy(PLACEFUL_WORKFLOW_POLICY, duplicate_id='portal_workflow') policy = placeful_workflow.getWorkflowPolicyById(PLACEFUL_WORKFLOW_POLICY) policy.setTitle('[borg] Project content workflows') policy.setDefaultChain(('borg_project_default_workflow',)) policy.setChainForPortalTypes(('Folder', 'Large Plone Folder',), ('borg_project_default_workflow',))

Again, you could add a different policy if you needed different
settings.

Finally, we apply the policy when a project is created. We will see
how this is set up when events are covered in the next section, but
the relevant code is in events/project.py:

from zope.interface import implementsfrom zope.component import getUtilityfrom Products.CMFCore.utils import getToolByNamefrom Products.borg.config import PLACEFUL_WORKFLOW_POLICYfrom Products.borg.interfaces import ILocalWorkflowSelectionclass DefaultLocalWorkflowSelection(object): """Select the default local workflow policy. Local adapters or overrides may supercede this. """ implements(ILocalWorkflowSelection) workflowPolicy = PLACEFUL_WORKFLOW_POLICYdef addLocalProjectWorkflow(ob, event): """Apply the local workflow for project spaces when a project is added. """ # Add the TeamMember role if necessary if 'TeamMember' not in ob.validRoles(): # Note: API sucks :-(ob.manage_defined_roles(submit='Add Role', REQUEST={'role': 'TeamMember'}) # Find out which workflow to use - this is looked up as a utility so # that other components can override it. workflowSelection = getUtility(ILocalWorkflowSelection, context=ob) # Set the placeful (local) workflow placeful_workflow = getToolByName(ob, 'portal_placeful_workflow') ob.manage_addProduct['CMFPlacefulWorkflow'].manage_addWorkflowPolicyConfig() config = placeful_workflow.getWorkflowPolicyConfig(ob) config.setPolicyBelow(policy=workflowSelection.workflowPolicy)

Here, the local role is added to the newly created project instance
(it is not made global so as not to pollute the global roles list),
and the policy is associated with the contents of the (folderish)
project object.

Note that we do not hard-code the name of the workflow policy!
Instead, we ask a utility called ILocalWorkflowSelection. This
could be overridden using a local utility, but the global one
references the policy created above, as defined in
DefaultLocalWorkflowSelection. This utility is registered in
events/configure.zcml as follows:

<utility provides="..interfaces.ILocalWorkflowSelection" factory=".project.DefaultLocalWorkflowSelection" />

5.13. Sending and handling events

Events is undoubtedly one of the most useful things that Zope 3
brings to the Zope 2 world. Here's how b-org uses them.

In the previous section, you saw how an event handler was used to
apply a placeful workflow policy to newly created projects. This
pattern is quite powerful - instead of needing to subclass
Project just to add something to at_post_create_script() or
initializeArchetype(), say, you simply register an appropriate
event handler. This pattern can of course apply to other
situations, such as when objects are modified, deleted, added to a
container, or on any other type of event that may occur in your
system. Events are synchronous, so when code emits an event, it
will block until all event handlers are finished.

Recall the event handler for adding projects. It can be found in
events/project.py and has the following signature:

def addLocalProjectWorkflow(ob, event):
 ...

The first argument is the object the event was fired on, the second
is an instance of the event itself. In fact, this two-part event
dispatcher is a special case of events described with
IObjectEvent and its sub-interfaces. Internally, Zope 3 catches
all IObjectEvent*s and re-dispatches the event based on the object
that is passed along the event instance. The registration for the
event handler in *events/configure.zcml looks like this:

<subscriber
 for="..interfaces.IProjectContent
 zope.app.container.interfaces.IObjectAddedEvent"
 handler=".project.addLocalProjectWorkflow" />

Note that there are two interfaces the subscriber is registered
for - the object type and the event type. These must be separated
by whitespace, though a newline like above is customary. This is
the same syntax that is used to explicitly define multi-adapters
(if you are not using the adapts() syntax in an adapter class) -
in fact, the events machinery uses the adapter registry internally
to map subscribers to events when they are fired.

A more general-case event can be found in events/employee.py,
which takes care of assigning ownership of an Employee object to
the user that is tied to that employee. The code is borrowed and
adapted from PloneTool, but notice the signature which only
includes the event:

def modifyEmployeeOwnership(event):
 """Let employees own their own objects.
 Stolen from Plone and CMF core, but made less picky about where
 users are found.
 """

The registration in events/onfigure.zcml*is similar to the one
above, but only uses one *for interface:

<subscriber
 for="..interfaces.IEmployeeModifiedEvent"
 handler=".employee.modifyEmployeeOwnership" />

Sending custom events

You will notice that the IEmployeeModifiedEvent is a custom
event. In Plone 3.0 (or rather, Archetypes 1.5) this won't be
necessary, because Archetypes will take care of sending an event
derived from IObjectModifiedEvent, which in turn derives from
IObjectEvent and thus is subject to the same registration as the
IObjectAddedEvent that includes the object type and the event
type. For now, though, we need to send the event ourselves.

The event is described by an interface in
interfaces/employee.py:

from zope.interface import Interface, Attribute...

class IEmployeeModifiedEvent(Interface):
 """An event fired when an employee object is saved.
 """
 context = Attribute("The content object that was saved.")

The implementation is trivial, and can be found in
content/employee.py:

from zope.interface import implements...
from Products.borg.interfaces import IEmployeeModifiedEvent...

class EmployeeModifiedEvent(object):
 """Event to notify that employees have been saved.
 """
 implements(IEmployeeModifiedEvent)

 def __init__(self, context):
 self.context = context

It is of course the event class that we instantiate and send,
whilst we register the event handler for the event interface.
This means that we could provide alternative implementations for
the same event interface, if need be. It also means that event
handlers subscribed for a parent interface will be invoked for
events that provide a sub-interface.
Sending the event is very simple. In the definition of Employee
in content/employee.py, we have:

from zope.event import notify...

class Employee(ExtensibleSchemaSupport, BaseContent):
...

 security.declarePrivate(permissions.View, 'at_post_create_script')
 def at_post_create_script(self):
 """Notify that the employee has been saved.
 """
 notify(EmployeeModifiedEvent(self))

 security.declarePrivate(permissions.View, 'at_post_edit_script')
 def at_post_edit_script(self):
 """Notify that the employee has been saved.
 """
 notify(EmployeeModifiedEvent(self))

We construct an event instance and parameterise it with the right
object (i.e. self) before sending it with notify(), all on one
line.

5.14. Annotations

Annotations are an elegant solution to the "where do I store this?"
problem, and are used in many Zope 3 applications.

It is often useful to be able to attach information to an object
even if you don't have control over that object's type and schema.
For example, a tagging solution may attach a list of tags to an
object, or a notification tool may want to add a list of
subscribers on a per-object basis. This is known in Zope 3 as
"annotations".

Annotations work like this:

	A marker interface, normally IAttributeAnnotatable is applied
to the class or object that is to be annotated. This particular
marker means that annotations are stored in a persistent dict
called __annotations__ that is added to the object, though
this should be considered an implementation detail.

	An adapter exists from IAttributeAnnotable*to *IAnnotations.
If you need a different annotation regime (e.g. one that stores the
values keyed by object id in some local utility) you could provide
a different adapter to IAnnotations.

	The code that wishes to annotate an object will adapt it to
IAnnotations. The annotations adapter acts like a dict.
Conventionally, each package that uses annotations will store all
its (arbitrary) information under a particular key in that dict.
The key name is normally the same as the name of the package. This
is mainly to avoid conflicts between different packages annotating
a particular object.

In b-org, we don't have quite the same need for annotating objects
from other parts of Plone, but we use annotations to store users'
passwords. This ensures that they cannot be accessed
through-the-web (since Zope 2 won't publish the
__annotations__ dict, as it begins with an underscore) and
keeps passwords out of the way. Strictly speaking, this is probably
overkill since the password is also hashed using the SHA1 one-way
hasing algorithm, but that never stopped anyone before.

First, look at the definition of the Employee class in
content/employee.py:

from zope.app.annotation.interfaces import IAttributeAnnotatable, IAnnotations...

class Employee(ExtensibleSchemaSupport, BaseContent):
...

 implements(IEmployeeContent,
 IUserAuthProvider,
 IPropertiesProvider,
 IGroupsProvider,
 IGroupAwareRolesProvider,
 IAttributeAnnotatable)

Here, we explicitly say that Employee is attribute annotatable. Of
course, this requires control over the class. If you are trying to
annotate another type that isn't already marked as annotatable, you
may be able to add the marker interface using classProvides() or
directlyProvides() from zope.interface, or use the ZCML
<implements /> directive. You need to be a bit careful, though,
since the thing you are annotating should probably be persistent.
You should also be polite - you're stuffing your own information
onto someone else's object. Try not to break it.

Further down in content/employee.py, you will see the annotation
being set:

security.declareProtected(permissions.SetPassword, 'setPassword')
def setPassword(self, value):
if value:
 annotations = IAnnotations(self)
 annotations[PASSWORD_KEY] = sha(value).digest()

PASSWORD_KEY comes from config.py, and is simply a string. The
digest is verified in membership/employee.py, in the
IUserAuthentication adapter:

class UserAuthentication(object):
 """Provide authentication against employees.
 """

 implements(IUserAuthentication)
 adapts(IEmployeeContent)
 def __init__(self, context):
 self.context = context

 def getUserName(self):
 return self.context.getId()

 def verifyCredentials(self, credentials):
 login = credentials.get('login', None)
 password = credentials.get('password', None)
 if login is None or password is None:
 return False
 digest = sha(password).digest()
 annotations = IAnnotations(self.context)
 passwordDigest = annotations.get(PASSWORD_KEY, None)
 return (login == self.getUserName() and digest == passwordDigest)

That's all there is to it. We get an IAnnotations adapter, and
then look up the PASSWORD_KEY to find the digest. The
annotations adapter has the same contract as a Python dict, so we
can use functions like get() and setdefault().

5.15. Zope 3 Views

One of the nicest things that Zope 3 brought us is a way to manage
view logic.

In Zope 2, a view (be that a view of a content object, or a more
standalone template) typically consists of a Zope Page Template
that pulls in data from its context. The problem is that
non-trivial templates usually require some kind of "view logic" or
"display logic". People tend to put these in a few places:

	Complex python: expressions in the ZPT. This is bad because it
makes your templates hard to understand, and because there is a
limit to what you can do with one-line Python expressions.

	External Python Scripts in a skin layer that get acquired in the
page template, e.g. here/calculateDate. This is bad because it is
cumbersome to create a new file for something which may be quite
trivial, because all such scripts are part of a global namespace
(and thus there may be conflicts between two different scripts with
the same name), and also because Python scripts in the skin layers
(and python: expressions) are slower than filesystem Python code
and more restricted.

	A custom tool that provides some necessary functionality. This
is bad because a tool is a singleton, so you will probably need to
explicitly pass around a context. Tools are also part of that same
global namespace (by way of acquisition from the portal root), and
are a hassle to create and install.

	Methods on the context content object (where applicable). This
is bad because it mixes presentation logic and the model (the
schema) and storage logic. This often leads to an explosion of
methods on each content type that are highly specific to a
particular template. This pattern also requiers that you have the
ability to add new methods to the content type class, even if you
are just adding a new view template for it.

As usual, these problems indicate a lack of separation of concerns.
Zope 3's answer is a view - a class (typically) which may be
associated with a template.

Views are multi-adapters

You will often hear that views are named multi-adapters of a
context and a request. In fact, the concept of a multi-adapter
originated in the need for views. For most practical purposes, you
can forget about this - it is an implementation detail. However,
you may sometimes need to look up views yourself, which can be done
using:

from zope.component import getMultiAdapter
myView = getMultiAdapter((context, request), name='my_view')

More importantly, you need to know that to access the context the
view is operating on inside that view, you can use self.context,
and to access the request (including form variables submitted as
part of that request, if applicable), using self.request.

Explicitly acquiring views

One of the easiest ways of using views with existing code is to
make page templates in a skin layer as you normally would, and then
acquire a view object that is used for rendering logic. One of the
main reasons for using this approach is that it allows page
templates to be customised using the normal skin layer mechanism.
This is approach is used extensively in Plone 2.5. Here's an
example from the "recent" portlet, starting with
portlet_recent.pt:

...
<tal:recentlist tal:define="view context/@@recent_view;
 results view/results;">
 ...
 <tal:items tal:repeat="obj results">
 ...
 </tal:items>
 ...
</tal:recentlist>

The important line here is context*/@@recent_view*. This will look
up a view named recent_view relative to the current context
(context in page templates is a now-preferred alias for the
here variable that was used before - here still works in Zope 2
templates, but is gone in Zope 3).

This view is defined by a class and a ZCML directive. The ZCML
directive looks like this:

<browser:view
 for="*"
 name="recent_view"
 class=".portlets.recent.RecentPortlet"
 permission="zope.Public"
 allowed_attributes="results"
 />

Actually, this is not exactly what's in the file in Plone, since
Plone is working around a few Zope 2.8 issues, but basically, this
says that the view is available on all types of contexts
(for="*" - this could specify a dotted name to an interface if
needed, more on that below), has the name recent_view, is public
(because of the magic permission zope.Public) and that when
acquired, the attribute (method) results is allowed - more
attributes could be specified separated by whitespace. The class
that is referenced contains the view implementation. Here it is,
again slightly modernised:

from Products.Five.browser import BrowserView
from Products.CMFCore.utils import getToolByName

from Acquisition import aq_inner

class RecentPortlet(BrowserView):
 """The recent portlet
 """

 def results(self):
 """Get the search results
 """
 context = aq_inner(self.context)
 putils = getToolByName(context, 'plone_utils')
 portal_catalog = getToolByName(context, 'portal_catalog')
 typesToShow = putils.getUserFriendlyTypes()
 return self.request.get(
 'items',
 portal_catalog.searchResults(sort_on='modified',
 portal_type=typesToShow,
 sort_order='reverse',
 sort_limit=5)[:5])

The use of aq_inner() on self.context is not strictly necessary
always, but is a useful rule of thumb to make acquisition do what
you expect it to do (this is because the BrowserView base class
extends Acquisition.Explicit, which causes self.context to gain
an acquistion wrapper that can mess with its acqusition chain).

Views with templates

Zope 3 does not use views in this way. Instead, you would bind the
template to the browser view explicitly. The main drawback of this
technique is that the template is not present in the
portal_skins tool, and so cannot be customised through-the-web.
This may be possible in future versions of Zope and CMF, but for
now the full-blown view technique is best used when it is not
necessary to customise views through-the-web. Of course, you can
still override view registrations using ZCML on more specific
interfaces or an overrides.zcml.

Here is a view for departments in the charity example product,
under charity/browser/configure.zcml. Notice how this entire XML
file is in the browser namespace, and thus it is unnecessary to
prefix each directive with browser:

<configure xmlns="http://namespaces.zope.org/browser"
 i18n_domain="charity">

 <page
 name="charity_department_view"
 for="Products.borg.interfaces.IDepartmentContent"
 class=".department.DepartmentView"
 template="department.pt"
 permission="zope2.View"
 />

 ...

</configure>

Here, we explicitly state that this view is only available for
IDepartmentContent objects. This means that if you try to invoke
@@charity_department_view on anything that does not provide
this interface, you will get a lookup error. The view is protected
by the Zope 2*View* permission. Also note that there is no
allowed_attributes (or allowed_interface) attribute here.
This is because the view is not intended to be used by other
templates (if they tried, they would get an Unauthorized error
when trying to access any attribute of the view) - all the logic is
in the department.pt template.

The department.pt template is found in charity/browser,*the same
directory as the *configure.zcml file above. You can use relative
paths like ./templates/... if necessary to point to the template
file on the filesystem. Here is the class:

from Products.Five.browser import BrowserView
from Products.borg.interfaces import IDepartment

class DepartmentView(BrowserView):
 """A view of a charity department"""

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def name(self):
 return self.context.Title()

 def managers(self):
 return self.context.getManagers()

 def details(self):
 return self.context.Description()

And here is the template that uses these methods:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="charity">
<body>

<metal:main fill-slot="main">

 <div metal:use-macro="here/document_actions/macros/document_actions">
 Document actions (print, rss etc)
 </div>

 <h1 class="documentFirstHeading" tal:content="view/name" />

 <table class="listing vertical" style="float:right" tal:condition="view/managers">
 <tr>
 <th>Manager(s)</th>
 <td>
 <div tal:repeat="obj view/managers">

 </div>
 </td>
 </tr>
 </table>

 <div tal:content="structure view/details" />

 <metal:listing use-macro="here/folder_listing/macros/listing" />

 <div class="visualClear"><!----></div>

</metal:main>

</body>
</html>

Now, you can go to a hypothetical URL
/mydept/@@charity_department_view to see this view rendered. In
fact, this is set as the view and (Default) aliases for the
Department content type when charity is installed, so the user
will never see this URL.

Views without templates

It is also possible to make views without templates. This is useful
if you need a URL to submit that does some processing. That
processing would normally be done in the __call__() method,
as in the hypothetical example below:

<browser:view
 name="modify_customer"
 for=".interfaces.ICustomer"
 class=".customer.ModifyCustomerView"
 permission="cmf.ModifyPortalContent"
 />

Now, we could write a form that has action="@@modify_customer",
which would result in this being called:

class ModifyCustomerView(BrowserView):
 """Modify a customer from a form
 """

 def __call__(self):
 name = self.request.form.get('name', None)
 dog = self.request.form.get('dog', None)

 self.context.name = name
 self.context.dog = dog

 self.request.response.redirect('@@customer_view')

This is obviously a simplified example, but the important thing to
realise is that the view will tend to use self.context and
self.request to interact with the rest of the portal.

5.16. The schema extension mechanism

How the Archetypes schema extension mechanism in b-org works

Text to follow

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Managing, Administration of Plone

	Installing Plone
	Plone Installation Requirements

	Installation

	Installing add-on packages using buildout

	Guide to deploying and installing Plone in production
	Introduction

	Background: the stack

	Preparing the Server

	Starting, stopping and restarting

	Logs and log rotation

	Database packing

	Backing up your Plone deployment

	Copying a Plone site

	WSGI

	Zope Application Server

	Guide to Caching

	Frontend Webserver

	Production

	Testing & Tuning Plone

	Plone Upgrade Guide
	Introduction

	Preparations

	Upgrading Plone 4 within 4.x.x series dot minor releases

	Upgrade add-on products

	Troubleshooting

	Version-specific migration procedures and tips

	Upgrading Non-Buildout-based Plone Instances

	General advice on updating from a non-buildout to buildout-based installation

	Troubleshooting
	Basic troubleshooting

	Exceptions and common tracebacks

	Buildout troubleshooting

	Unicode encoding and decoding

	Image troubleshooting

	Database and transactions troubleshooting

	Manually Removing Local Persistent Utilities

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

Installing Plone

	Plone Installation Requirements

	Installation

	Installing add-on packages using buildout

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Installing Plone »

Plone Installation Requirements

Description

Requirements for installing Plone. Details the tools and libraries
(dependencies) required to install Plone.

	Hosting requirements
	Operating system

	Hardware (or virtual environment) requirements
	Minimum requirements

	Recommended

	All Plone versions
	Optional libraries

	Plone 4.3 / 4.2
	Python

	Libraries

	Plone 4.1
	Python

	Libraries

	Minimal build

Hosting requirements

To run a Plone based web site on your own server you need:

	A server machine connected to Internet (public sites) or your intranet (company intranet sites);

	Remote console, like SSH access, for installing Plone. FTP is not enough.

Plone requires several system libraries. These need to be installed by a user
with root access.

Operating system

Plone has been successfully installed on:

	Windows

	Nearly every popular Linux distribution;

	Nearly every popular BSD distribution

	OS X (using our OS X installer or XCode)

	Solaris and several other proprietery *nix systems

To install on Windows, it is strongly recommended to use the Plone Windows
Installer. Otherwise, you will need Cygwin [http://www.cygwin.com] to
provide a *nix build environment.

Hardware (or virtual environment) requirements

The hardware requirements below give a rough estimation of the minimum hardware setup needed for a Plone server.

Add-on products and caching solutions may increase RAM requirements.

One Zope application server is able to run several Plone sites with the same software configuration. This lowers the requirements when hosting multiple sites on the same server.

Minimum requirements

	Minimum 256 MB RAM and 512 MB of swap space per Plone site

	Minimum 512 MB hard disk space

Recommended

	2 GB or more RAM per Plone site

	40 GB or more hard disk space

All Plone versions

A complete GNU build kit including GCC including gcc, gmake, patch, tar,
gunzip, bunzip2, wget.

Most required libraries listed below must be installed as development versions (dev).

Tools and libraries marked with "*" are either included with the Unified
Installer or automatically downloaded.

If you use your system Python, you should use Python's virtualenv to create an
isolated virtual Python. System Pythons may use site libraries that will
otherwise interfere with Zope/Plone.

Optional libraries

If Plone can find utilities that convert various document formats to text, it will include them in the site index. To get PDFs and common office automation formats indexed, add:

	poppler-utils (PDFs)

	wv (office docs)

These may be added after initial installation.

Plone 4.3 / 4.2

Python

Python 2.7 (dev), built with support for expat (xml.parsers.expat), zlib and ssl.
(Python XML support may be a separate package on some platforms.)*

virtualenv*

Libraries

	libz (dev)

	libjpeg (dev)*

	readline (dev)*

	libssl or openssl (dev)

	libxml2 >= 2.7.8 (dev)*

	libxslt >= 1.1.26 (dev)*

Plone 4.1

Python

Python 2.6 (dev), built with support for expat (xml.parsers.expat), zlib and ssl.
(Python XML support may be a separate package on some platforms.)*

virtualenv*

Libraries

	libz (dev)

	libjpeg (dev)*

	readline (dev)*

Minimal build

With complete requirements in place, a barebones Plone install may be created
with a few steps. '~...#' is a system prompt. Adjust the Plone and Python
versions to match your requirements:

~/$ mkdir Plone-4.3
~/$ cd Plone-4.3
~/Plone-4.3$ virtualenv --distribute Python-2.7
~/Plone-4.3$ mkdir zinstance
~/Plone-4.3$ cd zinstance
~/Plone-4.3$ wget http://downloads.buildout.org/1/bootstrap.py
~/Plone-4.3/zinstance$ echo """
> [buildout]
>
> extends =
> http://dist.plone.org/release/4.3-latest/
>
> parts =
> instance
>
> [instance]
> recipe = plone.recipe.zope2instance
> user = admin:admin
> http-address = 8080
> eggs =
> Plone
> Pillow
> """ > buildout.cfg
~/Plone-4.3/zinstance$../Python-2.7/bin/python bootstrap.py --distribute
~/Plone-4.3/zinstance$ bin/buildout
 Long download and build process ...
 Errors like "SyntaxError: ("'return' outside function"..."" may be ignored.

This build will install Plone, ready to be run with:

~/Plone-4.3/zinstance$ bin/instance start

running attached to port 8080. Use login id "admin" and password "admin" for initial login.

This build would be adequate for a quick evaluation installation. For a
production or development installation, use one of Plone's installers [http://plone.org/products/plone].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Installing Plone »

Installation

Description

Installation instructions for Plone for various operating systems and situations.

	Introduction

	Download Plone

	Plone installation requirements

	How to install Plone
	Ubuntu / Debian
	Installing Plone using the Unified UNIX Installer
	Install the operating system software and libraries needed to run Plone

	Download the latest Plone unified installer

	Run the Plone installer in standalone mode

	Install the Plone developer tools

	Start Plone

	You've got Plone

	Installing Plone using buildout on Ubuntu / Debian

	Installing Plone using RPMs, .dev, ... packages

	Microsoft Windows
	Installing Plone on Windows

	OSX
	Installing Plone using OSX binary installer

	Installing Plone from source on OS X

	LibXML2/LibXSLT Versions

	Entering debug mode after installation

	Installer source code

Introduction

This document covers the basics of installing Plone on popular operating systems.
It will also point you to other documents for more complex or demanding installations.

Plone runs as an application on the Zope application server. That server is installed automatically by the install process.

Warning

We strongly advise against installing Plone via OS package or port. There is no .rpm, .deb, or BSD port that is supported by the Plone community. Plone dependencies can and should be installed via package or port -- but not Plone itself.

Download Plone

Plone is available for Microsoft Windows, Mac OSX X, Linux and BSD operating systems.

Download the latest Plone release [http://plone.org/products/plone/latest_release].

Binary installers are available for Windows and OS X. Installation on Linux, BSD and other Unix workalikes requires a source code installation, made easy by our Unified Installer. "Unified" refers to its ability to install on most Unix workalikes.

Plone installation requirements

See Plone installation requirements for detailed requirements.

	You need at a dedicated or virtual private server (VPS) with 512 MB RAM available.
Shared hosting is not supported unless the shared hosting company says Plone is good to go.
See Plone installation requirements.

	If you are installing for production - rather than testing or evaluation - review Deploying and installing Plone in production before installation.

How to install Plone

Plone can run on all popular desktop or server operating systems, including
Linux, OS X, BSD and Microsoft Windows.

	You can install Plone on a server for production usage

	You can install Plone locally on your own computer for development and test drive

Ubuntu / Debian

We describe Ubuntu/Debian installation in detail as an example of installation on a common Unix workalike. The only difference for most other systems would be in package-manager commands and package names. See Plone installation requirements for package names and commands on other platforms.

Installing Plone using the Unified UNIX Installer

Note

This is the recommended method for
a development or evaluation installation of Plone on a Unix workalike.
For a production installation, Installing Plone for Production on Ubuntu is a much better guide.

This recipe is good for:

	Plone development and testing on Ubuntu / Debian

	Operating system installations where you have administrator (root) access. Note that
root access is not strictly necessary as long as you have required software installed
beforehand on the server, but this tutorial assumes you need to install the software
yourself and you are the admin. If you don't have the ability to install system libraries, you'll need to get your sysadmin to do it for you. The libraries required are in common use.

The resulting installation is self-contained,
does not touch system files,
and is safe to play with (no root/sudoing is needed).

If you are not familiar with UNIX operating system command line
you might want to study this Linux shell tutorial [http://linuxcommand.org/learning_the_shell.php]
first.

For information on using this installation with more advanced production
hosting environments and deployments,
see the deployment guide.

Instructions are tested for the Ubuntu 12.04 Long Term Support release.

Install the operating system software and libraries needed to run Plone

sudo apt-get install python-setuptools python-dev build-essential libssl-dev libxml2-dev libxslt1-dev libbz2-dev libjpeg62-dev

You will probably also want these optional system packages (see Plone manual for more information [http://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/debian-libraries]):

sudo apt-get install libreadline-dev wv poppler-utils

Note

libreadline-dev is only necessary if you wish to build your own python rather than use your system's python 2.7.

If you're planning on developing with Plone, install git version control support:

sudo apt-get install git

Note

If sudo command is not recognized or does not work you don't have administrator rights to Ubuntu / Debian operating system.
Please contact your server vendor or consult the operating system support forum.

Note

For Ubuntu 14.04 please also install libz-dev

Download the latest Plone unified installer

Download from the plone.org download page [http://plone.org/download] to your server using wget command. Curl also works.
Substitute the latest version number for 4.3.3
in the instructions below.

wget --no-check-certificate https://launchpad.net/plone/4.3/4.3.3/+download/Plone-4.3.3-UnifiedInstaller.tgz

Run the Plone installer in standalone mode

Extract the downloaded file
#
tar -xf Plone-4.3.3-UnifiedInstaller.tgz
#
Go the folder containing installer script
#
cd Plone-4.3.3-UnifiedInstaller
#
Run script
./install.sh standalone

install.sh has many options, use:

./install.sh --help

to discover them.

The default admin credentials will be printed to the console.
You can change this password after logging in to the Zope Management Interface.

Note

The password is also written down in the buildout.cfg file, but this
setting is not effective after Plone has been started for the first time.
Changing this setting does not do any good.

Install the Plone developer tools

If you're using this Plone install for development, add the common development tool set.

cd ~/Plone/zinstance
bin/buildout -c develop.cfg

You'll need to add the "-c develop.cfg" again each time you run buildout, or you'll lose the extra development tools.

Start Plone

If you're developing, start Plone in foreground mode for a test run (you'll see potential errors in the console):

cd ~/Plone/zinstance
bin/plonectl fg

When you start Plone in the foreground, it runs in debug mode, which is much slower than production mode since it reloads templates for every request.

For evaluation, instead use:

cd ~/Plone/zinstance
bin/plonectl start

Use

cd ~/Plone/zinstance
bin/plonectl stop

to stop the instance.

By default, Plone will listen to port 8080 on available network interfaces.
That may be changed by editing buildout.cfg and re-running buildout.

You've got Plone

Now take a look at your Plone site by visiting the following address in your webbrowser:

http://yourserver:8080

The greeting page will let you create a new site.
For this you need the login credentials printed to your terminal earlier, also available at ~/Plone/zinstance/adminPassword.txt.

If everything is OK, press CTRL-C in the terminal to stop Plone if you're running in debug mode. Use the plonectl stop command if you didn't start in debug mode.

If you have problems, please see the help guidelines [http://plone.org/help].

For automatic start-up when your server boots up, init scripts, etc.
please see the deployment guide.

Installing Plone using buildout on Ubuntu / Debian

Here are quick instructions to install Plone using a pre-installed buildout and the OS-provided
Python interpreter.
This procedure is only useful if you know buildout well enough to
tailor your own buildout configuration.

You need to manage dependencies (Python, libxml, Pillow) yourself.

This will:

	create a default buildout.cfg configuration file and folder structure
around it;

	automatically download and install all packages from pypi.python.org [http://pypi.python.org];

	configure Plone and Zope for you.

	Install virtualenv for python (on Ubuntu):

sudo apt-get install python-virtualenv

	Create a virtualenv where you can install some Python packages
(ZopeSkel, Pillow):

virtualenv plone-virtualenv

	In this virtualenv install ZopeSkel (from the release 2 series):

source plone-virtualenv/bin/activate
easy_install "ZopeSkel<2.99"

	Create Plone buildout project using ZopeSkel:

paster create -t plone4_buildout myplonefolder

	Optionally edit buildout.cfg at this point.
Run buildout (use Python 2.6 for Plone 4.1):

python2.6 bootstrap.py
bin/buildout

More info:

	ZopeSkel

	virtualenv [https://pypi.python.org/pypi/virtualenv]

	Pillow [https://pypi.python.org/pypi/Pillow/]

	lxml [http://lxml.de/]

Installing Plone using RPMs, .dev, ... packages

Not supported by Plone community.

(i.e. you're on your own, and don't say we didn't tell you.)

Microsoft Windows

Installing Plone on Windows

By far the easiest way to install on Windows is to use the binary installer provided on plone.org. This installation is adequate for Python development.
It is very rare to need C language extensions.

If you have needs beyond those met by the Windows Installer, read on.

For Plone 4.1 and later, see these instructions:

	https://docs.google.com/document/d/19-o6yYJWuvw7eyUiLs_b8br4C-Kb8RcyHcQSIf_4Pb4/edit

If you wish to develop Plone on Windows you need to set-up a working MingW
environment (this can be somewhat painful if you aren't used to it)

OSX

Installing Plone using OSX binary installer

This is the recommended method if you want to try Plone for the first time.

Please use the installer from the download page http://plone.org/products/plone/releases.

The binary installer is intended to provide an environment suitable for testing, evaluating, and developing theme and add-on packages.
It will not give you the ability to add or develop components that require a C compiler.
This is very rarely needed.

Installing Plone from source on OS X

Installation via the Unified Installer or buildout is very similar to Unix. However, you will
need to install a command-line build environment. To get a free build kit from Apple, do one of the following:

	Download gcc and command-line tools from
https://developer.apple.com/downloads/. This will require an Apple
developer id.

	Install Xcode from the App Store. After installation, visit the Xcode
app's preference panel to download the command-line tools.

After either of these steps, you immediately should be able to install Plone using the Unified Installer.

Proceed as with Linux.

LibXML2/LibXSLT Versions

If you are installing Plone 4.2+ or 4.1 with Diazo, you will need up-to-date versions of libxml2 and libxslt:

LIBXML2 >= "2.7.8"
LIBXSLT >= "1.1.26"

Ideally, install these via system packages or ports. If that's not possible,
use most current version of the z3c.recipe.staticlxml buildout recipe to build an lxml (Python wrapper) egg with static libxml2 and libxslt components.

Don't worry about this if you're using an installer.

Entering debug mode after installation

When you have Plone installed and want to start
development you need do enter debug mode.

Installer source code

	https://github.com/plone/Installers-UnifiedInstaller

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Installing Plone »

Installing add-on packages using buildout

	Introduction

	Discovering Plone add-ons and other python packages

	Installing add-ons using buildout

	Installing development version of add-on packages

Introduction

Plone uses Buildout [http://www.buildout.org/] for installing add-on packages.
See installation instructions for
how to create a Plone installation suitable for development.

Discovering Plone add-ons and other python packages

The plone.org Products [http://plone.org/products] is a directory
of Plone add-on packages where a lot of add-on packages for Plone are
listed.

A lot more packages can be found in the PyPI (the Python Package
index) [https://pypi.python.org], although most of the packages might
not be Plone specific.

Installing add-ons using buildout

Add-on packages which are uploaded to PyPI [https://pypi.python.org]
or plone.org [http://plone.org/products] as egg can be installed
by buildout.

Edit your buildout.cfg file and add the add-on package to the list
of eggs:

[buildout]
...
eggs =
 ...
 Products.PloneFormGen
 solgema.fullcalendar

Note

The above example works for the buildout created by the unified
installer. If you however have a custom buildout you might need to
add the egg to the eggs list in the [instance] section rather
than adding it in the [buildout] section.

For the changes to take effect you need to re-run buildout from your
console:

bin/buildout

Restart your instance for the changes to take effect:

bin/instance restart

Installing development version of add-on packages

If you need to use the latest development version of an add-on package
you can easily get the source in your development installation using
the buildout extension mr.developer [https://pypi.python.org/pypi/mr.developer].

For managing the sources it is recommended to create a sources.cfg
which you can include in your buildout.

[buildout]
extends = http://plonesource.org/sources.cfg
extensions = mr.developer

auto-checkout =
 Products.PloneFormGen
 solgema.fullcalendar

Adding add-on package names to the auto-checkout list will make
buildout check out the source to the src directory upon next
buildout run.

Note

It is not recommended to use auto-checkout = *, especially when
you extend from a big list of sources, such as the plonesource.org
list.

Note

The auto-checkout option only checks out the source. It is also
required to add the package to the eggs list for getting it
installed, see above.

After creating a sources.cfg you need to make sure that it gets
loaded by the buildout.cfg. This is done by adding it to the
extends list in your buildout.cfg:

[buildout]
extends =
 base.cfg
 versions.cfg
 sources.cfg

As always: after modifying the buildout configuration you need to
rerun buildout and restart your instance:

bin/buildout -N
bin/instance restart

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

Guide to deploying and installing Plone in production

Description

A guide to the Plone deployment stack, including load balancing,
proxy caching,
server preparation, backups, log rotation, and process control.

This guide particularly focuses on
Unix-like [https://en.wikipedia.org/wiki/Unix-like] environments,
though the stack discussion may be useful to everyone.

	Introduction
	The purpose of this guide; its audience and assumptions

	And, what about Windows?

	Audience

	Assumptions

	Security considerations

	Background: the stack
	Load balancing

	Server-side HTTP caching

	Preparing the Server
	Preparing to install Plone

	Starting, stopping and restarting
	Starting and stopping Plone with the server

	Process control with Supervisor

	Cluster restarts

	Logs and log rotation
	Log types and locations

	Client log rotation

	Error alerts

	Database packing
	Setting up packing

	The packing operation

	Regular scheduling of packing operations

	Backing up your Plone deployment
	Introduction

	collective.recipe.backup

	Copying a Plone site
	Introduction

	Prerequisites

	Plone site contents

	Copying and bootstrapping a Plone site to a new computer

	Copying site data in UNIX environment

	Copy local to remote

	Copy BLOB files using rsync

	WSGI
	Introduction

	Plone 4 and WSGI

	Zope Application Server
	Introduction

	Zope control command

	Adding users from command-line (reset admin password)

	Timezone

	Log level

	Creating additional debug instances

	Virtual hosting

	Import and export

	Regular database packing

	Copying a remote site database

	Pack and copy big Data.fs

	Creating a sanitized data drop

	Log rotate

	Guide to Caching
	plone.app.caching documentation

	plone.app.caching

	Varnish 3.x

	Varnish 4.x

	Frontend Webserver
	Apache

	Nginx

	Production
	Automatic Plone (re)starts

	Tutorial: Installing Plone for Production on Ubuntu

	Testing & Tuning Plone
	Testing and debugging

	Performance and tuning

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Introduction

The purpose of this guide; its audience and assumptions

This guide is an overview of how to set up Plone and its supporting software
stack for production purposes on one of the popular Unix work-alike
operating systems.

We’ll cover platform preparation and basic considerations for installation
of Plone itself. We’ll also go into common setups of the other parts of the
deployment stack needed for real-life deployment:

	A general-purpose web server to handle URL rewriting and integration with
other web components;

	Load balancing;

	Server-side caching;

	Backup;

	Log rotation;

	Database packing

We won't cover the details of installation or actual tool setup. Those are
better covered in the Installation and other
Hosting guides.

And, what about Windows?

Production deployment for Windows is typically very different from that on
Unix-like systems. While some parts of the common open-source stack are
available on Windows (Apache, for example), it's more common to integrate
using tools like IIS that are often already in use in the enterprise. If
your shop is committed to a Microsoft stack, this document won't be of much
use to you. However, if you're on a Windows server, but open to using the
(very often superior) open-source alternatives to non-Microsoft application
components, the stack and tools discussion here may be very useful.

Audience

There is one audience for this document: system administrators who wish to
deploy Plone for a production server. We assume that you know how to install
and configure your operating system, including its package manager or port
collection, file system, user permissions, firewalls, backup and logging
mechanisms.

You should be able to use the command-line shell and able to translate
between the file paths and hostnames used in examples and the ones you’ll be
using on your deployed server.

You’ll need root access (or sudo privileges) adequate to install packages,
create users and set up cron jobs.

The instructions below have been tested with clean OS platforms created on
commodity cloud servers.

Assumptions

We’ll be describing base-level production deployments that will meet many,
but not all needs. And we’ll be using the most commonly used and widely
supported tools for the stack. Tools like Apache, Nginx, haproxy and rsync.

You may have other needs (like integration with LDAP or a relational
database) or wish to use other tools (Apache Traffic Server, Varnish, squid
…). That’s fine, and there are many good documents elsewhere in the
plone.org documentation section that cover these needs and tools.

Security considerations

The approaches we describe here are practical for many Internet and Intranet
servers. However, they should be considered a baseline and may not meet your
security needs. Plone can be deployed in chroot jails or OpenSolaris zones
or with much more compartmentalized process and file ownership if your
application requires a greater degree of protection.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Background: the stack

Many integrators arrive at Plone after previously working with PHP
applications. They are used to using Apache with modPHP and an SQL server.
This common application-server software stack is often deployed from the
start on a pre-configured server, and installation of a PHP application may
require little more than unpacking a set of files to a particular point in
the file system.

The Plone application is a different animal. It runs on its own application
server (Zope), and in common installations uses the Zope Object Database
(ZODB) rather than an SQL database. It is nearly always deployed in
conjunction with other tools, like web servers (e.g., Apache or Nginx), load
balancers (like haproxy), and reverse-proxy caches (like varnish or squid).
This is what we’ll be discussing in this guide.

It is actually possible to deploy Plone/Zope as a stand-alone web server. If
you do a simple “standalone” installation of Plone, you will end up with a
working web server answering requests on port 8080 (which may be changed).

[image: Standalone Deployment]
While there are production servers doing just this (typically changing the
listening port from 8080 to 80), it’s uncommon. It’s much more common
to put a general-purpose web server like Apache or Nginx between Plone
and the Internet:

[image: Zope + Web Server]
In this stack, it’s the general-purpose web server that is connected to
well-known Internet ports. Apache or Nginx answers those request and forwards
them to Plone. It does so by proxying the requests.

If Plone/Zope has a built-in web server, why do you need another?

	You may wish to use Zope and Plone as part of a hybrid system with other
best of breed components providing parts of your web site. For example,
Plone is not really meant for the kind of database applications that
require a relational solution. A good, general-purpose web server like
Apache or Nginx serves as a great mechanism for dispatching different
requests to different, best-of-breed components. They’re also great for
quickly serving static resources.

	Even in the simplest installation, it’s usually desirable to do some URL
rewriting to map URLs to data in different ways. This is nearly mandatory
when building a hybrid system.

	Plone does not have built-in SSL support. A general-purpose web server will
have a hardened SSL layer and a mechanism for handling certificates.

	You may wish to solve authentication and logging problems at a shared,
higher level.

[image: Zope + Web Server + Web Apps]
Zope + Web Server + Web Apps

Load balancing

The deployment above may meet your needs for light-traffic sites. Its
principle limitation is that it will make use of only a single processor
and file system to render Plone pages.

The Zope application server allows us to divide the chores of rendering web
pages (very CPU-intensive) from those of maintaining the file-system
database. Further, we may have as many page rendering clients as we wish,
all using a single database server.

The components of this mechanism, Zope Enterprise Objects (ZEO) are:

	ZEO Clients

	Web servers in themselves, which answer requests for pages, gather page
component objects from the database server, render pages and return them
to the requestor.

	ZEO Server

	Handles read/write requests for the object database from ZEO Clients. Not
HTTP servers, and not meant to be visible to the Internet.

[image: ZEO Cluster]
ZEO Cluster

It is typical in a high-demand server situation to deploy as many ZEO clients
as you have CPU cores available. More is not useful (except for a spare,
debug client). ZEO clients are generally CPU/RAM-intensive. The ZEO
server is a heavy disk-system user.

For multiple ZEO clients to be actually useful, you need a load-balancing
front-end to distribute requests among the clients. The load balancer
receives http requests and proxies them among a pool of ZEO clients.

[image: ZEO Cluster with Load Balancer]
ZEO Cluster with Load Balancer

Apache and Nginx have built-in load-management capabilities, which can allow
you to combine those two layers of the stack. A dedicated load balancer
like haproxy [http://haproxy.1wt.eu/] offers better features for
distributing load among clients and for checking and maintaining status.

How many ZEO clients, how much memory?

It's typical to allocate roughly one ZEO client for every processor core you
have available. However, there are lots of trade-offs, and many clients will
eat RAM rapidly. About Instances, Threads and RAM consumption
is a good guide to the issues involved.

Sticky sessions

As a rule of thumb, you'll tend to get better performance if you can direct
requests from the same browser client to the same Zope instance (ZEO client).
That's because the memory cache of the ZEO-client is more likely to be loaded
with information useful for rendering requests from that source. The effect
can be particularly strong for logged-in users.

This is not a firm rule, though. The more memory allocated to ZEO client
caches, the smaller the effect. Also, if a large portion of your traffic is
from search engines, benefits will be negligible. (In extreme cases, it may
even be desirable to direct all your search engine traffic to the same ZEO
client so that their atypical behavior doesn't spoil limited cache memory
with infrequently requested pages.)

Most load balancers have some sort of mechanism for causing traffic from a
single source to stick to a single ZEO client. The simplest schemes use IP
addresses; cookies may also be used.

Connections and queues

A versatile load balancer like haproxy will give you fine-grained control
over the queuing of connections to ZEO client back-end servers. A factor to
take into account is that ZEO clients will always accept connections - even
when all threads are busy. Given that requests take dramatically different
amount of times to render and return, this may result in some clients having
queued connections when other clients are free.

The general solution for this is to set the maximum connections per back-end
ZEO client to roughly the number of threads they serve. For haproxy, this is
the maxconn setting for the listen directive. This is only a rule of thumb.
ZEO clients actually spawn threads as needed to return blobs, and are very
efficient at that. So, how severely you limit connections per client should
depend on your balance of page to blob serves.

Server-side HTTP caching

When a web browser requests and receives a web resource, it silently saves
the page or graphic in a local disk cache in case it may be needed later.
This saves the expense of downloading the resource again.

A server-side HTTP cache does much the same thing. After Plone renders a
resource, which may be a very expensive process, it saves the rendered
resource in case it should be requested again soon.

With a caching reverse proxy in place, our delivery stack looks like:

[image: ZEO Cluster with Server-Side Caching]
ZEO Cluster with Server-Side Caching

As with load balancing, Apache and Nginx have built-in proxy caching
abilities. If those are inadequate, Varnish or Squid are often used.

Nothing is simple about caching. There is always a trade off between currency
of delivered data and the performance of the cache layer. Cache tuning for
truly busy sites requires extensive measurement and experimentation, often
with business decisions about the expense of currency loss vs enhanced
servers.

Caching setup in Plone

In their basic outlines, browser and server-side caching work the same way.
The browser or the server caches resources against the possibility that they
may be needed again soon. But, how does the caching agent make the decision
about how long to store a resource? Or, if it should be stored at all?

Generally, these decisions are made on the basis of caching hints that are
in the HTTP response headers. The web server, or Plone, may indicate that
a resource should not be cached at all, that it may be safely cached for a
certain period of time, or that the caching agent should revalidate the
resource by asking the server if it's changed.

Out of the box, Plone is very conservative. It assumes that currency is
critical, and only tells the caching agent to store resources like icons.
You may tune this up considerably by installing the HTTP Caching add on
via the Plone control panel, then using the * caching* configlet to set
cache rules.

The HTTP Caching add on is shipped with Plone, but not activated. So, you
don't need to add it to your buildout packages. Just activate it and go. By
the way, the package that does the work is plone.app.caching, and that's
how it's often discussed.

Caching settings

Import settings

This is actually the place to start if you're new to cache settings. Set a
basic profile by making a choice from this menu. Then use Change settings
to refine it to your needs.

Global settings:

	Enable caching

	Turn this on, and you'll get some immediate improvement in cache
efficacy -- including browser caches. Tune it up for your particular
needs with the other panes in this configuration panel.

	Enable GZip compression

	GZip compression is one of those rare total wins. Turning it on will
cause Plone to compress most text resources before transmitting them.
All modern browsers know how to uncompress them. You'll save bandwidth
and speed up your effective page delivery for a tiny hit on CPU load.

Why wouldn't you turn on Gzip compression? The best reason is because you
may wish to instead handle this via your web server (nginx/Apache) or
reverse proxy. Threading issues tend to be much better handled by a good
proxy than by Zope/Plone. Also, the same gzip settings can handle
Zope/Plone and other web apps.

Caching Proxies

Think of this as the Varnish/Squid settings page, as it's mainly concerned
with cache purging, which is typically not supported by web server proxy
caches.

Cache purging is when an application server sends a message to a proxy cache
to tell it that a resource needs refreshing. Cache purging is generally only
desirable when you're using more aggressive caching rules. If you are not
setting rules to cache pages and other dynamic content, you don't need to
worry about cache purging.

Caching dynamic resources like pages and trying to purge them on change is
the dark, difficult side of caching. It's safest for items like files and
images; hardest for the kind of complex, composite pages that are Plone's
specialty.

Turn purging off and avoid aggressive caching unless you're prepared to
monitor, experiment and measure.

Purge settings are extremely dependent on your proxy cache setup.

In-memory cache

Here you are offered a simple tradeoff. Memory for speed. Allocate more memory
to the in-memory cache and pages are served faster. Allocate less and they're
rendered more frequently. Just don't cache so much that your server starts
using swap space for Zope processes.

Caching operations / Detailed settings

This is where you attach caching rules to resource types, and refine the
caching rules. In general, stick with one of the profile settings (from
Import settings) unless you're prepared to immerse yourself in caching
detail.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Preparing the Server

Preparing to install Plone

Plone and Zope are generally not available via platform package or port
systems. So, you can’t say “apt-get install plone” to add it to a Debian
server. (There are packages and ports out there, if you search hard enough
to find them. But don’t do it: they’ve generally had a poor record for
maintenance.)

This means that you typically need to build Plone (compiling source code
to binary components) on your target server. Binary installers for Plone
are available for Windows and OS X, but not for Linux and BSD systems. And,
the OS X binary installer isn’t really meant for production use - though
it’s great for theme and add-on development and testing.

A build environment for Plone requires two sets of components:

	The GNU compiler kit and supporting components

	The development versions of system libraries required by Plone.
The libraries themselves are in common use, and often included in standard distributions. But, we need the development header files.

It's generally best to install as many of these components as you can via
platform packages or ports. That way, you'll be able to use your platform's
automated mechanisms to keep these up-to-date, particularly with security
fixes.

System python?

Plone's Unified Installer will install a suitable Python for you. However,
you may wish to use your system's Python if it meets Plone's requirements.
Plone 4.0 and 4.1 require Python 2.6. Plone 4.2+ will work with Python 2.6
or 2.7.

If you choose to use the system Python, you'll want to use virtualenv to
create a virtual Python environment to isolate the Zope/Plone install from
system Python packages. The Unified Installer will automatically do this
for you. If you're not using the Unified Installer, learn to use virtualenv.

Basic build components

All installs will require the basic GNU build and archive tools: gcc, g++,
gmake, gnu tar, gunzip, bunzip2 and patch.

On Debian/Ubuntu systems, this requirement will be taken care of by
installing build-essential. On RPM systems (RedHat, Fedora, CentOS),
you'll need the gcc-c++ (installs most everything needed as a dependency)
and patch RPMs.

On Arch Linux you'll need base-devel (installs most everything needed as
a dependency).

System Python

If you're using your system's Python, you will need to install the Python
development headers so that you'll be able to build new Python components.
On Debian/Ubuntu systems, this is usually the python-dev package. Port
installs will automatically include the required python.h requirement as
part of their build process.

If you're using your system Python, you will not need the readline and
libssl development packages mentioned below. The required libraries should
already be linked to your Python.

System libraries

For any install, the development versions of:

	libssl

	libz

	libjpeg

	readline

	libxml2/libxslt

If you're using the System Python, add:

	build-essential (gcc/make tools)

	python-dev

Without the system Python (Unified Installer builds Python):

build-essential (gcc/make)

Optional libraries

If Plone can find utilities that convert various document formats to text,
it will include them in the site index. To get PDFs and common office
automation formats indexed, add:

	poppler-utils (PDFs)

	wv (office docs)

Development versions are not needed for these.

Platform notes

Debian/Ubuntu

Use apt-get install. The matching package names are:

	build-essential

	libssl-dev

	libz-dev

	libjpeg-dev

	libreadline-dev

	libxml2-dev

	libxslt-dev

	python-dev

Fedora/CentOS

Using yum install:

gcc-c++
patch
openssl-devel
libjpeg-devel
libxslt-devel
readline-devel
make
which

OpenSUSE

Using zypper in

	gcc-c++

	make

	readline-devel

	libjpeg-devel

	zlib-devel

	patch

	openssl-devel

	expat-devel

	man

--build-python will be needed as the system Python 2.7 is missing many
standard modules.

Arch Linux

Using pacman -S

	base-devel

	libxml2

	libxslt

	libjpeg-turbo

	openssl

OS X

Installing XCode and activating the optional command-line utilities will
give you the basic GNU tools environment you need to install Plone with the
Unified Installer. You may also use MacPorts (the BSD ports mechanism,
tailored to OS X) to install libjpeg, libxslt and readline. If you do,
remember to keep your ports up-to-date, as Apple's updates won't do it
for you.

Creating a Plone user

While testing or developing for Plone, you may have just used an installation
in a home directory, owned by yourself. That is not suitable for a production
environment. Plone's security record is generally excellent, however there
have been - and probably will be again in the future - vulnerabilities that
allow an attacker to execute arbitrary commands with the privileges of the
process owner. To reduce this kind of risk, Plone - and all other processes
that allow Internet connections - should be run with user identities that
have the minimum privileges necessary to maintain their data and write logs.

In a Unix-workalike environment, the most common way of accomplishing this
is to create a special user identity under which you will run Plone/Zope.
That user identity should ideally have no shell, no login rights, and write
permissions adequate only to change files in its ./var directory.

The ideal is hard to achieve, but it's a good start to create an unprivileged
"plone" user, then use "sudo -u plone command" to install Plone and run
buildout. This is basically what the Unified Installer will do for you if
you run its install program via sudo. The installer uses root privileges to
create a "plone" user (if one doesn't exist), then drops them before running
buildout.

Don't run buildout as root!

Don't use bare "sudo" or a root login to run buildout. Buildout fetches
components from the Python Package Index and other repositories. As part
of package installation, it necessarily executes code in the setup.py
file of each package.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Starting, stopping and restarting

If you're using a stand-alone Zope/Plone installation (not a ZEO cluster),
starting and stopping Plone is easy. A production ZEO cluster deployment adds
some complexity because you'll now be controlling several process: a ZEO
server and several ZEO clients.

If you check the "bin" directory of your buildout after building a cluster,
you'll find control commands for the server and each client. They're typically
named zeoserver, client1, client2, client#. You can do a quick start with the
command sequence:

cd /var/db/your_plone_build
sudo -u plone_daemon bin/zeoserver start
sudo -u plone_daemon bin/client1 start
sudo -u plone_daemon bin/client2 start
...

If you've set all this up with the Unified Installer, you'll have a
convenience controller script named "plonectl" that will start all your
components with one command:

cd /var/db/your_plone_build
sudo -u plone_daemon bin/plonectl start

Each "start" command will run the program in "daemon" mode: after a few
startup messages, the program will disconnect from the console and run in
the background.

The daemon mode start will write a process ID (pid) file in your buildout's
"var" directory; that pid may be used to control the background process.
It's automatically used by "stop" and "restart" commands.

Starting and stopping Plone with the server

You can start and stop Plone with your server by adding an init.d (Linux
and other sys v heritage systems) or rc.d (BSD heritage) script that accepts
start and stop commands.

The Unified Installer has an init_scripts directory that contains sample
initialization/stop scripts for several platforms. If you didn't use that
installer, you may find the scripts on
github [https://github.com/plone/Installers-UnifiedInstaller/blob/master/init_scripts].

Process control with Supervisor

A much better alternative to custom init scripts is to use a process-control
system like Supervisor [http://supervisord.org/]. Supervisor is well-known
by the Plone community, and you should have no trouble getting community
support for it. It's available as a package or port on most Linux and BSD
systems (look for supervisor, supervisord or supervisor-python). Installing
the port or package will typically activate supervisor. You then just add
the Zope/Plone commands to the supervisor configuration file.

Process-control system's like supervisor typically require the controlled
application to run in foreground or console mode. Don't confuse this with
the Zope/Plone "fg" command, which runs the application in debug mode (which
is very slow). Instead, use "console" for clients. Use "fg" for the
zeoserver; it doesn't have the "console" command, but its performance is
unhindered.

Here's a sample program-configuration stanza for supervisor, controlling
both a ZEO server and client:

[program:plone_zeoserver]
command=/var/db/plone/zeocluster/bin/zeoserver fg
user=plone_daemon
directory=/var/db/plone/zeocluster
stopwaitsecs=60

[program:plone41_client1]
command=/var/db/plone41/zeocluster/bin/client1 console
user=plone_daemon
directory=/var/db/plone41/zeocluster
stopwaitsecs=60

Note the "stopwaitsecs" setting. When trying to stop a program, supervisor
will ordinarily wait 10 seconds before trying aggressive measures to
terminate the process. Since it's entirely possible for a ZEO client to
take longer than this to stop gracefully, we increase the grace period.

When running a ZEO cluster through a process-control system such as
supervisor, you should always use the system's own control mechanisms
(supervisorctl for supervisor) to start, stop, and status-check cluster
components.

Cluster restarts

Using multiple ZEO clients and a load balancer makes it possible to eliminate
downtime due to ZEO client restarts. There are many reasons why you might
need to restart clients, the most common being that you have added or updated
an add-on product. (You should, of course, have tested the new or updated
package on a staging server.)

The basic procedure is simple: just restart your clients one at a time with a
pause between each restart. This is usually scripted.

Load balancers, however, may raise issues. If your load balancer does not
automatically handle temporary node downtime, you'll need to add to your
client restart recipe a mechanism to mark clients as in down or maintenance
mode, then mark them "up" again after a delay.

If your load balancer does handle client downtime, you may still need to
make sure that it doesn't decide the client is "up" too early. Zope instances
have a "fast listen" mode that causes them to accept HTTP requests very early
in the startup process -- many seconds before they can actually furnish a
response. This may lead your load balancer to diagnose the client as "up"
and include it in the cluster. This can lead to some very slow responses.
To improve the situation, turn off the "fast listen" mode in your client
setup:

[client1]
recipe = plone.recipe.zope2instance
...
http-fast-listen = off
...

If you are unable to tolerate slow responses during restarts, even this may
not be good enough. Even after a Zope client is able to respond to requests,
its first few page renderings will be slow while client database caches are
primed. When speed sensitivity is this important, you'll want to add to your
restart script a command-line request (via wget or curl) for a few sample
pages. Do this after client restart and before marking the client "up" in
the cluster. This is not commonly required.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Logs and log rotation

Plone and Zope maintain a variety of log files. As with all log files, you
need to rotate your logs or your server will die from lack of storage. Log
rotation is a process of maintaining a set of historical log files while
periodically starting the current log file anew.

Log types and locations

The buildout recipes that set up ZEO server and client components allow you
to set the names and location of your log files. We'll describe below the
common names and locations. If this doesn't match your situation, check your
buildout's zeoserver and zope2instance sections.

ZEO server log

A ZEO server only maintains one log file, which records starts, stops and
client connections. Unless you are having difficulties with ZEO client
connections, this file is uninformative. It also typically grows very
slowly - so slowly that you may never need to rotate it.

The ZEO server log for a cluster will typically be found under your buildout
directory at var/zeoserver/zeoserver.log.

Client logs

Client logs are much more interesting and grow more rapidly. There are two
kinds of client logs, and each of your clients will maintain both:

Access logs

A record of HTTP, WebDAV, and - if it's turned on - ftp accesses to the
client. This resembles traditional web-server log files. Typical location
of a client's access log is var/client#/Z2.log.

Event logs

Startup, shutdown and error messages. Event logs need attention so that
errors are quickly discovered. Typical location of a client's event log
is var/client#/event.log.

Log levels

You may set the verbosity level of access and event logs via the zope2instance
sections for your clients. This isn't very useful for event logs, but can be
very useful for access logs. The default verbosity level for access
logs - WARN - creates an entry for every HTTP access. If you are recording
HTTP accesses via your proxy server, you may change the access logging level
to "ERROR" and dramatically slow the rate at which your access logs grow:

[client1]
recipe = plone.recipe.zope2instance
...
z2-log-level = ERROR
...

Don't turn down the access log level until you've had a chance to tune up
your proxy cache. Seeing which requests make it through to the ZEO client
is very useful information when checking caching and load balancing.

Client log rotation

The basic option here is between using the ZEO client log rotation mechanisms
built into Zope and using external mechanisms - such as the log-rotation
facilities available on your server.

Plone 4.2.2+

Plone 4.2.2+ allows you to set a simple size-based mechanism for client log
rotation.

The mechanism actually is built into Zope 2.12+ (used in Plone 4.0+), but
there was no easy way to use it in a buildout until release 4.2.5 of
plone.recipe.zope2instance. That recipe version ships with Plone 4.2.2+.
We'll describe later a not-as easy mechanism for earlier 4.x series releases
of Plone.

For Plone 4.2.2+, just add configuration settings like these to your
buildout's zope2instance sections:

[client1]
recipe = plone.recipe.zope2instance
...
event-log-max-size = 5 MB
event-log-old-files = 5
access-log-max-size = 20 MB
access-log-old-files = 10

This will maintain five generations of event logs of maximum five megabytes
in size and 10 generations of 20 megabyte access logs.

For earlier versions of Plone in the 4.x series, you may use a custom log
setup command to pass parameters to Zope:

[client1]
recipe = plone.recipe.zope2instance
...
event-log-custom =
 <logfile>
 max-size = 5mb
 old-files 5
 </logfile>
access-log-custom =
 <logfile>
 max-size = 20mb
 old-files 10
 </logfile>

Other log rotation mechanisms

Unix-ish systems have several log rotation mechanisms available. Two common
ones are newsyslog and logrotate. Both are well-documented. The
critical thing you need to know for each is how to signal Zope that a log
rotation has occurred, forcing it to reopen the log file. Zope will do this
if you send the client process a USR2 signal.

For example, with logrotate, you can rotate a client's logs with a
configuration like:

rotate logs for client #2
/var/db/plone4/zeocluster/var/client2/Z2.log
/var/db/plone4/zeocluster/var/client2/event.log {
 rotate 5
 weekly
 sharedscripts
 postrotate
 kill -USR2 `cat /var/db/plone4/zeocluster/var/client2/client2.pid`
 endscript
}

Error alerts

Zope can email access log error messages. As with other logging instructions,
this is done with an addition to client zope2instance sections of your
buildout:

[client1]
recipe = plone.recipe.zope2instance
...
mailinglogger =
 <mailing-logger>
 flood-level 10
 level error
 smtp-server localhost
 from errors@yourdomain.com
 to errors@yourdomain.com
 subject [My domain error] [%(hostname)s] %(line)s
 </mailing-logger>

For complete detail on configuration, see the
mailinglogger documentation [http://packages.python.org/mailinglogger/mailinglogger.html].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Database packing

Packing is a vital regular maintenance procedure

The Plone database does not automatically prune deleted content.
You must periodically pack the database to reclaim space.

Zope's object database does not immediately remove objects when they are
deleted. Instead, they are just marked inactive. This has advantages: it
supplies a knowledgeable administrator with the ability to undo transactions
on an emergency basis. However, this means that the disk space consumed by
your object database will grow with every transaction.

Packing the database reclaims the space previously consumed by deleted
objects. You must periodically pack your database, or it will eventually
consume all available disk space. Fortunately, packing is an easy and
reliable operation. It also may be done while the system is live.

Setting up packing

On a development or testing installation, packing will be an infrequent
need. You may initiate a packing operation via the Zope Management Interface
Control Panel. It will allow you to set the number of days of transactions
you wish to keep in the undo stack.

On a production system, you should pack the database via a command-line
utility: bin/zeopack in your buildout directory.

zeopack is installed automatically by the plone.recipe.zeoserver recipe
that generates the zeoserver (database server component).

You may set packing options for zeopack by setting attributes in the
zeoserver part of your buildout. For example:

[zeoserver]
recipe = plone.recipe.zeoserver
...
pack-days = 3

Will (after buildout is run), cause bin/zeopack to conserve three days of
undo history during the pack operation.

Other options include:

pack-gc

Can be set to false to disable garbage collection as part of the pack.
Defaults to true.

pack-keep-old

Can be set to false to disable the creation of *.fs.old files before
the pack is run. Defaults to true.

pack-user

If the ZEO server uses authentication, this is the username used by the
zeopack script to connect to the ZEO server.

pack-password

If the ZEO server uses authentication, this is the password used by the
zeopack script to connect to the ZEO server.

The packing operation

Expect the packing operation to be time-consuming and for the time to grow on
a linear basis with the size of your object database.

Disk-space considerations

The packing operation will (unless you force this off) copy the existing
database before it begins packing. This means that a packing operation will
consume up-to twice the space currently occupied by your object database.
(Pre-existing .old files are overwritten, so at least it doesn't get worse.)

Regular scheduling of packing operations

Database packing is typically run as an automated (cron) job. The cron job
may be set up in the system cron table, or in the Plone users.

Disk packing is an extremely disk-intensive operation. It is best to schedule
it to occur when your monitoring indicates that disk usage is usually low.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Backing up your Plone deployment

Description

Strategies for backing up operating Plone installations.

	Introduction
	Objects in motion

	Where's my data?

	collective.recipe.backup
	Operation

	Incremental backups

A guide to determining what to back up and how to back it up and restore it
safely.

Introduction

The key rules of backing up a working system are probably:

	Back up everything

	Maintain multiple generations of backup

	Test restoring your backups

Warning

This guide assumes that you are already doing this for your system as a
whole, and will only cover the considerations specific to Plone. When we
say we are assuming you're already doing this for the system as a whole,
what we mean is that your system backup mechanisms - rsync, bakula,
whatever - are already backing up the directories into which you've
installed Plone.

So, your buildout and buildout caches are already backed up, and you've tested
the restore process. So, your remaining consideration is making sure that
Plone's database files are adequately backed up and recoverable.

Objects in motion

Objects in motion tend to remain in motion. Objects that are in motion are
difficult or impossible to back up accurately.

Translation: Plone is a long-lived process that is constantly changing its
content database. The largest of these files, the Data.fs filestorage which
contains everything except Binary Large OBjects (BLOBs), is always open for
writing. The BLOB storage, a potentially very complex file hierarchy, is
constantly changing and must be referentially synchronized to the filestorage.

This means that most system backup schemes are incapable of making useful
backups of the content database while it's in use. We assume you don't want
to stop your Plone site just to backup, so you need to add procedures to
make sure you have useful backups of Plone's data. (We assume that you know
that the same thing is true of your relational database storage. If not, get
to studying!)

Where's my data?

Your Plone instance installation will contain a ./var directory (in the same
directory as buildout.cfg) that contains the frequently changing data files
for the instance. Much of what's in ./var, though, is not your actual content
database. Rather, it's log, process id, and socket files.

The directories that actually contain content data are:

./var/filestorage

This is where Zope Object Database filestorage is maintained. Unless
you've multiple storages or have changed the name, the key file is
Data.fs. It's typically a large file and contains everything except
BLOBS.

The other files in filestorage, with extensions like .index, .lock,
.old, .tmp are ephemeral, and will be recreated by Zope if they're absent.

./var/blobstorage

This directory contains a very deeply nested directory hierarchy that,
in turn, contains the BLOBs of your database: PDFs, image files, office
automation files and such.

The key thing to know about filestorage and blobstorage is that they are
maintained synchronously. The filestorage has references to BLOBs in the
blobstorage. If the two storages are not perfectly synchronized, you'll
get errors.

collective.recipe.backup

collective.recipe.backup [https://pypi.python.org/pypi/collective.recipe.backup]
is a well-maintained and well-supported recipe for solving the "objects in
motion" problem for a live Plone database. It makes it easy to both back up
and restore the object database. The recipe is basically a sophisticated
wrapper around repozo, a Zope database backup tool, and rsync, the
common file synchronization tool.

Note

Big thanks to Reinout van Rees, Maurits van Rees and community helpers for
creating and maintaining collective.recipe.backup. We all owe them drinks
of their choice.

If you're using any of Plone's installation kits, collective.recipe.backup is
included in your install. If not, you may add it to your buildout by adding
a backup part:

[buildout]
parts =
 ...
 backup
 ...

[backup]
recipe = collective.recipe.backup

There are several useful option settings for the recipe, all set by adding
configuration information. All are documented on the PyPI page [https://pypi.python.org/pypi/collective.recipe.backup]. Perhaps the most
useful is the location option, which sets the destination for backup
files:

[backup]
recipe = collective.recipe.backup
location = /path/to/reliably/attached/storage/filestorage
blobbackuplocation = /path/to/reliably/attached/storage/blobstorage

If this is unspecified, the backup destination is the buildout var directory.
The backup destination, though, may be any reliably attached location -
including another partition, drive or network storage.

Operation

Once you've run buildout, you'll have bin/backup and bin/restore
scripts in your buildout. Since all options are set via buildout, there are
few command-line options, and operation is generally as simple as using the
bare commands. bin/restore will accept a date-time argument if you're
keeping multiple backups. See the docs for details.

Backup operations may be run without stopping Plone. Restore operations
require that you stop Plone, then restart after the restore is complete.

bin/backup is commonly included in a cron table for regular operation.
Make sure you test backup/restore before relying on it.

Incremental backups

collective.recipe.backup offers both incremental and full backup and will
maintain multiple generations of backups. Tune these to meet your needs.

When incremental backup is enabled, doing a database packing operation will
automatically cause the next backup to be a full backup.

If your backup continuity needs are extreme, your incremental backup may be
equally extreme. There are Plone installations where incremental backups
are run every few minutes.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Copying a Plone site

Description

Quick instructions on how to create a copy of a Plone installation.

	Introduction

	Prerequisites

	Plone site contents

	Copying and bootstrapping a Plone site to a new computer

	Copying site data in UNIX environment

	Copy local to remote

	Copy BLOB files using rsync

Introduction

These instructions tell you the basics of creating a duplicate of Plone site
for testing or back-up

Prerequisites

	Ability to use file system manager to copy files from/to the remote server

	Ability to use the command line

Plone site contents

In order to copy a Plone site the following must be copied

	buildout.cfg - defines your site package configuration

	src folder - all add-ons you have developed yourself

	var/filestorage/Data.fs - ZODB database of your site

	var/blobstorage folder which contains file-like objects of ZODB database (BLOBs)

Note

BLOB storage is supported from Plone 4.x onwards. Older Plone installations do not
have this folder.

Other folders (eggs, downloads, parts) etc. are generated by buildout command and may
be left empty.

Copying and bootstrapping a Plone site to a new computer

	Create a new site in the destination using Plone installer and make sure you can log-in to the site with temporary admin account

	Copy var/filestorage/Data.fs from the old system to the new system - note that admin password is stored in Data.fs and the password given during the creation of a new site is no longer effective after Data.fs copy

	Copy blobs from the old system to the new system by copying var/blobstorage/ folder

	Copy src/ folder from the old system if you have any custom development code there

	Copy buildout.cfg and other .cfg files

	
	Rerun buildout in order to automatically re-download and configure all Python packages needed to run the site

	
	python bootstrap.py to make the buildout use new local Python interpreter

	Then bin/buildout to regenerate parts/ folder

Copying site data in UNIX environment

Below are example UNIX commands to copy a Plone site data from a computer to
another over SCP/SSH connection. The actual username and folder locations
depend on your system configuration.

Note: a copy of the Plone site configuration must already exist on the target computer.
These instructions are only for copying / back-uping site data.

This operation can be perfomed on a running system - Data.fs is append only file and you
will simply lose transactions which happened during the copying of the end of the file.

Copy local to remote

Run this command in your buildout Plone installation.

Copy Data.fs database:

scp -C -o CompressionLevel=9 var/filestorage/Data.fs plone@server.com:/srv/plone/site/var/filestorage

Copy BLOB files using rsync

BLOB files contain file and image data uploaded to your site. Since the actual
content of file rarely changes after upload, rsync can synchronize only changed
files using -a (archive) flag.

rsync -av --compress-level=9 var/blobstorage plone@server.com:/srv/plone/site/var

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

WSGI

	Introduction

	Plone 4 and WSGI

Introduction

WSGI is Python standard for hosting Python web services.

	https://wsgi.readthedocs.org/en/latest/

	http://repoze.org/

Plone 4 and WSGI

	http://comments.gmane.org/gmane.comp.web.zope.plone.devel/23886

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Zope Application Server

Description

Plone is usually run via the Zope application server.
This document covers control and configuration of parts
of the application server.

	Introduction

	Zope control command

	Adding users from command-line (reset admin password)

	Timezone

	Log level

	Creating additional debug instances

	Virtual hosting
	Suppressing virtual host monster

	Import and export

	Regular database packing

	Copying a remote site database

	Pack and copy big Data.fs

	Creating a sanitized data drop

	Log rotate
	Basic Log rotation for buildout users

	Using the unix tool ''logrotate''

	Log rotate and chroot

	Log rotate generation via buildout using UNIX logrotate command

	Log rotate on Windows

	Email notifications for errors

	Adding multiple file storage mount points

Introduction

This page contains instructions how to configure Zope application server.

Zope control command

The command for Zope tasks is bin/instance in buildout-based Plones
(depending on how the part(s) for the Zope instance(s) was named in the
buildout configuration file; here, it's instance).

List available commands:

bin/instance help

For older Plone releases, the command is zopectl.

If you have installed a ZEO cluster, you may have multiple instances, typically named client1, client2
Substitute client# for instance below.
The zeoserver part must be running before you may directly use a client command:

bin/zeoserver start
bin/client1 help

Adding users from command-line (reset admin password)

You need to do this when you forget the admin password or the database is
damaged.

Add user with Zope Manager permissions:

bin/instance stop # stop the site first
bin/instance adduser <user_name> <user_password>
bin/instance start

You need to stop the site first.

You also cannot override an existing admin user, so you probably want to
add admin2.

More info

	https://plone.org/documentation/faq/locked-out

Timezone

Add to the [instance] part in buildout.cfg:

environment-vars =
 TZ Europe/Helsinki

Log level

The default log level in Zope is INFO. This causes a lot of
logging that is usually not needed.

To reduce the size of log files and improve performance, add
the following to the [instance] part (the part(s) that specify
your Zope instances) in buildout.cfg:

event-log-level = WARN
z2-log-level = CRITICAL

Creating additional debug instances

You might want to keep your production buildout.cfg and development
configuration
in sync automatically as possible.

A good idea is to use the same buildout.cfg for every Plone environment.
For conditional things, such as turning debug mode on, extend the buildout
sections, which in turn create scripts to launch additional Zope clients in
the bin/ folder:

[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
user = admin:x
http-address = 8080
debug-mode = off
verbose-security = off

...

environment=
 PTS_LANGUAGES=en fi

#
Create a launcher script which will start one Zope instance in debug mode
#
[debug-instance]
Extend the main production instance
<= instance

Here override specific settings to make the instance run in debug mode
debug-mode = on
verbose-security = on
event-log-level = DEBUG

And now you can start your development Zope as:

bin/debug-instance fg

And your main Zope instance stays in production mode:

bin/instance

Note

Starting Zope with the fg command forces it into debug mode,
but does not change the log level.

Virtual hosting

Zope has a component called Virtual Host Monster
which does the virtual host mapping inside Zope. More information can be found in the zope book [http://docs.zope.org/zope2/zope2book/VirtualHosting.html]

Suppressing virtual host monster

If you ever mess up your virtual hosting rules so that Zope locks you out
of the management interface,
you can add _SUPPRESS_ACCESSRULE to the URL to disable
VirtualHostMonster.

Import and export

Zope application server allows copying parts of the tree structure via
import/export feature.
The exported file is basically a Python pickle containing the chosen node
and all child nodes.

Importable .zexp files must be placed on /parts/instance/import
buildout folder on the server.
If you are using clustered ZEO set-up, always run imports through a
specific front-end instance
by using direct port access. Note that parts folder structure is pruned
on each buildout run.

When files are placed on the server to correct folder,
the Import/Export tab in the ZMI will pick them
up in the selection drop down. You do not need to restart Zope.

More information

	http://quintagroup.com/services/support/tutorials/import-export-plone/

Regular database packing

The append-only nature of the ZODB
makes the database grow continuously even
if you only edit old information and don't add any new content.
To make sure your server's hard disk does not fill up,
you need to pack the ZODB automatically and regularly.

More info

	http://stackoverflow.com/questions/5300886/what-is-the-suggested-way-to-cron-automate-zodb-packs-for-a-production-plone-ins/

Copying a remote site database

Below is a UNIX shell script to copy a remote Plone site(s) database to
your local computer. This is useful for synchronizing the
development copy of a site from a live server.

copy-plone-site.sh

#!/bin/sh
#
Copies a Plone site data from a remote computer to a local computer
#
Copies
#
- Data.fs
#
- blobstorage
#
Standard var/ folder structure is assumed in the destination
and the source
#

if [$# -ne 2] ; then
cat <<EOF
$0
Copy a remote Plone site database to local computer over SSH
Error in $0 - Invalid Argument Count
Syntax: $0 [SSH-source to buildout folder] [buildout target folder]
Example: ./copy-plone-site.sh yourserver.com:/srv/plone/mysite .
EOF
exit 64 # Command line usage error
fi

SOURCE=$1
TARGET=$2

STATUS=`$TARGET/bin/instance status`

if ["$STATUS" != "daemon manager not running"] ; then
 echo "Please stop your Plone site first"
 exit 1
fi

rsync -av --progress --compress-level=9 "$SOURCE"/var/filestorage/Data.fs "$TARGET"/var/filestorage

Copy blobstorage on rsync pass
(We don't need compression for blobs as they most likely are compressed images already)
rsync -av --progress "$SOURCE"/var/blobstorage "$TARGET"/var/

Pack and copy big Data.fs

Pack Data.fs using the pbzip2 [http://compression.ca/pbzip2/],
efficient multicore bzip2 compressor, before copying:

Attach to a screen or create new one if not exist so that
the packing process is not interrupted even if you lose a terminal
screen -x

The command won't abort in the middle of the run if terminal lost
cd /srv/plone/yoursite/zeocluster/var/filestorage
tar -c --ignore-failed-read Data.fs | pbzip2 -c > /tmp/Data.fs.tar.bz2

Alternative version using standard bzip2
tar -c --ignore-failed-read -jf /tmp/Data.fs.tar.bzip2 Data.fs

Then copy to your own computer:

scp unixuser@server.com:/tmp/Data.fs.tar.bz2 .

... or using rsync which can resume:

rsync -av --progress --inplace --partial user@server.com:/tmp/Data.fs.tar.bz2 .

Creating a sanitized data drop

A sanitized data drop is a Plone site where:

	all user passwords have been reset to one known one;

	all history information is deleted (packed), so that it does not contain
anything sensitive;

	other possible sensitive data has been removed.

It should safe to give a sanitized copy to a third party.

Below is a sample script which will clean a Plone site in-place.

Note

Because sensitive data varies depending on your site this script is just
an example.

How to use:

	Create a temporary copy of your Plone site on your server, running on a
different port.

	Run the cleaner by entering the URL. It is useful to run the temporary
copy in foreground to follow the progress.

	Give the sanitized copy away.

This script has two options for purging data:

	Safe purge using the Plone API (slow, calls all event handlers).

	Unsafe purge by directly pruning data, rebuilding the catalog without
triggering the event handlers.

The sample clean.py:

""" Pack Plone database size and clean sensitive data.
 This makes output ideal as a developent drop.

 It also resets all kinds of users password to "admin".

 Limitations:

 1) Assumes only one site per Data.fs

 TODO: Remove users unless they are whitelisted.

"""

import logging
import transaction

logger = logging.getLogger("cleaner")

Folders which entries are cleared
DELETE_POINTS = """
intranet/mydata

"""
Save these folder entries as sampple
WHITELIST = """
intranet/mydata/sample-page
"""

All users will receive this new password
PASSWORD="123123"

def is_white_listed(path):
 """
 """
 paths = [s.strip() for s in WHITELIST.split("\n") if s.strip() != ""]

 if path in paths:
 return True
 return False

def purge(site):
 """
 Purge the site using standard Plone deleting mechanism (slow)
 """
 i = 0
 for dp in DELETE_POINTS.split("\n"):

 dp = dp.string()
 if dp == "":
 continue

 folder = site.unrestrictedTraverse(dp)

 for id in folder.objectIds():
 full_path = dp + "/" + id
 if not is_white_listed(full_path):
 logger.info("Deleting path:" + full_path)
 try:
 folder.manage_delObjects([id])
 except Exception, e:
 # Bad delete handling code - e.g. catalog indexes b0rk out
 logger.error("*** COULD NOT DELETE ***")
 logger.exception(e)
 i += 1
 if i % 100 == 0:
 transaction.commit()

def purge_harder(site):
 """
 Purge using forced delete and then catalog rebuild.

 Might be faster if a lot of content.
 """
 i = 0

 logger.info("Kill it with fire")
 for dp in DELETE_POINTS.split("\n"):

 if dp.strip() == "":
 continue
 folder = site.unrestrictedTraverse(dp)

 for id in folder.objectIds():
 full_path = dp + "/" + id
 if not is_white_listed(full_path):
 logger.info("Hard deleting path:" + full_path)
 # http://collective-docs.readthedocs.org/en/latest/content/deleting.html#fail-safe-deleting
 folder._delObject(id, suppress_events=True)

 i += 1
 if i % 100 == 0:
 transaction.commit()

 site.portal_catalog.clearFindAndRebuild()

def pack(app):
 """
 @param app Zope application server root
 """
 logger.info("Packing database")
 cpanel = app.unrestrictedTraverse('/Control_Panel')
 cpanel.manage_pack(days=0, REQUEST=None)

def change_zope_passwords(app):
 """
 """
 logger.info("Changing Zope passwords")
 # Products.PluggableAuthService.plugins.ZODBUserManager
 users = app.acl_users.users
 for id in users.listUserIds():
 users.updateUserPassword(id, PASSWORD)

def change_site_passwords(site):
 """
 """
 logger.info("Changing Plone instance passwords")
 # Products.PlonePAS.plugins.ufactory
 users = site.acl_users.source_users
 for id in users.getUserIds():
 users.doChangeUser(id, PASSWORD)

def change_membrane_password(site):
 """
 Reset membrane passwords (if membrane installed)
 """

 if not "membrane_users" in site.acl_users.objectIds():
 return

 logger.info("Changing membrane passwords")
 # Products.PlonePAS.plugins.ufactory
 users = site.acl_users.membrane_users
 for id in users.getUserNames():
 try:
 users.doChangeUser(id, PASSWORD)
 except:
 # XXX: We should actually delete membrane users before content folders
 # or we will break here
 pass

class Cleaner(object):
 """
 Clean the current Plone site for sensitive data.

 Usage::

 http://localhost:8080/site/@@create-sanitized-copy

 or::

 http://localhost:8080/site/@@create-sanitized-copy?pack=false

 """

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 """
 """
 app = self.context.restrictedTraverse('/') # Zope application server root
 site = self.context.portal_url.getPortalObject()

 purge_harder(site)
 change_zope_passwords(app)
 change_site_passwords(site)
 #change_membrane_password(site)

 if self.request.form.get("pack", None) != "false":
 pack(app)

 # Obligatory Die Hard quote
 return "Yippikayee m%&€/ f/€%&/€%&/ Remember to login again with new password."

Example view registration in ZCML requiring admin privileges to run the
cleaner:

<browser:page
 for="Products.CMFCore.interfaces.ISiteRoot"
 name="create-sanitized-copy"
 class=".clean.Cleaner"
 permission="cmf.ManagePortal"
/>

Log rotate

Log rotation prevents log files from growing indefinitely by creating a new
file for a certain timespan and dropping old files.

Basic Log rotation for buildout users

If you are using buildout and the plone.recipe.zope2instance (>= 4.2.5) to create your
zope installation, two parameters are available to enable log rotation.
For example:

	event-log-max-size = 10mb

	event-log-old-files = 3

This will rotate the event log when it reaches 10mb in size. It will retain a
maximum of 3 files. Similar directives are also available for the access log.

	access-log-max-size = 100mb

	access-log-old-files = 10

Using the unix tool ''logrotate''

You need to rotate Zope access and error logs, plus possible front-end web
server logs. The latter is usually taken care of your operating system.

To set-up log rotation for Plone:

	Install logrotate on the system (if you don't already have one).

	You need to know the effective UNIX user as which Plone processes run.

	Edit log rotation configuration files to include Plone log directories.

	Do a test run.

To add a log rotation configuration file for Plone add a file
/etc/logrotate.d/yoursite as root.

Note

This recipe applies only for single-process Zope installs. If you use
ZEO clustering you need to do this little bit differently.

The file contains:

This is the path + selector for the log files
/srv/plone/yoursite/Plone/zinstance/var/log/instance*.log {
 daily
 missingok
 # How many days to keep logs
 # In our cases 60 days
 rotate 60
 compress
 delaycompress
 notifempty
 # File owner and permission for rotated files
 # For additional safety this can be a different
 # user so your Plone UNIX user cannot
 # delete logs
 create 640 root root

 # This signal will tell Zope to open a new file-system inode for the log file
 # so it doesn't keep reserving the old log file handle for evenif the file is deleted
 postrotate
 [! -f /srv/plone/yoursite/Plone/zinstance/var/instance.pid] || kill -USR2 `cat /srv/plone/yoursite/Plone/zinstance/var/instance.pid`
 endscript
}

Then do a test run of logrotate, as root:

-f = force rotate
-d = debug mode
logrotate -f -d /etc/logrotate.conf

And if you want to see the results right away:

-f = force rotate
logrotate -f /etc/logrotate.conf

In normal production, logrotate is added to your operating system crontab
for daily runs automatically.

More info:

	http://linuxers.org/howto/howto-use-logrotate-manage-log-files

	http://docs.zope.org/zope2/zope2book/MaintainingZope.html

	http://serverfault.com/questions/57993/how-to-use-wildcards-within-logrotate-configuration-files

Log rotate and chroot

chroot'ed environments don't usually get their own cron.
In this case you can trigger the log rotate from the parent system.

Add in the parent /etc/cron.daily/yourchrootname-logrotate

#!/bin/sh
schroot -c yoursitenet -u root -r logrotate /etc/logrotate.conf

Log rotate generation via buildout using UNIX logrotate command

buildout.cfg:

[logrotate]
recipe = collective.recipe.template
input = ${buildout:directory}/templates/logrotate.conf
output = ${buildout:directory}/etc/logrotate.conf

templates/logrotate.conf:

rotate 4
weekly
create
compress
delaycompress
missingok

${buildout:directory}/var/log/instance1.log ${buildout:directory}/var/log/instance1-Z2.log {
 sharedscripts
 postrotate
 /bin/kill -USR2 $(cat ${buildout:directory}/var/instance1.pid)
 endscript
}

${buildout:directory}/var/log/instance2.log ${buildout:directory}/var/log/instance2-Z2.log {
 sharedscripts
 postrotate
 /bin/kill -USR2 $(cat ${buildout:directory}/var/instance2.pid)
 endscript
}

More info:

	http://stackoverflow.com/a/9437677/315168

Log rotate on Windows

Use iw.rotatezlogs

	http://stackoverflow.com/a/9434150/315168

Email notifications for errors

Please see:

	http://stackoverflow.com/questions/5993334/error-notification-on-plone-4

Adding multiple file storage mount points

	https://pypi.python.org/pypi/collective.recipe.filestorage

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Guide to Caching

Description

Caching strategies to improve performance.

This guide particularly focuses on
Unix-like [https://en.wikipedia.org/wiki/Unix-like] environments,
though the stack discussion may be useful to everyone.

Any dynamically generated website with a non-trivial number of visitors, will benefit from caching, where resources (like text, images, CSS, javascripts) that are used for multiple visitors are stored in a way that is really fast to retrieve, so that the (often complicated) back-end server doesn't have to generate those resources for every visitor.

Plone is no exception to that.
Caching in Plone is a two-step process for most larger sites.
There is an add-on called plone.app.caching that is shipped with Plone since version 4.1.
On its own, it will already speed up response time quite dramatically.
You simply have to enable it, use the default values provided, and you will have a faster site.

You can also tweak the settings to get better performance. There is always a little trade-off to be made here, so-called 'strong' caching will be faster, but it may mean that visitors get older content.
So, it is usually best to set up 'strong' caching for things that don't change often, like CSS and javascript files, and 'weak' caching for actual texts.
You can also 'invalidate' content automatically when you update a piece of content, so that the front-end server knows it has to get a fresh copy when you edit a piece of content.

But plone.app.caching works even better together with a dedicated front-end cache, a program that is specialized in doing this work.
These days, the favourite and recommended program for that is called "Varnish".

Here, you will find documentation on both. Remember, they work best together.

	plone.app.caching documentation

	plone.app.caching
	Introduction

	Installation

	Installation on Plone 4.0

	Documentation

	Indices and tables

	Varnish 3.x
	Introduction

	Installation

	Management console

	Loading new VCL to live Varnish

	Logs

	Stats

	Virtual hosting proxy rule

	Varnishd port and IP address to listen

	Cached and editor subdomains

	Varnish and I18N

	Sanitizing cookies

	Do not cache error pages

	Custom and full cache purges

	Round-robin balancing

	Varnish 4.x
	Introduction

	Installation

	Management console

	Loading new VCL to live Varnish

	Logs

	Stats

	Virtual hosting proxy rule

	Varnishd port and IP address to listen

	Cached and editor sub domains

	Varnish and I18N

	Sanitizing cookies

	Do not cache error pages

	Custom and full cache purges

	Round-robin balancing

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

plone.app.caching documentation

plone.app.caching

Introduction

plone.app.caching provides a Plone UI and default rules for managing HTTP response caching in Plone. It builds on z3c.caching, plone.caching and plone.cachepurging.

plone.app.caching requires Plone 4 or later.

Installation

From Plone 4.1 onwards, plone.app.caching is shipped as a dependancy of Plone. It is available from the Control Panel, but not enabled by default. You can enable it from the "add-ons" menu option.

Installation on Plone 4.0

To install plone.app.caching, add it to the eggs list in your buildout.cfg, or as a dependency of one of your own packages in setup.py. ZCML configuration will be automatically loaded via a z3c.autoinclude entry point. You will also need to install the package in Plone's Add-ons control panel as normal.

This package depends on a number of other packages, including z3c.form and plone.app.registry, that do not ship with Plone.
You will probably want to lock down the versions for those packages using a known good set. Add this to the the extends line in your buildout.cfg, after the line that includes the Plone KGS:

extends =
 ...
 http://good-py.appspot.com/release/plone.app.caching/1.0a1

Update the version number at the end of the URL as appropriate. You can find an overview of the versions
here [http://good-py.appspot.com/release/plone.app.caching]

Documentation

Contents:

	The caching control panel

	Caching profiles
	Default caching profiles

	Custom caching profiles

	Rulesets and caching operations
	Default rulesets

	Default cache operations

	Default ruleset/operation mappings

	Cache operation parameters

	Caching operation helper functions

	Debug headers and logging

	Content-type based rulesets

	Caching proxies
	Purging a caching proxy

	Installing and configuring a caching proxy

	Running Plone behind Apache 2.2 with mod_cache

	The RAM cache
	Alternative RAM cache implementations

	ETags

	Composite views

	Split views

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

The caching control panel

After installation, you will find a Caching control panel in Plone's site
setup. This consists of four main tabs:

	Change settings, where you can control caching behaviour

	Import settings, where you can import pre-defined profiles of cache
settings

	Purge caching proxy, where you can manually purge content from a caching
proxy. This tab only appears if you have purging enabled under
Change settings.

	RAM cache, where you can view statistics about and purge the RAM cache.

Under the settings tab, you will find four fieldsets:

	General settings, for global options such as turning caching on or off.

	Caching proxies, where you can control Plone's use of a caching proxy
such as Squid or Varnish.

	Caching operation mappings, where caching rulesets (hints about views and
resources used for caching purposes) can be associated with caching
operations (which either intercept a request to return a cached response, or
modifies a response to add cache control headers). This is also where
rulesets for legacy page templates (created through the web or the
portal_skins tool) are configured.

	Detailed settings, where you can configure parameters for individual
caching operations.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

Caching profiles

All persistent configuration for the caching machinery is stored in the
configuration registry, as managed by plone.app.registry. This can be
modified using the registry.xml GenericSetup import step. The Import
settings tab of the control panel allows you to import these caching
profiles.

Default caching profiles

plone.app.caching includes three default caching profiles. Two of these
profiles encapsulate the cache settings that are known to work well with a
typical default Plone installation. The third is an example profile for a
"split-view" caching setup (see the split-view discussion later in this
document).

The three default caching profiles:

	
	Without caching proxy

	Settings useful for setups without a caching proxy.

	
	With caching proxy

	Settings useful for setups with a caching proxy such as Squid or
Varnish. The only difference from the "without caching proxy"
profile are some settings to enable proxy caching of files/images
in content space and content feeds.

	
	With caching proxy (and split-view caching)

	An example profile for a caching proxy setup with split-view
caching enabled. This example requires a special proxy setup.
See the proxy examples in the "proxy-configs" directory.

Custom caching profiles

Caching policies are often a compromise between speed and freshness.
More aggressive caching often comes at the cost of increased risk of
stale responses. The default profiles provided tend to err on the side
of freshness over speed so there is some room for tweaking if greater
speed is desired.

Customization may also be needed if third-party products are installed which
require special treatment. Examine the HTTP response headers to determine
whether the third-party product requires special treatment. Most simple cases
probably can be solved by adding the content type or template to the
appropriate mapping. More complicated cases, may require custom caching
operations.

A GenericSetup profile used for caching should be registered for the
ICacheProfiles marker interface to distinguish it from more general
profiles used to install a product. This also hides the profile from
Plone's Add-ons control panel.

Here is an example from this package:

<genericsetup:registerProfile
 name="with-caching-proxy"
 title="With caching proxy"
 description="Settings useful for setups with a caching proxy such as Squid or Varnish"
 directory="profiles/with-caching-proxy"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 for="plone.app.caching.interfaces.ICacheProfiles"
 />

The directory profiles/with-caching-proxy contains a single import step,
registry.xml, containing settings to configure the ruleset to operation
mapping, and setting options for various operations. At the time of writing,
this includes:

<record name="plone.caching.interfaces.ICacheSettings.operationMapping">
 <value purge="False">
 <element key="plone.resource">plone.app.caching.strongCaching</element>
 <element key="plone.stableResource">plone.app.caching.strongCaching</element>
 <element key="plone.content.itemView">plone.app.caching.weakCaching</element>
 <element key="plone.content.feed">plone.app.caching.moderateCaching</element>
 <element key="plone.content.folderView">plone.app.caching.weakCaching</element>
 <element key="plone.content.file">plone.app.caching.moderateCaching</element>
 </value>
</record>

Default options for the various standard operations are found in the
registry.xml file that is part of the standard installation profile for
this product, in the directory profiles/default. The custom profile
overrides a number of operation settings for specific rulesets (see below).
For example:

<record name="plone.app.caching.weakCaching.plone.content.itemView.ramCache">
 <field ref="plone.app.caching.weakCaching.ramCache" />
 <value>True</value>
</record>

This enables RAM caching for the "weak caching" operation for resources using
the ruleset plone.content.itemView. The default is defined in the main
registry.xml as:

<record name="plone.app.caching.weakCaching.ramCache">
 <field type="plone.registry.field.Bool">
 <title>RAM cache</title>
 <description>Turn on caching in Zope memory</description>
 <required>False</required>
 </field>
 <value>False</value>
</record>

Notice how we use a field reference to avoid having to re-define the field.

It may be useful looking at these bundled registry.xml for inspiration if
you are building your own caching profile. Alternatively, you can export the
registry from the portal_setup tool and pull out the records under the
prefixes plone.caching and plone.app.caching.

Typically, registry.xml is all that is required, but you are free to add
additional import steps if required. You can also add a metadata.xml and
use the GenericSetup dependency mechanism to install other profiles on the
fly.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

Rulesets and caching operations

The caching infrastructure works on the principle of rulesets mapped to
caching operations. A ruleset is basically just a name, and is normally
applied in ZCML by the author of a particular view. There are also some
default rulesets applied to general resources - see below.

Please note that plone.app.caching places the caching ruleset registry
into "explicit" mode. This means that you must declare a caching ruleset
(with the <cache:rulesetType /> directive) before you can use it.

Caching operations are components written in Python which either interrupt
rendering to provide a cached response (such as a 304 NOT MODIFIED
response), or add caching information to a response (such as setting the
Cache-Control HTTP response header).

For more details on how to use these components, see the documentation for
plone.caching [http://pypi.python.org/pypi/plone.caching].

Once rulesets and caching operations have been registered, they will
appear in the caching control panel.

Default rulesets

plone.app.caching declares a few default rulesets. They are listed
with descriptions in the control panel.

	
	Content feed (plone.content.feed)

	A dynamic feed, e.g. using RSS or ATOM.

	
	Content files and images (plone.content.file)

	Includes files and images in content space usually either downloaded
or included as an inline element in one of the other public-facing
views.

	
	Content folder view (plone.content.folderView)

	A public-facing view for a content item that is a folder or container
for other items.

	
	Content item view (plone.content.itemView)

	A public-facing view for a content item that is not a folder or
container for other items.

	
	File and image resources (plone.resource)

	Includes images and files created or customised through the ZMI,
those exposed in the portal_skins tool, and images registered in
resource directories on the filesystem.

	
	Stable file and image resources (plone.stableResource)

	Stable resources like the css, javascript, and kss files registered
with the Resource Registries. These are resources which can be cached
'forever'. Normally this means that if the object does change, its
URL changes too.

Default cache operations

plone.app.caching also declares a number of default operation types.
These are listed in the control panel as available operations for the
various rulesets. Hover your mouse over an operation in the drop-down
list to view its description.

	
	Strong caching (plone.app.caching.strongCaching)

	Cache in browser and proxy (default: 24 hours). Caution: Only use
for stable resources that never change without changing their URL,
or resources for which temporary staleness is not critical.

In the caching profiles without-caching-proxy and
with-caching-proxy, this operation is mapped to the rulesets
plone.resource and plone.stableResource, which causes the
following headers to be added to the response:

Last-Modified: <last-modified-date>
Cache-Control: max-age=<seconds>, proxy-revalidate, public

	
	Moderate caching (plone.app.caching.moderateCaching),

	Cache in browser but expire immediately (same as weak caching),
and cache in proxy (default: 24 hours). Use a purgable caching
reverse proxy for best results. Caution: If proxy cannot be purged
reliably (for example, in the case of composite pages where it may
be difficult to track when a dependency has changed) then stale
responses might be seen until the cached entry expires. A similar
caution applies even if in the purgeable case, if the proxy cannot
be configured to disallow caching in other intermediate proxies
that may exist between the local proxies and the browser (see the
example proxy configs included with this package for some solutions
to this problem).

In the caching profile with-caching-proxy, this operation is mapped
to the rulesets plone.content.feed and plone.content.file,
which causes the following headers to be added to the response:

[plone.content.feed]
ETag: <etag-value>
Cache-Control: max-age=0, s-maxage=<seconds>, must-revalidate

[plone.content.file]
Last-Modified: <last-modified-date>
Cache-Control: max-age=0, s-maxage=<seconds>, must-revalidate

	
	Weak caching (plone.app.caching.weakCaching)

	Cache in browser but expire immediately and enable 304 responses on
subsequent requests. 304's require configuration of the
Last-Modified and/or ETags settings. If Last-Modified header is
insufficient to ensure freshness, turn on ETag checking by listing each
ETag component that should be used to to construct the ETag header. To
also cache public responses in Zope memory, set the RAM cache
parameter to True.

In the caching profile without-caching-proxy, this operation is
mapped to the rulesets plone.content.itemView,
plone.content.folderView, plone.content.feed, and
plone.content.file, which causes the following headers to be added
to the response:

[plone.content.itemView, plone.content.folderView, plone.content.feed]
ETag: <etag-value>
Cache-Control: max-age=0, must-revalidate, private

[plone.content.file]
Last-Modified: <last-modified-date>
Cache-Control: max-age=0, must-revalidate, private

In the caching profile with-caching-proxy, this operation is mapped
only to the rulesets plone.content.itemView and
plone.content.folderView.

	
	No caching (plone.app.caching.noCaching)

	Use this operation to keep the response out of all caches. The
default settings generate an IE-safe no-cache operation. Under
certain conditions, IE chokes on no-cache and no-store
Cache-Control tokens, so instead we just exclude caching in
shared caching proxies with the private token, expire immediately
in the browser, and disable validation. This emulates the usual
behavior expected from the no-cache token. If the nominally
more secure, but occasionally troublesome, no-store token
is also desired, set the No store parameter to True.
[XXX - 'no store' option not done yet]

	
	Chain (plone.caching.operations.chain)

	Allows multiple operations to be chained together. When intercepting
the response, the first chained operation to return a value will
be used. Subsequent operations are ignored. When modifying the
response, all operations will be called, in order.

These operation descriptions are a bit simplified as several of these
operations also include tests to downgrade caching depending on various
parameter settings, workflow state, and access privileges. For more detail,
it's best to review the operation code itself.

Default ruleset/operation mappings

To recap, plone.app.caching defines three default cache policies
containing the cache operation mappings for each of the six rulesets. The
default mappings are as follows:

	
	without-caching-proxy
	with-caching-proxy
	with-caching-proxy-splitviews

	itemView
	weakCaching
	weakCaching
	moderateCaching

	folderView
	weakCaching
	weakCaching
	moderateCaching

	feed
	weakCaching
	moderateCaching
	moderateCaching

	file
	weakCaching
	moderateCaching
	moderateCaching

	resource
	strongCaching
	strongCaching
	strongCaching

	stableResource
	strongCaching
	strongCaching
	strongCaching

Cache operation parameters

Much of the cache operation behavior is controlled via user-adjustable
parameters. In fact, three of the default caching operations (strong caching,
moderate caching, and weak caching) are essentially all the same operation but
with different default parameter settings and with some parameters hidden from
the UI.

	
	Maximum age (maxage)

	Time (in seconds) to cache the response in the browser or caching proxy.
Adds a "Cache-Control: max-age=<value>" header and a matching "Expires"
header to the response.

	
	Shared maximum age (smaxage)

	Time (in seconds) to cache the response in the caching proxy.
Adds a "Cache-Control: s-maxage=<value>" header to the response.

	
	ETags (etags)

	A list of the names of the ETag components to include in the ETag
header. Also turns on "304 Not Modified" responses for "If-None-Match"
conditional requests.

	
	Last-modified validation (lastModified)

	Adds a "Last-Modified" header to the response and turns on "304 Not
Modified" responses for "If-Modified-Since" conditional requests.

	
	RAM cache (ramCache)

	Turn on caching in Zope memory. If the URL is not specific enough to
ensure uniqueness then either ETags or Last-Modified should also be
added to the list of parameters in order to generate a unique cache key.

	
	Vary (vary)

	Name(s) of HTTP headers in the request that must match (in addition to
the URL) for a caching proxy to return a cached response.

	
	Anonymous only (anonOnly)

	Set this to True if you want to force logged-in users to always get a
fresh copy. This works best with the "moderate caching" operation, and
will not work well with a "Max age" (to cache content in the browser)
greater than zero. By setting this option, you can focus the other cache
settings on the anonymous use case. Note that if you are using a caching
proxy, you will need to set a Vary header of "X-Anonymous" or similar,
and ensure that such a header is set in the proxy for logged in users (a
blunter alternative is to use "Cookie" as the header, although this can
have false positives). See the example Varnish and Squid configurations
that come with this package for more details.

	
	Request variables that prevent caching (cacheStopRequestVariables)

	A list of variables in the request (including Cookies) that prevent
caching if present. Note, unlike the others above, this global parameter
is not directly visible in the plone.app.caching UI. There should
unlikely be any need to change this list but, if needed, it can be
edited via the Configuration Registry control panel.

Caching operation helper functions

If you will find the implementations of the default caching operations
in the package plone.app.caching.operations. If you are writing a
custom caching operation, the utils module contains helper functions
which you may find useful.

Debug headers and logging

It can sometimes be useful to see which rulesets and operations (if any)
are being applied to published resources. There are two ways to see
this: via debug response headers and via debug logging.

Several debug response headers are added automatically by plone.app.caching
and plone.cahing. These headers include:

	X-Cache-Rule: <matching rule id>

	X-Cache-Operation: <matching operation id>

	X-Cache-Chain-Operations: <list of chain operation ids>

	X-RAMCache: <ram cache id>

Viewing these headers is relatively easy with tools like the Firebug
and LiveHTTPHeaders add-on for the Firefox browser. Similar tools
for inspecting response headers exist for Safari and IE.

If you enable the DEBUG logging level for the plone.caching logger,
you will get additional debug output in your event log. One way to do that
is to set the global Zope logging level to DEBUG in zope.conf:

<eventlog>
 level DEBUG
 <logfile>
 path <file path here>
 level DEBUG
 </logfile>
</eventlog>

If you are using plone.recipe.zope2instance [http://pypi.python.org/pypi/plone.recipe.zope2instance] to create your Zope instances,
you can set the logging level with the event-log-level option.

You should see output in the log like:

2010-01-11 16:44:10 DEBUG plone.caching Published: <ATImage at /test/i> Ruleset: plone.download Operation: None
2010-01-11 16:44:10 DEBUG plone.caching Published: <ATImage at /test/i> Ruleset: plone.download Operation: plone.caching.operations.chain

The None indicates that no ruleset or operation was mapped.

It is probably not a good idea to leave debug logging on for production use,
as it can produce a lot of output, filling up log files and adding unnecessary
load to your disks.

Content-type based rulesets

Normally, you declare caching rulesets for a view, e.g. with:

<cache:ruleset
 ruleset="plone.content.itemView"
 for=".browser.MyItemView"
 />

See plone.caching [http://pypi.python.org/pypi/plone.caching] for details.

plone.app.caching installs a special ruleset lookup adapter that is invoked
for skin layer page templates and browser views not assigned a more specific
rule set. This adapter allows you to declare a ruleset for the default view
of a given content type by supplying a content type class or interface to the
<cache:ruleset /> directive:

<cache:ruleset
 ruleset="plone.content.itemView"
 for=".interfaces.IMyContentType"
 />

or for a class:

	<cache:ruleset

	ruleset="plone.content.itemView"
for=".content.MyContentType"
/>

There are two reasons to want to do this:

	Your type uses a skin layer page template for its default view, instead of a
browser view. In this case, you can either declare the ruleset on the
type as shown above (in ZCML), or map the type name in the registry,
using the GUI or GenericSetup. The former is more robust and certainly more
natural if you are declaring other, more conventional rulesets in ZCML
already.

	You want to set the ruleset for a number of content types. In fact,
plone.app.caching already does this for you: The Archetypes base classes
BaseContent and BaseFolder are assigned the rulesets
plone.content.itemView and plone.content.folderview, respectively.
Ditto for Dexterity's IDexterityItem and IDexterityContainer
interfaces.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

Caching proxies

It is common to place a so-called caching reverse proxy in front of Zope
when hosting large Plone sites. On Unix, a popular option is Varnish [http://varnish-cache.org],
although Squid [http://squid-cache.org] is also a good choice. On Windows, you can use Squid
or the (commercial, but better) Enfold Proxy [http://enfoldsystems.com/software/proxy/].

It is important to realise that whilst plone.app.caching provides
some functionality for controlling how Plone interacts with a caching
proxy, the proxy itself must be configured separately.

Some operations in plone.app.caching can set response headers that
instruct the caching proxy how best to cache content. For example, it is
normally a good idea to cache static resources (such as images and
stylesheets) and "downloadables" (such as Plone content of the types File
or Image) in the proxy. This content will then be served to most users
straight from the proxy, which is much faster than Zope.

The downside of this approach is that an old version of a content item may
returned to a user, because the cache has not been updated since the item
was modified. There are three general strategies for dealing with this:

	Since resources are cached in the proxy based on their URL, you can
"invalidate" the cached copy by changing an item's URL when it is updated.
This is the approach taken by Plone's ResourceRegistries (portal_css,
portal_javascript & co): in production mode, the links that are inserted
into Plone's content pages for resource managed by ResourceRegistries
contain a time-based token, which changes when the ResourceRegistries
are updated. This approach has the benefit of also being able to
"invalidate" content stored in a user's browser cache.

	All caching proxies support setting timeouts. This means that content may
be stale, but typically only up to a few minutes. This is sometimes an
acceptable policy for high-volume sites where most users do not log in.

	Most caching proxies support receiving PURGE requests for paths that
should be purged. For example, if the proxy has cached a resource at
/logo.jpg, and that object is modified, a PURGE request could be sent
to the proxy (originating from Zope, not the client) with the same path to
force the proxy to fetch a new version the next time the item is requested.

The final option, of course is to avoid caching content in the proxy
altogether. The default policies will not allow standard content pages to
be cached in the proxy, because it is too difficult to invalidate cached
instances. For example, if you change a content item's title, that may
require invalidation of a number of pages where that title appears in the
navigation tree, folder listings, Collections, portlets, and so on.
Tracking all these dependencies and purging in an efficient manner is
impossible unless the caching proxy configuration is highly customised for
the site.

Purging a caching proxy

Synchronous and asynchronous purging is enabled via plone.cachepurging [http://pypi.python.org/pypi/plone.cachepurging].
In the control panel, you can configure the use of a proxy via various
options, such as:

	Whether or not to enable purging globally.

	The address of the caching server to which PURGE requests should be sent.

	Whether or not virtual host rewriting takes place before the caching proxy
receives a URL or not. This has implications for how the PURGE path is
constructed.

	Any domain aliases for your site, to enable correct purging of content
served via e.g. http://example.com and http://www.example.com.

The default purging policy is geared mainly towards purging file and image
resources, not content pages, although basic purging of content pages is
included. The actual paths to purge are constructed from a number of
components providing the IPurgePaths interface. See plone.cachepurging
for details on how this works, especially if you need to write your own.

The default purge paths include:

	${object_path}, -- the object's canonical path

	${object_path}/ -- in case the object is a folder

	${object_path}/view -- the view method alias

	${object_path}/${default-view} -- in case a default view template is used

	The download URLs for any Archetypes object fields, in the case of
Archetypes content. This includes support for the standard File and
Image types.

Files and images created (or customised) in the ZMI are purged automatically
when modified. Files managed through the ResourceRegistries do not need
purging, since they have "stable" URLs. To purge Plone content when modified
(or removed), you must select the content types in the control panel. By
default, only the File and Image types are purged.

You should not enable purging for types that are not likely to be cached in
the proxy. Although purging happens asynchronously at the end of the request,
it may still place unnecessary load on your server.

Finally, you can use the Purge tab in the control panel to manually purge
one or more URLs. This is a useful way to debug cache purging, as well as
a quick solution for the awkward situation where your boss walks in and
wonders why the "about us" page is still showing that old picture of him,
before he had a new haircut.

Installing and configuring a caching proxy

The plone.app.caching package includes some example buildout
configurations in the proxy-configs directory. Two versions are included:
one demonstrating a Squid-behind-Apache proxy setup and another demonstrating
a Varnish-behind-Apache proxy setup. Both examples also demonstrate how to
properly configure split-view caching.

These configurations are provided for instructional purposes but with a little
modification they can also be used in production. To use in a real production
instance, you will need to adjust the configuration to match your setup. For a
simple standard setup, you might only need to change the hostname value in
the buildout.cfg. Read the README.txt files in each example for more
instructions.

There are also some alternative buildout recipes for building and configuring
proxy configs: plone.recipe.squid [http://pypi.python.org/pypi/plone.recipe.squid] and plone.recipe.varnish [http://pypi.python.org/pypi/plone.recipe.varnish]. The examples
in this package do not use these recipes in favor of using a more explicit,
and hopefully more educational, template-based approach. Even if you decide to
use one of the automated recipes, it will probably be worth your while to
study the examples included in this package to get a few pointers.

Running Plone behind Apache 2.2 with mod_cache

Apache 2.2 has a known bug around its handling of the HTTP response header
CacheControl with value max-age=0 or headers Expires with a date in the past.
In these scenarios mod_cache will not cache the response no matter what value
of s-maxage is set.

https://issues.apache.org/bugzilla/show_bug.cgi?id=35247

One possible workaround for this is to use mod_headers directives in your
Apache configuration to set max-age=1 if s-maxage is positive and max-age is 0
and also to drop the Expires header

Header edit Cache-Control max-age=0(.*s-maxage=[1-9].*) max-age=1$1
Header unset Expires

Dropping the Expires header has the disadvantage that HTTP 1.0 clients and
proxies may not cache your responses as you wish.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

The RAM cache

In addition to caching content in users' browsers (through setting appropriate
response headers) and a caching proxy, Plone can cache certain information in
memory. This is done in two main ways:

	Developers may use the plone.memoize package's ram module to cache
the results of certain functions in RAM. For example, some viewlets and
portlets cache their rendered output in RAM for a time, alleviating the need
to calculate them every time.

	Some caching operations may cache an entire response in memory, so that
they can later intercept the request to return a cached response..

Caching in RAM in Zope is not as efficient as caching in a proxy, for a number
of reasons:

	Zope still has to perform traversal, security, transaction management and so
on before serving a request with a RAM-cached response.

	Zope's use of memory is not as efficient as that of a finely optimised
caching proxy.

	Storing lots of content in RAM may compete with the standard ZODB object
cache and other memory pools used by Zope, thus slowing down Zope overall.

	In multi-client ZEO setups, the RAM cache is (by default at least) not
shared among instances (though it is shared among threads in that instance).
Thus, each ZEO client process will maintain its own cache.

You can use the RAM cache tab in the caching control panel to view
statistics about the use of the RAM cache. On the Change settings tab, you
can also control the size of the cache, and the frequency with which it is
purged of old items.

Alternative RAM cache implementations

The RAM cache exposed through plone.memoize.ram is looked up via an
ICacheChoser utility. The default implementation looks up a
zope.ramcache.interfaces.ram.IRAMCache utility. Plone installs a local
such utility (to allows its settings to be persisted - the cache itself is
not persistent), which is shared by all users of the cache.

You can provide your own ICacheChooser utility to change this policy,
by installing this as a local utility or overriding it in overrides.zcml.
One reason to do this may be to back the cache with a memcached [http://memcached.org] server,
which would allow a single cache to be shared among multiple Zope clients.

Below is a sketch of such a cache chooser, courtesy of Wojciech Lichota:

from threading import local
from pylibmc import Client
from zope.interface import implements
from plone.memoize.interfaces import ICacheChooser
from plone.memoize.ram import MemcacheAdapter

class MemcachedCacheChooser(object):
 implements(ICacheChooser)
 _v_thread_local = local()

 def getClient(self):
 """
 Return thread local connection to memcached.
 """
 connection = getattr(self._v_thread_local, 'connection', None)
 if connection is None:
 connection = Client(['127.0.0.1:11211'])
 self._v_thread_local.connection = connection

 return connection

 def __call__(self, fun_name):
 """
 Create new adapter for plone.memoize.ram.
 """
 return MemcacheAdapter(client=self.getClient(), globalkey=fun_name)

You could install this with the following lines in an overrides.zcml:

<utility factory=".memcached.MemcachedCacheChooser" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

ETags

ETags are used in to check whether pages need to be re-calculated or can be
served from cache. An ETag is simply a string. Under plone.app.caching,
it is a string of tokens separated by pipe characters. The tokens hold values
such as a user id, the current skin name, or a counter indicating how many
objects have been added to the site. The idea is that the browser sends a
request with the ETag included in an If-None-Match header. Plone can then
quickly calculate the current ETag for the requested resource. If the ETag
is the same, Plone can reply with 304 NOT MODIFIED response, telling the
browser to use its cached copy. Otherwise, Plone renders the page and returns
it as normal.

Many caching operations use ETags. The tokens to include are typically
listed in an etags tuple in the operation's options.

The ETag names tokens supported by default are:

	
	userid

	The current user's id

	
	roles

	A list of the current user's roles in the given context

	
	language

	The language(s) accepted by the browser, in the ACCEPT_LANGUAGE header

	
	userLanguage

	The current user's preferred language

	
	gzip

	Whether or not the content is going to be served compressed

	
	lastModified

	A timestamp indicating the last-modified date of the given context

	
	catalogCounter

	A counter that is incremented each time the catalog is updated, i.e. each
time content in the site is changed.

	
	locked

	Whether or not the given context is locked for editing.

	
	skin

	The name of the current skin (theme)

	
	resourceRegistries

	A timestamp indicating the most recent last-modified date for all three
Resource Registries. This is useful for avoiding requests for expired
resources from cached pages.

It is possible to provide additional tokens by registering an IETagValue
adapter. This should be a named adapter on the published object (typically a
view, file resource or Zope page template object) and request, with a unique
name. The name is used to look up the component. Thus, you can also override
one of the tokens above for a particular type of context or request (e.g. via
a browser layer), by registering a more specific adapter with the same name.

As an example, here is the language adapter:

from zope.interface import implements
from zope.interface import Interface

from zope.component import adapts
from plone.app.caching.interfaces import IETagValue

class Language(object):
 """The ``language`` etag component, returning the value of the
 HTTP_ACCEPT_LANGUAGE request key.
 """

 implements(IETagValue)
 adapts(Interface, Interface)

 def __init__(self, published, request):
 self.published = published
 self.request = request

 def __call__(self):
 return self.request.get('HTTP_ACCEPT_LANGUAGE', '')

This is registered in ZCML like so:

<adapter factory=".etags.Language" name="language" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

Composite views

A composite view is just a general term for most page views you see when
you visit a Plone site. It includes all content item views, content folder
views, and many template views. For our purposes, the distinguishing
characteristic of composite views is the difficulty inherent in keeping track
of all changes that might affect the final composited view. Because of the
difficulty of dependancy tracking, composite views are often notoriously
difficult to purge reliably from caching proxies so the default caching
profiles set headers which expire the cache immediately (i.e. weak caching).

However, most of the inline resources linked to from the composite view (css,
javascript, images, etc.) can be cached very well in proxy so the overall
speed of most composite views will always be better with a caching proxy in
front despite the page itself not being cached.

Also, when using Squid as a caching proxy, we can still see some additional
speed improvement as Squid supports conditional requests to the backend and
304 responses from plone.app.caching are relatively quick. This means that
even though the proxy cache will expire immediately, Squid can revalidate its
cache relatively quickly. Varnish does not currently support conditional
requests to the backend.

For relatively stable composite views or for those views for which you can
tolerate some potential staleness, you might be tempted to try switching from
weak caching to moderate caching with the s-maxage expiration
value set to some tolerable value but first make sure you understand the
issues regarding "split view" caching (see below).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

 	plone.app.caching documentation »

Split views

A non-zero expiration for proxy or browser caching of a composite view will
often require some special handling to deal with "split view" caching.

Caching proxies and browsers keep track of cached entries by using the URL
as a key. If a Vary header is included in the response then those request
headers listed in Vary are also included in the cache key. In most cases,
this is sufficient to uniquely identify all responses. However, there are
exceptions. We call these exceptions "split views". Anytime you have
multiple views sharing the same cache key, you have a split view problem.
Split views cannot be cached in proxies or browsers without mixing up the
responses.

In the Plone case, most composite views are also split views because they
provide different views to anonymous and authenticated requests.
In Plone, authenticated requests are tracked via cookies which are not
usually used in cache keys.

One solution to this problem is to add a Vary:Cookie response header but,
unfortunately, since cookies are used for all sorts of state maintenance and
web tracking, this will usually result in very inefficient caching.

Another solution is to enforce a different domain name, different path,
or different protocol (https/http) for authenticated versus anonymous
responses.

Yet another solution involves intercepting the request and dynamically adding
a special X-Anonymous header to the anonymous request and then adding
Vary:X-Anonymous to the split view response so that this header will added
to the cache key. Examples of this last solution for both Squid and Varnish
are included in the proxy-configs directory of this package, which are
intended to be used in concert with something like the split-view caching
profile of plone.app.caching.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

Varnish 3.x

Description

Varnish is a caching front-end server. This document has notes on how to use Varnish with Plone.
If you're using Varnish 4.x, then you want to look into Varnish 4.x

	Introduction

	Installation

	Management console
	varnishadm

	Telnet console

	Quit console

	Purging the cache

	Loading new VCL to live Varnish

	Logs

	Stats

	Virtual hosting proxy rule
	Varnish 3.x example

	Varnish 2.x example

	Varnishd port and IP address to listen

	Cached and editor subdomains

	Varnish and I18N

	Sanitizing cookies
	Debugging cookie issues

	Plone Language cookie (I18N_LANGUAGE)

	More info

	Do not cache error pages

	Custom and full cache purges

	Round-robin balancing

Introduction

This chapter contains information about using the Varnish caching proxy with Plone.

	http://varnish-cache.org/

To use Varnish with Plone

	Learn how to install and configure Varnish

	Add Plone virtual hosting rule to the default varnish configuration

Note

Some of these examples were written for Varnish 2.x.
Varnish 3.x (Jun 2011) has radically altered syntax of VCL language and command line tools, so you might need to adapt the examples a bit.

Installation

The suggest method to install Varnish is to use your OS package manager.

	You can install using packages (RPM/DEB) - consult your operating system instructions.

	For more up to date packages for Debian you could check: https://www.varnish-cache.org/installation/debian

	You can install backports

	You can install using buildout

Buildout examples

	https://pypi.python.org/pypi/plone.recipe.varnish

Management console

varnishadm

You can access Varnish admin console on your server by:

Your system uses a secret handshake file
varnishadm -T localhost:6082 -S /etc/varnish/secret

(Ubuntu/Debian installation)

Telnet console

The telnet management console is available on some configurations where varnishadm cannot be used.
The functionality is the same.

Example:

ssh yourhost
Your system does not have a secret handshake file
telnet localhost 6082

Note

Port number depends on your Varnish settings.

More info

	http://opensourcehacker.com/2013/02/07/varnish-shell-singleliners-reload-config-purge-cache-and-test-hits/

Quit console

Quit command:

quit

Purging the cache

This will remove all entries from the Varnish cache:

varnishadm "ban.url ."

Loading new VCL to live Varnish

More often than not, it is beneficial to load new configuration without bringing the cache down for maintenance.
Using this method also checks the new VCL for syntax errors before activating it.
Logging in to Varnish CLI requires the varnishadm tool, the address of the management interface, and the secret file for authentication.

See the varnishadm man-page for details.

Opening a new CLI connection to the Varnish console, in a buildout-based Varnish installation:

parts/varnish-build/bin/varnishadm -T localhost:8088

Port 8088 is defined in buildout.cfg:

[varnish-instance]
telnet = localhost:8088

Opening a new CLI connection to the Varnish console, in a system-wide Varnish installation on Ubuntu/Debian:

varnishadm -T localhost:6082 -S /etc/varnish/secret

You can dynamically load and parse a new VCL config file to memory:

vcl.load <name> <file>

For example:

vcl.load newconf_1 /etc/varnish/newconf.vcl

... or ...

Ubuntu / Debian default config
vcl.load defconf1 /etc/varnish/default.vcl

vcl.load will load and compile the new configuration.
Compilation will fail and report on syntax errors.
Now that the new configuration has been loaded, it can be activated with:

vcl.use newconf_1

Note

Varnish remembers <name> in vcl.load, so every time you need to reload your config you need to invent a new name for vcl.load / vcl.use command pair.

See

	http://opensourcehacker.com/2013/02/07/varnish-shell-singleliners-reload-config-purge-cache-and-test-hits/

Logs

To see a real-time log dump (in a system-wide Varnish configuration):

varnishlog

By default, Varnish does not log to any file and keeps the log only in memory.
If you want to extract Apache-like logs from varnish, you need to use the varnishncsa utility.

Stats

Check live "top-like" Varnish statistics:

parts/varnish-build/bin/varnishstat

Use the admin console to print stats for you:

stats
200 2114

 95717 Client connections accepted
 132889 Client requests received
 38638 Cache hits
 21261 Cache hits for pass
 ...

Virtual hosting proxy rule

Varnish 3.x example

An example with two separate Plone installations (Zope standalone mode) behind Varnish 3.x HTTP 80 port.

Example:

#
This backend never responds... we get hit in the case of bad virtualhost name
#
backend default {
 .host = "127.0.0.1";
 .port = "55555";
}

#
Plone Zope front end clients running on koskela
#
backend site1 {
 .host = "127.0.0.1";
 .port = "9944";
}

backend site2 {
 .host = "127.0.0.1";
 .port = "9966";
}

#
Guess which site / virtualhost we are diving into.
Apache, Nginx or Plone directly
#
sub choose_backend {

 if (req.http.host ~ "^(.*\.)?site2\.fi(:[0-9]+)?$") {
 set req.backend = site2;

 # Zope VirtualHostMonster
 set req.url = "/VirtualHostBase/http/" + req.http.host + ":80/Plone/VirtualHostRoot" + req.url;

 }

 if (req.http.host ~ "^(.*\.)?site1\.fi(:[0-9]+)?$") {
 set req.backend = site1;

 # Zope VirtualHostMonster
 set req.url = "/VirtualHostBase/http/" + req.http.host + ":80/Plone/VirtualHostRoot" + req.url;
 }

}

sub vcl_recv {

 #
 # Do Plone cookie sanitization, so cookies do not destroy cacheable anonymous pages
 #
 if (req.http.Cookie) {
 set req.http.Cookie = ";" + req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(statusmessages|__ac|_ZopeId|__cp)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 remove req.http.Cookie;
 }
 }

 call choose_backend;

 if (req.request != "GET" &&
 req.request != "HEAD" &&
 req.request != "PUT" &&
 req.request != "POST" &&
 req.request != "TRACE" &&
 req.request != "OPTIONS" &&
 req.request != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }
 if (req.request != "GET" && req.request != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (lookup);
}

#
Show custom helpful 500 page when the upstream does not respond
#
sub vcl_error {
 // Let's deliver a friendlier error page.
 // You can customize this as you wish.
 set obj.http.Content-Type = "text/html; charset=utf-8";
 synthetic {"
 <?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html>
 <head>
 <title>"} + obj.status + " " + obj.response + {"</title>
 <style type="text/css">
 #page {width: 400px; padding: 10px; margin: 20px auto; border: 1px solid black; background-color: #FFF;}
 p {margin-left:20px;}
 body {background-color: #DDD; margin: auto;}
 </style>
 </head>
 <body>
 <div id="page">
 <h1>This page is not available</h1>
 <p>Sorry, not available.</p>
 <hr />
 <h4>Debug Info:</h4>
 <pre>Status: "} + obj.status + {"
Response: "} + obj.response + {"
XID: "} + req.xid + {"</pre>
 </div>
 </body>
 </html>
 "};
 return(deliver);
}

Varnish 2.x example

When Varnish has been set-up you need to include Plone virtual hosting rule in its configuration file.

If you want to map Varnish backend directly to Plone-as-a-virtualhost (i.e. Zope's VirtualHostMonster is used to map site name to Plone site instance id) use req.url mutating.

The following maps the Plone site id plonecommunity to the plonecommunity.mobi domain.
Plone is a single Zope instance, running on port 9999.

Example:

backend plonecommunity {
 .host = "127.0.0.1";
 .port = "9999";
}

sub vcl_recv {
 if (req.http.host ~ "^(www.)?plonecommunity.mobi(:[0-9]+)?$"
 || req.http.host ~ "^plonecommunity.mfabrik.com(:[0-9]+)?$") {

 set req.backend = plonecommunity
 set req.url = "/VirtualHostBase/http/" req.http.host ":80/plonecommunity/VirtualHostRoot" req.url;
 set req.backend = plonecommunity;
 }
}

Varnishd port and IP address to listen

You give IP address(s) and ports to Varnish to listen to on the varnishd command line using -a switch.

Edit /etc/default/varnish:

DAEMON_OPTS="-a 192.168.1.1:80 \
 -T localhost:6082 \
 -f /etc/varnish/default.vcl \
 -s file,/var/lib/varnish/$INSTANCE/varnish_storage.bin,1G"

Cached and editor subdomains

You can provide an uncached version of the site for editors:

	http://serverfault.com/questions/297541/varnish-cached-and-non-cached-subdomains/297547#297547

Varnish and I18N

Please see cache issues related to LinguaPlone.

Sanitizing cookies

Any cookie set on the server side (session cookie) or on the client-side (e.g. Google Analytics Javascript cookies) is poison for caching the anonymous visitor content.

HTTP caching needs to deal with both HTTP request and response cookie handling

	HTTP request Cookie header. The browser sending HTTP request with Cookie header confuses Varnish cache look-up. This header can be set by Javascript also, not just by the server.
Cookie can be preprocessed in varnish's vcl_recv step.

	HTTP response Set-Cookie header.
This sets a server-side cookie.
If your server is setting cookies Varnish does not cache these responses by default.
Howerver, this might be desirable behavior if e.g. multi-lingual content is served from one URL with language cookies.
Set-Cookie can be post-processed in varnish's vcl_fetch step.

Example of removing all Plone-related cookies, besides ones dealing with the logged in users (content authors):

sub vcl_recv {

 if (req.http.Cookie) {
 # (logged in user, status message - NO session storage or language cookie)
 set req.http.Cookie = ";" req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(statusmessages|__ac|_ZopeId|__cp)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 remove req.http.Cookie;
 }
 }
 ...

Let's not remove Set-Cookie header in VCL fetch
sub vcl_fetch {

 # Here we could unset cookies explicitly,
 # but we assume plone.app.caching extension does it jobs
 # and no extra cookies fall through for HTTP responses we'd like to cache
 # (like images)

 if (!beresp.cacheable) {
 return (pass);
 }
 if (beresp.http.Set-Cookie) {
 return (pass);
 }
 set beresp.prefetch = -30s;
 return (deliver);
}

The snippet for stripping out non-Plone cookies comes from
http://www.phase2technology.com/node/1218/

That article notes that "this processing occurs only between Varnish and the backend [...]; the client, typically a user's browser, still has all the
cookies. Nothing is happening to the client's original request."
While it's true that the browser still has the cookies, they never reach the backend and are therefor ignored.

Another example how to purge Google cookies only and allow other cookies by default:

sub vcl_recv {
 # Remove Google Analytics cookies - will prevent caching of anon content
 # when using GA Javascript. Also you will lose the information of
 # time spend on the site etc..
 if (req.http.cookie) {
 set req.http.Cookie = regsuball(req.http.Cookie, "__utm.=[^;]+(;)?", "");
 if (req.http.cookie ~ "^ *$") {
 remove req.http.cookie;
 }
 }

Debugging cookie issues

Use the following snippet to set a HTTP response debug header to see what the backend server sees as cookie after vcl_recv clean-up regexes:

sub vcl_fetch {

 /* Use to see what cookies go through our filtering code to the server */
 set beresp.http.X-Varnish-Cookie-Debug = "Cleaned request cookie: " + req.http.Cookie;

 if (beresp.ttl <= 0s ||
 beresp.http.Set-Cookie ||
 beresp.http.Vary == "*") {
 /*
 * Mark as "Hit-For-Pass" for the next 2 minutes
 */
 set beresp.ttl = 120 s;
 return (hit_for_pass);
 }
 return (deliver);
}

And then test with wget:

cd /tmp # wget wants to save files...
wget -S http://www.site.fi
--2011-11-16 11:28:37-- http://www.site.fi/
Resolving www.site.fi (www.site.fi)... xx.20.128.xx
Connecting to www.site.fi (www.site.fi)|xx.20.128.xx|:80... connected.
HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
 Server: Zope/(2.12.17, python 2.6.6, linux2) ZServer/1.1
 X-Cache-Operation: plone.app.caching.noCaching
 Content-Language: fi
 Expires: Sun, 18 Nov 2001 09:28:37 GMT
 Cache-Control: max-age=0, must-revalidate, private
 X-Cache-Rule: plone.content.folderView
 Content-Type: text/html;charset=utf-8
 Set-Cookie: I18N_LANGUAGE="fi"; Path=/
 Content-Length: 23836
 X-Cookie-Debug: Request cookie: (null)
 Date: Wed, 16 Nov 2011 09:28:37 GMT
 X-Varnish: 1562749485
 Age: 0
 Via: 1.1 varnish

Plone Language cookie (I18N_LANGUAGE)

This cookie could be removed in vcl_fetch response post-processing (how?).
However, a better solution is to disable this cookie in the backend itself:
in this case in Plone's portal_languages tool.
Disable it by Use cookie for manual override setting in portal_languages.

More info

	Plone cookies documentation

	https://www.varnish-cache.org/trac/wiki/VCLExampleCacheCookies

	https://www.varnish-cache.org/trac/wiki/VCLExampleRemovingSomeCookies

	https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html

Do not cache error pages

You can make sure that Varnish does not accidentally cache error pages.
E.g. it would cache front page when the site is down:

sub vcl_fetch {
 if (beresp.status >= 500) {
 set beresp.ttl = 0s;
 set beresp.cacheable = false;
 }
 ...
}

More info

	https://www.varnish-cache.org/lists/pipermail/varnish-misc/2010-February/003774.html

Custom and full cache purges

Below is an example how to create an action to purge the whole Varnish cache.

First you need to allow HTTP PURGE request in default.vcl from
localhost.
We'll create a special PURGE command which takes URLs to be purged out of
the cache in a special header:

acl purge {
 "localhost";
 # XXX: Add your local computer public IP here if you
 # want to test the code against the production server
 # from the development instance
}
...

sub vcl_recv {
 ...
 # Allow PURGE requests clearing everything
 if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 # Purge for the current host using reg-ex from X-Purge-Regex header
 purge("req.http.host == " req.http.host " && req.url ~ " req.http.X-Purge-Regex);
 error 200 "Purged.";
 }
}

Then let's create a Plone view which will make a request from Plone to Varnish (upstream localhost:80) and issue the PURGE command.
We do this using the Requests [https://pypi.python.org/pypi/requests] Python library.

Example view code:

import requests

from Products.Five import BrowserView
from requests.models import Request

class Purge(BrowserView):
 """
 Purge upstream cache from all entries.

 This is ideal to hook up for admins e.g. through portal_actions menu.

 You can access it as admin::

 http://site.com/@@purge

 """

 def __call__(self):
 """
 Call the parent cache using Requets Python library and issue PURGE command for all URLs.

 Pipe through the response as is.
 """

 # This is the root URL which will be purged
 # - you might want to have different value here if
 # your site has different URLs for manage and themed versions
 site_url = self.context.portal_url() + "/"

 headers = {
 # Match all pages
 "X-Purge-Regex" : ".*"
 }

 resp = requests.request("PURGE", site_url + "*", headers=headers)

 self.request.response["Content-type"] = "text/plain"
 text = []

 text.append("HTTP " + str(resp.status_code))

 # Dump response headers as is to the Plone user,
 # so he/she can diagnose the problem
 for key, value in resp.headers.items():
 text.append(str(key) + ": " + str(value))

 # Add payload message from the server (if any)

 if hasattr(resp, "body"):
 text.append(str(resp.body))

Registering the view in ZCML:

<browser:view
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 name="purge"
 class=".views.Purge"
 permission="cmf.ManagePortal"
 />

More info

	https://www.varnish-cache.org/docs/3.0/tutorial/purging.html

	https://www.varnish-cache.org/trac/wiki/BackendConditionalRequests

	http://kristianlyng.wordpress.com/2010/02/02/varnish-purges/

Round-robin balancing

Varnish can do round-robin load balancing internally.
Use this if you want to distribute CPU-intensive load between several ZEO front end client instances, each listening on its own port.

Example:

Round-robin between two ZEO front end clients

backend app1 {
 .host = "localhost";
 .port = "8080";
}

backend app2 {
 .host = "localhost";
 .port = "8081";
}

director app_director round-robin {
 {
 .backend = app1;
 }
 {
 .backend = app2;
 }
}

sub vcl_recv {

if (req.http.host ~ "(www\.|www2\.)?app\.fi(:[0-9]+)?$") {
 set req.url = "/VirtualHostBase/http/www.app.fi:80/app/app/VirtualHostRoot" req.url;
 set req.backend = app_director;
}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Guide to Caching »

Varnish 4.x

Description

Varnish is a caching front-end server. This document has notes on how to use Varnish with Plone.
If you're using Varnish 2.x or 3.x, then you want to look into Varnish 3.x

	Introduction

	Installation

	Management console
	varnishadm

	Telnet console

	More info

	Quit console

	Purging the cache

	Loading new VCL to live Varnish

	Logs

	Stats

	Virtual hosting proxy rule
	Varnish 4.x example

	Varnishd port and IP address to listen

	Cached and editor sub domains

	Varnish and I18N

	Sanitizing cookies
	Debugging cookie issues

	More info

	Plone Language cookie (I18N_LANGUAGE)

	More info

	Do not cache error pages

	Custom and full cache purges
	More info

	Round-robin balancing
	More info

Introduction

This chapter contains information about using the Varnish caching proxy with
Plone.

	http://varnish-cache.org/

To use Varnish with Plone

	Learn how to install and configure Varnish

	Add Plone virtual hosting rule to the default varnish configuration

Note

After a radically change of VCL language in Varnish 3.x (Jun 2011), again we had radical changes in the Varnish 4.x (Apr 2014) syntax of VCL language and command line tools.

Installation

The suggest method to install Varnish is to use your OS package manager.

	You can install using packages (RPM/DEB) - consult your operating system instructions.

	For more up to date packages for Debian you could check: https://www.varnish-cache.org/installation/debian

	For more up to date packages for RedHat (RPM Based) you could check: https://www.varnish-cache.org/installation/redhat

	You can install backports

	You can install using buildout

Buildout examples

	https://pypi.python.org/pypi/plone.recipe.varnish

Management console

varnishadm

You can access Varnish admin console on your server by:

Your system uses a secret handshake file
varnishadm -T localhost:6082 -S /etc/varnish/secret

(Ubuntu/Debian installation)

Telnet console

The telnet management console is available on some configurations where varnishadm cannot be used.
The functionality is the same.

Example:

ssh yourhost
Your system does not have a secret handshake file
telnet localhost 6082

Note

Port number depends on your Varnish settings.

More info

	http://opensourcehacker.com/2013/02/07/varnish-shell-singleliners-reload-config-purge-cache-and-test-hits/

Quit console

Quit command:

quit

Purging the cache

This will remove all entries from the Varnish cache:

varnishadm "ban req.url ~ ."

Or remove all entries of JPG from the Varnish cache:

varnishadm "ban req.url ~ .jpg"

Loading new VCL to live Varnish

More often than not, it is beneficial to load new configuration without bringing the cache down for maintenance.
Using this method also checks the new VCL for syntax errors before activating it.
Logging in to Varnish CLI requires the varnishadm tool, the address of the management interface, and the secret file for authentication.

See the varnishadm man-page for details.

Opening a new CLI connection to the Varnish console, in a buildout-based Varnish installation:

parts/varnish-build/bin/varnishadm -T localhost:8088

Port 8088 is defined in buildout.cfg:

[varnish-instance]
telnet = localhost:8088

Opening a new CLI connection to the Varnish console, in a system-wide Varnish installation on Ubuntu/Debian:

varnishadm -T localhost:6082 -S /etc/varnish/secret

You can dynamically load and parse a new VCL config file to memory:

vcl.load <name> <file>

For example:

vcl.load newconf_1 /etc/varnish/newconf.vcl

... or ...

Ubuntu / Debian default config
vcl.load defconf1 /etc/varnish/default.vcl

vcl.load will load and compile the new configuration.
Compilation will fail and report on syntax errors.
Now that the new configuration has been loaded, it can be activated with:

vcl.use newconf_1

Note

Varnish remembers <name> in vcl.load, so every time you need to reload your config you need to invent a new name for vcl.load / vcl.use command pair.

See

	http://opensourcehacker.com/2013/02/07/varnish-shell-singleliners-reload-config-purge-cache-and-test-hits/

Logs

To see a real-time log dump (in a system-wide Varnish configuration):

varnishlog

By default, Varnish does not log to any file and keeps the log only in memory.
If you want to extract Apache-like logs from varnish, you need to use the varnishncsa utility.

Stats

Check live "top-like" Varnish statistics:

parts/varnish-build/bin/varnishstat

Use the admin console to print stats for you:

Uptime mgt: 8+00:21:20
Uptime child: 5+17:29:28

 NAME CURRENT CHANGE AVERAGE AVG_10 AVG_100 AVG_1000
MAIN.uptime 494968 1.00 1.00 1.00 1.00 1.00
MAIN.sess_conn 1545 0.00 . 0.00 0.00 0.00
MAIN.client_req 1569 0.00 . 0.00 0.00 0.00
MAIN.cache_hit 461 0.00 . 0.00 0.00 0.00
MAIN.cache_hitpass 16 0.00 . 0.00 0.00 0.00
MAIN.cache_miss 477 0.00 . 0.00 0.00 0.00
MAIN.backend_conn 1060 0.00 . 0.00 0.00 0.00
MAIN.fetch_head 18 0.00 . 0.00 0.00 0.00
MAIN.fetch_length 996 0.00 . 0.00 0.00 0.00
MAIN.fetch_204 1 0.00 . 0.00 0.00 0.00
MAIN.fetch_304 46 0.00 . 0.00 0.00 0.00
MAIN.pools 9 0.00 . 9.00 9.00 9.00
MAIN.threads 900 0.00 . 900.00 900.00 900.00
MAIN.threads_created 900 0.00 . 0.00 0.00 0.00
...

Virtual hosting proxy rule

Varnish 4.x example

Varnish 4.x has been released, almost three years after the release of Varnish 3.0 in June 2011.
The backend fetching parts of VCL again have changed in Varnish 4.

An example with two separate Plone installations (Zope standalone mode) behind Varnish 4.x HTTP 80 port.

Example:

To make sure that people have upgraded their VCL to the current version,
Varnish now requires the first line of VCL to indicate the VCL version number
vcl 4.0;

#
This backend never responds... we get hit in the case of bad virtualhost name
#
backend default {
 .host = "127.0.0.1";
 .port = "55555";
}

#
Plone Zope clients
#
backend site1 {
 .host = "127.0.0.1";
 .port = "9944";
}

backend site2 {
 .host = "127.0.0.1";
 .port = "9966";
}

#
Guess which site / virtualhost we are diving into.
Apache, Nginx or Plone directly
#
sub choose_backend {

 if (req.http.host ~ "^(.*\.)?site2\.fi(:[0-9]+)?$") {
 set req.backend_hint = site2;

 # Zope VirtualHostMonster
 set req.url = "/VirtualHostBase/http/" + req.http.host + ":80/Plone/VirtualHostRoot" + req.url;

 }

 if (req.http.host ~ "^(.*\.)?site1\.fi(:[0-9]+)?$") {
 set req.backend_hint = site1;

 # Zope VirtualHostMonster
 set req.url = "/VirtualHostBase/http/" + req.http.host + ":80/Plone/VirtualHostRoot" + req.url;
 }

}

For now, we'll only allow purges coming from localhost
acl purge {
 "127.0.0.1";
 "localhost";
}

sub vcl_recv {

 #
 # Do Plone cookie sanitization, so cookies do not destroy cacheable anonymous pages
 #
 if (req.http.Cookie) {
 set req.http.Cookie = ";" + req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(statusmessages|__ac|_ZopeId|__cp)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 unset req.http.Cookie;
 }
 }

 call choose_backend;

 if (req.method != "GET" &&
 req.method != "HEAD" &&
 req.method != "PUT" &&
 req.method != "POST" &&
 req.method != "TRACE" &&
 req.method != "OPTIONS" &&
 req.method != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }
 if (req.method != "GET" && req.method != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (hash);
}

sub vcl_hash {
 hash_data(req.url);
 if (req.http.host) {
 hash_data(req.http.host);
 } else {
 hash_data(server.ip);
 }
 return (lookup);
}

error() is now synth()
sub vcl_synth {
 if (resp.status == 720) {
 # We use this special error status 720 to force redirects with 301 (permanent) redirects
 # To use this, call the following from anywhere in vcl_recv: error 720 "http://host/new.html"
 set resp.status = 301;
 set resp.http.Location = resp.reason;
 return (deliver);
 } elseif (resp.status == 721) {
 # And we use error status 721 to force redirects with a 302 (temporary) redirect
 # To use this, call the following from anywhere in vcl_recv: error 720 "http://host/new.html"
 set resp.status = 302;
 set resp.http.Location = resp.reason;
 return (deliver);
 }

 return (deliver);
}

sub vcl_synth {
 set resp.http.Content-Type = "text/html; charset=utf-8";
 set resp.http.Retry-After = "5";

 synthetic({"
 <?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html>
 <head>
 <title>"} + resp.status + " " + resp.reason + {"</title>
 </head>
 <body>
 <h1>Error "} + resp.status + " " + resp.reason + {"</h1>
 <p>"} + resp.reason + {"</p>
 <h3>Guru Meditation:</h3>
 <p>XID: "} + req.xid + {"</p>
 <hr>
 <p>Varnish cache server</p>
 </body>
 </html>
 "});

 return (deliver);
}

For VCL examples Varnish 2.x or 3.x, you will want to look into Varnish 3.x

Varnishd port and IP address to listen

You give IP address(s) and ports for Varnish to listen to on the varnishd command line using -a switch.
Edit /etc/default/varnish:

DAEMON_OPTS="-a 192.168.1.1:80 \
 -T localhost:6082 \
 -f /etc/varnish/default.vcl \
 -s file,/var/lib/varnish/$INSTANCE/varnish_storage.bin,1G"

Cached and editor sub domains

You can provide an uncached version of the site for editors:

	http://serverfault.com/questions/297541/varnish-cached-and-non-cached-subdomains/297547#297547

Varnish and I18N

Please see cache issues related to LinguaPlone.

Sanitizing cookies

Any cookie set on the server side (session cookie) or on the client-side (e.g. Google Analytics Javascript cookies) is poison for caching the anonymous visitor content.

HTTP caching needs to deal with both HTTP request and response cookie handling

	HTTP request Cookie header. The browser sending HTTP request
with Cookie header confuses Varnish cache look-up. This header can be
set by Javascript also, not just by the server.
Cookie can be preprocessed in varnish's vcl_recv step.

	HTTP response Set-Cookie header.
This sets a server-side cookie. If your server is setting
cookies Varnish does not cache these responses by default.
However, this might be desirable
behavior if e.g. multi-lingual content is served from one URL with
language cookies.
Set-Cookie can be post-processed in varnish's vcl_fetch step.

Example of removing all Plone-related cookies, besides ones dealing with the logged in users (content authors):

sub vcl_recv {

 if (req.http.Cookie) {
 # (logged in user, status message - NO session storage or language cookie)
 set req.http.Cookie = ";" req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(statusmessages|__ac|_ZopeId|__cp)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 unset req.http.Cookie;
 }
 }
 ...

sub vcl_backend_response {

 # Here we could unset cookies explicitly,
 # but we assume plone.app.caching extension does it jobs
 # and no extra cookies fall through for HTTP responses we'd like to cache
 # (like images)

 if (beresp.ttl <= 0s
 || beresp.http.Set-Cookie
 || beresp.http.Surrogate-control ~ "no-store"
 || (!beresp.http.Surrogate-Control && beresp.http.Cache-Control ~ "no-cache|no-store|private")
 || beresp.http.Vary == "*") {
 /* * Mark as "Hit-For-Pass" for the next 2 minutes */
 set beresp.ttl = 120s;
 set beresp.uncacheable = true;
 }

 set beresp.grace = 120s;
 return (deliver);
}

An example how to purge Google cookies only and allow other cookies by default:

sub vcl_recv {
 # Remove Google Analytics cookies - will prevent caching of anon content
 # when using GA Javascript. Also you will lose the information of
 # time spend on the site etc..
 if (req.http.cookie) {
 set req.http.Cookie = regsuball(req.http.Cookie, "__utm.=[^;]+(;)?", "");
 if (req.http.cookie ~ "^ *$") {
 unset req.http.cookie;
 }
 }

Debugging cookie issues

Use the following snippet to set a HTTP response debug header to see what the backend server sees as cookie after vcl_recv clean-up regexes:

sub vcl_backend_response {

 /* Use to see what cookies go through our filtering code to the server */
 set beresp.http.X-Varnish-Cookie-Debug = "Cleaned request cookie: " + req.http.Cookie;

 if (beresp.ttl <= 0s ||
 beresp.http.Set-Cookie ||
 beresp.http.Vary == "*") {
 /*
 * Mark as "Hit-For-Pass" for the next 2 minutes
 */
 # hit_for_pass objects are created using beresp.uncacheable
 set beresp.uncacheable = true;
 set beresp.ttl = 120s;
 return (deliver);
 }
}

And then test with wget:

cd /tmp # wget wants to save files...
wget -S http://www.site.fi
--2011-11-16 11:28:37-- http://www.site.fi/
Resolving www.site.fi (www.site.fi)... xx.20.128.xx
Connecting to www.site.fi (www.site.fi)|xx.20.128.xx|:80... connected.
HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
 Server: Zope/(2.12.17, python 2.6.6, linux2) ZServer/1.1
 X-Cache-Operation: plone.app.caching.noCaching
 Content-Language: fi
 Expires: Sun, 18 Nov 2001 09:28:37 GMT
 Cache-Control: max-age=0, must-revalidate, private
 X-Cache-Rule: plone.content.folderView
 Content-Type: text/html;charset=utf-8
 Set-Cookie: I18N_LANGUAGE="fi"; Path=/
 Content-Length: 23836
 X-Varnish-Cookie-Debug:Cleaned request cookie: __gads=ID=1477fbe04d35a542:T=1405963607:S=ALNI_MYJat5RSzKvD5xve78jLJsxl6-b_Q; __ac="NjE2NDZkNjk2ZTo2NDMxMzQyNDcwMzQ3MjMwNmMzMTc2MzM3Mg%253D%253D"
 Date: Wed, 16 Nov 2011 09:28:37 GMT
 X-Varnish: 1562749485
 Age: 0
 Via: 1.1 varnish-v4

More info

	https://www.varnish-software.com/blog/adding-headers-gain-insight-vcl

Plone Language cookie (I18N_LANGUAGE)

This cookie could be removed in vcl_fetch response post-processing (how?).
However, a better solution is to disable this cookie in the backend itself: in this case in Plone's portal_languages tool.
Disable it by Use cookie for manual override setting in portal_languages.

More info

	Plone cookies documentation

	https://www.varnish-cache.org/docs/4.0/users-guide/increasing-your-hitrate.html#cookies

Do not cache error pages

You can make sure that Varnish does not accidentally cache error pages.
E.g. it would cache front page when the site is down:

sub vcl_backend_response {
 if (beresp.status >= 500 && beresp.status < 600) {
 unset beresp.http.Cache-Control;
 set beresp.http.Cache-Control = "no-cache, max-age=0, must-revalidate";
 set beresp.ttl = 0s;
 set beresp.http.Pragma = "no-cache";
 set beresp.uncacheable = true;
 return(deliver);
 }
 ...
}

Custom and full cache purges

Below is an example how to create an action to purge the whole Varnish cache.

First you need to allow HTTP PURGE request in default.vcl from localhost.
We'll create a special PURGE command which takes URLs to be purged out of the cache in a special header:

acl purge {
 "localhost";
 # XXX: Add your local computer public IP here if you
 # want to test the code against the production server
 # from the development instance
}
...

sub vcl_recv {
 ...
 # Allow PURGE requests clearing everything
 if (req.method == "PURGE") {
 if (!client.ip ~ purge) {
 return(synth(405, "Not allowed."));
 }
 return (purge);
 }
}

Then let's create a Plone view which will make a request from Plone to Varnish (upstream localhost:80) and issue the PURGE command.
We do this using the Requests [https://pypi.python.org/pypi/requests] Python library.

Example view code:

import requests

from Products.Five import BrowserView

from requests.models import Request

class Purge(BrowserView):
 """
 Purge upstream cache from all entries.

 This is ideal to hook up for admins e.g. through portal_actions menu.

 You can access it as admin::

 http://site.com/@@purge

 """

 def __call__(self):
 """
 Call the parent cache using Requests Python library and issue PURGE command for all URLs.

 Pipe through the response as is.
 """

 # This is the root URL which will be purged
 # - you might want to have different value here if
 # your site has different URLs for manage and themed versions
 site_url = self.context.portal_url() + "/"

 headers = {
 # Match all pages
 "X-Purge-Regex" : ".*"
 }

 resp = requests.request("PURGE", site_url + "*", headers=headers)

 self.request.response["Content-type"] = "text/plain"
 text = []

 text.append("HTTP " + str(resp.status_code))

 # Dump response headers as is to the Plone user,
 # so he/she can diagnose the problem
 for key, value in resp.headers.items():
 text.append(str(key) + ": " + str(value))

 # Add payload message from the server (if any)

 if hasattr(resp, "body"):
 text.append(str(resp.body))

Registering the view in ZCML:

<browser:view
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 name="purge"
 class=".views.Purge"
 permission="cmf.ManagePortal"
 />

More info

	https://www.varnish-cache.org/docs/4.0/users-guide/purging.html

Round-robin balancing

Varnish can do round-robin load balancing internally.
Use this if you want to distribute CPU-intensive load between several ZEO front end client instances, each listening on its own port.

Example:

Round-robin between two ZEO front end clients

backend app1 {
 .host = "localhost";
 .port = "8080";
}

backend app2 {
 .host = "localhost";
 .port = "8081";
}

Directors have been moved to the vmod_directors
To make directors (backend selection logic) easier to extend, the directors are now defined in loadable VMODs.
Setting a backend for future fetches in vcl_recv is now done as bellow, is an example redirector based on round-robin requests.

import directors;

sub vcl_init {
 new cluster1 = directors.round_robin();
 cluster1.add_backend(site1); # Backend site1 defined above
 cluster1.add_backend(site2); # Backend site2 defined above
}

sub vcl_recv {
 if (req.http.host ~ "(www\.|www2\.)?app\.fi(:[0-9]+)?$") {
 set req.backend_hint = cluster1.backend();
 set req.url = "/VirtualHostBase/http/" + req.http.host + ":80/app/app/VirtualHostRoot" + req.url;
 }

 ...
}

More info

	https://www.varnish-cache.org/docs/trunk/users-guide/vcl-backends.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Frontend Webserver

Description

How to configure the most popular Frontend servers.

This guide particularly focuses on
Unix-like [https://en.wikipedia.org/wiki/Unix-like] environments,
though the stack discussion may be useful to everyone.

	Apache
	Introduction

	Installing Apache front-end for Plone

	Procedure to restart Apache in production environment

	www-redirects

	Migration redirects

	Proxying other site under Plone URI space

	Redirecting certain URIs to old site

	Virtual hosting Apache configuration generator

	Caching images

	Testing cache headers

	Flushing cache

	Custom 500 internal error page

	Load balanced Apache virtual host configuration

	Nginx
	Introduction

	Minimal Nginx front end configuration for Plone on Ubuntu/Debian Linux

	Buildout and recipe

	Config test

	Deployment configuration

	Manually killing nginx

	Debugging nginx

	www-redirect

	Permanent redirect

	Make nginx aware where the request came from

	PHP with nginx and PHP-FPM

	SSI: server-side include

	Session affinity

	Securing Plone-Sites with https and nginx

	Setting log files

	Proxy Caching

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Frontend Webserver »

Apache

Description

Tips and guides for hosting Plone with Apache web server.

	Introduction

	Installing Apache front-end for Plone
	Apache and Plone guide (old)

	Procedure to restart Apache in production environment

	www-redirects

	Migration redirects

	Proxying other site under Plone URI space
	Reverse proxy host

	Redirecting certain URIs to old site

	Virtual hosting Apache configuration generator

	Caching images
	Unsetting language cookie for media content

	Testing cache headers

	Flushing cache

	Custom 500 internal error page

	Load balanced Apache virtual host configuration

Introduction

Here are useful information and snippets when hosting Plone behind Apache.

Installing Apache front-end for Plone

Apache runs on port 80. Plone runs on port 8080. Apache accepts all HTTP
traffic to your internet domain.

Here are quick instructions for Ubuntu / Debian.

Install required software:

sudo apt-get install apache2
sudo a2enmod rewrite
sudo a2enmod proxy
sudo a2enmod proxy_http
sudo a2enmod headers
sudo /etc/init.d/apache2 restart

Add virtual host config file /etc/apache2/sites-enabled/yoursite.conf.
Assuming Plone is your site id in Zope Management Interface (capital lettering do matter) and your
domain name is yoursite.com (note with or without www matters, see below):

UseCanonicalName On

NameVirtualHost *
<VirtualHost *>
 ServerAlias yoursite.com
 ServerSignature On

 Header set X-Frame-Options "SAMEORIGIN"
 Header set Strict-Transport-Security "max-age=15768000; includeSubDomains"
 Header set X-XSS-Protection "1; mode=block"
 Header set X-Content-Type-Options "nosniff"
 Header set Content-Security-Policy-Report-Only "default-src 'self'; img-src *; style-src 'unsafe-inline'; script-src 'unsafe-inline' 'unsafe-eval'"

 ProxyVia On

 # prevent your web server from being used as global HTTP proxy
 <LocationMatch "^[^/]">
 Deny from all
 </LocationMatch>

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 RewriteEngine on
 RewriteRule ^/(.*) http://localhost:8080/VirtualHostBase/http/yoursite.com:80/Plone/VirtualHostRoot/$1 [P,L]

</VirtualHost>

<VirtualHost *>
 ServerAlias *
 ServerRoot /var/www
 ServerSignature On
</VirtualHost>

Eventually you have one virtual host configuration file per one domain on your server.

Restart apache:

sudo apache2ctl configtest
sudo apache2ctl restart

Check that Plone responds:

http://yoursite.com:8080/Plone

Check that Apache responds:

http://yoursite.com

If everything is good then your Plone site properly configured using Apache front-end.

Content Security Policy (CSP) prevents a wide range of attacks,
including cross-site scripting and other cross-site injections, but
the CSP header setting may require careful tuning. To enable it,
replace the Content-Security-Policy-Report-Only by
Content-Security-Policy. The example above works with Plone 4.x
(including TinyMCE) but it very wide. You may need to adjust it if you
want to make CSP more restrictive or use additional Plone
Products. For more information, see

	http://www.w3.org/TR/CSP/

For an SSL configuration, just modify the rewrite rule from:

RewriteRule ^/(.*) http://localhost:8080/VirtualHostBase/http/yoursite.com:80/Plone/VirtualHostRoot/$1 [P,L]

to:

RewriteRule ^/(.*) http://localhost:8080/VirtualHostBase/https/yoursite.com:443/Plone/VirtualHostRoot/$1 [P,L]

Inside an SSL-enabled Apache virtual host definition.

Apache and Plone guide (old)

Procedure to restart Apache in production environment

You might share the same Apache web server across
several production sites. You don't want to hinder
the performance of the other sites when doing Apache configuration changes to one site.

The correct procedure to restart Apache is (on Ubuntu/Debian Linux)

Check that config files are working after editing them
apache2ctl configtest

Let Apache finish serving all the on-going requests before
restarting worker processes
apache2ctl graceful

www-redirects

If you wish to force people to use your site with or without www prefix you can use
the rules below. Note that setting this kind of rule is very useful from the search
engine optimization point of view also.

Example in <VirtualHost> section to redirect www.site.com -> site.com:

<VirtualHost 127.0.0.1:80>

 ServerName site.com
 ServerAlias www.site.com

 <IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{HTTP_HOST} ^www\.site\.com [NC]
 RewriteRule (.*) http://site.com$1 [L,R=302]

 </IfModule>

Example in <VirtualHost> section to redirect site.com -> www.site.com:

<VirtualHost 127.0.0.1:80>

 ServerName site.com
 ServerAlias www.site.com

 <IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{HTTP_HOST} ^site\.com [NC]
 RewriteRule (.*) http://www.site.com$1 [L,R=302]
 </IfModule>

Redirecting all the pages to the root of a new site:

RewriteEngine On
RewriteRule (.*) http://www.newsite.com [L,R=302]

Migration redirects

To redirect traffic from all pages permanently (301) to the landing page of a new site:

RewriteEngine On
RewriteRule (.*) http://collective-docs.readthedocs.org/ [L,R=301]

Proxying other site under Plone URI space

The following rule can be used to put a static web site to sit in the
same URI space with Plone. Put these rules before VirtualHost ProxyPass.

Examples:

ProxyPass /othersite/ http://www.some.other.domain.com/othersite/
ProxyPassReverse /othersite/ http://www.some.other.domain.com/othersite/

Reverse proxy host

By default, host name is correctly delivered from Apache to Plone.
Otherwise you might see all your HTTP requests coming from localhost, Apache.

You need:

ProxyPreserveHost On

For more information, see

	http://macadames.wordpress.com/2009/05/23/some-deliverance-tips/

Redirecting certain URIs to old site

This is useful if you migrate to a Plone from some legacy technology
and you still need to have some part of the URI space to
point to the old server.

	Create alternative domain name for the existing old site (e.g. www2)

	Modify Apache configuration so that URLs still being used
are redirected to the old server with alternative name, Put in this rewrite

<location /media>
 RedirectMatch /media/(.*)$ http://www2.site.fi/media/$1
</location>

Virtual hosting Apache configuration generator

	http://betabug.ch/zope/witch

Caching images

You can force caching of content types
on apache

First you need to enable Apache modules:

* mod_cache, mod_diskcache

On Debian this is:

sudo a2enmod

Then you can add to your virtual host configuration:

Disk cache configuration
CacheEnable disk /
CacheRoot "/var/cache/yourorganization-production"
CacheLastModifiedFactor 0.1
#CacheDefaultExpire 1
#CacheMaxExpire 7200
CacheDirLength 2

Then install go to Cache Configration (Plone 4.1+)
and configure the caching options [https://pypi.python.org/pypi/plone.app.caching].

Unsetting language cookie for media content

Media like content can confuse and break language selector on multilingual sites.

By default, Plone sets I18N_LANGUAGE cookie on

	All page requests

	All ATImage requests

Even if images are often language neutral, they still set I18N_LANGUAGE cookie
on HTTP response. This is problematic if image gets cached and the user
switches the language using the language selector. This happens when
you enforce caching using Apache level rules (instead of using Products.CacheSetup
or similar product). The user browsers received cached HTTP response image
for the image and it contains Set-Cookie: I18N_LANGUAGE header for the wrong language
-> browser language choice by cookie is reset.

A workaround is to force language cookie off from media like content:

SetEnvIfNoCase Request_URI "\.(?:gif|jpe?g|png|css|js)$" language-neutral
SetEnvIfNoCase Request_URI "image_preview(/)$" language-neutral
SetEnvIfNoCase Request_URI "image_large(/)$" language-neutral
SetEnvIfNoCase Request_URI "image_small(/)$" language-neutral
SetEnvIfNoCase Request_URI "image_thumb(/)$" language-neutral
SetEnvIfNoCase Request_URI "image_mini(/)$" language-neutral
SetEnvIfNoCase Request_URI "image*$" language-neutral
SetEnvIfNoCase Request_URI "navImage_small(/)$" language-neutral
Any URL having image in it
SetEnvIfNoCase Request_URI "^.*image*" language-neutral

Header unset Set-Cookie env=language-neutral

Testing cache headers

Use UNIX wget command. -S flag will display request headers.

Remember to do different request for HTML, CSS, JS and image payloads - the cache rules might not be the same.

HTTP example:

cd /tmp

wget --cache=off -S http://production.yourorganizationinternational.org/yourorganizationlogotemplate.gif

HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
 Date: Tue, 09 Mar 2010 12:33:26 GMT
 Server: Apache/2.2.8 (Ubuntu) DAV/2 SVN/1.4.6 mod_python/3.3.1 Python/2.5.2 PHP/5.2.4-2ubuntu5.4 with Suhosin-Patch mod_ssl/2.2.8 OpenSSL/0.9.8g
 Last-Modified: Wed, 25 Nov 2009 06:51:41 GMT
 Content-Length: 4837
 Via: 1.0 production.yourorganizationinternational.org
 Cache-Control: max-age=3600, public
 Expires: Tue, 09 Mar 2010 13:02:29 GMT
 Age: 1857
 Keep-Alive: timeout=15, max=100
 Connection: Keep-Alive
 Content-Type: image/gif
Length: 4837 (4.7K) [image/gif]
Saving to: `yourorganizationlogotemplate.gif.14'

HTTPS example:

cd /tmp
wget --cache=off --no-check-certificate -S https://production.yourorganizationinternational.org/

Flushing cache

Manually cleaning Apache disk cache:

sudo -i
cd /var/cache/yoursite
rm -rf *

Custom 500 internal error page

To make you look more pro when you update the server or Plone goes down

	https://httpd.apache.org/docs/2.2/custom-error.html

Load balanced Apache virtual host configuration

This complex config example includes

	HTTPS and SSL certificate set-up

	Load balancing using ZEO front-ends and Apache load balancer module

	Apache disk cache. This should provide static resource caching w/HTTPS support
if you are using plone.app.caching.

	https://httpd.apache.org/docs/2.2/caching.html

See

	http://stackoverflow.com/questions/5650716/are-sticky-sessions-needed-when-load-balancing-plone-3-3-5

More information about how to set a sticky session cookie if you need to support Zope sessions in your code

	http://opensourcehacker.com/2011/04/15/sticky-session-load-balancing-with-apache-and-mod_balancer-on-ubuntu-linux/

Example:

<VirtualHost 123.123.123:443>

 ServerName production.yourorganization.org
 ServerAdmin rocks@mfabrik.com

 SSLEngine On
 SSLCertificateFile /etc/apache2/ssl-keys/yourorganization.org.cer
 SSLCertificateKeyFile /etc/apache2/ssl-keys/yourorganization.org.key
 SSLCertificateChainFile /etc/apache2/ssl-keys/InstantValidationCertChain.crt

 LogFormat combined
 TransferLog /var/log/apache2/production.yourorganization.org.log

 <IfModule mod_proxy.c>
 ProxyVia On

 # prevent the webserver from being used as proxy
 <LocationMatch "^[^/]">
 Deny from all
 </LocationMatch>
 </IfModule>

 # Balance load between 4 ZEO front-ends
 <Proxy balancer://lbyourorganization>
 BalancerMember http://127.0.0.1:13001/
 BalancerMember http://127.0.0.1:13002/
 BalancerMember http://127.0.0.1:13003/
 BalancerMember http://127.0.0.1:13004/
 </Proxy>

 # Note: You might want to disable this URL of being public
 # as it can be used to access Apache live settings
 <Location /balancer-manager>
 SetHandler balancer-manager
 Order Deny,Allow
 # Your trusted IP addresses
 Allow from 123.123.123.123
 </Location>

 ProxyPass /balancer-manager !
 ProxyPass / balancer://lbyourorganization/http://localhost/VirtualHostBase/https/production.yourorganization.org:443/yourorganization_plone_site/VirtualHostRoot/
 ProxyPassReverse / balancer://lbyourorganization/http://localhost/VirtualHostBase/https/production.yourorganization.org:443/yourorganization_plone_site/VirtualHostRoot/

 # Disk cache configuration
 CacheEnable disk /
 # Must point to www-data writable directly which depends on OS
 CacheRoot "/var/cache/yourorganization-production"
 CacheLastModifiedFactor 0.1

 # Debug header flags all requests coming from this server
 Header append X-YourOrganization-Production yes

</VirtualHost>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Frontend Webserver »

Nginx

Description

Using the nginx web server to host Plone sites

	Introduction

	Minimal Nginx front end configuration for Plone on Ubuntu/Debian Linux

	Buildout and recipe

	Config test

	Deployment configuration

	Manually killing nginx

	Debugging nginx

	www-redirect

	Permanent redirect
	Cleaning up query string

	Matching incoming query string

	More info

	Make nginx aware where the request came from

	PHP with nginx and PHP-FPM

	SSI: server-side include

	Session affinity
	By using IP addresses

	By using cookies

	Securing Plone-Sites with https and nginx

	Setting log files

	Proxy Caching

Introduction

Nginx is an modern alternative server to Apache.

	It acts as a proxy server and load balancer in front of Zope.

	It handles rewrite rules.

	It handles HTTPS.

Minimal Nginx front end configuration for Plone on Ubuntu/Debian Linux

This is a minimal configuration to run nginx on Ubuntu/Debian in front
of a Plone site. These instructions are not for configurations where one
uses the buildout configuration tool to build a static Nginx server.

	Plone will by default be served on port 8080.

	We use VirtualHostMonster to pass the original protocol and
hostname to Plone. VirtualHostMonster provides a way to rewrite the
request path.

	We also need to rewrite the request path, because you want to site be
served from port 80 root (/), but Plone sites are nested in the
Zope application server as paths /site1, /site2 etc.

	You don't need to configure VirtualHostMonster in Plone/Zope in any way,
because all the installers will automatically install one for you. Nginx
configuration is all you need to touch.

	The URL passed to VirtualHostMonster is the URL Plone uses to construct
links in the template (portal_url in the code, also used by content
absolute_url() method). If your site loads without CSS styles usually
it is a sign that VirtualHostMonster URL is incorrectly written -- Plone
uses the URL to link stylesheets also.

	Plone itself contains a mini web server (Medusa) which serves the requests
from port 8080 -- Nginx acts simple as a HTTP proxy between Medusa and
outgoing port 80 traffic. Nginx does not spawn Plone process or anything
like that, but Plone processes are externally controlled, usually by
buildout-created bin/instance and bin/plonectl commands, or by
a supervisor instance.

Create file /etc/nginx/sites-available/yoursite.conf with contents:

This adds security headers
add_header X-Frame-Options "SAMEORIGIN";
add_header Strict-Transport-Security "max-age=15768000; includeSubDomains";
add_header X-XSS-Protection "1; mode=block";
add_header X-Content-Type-Options "nosniff";
#add_header Content-Security-Policy "default-src 'self'; img-src *; style-src 'unsafe-inline'; script-src 'unsafe-inline' 'unsafe-eval'";
add_header Content-Security-Policy-Report-Only "default-src 'self'; img-src *; style-src 'unsafe-inline'; script-src 'unsafe-inline' 'unsafe-eval'";

This specifies which IP and port Plone is running on.
The default is 127.0.0.1:8080
upstream plone {
 server 127.0.0.1:8090;
}

Redirect all www-less traffic to the www.site.com domain
(you could also do the opposite www -> non-www domain)
server {
 listen 80;
 server_name yoursite.com;
 rewrite ^/(.*) http://www.yoursite.com/$1 permanent;
}

server {

 listen 80;
 server_name www.yoursite.com;
 access_log /var/log/nginx/yoursite.com.access.log;
 error_log /var/log/nginx/yoursite.com.error.log;

 # Note that domain name spelling in VirtualHostBase URL matters
 # -> this is what Plone sees as the "real" HTTP request URL.
 # "Plone" in the URL is your site id (case sensitive)
 location / {
 proxy_pass http://plone/VirtualHostBase/http/yoursite.com:80/Plone/VirtualHostRoot/;
 }
}

Then enable the site by creating a symbolic link:

sudo -i
cd /etc/nginx/sites-enabled
ln -s ../sites-available/yoursite.conf .

See that your nginx configuration is valid:

/etc/init.d/nginx configtest

ok
configuration file /etc/nginx/nginx.conf test is successful
nginx.

Alternatively your system might not provide configtest command and then
you can test config with:

/usr/sbin/nginx

If the config was OK then restart:

/etc/init.d/nginx restart

More info:

	http://wiki.mediatemple.net/w/%28ve%29:Configure_virtual_hosts_with_Nginx_on_Ubuntu

	http://www.starzel.de/blog/securing-plone-sites-with-https-and-nginx

Content Security Policy (CSP) prevents a wide range of attacks,
including cross-site scripting and other cross-site injections, but
the CSP header setting may require careful tuning. To enable it,
replace the Content-Security-Policy-Report-Only by
Content-Security-Policy. The example above works with Plone 4.x
(including TinyMCE) but it very wide. You may need to adjust it if you
want to make CSP more restrictive or use additional Plone
Products. For more information, see

	http://www.w3.org/TR/CSP/

Buildout and recipe

If, and only if, you cannot use a platform install of nginx you may use the recipe and buildout example below to get started.

	http://www.martinaspeli.net/articles/an-uber-buildout-for-a-production-plone-server

	https://pypi.python.org/pypi/gocept.nginx

A buildout will download, install and configure nginx from scratch.
The buildout file contains an nginx configuration which can use template
variables from buildout.cfg itself.

When you change the configuration of nginx in buildout you probably don't
want to rerun the whole buildout, but only the nginx part of it:

bin/buildout -c production.cfg install balancer

Config test

Assuming you have a buildout nginx section called balancer:

bin/balancer configtest

Testing nginx configuration
the configuration file /srv/plone/isleofback/parts/balancer/balancer.conf syntax is ok
configuration file /srv/plone/isleofback/parts/balancer/balancer.conf test is successful

Deployment configuration

gocept.nginx [https://pypi.python.org/pypi/gocept.nginx/] supports a
special deployment configuration where you manually configure all
directories. One important reason why you might wish to do this, is to
change the location of the pid file. Normally this file would be created
in parts, which is deleted and recreated when you re-run buildout. This
interferes with reliably restarting nginx, since the pid file may have been
deleted since startup. In this case, you need to manually kill nginx to get
things back on track.

Example deployment configuration in production.cfg:

Define folder and file locations for nginx called "balancer"
If deployment= is set on gocept.nginx recipe it uses
data provider here
[nginx]
run-directory = ${buildout:directory}/var/nginx
etc-directory = ${buildout:directory}/var/nginx
log-directory = ${buildout:directory}/var/logs
rc-directory = ${buildout:directory}/bin
logrotate-directory =
user =

[balancer]
recipe = gocept.nginx
nginx = nginx-build
deployment = nginx
configuration =
 #user ${users:balancer};
 error_log ${buildout:directory}/var/log/balancer-error.log;
 worker_processes 1;

Install this part:

bin/buildout -c production.cfg install balancer

Then you can use the following cycle to update the configuration:

bin/balancer-nginx-balancer start
Update config in buildout
nano production.cfg
This is non-destructive, because now our PID file is in var/nginx
bin/buildout -c production.cfg install balancer
Looks like reload is not enough
bin/nginx-balancer stop ; bin/nginx-balancer start

Manually killing nginx

You have lost PID file, or the recorded PID does not match the real
PID any longer. Use buildout's starter script as a search key:

(hardy_i386)isleofback@isleofback:~$ bin/balancer reload
Reloading nginx
cat: /srv/plone/isleofback/parts/balancer/balancer.pid: No such file or directory

(hardy_i386)isleofback@isleofback:~$ ps -Af|grep -i balancer
1001 14012 1 0 15:26 ? 00:00:00 nginx: master process /srv/plone/isleofback/parts/nginx-build/sbin/nginx -c /srv/plone/isleofback/parts/balancer/balancer.conf
1001 16488 16458 0 16:34 pts/2 00:00:00 grep -i balancer
(hardy_i386)isleofback@isleofback:~$ kill 14012

balancer is no longer running
(hardy_i386)isleofback@isleofback:~$ ps -Af|grep -i balancer
1001 16496 16458 0 16:34 pts/2 00:00:00 grep -i balancer

(hardy_i386)isleofback@isleofback:~$ bin/balancer start
Starting nginx

Now it is running again
(hardy_i386)isleofback@isleofback:~$ ps -Af|grep -i balancer
1001 16501 1 0 16:34 ? 00:00:00 nginx: master process /srv/plone/isleofback/parts/nginx-build/sbin/nginx -c /srv/plone/isleofback/parts/balancer/balancer.conf
1001 16504 16458 0 16:34 pts/2 00:00:00 grep -i balancer

Debugging nginx

Set nginx logging to debug mode:

error_log ${buildout:directory}/var/log/balancer-error.log debug;

www-redirect

Below is an example how to do a basic yourdomain.com -> www.yourdomain.com
redirect.

Put the following in your gocept.nginx configuration:

http {

 server {
 listen ${hosts:balancer}:${ports:balancer};
 server_name ${hosts:main-alias};
 access_log off;
 rewrite ^(.*)$ $scheme://${hosts:main}$1 redirect;
 }

Hosts are configured in a separate buildout section:

[hosts]
Hostnames for servers
main = www.yoursite.com
main-alias = yoursite.com

More info

	https://stackoverflow.com/questions/7947030/nginx-no-www-to-www-and-www-to-no-www

Permanent redirect

Below is an example redirect rule:

Redirect old Google front page links.
Redirect event to new Plone based systems.

location /tapahtumat.php {
 rewrite ^ http://${hosts:main}/tapahtumat permanent;
}

Note

Nginx location match evaluation rules are not always top-down.
You can add more specific matches after location /.

Cleaning up query string

By default, nginx includes all trailing HTTP GET query parameters in the
redirect. You can disable this behavior by adding a trailing ?:

location /tapahtumat.php {
 rewrite ^ http://${hosts:main}/no_ugly_query_string? permanent;
}

Matching incoming query string

The location directive does not support query strings. Use the if
directive from the HTTP rewrite module.

Example:

location /index.php {
 # index.php?id=5
 if ($args ~ id=5) {
 rewrite ^ http://${hosts:main}/sisalto/lomapalvelut/ruokailu? permanent;
 }
}

More info

nginx location matching rules

	http://wiki.nginx.org/NginxHttpCoreModule#location

nginx redirect module docs

	http://wiki.nginx.org/NginxHttpRewriteModule

More info on nginx redirects

	http://scott.yang.id.au/2007/04/do-you-need-permalink-redirect/

Make nginx aware where the request came from

If you set up nginx to run in front of Zope, and set up a virtual host with
it like this:

server {
 server_name demo.webandmobile.mfabrik.com;
 location / {
 rewrite ^/(.*)$ /VirtualHostBase/http/demo.webandmobile.mfabrik.com:80/Plone/VirtualHostRoot/$1 break;
 proxy_pass http://127.0.0.1:8080/;
 }
}

Zope will always get the request from 127.0.0.1:8080 and not from the
actual host, due to the redirection. To solve this problem correct your
configuration to be like this:

server {
 server_name demo.webandmobile.mfabrik.com;
 location / {
 rewrite ^/(.*)$ /VirtualHostBase/http/demo.webandmobile.mfabrik.com:80/Plone/VirtualHostRoot/$1 break;
 proxy_pass http://127.0.0.1:8080/;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

PHP with nginx and PHP-FPM

If you are coming from Apache world, you may be used to the scenario where
Apache handles all php-related stuff. With nginx, it's a bit different:
nginx does not automatically spawn FCGI processes, so you must start them
separately. In fact, FCGI is a lot like proxying, which means that PHP-FPM
will run as a separate server and all we need to do is to forward the
request to it.

A detailed tutorial on how to set it all up, configure and run it can be
found here:

	http://alasdoo.com/2010/12/xdv-plone-and-phpbb-under-one-nginx-roof/

SSI: server-side include

In order to include external content in a page (XDV), we must set up nginx
to make these includes for us. For including external content we will use
the SSI (server-side include) method, which means that on each request nginx
will get the needed external content, put it in place and only then return
the response. Here is a configuration that sets up the filtering and turns
on SSI for a specific location:

server {
 listen 80;
 server_name localhost;

 # Decide if we need to filter
 if ($args ~ "^(.*);filter_xpath=(.*)$") {
 set $newargs $1;
 set $filter_xpath $2;
 # rewrite args to avoid looping
 rewrite ^(.*)$ /_include$1?$newargs?;
 }

 location @include500 { return 500; }
 location @include404 { return 404; }

 location ^~ /_include {
 # Restrict to subrequests
 internal;
 error_page 404 = @include404;

 # Cache in Varnish for 1h
 expires 1h;

 # Proxy
 rewrite ^/_include(.*)$ $1 break;
 proxy_pass http://127.0.0.1:80;

 # Our safety belt.
 proxy_set_header X-Loop 1$http_X_Loop; # unary count
 proxy_set_header Accept-Encoding "";
 error_page 500 = @include500;
 if ($http_X_Loop ~ "11111") {
 return 500;
 }

 # Filter by xpath
 xslt_stylesheet /home/ubuntu/plone/eggs/xdv-0.4b2-py2.6.egg/xdv/filter.xsl
 xpath=$filter_xpath
 ;
 xslt_html_parser on;
 xslt_types text/html;
 }

 location /forum {
 xslt_stylesheet /home/ubuntu/plone/theme/theme.xsl
 path='$uri'
 ;
 xslt_html_parser on;
 xslt_types text/html;
 # Switch on ssi here to enable external includes.
 ssi on;

 root /home/ubuntu/phpBB3;
 index index.php;
 try_files $uri $uri/ /index.php?q=$uri&$args;
 }
}

Session affinity

If you intend to use nginx for session balancing between ZEO processes, you
need to be aware of session affinity. By default, ZEO processes don't share
session data. If you have site functionality which stores user-specific data
on the server, let's say an ecommerce site shopping cart, you must always
redirect users to the same ZEO client process or they will have 1/number of
processes chance to see the orignal data.

Make sure that your Zope session cookie are not
cleared by any front-end server (nginx, Varnish).

By using IP addresses

This is the most reliable way. nginx will balance each incoming request to a
front end client by the request's source IP address.

This method is reliable as long as nginx can correctly extract IP address
from the configuration.

	http://wiki.nginx.org/NginxHttpUpstreamModule#ip_hash

By using cookies

These instructions assume you are installing nginx via buildout.

	Nginx sticky sessions module [http://nginx-sticky-module.googlecode.com/files/nginx-sticky-module-1.0-rc2.tar.gz]

Manually extract nginx-sticky-module under src:

cd src
wget https://code.google.com/p/nginx-sticky-module/downloads/list

Then add it to the nginx-build part in buildout:

[nginx-build]
recipe = zc.recipe.cmmi
url = http://sysoev.ru/nginx/nginx-0.7.65.tar.gz
extra_options = --add-module=${buildout:directory}/src/nginx-sticky-module-1.0-rc2

Now test reinstalling nginx in buildout:

mv parts/nginx-build/ parts/nginx-build-old # Make sure full rebuild is done
bin/buildout install nginx-build

See that it compiles without errors. Here is the line of compiling sticky:

gcc -c -O -pipe -O -W -Wall -Wpointer-arith -Wno-unused-parameter \
 -Wunused-function -Wunused-variable -Wunused-value -Werror -g \
 -I src/core -I src/event -I src/event/modules -I src/os/unix \
 -I objs -I src/http -I src/http/modules -I src/mail \
 -o objs/addon/nginx-sticky-module-1.0-rc2/ngx_http_sticky_module.o

Now add sticky to the load-balancer section of nginx config:

[balancer]
recipe = gocept.nginx
nginx = nginx-build
...
http {
 client_max_body_size 64M;
 upstream zope {
 sticky;
 server ${hosts:client1}:${ports:client1} max_fails=3 fail_timeout=30s;
 server ${hosts:client2}:${ports:client2} max_fails=3 fail_timeout=30s;
 server ${hosts:client3}:${ports:client3} max_fails=3 fail_timeout=30s;
 }

Reinstall nginx balancer configs and start-up scripts:

bin/buildout install balancer

Make sure that the generated configuration is ok:

bin/nginx-balancer configtest

Restart nginx:

bin/nginx-balancer stop ;bin/nginx-balancer start

Check that some (non-anonymous) page has the route cookie set:

Huiske-iMac:tmp moo$ wget -S http://yoursite.com/sisalto/saariselka-infoa
--2011-03-21 21:31:40-- http://yoursite.com/sisalto/saariselka-infoa
Resolving yoursite.com (yoursite.com)... 12.12.12.12
Connecting to yoursite.com (yoursite.com)|12.12.12.12|:80... connected.
HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
 Server: nginx/0.7.65
 Content-Type: text/html;charset=utf-8
 Set-Cookie: route=7136de9c531fcda112f24c3f32c3f52f
 Content-Language: fi
 Expires: Sat, 1 Jan 2000 00:00:00 GMT
 Set-Cookie: I18N_LANGUAGE="fi"; Path=/
 Content-Length: 41471
 Date: Mon, 21 Mar 2011 19:31:40 GMT
 X-Varnish: 1979481774
 Age: 0
 Via: 1.1 varnish
 Connection: keep-alive

Now test it by doing session-related activity and see that your shopping
cart is not "lost".

More info

	http://code.google.com/p/nginx-sticky-module/source/browse/trunk/README

	http://nathanvangheem.com/news/nginx-with-built-in-load-balancing-and-caching

Securing Plone-Sites with https and nginx

For instructions how to use SSL for all authenticated traffic see this
blog-post:

	http://www.starzel.de/blog/securing-plone-sites-with-https-and-nginx

Setting log files

nginx.conf example:

worker_processes 2;
error_log /srv/site/Plone/zinstance/var/log/nginx-error.log warn;

events {
 worker_connections 256;
}

http {
 client_max_body_size 10M;

 access_log /srv/site/Plone/zinstance/var/log/nginx-access.log;

Proxy Caching

Nginx can do rudimentary proxy caching.
It may be good enough for your needs.
Turn on proxy caching by adding to your nginx.conf or a separate conf.d/proxy_cache.conf:

##
common caching setup; use "proxy_cache off;" to override
##
proxy_cache_path /var/www/cache levels=1:2 keys_zone=thecache:100m max_size=4000m inactive=1440m;
proxy_temp_path /tmp;
proxy_redirect off;
proxy_cache thecache;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
client_max_body_size 0;
client_body_buffer_size 128k;
proxy_send_timeout 120;
proxy_buffer_size 4k;
proxy_buffers 4 32k;
proxy_busy_buffers_size 64k;
proxy_temp_file_write_size 64k;
proxy_connect_timeout 75;
proxy_read_timeout 205;
proxy_cache_bypass $cookie___ac;
proxy_http_version 1.1;
add_header X-Cache-Status $upstream_cache_status;

Create a /var/www/cache directory owned by your nginx user (usually www-data).

Limitations:

	Nginx does not support the vary header.
That's why we use proxy_cache_bypass to turn off the cache for all authenticated users.

	Nginx does not support the s-maxage cache-control directive. Only max-age.
This means that moderate caching will do nothing. However, strong caching works and will cause all your static resources and registry items to be cached.
Don't underestimate how valuable that is.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Production

Description

Hints for Plone in production.

This guide particularly focuses on
Unix-like [https://en.wikipedia.org/wiki/Unix-like] environments,
though the stack discussion may be useful to everyone.

	Automatic Plone (re)starts
	Introduction

	plonectl script

	Starting on boot

	Tutorial: Installing Plone for Production on Ubuntu
	Introduction

	Step 1: Platform preparation

	Step 2: Install Plone

	Step 3: Set Plone to start with the server

	Step 4: Create a Plone site

	Step 5: Set up virtual hosting

	Step 6: Set up packing and backup

	Step 7: Add a send-only Mail Transfer Agent

	Step 8: Set up a firewall

	Scaling up

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Production »

Automatic Plone (re)starts

	Introduction

	plonectl script

	Starting on boot
	Using supervisor

	Debian LSBInitScripts

	Upstart

	Systemd

	Crontab

	rc.local script

Introduction

Tips on how to automatically start Plone on server boot.

This manual assumes, that you are installed Plone via the Unified-Installer as root install if you did a different install, please addjust the examples below for your own needs, the user as which you are running Plone maybe different for example.

plonectl script

The general-purpose plonectl control command for Plone installations is:

yourbuildoutfolder/bin/plonectl

yourbuildoutfolder is the topmost folder of your Plone installation.
It will always contain a buildout.cfg file and a bin directory.

The plonectl command is a convenience script that controls standalone or cluster configurations.
In a standalone installation, this will restart the instance part.
In a ZEO cluster install it will restart the zeoserver and client parts.

If you have installed Plone in production mode, the Plone server components are meant to be run as a special user, usually plone_daemon. (In older versions, this was typically plone.) In this case, the start, stop and restart commands are:

start
sudo -u plone_daemon bin/plonectl start
#
stop
sudo -u plone_daemon bin/plonectl stop
#
restart
sudo -u plone_daemon bin/plonectl restart

Starting on boot

It is best practice to start Plone service if the server is rebooted.
This way your site will automatically recover from power loss etc.

On a Linux or BSD system, you have two major alternatives to arrange automatic starting for a production install:

	A process-control system, like supervisor.

	Through init.d (BSD rc.d) scripts.

Using supervisor

supervisor [http://supervisord.org/] is a general-purpose process-control system that is well-known and highly recommended in the Plone community.

Process-control systems generally run their controlled programs as subprocesses.
This means that the controlled program must not detach itself from the console (daemonize).

Zope/Plone's "start" command does not work for this purpose.
Instead use console.
Do not use fg which turns on debug switches that will dramatically slow your site.

Supervisor is well-documented, easy to set up, and included as an instalable package with popular Linux and BSD distributions.

Debian LSBInitScripts

Short documentation about how to make an Init Script LSB

This example will start a plone site on boot:

#!/bin/sh
BEGIN INIT INFO
Provides: start_plone.sh
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Should-Start: my plone site
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start plone at boot time
Description: Start my plone site at boot time
#
#
#
#
END INIT INFO

su - plone_daemon -c "/usr/local/Plone/zeocluster/bin/plonectl start"

Save this script as start_plone.sh in /etc/init.d and make it executable.

add the script to dependency-based booting:

insserv start_plone.sh

Where start_plone.sh is an executable init script placed in /etc/init.d,
insserv will produce no output if everything went OK. Examine the error code in $? if you want to be sure.

This another example (/etc/init.d/plone):

#!/bin/sh

BEGIN INIT INFO
Provides: plone
Required-Start: $syslog $remote_fs
Required-Stop: $syslog $remote_fs
Should-Start: $remote_fs
Should-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start plone instances
Description: Start the instances located at /srv/Plone/zeocluster/bin/plonectl
END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

[-f /usr/local/Plone/zeocluster/bin/plonectl] || exit 0

DAEMON=/usr/local/Plone/zeocluster/bin/plonectl
NAME="plone "
DESC="daemon zeoserver & client"

. /lib/lsb/init-functions

case "$1" in
 start)
 log_daemon_msg "Starting $DESC" "$NAME"
 if start-stop-daemon --quiet --oknodo --chuid plone:plone \
 --exec ${DAEMON} --start start
 then
 log_end_msg 0
 else
 log_end_msg 1
 fi
 ;;

 stop)
 log_daemon_msg "Stopping $DESC" "$NAME"
 if start-stop-daemon --quiet --oknodo --chuid plone:plone \
 --exec ${DAEMON} --start stop
 then
 log_end_msg 0
 else
 log_end_msg 1
 fi
 ;;

 restart)
 log_daemon_msg "Restarting $DESC" "$NAME"
 if start-stop-daemon --quiet --oknodo --chuid plone:plone \
 --exec ${DAEMON} --start restart
 then
 log_end_msg 0
 else
 log_end_msg 1
 fi
 ;;

 status)
 start-stop-daemon --chuid plone:plone \
 --exec ${DAEMON} --start status
 ;;

 force-reload)
 echo "Plone doesn't support force-reload, use restart instead."
 ;;

 *)
 echo "Usage: /etc/init.d/plone {start|stop|status|restart}"
 exit 1
 ;;
esac

exit 0

Make sure to read:

http://wiki.debian.org/LSBInitScripts

Upstart

Upstart is an event-based replacement for the /sbin/init daemon which handles starting of tasks and services during boot, stopping them during shutdown and supervising them while the system is running.
It was originally developed for the Ubuntu distribution, but is intended to be suitable for deployment in all Linux distributions as a replacement for the venerable System-V init.

Example of a plone.conf file in /etc/init/ -> /etc/init/plone.conf:

Plone - Web-Content Management System
#
Based on Python and ZOPE

description "start plone"
author "Josh Sehn based on previous work by Christoph Glaubitz"
version "0.3"

console none
respawn

start on (local-filesystems and net-device-up and runlevel [2345])
stop on runlevel [!2345]

exec sudo -u plone_daemon /usr/local/Plone/zeocluster/bin/plonectl start

Make sure to read: http://upstart.ubuntu.com/

Also check the original source of this sample file: http://chrigl.de/blogentries/my-plone-configuration

The above sample has not been extensively tested and is intended for use with in a zeocluster configuration.
To use the above sample for a normal (non-root) user installation, replace the last line with:

exec /home/$USERID/Plone/plonectl start

Systemd

Create services file plone.service in /etc/systemd/system:

[Unit]
Description=Plone content management system
After=network.target

[Service]
Type=forking
ExecStart=/usr/local/Plone/zeocluster/bin/plonectl start
ExecStop=/usr/local/Plone/zeocluster/bin/plonectl stop
ExecReload=/usr/local/Plone/zeocluster/bin/plonectl restart

[Install]
WantedBy=multi-user.target

Make systemd take notice of it:

systemctl daemon-reload

Activate a service immediately:

systemctl start plone.service

Check status of service:

systemctl status plone.service

Enable a service to be started on bootup:

systemctl enable plone.service

More detailed log information:

systemd-journalctl -a

Make sure to read: http://www.freedesktop.org/wiki/Software/systemd/

Crontab

These instructions apply for Debian-based Linuxes.

Example crontab of yourploneuser:

@reboot /usr/local/Plone/zeocluster/bin/plonectl start

rc.local script

For Debian-based Linuxes, add the following line to the /etc/rc.local script:

/usr/local/Plone/zeocluster/bin/plonectl restart

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Production »

Tutorial: Installing Plone for Production on Ubuntu

Description

A step-by-step guide to installing Plone 4.x on a recent Ubuntu LTS [12.04] server installation.

	Introduction
	Requirements

	Step 1: Platform preparation

	Step 2: Install Plone

	Step 3: Set Plone to start with the server

	Step 4: Create a Plone site

	Step 5: Set up virtual hosting

	Step 6: Set up packing and backup

	Step 7: Add a send-only Mail Transfer Agent

	Step 8: Set up a firewall

	Scaling up

Introduction

This tutorial walks you step-by-step through a minimum responsible installation of Plone for production on a recent Ubuntu LTS server.

The installation includes Plone itself; nginx for a reverse-proxy; a send-only mail-transfer agent; and firewall rules. We'll set Plone to start with server startup and will add cron jobs to periodically pack the database and create snapshot backups.

This minimal install will work for production for a smaller Plone site, and will provide a good base for scaling up for a larger site.

Requirements

	A clean installation of a recent Ubuntu server. The tutorial has been tested on cloud and virtual box servers. The install described here will run in 512 MB RAM. More RAM will be needed for larger or busy sites.

	A hostname for the new site. You or your DNS admin should have already created a hostname (e.g., www.yoursite.com) and a host record pointing to the new server.

	Unix command-line and basic system administrator skills. You should know how to use ssh to create a terminal session with your new server. You should know how to use vi or some other terminal editor.

	An Internet connection.

Step 1: Platform preparation

Get to the point where you can ssh to the server as a non-root user and use sudo to gain root permissions.

First step with any new server is to update the already installed system libraries:

sudo apt-get update
sudo apt-get dist-upgrade

Then, install the platform's build kit, nginx, and supervisor:

sudo apt-get install build-essential python-dev libjpeg-dev libxslt-dev supervisor nginx

Step 2: Install Plone

Check http://plone.org/products/plone. Follow the Download link to get to the latest release. Copy the URL for the Unified Installer. Substitute that URL below:

wget https://launchpad.net/plone/4.3/4.3.3/+download/Plone-4.3.3-UnifiedInstaller.tgz

Unpack, change into the unpack directory and run the installer:

tar xf Plone-4.3.3-UnifiedInstaller.tgz
cd Plone-4.3.3-UnifiedInstaller/
sudo ./install.sh zeo

This will install Plone to /usr/local/Plone. There are installer options to put it elsewhere. Run ./install.sh` with no arguments to get options.

Note

Note that this is root installation. The installer will create special system users to build and run Plone.

Note

This creates a zeo installation with two Plone clients. We will only connect one of those clients to the Internet. The other will be reserved for debugging and administrator access. If you know this is a larger site and wish to use load balancing, you may create more clients with the --clients=## command-line argument to create more clients. They're also easy to add later.

If you hit an "lxml" error during installation (ie the log shows "Error: Couldn't install: lxml 2.3.6") you may need additional libraries.
Take a look at http://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/debian-libraries

When the install completes, you'll be shown the preset administrative password. Record it. If you lose it, you may see it again:

sudo cat /usr/local/Plone/zeocluster/adminPassword.txt

Step 3: Set Plone to start with the server

We're going to use supervisor to start Plone with the server. To do so, we'll create a supervisor configuration file:

sudo vi /etc/supervisor/conf.d/plone4.conf

Specify that supervisor should start the database server and client1 automatically:

[program:plone4server]
user=plone_daemon
directory=/usr/local/Plone/zeocluster
command=/usr/local/Plone/zeocluster/bin/zeoserver fg

[program:plone4client1]
user=plone_daemon
directory=/usr/local/Plone/zeocluster
command=/usr/local/Plone/zeocluster/bin/client1 console
stopwaitseconds=30

When that file is saved you're set to start on server start.
To start immediately, tell supervisor about the new components:

sudo supervisorctl
supervisor> reread
supervisor> add plone4server
plone4server: added process group
supervisor> add plone4client1
plone4client1: added process group
supervisor> status
plone4client1 RUNNING pid 32327, uptime 0:00:02
plone4server RUNNING pid 32326, uptime 0:00:08

Step 4: Create a Plone site

At this point, you should be able to open a web browser and point it to port 8080 on your new server. Do so, and use your administrative password to create a Plone site with the id "Plone". (Feel free to use a different ID, just remember it below when you set up virtual hosting rules.)

Step 5: Set up virtual hosting

We're going to use nginx as a reverse proxy. Virtual hosting will be established by rewrite rules. You need two bits of information: 1) the hostname you want to use (for which DNS records should already be set up); 2) the id of the Plone site you created.

We'll set up nginx by adding a new configuration file:

sudo vi /etc/nginx/sites-available/plone4.conf

Add the contents:

server {
 server_name www.yourhostname.com;
 listen 80;

 location / {
 rewrite ^/(.*)$ /VirtualHostBase/http/www.yourhostname.com:80/Plone/VirtualHostRoot/$1 break;
 proxy_pass http://localhost:8080;
 }
 location ~* manage_ {
 deny all;
 }
}

server {
 server_name yourhostname.com;
 listen 80;
 access_log off;
 rewrite ^(/.*)$ http://www.yourhostname.com$1 permanent;
}

And save.

Note

The location ~* manage_ rule will deny access to most of the Zope Management interface. (You'll get to that by bypassing nginx.)

Note

The second server stanza sets up an automatic redirect that will transfer requests for the bare hostname to its www. form. You may not want or need that.

Enable the new nginx site configuration:

cd /etc/nginx/sites-enabled
sudo ln -s /etc/nginx/sites-available/plone4.conf

And, tell nginx to reload the configuration:

sudo service nginx configtest
sudo service nginx reload

Try out your virtual hosting.

Step 6: Set up packing and backup

We want the Zope database to be packed weekly. We'll do so by setting up a cron job:

sudo vi /etc/cron.d/zeopack

Add the contents:

57 22 * * 5 plone_daemon /usr/local/Plone/zeocluster/bin/zeopack

And save.

Note

Pick a time when your system can take some extra load. Don't use the day/time above.

Let's also create a daily snapshot of the database:

sudo vi /etc/cron.d/plonebackup

Add the contents below, adjust the time, and save:

37 0 * * * plone_daemon /usr/local/Plone/zeocluster/bin/snapshotbackup

Note

This snapshot will give you a stable copy of the database at a particular time. You'll need a separate strategy to backup the server's file system, including the snapshot.

Step 7: Add a send-only Mail Transfer Agent

You don't need this step if you have an MTA on another server, or are using a mail-send service. If you don't have that available, this step will create a localhost, port 25, MTA that you may use with Plone's mail setup.

We're going to use Postfix. There are lots of alternatives.

Add the Postfix package and edit its main configuration file:

sudo apt-get install postfix
sudo vi /etc/postfix/main.cf

Change the bottom section to turn off general mail in:

myhostname = www.yourhostname.com
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
myorigin = yourhostname.com
mydestination =
relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = loopback-only

Tell postfix to restart:

sudo /etc/init.d/postfix restart

Step 8: Set up a firewall

You must set up a firewall. But, you may be handling that outside the system, for example via AWS security groups.

If you want to use a software firewall on the machine, you may use ufw to simplify rule setup.

sudo apt-get install ufw
sudo ufw limit 22/tcp
sudo ufw allow 80/tcp
sudo ufw enable

Note

This blocks everything but SSH and HTTP.

So, you may be wondering, how do you do Zope Management Interface administration?
SSH port forwarding will allow you to build a temporary encrypted tunnel from your workstation to the server.

Execute on your workstation the command:

ssh yourloginid@www.yourhostname.com -L:8080:localhost:8080

Now, ask for http://localhost:8080/ in your workstation web browser, and you'll be looking at the ZMI root.

Scaling up

This installation will do well on a minimum server configuration (512MB RAM).
If you've a larger site, buy more memory and set up reverse-proxy caching and load balancing.

Deploying and installing Plone in production is a good introduction to scaling topics.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

Testing & Tuning Plone

	Testing and debugging
	Logging

	Python debugging

	Unit testing

	Functional testing

	Doctests

	Site error log service

	Boilerplate tests

	Clean uninstall

	Performance and tuning
	Caching rules

	Cache decorators

	RAM cache

	About Instances and Threads, Performance and RAM consumption

	Performance tips

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

Testing and debugging

This section contains tips how to test and debug your code.

	Logging

	Python debugging

	Unit testing

	Functional testing

	Doctests

	Site error log service

	Boilerplate tests

	Clean uninstall

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Logging

Description

How to write log output from your Plone add-on program code

	Introduction
	Log file location

	Viewing logs in real time

	Log level

	Logging from Python code

	Logging from page templates and RestrictedPython scripts

	Forcing log level and output

	Temporarily capturing log output

	transaction_note()

Introduction

Python logging package [http://docs.python.org/library/logging.html] is used to log from Plone.

Log file location

By default, logs go to var/log folder under buildout.

If Zope instance is started in the foreground mode
logs will be printed in the console (stdout).

Plone log filename varies depending on the installation mode (Zope, ZEO cluster).
But for each instance there are two log files

	Event logs (errors), normally called instance.log

	HTTP request log (Apache compatible), normally called Z2.log

Viewing logs in real time

UNIX'y way for your terminal.

Open error log viewer using tail command (print content from file end) and wait for further file writes

tail -f var/log/instance.log

Press CTRL+C to abort.

Log level

Default log level is INFO. To enable more verbose logging, edit buildout.cfg,

Change log level by editing [instance] section event-log-level:

[instance]
event-log-level = debug

More information

	https://pypi.python.org/pypi/plone.recipe.zope2instance

Logging from Python code

Example:

import logging

logger = logging.getLogger("Plone")

class MySomething(object):
 ...
 def function(self):
 logger.info("Reached function()")
 ...

Logging from page templates and RestrictedPython scripts

Python logging module doesn't provide Zope 2 security assertations
and does not work in RestrictedPython Python scripts.

However, you can use context.plone_log() method logging in the sandboxed execution mode.

Example:

context.plone_log("This is so fun")

Forcing log level and output

The following snippet forces the log level of Python logging for the duration of the process
by modifying the root logger object:

Force application logging level to DEBUG and log output to stdout for all loggers
import sys, logging

root_logger = logging.getLogger()
root_logger.setLevel(logging.DEBUG)

handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
root_logger.addHandler(handler)

Temporarily capturing log output

You can capture Python logging output temporarily to a string buffer.
This is useful if you want to use logging module to record
the status of long running operations and later show to the
end user, who does not have access to file system logs,
how the operation proceeded.

Below is an BrowserView code example.

Example view code:

import logging
from StringIO import StringIO

from Products.Five import BrowserView

from xxx.objects.interfaces import IXXXResearcher
from Products.statusmessages.interfaces import IStatusMessage

from xxx.objects.sync import sync_with_xxx

logger = logging.getLogger("XXX sync")

class SyncAll(BrowserView):
 """
 Update all researcher data on the site from XXX (admin action)
 """

 def sync(self):
 """
 Search all objects of certain type on the site and
 sync them with a remote site.
 """

 brains = self.context.portal_catalog(object_provides=IXXXResearcher.__identifier__)
 for brain in brains:
 object = brain.getObject()
 sync_with_xxx(object, force=True)

 def startCapture(self, newLogLevel = None):
 """ Start capturing log output to a string buffer.

 http://docs.python.org/release/2.6/library/logging.html

 @param newLogLevel: Optionally change the global logging level, e.g. logging.DEBUG
 """
 self.buffer = StringIO()

 print >> self.buffer, "Log output"

 rootLogger = logging.getLogger()

 if newLogLevel:
 self.oldLogLevel = rootLogger.getEffectiveLevel()
 rootLogger.setLevel(newLogLevel)
 else:
 self.oldLogLevel = None

 self.logHandler = logging.StreamHandler(self.buffer)
 formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
 self.logHandler.setFormatter(formatter)
 rootLogger.addHandler(self.logHandler)

 def stopCapture(self):
 """ Stop capturing log output.

 @return: Collected log output as string
 """

 # Remove our handler
 rootLogger = logging.getLogger()

 # Restore logging level (if any)
 if self.oldLogLevel:
 rootLogger.setLevel(self.oldLogLevel)

 rootLogger.removeHandler(self.logHandler)

 self.logHandler.flush()
 self.buffer.flush()

 return self.buffer.getvalue()

 def __call__(self):
 """ Process the form.

 Process the form, log the output and show the output to the user.
 """

 self.logs = None

 if "sync-now" in self.request.form:
 # Form button was pressed

 # Open Plone status messages interface for this request
 messages = IStatusMessage(self.request)

 try:
 self.startCapture(logging.DEBUG)

 logger.info("Starting full site synchronization")

 # Do the long running,
 # lots of logging stuff
 self.sync()

 logger.info("Successfully done")

 # It worked! Trolololo.
 messages.addStatusMessage("Sync done")

 except Exception, e:
 # Show friendly error message
 logger.exception(e)
 messages.addStatusMessage(u"It did not work out:" + unicode(e))

 finally:
 # Put log output for the page template access
 self.logs = self.stopCapture()
 return self.index()

The related page template

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="xxx.objects">
<body>
 <div metal:fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <h1 class="documentFirstHeading">
 XXX site update
 </h1>

 <p class="documentDescription">
 Update all researches from XXX
 </p>

 <div tal:condition="view/logs">
 <p>Sync results:</p>
 <pre tal:content="view/logs" />
 </div>

 <form action="@@syncall" method="POST">
 <button type="submit" name="sync-now">
 Sync now
 </button>
 </form>

 </tal:main-macro>
 </div>
</body>
</html>

Registering the view in ZCML:

<browser:view
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 name="syncall"
 class=".views.SyncAll"
 permission="cmf.ManagePortal"
 />

transaction_note()

Leave a note on Zope's History tab.

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/utils.py#L382

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Python debugging

Description

Using Python command-line debugger (pdb) to debug Plone and Python
applications.

	Introduction

	Using pdb

	Pretty printing objects

	Useful pdb commands

	Useful pdb snippets

	Automatically start debugger when exception is raised (browser)

	Automatically start debugger when exception is raised (command line)

Introduction

The Python debugger (pdb) is an interactive command-line debugger.

It is very limited in functionality, but it will work in every environment
and type of console. Plone also has through-the-web-browser PBD debugging
add-on products.

Note

pdb is not the same as the Python interactive shell. pdb allows
you to step through the code, whilst the Python shell allows you just to
inspect and manipulate objects.

If you wish to play around with Zope in interactive Python shell or run
scripts instead of debugging (exceptions), please read Command line documentation.

See also

Using pdb

	# Go to your code and insert the statement import pdb; pdb.set_trace() at

	the point where you want have a closer look. Next time the code is run,
the execution will stop there and you can examine the current context
variables from a Python command prompt.

	# After you have added import pdb; pdb.set_trace() to your code, stop

	Zope and start it in the foreground using the bin/instance fg command.

	# TextMate support for pdb can be found at

	https://pypi.python.org/pypi/PdbTextMateSupport/0.3.

	# mr.freeze allows traces to be added without restarting:

	https://pypi.python.org/pypi/mr.freeze.

Example:

class AREditForm(crud.EditForm):
 """ Present edit table containing rows per each item added and delete controls """
 editsubform_factory = AREditSubForm

 template = viewpagetemplatefile.ViewPageTemplateFile('ar-crud-table.pt')

 @property
 def fields(self):

 #
 # Execution will stop here and interactive Python prompt is opened
 #

 import pdb ; pdb.set_trace()
 constructor = ARFormConstructor(self.context, self.context.context, self.request)
 return constructor.getFields()

Pretty printing objects

Example:

>>> pp folder.__dict__
{
 '_Access_contents_information_Permission': ['Anonymous',
 'Manager',
 'Reviewer'],
 '_List_folder_contents_Permission': ('Manager', 'Owner', 'Member'),
 '_Modify_portal_content_Permission': ('Manager', 'Owner'),
 '_View_Permission': ['Anonymous', 'Manager', 'Reviewer'],
 '__ac_local_roles__': {'gregweb': ['Owner']},
 '_objects': ({'meta_type': 'Document', 'id': 'doc1'},
 {'meta_type': 'Document', 'id': 'doc2'}),
 'contributors': (),
 'creation_date': DateTime('2005/02/14 20:03:37.171 GMT+1'),
 'description': 'Dies ist der Mitglieder-Ordner.',
 'doc1': <Document at doc1>,
 'doc2': <Document at doc2>,
 'effective_date': None,
 'expiration_date': None,
 'format': 'text/html',
 'id': 'folder',
 'language': '',
 'modification_date': DateTime('2005/02/14 20:03:37.203 GMT+1'),
 'portal_type': 'Folder',
 'rights': '',
 'subject': (),
 'title': "Documents",
 'workflow_history': {'folder_workflow': ({'action': None,
 'review_state': 'visible', 'comments': '', 'actor': 'gregweb',
 'time': DateTime('2005/02/14 20:03:37.187 GMT+1')},)}
}

Useful pdb commands

Just type the command and hit enter.

	s

	step into, go into the function in the cursor

	n

	step over, execute the function under the cursor without stepping into it

	c

	continue, resume program

	w

	where am I? displays current location in stack trace

	b

	set breakpoint

	cl

	clear breakpoint

	bt

	print stack trace

	up

	go to the scope of the caller function

	pp

	pretty print object

	until

	Continue execution until the line with the line number greater than the
current one is reached or when returning from current frame

Note

The until command (or unt) is available only on Plone 4.x or
superior as it is a new feature provided by the pdb module under
Python 2.6.

Useful pdb snippets

Output object's class:

(Pdb) print obj.__class__

Output object attributes and methods:

(Pdb) for i in dir(obj): print i

Print local variables in the current function:

(Pdb) print locals()

Dumping incoming HTTP GET or HTTP POST:

(Pdb) print "Got request:"
(Pdb) for i in self.request.form.items(): print i

Executing code on the context of the current stack frame:

(Pdb) pp my_tags
['bar', 'barbar']

(Pdb) !my_tags = ['foo', 'foobar']
(Pdb) pp my_tags
['foo', 'foobar']

Note

The example above will modify the previous value of the variable
my_tags in the current stack frame.

Automatically start debugger when exception is raised (browser)

You can start interactive through-the-browser Python debugger when your site
throws an exception.

Instead of getting "We're sorry there seems to be an error..." page you get
a pdb prompt which allows you to debug the exception. This is also
known as post-mortem debugging.

This can be achieved with ` Products.PDBDebugMode` add-on.

	https://pypi.python.org/pypi/Products.PDBDebugMode

Note

PDBDebugMode is not safe to install on the production server due to
sandbox security escape.

Automatically start debugger when exception is raised (command line)

Note

This cannot be directly applied to a web server, but works with command
line scripts.

Note

This does not work with Zope web server launch as it forks a process.

Example:

python -m pdb myscript.py

Hit c and enter to start the application. It keeps running, until
an uncaught exception is raised. At this point, it falls back to the pdb
debug prompt.

For more information see

	http://docs.python.org/library/pdb.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Unit testing

	Introduction

	Running unit tests
	AttributeError: 'module' object has no attribute 'test_suite'

	Test coverage

	Running tests against Python egg

	Creating unit tests

	Base test class skeleton

	Posing as different users

	Unit tests and themes

	Running add-on installers and extensions profiles for unit tests
	Tested package not found warning

	Load ZCML for testing

	Setting log level in unit tests

	HTTP request
	Setting a real HTTP request

	Grabbing emails
	Test outgoing email messages with Plone 3

	Test outgoing email messages with Plone 4

	Unit testing and the Zope component architecture

	ZCML

Introduction

Unit tests are automated tests created by the developer to ensure that the
add-on product is intact in the current product configuration. Unit tests
are regression tests and are designed to catch broken functionality over the
code evolution.

Running unit tests

Since Plone 4, it is recommended to use zc.testrunner to run the test
suites. You need to add it to your buildout.cfg, so that the test
command will be generated.

parts =
 ...
 test

[test]
recipe = zc.recipe.testrunner
defaults = ['--auto-color', '--auto-progress']
eggs =
 ${instance:eggs}

Note

On Plone 3 you can run tests with the bin/instance test command,
which corresponds bin/test.

Running tests for one package:

bin/test -s package.subpackage

Running tests for one test case:

bin/test -s package.subpackage -t TestCaseClassName

Running tests for two test cases:

bin/test -s package.subpackage -t TestClass1|TestClass2

To drop into the pdb debugger after each test failure:

bin/test -s package.subpackage -D

To exclude tests:

bin/test -s package.subpackage -t !test_name

To list tests that will be run:

bin/test -s package.subpackage --list-tests

The following will run tests for all Plone add-ons: useful to check
whether you have a set of component that function well together:

bin/test

Warning

The test runner does not give an error if you supply invalid package and
test case name. Instead it just simply doesn't execute tests.

More information:

	http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/no-longer-bin-instance-test-use-zc.recipe.testrunner

AttributeError: 'module' object has no attribute 'test_suite'

If you get the above error message there are two potential reasons:

	You have both a tests.py file and a tests folder.

	Old version: Zope version X unit test framework was updated not to need
an explicit test_suite declaration in the test module any more.
Instead, all subclasses of TestCase are automatically picked.
However, this change is backwards incompatible.

Test coverage

Zope test running can show how much of your code is covered by automatic
tests:

	https://pypi.python.org/pypi/plone.testing#coverage-reporting

Running tests against Python egg

You might need to add additional setup.py options to get your tests work

	http://rpatterson.net/blog/running-tests-in-egg-buildouts

Creating unit tests

Pointers:

	https://pypi.python.org/pypi/plone.app.testing

	https://pypi.python.org/pypi/Products.PloneTestCase

	http://www.zope.org/Members/shh/ZopeTestCaseWiki/ApiReference

For new test suites, it is recommended to use plone.app.testing.

Base test class skeleton

Example:

Zope imports
from Testing import ZopeTestCase

Plone imports -> PloneTestCase load zcml layer and install product
from Products.PloneTestCase import PloneTestCase

For loading zcml
from Products.Five import zcml

Import all module that you want load zcml
import Products.PloneFormGen
import Products.Five
import Products.GenericSetup
import Products.CMFPlone
import myapp.content

Install all product requirement
PloneTestCase.installProduct('PloneLanguageTool')
....
PloneTestCase.installProduct('collective.dancing')
Install a Python package registered via five:registerPackage
PloneTestCase.installPackage('myapp.content')

load zcml
zcml.load_config('meta.zcml' , Products.CMFPlone)
zcml.load_config('meta.zcml' , Products.Five)
zcml.load_config('meta.zcml' , Products.GenericSetup)
zcml.load_config('configure.zcml' , Products.Five)
zcml.load_config('configure.zcml',Products.Five)
....
zcml.load_config('configure.zcml',Products.PloneFormGen)
zcml.load_config('configure.zcml',myapp.content)

Setup Plone site
PloneTestCase.setupPloneSite(products=['PloneLanguageTool', 'myapp.content'],extension_profiles=['myapp.content:default',])

class MySiteTestCase(PloneTestCase.PloneTestCase):
 """Base class for all class with test cases"""

 def afterSetUp(self):
 """ some tasks after setup the site """

Posing as different users

There is a shortcut to privilege you from all security checks:

self.loginAsPortalOwner()

	In Plone 4, using plone.app.testing, use::

	from plone.app.testing import login
...
login(self.portal, 'admin')

where self is the test case instance.

Note

This privileges are effective only in the context where permissions are
checked manually. They do not affect traversal-related permissions:
looking up views or pages in unit test Python code. For that kind of
testing, use functional testing.

Unit tests and themes

If your test code modifies skin registries you need to force the skin data
to be reloaded.

Example (self is the unit test):

self._refreshSkinData()

Running add-on installers and extensions profiles for unit tests

By default, no add-on installers or extension profiles are installed.

You need to modify PloneTestCase.setupPloneSite() call in your base unit
tests.

Simple example:

ptc.setupPloneSite(products=['namespace.yourproduct'])

Complex example:

ptc.setupPloneSite(products=['harvinaiset.app', 'TickingMachine'], extension_profiles=["harvinaiset.app:tests","harvinaiset.app:default"])

Tested package not found warning

Installers may fail without interrupting the test run. Monitor Zope start up
messages. If you get error like:

Installing gomobiletheme.basic ... NOT FOUND

You might be missing this from your configure.zcml

<five:registerPackage package="." initialize=".initialize" />

... or you have a spelling error in your test setup code.

Load ZCML for testing

For loading ZCML files in your test, you can use the Five API:

import <your fabulous module>
from Products.Five import zcml
zcml.load_config('configure.zcml', <your fabulous module>)

Setting log level in unit tests

Many components use the DEBUG output level, while the default output
level for unit testing is INFO. Import messages may go unnoticed during
the unit test development.

Add this to your unit test code:

def enableDebugLog(self):
 """ Enable context.plone_log() output from Python scripts """
 import sys, logging
 from Products.CMFPlone.log import logger
 logger.root.setLevel(logging.DEBUG)
 logger.root.addHandler(logging.StreamHandler(sys.stdout))

HTTP request

Zope unit tests have a mock HTTPRequest object set up.

You can access it as follows:

self.portal.REQUEST # mock HTTPRequest object

Setting a real HTTP request

>>> from Testing import makerequest
>>> self.app = makerequest.makerequest(Zope.app())
>>> request=self.portal.REQUEST

Grabbing emails

Test outgoing email messages with Plone 3

To debug outgoing email traffic you can create a dummy mailhost.

Example:

from zope.component import getUtility, getMultiAdapter, getSiteManager
from Products.MailHost.interfaces import IMailHost
from Products.SecureMailHost.SecureMailHost import SecureMailHost
from Products.CMFCore.utils import getToolByName

class DummySecureMailHost(SecureMailHost):
 """Grab outgoing emails"""

 meta_type = 'Dummy secure Mail Host'

 def __init__(self, id):
 self.id = id

 # Use these two instance attributes to check what email has been sent
 self.sent = []
 self.mto = None

 def _send(self, mfrom, mto, messageText, debug=False):
 self.sent.append(messageText)
 self.mto = mto

...

def afterSetUp(self):
 self.loginAsPortalOwner()
 sm = getSiteManager(self.portal)
 sm.unregisterUtility(provided=IMailHost)
 self.dummyMailHost = DummySecureMailHost('dMailhost')
 sm.manage_changeProperties({'email_from_address': 'moo@isthemasteofuniverse.com'})
 sm.registerUtility(self.dummyMailHost, IMailHost)

 # Set mail host for tools which use getToolByName() look up
 self.MailHost = self.dummyMailHost

 # Make sure that registration tool uses mail host mock
 rtool = getToolByName(self.portal, 'portal_registration')
 rtool.MailHost = self.dummyMailHost

....

def test_xxx(self):
 # Reset outgoing emails
 self.dummyMailHost.sent = []

 # Do a workflow state change which should trigger content rule
 # sending out email
 self.workflow.doActionFor(member, "approve_by_sits")
 review_state = self.workflow.getInfoFor(member, 'review_state')
 self.assertEqual(review_state, "approved_by_sits")

 # Check that email has been sent
 self.assertEqual(len(self.dummyMailHost.sent), 1)

Test outgoing email messages with Plone 4

The MailHost code has changed in Plone 4. For more detail about the
changes please read the relevant section in the Plone Upgrade Guide [http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/mailhost.securesend-is-now-deprecated-use-send-instead].
According to that guide we can reuse some of the test code in
Products.CMFPlone.tests.

Here's some example of a unittest.TestCase based on the excellent plone.app.testing
framework. Adapt it to your own needs.

#Pythonic libraries
import unittest2 as unittest
from email import message_from_string

#Plone
from plone.app.testing import TEST_USER_NAME, TEST_USER_ID
from plone.app.testing import login, logout
from plone.app.testing import setRoles
from plone.testing.z2 import Browser

from Acquisition import aq_base
from zope.component import getSiteManager
from Products.CMFPlone.tests.utils import MockMailHost
from Products.MailHost.interfaces import IMailHost
import transaction

#hkl namespace
from holokinesislibros.purchaseorder.testing import\
 HKL_PURCHASEORDER_FUNCTIONAL_TESTING

class TestOrder(unittest.TestCase):

 layer = HKL_PURCHASEORDER_FUNCTIONAL_TESTING

 def setUp(self):
 self.app = self.layer['app']
 self.portal = self.layer['portal']
 self.portal._original_MailHost = self.portal.MailHost
 self.portal.MailHost = mailhost = MockMailHost('MailHost')
 sm = getSiteManager(context=self.portal)
 sm.unregisterUtility(provided=IMailHost)
 sm.registerUtility(mailhost, provided=IMailHost)

 self.portal.email_from_address = 'noreply@holokinesislibros.com'
 transaction.commit()

 def tearDown(self):
 self.portal.MailHost = self.portal._original_MailHost
 sm = getSiteManager(context=self.portal)
 sm.unregisterUtility(provided=IMailHost)
 sm.registerUtility(aq_base(self.portal._original_MailHost),
 provided=IMailHost)

 def test_mockmailhost_setting(self):
 #open contact form
 browser = Browser(self.app)
 browser.open('http://nohost/plone/contact-info')
 # Now fill in the form:

 form = browser.getForm(name='feedback_form')
 form.getControl(name='sender_fullname').value = 'T\xc3\xa4st user'
 form.getControl(name='sender_from_address').value = 'test@plone.test'
 form.getControl(name='subject').value = 'Saluton amiko to\xc3\xb1o'
 form.getControl(name='message').value = 'Message with funny chars: \xc3\xa1\xc3\xa9\xc3\xad\xc3\xb3\xc3\xba\xc3\xb1.'

 # And submit it:
 form.submit()
 self.assertEqual(browser.url, 'http://nohost/plone/contact-info')
 self.assertIn('Mail sent', browser.contents)

 # As part of our test setup, we replaced the original MailHost with our
 # own version. Our version doesn't mail messages, it just collects them
 # in a list called ``messages``:
 mailhost = self.portal.MailHost
 self.assertEqual(len(mailhost.messages), 1)
 msg = message_from_string(mailhost.messages[0])

 self.assertEqual(msg['MIME-Version'], '1.0')
 self.assertEqual(msg['Content-Type'], 'text/plain; charset="utf-8"')
 self.assertEqual(msg['Content-Transfer-Encoding'], 'quoted-printable')
 self.assertEqual(msg['Subject'], '=?utf-8?q?Saluton_amiko_to=C3=B1o?=')
 self.assertEqual(msg['From'], 'noreply@holokinesislibros.com')
 self.assertEqual(msg['To'], 'noreply@holokinesislibros.com')
 msg_body = msg.get_payload()
 self.assertIn(u'Message with funny chars: =C3=A1=C3=A9=C3=AD=C3=B3=C3=BA=C3=B1',
 msg_body)

Unit testing and the Zope component architecture

If you are dealing with the Zope component architecture at a low level in
your unit tests, there are some things to remember, because the global site
manager doesn't behave properly in unit tests.

See discussion: http://plone.293351.n2.nabble.com/PTC-global-components-bug-tp3413057p3413057.html

ZCML

Below are examples how to run special ZCML snippets for your unit tests.

import unittest
from base import PaymentProcessorTestCase
from Products.Five import zcml
from zope.configuration.exceptions import ConfigurationError
from getpaid.paymentprocessors.registry import paymentProcessorRegistry

configure_zcml = '''
<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:paymentprocessors="http://namespaces.plonegetpaid.com/paymentprocessors"
 i18n_domain="foo">

 <paymentprocessors:registerProcessor
 name="dummy"
 processor="getpaid.paymentprocessors.tests.dummies.DummyProcessor"
 selection_view="getpaid.paymentprocessors.tests.dummies.DummyButton"
 thank_you_view="getpaid.paymentprocessors.tests.dummies.DummyThankYou"
 />

</configure>'''

bad_processor_zcml = '''
<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:paymentprocessors="http://namespaces.plonegetpaid.com/paymentprocessors"
 i18n_domain="foo">

 <paymentprocessors:registerProcessor
 name="dummy"
 selection_view="getpaid.paymentprocessors.tests.dummies.DummyButton"
 thank_you_view="getpaid.paymentprocessors.tests.dummies.DummyThankYou"
 />

</configure>'''

class TestZCML(PaymentProcessorTestCase):
 """ Test ZCML directives """

 def test_register(self):
 """ Check that ZCML entry gets added to our processor registry """
 zcml.load_string(configure_zcml)

 # See that our processor got registered
 self.assertEqual(len(papaymentProcessorRegistryistry.items()), 1)

 def test_bad_processor(self):
 """ Check that ZCML entry which has bad processor declaration is caught """

 try:
 zcml.load_string(bad_processor_zcml)
 raise AssertionError("Should not be never reached")
 except ConfigurationError, e:
 pass

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Functional testing

Description

Functional testing tool allows you to use scripted
browser to load pages from your site and fill in
forms automatically.

	Introduction

	Test browser

	Recording tests

	Functional test skeleton

	Preparing error logger

	Opening an URL

	Logging in

	Logout

	Showing the contents from the last request

	Getting a form handler

	Listing available form controls

	Filling in a text field on a page

	Selecting a checkbox

	Clicking a button

	Checking Unauthorized response

	Checking a HTTP response header

	Checking HTTP exception

	Setting test browser headers
	Add header to browser

	Setting user agent

Introduction

PloneTestCase product provides FunctionalTestCase [https://github.com/plone/Products.PloneTestCase/blob/master/Products/PloneTestCase/PloneTestCase.py]
base class for functional testing. Unlike unit tests, functional tests simulate real HTTP requests with transaction life cycle.

	Functional tests has different transaction for each browser.open() request

	Functional tests do traversing and can check e.g. for cookie based permissions

	Unit test method is executed in a single transaction and this might make impossible to
test cache related behavior

Test browser

Plone uses Products.Five.testbrowser as an browser emulator used in functional tests.
It is based on zope.testbrowser package.
You can find more information in the zope.testbrowser docs home page [https://pypi.python.org/pypi/zope.testbrowser]. The API is described in zope.testbrowser.interfaces (3.4 used by Plone 3) [http://svn.zope.org/zope.testbrowser/tags/3.4.2/src/zope/testbrowser/interfaces.py?rev=81337&view=markup].

Warning

There also exists old zc.testbrowser [https://pypi.python.org/pypi/zc.testbrowser],
which is a different package with similar name.

All code assumes here is is executed in unit test context where self.portal is your unit test site instance.

Recording tests

You can record functional tests through the browser. Think it as a Microsoft Word macro recoder kind of thing.

	http://pyyou.wordpress.com/2008/04/11/how-to-install-zopetestrecorder-with-buildout/

	https://pypi.python.org/pypi/zope.testrecorder

Functional test skeleton

First see collective.testlayer package which does some of the things
described below

	https://pypi.python.org/pypi/collective.testcaselayer

Example code:

from Products.Five.testbrowser import Browser
from Products.PloneTestCase import PloneTestCase as ptc

class BaseFunctionalTestCase(ptc.FunctionalTestCase):
 """ This is a base class for functional test cases for your custom product.
 """

 def afterSetUp(self):
 """
 Show errors in console by monkey patching site error_log service
 """

 ptc.FunctionalTestCase.afterSetUp(self)

 self.browser = Browser()
 self.browser.handleErrors = False # Don't get HTTP 500 pages

 self.portal.error_log._ignored_exceptions = ()

 def raising(self, info):
 import traceback
 traceback.print_tb(info[2])
 print info[1]

 from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog
 SiteErrorLog.raising = raising

 def loginAsAdmin(self):
 """ Perform through-the-web login.

 Simulate going to the login form and logging in.

 We use username and password provided by PloneTestCase.

 This sets session cookie for testbrowser.
 """
 from Products.PloneTestCase.setup import portal_owner, default_password

 # Go admin
 browser = self.browser
 browser.open(self.portal.absolute_url() + "/login_form")
 browser.getControl(name='__ac_name').value = portal_owner
 browser.getControl(name='__ac_password').value = default_password
 browser.getControl(name='submit').click()

Preparing error logger

Since zope.testbrowser uses normal Plone paging mechanism, you won't get nice tracebacks to your console.

The following snippet allows you to extract traceback data from site.error_log utility and print it to the console.
Put it to your afterSetUp():

self.browser.handleErrors = False
self.portal.error_log._ignored_exceptions = ()

def raising(self, info):
 import traceback
 traceback.print_tb(info[2])
 print info[1]

from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog
SiteErrorLog.raising = raising

Opening an URL

Example:

from Products.Five.testbrowser import Browser

self.browser = Browser()

self.browser.open(self.portal.absolute_url())

Logging in

Example:

from Products.PloneTestCase.setup import portal_owner, default_password

 # Go admin
browser.open(self.portal.absolute_url() + "/login_form")
browser.getControl(name='__ac_name').value = portal_owner
browser.getControl(name='__ac_password').value = default_password
browser.getControl(name='submit').click()

Logout

Example:

def logoutWithTestBrowser(self):
 """
 """
 self.browser.open(self.portal.absolute_url() + '/logout')
 html = self.browser.contents
 self.assertTrue("You are now logged out" in html)

Showing the contents from the last request

After test browser has opened an URL its
content can be read from browser.contents variable.

Example:

print browser.contents # browser is zope.testbrowser.Browser instance

Getting a form handler

You can use testbrowser getForm() to access different forms on a page.

Form look-up is available by name or index.

Example:

form = browser.getForm(index=2) # Skip login and search form on Plone 4

Listing available form controls

You can do the following to know what content your form has eaten

	the mechanize browser instance that is used through
zope.testbrowser. zope.testbrowser internally uses a testbrowser
provided by the mechanize package. The mechanize objects are saved in
browser.mech_browser and as attributes on different other instances
returned by zope.testbrowser. mechanize has a different, less convenient
api, but also provides more options. To see a list of all controls
in a for you can do e.g.:

get the login form from the zope.testbrowser
login_form = self.browser.getForm('login_form')
get and print all controls
controls = login_form.mech_form.controls
for control in controls:
 print "%s: %s" % (control.attrs['name'], control.attrs['type'])

... or one-liner ...:

for c in form.mech_form.controls: print c

	the HTML page source code:

print browser.contents

Filling in a text field on a page

You can manipulate value of various form input controls.

Example how to submit Plone search page:

self.browser.open(self.portal.absolute_url() + "/search")

Input some values to the search that we see we get
zero hits and at least one hit
for search_terms in [u"Plone", u"youcantfindthis"]:
 form = self.browser.getForm("searchform")

 # Fill in the search field
 input = form.getControl(name="SearchableText")
 input.value = search_terms

 # Submit the search form
 form.submit(u"Search")

Selecting a checkbox

Checkboxes are usually presented as name:list style names:

checkbox = form.getControl(name="myitem.select:list")
checkbox.value = [u"selected"]

Clicking a button

Example:

button = form.getControl(name="mybuttonname")
button.click()

If you have a form instance, you can use the submit action. To click
on the Button labeled "Log in" in the login form, you do:

login_form = self.browser.getForm('login_form')
login_form.submit('Log in')

Checking Unauthorized response

Example:

def checkIsUnauthorized(self, url):
 """
 Check whether URL gives Unauthorized response.
 """

 import urllib2

 # Disable redirect on security error
 self.portal.acl_users.credentials_cookie_auth.login_path = ""

 # Unfuse exception tracking for debugging
 # as set up in afterSetUp()
 self.browser.handleErrors = True

 def raising(self, info):
 pass
 self.portal.error_log._ignored_exceptions = ("Unauthorized")
 from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog
 SiteErrorLog.raising = raising

 try:
 self.browser.open(url)
 raise AssertionError("No Unauthorized risen:" + url)
 except urllib2.HTTPError, e:
 # Mechanize, the engine under testbrowser
 # uses urlllib2 and will raise this exception
 self.assertEqual(e.code, 401, "Got HTTP response code:" + str(e.code))

Another example where test browser / Zope 2 publisher where invalidly handling Unauthorized exception:

def test_anon_access_forum(self):
 """
 Anonymous users should not be able to open the forum page.
 """

 self.portal.error_log._ignored_exceptions = ()
 self.portal.acl_users.credentials_cookie_auth.login_path = ""

 exception = None
 try:
 self.browser.open(self.portal.intranet.forum.absolute_url())
 except:
 # Handle a broken case where
 # test browser spits out an exception without a base class (WTF)
 import sys
 exception = sys.exc_info()[0]

 self.assertFalse(exception is None)

Checking a HTTP response header

Exaple:

self.assertEqual(self.browser.headers["Content-type"], 'application/octet-stream')

Checking HTTP exception

Example how to check for HTTP 500 Internal Server Error:

def test_no_language(self):
 """ Check that language parameter is needed and nothing is executed unless it is given. """

 from urllib2 import HTTPError
 try:
 self.browser.handleErrors = True # Don't get HTTP 500 pages
 url = self.portal.absolute_url() + "/@@mobile_sitemap?mode=mobile"
 self.browser.open(url)
 # should cause HTTPError: HTTP Error 500: Internal Server Error
 raise AssertionError("Should be never reached")
 except HTTPError, e:
 pass

Setting test browser headers

Headers must be passed to underlying PublisherMechanizeBrowser instance
and test browser must be constructed based on this instance.

Note

When passing parameters to PublisherMechanizeBrowser.addheaders HTTP prefix will be automatically added
to header name.

Add header to browser

>>> from Products.Five.testbrowser import Browser
>>> browser = Browser()
>>> browser.addHeader(key, value)

Setting user agent

Example:

class BaseFunctionalTestCase(ptc.FunctionalTestCase):

 def setUA(self, user_agent):
 """
 Create zope.testbrowser Browser with a specific user agent.
 """

 # Be sure to use Products.Five.testbrowser here
 self.browser = UABrowser(user_agent)
 self.browser.handleErrors = False # Don't get HTTP 500 pages

from zope.testbrowser import browser
from Products.Five.testbrowser import PublisherHTTPHandler
from Products.Five.testbrowser import PublisherMechanizeBrowser

class UABrowser(browser.Browser):
 """A Zope ``testbrowser`` Browser that uses the Zope Publisher.

 The instance must set a custom user agent string.
 """

 def __init__(self, user_agent, url=None):

 mech_browser = PublisherMechanizeBrowser()
 mech_browser.addheaders = [("User-agent", user_agent),]

 # override the http handler class
 mech_browser.handler_classes["http"] = PublisherHTTPHandler
 browser.Browser.__init__(self, url=url, mech_browser=mech_browser)

For more information, see

	https://mail.zope.org/pipermail/zope3-users/2008-May/007871.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Doctests

Doctests are way to do tests with interactive Python interpreter.

	http://plone.org/documentation/tutorial/testing/doctests

Doctests and pdb

Python debugger (pdb) works little differently when invoked from doctests.

Your locals stack frame is not what you might expect and refers to doctests internals:

(Pdb) locals()
{'__return__': None, 'self': <zope.testing.doctest._OutputRedirectingPdb instance at 0x5a7c8f0>}

Corrective action is to go one level up in the stack:

(Pdb) up
> /Users/moo/mmaspecial/src/Products.PloneGetPaid/Products/PloneGetPaid/notifications.py(22)__call__()
-> import pdb ; pdb.seT_trace()
(Pdb) locals()
{'settings': <Products.PloneGetPaid.preferences.StoreSettings object at 0x5f631b0>, 'store_url': 'http://nohost/plone', 'self': <Products.PloneGetPaid.notifications.MerchantOrderNotificationMessage object at 0x56c30d0>, 'order_contents': u'11 pz @84.00 total: US$924.00\n22 ph @59.00 total: US$1298.00\n12 pf @98.00 total: US$1176.00\n23 pX @95.00 total: US$2185.00\n3 pM @89.00 total: US$267.00\n22 po @60.00 total: US$1320.00\n23 pj @39.00 total: US$897.00\n15 po @34.00 total: US$510.00\n5 pS @76.00 total: US$380.00\n1 pm @70.00 total: US$70.00', 'template': u'To: ${to_email}\nFrom: "${from_name}" <${from_email}>\nSubject: New Order Notification\n\nA New Order has been created\n\nTotal Cost: ${total_price}\n\nTo continue processing the order follow this link:\n${store_url}/@@admin-manage-order/${order_id}/@@admin\n\nOrder Contents\n\n${order_contents}\n\nShipping Cost: ${shipping_cost}\n\n', 'pdb': <module 'pdb' from '/Users/moo/code/python-macosx/parts/opt/lib/python2.4/pdb.pyc'>}
(Pdb)

Interlude

Interlude is a Python package, which you can use to start an interactive Python
shell from doctests, bypassing the limitations described above.

Just depend on 'interlude' and pass it via the globs dict to the doctest or
import it from there:

>>> from interlude import interac
>>> interact(locals())

When the testrunner passes interact, you'll get an interactive Python prompt.

For more information see: https://pypi.python.org/pypi/interlude

Get fields from browser

The most common operation when using a doctest is filling fields of a form:

>>> browser.getControl(name='form.widgets.text').value = 'Some text'

One common problem with this is that you can get an LookupError: name
If there is a typo, or the field does not exist, etc etc.

A quick way to see which fields exist on the current browser helps a lot while debugging test failures:

>>> [[c.name for c in f.controls] for f in browser.mech_browser.forms()]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Site error log service

Plone sites contain error log service which is located as error_log in the site root. It logs site exceptions and makes
the tracebacks accessible from Plone control panel and ZMI.

The service is somewhat archaic and can log exceptions only, not plain error messages.

Example how to add exceptions to error log

Todo

Complete "Example how to add exceptions to error log"

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Boilerplate tests

These are test snippets useful for common use cases.

See
http://plone.org/documentation/manual/developer-manual/testing/writing-a-plonetestcase-unit-integration-test
to learn about PloneTestCase helper methods.

Test portal title:

def test_portal_title(self):
 self.assertEqual("Plone site", self.portal.getProperty('title'))

Test if view is protected:

def test_view_is_protected(self):
 from AccessControl import Unauthorized
 self.logout()
 with self.assertRaises(Unauthorized):
 self.portal.restrictedTraverse('@@view-name')

Test if object exists in folder:

def test_object_in_folder(self):
 self.assertNotIn('object_id', self.portal.objectIds())

Javascript registered:

def test_js_available(self):
 jsreg = getattr(self.portal, 'portal_javascripts')
 script_ids = jsreg.getResourceIds()
 self.assertIn('my-js-file.js', script_ids)

CSS registered:

def test_css_available(self):
 cssreg = getattr(self.portal, 'portal_css')
 stylesheets_ids = cssreg.getResourceIds()
 self.assertIn('MyCSS.css', stylesheets_ids)

Test that a certain skin layer is present in portal_skins:

def test_skin_layer_installed(self):
 self.assertIn('my-skin-layer', self.skins.objectIds())
 self.assertIn('attachment_widgets', self.skins.objectIds())

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Testing and debugging »

Clean uninstall

Description

How to test that your Plone add-on uninstalls cleanly

	Introduction

	Clean uninstall test procedure

	Example unit test

Introduction

Clean uninstall means that removing your add-on does not leave Plone site to broken state.
Sometimes damage might not be noticed immediately, causing great frustration for the users.

Clean uninstall procedure is

	Use Add on installer to uninstall any add-ons. This MUST remove
all add-on Python objects from the site ZODB database

	Remove eggs from the buildout, rerun buildout

If there are any Python objects, which classes come from the removed
egg, around the site cannot be exported or imported anymore. Also,
Plone upgrade might fail.

Clean uninstall test procedure

Manual procedure

	Create a Plone site from buildout, with your add-on egg present

	Install your add-on

	Play around with add-on to make sure it stores all its data (settings, local utilities,
annotations, etc.)

	Uninstall add-on

	Export Plone site through ZMI as zexp

	Create another Plone site from vanilla buildout (no any add-ons installed)

	Import .zexp

	If .zexp does not contain any objects from your add-on egg, which is missing in vanilla
Plone installation, your add-on installs cleanly

Example unit test

This code shows how to test that certain :doc`annotations </components/annotations>`
are correctly cleaned.

Example:

"""

 Check that the site is clean after uninstall.

"""

__license__ = "GPL 2"
__copyright__ = "2009-2011 mFabrik Research Oy"

import unittest

from zope.component import getUtility, queryUtility, queryMultiAdapter

from Products.CMFCore.utils import getToolByName

from gomobile.mobile.tests.base import BaseTestCase
from gomobile.mobile.behaviors import IMobileBehavior, mobile_behavior_factory, MobileBehaviorStorage

from zope.annotation.interfaces import IAnnotations

class TestUninstall(BaseTestCase):
 """ Test UA sniffing functions """

 def make_some_evil_site_content(self):
 """
 Add annotations etc. around the site
 """

 self.loginAsPortalOwner()
 self.portal.invokeFactory("Document", "doc")
 doc = self.portal.doc

 behavior = IMobileBehavior(doc)
 behavior.mobileFolderListing = False
 behavior.save()

 annotations = IAnnotations(doc)

 def uninstall(self, name="gomobile.mobile"):
 qi = self.portal.portal_quickinstaller

 try:
 qi.uninstallProducts([name])
 except:
 pass
 qi.installProduct(name)

 def test_annotations(self):
 """ Check that uninstaller cleans up annotations from the docs
 """
 self.make_some_evil_site_content()
 self.uninstall()

 annotations = IAnnotations(self.portal.doc)
 self.assertFalse("mobile" in annotations)

def test_suite():
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(TestUninstall))
 return suite

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

Performance and tuning

Tips how to optimize your Plone code for maximum performance.

	Caching rules
	Introduction

	Setting per-view cache rules

	Creating a "cache forever" view

	Cache decorators
	Introduction

	Cache result for process lifecycle

	Timeout caches

	Caching per request

	Testing memoized methods inside browser views

	Other resources

	RAM cache
	Introduction

	Using memcached backend

	Using custom RAM cache

	ZCacheable

	Other resources

	About Instances and Threads, Performance and RAM consumption
	Introduction

	Rule Of The Thumb

	Theory

	Practice

	Performance tips
	Profiling Plone

	Optimizing ZEO and threads

	Debugging slow threads in production

	Memcached as session storage

	Input/output performance of the server

	Tuning complex configurations

	Reducing memory usage

	Large files

	LinguaPlone and multi-lingual sites

	Sessions and performance

	ZServer thread count

	XSendFile

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Performance and tuning »

Caching rules

	Introduction

	Setting per-view cache rules
	Testing the rule

	Creating a "cache forever" view

Description

How to program front end caching server (Varnish, Apache) to cache the
content from Plone site and thus make it faster.

Introduction

Plone caching is configured using the
plone.app.caching [https://pypi.python.org/pypi/plone.app.caching] add-on.
It supplies a web user interface for cache configuration and default caching
rules for Plone.

Using only the web user interface, plone.app.caching is very flexible
already. This document mainly deals how you can combine
plone.app.caching with your custom code.

Internally plone.app.caching uses
z3c.caching [https://pypi.python.org/pypi/z3c.caching/] which defines
programming level ZCML directives to create your cache rules.

plone.app.caching does both:

	front end caching server support, and

	in-memory cache in Zope.

plone.app.caching also defines default rules for various Plone
out-of-the-box content views and item. See:

	https://github.com/plone/plone.app.caching/blob/master/plone/app/caching/caching.zcml

The caching operations (strong, moderate, weak) are defined in Python code
itself, as they have quite tricky conditions. You can find the default
operations here:

	https://github.com/plone/plone.app.caching/blob/master/plone/app/caching/operations/default.py

Note

You usually don't need to override the operation classes itself.
plone.app.caching provides web UI to override parameters, like
timeout, for each rule, on the Detailed settings tab in
cache control panel (Create per-ruleset parameters link).

Note

Plone 3 has its own, older, caching mechanisms.

Setting per-view cache rules

Here is an example how you can define a cache rules for your custom view
class. In this example we want to cache our site front page in Varnish,
because is is very complex, and wakes up a lot of ZODB objects. The front
page is programmed using BrowserView.

Our front page is subject to moderate changes as new content comes in, but
the changes are not time critical, so we define a one hour timeout for
caching the front page.

Note

Currently, setting caching rules for view classes is not supported
through the web, but using ZCML or Python is the way to go.

In our case we are also using "a dummy cache" which does not provide purging
through Plone — the only way to purge the front-end proxy is to do it
from the Varnish control panel. But that is OK, because if something bad
ends up being cached, it will be gone in one hour.

Here is our configure.zcml for our custom add-on browser package:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:cache="http://namespaces.zope.org/cache"
 >

 <include package="z3c.caching" file="meta.zcml" />

 <!-- Let's define a ruleset which we use to cover all almost static
 pages which get heavy traffic. This will appear in Cache
 configuration of Site setup control panel. -->
 <cache:rulesetType
 name="plone.homepage"
 title="Homepage"
 description="Site homepage view"
 />

 <!-- We include one BrowserView class in our ruleset. This view is being
 used at the site front page. -->
 <cache:ruleset
 for=".views.CoursePage"
 ruleset="plone.homepage"
 />

</configure>

After defining the rule and checking that the rule appears in the caching
control panel, we'll:

	assign Moderate caching operation to Homepage;

	on the Detailed settings tab we'll use the Create per-ruleset command
to override timeout to be 1h instead of default 24h for Homepage.

Warning

Do not enable the Zope RAM cache for page templates. Somehow, at
some point, you will end up having some bad page HTML in Zope's
internal cache and you have no idea how to clear it.

Note

If you are testing the rule on a local computer first, remember
to re-do caching control panels in the production environment,
as they are stored in the database.

Testing the rule

	First, we'll test the rule on our local development computer to make sure
that it loads;

	then we'll test the rule in the production environment with Varnish to see
that Varnish picks up Expires header

Note

To test plone.app.caching rules you need to run the site in
production mode (not in the foreground). Otherwise
plone.app.caching is disabled.

Here is an example showing how to test loading the page using the wget
UNIX command-line utility (discard the retrieved document and print the HTTP
response headers):

$ wget --output-document=/dev/null --server-response http://localhost:8080/

The output looks like this:

huiske-imac:tmp moo$ wget --output-document=/dev/null --server-response http://localhost:8080/LS/courses
--2011-08-03 15:18:27-- http://localhost:8080/LS/courses
Resolving localhost (localhost)... 127.0.0.1, ::1
Connecting to localhost (localhost)|127.0.0.1|:8080... connected.
HTTP request sent, awaiting response...
 HTTP/1.0 200 OK
 Server: Zope/(2.13.7, python 2.6.4, darwin) ZServer/1.1
 Date: Wed, 03 Aug 2011 12:18:55 GMT
 Content-Length: 42780
 X-Cache-Operation: plone.app.caching.moderateCaching
 Content-Language: en
 Expires: Sun, 05 Aug 2001 12:18:55 GMT
 Connection: Keep-Alive
 Cache-Control: max-age=0, s-maxage=3600, must-revalidate
 X-Cache-Rule: plone.homepage
 Content-Type: text/html;charset=utf-8
Length: 42780 (42K) [text/html]

We see that X-Cache-Operation and X-Cache-Rule from
plone.app.caching debug info are present, so we know that it is setting
HTTP headers correctly, so that the front end server (Varnish) will receive
the appropriate directives.

After deploying the change in the production environment, we'll check
Varnish is picking up the rule. We fetch the page twice: first run is cold
(not yet cached), the second run should be cached:

wget --output-document=/dev/null --server-response http://www.site.com/courses
wget --output-document=/dev/null --server-response http://www.site.com/courses

The output:

huiske-imac:tmp moo$ wget -S http://www.site.com/courses
--2011-08-03 15:39:10-- http://www.site.com/courses
Resolving www.site.com (www.site.com)... 79.125.22.172
Connecting to www.site.com (www.site.com)|79.125.22.172|:80... connected.
HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
 Server: Zope/(2.13.7, python 2.6.5, linux2) ZServer/1.1
 X-Cache-Operation: plone.app.caching.moderateCaching
 Content-Language: en
 Expires: Sun, 05 Aug 2001 12:34:06 GMT
 Cache-Control: max-age=0, s-maxage=3600, must-revalidate
 X-Cache-Rule: plone.homepage
 Content-Type: text/html;charset=utf-8
 Content-Length: 43466
 Date: Wed, 03 Aug 2011 12:34:14 GMT
 X-Varnish: 72735907 72735905
 Age: 8
 Via: 1.1 varnish
 Connection: keep-alive
Length: 43466 (42K) [text/html]

We'll see that you have two numbers on line from Varnish:

X-Varnish: 72735907 72735905

These are Varnish internal timestamps: when the request was pulled to the
cache and when it was served. If you see only one number on subsequent
requests it means that Varnish is not caching the request (because it's
fetching the page from Plone every time). If you see two numbers you know it
is OK (and you can feel the speed).

More info:

	http://stackoverflow.com/questions/6170962/plone-app-caching-for-front-page-only

Creating a "cache forever" view

You might create views which generate or produce resources (images, JS, CSS)
in-fly. If you refer this views always through content unique URL
you can cache the view result forever.

This can be done

	Using blob._p_mtime, or similar, to get the modified timestamp of the related content item.
All persistent ZODB objects have _p_mtime

	Setting plone.stableResource ruleset on the view

Related ZCML

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:cache="http://namespaces.zope.org/cache"
 >

 <include package="z3c.caching" file="meta.zcml" />
 <include package="plone.app.caching" />

 <!-- Because we generate the image URL containing image modified timestamp,
 the URL is always stable and when image changes the URL changes.
 Thus, we can use strong caching (cache URL forever)
 -->

 <cache:ruleset
 for=".views.ImagePortletImageDownload"
 ruleset="plone.stableResource"
 />

</configure>

	Related view code::

	from Products.Five import BrowserView

	class ImagePortletImageDownload(BrowserView):

	"""
Expose image fields as downloadable BLOBS from the image portlet.

Allow set caching rules (content caching for this view)
"""

	def __call__(self):

	"""

"""
content = self.context

Read portlet assignment pointers from the GET query
name = self.request.form.get("portletName")
portletManager = self.request.form.get("portletManager")
imageId = self.request.form.get("image")

Resolve portlet and its image field
manager = getUtility(IPortletManager, name=portletManager, context=content)
mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)
portlet = mapping[name]
image = getattr(portlet, imageId, None)
if not image:

Ohops?
return ""

Set content type and length headers
set_headers(image, self.request.response)

Push data to the downstream clients
return stream_data(image)

When we refer to the view in we use modified time parameter:

def getImageURL(self, imageDesc):
 """
 :return: The URL where the image can be downloaded from.

 """
 context = self.context.aq_inner

 params = dict(
 portletName=self.__portlet_metadata__["name"],
 portletManager=self.__portlet_metadata__["manager"],
 image=imageDesc["id"],
 modified=self.data._p_mtime
)

 imageURL = "%s/@@image-portlet-downloader?%s" % (context.absolute_url(), urllib.urlencode(params))

 return imageURL

Related ZCML registration:

<browser:page
 name="image-portlet-downloader"
 for="*"
 permission="zope.Public"
 class=".views.ImagePortletImageDownload"
 />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Performance and tuning »

Cache decorators

Description

How to use the Python decorator pattern to cache the result values of
your computationally expensive method calls.

	Introduction

	Cache result for process lifecycle

	Timeout caches

	Caching per request
	Caching on BrowserViews

	Caching on Archetypes accessors

	Caching using global HTTP request

	Testing memoized methods inside browser views

	Other resources

Introduction

Cache decorators are convenient methods caching of function return values.

Use them like this:

@cache_this_function
def my_slow_function():
 # This is run only once and all subsequent calls get value from the cache
 return

Warning

Cache decorators do not work with methods or functions that use
generators (yield).
The cache will end up storing an empty value.

The plone.memoize [https://pypi.python.org/pypi/plone.memoize] package
offers helpful function decorators to cache return values.

See also using memcached backend for memoizers.

Cache result for process lifecycle

Example:

from plone.memoize import forever

@forever.memoize
def getFields(area, subject):
 """ Get all fields inside area / subject.

 Results is cached for process lifetime.

 @return: List of internal fields
 """
 schema = getSchema(area)
 return [field for field in schema if field["subject"] == subject]

Timeout caches

The @ram.cache decorator takes a function argument and calls it to get a value.
So long as that value is unchanged, the cached result of the decorated function is returned.
This makes it easy to set a timeout cache:

from plone.memoize import ram
from time import time

@ram.cache(lambda *args: time() // (60 * 60))
def cached_query(self):
 # very expensive operation,
 # will not be called more than once an hour

time.time() returns the time in seconds as a floating point number. "//" is Python's integer division.
So, the result of time() // (60 * 60) only changes once an hour.
args passed are ignored.

Caching per request

This pattern shows how to avoid recalculating the same value repeatedly
during the lifecycle of an HTTP request.

Caching on BrowserViews

This is useful if the same view/utility is going to be called many times
from different places during the same HTTP request.

The plone.memoize.view [https://github.com/plone/plone.memoize/blob/master/plone/memoize/view.txt]
package provides necessary decorators for BrowserView-based classes.

from plone.memoize.view import memoize, memoize_contextless

class MyView(BrowserView):

 @memoize
 def getValue():
 """ This value is recalculated for every new BrowserView context
 per request.
 """
 return "something"

 @memoize_contextless
 def getValueNoContext():
 """ This value is recalculated for all context objects once per
 request.
 """
 return "something"

Caching on Archetypes accessors

If you have a custom
Archetypes accessor method,
you can avoid recalculating it during the request processing.

Example:

def getParsedORADataCached(self):
 """ Same as above, but does not run through JSON reader every time.
 """

 # Manually store the result on HTTP request object annotations

 # Use informative string + Archetypes unique identified as the key
 key = "parsed-ora-data-" + self.UID()

 cache = IAnnotations(self.REQUEST)
 data = cache.get(key, None)
 if data is not None:
 data = self.getParsedORAData()
 cache[key] = data

 return data

Caching using global HTTP request

This example uses the
five.globalrequest package [https://pypi.python.org/pypi/five.globalrequest]
for caching. Values are stored on the thread-local HTTPRequest object
which lasts for the transaction lifecycle:

from zope.globalrequest import getRequest
from zope.annotation.interfaces import IAnnotations

 def _getProductList(self, type, language):
 """ Private implementation, builds list of products.
 """

 logger.info("Getting product list %s %s" % (type, language))
 ...
 return result

 def getProductListCached(self, type, language):
 """ Public cached method, delegates to _getProductList.
 """

 request = getRequest()

 key = "cache-%s-%s" % (type, language)

 cache = IAnnotations(request)
 data = cache.get(key, None)
 if not data:
 data = self._getProductList(type, language)
 cache[key] = data

 return data

Testing memoized methods inside browser views

While testing browser views memoized methods you could find out that calling
a method multiple times inside a test could result in getting the same result
over and over, no mater what the parameters are, because you have the same
context and request inside the test and the result is being cached.

One approach to by-pass this is to put your code logic inside a private method
while memoizing a public method with the same name that only calls the private
one:

from plone.memoize import view
from Products.Five import BrowserView

class MyView(BrowserView):

 def _my_expensive_method():
 """Code logic goes here.
 """
 return "something"

 @view.memoize
 def my_expensive_method():
 """We just call the private method here and memoize the result.
 """
 return self._my_expensive_method()

In your tests you can call the private method to avoid memoization.

Other resources

	plone.memoize source code [https://github.com/plone/plone.memoize/blob/master/plone/memoize/]

	zope.app.cache source code [http://svn.zope.org/zope.app.cache/trunk/src/zope/app/cache/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Performance and tuning »

RAM cache

	Introduction

	Using memcached backend
	Memoizers

	RAM Cache

	Using custom RAM cache

	ZCacheable

	Other resources

Introduction

The RAM cache is a Zope facility to create custom in-process caches.

Using memcached backend

By default, Zope uses an in-process memory cache. It is possible to replace
this with memcached.

Advantages:

	All front-end clients share the cache.

	Cache survives over a client restart.

Memoizers

Memoize's RAM cache can be replaced with a memcached backend with the
following snippet.

See the set-up for the http://plone.org/ site as an example:

	https://github.com/plone/Products.PloneOrg/blob/master/src/Products/PloneOrg/caching.py

RAM Cache

The RAM cache is used e.g. as a rendered template cache backend.

You can add MemcachedManager to your Zope setup, and replace the
RamCache instance in the ZMI with a new instance of MemcachedManager
(keep the id the same).

	https://pypi.python.org/pypi/Products.MemcachedManager

Using custom RAM cache

You want to use a custom cache if you think cache size or saturation will
pose problems.

The following advanced example shows how to enhance existing content type
text and description accessors by performing HTML transformations and
caching the result in a custom RAM cache.

Example:

import logging

import lxml.html

from zope.app.cache import ram

from Products.feedfeeder.content.item import FeedFeederItem
from gomobile.xhtmlmp.transformers.xhtmlmp_safe import clean_xhtml_mp

logger = logging.getLogger("GoMobile")

logger.info("Running in feedfeeder monkey-patches")

Cache storing transformed XHTML
xhtml_cache = ram.RAMCache()
xhtml_cache.update(maxAge=86400, maxEntries=1000)

Dummy object to mark missing values from cache
_marker = object()

def cache(name):
 """ Special cache decorator which generates cache key based on context object and cache name """
 def decorator(fun):
 def replacement(context):
 key = str(context.UID()) + "." + name

 cached_value = xhtml_cache.query(key, default=_marker)
 if cached_value is _marker:
 cached_value = fun(context)
 xhtml_cache.set(cached_value, key)
 return cached_value
 return replacement
 return decorator

def flush_cache(name, context):
 """ Clear entry in RAMCache

 global_key is function specific key, key is context specific key.

 """
 key = context.UID() + "." + name
 xhtml_cache.invalidate(key)

#
Modify existing body text and description accessors so that
1) HTML is cleaned
2) The result cleaned HTML is cached in RAM
#
We do not persistently want to store cleaned HTML,
since our cleaner might be b0rked and we want to easily
regenerate cleaned HTML when needed.
#

Run in monkey patching
FeedFeederItem._old_getText = FeedFeederItem.getText
FeedFeederItem._old_setText = FeedFeederItem.setText
FeedFeederItem._old_Description = FeedFeederItem.Description
FeedFeederItem._old_setDescription = FeedFeederItem.setDescription

@cache("text")
def _getText(self):
 """ Body text accessor """
 text = FeedFeederItem._old_getText(self)

 if text:
 # can be None
 clean = clean_xhtml_mp(text)
 print "Cleaned text:" + clean
 return clean

 return text

def _setText(self, value):
 FeedFeederItem._old_setText(self, value)
 flush_cache("text", self)

@cache("description")
def _Description(self):
 """ Description accessor """
 text = FeedFeederItem._old_Description(self)

 #print "Accessing description:" + str(text)

 # Remove any HTML formatting in the description
 if text:
 parsed = lxml.html.fromstring(text.decode("utf-8"))
 clean = lxml.html.tostring(parsed, encoding="utf-8", method="text").decode("utf-8")
 #print "Cleaned decsription:" + clean
 return clean

 return text

def _setDescription(self, value):
 FeedFeederItem._old_setDescription(self, value)
 flush_cache("description", self)

FeedFeederItem.getText = _getText
FeedFeederItem.setText = _setText
FeedFeederItem.Description = _Description
FeedFeederItem.setDescription = _setDescription

ZCacheable

ZCacheable is an ancient Zope design pattern for caching. It allows
persistent objects that are subclasses of OFS.Cacheable to have the
cache backend configured externally.

The cache type (cache id) in use is stored
persistently per cache user object,
but the cache can be created at runtime (RAM cache) or externally
(memcached) depending on the situation.

Note

Do not use ZCacheable in new code.

It takes optional backends which must be explicitly set:

def enableCaching():
 pas=getPAS()
 if pas.ZCacheable_getManager() is None:
 pas.ZCacheable_setManagerId(manager_id="RAMCache")
 getLDAPPlugin().ZCacheable_setManagerId(manager_id="RAMCache")

The RAMCache above is per thread. You cannot clear this cache for all
ZEO clients easily.

Some hints:

It is enabled per persistent object:

>>> app.test2.acl_users.ZCacheable_isCachingEnabled()
<Products.StandardCacheManagers.RAMCacheManager.RAMCache instance at 0x10a064cf8>

>>> app.test2.acl_users.ZCacheable_enabled()
1

Get known cache backends:

>>> app.test2.acl_users.ZCacheable_getManagerIds()
({'id': 'caching_policy_manager', 'title': ''}, {'id': 'HTTPCache', 'title': ''}, {'id': 'RAMCache', 'title': ''}, {'id': 'ResourceRegistryCache', 'title': 'Cache for saved ResourceRegistry files'})

Disabling it (persistent change):

>>> app.test2.acl_users.ZCacheable_setManagerId(None)
>>> app.test2.acl_users.ZCacheable_enabled()
1
>>> app.test2.acl_users.ZCacheable_getManagerIds()
({'id': 'caching_policy_manager', 'title': ''}, {'id': 'HTTPCache', 'title': ''}, {'id': 'RAMCache', 'title': ''}, {'id': 'ResourceRegistryCache', 'title': 'Cache for saved ResourceRegistry files'})
>>> app.test2.acl_users.ZCacheable_isCachingEnabled()
>>> app.test2.acl_users.ZCacheable_setEnabled(False)

More info:

	https://github.com/zopefoundation/Zope/blob/master/src/OFS/Cache.py

	https://github.com/plone/plone.app.ldap/blob/master/plone/app/ldap/ploneldap/util.py

Other resources

	plone.memoize source code [https://github.com/plone/plone.memoize/blob/master/plone/memoize/].

	zope.app.cache source code [http://svn.zope.org/zope.app.cache/trunk/src/zope/app/cache/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Performance and tuning »

About Instances and Threads, Performance and RAM consumption

	Introduction

	Rule Of The Thumb

	Theory

	Practice

Description

Understanding how instances-per-core, threads-per-instance and ZODB-caches
are influencing performance.

Introduction

In a usal production Zope/Plone setup there are some tunings possible. So you
googled a bit and found that, for a certain size of site, you need more than
one Zope-instance and use HAproxy [http://haproxy.1wt.eu] or Pound [http://www.apsis.ch/pound] to load-balance between them.
Then you may ask yourself: How many instances do I need? Next you see there
is value "threads per instance" and wonder about the different
recommendations: Only one thread or two, or four? And how does it effect
memory usage?

Rule Of The Thumb

A good rule-of-the-thumb for a common setup was and still is: two
instances per core, two threads per instance, adjust the number of objects in
the ZODB cache to a number that your memory is used.

But attention! If your setup gets more complex, if you have several logged
in users or only anonymous users, if you use official, fancy, specific or
home-grown add-ons: This rule may not apply.

In this case you need to figure out yourself. It's more important to understand
the mechanism behind than sticking to a rule.

With recent, faster hardware and the (sometimes odd) behaviour of virtual
machines (which can be very very different dependent on the kind of VM) this
needs slight or major adjustment.

Theory

	Threads:

	A Zope instance is running a pool of threads. It queues an incoming
request and dispatches it to a free thread. If no thread is free the request
remains in the queue and is dispatched when a thread was freed. If all threads
are used by long-running request-to-response cycles this may block such simple
tasks as publishing a tiny icon.

	Database-Connection-Pool and its Cache:

	Once a thread runs, it requests a ZODB
database connection from the connection pool. It locks the connection so no
other thread can use it. The connection pool opens a new connection if all
existing connections are already in use. If the request-to-response cycle is
finished and the thread is freed the connection is released back to the pool.

	Memory Cache:

	Each connection has its own memory cache. The file-system cache is shared by
all connections. Each cache can have the configured number of objects in
memory. Having them in memory is important, because they are unpickled if
loaded from the DB - and the process of unpickling is still expensive.

An instance may never get enough load so that all available threads are used
concurrently. In this case you may find in the ZMI (Zope-root -> Control_Panel
-> Database -> Main DB) that there are only 2 connections, but you have 4
threads. That's because there were never 4 connections used in parallel.

	Instances and memory:

	An instance creates only a minimal memory usage overhead. If you have two
instances with each 2 threads or one with 4 threads and all threads are used
in both cases it wont make much a difference (~15-20MB overhead per instance
at time of writing).

Now while Plone is running for some time another significant (but compared to
ZODB cache low) amount of consumed RAM is used for RAM-caching inside Zope
(i.e. with plone.memoize). RAM-cache is shared by all threads but not between
instances. To optimize ram-caching in a multi-instance environment "memcached"
may be used to optimize memory cache and cache-usage and reduce an instances
memory footprint.

But anyway, most memory is used (in a common setup) to cache the ZODB.

	Python GIL - global interpreter lock:

	Well yes, the GIL is mentioned here. In a threaded environment such as Zope
is it has an impact on performance. But it is low and python was optimized
over the years, also Zope has a lot of I/O which reduces the GIL impact. A
good and important optimization is to set the right check interval for your
machine. With jarn.checkinterval [https://pypi.python.org/pypi/jarn.checkinterval] there's a good and simple to use tool to
test for the right value.

Practice

All theory is gray. But what does this mean for your setup if the rule-of-thumb
above does not apply?

Get measurements! First of all you need to check yourself what happens on your
machine(s), go and learn how to use Munin [http://munin-monitoring.org] (with munin.zope [https://pypi.python.org/pypi/munin.zope]), HAproxy
(or Pound), [tool of your choice here]. After that you'll get graphs of RAM,
CPU, and load and some zope related values. HAproxy or Pound may mark a node
as down because all threads were blocked by long running requests, identify
these requests, collective.stats [https://pypi.python.org/pypi/collective.stats] helps here.

More instances or more threads? This question is asked often. And can not be
answered without knowing more about the Plone system. We can divide it roughly
into four kinds of systems:

	Only or almost logged in users,

	Only or almost only anonymous visitors,

	Mixed with many users and lots of hardware behind,

	Mixed with few users and low-budget hardware.

If you deal with logged in users there is no easy way to cache html-pages
(highly recommended anyway for all static items) in a reverse proxy cache (i.e.
Varnish [https://www.varnish-cache.org]) in front of Plone. So Zope has much more work rendering pages. To
render pages, objects need to be loaded form the database. Loading is expensive.
If an object is already in the DB RAM cache it decreases the time to render a
page significantly. So in a setup with lots of logged in users we need to take
care almost all objects are loaded already. Each thread fetches a connection
from the pool, each connection has its cache. If a user now requests a page it
is first logged in and zope need a bunch of objects for this from the ZODB. Also
other user specific information is loaded. Then user may operate in an intranet
within a specific area, so these objects also need to be loaded. If we now have
i.e 1 instance with 5 threads we have up to 5 pools (5 caches). All objects of
interest are loaded in worst case 5 times. If there's 1 instance with 1 thread
(1 cache) data is loaded only once. But if there is only one instance with one
thread a browser shooting at the web-server with lots of requests at one time
fills up the request queue of the instance and may time out soon. Also a second
user may want to access data at the same time, but the only thread is blocked
and the CPU idles. So the best is to stick users in a load-balancer (bind it to
the __ac cookie) to 1 instance with 2 threads (also this can be adjusted
dependent on your setup, test it yourself). Provide as much instances as you
can (memory-consumption and cpu-usage will stop you). In such a setup usage of
memcached [https://en.wikipedia.org/wiki/Memcached] is highly encouraged.

If you have almost all anonymous users it is much easier. You can provide less
instances (here rule-of-thumb 2 per core applies in most cases) and increase
threads. Too many threads are not good, because of the GIL. You need to find the
number yourself, it depends much on hardware. Here - w/o memcached configured -
good results can be expected, because memory cache is used efficient. Increase
objects per connection cache until your memory-consumption stops you and look
always at your CPU usage.

In large mixed environments with enough budget for hardware it is easy: Divide
your environment in two, one for logged in users, one for anonymous - so above
applies.

In smaller mixed environments with less hardware behind you need to find your
own balance. A good way is configuring your load balancer to stick logged-in
users to one or two distinct instances. If there are more users this is kind
of tricky and may take some time to figure out a good setup. So this is the
most difficult setup.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Guide to deploying and installing Plone in production »

 	Testing & Tuning Plone »

 	Performance and tuning »

Performance tips

	Profiling Plone

	Optimizing ZEO and threads

	Debugging slow threads in production

	Memcached as session storage

	Input/output performance of the server

	Tuning complex configurations

	Reducing memory usage
	Disable extra languages

	Upgrade DateTime

	Large files

	LinguaPlone and multi-lingual sites

	Sessions and performance

	ZServer thread count

	XSendFile

Description

Tips for Plone performance tuning and making your add-on product and
customizations faster.

Profiling Plone

	https://pypi.python.org/pypi/collective.profiler/

Optimizing ZEO and threads

For multicore systems, which basically all production systems nowadays are,
you might want to optimize Python threading vs. processes. You may also tune
how many Python interpreter instructions are run before doing green thread
switches in the interpreter.

	https://mail.zope.org/pipermail/zodb-dev/2010-December/013897.html

Debugging slow threads in production

	https://pypi.python.org/pypi/Products.LongRequestLogger

Memcached as session storage

Storing sessions in ZEO/ZODB does not scale well, since they are very prone
to raise ConflictErrors if there is considerable load on the system.

Memcached provides a more scalable session backend.

For more information, see
lovely.session add-on product [https://pypi.python.org/pypi/lovely.session/0.2.2].

Input/output performance of the server

http://plope.com/Members/chrism/iostat_debugging

Summary:

<mcdonc> well, the example has await at about 40X svctime.. that's pretty shitty
<mcdonc> i mean that box was useless

Tuning complex configurations

http://www.lovelysystems.com/the-decathlon-of-computer-science/

Reducing memory usage

These tips are especially critical when running Plone on low-memory virtual
private server (VPS). But using the memory tips below, and some filesystem and operating system tweaks,
it is also perfectly possible to run Plone on an ARM-based Android stick, or a Raspberry Pi. See http://polyester.github.io/

Disable extra languages

Add PTS_LANGUAGES to buildout.cfg to declare which .po files are loaded on the start-up:

[instance]
...
environment-vars =
 PTS_LANGUAGES=en fi

Upgrade DateTime

DateTime 3.x and higher use significant less memory than older versions. Pinning it to 3.0.3 (4.x not tested yet) has no
known side effects on all Plone 4.1.x and 4.2.x sites, but can give up to a 20-25% reduction in memory use on lower-end hardware/virtualmachines.

Large files

How to offload blob processing from Zope:

	http://www.slideshare.net/Jazkarta/large-files-without-the-trials

LinguaPlone and multi-lingual sites

Do not use LanguageIndex, and update your LinguaPlone to version
3.1.

	http://plone.293351.n2.nabble.com/Products-LinguaPlone-LanguageIndex-vs-FieldIndex-tp5554729p5554729.html

	http://plone-regional-forums.221720.n2.nabble.com/New-LinguaPlone-releases-with-large-performance-improvements-td5578581.html

Sessions and performance

Write transactions much worse performance-wise than read transactions.

By default, every login is a write transaction. Also, Plone needs to update
the logged-in user's session timestamp once in a while to keep the session
active.

With a high amount of users, you may start seeing many ConflictErrors
(read conflicts) with ZODB.

There are some tricks you can use here:

	http://plone.293351.n2.nabble.com/the-mysterious-case-of-the-zope-sessions-that-shouldn-t-tp5731395p5731395.html

	https://pypi.python.org/pypi/collective.beaker/

ZServer thread count

This specifies how many requests one ZEO front-end client (ZServer) can
handle.

The default set by buildout default is 2.

Adjust it:

[client1]
recipe = plone.recipe.zope2instance
....
zserver-threads = 5

Find good value by doing performance testing for your site.

Note

Increasing thread count is useful if your Plone site does
server-to-server traffic and your Plone site needs to wait for the other
end, thus blocking Zope threads.

More info:

	https://pypi.python.org/pypi/plone.recipe.zope2instance

XSendFile

XSendFile is an enhancement over HTTP front end proxy protocol which allows
offloading of file uploads and downloads to the front end web server.

More info for Plone support:

	https://github.com/collective/collective.xsendfile

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

Plone Upgrade Guide

Description

Instructions and tips for upgrading to a newer Plone version.

This guide particularly focuses on
Unix-like [https://en.wikipedia.org/wiki/Unix-like] environments,
though the stack discussion may be useful to everyone.

	Introduction
	What does it mean to upgrade Plone?

	A note about version numbering and terminology

	Preparations
	Gather information

	Back up your Plone site

	Setup a test environment to rehearse the upgrade

	Upgrading Plone 4 within 4.x.x series dot minor releases

	Upgrade add-on products

	Troubleshooting
	Check the log files

	Test without customizations

	Test without products

	Test with a fresh Plone instance

	Make the problem reproducible

	Ask for help on a mailing list

	Report a bug

	Version-specific migration procedures and tips
	General advice for upgrading pre-2.5 releases to the latest release

	Upgrading from Plone 1.0 to 2.0

	Upgrading from Plone 2.0 to 2.1

	Upgrading from Plone 2.1 to 2.5

	Upgrading Plone 2.5 to 3.0

	Upgrading from 3.x to 3.2

	Upgrading from 3.2 to 3.3.x

	Upgrading Plone 3.x to 4.0

	Upgrading from 4.0 to 4.1

	Upgrading Plone 4.1 to 4.2

	Upgrading Plone 4.2 to 4.3

	Upgrading Non-Buildout-based Plone Instances
	Before you start upgrading anything, make sure you have a backup.

	General advice on updating from a non-buildout to buildout-based installation
	A word on warnings

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Introduction

Description

What we are talking about.

	What does it mean to upgrade Plone?

	A note about version numbering and terminology

What does it mean to upgrade Plone?

This document covers the procedures and issues involved in upgrading an existing Plone installation. This involves both the upgrading of the program set, and migration of the site itself.

Generally, you will often see the word migration used as the word we use to describe the process of getting your Plone site from one version of a given component to a newer version. For most people, this means upgrading Plone to a newer release, for example from 2.5.x to 3.3.x.

Migration is necessary because the internals of Plone sometimes change to support new functionality. When that's the case, the content which is stored in your Plone instance may not match what the new version of the software expects. Plone has a builtin tool that migrates existing content to the new structure.

This guide describes migration in Plone, specifically how you upgrade between different versions.

Before migrating you should read this entire document to understand the potential impact migrating will have on your Plone site. In particular, read everything in the common problems and issues section.

The guide applies to all contemporary versions of Plone, and we have also included the older, unsupported versions for reference.

A note about version numbering and terminology

Up until Plone 2.1, the policy was that each of our major releases would be incremented 0.1, like a standard framework policy. This caused some confusion and false expectations on how complex an upgrade would be, and have since changed this policy.

Starting after the 2.5 release, we have moved to a policy that increases the version number to a .0 on every major release. This means that when we say a major release, we are referring to a x.0 release, whereas a minor release has the version numbering 2.5.x or 3.0.x.

In addition to the general procedure there are version-specific migration guides. These guides contain more specific instructions and valuable information that has been collected from real-life migration cases.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Preparations

Description

Things to do before you migrate Plone.

	Gather information

	Back up your Plone site

	Setup a test environment to rehearse the upgrade

Gather information

	Read the "What's new in..." for your relevant plone version, and read the release notes.
You'll find these in the CMFPlone directory of the distribution of the new version of Plone.

	Check for dependencies

	Read the release notes for the Plone release you are upgrading to, in particular:

	What version of Python is required?

	What version of Zope is required?

	Do you need any new python libraries?

	Make sure all the add-on products you are using have updated to support the version of Plone you are upgrading to.

	Start with the third-party products that are in use on your site.
Verify that they have been updated or verified to work on the new version, and get them upgraded in your existing instance before you start the Plone/Zope/Python upgrade if possible.

	If Zope depends on a newer version of Python, install the new version of Python first.

	If the newer version of Plone depends on a newer version of Zope, you will need to install that before proceeding with the Plone upgrade.

	NOTE: Zope has it's own migration guidelines, which you will find in the release notes of the version you are migrating to.
If Plone is being upgraded at the same time as a Zope version, Plone will usually handle the Zope upgrade with its own migration script.

	Read the following files in the CMFPlone directory of the distribution of the new version of Plone you want to update to:

	README.txt

	INSTALL.txt

	UPGRADE.txt (although this usually contains only the general procedure outlined above)

These files are important because they may contain important last minute information and might be more specific than the relevant sections of this reference manual.

Back up your Plone site

It's very important to back up your Plone site.
You will find an excellent how-to on backing up your Plone site here.

Setup a test environment to rehearse the upgrade

Never work directly on your live site until you know that the upgrade was successful.
Instead, create a test environment to rehearse the upgrade.
Copy your instance into a new environment and upgrade the copy.
This is a good way of working out your third party products and dependencies in preparation for the final upgrade of the live site!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Upgrading Plone 4 within 4.x.x series dot minor releases

Description

Steps for minor upgrades within the Plone 4 Major Release.

Plone 4 uses buildout, which makes minor version upgrades very simple.

Plone 4.0 and above use buildout in its packaged installers.
Among the many benefits of buildout is the fact that it makes minor Plone version
upgrades extremely simple. Here is the general procedure, which is based on the
buildout shipped with the Plone Unified Installer.

Warning

Before performing any Plone upgrade, you should always have a complete backup of your site.
See the Preparations section of this manual for more details.

In addition, you should check the Version-specific migration tips
section of this manual for any notes that may apply to the specific version upgrade you're about to perform.

1) Edit your buildout.cfg file

Out of the box, Plone's Unified Installer includes a buildout.cfg (typically located at your-plone-directory/zinstance/buildout.cfg) file that contains the following parameter:

extends =
base.cfg
versions.cfg
http://dist.plone.org/release/4.1-latest/versions.cfg

This tells buildout to get all of its package versions from the included versions.cfg file. Notice that there is another line, commented out, that points to dist.plone.org. This location will always contain the most recent versions that comprise the latest release in the Plone 4.1 series. (You can also replace 4.1-latest with 4.0-latest or 4.2-latest, or another other existing minor release in the 4.x series.)

To upgrade your buildout to use the latest Plone 4.1.x release, comment out versions.cfg and uncomment the line pointing to dist.plone.org, so it looks like this:

extends =
base.cfg
versions.cfg
http://dist.plone.org/release/4.1-latest/versions.cfg

Save your changes.

2) Stop Plone, Rerun Buildout, Restart Plone

Now that you've edited your buildout file, stop Plone (bin/plonectl stop), rerun buildout with the command:

> bin/buildout

This may take a few minutes as Plone downloads new releases. When buildout finishes running, restart your Plone instance (bin/plonectl start).

3) Run Migration Script

Visit your Zope instance's ZMI (http://yoursite:8080). You will likely see a message prompting you to run Plone's migration script for each site in your instance, e.g.

This site configuration is outdated and needs to be upgraded.

Click Upgrade button next to the site and the upgrade will run. Check the Dry Run checkbox if you want to test the migration before you execute it.

Voila! You've successfully upgraded your Plone site. Plone on!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Upgrade add-on products

Description

The steps to take to migrate your third party products

	Shut down your Plone server instance.

	If you specified concrete versions of the third-party products in your buildout.cfg file (what is so-named "pinning"), like Products.CacheSetup = 1.0, update these references to point to the new versions.
Without pinning, i.e. specifying only, for example, Products.CacheSetup and no version, buildout will pick the newest version of the products by default.

	Run bin/buildout. Wait until all new software is downloaded and installed.

	Start Plone again - your site may be inaccessible until we have performed the next step - don't panic :)

	Navigate to the quickinstaller in the ZMI, and reinstall or upgrade products if you can (products that support both your current and new version of Plone).
Perform product-specific upgrade procedures (if any).
You will find these in the documentation of each product.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Troubleshooting

Description

What to do when a problem occurs during a Plone upgrade.

	Check the log files

	Test without customizations

	Test without products

	Test with a fresh Plone instance

	Make the problem reproducible

	Ask for help on a mailing list

	Report a bug

When a problem occurs during the migration we recommend that you take the following steps.

Check the log files

When a site error occurs, or Zope fails to start, there's probably an informative error message in Zope's log files.
Locate these log files [http://plone.org/documentation/faq/plone-logs] and inspect instance.log.
Ignore irrelevant warnings and search for words such as error, exception and traceback (case-insensitive).

When Zope doesn't start and there's no useful information in the log file, you can start Zope interactively and watch for error messages in the output::

bin/instance fg

You may be able to find more information on the error messages in:

	the Version-specific migration tips for your version of Plone

	the Error References

Test without customizations

When you have customized page templates or Python scripts, your changes may interfere with changes in the new version of Plone.
It's important to rule out this possibility, since your customizations are unique to your site and no one on the planet will be able to help you solve it.

Temporarily remove your customizations, for example by removing your layers from portal_skins, or by removing files from these layers on the file system.
If the problem disappears, you'll need to doublecheck your customizations.
It's usually best to copy the original files of the new version of Plone to your skin, and re-customize those.

Test without products

Bugs or compatibility problems in products that you have installed may cause problems in Plone.
Go to Site Setup > Add/Remove Products and remove (uninstall) all product that are not distributed with Plone.
Remove the uninstalled products from the Products directory of your Zope instance.

If the problem disappears, you'll need to doublecheck the offending product:

	Does it support the new version of Plone, Zope and Python?
Check the product's README.txt or other informational files or pages.

	Does the product require any additional migration procedures?
Check the product's INSTALL.txt, UPGRADE.txt or other informational files or pages.

	Does the product install properly? Re-install it and check the install log.

Test with a fresh Plone instance

Create a new Plone site with your new version of Plone.
You don't need a new Zope instance, since you can add another Plone site in the root of Zope.
If the problem does not occur in a fresh site, the cause of your problem is most likely a customization, an installed product or content that was not migrated properly.

Make the problem reproducible

Before you go out and ask for help, you should be able to describe your problem in such a way that others can reproduce it in their environment.

Reduce the problem to the smallest possible domain.
Eliminate products and customizations that are not part of the problem.
This makes it easier for others to reproduce the problem and it increases your chances of meeting others with the same problem or even a solution.
The more complex your story is, the more likely that it is unique to your situation and inpenetrable to others.

Ask for help on a mailing list

Ask for help on the Plone setup list [http://plone.org/support]. Be sure to:

	Provide relevant source code for your customizations that are part of the problem.

	Describe the exact configuration, software versions, migration history, error messages and so on.

Report a bug

Once you have investigated, analyzed, identified and confirmed the cause of your problem and you are convinced it's a bug (rather than an X-file), go to the appropriate bug tracker and report it:

	Products: the README usually tells how to report bugs

	Plone Issue Tracker [http://dev.plone.org/plone]

Do not use the bug trackers to ask for help.
First analyze your problem and assert that it's a bug before you report it.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Version-specific migration procedures and tips

Description

In addition to the general procedure described in the previous sections, this section provides version-specific procedures and tips.
If your migration does not involve a version pair specified here, then you may follow the general procedures alone.

	General advice for upgrading pre-2.5 releases to the latest release

	Upgrading from Plone 1.0 to 2.0
	Side Effects Moving to 2.0

	Template/CSS Changes

	base_properties

	Lexicons

	Special Note about the Windows Installer

	Upgrading from Plone 2.0 to 2.1
	A note about migration and version numbering

	About the migration

	Performing the migration

	Common problems and issues

	Additional notes

	Tip: How to re-customize your templates

	Postscript

	Upgrading from Plone 2.1 to 2.5

	Upgrading Plone 2.5 to 3.0
	Upgrading a Plone 2.5 site to 3.0

	Updating add-on products for Plone 3.0

	Updating 2.5.3 to 3.0.3

	Upgrading from 3.x to 3.2
	Windows Updates

	Buildout

	Old buildouts

	Custom buildout

	easy_install and virtualenv

	Version migration

	A word on warnings

	Upgrading from 3.2 to 3.3.x
	Upgrade Steps

	Upgrading Plone 3.x to 4.0
	Updating a custom Plone 3 buildout for Plone 4

	Updating add-on products for Plone 4

	Deprecated Templates Checklist

	Email address-based login

	Upgrading Caching Products

	Upgrading from 4.0 to 4.1
	Updating add-on products for Plone 4.1

	Upgrading Plone 4.1 to 4.2
	Upgrades to zc.buildout

	Search Templates

	Upgrading to new collections

	Upgrading Plone 4.2 to 4.3
	Updating package dependencies

	Dexterity optional extras

	Changed imports and functions

	Grok static folders

	Hiding KSS spinner

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

General advice for upgrading pre-2.5 releases to the latest release

Description

To upgrade a very old version of Plone (2.1, 2.0 or 1.0), we recommend that you upgrade to Plone 3.x first, and then upgrade to later releases.

In order to keep the Plone codebase tidy, we periodically remove the code that handles upgrades from very old Plone versions.

As a result, Plone 4.x supports upgrades directly from Plone 2.5 and Plone 3.x, but not from older versions such as Plone 1.0 and Plone 2.1.
If you need to upgrade from an older version of plone, we recommend that you first upgrade to the most recent release of Plone 3.x, and then to Plone 4.x.

As an example, let's say you're running an ancient Plone 2.1 install.
The approach to upgrade to (for example) Plone 4.0 would then be:

	Back up your setup.

	Move your Data.fs (and upgraded add-on products) to a Plone 3.3.x install.

	Follow the general upgrade instructions outlined earlier in this manual.

	Once you have a running Plone 3.3.x-based version of the install, get the latest 4.0.x release, and upgrade from Plone 3.3.x to Plone 4.0

Upgrades from Plone versions earlier than 2.1 can be handled similarly; however, in this case you should upgrade to Plone 2.5 as the intermediary version before going to Plone 3 or Plone 4, since Plone 3.x doesn't support upgrades from Plone less than 2.1.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from Plone 1.0 to 2.0

Description

Version-specific procedures and tips for migrating Plone 1.0 to 2.0.

	Side Effects Moving to 2.0

	Template/CSS Changes

	base_properties

	Lexicons

	Special Note about the Windows Installer

The changes made to Plone between 1.0 to 2.0 are fairly complex.
Before migrating you can read this document to understand the potential impact migrating will have on your website.
We suggest to follow standard practices: backup your Products and Data.fs file(s), do the actual migration on a test instance., etc.
Another note is that Plone's migration are probably not perfect - this is hard to guarantee, since we can't predict just how you have changed your system.

If you have a big site running Plone and want a painless transition to the much-improved version 2.0, we suggest that you hire a company that can do the migration properly for you.
Send a mail to the Plone Developer mailing list, and we can recommend a company in your area if needed.

The migration tool handles most cases, but your mileage may vary.
Heavily customized sites should factor in some time to do the transition.

Side Effects Moving to 2.0

	Plone CSS has radically changed.

	Plone Templates have radically changed.

	Plone 2.0 Tools Tools for Plone have changed

	Plone 2.0 Group User Folder the User Folder for Plone has changed

	See the What's New in Plone 2.0 Guide for more information about what has changed.

Template/CSS Changes

The templates and CSS have been refactored and reorganized to be leaner, more efficient and more logically laid out.
The CSS class names have been changed to be consistent and to provide easier customization.
Therefore, if your site customized the templates or CSS, you will have to examine how your changes are affected by the new templates and CSS.

	ploneDeprecated.css

	About the tableless layout

	base_properties vs. stylesheet_properties

	Form changes: New Forms Style and How to Convert from the Plone 1.0 forms format

	CSS Nameageddon - the CSS class names have changed from Plone 1 to Plone 2

base_properties

Plone 1 shipped with a property sheet called 'stylesheet_properties', that enabled you to change your site in a quick and easy way.

In Plone 2, we have stripped this down a bit, and changed its name to 'base_properties' to better reflect what it's for.

The reason for this was that the 'stylesheet_properties' was kind of a half-way mix of color properties and CSS, and you could do much more than simple color changes with it.
This complicated things for the CSS people, and thus we decided to keep the separation cleaner, and have only base properties in the variables.

It's not possible to do a perfect 1:1 mapping between the two, and you might have to resort to a few simple CSS rules to replicate what you had in Plone 1.
The good news is that it's much more flexible and powerful this way.

The best approach to converting to the new scheme is to start with the existing 'base_properties', and move your color and border values over one by one until you have something that resembles your old layout.

Lexicons

lexicon in portal_catalog is set as plone_lexicon.
Look at your ZCTextIndex indexes to see what lexicon they are looking for. On plone.org, we needed to rename the lexicon to zc_lexicon (or we could have recreated the ZCTextIndexes and specified whatever lexicon you have.)
Even if your ZCTextIndex indexes are looking for the right index, you may benefit from re-indexing those fields.

Special Note about the Windows Installer

You have to uninstall previous Plone versions and delete the Plone service before you can install Plone 2 successfully on Windows XP.
The service doesn't delete by itself when you uninstall.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from Plone 2.0 to 2.1

Description

Procedures and tips to migrate your site from Plone 2.0 to 2.1.

	A note about migration and version numbering

	About the migration

	Performing the migration

	Common problems and issues

	Additional notes

	Tip: How to re-customize your templates

	Postscript

A note about migration and version numbering

Plone has changed significantly infrastructure-wise with the jump from Plone 2.0 to 2.1. Plone 2.1 represents 18 months of active development and improvements, and is a much more scalable and powerful platform with the 2.1 release.

Some people are confused by the low version number increase, and mistakenly assume that it is a minor upgrade.
It is not, far from it.

Up until Plone 2.1, the policy was that each of our major releases would be incremented 0.1, like a standard framework policy.
We understand that this is somewhat confusing, and have since changed this policy.
The Plone Team aims to release a new version roughly every 6 months, so we have moved to a policy that increases the version number by 0.5 on every significant release.

We have done this to better reflect the enormous amount of work that goes into each release, and to better illustrate what you can expect from a release.

The main point here is that even if an upgrade from 2.0 to 2.1 sounds minor, in this particular case it is not.
The entire content type infrastructure has been rewritten, and all your content needs to be transferred to the new types, so there will most likely be some pain involved on some level — be it third-party products, templates that need to be re-customized, or actual bugs in the migration machinery (which have mostly been ironed out with the 2.1 and 2.1.1 releases).

About the migration

Please note that it is difficult to predict how well migration will work, since we can't know just how you have changed your system. Plone is a very flexible system, but when migrating this will affect the outcome based on what you changes you have made to your system.

	If you have a standard Plone site with simple customizations, it will likely work very well.

	If you have installed and depend on a lot of third-party products produced by developers outside the Plone Team, it's hard to say something definite - make sure the products you depend on are certified to work with Plone 2.1.x.
Special note about SpeedPack: You should uninstall this product, as most of the improvements done in this product are now part of Plone, and as a result, it's no longer necessary (and it doesn't work on Zope 2.8).

	If you have a big site running Plone and want a painless transition to the much-improved version 2.1, we suggest that you hire a company that can do the migration properly for you.
Send a mail to the "Plone Developer mailing list":/contact#developers, and we can recommend a company in your area if needed.

The migration tool handles most cases, but your mileage may vary.
Heavily customized sites should factor in some time to do the transition.

For Plone 2.5 (our next upcoming release), there are substantial improvements to the architecture that will ease migration in the future, as well as providing good tools for exporting and importing content and configurations.

Plone 2.1.2 and later releases also includes significant improvements to the migration machinery based on feedback we got from people doing migrations, so if migrating your site using the Plone 2.1 or 2.1.1 release didn't work out for you, please give the new version a try.

Performing the migration

Before you start the migration, you should decide what approach you want to use. There are two common ways of migrating:

	Migrating your site content, products and customizations in-place.

	Exporting your content, creating a fresh Plone 2.1 site, importing your content.

The in-place migration is more comprehensive, and hence more error-prone, especially if you have misbehaving third-party products or very old Plone instances.
If your content is the most important thing for you, and you don't mind applying your configuration settings and simple customizations again, exporting all your content folders followed by an import into a clean instance might be a better approach for you.
This procedure is described in the "importing Plone 2.0 content into 2.1 FAQ":/documentation/faq/importing-2.0-content-into-2.1.
Please note that this should only be done if you are experiencing problems and as a last resort (or simply want to start with a clean site but keep your content) — for most people, in-place migration is the way to go.

The in-place procedure is the usual one for Plone migrations, a quick overview of the steps:

	If you want to upgrade from Zope 2.7 to Zope 2.8 in this transition, we advice you to stay with Zope 2.7 until you have completed the Plone part of the migration, then upgrade to 2.8.
Zope 2.8 includes major changes and improvements, and trying to upgrade both Zope and Plone in the same operation is not recommended.
Both Zope 2.7 and Zope 2.8 are supported platforms for Plone 2.1.x, though.
As a rule of thumb, always start at the top with upgrades, and work your way down — upgrade Products, then Plone, then Zope, then Python.

	Make sure the third-party products you use have been updated or verified to work on Plone 2.1. Upgrading to 2.1 if the products you are using do not support it is a frustrating experience.

	Install the new Plone version in a clean location, you should stick with the same major version of Zope (e.g. going from Zope 2.7.3 to 2.7.5 is OK, going from 2.7.x to 2.8.x is not recommended until the Plone part of the migration is done).

	Move over your 'Data.fs' and any Products / External Methods to the new instance.

	Start the new Zope/Plone

	Log in to the ZMI as a 'Manager' user.

	Go to 'portal_migration'

	Click the migrate button and wait for the output from the migration process.
This can take a considerable amount of time depending on your site, since all content is being re-created with the new content types, and re-cataloged.

Common problems and issues

	Several "new" tabs will appear at the top of the site.
This is due to a policy change in how Plone constructs navigation.
Plone 2.1 and up will automatically make tabs from the folders in the root, and doesn't require you to manually create them in the portal_actions tool anymore.
To fix this, you can either:

	Go in and delete your portal_actions entries to only use the root folders (the folders also have individual visibility settings in the Properties tab of each item).
This is the recommended approach unless you have global tabs leading deep inside the site, or:

	Turn off the automatic tab generation in the 'Site Setup' → 'Navigation Settings'.
This will make the global tabs behave the way they did in 2.0.

	All the content items and folders that you have the permissions to view now show up in the nav tree - if you want the old behavior from Plone 2.0 back, where only folders show up — and only those who are published — you can now control the navigation setup in 'Site Setup' → 'Navigation Settings'.

	If you have an item with the short name 'events' or 'news' in the root of your site, they should be renamed before starting the migration - since this can cause problems with the migration to the new Smart Folders that list these.

	If you get 'AttributeError: referencebrowser_startupDirectory', you are unpacking the Plone tarball with WinZip, which mangles long file names and has a lot of other problems.
Get a proper unpacking tool like WinRAR instead.

	One of the problems that people run into during migration is third-party products they have installed that didn't clean up after themselves, or that left behind "dead" content when uninstalled.
This can trip up the migration process.
Here is a simple script that can list content with no associated product, so you can remove the defunct objects.
To use it, create a 'Script (Python)' from the ZMI add menu in the root of your Plone site, paste in the code from this file, click 'Save' and then click the 'Test' tab to run the script.
It should list dead object locations, so you can go and delete them manually if needed:

portal_types = context.portal_types.objectIds()

print "Dead Content Type Inspector"
print

for i in context.portal_catalog.uniqueValuesFor('portal_type'):
 if i in portal_types: continue
 print i
 results = context.portal_catalog(portal_type=i)
for i in results:
 print i.getURL()
 print
print

return printed

	Another error that was often encountered in Plone 2.1 and 2.1.1 was that some objects weren't converted to the new Archetypes-based types.
If you get: "maximum recursion depth exceeded" on viewing your site after the migration, the folders/objects are most likely still CMF objects, not Archetypes objects.
Plone 2.1.2 includes a fix that tries to work around this problem.
(The reason this exists in the first place seems to be bad behaviour introduced in the Plone 2.0 Release Candidates and subsequently fixed before the 2.0 final release, but some people still have content created with the Release Candidates.)
Also note that this error message can show up if you customized a 2.0 'document_view' template and are trying to use it with Plone 2.1.

	If all (or some of) the migrated content are owned by the person doing the migration instead of the original author, that means that Plone was unable to look up the owner info while migrating.
The cause of this is normally that your users are stored in LDAP and you haven't set up the connection before doing the migration. Another possibility is that your users are defined outside the Plone site.

	If you don't get any images in the image views or thumbnails in the summary listings: PIL is now a dependency, and you will not get image scaling if it is not installed.
Also, you need to make sure zlib (for PNG support) and libjpeg is installed before you install PIL.
More information "can be found here":/documentation/error/no-image-resizing.

	If your content column is missing on all pages, one of the portlets you have set up is broken.
Some versions of Plone (including the RCs of 2.1.2) had a bug where it would just stop rendering the content column instead of giving you an error if one of your portlets break.

	Some people are also confused about the behavior of security in 2.0 vs. 2.1:
A bug in Plone 2.0 made it so that it seemed to be the case that if any folder along the path to an item was private, that item could not be viewed, regardless of its state.
Workflows in Plone behave in a different way, though - allowing you to have a folder that is private, and have a published item inside it that is accessible (but the folder will be inaccessible).
If you want your permissions to inherit down the path, you'll have to make some changes to the workflow, "documented here":/documentation/how-to/make-permission-settings-inherit.
The reason this seemed to work in Plone 2.0 was a bug in the breadcrumb handling code, and the object wasn't protected there either, but erroneously seemed to be.

	If you get the error 'AttributeError: _length', you are upgrading to Zope 2.8, and you will need to call 'manage_convertIndexes' on all catalogs that are not in the root (CMFCollector catalogs etc).
Third-party products sometimes have their own catalogs, check with the product maintainer about this.
See the section "Upgrading from Earlier Versions of Zope" in the file 'Zope-2.8.4-final/doc/FAQ.txt'.

	If LiveSearch doesn't work or you have other symptoms that looks like the catalog isn't working properly, check out the "FAQ on disappearing catalogs":/documentation/faq/catalog-disappears

	If you get 'AttributeError: toPortalTime' from a third-party product, it needs to update itself to use 'toLocalizedTime' instead.
'toPortalTime' was deprecated in Plone 2.0, and is removed in Plone 2.1.

	If for some reason some of the original tools are corrupted or not working properly, you can copy in fresh instances from a newly-created Plone site.
I will show an example where the 'portal_form_controller' tool is not present in the migrated site.
Typically you would get AttributeError: portal_form_controller as an error message.
In this example, {Zope} represents the Zope root (for example, localhost:8080)and {Plone} represents your Plone site:

	Go to 'http://{Zope}/manage_main' and log in with a Manager user.

	Add Plone Site from the pulldown menu

	Call it 'TempPlone'

	Once the Plone site is created, go to 'http://{Zope}/TempPlone/manage_main

	Check the box next to 'portal_form_controller', and click 'Cut' at the bottom of the page.

	Go to http://{Zope}/{Plone}/manage_main

	Make sure there is no 'portal_form_controller' in the list. If there is, delete it.

	Click the 'Paste' button at the bottom of the form.

	Your site now has a fresh 'portal_form_controller' from a new Plone 2.1 site, and should work properly. You can now delete the 'TempPlone' instance.

Additional notes

If you still have problems, create an issue in the "issue tracker":/collector - make sure you use the Upgrade / Migration topic, and remember to search before submitting an issue to minimize duplicates. Make sure you provide as much detail as possible on your configuration and setup, so we can better help you.

Tip: How to re-customize your templates

If you have done significant changes to the Plone 2.0 templates (functionally, that is - the CSS classes are mostly the same as in 2.0), you may have to re-apply these customizations to the 2.1 templates. The best way to do this is:

	Have one directory with the original Plone 2.0 templates

	Compare your customized templates with the original Plone 2.0 ones (a visual diff tool is useful for this - we recommend Meld for Linux, FileMerge (included in XCode) for Mac OS X, and WinMerge for Windows)

	Apply those changes to the 2.1 templates. Of course, your customizations should not touch the original Plone 2.1 files, so make sure you place your customized templates in a file system Product, or in the 'custom' directory in 'portal_skins'.

Postscript

This document was written as an attempt to collect all the relevant information about migrating from 2.0 to 2.1 in one location.
It would be impossible without all the hard-working people in the Plone Team writing the migration code (which is a boring and complex task) in the first place, and the helpful people on the "Plone Setup":/contact#setup list, who have helped a lot of people migrate successfully.
You all rock!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from Plone 2.1 to 2.5

Description

Version-specific procedures and tips for the migration of Plone 2.1 to 2.5.

There are no version-specific procedures or tips for the migration of Plone 2.1 to 2.5 at this time.
We expect the general procedure outlined in this manual to be sufficient.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading Plone 2.5 to 3.0

Description

Upgrading your site and your products from plone 2.5 to plone 3.0.

	Upgrading a Plone 2.5 site to 3.0
	Third party products

	Notes on Zope migration

	Caching

	Updating add-on products for Plone 3.0
	General product development and migration tips for Plone 3.0

	CMFCore.permission import syntax change

	Transaction module is no longer implicitly in Archetypes

	get_transaction module rename

	ContentFactoryMetadata deprecation

	Update your workflows to use GenericSetup profiles

	Portlets have a new infrastructure

	main_template now uses Zope 3 viewlets

	Plone 3 does not create member folders by default

	Using a tableless layout

	Document Actions now use Zope 3 viewlets

	Products installing workflows may need to add permissions

	Indexes declared in Archetypes schemata need to be moved to GenericSetup

	The "Sharing" tab is now a global action

	Multi page schemas

	Enable inline editing (aka. QuickEdit)

	Updating 2.5.3 to 3.0.3
	Migration Procedure

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 2.5 to 3.0 »

Upgrading a Plone 2.5 site to 3.0

Description

Tips and issues when upgrading your site from Plone 2.5 to 3.0

	Third party products

	Notes on Zope migration

	Caching

	To migrate from Plone 2.5 to 3.0, please follow the steps outlined in the General approach to upgrading.

	One thing to make sure you have right is that Plone is now not only files in the Products directory, but also modules inside lib/python in your instance.
If you're using the installers, this is taken care of for you, but if you're doing it manually, make sure the lib/python components are in the right location.

Third party products

If you have installed and depend on a lot of third-party products produced by developers outside the Plone Team, it's hard to say something definite - make sure the products you depend on are certified to work with Plone 3.
GroupUserFolder is NOT supported!
(NOTE: It may not be possible to upgrade a site using GRUF with external user folders such as LDAPUserFolder.
In those cases it is advised to create a new site and move the content over manually.)

If you have a big site running Plone and want a painless transition to the much-improved version 3, we suggest that you hire a company that can do the migration properly for you.
Send a mail to the Plone Developer mailing list, and we can recommend a company in your area if needed.

Notes on Zope migration

Migration from Zope 2.8.7 or 2.9.5 to Zope 2.10.x is mandatory but Plone 3 does not run natively on Zope 3.
If you are upgrading from Zope 2.8.7 and you have a separate Five product you need to delete the Five product from your product directory before your upgrade.
Zope 2.10.x requires Python 2.4.3+ (Python 2.4.2 is still acceptable).
Also mandatory is Python Imaging Library 1.1.5 or newer, Python ElementTree.

Caching

	Caching related changes required (or maybe none!)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 2.5 to 3.0 »

Updating add-on products for Plone 3.0

Description

Plone 3.0 ships with new releases of Zope, CMF and Archetypes.
When any framework updates, some things will be removed or changed.
This is a list of the most common updates that need to be applied by product authors to ensure that their products work on Plone 3.0.

	General product development and migration tips for Plone 3.0
	Tip

	Other recommendations and suggestions

	CMFCore.permission import syntax change

	Transaction module is no longer implicitly in Archetypes

	get_transaction module rename

	ContentFactoryMetadata deprecation

	Update your workflows to use GenericSetup profiles

	Portlets have a new infrastructure
	How to add a Classic Portlet

	main_template now uses Zope 3 viewlets

	Plone 3 does not create member folders by default

	Using a tableless layout

	Document Actions now use Zope 3 viewlets

	Products installing workflows may need to add permissions

	Indexes declared in Archetypes schemata need to be moved to GenericSetup

	The "Sharing" tab is now a global action

	Multi page schemas

	Enable inline editing (aka. QuickEdit)

General product development and migration tips for Plone 3.0

Before we get started on the specific tips for how to update your product to work with Plone 3, let's mention some general recommendations that might save you time when updating your product in the next versions of Plone (3.5 and 4.0).

Depending on your product, it might be hard to include compatibility for both Plone 2.5 and Plone 3.0 in the same product.
There are several reasons for this, but the main ones are:

	The workflow definition standard in CMF has changed

	The new portlet infrastructure (although it does support old-style portlets, performance will suffer)

	The introduction of viewlets as the main way to render content fragments in the layout

So, the general recommendation is:

	If your product is more complex than a simple type, create two releases — one for Plone 2.5 and one for Plone 3.0.

	If you used ArchGenXML to create your product, you should be able to regenerate your product from the UML model to get a Plone 3.0-compatible version.

Tip

To further future-proof your product (for Plone 3.5 and 4.0), try the following:

	Start Zope in debug mode using 'zopectl fg' and use your product normally.
Check if it outputs any deprecation warnings to the log window.

	Disable the 'plone_deprecated' skin layer and make sure your application still runs without it (this disables deprecated methods and deprecated CSS styles)

Other recommendations and suggestions

	You can use the contentmigration product to write migrations for your own products.
More information on this product can be found in the "RichDocument tutorial":/documentation/tutorial/richdocument/migrations/

	A lot of the new components use Zope 3 views instead of templates.
These can be customized through-the-web using the 'portal_view_customizations' tool.

	Do not ever rely on the JS libraries in Plone being the same across releases.
Use the KSS abstractions, the underlying implementation might (and will!) change.

These things are not mandatory yet, but represent best-practice recommendations that will save you from updating these parts in the future:
* QuickInstaller-based installation should use GenericSetup profiles instead
* use events instead of manage_ methods (which will probably disappear in plone 3.5 or 4.0)

	Packaging technology:
	Use python packages instead of Zope products

	Ship packages as eggs and register them with the "Python Cheese Shop":http://cheeseshop.python.org/

	Use "Python Paste":http://pythonpaste.org/ to create new packages

CMFCore.permission import syntax change

In later CMF releases, the way to import the permissions module has changed.
Here's how to update your product to support both the new and the old-style syntax.

Typical error message when starting Zope:

File "Products/PloneHelpCenter/content/HelpCenter.py", line 29, in ?
from Products.CMFCore import CMFCorePermissions
ImportError: cannot import name CMFCorePermissions

What's causing it:

The following line is a common statement to get access to the permissions module, typically in the '__init__.py' file:

from Products.CMFCore import CMFCorePermissions

To make this work with both the new way of importing it and fall back to the old way if you're running an older version, replace the above with:

try: # New CMF
 from Products.CMFCore import permissions as CMFCorePermissions
except ImportError: # Old CMF
 from Products.CMFCore import CMFCorePermissions

Then you should be all set, and be able to support multiple versions with your product.
Note that the try/except block is only necessary if you want to support Plone 2.1, if you're targeting Plone 2.5 and above, you only have to do the variant listed under "New CMF" in the example above.

To see a live example of this change, consult "Poi changeset 40594":http://dev.plone.org/collective/changeset/40594#file1.

Transaction module is no longer implicitly in Archetypes

In Archetypes 1.3 and 1.4, we imported transaction in the main module to work around a Zope 2.7 issue.
Since Zope 2.7 is no longer a supported release, this is no longer the case in Archetypes 1.5 (which is what ships with Plone 3.0).
Here's how to update your code.

Typical error message when starting Zope:

from Products.Archetypes import transaction
ImportError: cannot import name transaction

Archetypes no longer imports transaction, so you will have to do it in your own module now, if you are using it. Change occurences of:

from Products.Archetypes import transaction

to:

import transaction

For a live example, see Poi changeset 40594 [http://dev.plone.org/collective/changeset/40594#file3].

get_transaction module rename

Zope has changed their syntax for getting transactions, and it has been deprecated in the the previous Zope releases for a while now.
Zope 2.10.x (which is what Plone 3.0 runs on) removes the old syntax, so you have to update your code accordingly.
Here's how.

Typical error message:

NameError: global name 'get_transaction' is not defined

Just to show you a complete traceback of how this might look, here's the full thing as seen in a typical product install, where it is common to use subtransactions (for completeness and search engines):

2007-04-12 23:12:01 ERROR Zope.SiteErrorLog http://localhost:8080/nu/portal_quickinstaller/installProducts
Traceback (innermost last):
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 381, in installProduct
__traceback_info__: ('Poi',)
Module Products.ExternalMethod.ExternalMethod, line 231, in __call__
__traceback_info__: ((<PloneSite at /nu>,), {'reinstall': False}, (False,))
Module /Users/limi/Projects/Plone/3.0/Products/Poi/Extensions/Install.py, line 65, in install
NameError: global name 'get_transaction' is not defined
/Users/limi/Projects/Plone/3.0/Products/CMFQuickInstallerTool/QuickInstallerTool.py:409:
DeprecationWarning: This will be removed in ZODB 3.7:
subtransactions are deprecated; use sp.rollback() instead of transaction.abort(1),
where `sp` is the corresponding savepoint captured earlier
transaction.abort(sub=True)

To update this, replace:

get_transaction().commit(1)

with:

transaction.commit(1)

(keep the '(1)' part if it already exists in the code, omit it otherwise)

You might have to add an 'import transaction' statement at the top of your file if you haven't imported it already.

For a live example, see the Install.py part of "Poi changeset 40594":http://dev.plone.org/collective/changeset/40594#file0.

ContentFactoryMetadata deprecation

CMF deprecated this call a while back, and Plone 3.0 is the first version that ships without this.
Here's how to update your product to use the new syntax.

Typical error message:

Error Type: exceptions.ImportError
Error Value: cannot import name ContentFactoryMetadata

What causes this? Somewhere in your code, you have something like:

from Products.CMFCore.TypesTool import ContentFactoryMetadata

Update this to:

from Products.CMFCore.TypesTool import FactoryTypeInformation

instead, and you should be good to go. This change should work all the way back to Plone 2.1.

For a live example, see "DataGridField changeset 7901":http://dev.plone.org/archetypes/changeset/7901.

Update your workflows to use GenericSetup profiles

To install workflows in Plone 3.0, you have to make use of CMF's GenericSetup profiles.
Installing workflows in any other way is not supported, unfortunately — there are architectural changes in CMF that cannot support both approaches at the same time.

Installing workflows via GenericSetup will make your product work only on Plone 2.5 and upwards, so make sure you create a special release/branch if you want your product to still work on Plone 2.1/2.0 (which are unsupported releases when Plone 3.0 is released).

Typical error message that indicates that you are trying to install workflows not using GenericSetup:

ImportError: cannot import name addWorkflowFactory

For existing workflows, the easiest way to make the product install use GenericSetup for workflows is:

	Install your product (and its workflows) using Plone 2.5.

	Using the 'portal_setup' tool in the ZMI, export a snapshot of the current site profile:
* Click the 'Export' tab.
* Select the parts you want to export the configuration for (in this case, 'Workflow Tool').
* Click the 'Export Selected Steps' button.
* You will now get a tar file named something like 'setup_tool-20070424225827.tar'.

	Unpack the tar file, and put the resulting files and directories in a directory 'profiles/default/' in the root of your product.

	Remove the workflow directories in 'workflow/' that are not part of your product, and edit 'workflows.xml' so that it only has the information for your workflows. See "Poi changeset 41071":http://dev.plone.org/collective/changeset/41071 for an example.

	Delete your old '.py'-based workflow definitions in 'Extensions', but make sure you keep any workflow scripts, since these will be referenced from the profile definitions.

	Add a 'configure.zcml' file in the root of your product that registers the default profile.

	Remove the redundant code from 'Extensions/Install.py' and add the boilerplate code to invoke the GS setup, see "Poi changeset 41071":http://dev.plone.org/collective/changeset/41071 for an example.

This process is also the same for any code you want to move to GenericSetup, in the Poi example, we also moved the catalog metadata and various other things to use GenericSetup profiles, and could get rid of most of 'Install.py' in the process.

Portlets have a new infrastructure

In Plone 3.0, portlets are no longer simple page templates, but objects with behaviour, logic and possibilities for advanced behaviour like per-portlet caching.

Portlets have been re-implemented using the Zope 3 component architecture.
Change custom portlets to use plone.app.portlets if possible.
Check the Portlets Developer Manual to learn about the new portlets architecture.

Old portlets are supported via a fallback mechanism called Classic Portlet; the portlet management screen has functionality for doing inline migration for old portlets.
Note that using the old portlets mechanism will affect your site performance negatively, since they will load up the old global_defines.

How to add a Classic Portlet

You will see in the Add portlet pull-down menu on the Manage portlets page an item called Classic Portlet. This item allows you to use portlets created for earlier versions of Plone.

For instance, suppose you have a Classic Portlet that you have created in your-site-instance/portal_skins/custom in the Zope Management Interface (ZMI) that displays "Hello world", using a Page Template named portlet1 with the following code:

<html>
 <body>
 <div metal:define-macro="portlet">
 <p>hello world</p>
 </div>
 </body>
</html>

Here's how you can include this portlet in your site:

	Login as an user with the Manage Portlets permission.

	Click the manage portlets link.

	Select Classic Portlet from the pull-down menu.

	Type the template id in the Add Classic Portlet form. In the example, portlet1.

	Leave the macro as portlet.

[image: ../../../../_images/image_preview.png]

	Click save.

This is all you have to do to add the Classic Portlet to your folder, page, or content type.

main_template now uses Zope 3 viewlets

Plone 3 has switched to use Zope 3 viewlet components instead of the old macro include approach.
Any customizations of main_template.pt or header.pt will need to be updated to use the new approach.

If have previously shipped customized versions of templates like header.pt, viewThreadsAtBottom.pt or global_contentmenu.pt to get things into the page, please switch to viewlets instead, as it makes it much easier for multiple products to co-exist without stepping on each others changes.

Documentation and examples can be found in "this tutorial":http://plone.org/documentation/tutorial/customizing-main-template-viewlets.

Plone 3 does not create member folders by default

With release 3.0, member folders are optional, and not created by default.
This means that you can't rely on member folders to store data in or in any other way assume that there will be a members folder present.

While this was always considered bad practice, it's now official. Don't do it. :)

Using a tableless layout

The languishing tableless version of the Plone default theme has finally been removed from Plone 3.0.
However, a product exists which can be used as a substitute.

For people who want to use tableless, you can simply install the Plone Tableless [http://plone.org/products/plone-tableless/] product on top of your site.

If you are submitting a theme to plone.org for public consumption, please specify this as a dependency in your theme product's README.txt file.

Document Actions now use Zope 3 viewlets

If you were modifying or shipping custom templates for the document actions area of a Plone page, now's the time to stop.

The new approach uses viewlets, and its default position has also been moved to the bottom of the page. It also defaults to a text-based representation instead of the icons that it was using earlier, since document actions are often too abstract to create good icons for.

Products installing workflows may need to add permissions

If your product wants to make use of the new "Editor" role that ships with Plone 3, you will have to add explicit permissions to any workflows you add.

The new "Editor" (aka. "Can Edit" on the Sharing page) in Plone 3.0 makes it easy to let people collaborate on content authoring.
In some cases, editing also means the ability to add new objects inside the object people are editing.

For this to work, third party content types that add custom workflows will have to either use one of the standard "add content" permissions or explicitly give Editor the Add portal content role.

See "Ticket #6265":http://dev.plone.org/plone/ticket/6265 for the changeset and full explanation.

Indexes declared in Archetypes schemata need to be moved to GenericSetup

If you have declared indexes or metadata directly on the Archetypes field declarations, and you are using GenericSetup to install your types/FTIs, you will need to move them to GenericSetup.

This applies if you have moved from using 'install_types()' in 'Extensions/Install.py', to installing new content types/FTIs with GenericSetup using a 'types.xml' import step. For each field that specifies an 'index', like this example from "PoiIssue.py r40594":http://dev.plone.org/collective/browser/Poi/trunk/content/PoiIssue.py?rev=40594#L77:: StringField(name='issueType', index="FieldIndex:schema", widget=SelectionWidget(label="Issue type", description="Select the type of issue.", label_msgid='Poi_label_issueType', description_msgid='Poi_help_issueType', i18n_domain='Poi',), enforceVocabulary=True, vocabulary='getIssueTypesVocab', required=True), …you need to move the creation to catalog.xml with GenericSetup. If there is 'index="FieldIndex"', that means you need a new index, of type FieldIndex, with the name being the name of the accessor method:: If there is also ':schema' or ':metadata', e.g. 'index="FieldIndex:schema"', you also need a metadata column:: This is necessary because the schema does not really exist at install time, so there is no way GenericSetup can inspect it and configure new indexes. This was a bad design from the start, as portal-wide indexes do not belong in type-specific schemata anyway.

The "Sharing" tab is now a global action

You should no longer have a 'sharing' action in the portal_types entry for a custom content type.

The "Sharing" tab now points to the '@@sharing' view, and is defined as a global action in the 'object' category.
If you have a custom content type and you have set up the 'local_roles' action, which would normally be pointing to the 'folder_localrole_from' template, you should remove it.
It will be removed from existing, installed types during migration.

If you do not remove the action, the user will see two "Sharing" tabs.

For an example of the canonical set of actions and aliases, see "the GenericSetup definition of the Document FTI":http://dev.plone.org/plone/browser/CMFPlone/trunk/profiles/default/types/Document.xml.
Of course, you may not need the 'References', 'History' or 'External Edit' actions in your own types.

Multi page schemas

By default, Archetypes fields in different schemas in Plone 3.0 will be loaded all at once, without page reloads between the 'schematas'.

In Plone 3.0, all fields from all schematas will be loaded at once.
If you depend on your schematas (fieldsets) to be processed one page after the other, you'll need to mark your Archetypes content type that uses it (not the schema itself) with the IMultiPageSchema interface.

The interface lives in Products.Archetypes.interfaces.IMultiPageSchema.
The code to mark your content type would look like this:

from zope import interface
from Products.Archetypes.interfaces import IMultiPageSchema
...
interface.classImplements(MyContentType, IMultiPageSchema)

Enable inline editing (aka. QuickEdit)

Once you have your product updated, you might want to add support for inline editing of your type. Fortunately, this is very easy.

Adding inline editing and validation support to your view templates is as easy as calling the Archetypes widgets in view mode. As an example, consider the following typical code from Plone 2.5:

Variable goes here

Now, to render the same thing, with an h1 tag and a class on it, you do:

Variable goes here

This will keep whatever tags and styling you want around the item, and render the inline editing inside of it.
It's also backwards compatible with earlier Plone versions — although these don't get the inline editing, obviously.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 2.5 to 3.0 »

Updating 2.5.3 to 3.0.3

Description

Specific steps (for review) on updating a Plone 2.5.3 site to 3.0.3 on Linux using the Universal Installer package.

Migration Procedure

These steps assume a previous 2.5.3 installation in the folder /var/plone/, which should be modified if necessary to suit your environment.

	Download and un-archive the Plone 3 universal installer package for Linux.

	Modify the install.sh script to point the PLONE_HOME variable to /var/plone/

	In the existing Plone site, take note of any non-Plone products that need to be moved to the upgraded instance.

It is advisable to un-install any non-essential third-party products before migrating to a new version. In most cases, products are the biggest obstacle to migrating a site, and weeding out unnecessary products can save a great deal of time and frustration. These products can be re-installed as new packages after migration.

It also seems necessary in some cases to remove installed caching objects (CacheFu), uninstall the caching products, and install new versions of the products and create new caching tools after migrating.

	As the root user (or with "sudo"), shut down the existing Plone/Zope/Zeo cluster:

/var/plone/zeocluster/bin/shutdowncluster.sh

	Move /var/plone/ to a backup folder, such as /var/plone253/

	Run the Plone 3 install.sh script with the "zeo" cluster option:

./install.sh zeo

	Start the new cluster:

/var/plone/zeocluster/bin/startcluster.sh

This can take some time, as a new Plone site is now created as part of the process.

	Log into the ZMI as the "admin" user, using the password specified in /var/plone/zeocluster/adminPassword.txt:
http://localhost:8080/manage/

Once logged in, you may want to change the admin password to something more memorable (yet still secure) for future use:
http://localhost:8080/acl_users/users/manage_users?user_id=admin&passwd=1

	Stop the new cluster:

/var/plone/zeocluster/bin/shutdowncluster.sh

	In /var/plone/zeocluster/server/var/, create a backup/ folder, and move all existing contents to this new folder:

cd /var/plone/zeocluster/server/var/
mkdir backup
mv Data.fs* backup/

.. note::

Note that this step isn't completely necessary: you could just delete the existing files, but it's nice to back-up a working configuration in case things go wrong later.

	Copy Data.fs from the old instance to the new installation, and ensure the permissions are correct:

cp /var/plone253/zeocluster/server/var/Data.fs .
chown plone:plone Data.fs

	Start the new cluster:

/var/plone/zeocluster/bin/startcluster.sh

	Log into the ZMI as the "admin" user:
http://localhost:8080/manage/

	
Note

Note: this step is here presently only for the purpose of a full procedure review: it may be bug-related and should not be performed as part of a base migration. Try this only if all else fails.

In the ZMI, at the Plone site root, delete the following objects:
* content_type_registry
* mimetypes_registry
* portal_transforms

	
Note

Note: this step is here presently only for the purpose of a full procedure review: it may be bug-related and should not be performed as part of a base migration. Try this only if all else fails.

At the site root, using the Add pull-down, add new versions of the Content Types Registry, MimetypesRegistry Tool, and PortalTransforms Tool (in that order).

	At the site root, click portal_migration, and in the Upgrade tab, click the Upgrade button.

	After upgrading the site, click the View tab to test the main page.

	Click Site Setup, and then click Add/Remove Products.

	Under Installed Products, click the Migrate button to re-install any necessary existing products (in my case, this was CMFPlacefulWorkflow and Marshall).

	Download and un-archive any required products to /var/plone/zeocluster/Products
Make sure the product directories are complete, and that all contents have the proper owner ("plone").

	Re-start the cluster.

	In Site Setup on the Plone site, in Add/Remove Products, install the new products.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from 3.x to 3.2

Description

Steps for minor upgrades from Plone 3.x to Plone 3.2.

	Windows Updates

	Buildout

	Old buildouts

	Custom buildout

	easy_install and virtualenv

	Version migration

	A word on warnings

Plone 3.2 is the first fully egg-based Plone release.

Beginning with Plone 3.2, Plone will be available as a Python package and via installers. It will no longer be distributed as a tarball of old-fashioned Zope products. The change to standard Python packaging will improve dependency handling and make future installations easier. But, it will require some adjustments for those used to installing via a tarball of products. The 3.2.x installation will also require some slight changes in the buildout configuration file for those who have already been using buildout configuration management in the 3.x series.

Plone's installers take care of all this for you, but if you aren't using one of the installers you'll need to learn buildout - a Python configuration management tool we highly recommend - or use the Python package installer, easy_install, to install Plone. Both methods are discussed below.

Windows Updates

Users of past Windows installers should note: you should not try to simply install on top of your old Windows installation. That might have worked in the past, but it won't work with this upgrade. The move to a buildout-based installer has changed the layout of the subdirectories inside the installation. Do a new installation, get it working with all required products, then copy your old Data.fs file over the matching file in the new installation.

Buildout

All Plone's current installers use Buildout for configuration management. You should too, unless you're very experienced with Python packages. Buildout is the de facto standard for deploying Zope applications in a repeatable and easy way. The description of what will be installed is defined by a buildout configuration file, buildout.cfg.
Out of the box, Plone's Unified Installer includes a buildout.cfg.

If you're upgrading using buildout for the first time, take a look at General advice on updating from a non-buildout to buildout-based installation.

http://plone.org/documentation/manual/upgrade-guide/general-advice-on-updating-from-a-non-buildout-to-buildout-based-installation

If you're updating an existing buildout, please note that the buildout files for 3.2.x look slightly different to those for 3.0 and 3.1 - they don't need a custom plone installation step as buildout can now handle it directly, here's an example of the relevant parts of buildout.cfg:

[buildout]

parts: note that the plone part is no longer necessary.
parts =
 zope2
 instance
 ... Any other parts you've been using except "plone"

find-links: only the new dist.plone.org URL is needed.
find-links =
 http://dist.plone.org/

New: this will pick up version settings for all the components.
Modify the "3.2.x" to match the version you're seeking, e.g., 3.2.2.
extends = http://dist.plone.org/release/3.2.x/versions.cfg
versions = versions

eggs: Plone is now specified in the egg section. All the
dependencies are automatically handled.
eggs =
 Plone

zope part: Note the new fake-eggs settings. This is required
for Zope dependencies to be resolved during buildout.
[zope2]
recipe = plone.recipe.zope2install
url = ${versions:zope2-url}
fake-zope-eggs = true
additional-fake-eggs =
 ZConfig
 ZODB3
 pytz

Everything else can usually be the same.
[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
...
remove any reference to the plone part: e.g., ${plone:eggs} or ${plone:products}

If you have already modified your buildout.cfg file, for example to install new add-ons, remember to copy what you added to the eggs = and zcml = lines into the [instance] section.

If you've installed "old style" products you'll need to copy the productdistros section and add it to parts too.

After doing this, run bin/buildout -n, and your instance should update itself.

Old buildouts

There's been a recent change to the fake eggs mechanism that may cause a buildout error unless you delete the "develop-eggs" folder (or just its contents) from your buildout folder. It'll be recreated.

Custom buildout

To convert your existing custom buildout to Plone 3.2.x is very easy. The above example should be enough to make it clear what's needed, but in summary:

	Remove the [plone] section and its entry from parts =. Also, remove all existing ${plone:...} references, including the ones inside the [zope2] and [instance] parts.

	Add the Plone egg to the eggs specification. Note that "Plone" is capitalized.

	Copy the extends = and versions = directives from above into your buildout, updating the version number to the target release.

	Modify the dist.plone.org line in find-links to match the version, as above.

	Add the two "fake-eggs" specifications above to the zope part specification.

easy_install and virtualenv

If you have special reasons for using a different or no python package manager you can install Plone via easy_install alone. If you choose this route we highly recommend that you use virtualenv to create an isolated Python instance before proceeding. Python libraries - and different versions of the same library - often conflict.

Plone is built on-top of the Zope application server and requires it to be installed for you to use Plone. You can install Plone directly into a python environment using the easy_install utility.:

easy_install Plone

If you have multiple versions of Python installed you will need to use the easy_install that points to the same Python as your custom Zope install.

Version migration

No matter which technique you use to ugrade your Plone version, you'll need to use the portal_migrations tool in the Zope Management Interface to update your object database. This step is unchanged from past installations; see the general procedure.

A word on warnings

Whenever you run buildout and load new packages that have skin layers, you're likely to receive warnings indicating "'return' outside function." Ignore them, they're harmless. The warnings are produced when Python attempts to compile skin-layer Python scripts, which do indeed contain 'return' outside of function, but run in a context in which this is OK.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from 3.2 to 3.3.x

Description

Steps for minor upgrades from Plone 3.2 to Plone 3.3.x.

	Upgrade Steps

For most situations, this upgrade will be an easy one.

Upgrading from 3.2 to 3.3 is quick and easy. If you're upgrading from an earlier version, you should carefully read the upgrade instructions for the intervening versions. If you are upgrading to buildout for the first time, be sure to read General advice on updating from a non-buildout to buildout-based installation.

Upgrade Steps

Back up your entire installation. Stop the Zope/Plone process.

Edit your buildout.cfg file to use the 3.3 versions.cfg file:

extends = http://dist.plone.org/release/3.3.5/versions.cfg

	check http://plone.org/products/plone to see whether a more recent release is advised

	we have at least 3.3.5.

If you're using a buildout.cfg that reads versions.cfg from a file instead of a URL, you'll need to add this line and comment out the existing extends = versions.cfg line. Alternatively, you may download a new versions.cfg file from the URL above and point to that instead - if you prefer having the setup locally.

Make sure your [zope2] section (or equivalent using plone.recipe.zope2install) is pointing to the Zope version indicated in the previous versions.cfg:

[zope2]
recipe = plone.recipe.zope2install
url = ${versions:zope2-url}

Run buildout to download the updated packages and rebuild your startup commands. Change to the directory containing buildout.cfg and run:

bin/buildout

Windows users will use a backslash in place of the slash.

Restart Plone.

In the Zope Management Interface, visit portal_migration and use the upgrade button to update your database.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading Plone 3.x to 4.0

Description

Upgrading your site and your products from Plone 3 to Plone 4.

	Updating a custom Plone 3 buildout for Plone 4
	Common steps to update buildouts for Plone 4

	Updating add-on products for Plone 4
	Detecting Plone 4

	No more global definitions in templates

	The action icons tool (portal_actionicons) has been deprecated

	No more Zope 2 interfaces

	Miscellaneous import changes

	AdvancedQuery has been removed from Plone core

	Validators

	Manual calls to translate

	Use plone.app.blob-based BLOB storage

	Add views for content types

	'MailHost.secureSend' is now deprecated; use 'send' instead

	Portlets Generic Setup syntax changes

	Updating Plone 3 themes for Plone 4

	New users and groups functionality

	Make sure your templates are valid XML

	document_byline and some other macros are now viewlets

	No longer bin/instance test - use zc.recipe.testrunner

	Vocabulary Directive now replaced by Utilities

	Folder implementation changes

	Empty/Control_Panel/Products using Plone 4

	Deprecated Templates Checklist

	Email address-based login
	When this feature is enabled, can I log in with either my username and my email address or only my email address?

	Is this feature enabled by default in new Plone 4 sites? Will it get activated if I migrate to P4 from a previous version?

	How can I activate/deactivate this feature? Are there any possible issues during activation/deactivation I should know about?

	What happens when I change my email address?

	Upgrading Caching Products

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 3.x to 4.0 »

Updating a custom Plone 3 buildout for Plone 4

Description

The installers are the recommended way to install Plone 4, but if you have a custom buildout that you want to continue using, there are several changes you'll need to make.

If you have an existing buildout for a pre-4.0 Plone site, some updates are needed to make it work with Plone 4.
These instructions assume that you are starting with a working buildout for a Plone 3.3.x site.
If you're on an older version of Plone, see the appropriate section of this manual to upgrade it to Plone 3.3.x first.

Note

Trying to update an existing buildout in place is not recommended.
Work on a copy of your buildout configuration and site data until you are confident that the upgrade runs successfully.

If you need an example of a working Plone 4 buildout for comparison, look at the ones included in the installer for your platform, or generate one using ZopeSkel's plone3_buildout template.
(Yes it has Plone 3 in its name, but as long as you have an up-to-date version of ZopeSkel and enter 4.0 when it prompts for the Plone version, it will generate a correct buildout.)

Common steps to update buildouts for Plone 4

	Plone 4 requires Python 2.6, whereas Plone 3 uses Python 2.4.
Make sure that you start your buildout off on the right foot by running bootstrap.py using Python 2.6.
(If you aren't sure how to get a Python 2.6 installation that works on your system, one option is to run the Plone installer, and then use the Python that it builds to run your custom buildout.)
If you have set the executable variable in your ~/.buildout/default.cfg, remove it.

	Make sure the [buildout] section has an extends setting which extends the official Plone versions.cfg file for the correct version of Plone. For example:

[buildout]
extends = http://dist.plone.org/release/4.0/versions.cfg

If you are providing additional version pins, make sure that they are provided within the file that extends the Plone versions, or in a separate file that is extended after the Plone versions.
Also make sure you don't inadvertently override any version pins from the core Plone set.

	Remove the part using the plone.recipe.zope2install recipe (this part is often called "zope2"). Zope 2 is now installed automatically as an egg dependency of the Plone egg, rather than via a special recipe. (Zope 2 also includes its own dependencies as eggs, so fake eggs are generally no longer required.) You will also need to remove any references to variables from the zope2 part from other parts (such as "${zope2:location}").

	Remove the zope2-location setting from the part using the plone.recipe.zope2instance recipe; it is no longer needed now that Zope 2 is an egg.
Also update this part to specify the location of the BLOB storage directory that will be used by the instance:

blob-storage = ${buildout:directory}/var/blobstorage

If you will be running the instance as a ZEO client on the same machine as the ZEO server, you should configure both to use the same blobstorage directory, and set the shared-blob flag on each Zope instance:

shared-blob = on

#. If your buildout installs ZEO, make sure that you use the new plone.recipe.zeoserver recipe instead of plone.recipe.zope2zeoserver.
The new recipe does not need a zope2-location setting, since ZODB is now installed as an egg. An example of a working ZEO part configuration:

[zeoserver]
recipe = plone.recipe.zeoserver
zeo-address = 8100

	If you are using the collective.recipe.filestorage recipe to set up filestorages for multiple ZODB mountpoints, you must make sure you are using the newest version of this recipe, and add the following line to its configuration so that blobstorage directories will be configured for each mountpoint:

blob-storage = var/blobstorage-%(fs_part_name)s

#. If you are using the collective.recipe.supervisor recipe to install and configure supervisord to run your Plone processes, the correct way to start Zope in the foreground is now the "console" parameter to the instance script.
The programs setting of this recipe must be updated to use that parameter instead of the old runzope script which is no longer generated by Zope. For example:

programs =
 10 instance ${buildout:bin-directory}/instance [console] ${instance:location}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 3.x to 4.0 »

Updating add-on products for Plone 4

Description

This is a list of the most common updates that need to be applied by product authors to ensure that their products work on Plone 4.

	Detecting Plone 4

	No more global definitions in templates
	Watch out for 'exists'!

	The action icons tool (portal_actionicons) has been deprecated

	No more Zope 2 interfaces
	Zope 2 style interfaces removed from ATContentTypes

	Miscellaneous import changes
	Moved

	Removed

	AdvancedQuery has been removed from Plone core

	Validators

	Manual calls to translate

	Use plone.app.blob-based BLOB storage
	Using plone.app.blob for new content types

	Preparing already existing content types

	Add views for content types

	'MailHost.secureSend' is now deprecated; use 'send' instead
	Message Type

	Custom Headers

	Delayed Sending

	Writing Tests

	Summary

	Portlets Generic Setup syntax changes

	Updating Plone 3 themes for Plone 4
	Plone 4's Built-in Themes

	Upgrading a Plone 3 site with an existing theme

	Updating a theme to work in Plone 4
	Updates to main_template.pt

	Updates to template variables

	Update the "based-on" declarations

	Update the theme-specific interface

	Include a dependency in your (testing) profile's metadata.xml

	New users and groups functionality
	join_form moved and renamed

	Added @@new-user form

	User registration fields made flexible

	Nested groups enabled by default

	Make sure your templates are valid XML

	document_byline and some other macros are now viewlets

	No longer bin/instance test - use zc.recipe.testrunner
	Changes in PloneTestCase setup

	Vocabulary Directive now replaced by Utilities

	Folder implementation changes

	Empty/Control_Panel/Products using Plone 4

Detecting Plone 4

When Plone 3 and Plone 4 code branches differ you need to discriminate between Plone versions.
You can do this using BBB imports.

Here is an example how to detect Plone 4 during imports.
Then you can use PLONE_VERSION variable for making different code paths.:

try:
 # Plone 4 and higher
 import plone.app.upgrade
 PLONE_VERSION = 4
except ImportError:
 PLONE_VERSION = 3

No more global definitions in templates

Lots of definitions that were available in templates in Plone 3.x are no longer there.
You need to add the ones you really need yourself.

It is good practice in most cases to let the templates in your product use the main_template.pt of Plone.
Until Plone 3.x this used to make a lot of variable definitions available directly in your template, as the main template pulled in definitions from the global_defines.pt template.
This was handy, but the downside was that for every template lots of these variables were calculated but never used.
The Plone developers decided that this was too expensive (when thinking in terms of processor time) and removed the global defines.
This makes Plone faster, but it does ask for some changes in your product.

How do you know if your product needs changes?
The theoretical approach would be to open all your templates in an editor and check if every variable that is used in a TALES expression (like tal:content or tal:define) has been defined earlier in that same template.
Note that some variables are still globally available, the most important being context, view and template.
A more practical approach is simply to try out your product in Plone 4, visit all pages that belong to your product and see if any errors occur.
An error would look like this:

NameError: name 'templateId' is not defined

How do you know what definition you should add to your template?
The canonical place to look this up is the @@plone view from Plone 3 (not Plone 4).
This is the file Products/CMFPlone/browser/ploneview.py [http://dev.plone.org/plone/browser/CMFPlone/branches/3.0/browser/ploneview.py], specifically the method _initializeData.

The most common variables that are now missing, including their definitions, are these:

<div
 tal:define="template_id template/getId;
 normalizeString nocall:context/@@plone/normalizeString;
 toLocalizedTime nocall:context/@@plone/toLocalizedTime;
 portal_properties context/portal_properties;
 site_properties context/portal_properties/site_properties;
 here_url context/@@plone_context_state/object_url;
 portal context/@@plone_portal_state/portal;
 isAnon context/@@plone_portal_state/anonymous;
 member context/@@plone_portal_state/member;
 actions python:context.portal_actions.listFilteredActionsFor(context);
 mtool context/portal_membership;
 wtool context/portal_workflow;
 wf_state context/@@plone_context_state/workflow_state;
 default_language context/@@plone_portal_state/default_language;
 is_editable context/@@plone_context_state/is_editable;
 isContextDefaultPage context/@@plone_context_state/is_default_page;
 object_title context/@@plone_context_state/object_title;
 putils context/plone_utils;
 ztu modules/ZTUtils;
 acl_users context/acl_users;
 ifacetool context/portal_interface;
 syntool context/portal_syndication;">
</div>

These changes are compatible with Plone 3.

Watch out for 'exists'!

A very sneaky thing can go wrong when you use the 'exists' keyword. Say you have a condition like this in your template:

tal:condition="python:exists('portal/beautiful.css')"

This condition is False when portal does not have the mentioned css file, but it also fails when portal is not defined!
And you logically get no error message about this, but you just miss a piece of html or some css or javascript is not loaded because this condition is False.
So you should go through your templates, search for the 'exists' keyword and check that everything that should be defined is actually defined.

The action icons tool (portal_actionicons) has been deprecated

Products providing icons for CMF actions should now register them using the 'icon_expr' setting on the action itself, rather than using the separate action icons tool.

In Plone 3, products could register icons associated with CMF actions using the action icons tool (portal_actionicons in the ZMI, actionicons.xml in GenericSetup profiles).
In Plone 4 the action icons tool has been deprecated. Instead, actions in the actions tool and control panel tool can now have an associated icon expression which gives the URL of the icon.

For example, Kupu now registers the icon for its control panel using the following controlpanel.xml file in its GenericSetup profile:

<?xml version="1.0"?>
<object name="portal_controlpanel" meta_type="Plone Control Panel Tool">
 <configlet title="Visual editor" action_id="kupu" appId="Kupu"
 category="Plone" condition_expr=""
 icon_expr="string:$portal_url/kupuimages/kupu_icon.gif"
 url_expr="string:${portal_url}/kupu_library_tool/kupu_config"
 visible="True">
 <permission>Manage portal</permission>
 </configlet>
</object>

The 'icon_expr' setting gives the URL for the icon associated with this configlet.

The 'icon_expr' setting may also be used with normal actions in the actions tool / actions.xml.

Registering icons with the action icons tool will still work in Plone 4, but it is deprecated and will no longer work in the next major release of Plone.
You may remove actionicons.xml to avoid a deprecation warning, or leave it in place to maintain compatibility with Plone 3, depending on your needs.

No more Zope 2 interfaces

Versions of Zope 2 prior to Zope 2.12.0 supported two types of interfaces (the old Zope 2 implementation and the new Zope 3 implementation from zope.interface).
Now only the latter remains.

In Plone 2.5 and Plone 3, Zope contained two different ways of declaring that a class implements a particular interface.

Zope 2 style:

from Interface import Interface

class MyInterface(Interface):
 pass

class MyClass(object):
 __implements__ = (MyInterface,)

Zope 3 style:

from zope.interface import Interface

class MyInterface(Interface):
 pass

class MyClass(object):
 implements(MyInterface)

In Zope 2.12, only Zope 3 style interfaces are supported.

Code trying to define Zope 2 interfaces will raise the following exception:

ImportError: No module named Interface

Zope 2 style interfaces removed from ATContentTypes

In Plone 3, the Zope 2 style interfaces were defined in interfaces.py and the Zope 3 ones in the interface folder.

In Plone 4, the Zope 2 style interfaces have been removed and the Zope 3 ones moved to the interfaces submodule, to follow naming conventions.
However, a link to these Zope 3 interfaces has been left in interface.py, so the following example code will work in both Plone 3 and 4:

from Products.ATContentTypes.interface import IATFolder

Trying to use implements() with Zope 2 style interfaces will fail.

Miscellaneous import changes

A number of imports have been moved to new locations.
In addition, a number of previously deprecated methods have been removed.

Moved

P = Abbreviation for "Products".

	Old location
	New location

	P.ATContentTypes.content.folder.ATFolder
	plone.app.folder.folder.ATFolder

	P.ATContentTypes.content.folder.ATFolderSchema
	plone.app.folder.folder.ATFolderSchema

	P.CMFPlone.browser.navtree.SitemapNavtreeStrategy.icon
	P.CMFPlone.browser.navtree.SitemapNavtreeStrategy.item_icon

	P.CMFPlone.browser.plone
	P.CMFPlone.browser.ploneview

	P.CMFPlone.browser.ploneview.cache_decorator
	plone.memoize.instance.memoize

	P.CMFPlone.browser.ploneview.Plone.isRightToLeft
	@@plone_portal_state/is_rtl

	P.CMFPlone.browser.ploneview.Plone.keyFilteredActions
	@@plone_context_state/keyed_actions

	P.CMFPlone.browser.portlets
	plone.app.portlets.portlets

	P.CMFPlone.interfaces.OrderedContainer.IOrderedContainer
	OFS.interfaces.IOrderedContainer

	P.CMFPlone.utils.BrowserView
	P.Five.BrowserView

	P.CMFPlone.utils.getGlobalTranslationService
	P.PageTemplates.GlobalTranslationService.getGlobalTranslationService

	P.CMFPlone.utils.scale_image
	P.CMFPlone.utils.utranslate

	P.PageTemplates.GlobalTranslationService.getGlobalTranslationService
	P.PlonePAS.utils.scale_image

	zope.i18n.translate
	zope.i18n

	P.CMFPlone.utils.ulocalized_time
	P.CMFPlone.i18nl10n.ulocalized_time

	zope.app.cache.interfaces.ram.IRAMCache
	zope.ramcache.interfaces.ram.IRAMCache

	P.ATReferenceBrowserWidget.ATReferenceBrowserWidget.ReferenceBrowserWidget
	archetypes.referencebrowserwidget.ReferenceBrowserWidget

Removed

Products.CMFPlone.CatalogTool.registerIndexableAttribute – see the plone.indexer package instead.

Products.CMFPlone.PloneTool.setDefaultSkin

Products.CMFPlone.PloneTool.setCurrentSkin

Products.CMFPlone.PortalContent

Products.CMFPlone.browser.ploneview.IndexIterator, Products.CMFPlone.utils.IndexIterator

the Favorite content type

use_folder_tabs from site_properties

The 'actions' method of @@plone_context_state now takes a single parameter
which is the action category that should be retrieved. This should be used
instead of the 'keyed_actions' method which has been removed.

Items removed from the plone_deprecated skin layer:
* colophon.pt
* correctPREformatting.js
* cropText.py
* deprecated.css.dtml
* document_actions.pt
* document_byline.pt
* enabling_cookies.pt
* enabling_cookies.pt.metadata
* extract_date_components.py
* folder_contents_filter.js
* folder_contents_hideAddItems.js
* folder_localrole_add.py
* folder_localrole_delete.py
* folder_localrole_form.pt
* folder_localrole_form.pt.metadata
* footer.pt
* getActionIconList.py
* getActionIconList.py.metadata
* getAddableTypesInMenu.py
* getCurrentUrl.py
* getEventString.py
* getNextMonth.py
* getOrderedUserActions.py
* getPersonalFolderFor.py
* getPreviousMonth.py
* getReplyReplies.py
* getViewTemplateId.py
* getWorkflowHistory.py
* getYearAndMonthToDisplay.py
* getZopeInfo.py
* getZopeInfo.py.metadata
* global_contentmenu.pt
* global_contentviews.pt
* global_logo.pt
* global_pathbar.pt
* global_personalbar.pt
* global_searchbox.pt
* global_sections.pt
* global_siteactions.pt
* global_skinswitcher.pt
* hide_columns.py
* isDefaultPageInFolder.py
* isRightToLeft.py
* keyFilteredActions.py
* login.js
* navigationCurrent.py
* navigationLocalRelated.py
* old_folder_contents.pt
* old_folder_factories.pt
* old_folder_factories.pt.metadata
* plone_minwidth.js.dtml
* plone_minwidth.js.dtml.metadata
* plonifyActions.py
* portlet_calendar.pt
* portlet_events.pt
* portlet_languages.pt
* portlet_login.pt
* portlet_navigation.pt
* portlet_news.pt
* portlet_recent.pt
* portlet_related.pt
* portlet_review.pt
* prepare_slots.py
* presentation.css.dtml
* presentation.css.dtml.metadata
* rejectAnonymous.py
* review_history.pt
* review_history.pt.metadata
* showEditableBorder.py
* viewThreadsAtBottom.pt

AdvancedQuery has been removed from Plone core

AdvancedQuery is no longer included with Plone 4, but you may declare it as a dependency for add-on products.

Plone 4 no longer includes AdvancedQuery. In Plone 3, it was used only by wicked, and the Plone 4 version of wicked no longer requires AdvancedQuery. AdvancedQuery was seen by the Plone 4.0 Framework Team as a risky dependency because it is maintained in a private repository rather than in the Plone core or Collective repositories.

If your add-on product or custom code depends on AdvancedQuery, you will need to explicitly require it now. You can do this by including dependency in your add-on product's setup.py:

install_requires=[
 'setuptools',
 'Products.AdvancedQuery',

AdvancedQuery can be found here. [https://pypi.python.org/pypi/Products.AdvancedQuery/3.0.1]

Validators

Validators no longer function with old style zope 2 interfaces but need new zope 3 style interfaces.

Error you may get when starting your zope instance:

Products.validation.exceptions.FalseValidatorError:
<Products.PloneSoftwareCenter.validators.ProjectIdValidator instance at 0xa92082c>

This means that the specified validator is using old interfaces and is not working anymore. You need to remove this line:

__implements__= (IValidator,)

(IValidator might be called ivalidator in all lowercase, at least in this specific example) and replace it with this:

implements(IValidator)

If you now use this code on Plone 3, this will fail:

TypeError: Error when calling the metaclass bases
 iteration over non-sequence

Manual calls to translate

When you directly call the 'translate' method in your code, there are some changes.

If you have any of these imports, you cannot use them anymore:

Products.CMFPlone.utils.utranslate
Products.PageTemplates.GlobalTranslationService.getGlobalTranslationService

Instead you need to use zope.i18n.translate directly. See this example changeset from Poi.

The tricky thing here is that the order of the arguments has changed so you probably need some more changes. The old call signature was this:

utranslate(domain, msgid, mapping=None, context=None,
 target_language=None, default=None)

And the new is this:

translate(msgid, domain=None, mapping=None, context=None,
 target_language=None, default=None)

So:
* msgid is now the first instead of the second call
* domain is now optional

And one more tricky thing (and this changeset does that not completely correctly): when you specify the context you first had to pass a content object (usually the page, image, folder etc you are looking at) but now you need to pass in the request instead.

Use plone.app.blob-based BLOB storage

Plone 4 ships with a new type of storage specially designed for large binary objects, as images or other files. Here you can learn how to use this feature for new content types and how to and prepare your already existing content types to use the new BLOB storage.

Using plone.app.blob for new content types

Just use plone.app.field.BlobField or plone.app.field.ImageField instead of atapi.FileField or atapi.ImageField (respectively) in your schema:

from Products.Archetypes import atapi
from plone.app.blob.field import BlobField, ImageField

schema = atapi.Schema((
 BlobField('afile',
 widget=atapi.FileWidget(label='A file',
 description='Some file'),
 required=True,
),
 ImageField('animage',
 widget=atapi.ImageWidget(label='An image',
 description='Some image'),
),
))

Check the Archetypes Fields Reference [http://plone.org/documentation/manual/developer-manual/archetypes/fields/fields-reference/] for details.

Preparing already existing content types

In order to prepare your own content types to use blobs and provide migration facilities to your users once plone.app.blob is available, you need to perform the following steps. Check example.blobattype [http://dev.plone.org/collective/browser/example.blobattype/trunk] for example code.

Use a schema extender to replace the FileField(s) of your content type with BlobField(s). For detailed information on how to do so please look into the archetypes.schemaextender [https://pypi.python.org/pypi/archetypes.schemaextender/] documentation. In essence this breaks down to:

	Creating an extension field:

class ExtensionBlobField(ExtensionField, BlobField):
 """ derivative of blobfield for extending schemas """

	Extending your content type to use the blob fields. So for instance if your content type ExampleATType has a field named file you will need to register a schema extender like the following:

class ExampleATTypeExtender(object):
 adapts(IExampleATType)
 implements(ISchemaExtender)

 fields = [
 ExtensionBlobField('file',
 widget=atapi.FileWidget(
 label=_(u"File"),
 description=_(u"Some file"),
),
 required=True,
 validators=('isNonEmptyFile'),
),
]

 def __init__(self, context):
 self.context = context

 def getFields(self):
 return self.fields

If you want to be able to still use your content type without plone.app.blob in sites that have not yet installed support for blobs, you will find it convenient to register the adapter conditionally like so:

<adapter
 zcml:condition="installed plone.app.blob"
 factory=".extender.ExampleATTypeExtender" />

This way, if plone.app.blob is not installed your original FileField(s) will be used.

	Provide a migration function for your content. The easiest way to do so is to use the helper method from plone.app.blob. Given a portal type name it will automatically find all blob-aware fields as defined by the schema extender above and perform migrations for those. It is as simple as:

from plone.app.blob.migrations import migrate
def migrateExampleATTypes(context):
 return migrate(context, 'ExampleATType')

You can now call migrateExampleATTypes from a view or a script to migrate existing content items of the specified type. If you need more control, you can write your own migrator. Please refer to example.blobattype [http://dev.plone.org/collective/browser/example.blobattype/trunk] for more details on how to do this.

Add views for content types

In Plone 4, every Factory Type Information object in portal_types will have an additional, optional property which can be set to a TALES expression to provide the URL of a view that will be shown when the user chooses to add an object of this particular type from the "Add" menu in Plone.

This property has the title Add view URL (expression) and the internal id add_view_expr.

For example, if you have a custom add form called @@add-my-content, you could set this expression to string:${folder_url}/@@add-my-content. (Note that the view in this case needs to be registered for the folder type, not for the type being created.)

If this property is not set, Plone will fall back on the createObject script as before, which in turn will create the object or invoke the portal_factory tool. This is likely to be the correct behaviour for most Archetypes-based content objects.

In Plone 3, it was possible to have an add view be invoked by registering a view for the IAdding view (aka the + view) that had the same name as the factory property specified in the Factory Type Information. For example, a type with a factory of my.type could be accompanied by a view with the name 'my.type' registered for the IAdding interface. This would be found and preferred over the createObject script, and was sometimes used with non-Archetypes content.

In Plone 4, this association needs to be made explicit. (This is mainly for performance reasons.) To use such an add view, you need to set the add_view_expr property to invoke it, e.g. string:${folder_url}/+/my.type.

Finally, note that the IAdding (+) view is falling out of favour. It will continue to work indefinitely, but most people these days prefer to register a simple view (e.g. @@add-my-content) for the folder type (e.g. the IFolderish interface from Products.CMFCore.interfaces) which constructs and adds the content in reaction to a valid form submission. This is because the "view-on-a-view" concept used by IAdding can be confusing and requires special handling in certain places (e.g. some vocabulary factories) to deal with the fact that view.context is another view, not a content object. The add form base classes in zope.formlib still use the IAdding view, but z3c.form comes with an add form base class that acts as a simple view.

'MailHost.secureSend' is now deprecated; use 'send' instead

The SecureMailHost product is no longer a part of Plone in 4.0. As a result, the 'secureSend' method which was generally used to send mail is now deprecated. The default 'send' method of MailHost should be used instead.

In Plone 2.1 - 3.x the standard method for sending mail looked like this:

mh = getToolByName(context, 'MailHost')
mh.secureSend(message, mto, mfrom, subject=None,
 mcc=None, mbcc=None, subtype=None,
 charset=None, **kwargs)

Where the message parameter is either text with no headers or an email.Message.Message object, the mto, mfrom, mcc and mbcc parameters are lists of email addresses, subject is content of the email subject header, subtype is used to provide the message mime sub-type, charset is used for message and header encoding, and the kwargs are used to provide additional headers.

In Plone 4.x, this method is deprecated and the standard send method of the MailHost should be used instead. The following is an example of using send:

mh = getToolByName(context, 'MailHost')
mh.send(messageText, mto=None, mfrom=None,
 subject=None, encode=None,
 immediate=False, charset='utf8', msg_type=None)

Here, messageText is the message with or without headers or an email.Message.Message object, mto and mfrom are strings containing the to and from addresses, subject is the content of the email subject header, encode is used to specify the message payload encoding (and should almost never be used), immediate is used to override the default MailHost queuing behavior, and charset is used for message and header character encoding (in Plone you should generally pass 'utf8' as the value for charset unless you have a specific reason not to). If you need to set custom headers they will need to be set in the messageText itself.

Message Type

Instead of passing the MIME subtype as the subtype parameter to set the message content type, you pass the full MIME type as msg_type. So instead of subtype='plain' you would use msg_type='text/plain'.

Custom Headers

The secureSend method had provided the ability to set some specific headers, and to set custom headers as well. Unfortunately, send does not allow doing this directly; fortunately it is pretty simple to construct a message with custom headers to pass to send. Below is an example that assumes you have the MailHost object and have already defined message_body, mto, mfrom and subject:

from email import message_from_string
from email.Header import Header
my_message = message_from_string(message_body.encode('utf-8'))
my_message.set_charset('utf-8')
my_message['CC']= Header('someone@example.com')
my_message['BCC']= Header('secret@example.com')
my_message['X-Custom'] = Header(u'Some Custom Parameter', 'utf-8')
mailhost.send(my_message, mto, mfrom, subject)

Delayed Sending

By default send waits to send messages until the end of the request transaction. This ensures that if a conflict error occurs and the transaction is retried, multiple emails will not be sent (which is what happens with secureSend and earlier versions of send). Unfortunately, this means that unless you explicitly request immediate=True when using send, you will not be able to catch any errors which might happen during sending, as they won't occur until the end of the transaction.

If you want to handle email errors to prevent them from aborting an otherwise successful transaction, you need to set immediate=True and enclose the send call in a try/except block. Alternatively, you can go the the MailHost configuration screen in the ZMI and enable SMTP Queuing. This will ensure the mail sending happens completely outside of the transaction, providing more reliability and increased performance while still avoiding transaction retry issues. Using the new MailHost queueing feature is highly recommended for production sites.

Writing Tests

Plone includes some helpers for writing tests that need to use email in the Products.CMFPlone.tests.utils and Products.CMFPlone.tests.test_mails modules. These include a MockMailHost and a MockMailHostTestCase that replaces the MailHost in the test Plone site with a MockMailHost object. For products that make use of Plone's MockMailHost in their own tests, there are a few more changes that need to be made.

The messages property of the mail host no longer includes the an email.Message object, but instead contains a string representation of message. This means that in order to test the message object you can either work directly with the message string, or convert it into a email message object using the message_from_string function used in the last example.

Summary

In most cases, all you need to do to use send instead of secureSend is convert your mto and mfrom parameters from lists to comma separated strings, and add any CC, BCC, or other headers directly to the messageText instead of passing them as parameters. If you are using secureSend to add custom headers or make other adjustments to the message, the changes are a little more involved, but still straightforward. Additionally, if you are using Plone's MockMailHost in your tests you will need to update your tests to work with the message string rather than an email.Message object.

Portlets Generic Setup syntax changes

The syntax for limiting portlets to a certain type of manager has changed.

The original format for limiting a portlet to a certain type of manager was:

<portlet addview="portlets.BBB"
 title="Foo"
 description="Foo"
 for="plone.app.portlets.interfaces.IColumn" />

but this form was deprecated in Plone 3.1 to allow multiple values in the for field. In Plone 4 the required form is:

<portlet title="Foo"
 addview="portlets.New"
 description="Foo">
 <for interface="plone.app.portlets.interfaces.IColumn" />
 <for interface="plone.app.portlets.interfaces.IDashboard" />
</portlet>

Updating Plone 3 themes for Plone 4

Plone 3 themes may require a few modifications in order to work in Plone 4, depending on how much template customization was done.

Plone 4's Built-in Themes

Plone 3 shipped with two skins, Plone Default and NuPlone.

Plone 4 includes three skins:

	Sunburst Theme
A new, modern skin, packaged in the plonetheme.sunburst egg. Sunburst is the default skin for newly created sites.

	Plone Classic Theme
The old default skin that was called Plone Default in Plone 3. It is now packaged in the plonetheme.classic egg.

	Plone Default (or "Unstyled")
The "Plone Default" skin is now just a barebones interface with no CSS styling, intended for use with post-processing theming engines such as xdv or deliverance.

Plone 4 no longer ships with NuPlone, but it is still available as an add-on.

Upgrading a Plone 3 site with an existing theme

If you upgrade a site from an older version of Plone to Plone 4, the automatic upgrade will try to do something reasonable with the theme.

If you have installed and selected a custom theme, almost no changes will be made. The exception is that the 'plone_styles' skin layer will be replaced by the 'classic_styles' layer, since the name of this layer used by the Plone Classic Theme has been renamed. You may need to take additional steps to update the theme to work properly in Plone 4, as described below.

If your skin was set to "Plone Default" with the default set of skin layers, your skin will be set to "Plone Classic Theme," which should look the same.

If your skin was set to "Plone Default" but you have customized it by changing the skin layers used (or installing add-ons which add additional skin layers), then these skin selections will be copied to a new skin called "Old Plone 3 Custom Theme," which will be made active. The viewlet configuration will also be preserved.

Updating a theme to work in Plone 4

There are several updates you may need to make to a custom theme to make sure that it continues to work in Plone 4.

Updates to main_template.pt

If your theme has a custom version of main_template.pt, it will need to be updated. The best way to do this is probably to compare the custom main_template to the one that shipped with Plone 3, and then start over with a fresh copy of main_template from Plone 4 and re-apply the same modifications that had been made. In particular, watch for the following changes in main_template:
* The defines on the html tag have been modified.
* Some new defines have been added to the body tag.
* main_template now includes the standard viewlet managers used within the main content area, and defines a new slot called "content-core" where the actual content body goes.

Updates to template variables

Templates that have been overridden must be reviewed to make sure new changes to the original templates are included. Also, check to make sure they are not using global template variables that are no longer available [http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/updating-add-on-products-for-plone-4.0/no-more-global-definitions-in-templates].

Update the "based-on" declarations

If your theme is installed via a GenericSetup profile, then you probably have a profiles/default/skins.xml file which declares a "skin-path" consisting of various layers. The skin path declaration may say based-on="Plone Default". If so, update it to say based-on="Plone Classic Theme" so that it will continue to use the same set of layers as a basis that it did in Plone 3. If the "plone_styles" layer is referenced by name, change it to "classic_styles".

Similarly, you may have a profiles/default/viewlets.xml file which customizes the viewlets used in your theme. If any of the "order" or "hidden" manager directives in this file say based-on="Plone Default", update them to say based-on="Plone Classic Theme" instead.

Update the theme-specific interface

Your theme may define a Zope 3 interface called IThemeSpecific in browser/interfaces.py. If so, update it so that it extends the theme interface from the Plone Classic Theme:

from plonetheme.classic.browser.interfaces import IThemeSpecific as IClassicTheme
class IThemeSpecific(IClassicTheme):
 """theme-specific layer"""

This will ensure that your theme continues to have available the viewlets that are registered for the Plone Classic Theme only, as there are several which are slightly customized compared to the default viewlets of Plone 4 used by the Sunburst theme.

Include a dependency in your (testing) profile's metadata.xml

You may to include the plonetheme.classic default profile as a dependency in your products default / testing profile to get your end-to-end tests passing. Add the following to metadata.xml:

<dependency>profile-plonetheme.classic:default</dependency>

New users and groups functionality

Some pages have been renamed and moved, registration made flexible, and nested groups enabled by default.

join_form moved and renamed

In Plone 3, the login form was living in the portal_skins/plone_login skin layer of the Plone (Products.CMFPlone) package. This form has been moved to a Zope 3 view named @@register in the plone.app.users package.

This means that you'll have to adapt any customizations made to the join_form template to use the new @@register view.

Added @@new-user form

This is the form that site administrators, or any other user with the Manage users permission, can use to add new users, bypassing the Enable self-registration and Let users select their own passwords settings, that only affect the public @@register form.

User registration fields made flexible

The new join and user-addding forms let you to select the groups to which the user will be assigned once created. You can customize which fields do you want to be shown in this form from the Site Setup → Users and Groups → Member registration dialog. You can also modify the list programatically and add new fields as described in collective.examples.userdata [https://pypi.python.org/pypi/collective.examples.userdata].

Nested groups enabled by default

When viewing a group's membership page, you can add groups as well as users as members. This way, members of the nested group inherit all roles and permissions assigned to the parent group. For example, the "Biology Department" and "Chemistry Department" groups as well as the college's Dean may belong to the "Science" group. If "Science" is given view rights over the college's intranet folder, the Dean, and anyone belonging to the Biology or Chemisty groups would gain view access to that folder.

If you want to disable this behavior, deactivate the recursive_groups plugin at plone_site_root/acl_users/plugins/Groups Plugins.

Make sure your templates are valid XML

It's always been "best practice" to make sure your templates validate, even though it's not required. With Plone 4, there are even more benefits to doing so.

It's long been considered "best practice" to make sure that all of the templates in your custom products validate as valid XML. But, since web browsers are so forgiving of sloppy markup, it has also been the case that there have been few strong incentives to make sure your XML is perfectly valid. Until now.

By using Chameleon [http://chameleon.repoze.org/], a drop-in replacement for Zope's ZPT template rendering engine, a Plone 4 site can immediate experience 25-50% improvements in performance. However, Chameleon absolutely requires that all page templates be valid XML.

Plone 4 does not include Chameleon, although it can be added as an add-on product. Current plans call for Plone 5 to use Chameleon by default, and it may start shipping (disabled) with a future release in the Plone 4.x series (as of this writing, possibly Plone 4.2). Bottom line: as you're updating your add-on products for Plone 4, now is the perfect time to double-check your templates to make sure they're well-formed XML.

The simplest way to validate your templates is probably to use xmllint [http://www.xmlsoft.org/xmllint.html]. You can also use the W3C validator [http://validator.w3.org/], either online or on your Mac OS X system [http://habilis.net/validator-sac/].

document_byline and some other macros are now viewlets

Some content relatd TAL macros have been removed and replaced with viewlets.

This change concerns theme and add-on product authors who have custom content templates.

If your template had a byline macro, which shows the author name, before like:

<div metal:use-macro="context/document_byline/macros/byline"></div>

it does not work anymore (you will receive AttributeError: document_byline).

Byline is now rendered by a viewlet plone.belowcontenttitle.documentbyline (from package plone.app.layout.viewlets) which is defined in a viewlet manager IBelowContentTitle. You need to change this to your content templates.:

<div tal:replace="structure provider:plone.belowcontenttitle" />

The same goes for document actions. Old:

<div metal:use-macro="context/document_actions/macros/document_actions"></div>

New:

<div tal:replace="structure provider:plone.documentactions" />

For templates and macros checklist, please see this [http://manage.plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/deprecated-templates-checklist].

No longer bin/instance test - use zc.recipe.testrunner

Zope 2 start-up script no longer supports running tests. You need to use zc.recipe.testrunner for this purpose.

Add to your builout.cfg:

	parts =

	...
test

[test]
recipe = zc.recipe.testrunner
defaults = ['--auto-color', '--auto-progress']
eggs = ${instance:eggs}

Rerun buildout.Then you can run tests:

bin/test -s your.packagename

See z3c.recipe.testrunner [https://pypi.python.org/pypi/zc.recipe.testrunner#detailed-documentation] page for more information.

Changes in PloneTestCase setup

If you previously set up a PloneTestCase as explained in the developer manual [http://plone.org/documentation/manual/developer-manual/testing/writing-a-plonetestcase-unit-integration-test]

you might need to change the initialization of Zope2 products:

from Products.Five import zcml
from Testing import ZopeTestCase as ztc
from Products.PloneTestCase import PloneTestCase as ptc
from Products.PloneTestCase.layer import onsetup

@onsetup
def setup_product():

 import my.types
 zcml.load_config('configure.zcml', my.types)

 # We need to tell the testing framework that these products
 # should be available. This can't happen until after we have loaded
 # the ZCML.
 ztc.installProduct('TextIndexNG3')
 ztc.installPackage('my.types')

setup_product()
ptc.setupPloneSite(products=['my.types'])

ztc.installProduct('TextIndexNG3') needs to be moved out of the deferred method setup_product so it's initialized properly:

@onsetup
def setup_product():

 import my.types
 zcml.load_config('configure.zcml', my.types)

 # We need to tell the testing framework that these products
 # should be available. This can't happen until after we have loaded
 # the ZCML.
 ztc.installPackage('my.types')

#initialize products outside of the deferred (@onsetup) method, otherwise it's too late
ztc.installProduct('TextIndexNG3')

setup_product()
ptc.setupPloneSite(products=['my.types'])

see the blogpost describing this issue in more details [http://webmeisterei.com/news/unit-test-setup-for-plone-4]

Vocabulary Directive now replaced by Utilities

Vocabulary factories should be registered using utilities

Previously a named vocabulary would be registered in this manner:

Zope 2 style:

<vocabulary
 name="collective.exampleapp.Subscribers"
 factory=".vocabularies.Subscribers" />

Code that attempts to use the Zope 2 style vocabulary directive will throw a configuration error:

ConfigurationError: ('Unknown directive', u'http://namespaces.zope.org/zope', u'vocabulary')

The new way to register a vocabulary is like this:

Zope 3 style:

<utility
 name="collective.exampleapp.Subscribers"
 component=".vocabularies.Subscribers"
 provides="zope.app.schema.vocabulary.IVocabularyFactory"
 />

See more information about utilities and vocabularies.

Folder implementation changes

Large Folder and Folder content types have been unified in Plone 4. This may impact your add-on product code.

Plone 4 unifies two different folder implementations (Folder and Large Folder) to one implementation. There are internal changes to ATFolder base classes (Archetypes folder implementation). This change simplifies code, API and makes folders scale better.

plone.app.folder is the new package providing the folder code. plone.app.folder provides a migration view which is run during Plone 4 upgrade for all ATFolder based content.

For more information see this discussion. [http://plone.293351.n2.nabble.com/Custom-content-and-migrating-to-plone-app-folder-P4-tp5545767p5633850.html]

Performance impact explained. [http://plone.org/products/plone/features/new-faster-folder-implementation]

Empty/Control_Panel/Products using Plone 4

In Plone 4 Zope Management Interface's Products section has been turned off.

In ZMI, /Control_Panel/Products shows no products, and says "There are currently no items in Product Management"

It was turned off in Plone 4.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 3.x to 4.0 »

Deprecated Templates Checklist

A number of the templates in plone_deprecated have now been removed completely.
If your theme or product has customized these, you will need to replace them with the corresponding viewlet or portlet.

	Deprecated template
	Replacement in Plone 4
	Type

	colophon.pt
	plone.colophon
	viewlet

	document_actions.pt
	plone.documentactions
	viewletmanager

	document_byline.pt
	plone.belowcontenttitle.documentbyline
	viewlet

	footer.pt
	plone.footer
	viewlet

	global_contentviews.pt
	plone.contentviews
	viewlet

	global_pathbar.pt
	plone.path_bar
	viewlet

	global_personalbar.pt
	plone.personal_bar
	viewlet

	global_searchbox.pt
	plone.searchbox
	viewlet

	global_sections.pt
	plone.global_sections
	viewlet

	portlet_calendar.pt
	portlets.Calendar
	portlet

	portlet_events.pt
	portlets.Events
	portlet

	portlet_languages.pt
	portlets.Language
	portlet

	portlet_login.pt
	portlets.Login
	portlet

	portlet_navigation.pt
	portlets.Navigation
	portlet

	portlet_news.pt
	portlets.News
	portlet

	portlet_recent.pt
	portlets.Recent
	portlet

	portlet_related.pt
	plone.belowcontentbody.relateditems
	viewlet

	portlet_review.pt
	portlets.Review
	portlet

	review_history.pt
	plone.belowcontentbody.contenthistory
	viewlet

For more info about how the viewlet architecture replaced METAL macros check the Customizing the viewlets in main_template [http://plone.org/documentation/kb/customizing-main-template-viewlets/] tutorial.

For an overview of the Plone portlets infrastucture, see the Portlets section of the Developer Manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 3.x to 4.0 »

Email address-based login

You can now allow users to use their email address as login name. This feature can be switched on in the Security settings control panel. The effect is that on the registration form no field is shown for the user name. On the login form the user is now asked to fill in an email address. A list of questions and answers about this new feature, including use and migration, is presented here.

When this feature is enabled, can I log in with either my username and my email address or only my email address?

After you enable this feature, new users can only login with their email address.

For existing accounts that were created before enabling this feature, it is slightly different. They need to login once with their username, edit their preferences and save that form. That will update their account info. Now they can logout and then login with their email address.

To prevent this strange situation, as Manager you can add @@migrate-to-emaillogin to the url of your website. In that form you can set the email address as the login name for all existing users. Now all existing users can also login with their email address.

Is this feature enabled by default in new Plone 4 sites? Will it get activated if I migrate to P4 from a previous version?

No, it is not enabled by default. No, it will not get activated during migration.

How can I activate/deactivate this feature? Are there any possible issues during activation/deactivation I should know about?

In the Site Setup go to the Security Panel. Check or uncheck the Use email address as login name option and save the form.

Activating this on a website that already has users may be confusing for those users. When logging in they will be asked for their email address, but these existing users should actually still login with the login name they have chosen. They should edit their personal preferences once and save the form and then they can login with their email address.

Also, activating this may give unexpected results when there are two user accounts that have the same email address. At least they will not be able to use their email address for logging in, so they should still use their original login name.

The solution for those two situations, is the @@migrate-to-emaillogin form. Add that to the url of your website. In that form, you can check if any existing users have the same email address. Also, you can set the email address as the login name for all existing users. Now all existing users can immediately login with their email address, without having to edit their preferences.

When you no longer want users to login with their email address, you can use this form to reset their login name to their user id. Note that this has no real effect for users that never had a separate user id to begin with; their email address will remain their user id.

What happens when I change my email address?

When you change your email address, you can only login with your new address, not your old. Also, for safety no-one can register an account with the email address you initially used.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

 	Upgrading Plone 3.x to 4.0 »

Upgrading Caching Products

Plone 3's primary caching add-on product, CacheFu (aka CacheSetup) is not compatible with Plone 4. It has been replaced by plone.app.caching, a more modern and powerful caching subsystem.

Many production Plone sites use the add-on CacheFu (aka CacheSetup) to boost site performance. This is a widely recognized "best practice." However, CacheFu is not compatible with Plone 4.

Do not despair: the Plone community has created a new, simpler and more powerful replacement for CacheFu called plone.app.caching [https://pypi.python.org/pypi/plone.app.caching], which is Plone 4 compatible.

If your Plone 3 site currently includes CacheFu/CacheSetup, you should:
* Uninstall CacheFu from your Plone 3 site before upgrading it to Plone 4. (If, after migration, your site triggers "AttributeError: getHTTPCachingHeaders" on file system resources, try reconfiguring CacheFu to not use a proxy and turn it off before uninstalling it.)
* After upgrading to Plone 3, install plone.app.caching and configure it appropriately. If you have highly customized rules for CacheFu, you may need to recreate these for plone.app.caching.

Do not attempt to upgrade a Plone 3 site to Plone 4 without uninstalling CacheFu first. Your migrated site will fail to start up, and you won't be able to effectively remove CacheFu at this point.

However, if you should already find yourself in this situation before reading this document, there does exist a Plone-4 compatible branch of CacheFu. [http://svn.plone.org/svn/collective/Products.CacheSetup/branches/matthewwilkes-plone4compat/] This branch is unmaintained and not recommended for production use under Plone 4, but it works well enough to allow you to boot your instance and remove CacheFu.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading from 4.0 to 4.1

Description

Upgrading your site and your products from Plone 4.0 to Plone 4.1.

	Updating add-on products for Plone 4.1
	Changing dependencies from Plone to Products.CMFPlone, updating permissions and aliases
	Updating your setup.py

	Updating Permissions

	Updating Aliases

	Maintaining compatibility with Plone 4.0 and 3.3

	Use Generic Setup for defining versioning policies

Updating add-on products for Plone 4.1

This is a list of the most common updates that need to be applied by product authors to ensure that their products work on Plone 4.1.

Changing dependencies from Plone to Products.CMFPlone, updating permissions and aliases

Plone 4.1 separates the Products.CMFPlone package from the Plone egg to give integrators the option of building Plone sites with a cut down feature set.

Updating your setup.py

In your package's setup.py where you currently have:

install_requires=[
 'setuptools',
 'Plone',
],

Instead you should use:

install_requires=[
 'setuptools',
 'Products.CMFPlone',
],

You should also list the other packages you depend on, e.g. Products.Archetypes or plone.app.portlets.

Updating Permissions

If you are protecting any templates, pages, etc... in zcml with CMF core permissions (anything in the cmf namespace, e.g. cmf.ModifyPortalContent), you must add the following to configure.zcml:

<include package="Products.CMFCore" />

Most importantly this loads the permissions.zcml, if it is available. The above statement is the easiest and will work in all Plone versions; previously a more fancy statement with a condition was advocated, which we will give here for good measure:

<include package="Products.CMFCore" file="permissions.zcml"
 xmlns:zcml="http://namespaces.zope.org/zcml"
 zcml:condition="have plone-41" />

Updating Aliases

Some old import aliases may no longer work. Please update:

	from Products.CMFPlone import Batch -> from Products.CMFPlone.PloneBatch import Batch

	from zope.app.interface import queryType -> from zope.app.content import queryType

	from Products.Five.formlib import formbase -> from five.formlib import formbase (this counts for a lot of formlib changes - most things are now imported from five.formlib.formbase)

Maintaining compatibility with Plone 4.0 and 3.3

Version 4.0 of Products.CMFPlone is a forward compatibility shim (an empty egg depending on the Plone package) to enable Plone extension packages depending on Products.CMFPlone to continue working with Plone 4.0 or 3.3.

Use Generic Setup for defining versioning policies

From Plone 4.1 on, versioning policies for custom types can be configured using Generic Setup (repositorytool.xml).

If you activated versioning for your custom content types you most likely followed one of these How-Tos:

	History and Versioning

Both basically recommend to set the versioning policies CMFEditions is using in a custom setuphandler:

from Products.CMFEditions.setuphandlers import DEFAULT_POLICIES

portal_repository = getToolByName(portal, 'portal_repository')
versionable_types = list(portal_repository.getVersionableContentTypes())

for type_id in ['MyType', 'AnotherType']:
 if type_id not in versionable_types:
 versionable_types.append(type_id)
 # Add default versioning policies to the versioned type
 for policy_id in DEFAULT_POLICIES:
 portal_repository.addPolicyForContentType(type_id, policy_id)
portal_repository.setVersionableContentTypes(versionable_types)

when migrating to plone4.1 you'll get the following error:

ImportError: cannot import name DEFAULT_POLICIES

To make your Product compatible with Plone4.1 you can remove the code for setting versionableContenttypes above and simply add a file named repositorytool.xml to your package's Generic Setup profile and you're done:

<?xml version="1.0"?>
<repositorytool>
 <policymap>
 <type name="MyType">
 <policy name="at_edit_autoversion"/>
 <policy name="version_on_revert"/>
 </type>
 <type name="AnotherType">
 <policy name="at_edit_autoversion"/>
 <policy name="version_on_revert"/>
 </type>
 </policymap>
</repositorytool>

If you need to be backward compatible you can add repositorytool.xml (which will be used in plone >= 4.1) and add a condition to your setupandler. eg:

try:
 from Products.CMFEditions.setuphandlers import DEFAULT_POLICIES
 # we're on plone < 4.1, configure versionable types manually
 setVersionedTypes(portal)
except ImportError:
 # repositorytool.xml will be used
 pass

<include package="Products.CMFCore" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading Plone 4.1 to 4.2

Description

Instructions and tips for upgrading to a newer Plone version.

	Upgrades to zc.buildout

	Search Templates

	Upgrading to new collections
	Upgrading

	Enabling old-style collections

	Developing for old and new collections

	Conditional ZCML

Upgrades to zc.buildout

By default, bootstrap.py now uses zc.buildout version 1.5.2 instead of 1.4.4. 1.5.2 no longer references your global python site packages and you may need to upgrade any custom products to specifically pull those package into the local build.

If you are having buildout ills, please check the buildout troubleshooting guide [http://buildoutcoredev.readthedocs.org/en/latest/issues.html] to try and fix it.

Search Templates

Search has been dramatically improved in 4.2, but that means that any customizations you may have made could be gone or just plain won't work. If you previously customized search in your custom folder or anywhere in skins, note that your shizzle won't work anymore.

You can do two things (I think - I'm sure there is a better way but if anyone has an idea paste it here!). You can keep your search form and all of it's logic in template mumble jumble. That info is below but why would you want to do that? I recommend customizing the shiny NEW search template to have your changes once again since it's just so gosh darn pretty.

To upgrade your sites search to be more like what you want (and flex your brain), copy plone.app.search/plone/app/search/search.pt [https://github.com/plone/plone.app.search/blob/master/plone/app/search/search.pt] into your templates folder in your product. Something like my.site/my/site/browser/templates/mysite_search.pt. I recommend using another name besides search.pt for sanity. Then override the search view to use the new template in your configure.zcml (likely in browser):

<browser:page
 name="search"
 class="plone.app.search.browser.Search"
 permission="zope2.View"
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 layer="my.site.interfaces.IMySiteLayer"
 template="templates/mysite_search.pt"/>

Restart and make sure that's all working. Then update that search template to have all your changes that you had in the old template.

If you aren't convinced by the boat load of pretty that is the new search form, don't copy or paste anything and just omit the class= line in the code above. You can paste your old template as is. I'll sigh for you... sigh. It will look something like:

<browser:page
 name="search"
 permission="zope2.View"
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 layer="my.site.interfaces.IMySiteLayer"
 template="templates/search.pt"/>

Upgrading to new collections

Upgrading

When upgrading your Plone site, the old collections will still be available to you only they're now labeled "Collection (old-style)." Old collections will NOT be migrated to new-style collections.

Enabling old-style collections

If you're starting a new Plone site from scratch, the old collections will not be enabled by default and you may still want to use them on your site--especially if you're running add-ons that still depend on the old-style collections.

To manual enable old-style collections, follow these steps:

	Visit the ZMI(or append /manage onto the url of your plone site)

	Click "portal_types"

	Click "Topic (Collection (old-style))"

	Check the "Implicitly addable?"

	Click the "Save" button

Developing for old and new collections

New style collections still implement the queryCatalog method which results the results from the catalog query so most likely the only thing you'll need to change is interface registrations and references to portal_type.

I have just updated collective.plonetruegallery for the new collections so I'll share some tips on integrating.

Conditional ZCML

In order to be backward compatible, you should use conditional zcml for any registrations or code that needs to be loaded. The collective docs has a good section [http://collective-docs.plone.org/en/latest/zcml/tricks.html#id2] on how to do this.

A simple example in practice is:

<browser:page
 zcml:condition="installed plone.app.collection"
 name="myview"
 for="plone.app.collection.interfaces.ICollection"
 class=".views.MyView"
 permission="zope2.View"/>

Registering an interface for new collection:

<class class="plone.app.collection.collection.Collection"
 zcml:condition="installed plone.app.collection">
 <implements interface=".interfaces.IMyInterface" />
</class>

Retrieve the raw query:

from plone.app.querystring import queryparser
query = queryparser.parseFormquery(collectionobj, collectionobj.getRawQuery())

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

 	Version-specific migration procedures and tips »

Upgrading Plone 4.2 to 4.3

Description

Instructions and tips for upgrading to a newer Plone version.

	Updating package dependencies

	Dexterity optional extras

	Changed imports and functions
	zope.app.component.hooks.setSite

	zope.app.publisher.interfaces.IResource

	plone.app.content.batching.Batch

	plone.directives.form

	five.intid and z3c.relationfield

	portal_syndication removed

	Grok static folders

	Hiding KSS spinner

Updating package dependencies

Plone 4.3's dependencies have been cleaned up so it pulls in fewer packages than Plone 4.2. If your add-on uses one of the packages that was removed, it needs to be updated.

Plone includes a couple hundred Python packages as dependencies. In recent history, many of these have been packages in the zope.app.* namespace that were not strictly necessary, but included as transitive dependencies of other packages. For Plone 4.3 we made a concerted effort to remove unnecessary dependencies.

This is great because it reduces Plone's baseline memory usage and speeds imports. But it does mean that any add-ons relying on the dependencies that were removed will need to make one of the following adjustments:

	Update imports to newer zope.* packages that have fewer dependencies, or

	Be sure to declare their dependency in the "install_requires" setting in setup.py

Here is a full list of packages that were automatically included in Plone 4.2 but no longer in Plone 4.3:

	elementtree (lxml is used instead)

	Products.kupu

	plone.app.kss (Can be added as an add-on to regain the inline editing feature. However it will no longer be maintained as a Plone core project.)

	zope.app.cache

	zope.app.component

	zope.app.container

	zope.app.pagetemplate

	zope.app.publisher

	zope.copypastemove

	zope.dublincore

	zope.hookable

The following table lists some commonly used imports that have new preferred locations. The last column has the minimum Plone version that you need for the new location to work.

	Name
	Old location
	New, preferred location
	Minimum for new location

	getSite, setSite
	zope.app.component.hooks,
zope.site.hooks
	zope.component.hooks
	Plone 4.0

	ISite
	zope.app.component.interfaces.ISite
	zope.component.interfaces.ISite
	Plone 4.1

	IAdding
	zope.app.container.interfaces
	zope.browser.interfaces
	Plone 4.1

	IObjectRemovedEvent
	zope.app.container.interfaces
	zope.lifecycleevent.interfaces
	Plone 4.1

	INameChooser
	zope.app.container.interfaces
	zope.container.interfaces
	Plone 4.1

	WidgetInputError
	zope.app.form.interfaces
	zope.formlib.interfaces
	Plone 4.1

	contains
	zope.app.container
	zope.container
	Plone 4.1

	contained
	zope.app.container
	zope.container
	Plone 4.0

	ViewPageTemplateFile
	zope.app.pagetemplate.viewpagetemplatefile
	zope.browserpage.viewpagetemplatefile
	Plone 4.1

Dexterity optional extras

Plone 4.3 includes Dexterity, but without Grok or support for relations. If you need those you must require them explicitly.

The easiest way to include the optional packages is by specifying an 'extra' for the plone.app.dexterity egg.

If you use Grok (five.grok, plone.directives.form or plone.directives.dexterity):

[instance]
eggs =
 plone.app.dexterity [grok]

If you need support for relations:

[instance]
eggs =
 plone.app.dexterity [relations]

Note that these may be combined:

[instance]
eggs =
 plone.app.dexterity [grok, relations]

Don't forget to reinstall Dexterity from the Add-ons control panel.

For more information see Dexterity 2.0's release notes. [https://pypi.python.org/pypi/plone.app.dexterity/2.0]

Changed imports and functions

Codebase changes needed to upgrade your addons for Plone 4.3 compatibility:

zope.app.component.hooks.setSite

Example:

try:
 # Plone < 4.3
 from zope.app.component.hooks import setSite
except ImportError:
 # Plone >= 4.3
 from zope.component.hooks import setSite # NOQA

zope.app.publisher.interfaces.IResource

Example:

try:
 # Plone < 4.3
 from zope.app.publisher.interfaces import IResource
except ImportError:
 # Plone >= 4.3
 from zope.browserresource.interfaces import IResource

plone.app.content.batching.Batch

Example:

try:
 from plone.app.content.batching import Batch # Plone < 4.3
 HAS_PLONE43 = False
except ImportError:
 from plone.batching import Batch # Plone >= 4.3
 HAS_PLONE43 = True

The two implementations have a different API.

The pagesize argument is named size in plone.app.batching; also, instead of a page number a start index is required.

If you have a piece of code like this:

b = Batch(items,
 pagesize=pagesize,
 pagenumber=pagenumber)

you should change it to look like this:

if HAS_PLONE43:
 b = Batch(items,
 size=pagesize,
 start=pagenumber * pagesize)
else:
 b = Batch(items,
 pagesize=pagesize,
 pagenumber=pagenumber)

plone.directives.form

You need to use special egg declaration:

eggs =
 plone.app.dexterity [grok]

For more information see Dexterity info page on this manual.

five.intid and z3c.relationfield

If you get:

AttributeError: type object 'IIntIds' has no attribute 'iro'

or:

AttributeError: type object 'ICatalog' has no attribute '__iro__'

or:

AttributeError: getObject

include Dexterity with relations extras in buildout.cfg:

eggs =
 plone.app.dexterity [relations]

See Dexterity migrations page for more information.

portal_syndication removed

The portal_syndication tool has been removed and replaced with the @@syndication-utils browser view

This is an example of the type of change required to adapt:

<p class="discreet"
 tal:condition="context/portal_syndication/isSiteSyndicationAllowed">
 <a href=""
 class="link-feed"
 i18n:translate="title_rss_feed"
 tal:define="here_url context/@@plone_context_state/object_url"
 tal:attributes="href string:$here_url/search_rss?${request/QUERY_STRING}">
 Subscribe to an always-updated feed of these search terms
</p>

The lookup of portal_syndication above should be changed as follows:

<p class="discreet"
 tal:condition="context/@@syndication-util/search_rss_enabled">
 <a href=""
 class="link-feed"
 i18n:translate="title_rss_feed"
 tal:define="here_url context/@@plone_context_state/object_url"
 tal:attributes="href string:$here_url/search_rss?${request/QUERY_STRING}">
 Subscribe to an always-updated feed of these search terms
</p>

Please see Products.CMFPlone.browser.syndication.utils [https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/syndication/utils.py] for information on the API provided by this view.

Grok static folders

Grok 1.3 does not support autodiscovered static folders

If you are using static folder functionality of Grok it no longer works with Plone 4.3.

To work around this manually declare your static folder in configure.zcml:

<configure
 ...
 xmlns:browser="http://namespaces.zope.org/browser"
 >

 <!-- Grok the package to initialise schema interfaces and content classes -->
 <grok:grok package="." />

 <browser:resourceDirectory
 name="your.package"
 directory="static"
 />

</configure>

Hiding KSS spinner

KSS is not shipped anyore. You might want to hide related theme elements if you have a custom theme.

Hide KSS spinner in your custom CSS:

#kss-spinner {
 display: none;
}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

Upgrading Non-Buildout-based Plone Instances

Description

How to upgrade versions of Plone that predate the use of buildout-based installers.

This document applies only to older Plone installations that do not use buildout. Generally, this means Plone 1 - Plone 3.x, although some custom installations of Plone 3 can be buildout-based. If you are using Plone 4, please see ":doc:`General procedure for Plone 4.x minor version upgrades with buildout. </manage/upgrading/plone4_minor_upgrade.rst>`"

When upgrading to a newer release of Plone, it is important to run the content migration procedure, since internal structures in Plone might have changed since the last version. This is the general procedure for upgrading.

Before you start upgrading anything, make sure you have a backup.

The basic manual procedure is detailed below. If you are using the installers, you can skip the part about moving away directories and replacing them with the new ones (step 3-4) - it should be handled by the installer for you.

	Back up your entire Plone directory. If you're using WebDAV, make sure all objects are unlocked in Control Panel → WebDAV Lock Manager.

	Shut down your Plone server instance.

	Remove the Product directories you want to replace (ie. the ones in the package you downloaded).

	Put in the new Product directories.

	Start Plone again - your site may be inaccessible until we have performed the next steps - don't panic :)

	Go to http://yoursite/manage (aka. the ZMI) and click portal_migrations

	Make sure you are on the Upgrade tab (in older versions, this tab is called Migrate) — it will state something like:

Instance version: 2.5.3
File system version: 3.1.1

	This means that you have to run the upgrade procedure to be updated to 3.1.1.

	Click the Upgrade button.
If you want to see what steps the upgrade would go through without making the actual changes, you can check the Dry Run option - this will do the exact same steps as a normal upgrade/migration will do, but not write anything to the database.

	The site will now be updated, this may take a while, depending on which versions you upgrade from/to. For example, the upgrade from Plone 2.0 to Plone 2.1 involves conversion and re-cataloging of all content in your site, so if you have a big site, this may take a while. Be patient.

For those of you who wonder why we don't do this automatically, the reason is that we don't want to modify your data, and you should have the opportunity to back up the data before doing the upgrade.

For advanced/enterprise users: It is normally possible to upgrade in-place (at least between minor versions) without any site downtime if you run ZEO and multiple load-balanced instances. See the ZEO documentation for more information if you need this.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Plone Upgrade Guide »

General advice on updating from a non-buildout to buildout-based installation

Description

Some hints for those stepping onto the buildout bandwagon.

Beginning with Plone 3.2, we're no longer distributing Plone in the traditional tarballs (archive files) of Zope products. Instead, Plone is distributed as a set of Python Packages. These packages bear information about dependencies, and they generally provide us with a much better way of managing a complex web of Python, Zope and Plone components.

Buildout, a sophisticated configuration management system from the creator of Zope, is now the recommended way for managing Plone installations. This poses a one-time challenge for folks upgrading from old to new-style installs. It should, though, make future updates much easier.

The Managing projects with Buildout tutorial provides a great introduction to buildout and its use. Here, we'll just offer a few hints on making your move to buildout as painless as possible.

	Give up any idea of doing an in-place update. Many of us got into the habit with earlier versions of Plone of simply unpacking the tarball for a new version into the "Products" directory of the old install. That was never a good idea for a major version update, and it's just not feasible while trying to switch to buildout. The internal layout of the files has just changed too much. Changing to buildout will make it much easier, though, to upgrade in place in the future.

	Install a new, buildout-based Plone version to a different place than your old installation. Different path, different drive, different server, different hosting facility — whichever you need.

	Use a current Plone installer if available (all installers for 3.2+ are buildout-based):
	If you're using Linux/FreeBSD/*nix, please strongly consider using the Unified Installer. If you didn't like something about the way it worked for 2.x, please take a look again. It's a lot more versatile. It includes options to change target directory, do ZEO or stand-alone installs, and to use an already installed Python.

	If you're using Darwin on a production server, it's a good idea to install the XCode tools and use the Unified Installer. You'll want the versatility.

	If you're using OS X on a workstation, it's fine to use the OS X installer, which is meant to be convenient.

	If you're on Windows, use the Windows installer or prepare to learn a lot.

	If you don't want to use an installer, that's OK, but protect your system Python. Learn to use virtualenv [https://pypi.python.org/pypi/virtualenv], which will allow you to create isolated Python sandboxes. Install virtualenv first, create a sandbox, then use easy_install in the sandbox to install ZopeSkel. Follow the buildout tutorial's instructions for creating your buildout.

	Fire up your new installation and make sure it's working. Try it out with an empty database. If you're using it on the same server, you should adjust the ports first to make sure you're not trying to use the same TCP/IP ports. This is a common error. Look for the "http-address" address in your buildout.cfg file. If you've used the Unified or OS X installers, it's even easier as the ports settings are in the top of the file.

	Evaluate your add-on product list. Enumerate all the add-on Zope and Plone products installed on your own server. Divide the list into those that have egg (Python Package) updates available and those that don't.

	Copy the add-on products that don't have egg versions from the "Products" directory of the old install into the "products" directory (note the small "p") of your new install. Check ownership and permissions of the copied files (failure to do this is another common error).

	Add the names of new, egg-based products to the "[eggs]" section of your buildout.cfg. Check the install instructions to see if they also need a ZCML slug specification. Re-run buildout to fetch and install the new eggs.

	Start your new install in foreground mode (bin/plonectl fg or bin/instance fg) to watch product loading and discover errors. Fix product problems until you have a clean start.

	Copy the Data.fs file from your old install's var directory to the new one's var/filestorage directory. Check ownership and permissions!

	Do the foreground start dance again. Solve problems.

	Go live.

A word on warnings

Whenever you run buildout and load new packages that have skin layers, you're likely to receive warnings indicating "'return' outside function." Ignore them, they're harmless. The warnings are produced when Python attempts to compile skin-layer Python scripts, which do indeed contain 'return' outside of function, but run in a context in which this is OK.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

Troubleshooting

	Basic troubleshooting

	Exceptions and common tracebacks

	Buildout troubleshooting

	Unicode encoding and decoding

	Image troubleshooting

	Database and transactions troubleshooting

	Manually Removing Local Persistent Utilities

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Basic troubleshooting

Description

Here is some info for basic Plone troubleshooting, especially with add-on modules-

	Start Plone as foreground / debug mode
	No such file or directory: 'zope.conf'

	Dropping into pdb

	Check if Plone is up and responds to requests

	Cleaning up bad add-on uninstalls

	Not able to log in

	More info

Start Plone as foreground / debug mode

Plone runs on the top of Zope application service. Zope is a Python process and will appear
as "python" in your task manager process list.

Zope will report any problems with code when it is launched in foreground mode (attached to a terminal).

	Basic command-line knowledge is needed in order to proceed

First stop Zope if it's running as a background process

	On Windows: use Plone Control Panel or Windows Control Panel Services section to shutdown Plone first

	On Linux: use /etc/init.d/plone stop or related command to shutdown Plone

Use the command

bin/instance fg

or Windows command-line command (note that Plone location may depend on where you installed it)

cd "C:\Program files\Plone"
bin\instance.exe fg

to start Plone.

All errors will be printed into the terminal.
The error is printed as Python traceback. It is important to copy-paste all lines of this traceback,
not just the last line.

If there is no start up error you will see the line

No such file or directory: 'zope.conf'

Example:

sudo /Applications/Plone/zinstance/bin/plonectl start
instance: Error: error opening file /Applications/Plone/zinstance/parts/instance/etc/zope.conf: [Errno 2] No such file or directory: '/Applications/Plone/zinstance/parts/instance/etc/zope.conf'

This means that running bin/buildout script did not complete successfully.
Re-run buildout and see what's wrong.

Dropping into pdb

If you need to inspect start-up errors in Python's debugger.

Activate Python configuration associated with your bin/instance script:

source ~/code/collective.buildout.python/python-2.6/bin/activate

Start Plone pdb enabled:

python -m pdb bin/instance fg

Check if Plone is up and responds to requests

Enter to the computer running Plone (SSH in on UNIX).

Use telnet command to connect Plone port and see if you get valid HTTP response from Plone

telnet localhost 8080

Then do a human HTTP user agent simulation by typing:

GET / HTTP/1.0<enter><enter>

Plone response looks like this:

Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
Server: Zope/(2.13.10, python 2.6.6, linux2) ZServer/1.1
Date: Wed, 01 Feb 2012 09:59:40 GMT
Content-Length: 1614
Content-Type: text/html; charset=utf-8
Connection: close

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<base href="http://xxx.fi:9980/" />

If you get the answer from Plone (based on HTTP response headers) then
Plone is running and you have problem elsewhere in your firewall/server/
front-end web server configuration.

Consult your operating system manual for fixing your problem.

Cleaning up bad add-on uninstalls

Many low quality Plone add-ons do not uninstall cleanly.
You need to remove persistent objects from site database after add-on uninstall
while code is still in buildout.

Otherwise your Plone site may not

	Pack properly

	Start properly

	Migrate to new version

For more information see

	http://plone.org/documentation/kb/manually-removing-local-persistent-utilities/

Not able to log in

It might happen that you start your instance with an empty database and you are
not able to log in even if you are absolutely sure about your password. If you work
on localhost throw away the localhost related cookies in your browser and restart.

If you have lost the Zope Admin Password you can create an emergency user:

	http://quintagroup.com/services/support/tutorials/zope-access

More info

	common exceptions which you might encounter when starting Zope

	Plone community support guidelines for asking help [http://plone.org/help]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	Error Reference »

Exceptions and common tracebacks

Description

Common Python exception traceback patterns you may encounter when
working with Plone and possible solutions for them.

Please see this tutorial for extracting
Python tracebacks from your Plone logs.

Add-on installer error: This object was originally created by a product that is no longer installed

Traceback:

2009-10-18 13:11:20 ERROR Zope.SiteErrorLog 1255860680.760.514176531634 http://localhost:8080/twinapex/portal_quickinstaller/installProducts
Traceback (innermost last):
 Module ZPublisher.Publish, line 125, in publish
 Module Zope2.App.startup, line 238, in commit
 Module transaction._manager, line 93, in commit
 Module transaction._transaction, line 325, in commit
 Module transaction._transaction, line 424, in _commitResources
 Module ZODB.Connection, line 541, in commit
 Module ZODB.Connection, line 586, in _commit
 Module ZODB.Connection, line 620, in _store_objects
 Module ZODB.serialize, line 407, in serialize
 Module OFS.Uninstalled, line 40, in __getstate__
SystemError: This object was originally created by a product that
 is no longer installed. It cannot be updated.
 (<Salt at broken>)

Reason: Data.fs contains objects for which the code is not present.
You have probably moved Data.fs or edited buildout.cfg.

Solution: Check that eggs and zcml contain all necessary products in buildout.cfg.

See also

	http://article.gmane.org/gmane.comp.web.zope.plone.setup/3232

Add-on installer error: too many values to unpack

Traceback:

Module ZPublisher.Publish, line 119, in publish
Module ZPublisher.mapply, line 88, in mapply
Module ZPublisher.Publish, line 42, in call_object
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 589, in installProducts
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 475, in installProduct
 - __traceback_info__: ('gomobile.mobile',)
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 396, in snapshotPortal
Module five.localsitemanager.registry, line 194, in registeredUtilities
Module zope.component.registry, line 127, in registeredUtilities
ValueError: too many values to unpack

Condition: When trying to install a plugin

Reason: You have run Data.fs with zope.component 3.5.1, but later downgraded / moved Data.fs.

Solution: Pin zope.component to 3.5.1.

Archetypes: TypeError: getattr(): attribute name must be string

Traceback:

'user': <PropertiedUser 'admin'>}
Module Products.PageTemplates.ZRPythonExpr, line 48, in __call__
 - __traceback_info__: otherwidget.Description(here, target_language=target_language)
Module PythonExpr, line 1, in <expression>
Module Products.Archetypes.generator.widget, line 100, in Description
TypeError: getattr(): attribute name must be string

Reason: You might have used something else besides string or translation string
to define Archetypes widget name or description.

AttributeError in setRoles due to workflow state transition

Traceback:

Traceback (innermost last):
Module ZPublisher.Publish, line 115, in publish
Module ZPublisher.mapply, line 88, in mapply
Module ZPublisher.Publish, line 41, in call_object
Module Products.CMFPlone.FactoryTool, line 361, in __call__
Module Products.CMFPlone.FactoryTool, line 147, in __getitem__
Module Products.CMFPlone.PloneFolder, line 406, in invokeFactory
Module Products.CMFCore.TypesTool, line 934, in constructContent
Module Products.CMFCore.TypesTool, line 345, in constructInstance
Module Products.CMFCore.TypesTool, line 357, in _finishConstruction
Module Products.CMFCore.CMFCatalogAware, line 145, in notifyWorkflowCreated
Module Products.CMFCore.WorkflowTool, line 355, in notifyCreated
Module Products.DCWorkflow.DCWorkflow, line 392, in notifyCreated
Module Products.DCWorkflow.DCWorkflow, line 476, in _changeStateOf
Module Products.DCWorkflow.DCWorkflow, line 571, in _executeTransition
Module Products.DCWorkflow.DCWorkflow, line 435, in updateRoleMappingsFor
Module Products.DCWorkflow.utils, line 60, in modifyRolesForPermission
Module AccessControl.Permission, line 93, in setRoles
AttributeError: appname

Possible reasons:

	You are using AnnotationStorage but you forgot to declare atapi.ATFieldProperty in your class body

	You are inhering schema in Archetypes, but you do not inherit the class itself

AttributeError: 'FilesystemResourceDirectory' object has no attribute 'absolute_url'

Traceback:

2013-09-02 12:26:55 ERROR plone.transformchain Unexpected error whilst trying to apply transform chain
Traceback (most recent call last):
 File "/home/pab/.buildout/eggs/plone.transformchain-1.0.3-py2.7.egg/plone/transformchain/transformer.py", line 48, in __call__
 newResult = handler.transformIterable(result, encoding)
 File "/home/pab/.buildout/eggs/plone.app.theming-1.1.1-py2.7.egg/plone/app/theming/transform.py", line 179, in transformIterable
 params = prepareThemeParameters(findContext(self.request), self.request, parameterExpressions, cache)
 File "/home/pab/.buildout/eggs/plone.app.theming-1.1.1-py2.7.egg/plone/app/theming/utils.py", line 630, in prepareThemeParameters
 params[name] = quote_param(expression(expressionContext))
 File "/home/pab/.buildout/eggs/Zope2-2.13.20-py2.7.egg/Products/PageTemplates/ZRPythonExpr.py", line 48, in __call__
 return eval(self._code, vars, {})
 File "PythonExpr", line 1, in <expression>
 File "/home/pab/.buildout/eggs/plone.memoize-1.1.1-py2.7.egg/plone/memoize/view.py", line 47, in memogetter
 value = cache[key] = func(*args, **kwargs)
 File "/home/pab/.buildout/eggs/plone.app.layout-2.3.5-py2.7.egg/plone/app/layout/globals/context.py", line 47, in current_base_url
 self.context.absolute_url())))
AttributeError: 'FilesystemResourceDirectory' object has no attribute 'absolute_url'

Reason: There is a not accessible filesystem resource declared in your diazo theme's html.

Solution: Check that all js and css files are available.

AttributeError: 'RelationList' object has no attribute 'source'

Traceback:

2014-03-21 17:19:09 ERROR Zope.SiteErrorLog 1395433149.260.697467198696 http://localhost:8080/Plone/++add++MyType
Traceback (innermost last):
 Module ZPublisher.Publish, line 138, in publish
 Module ZPublisher.mapply, line 77, in mapply
 Module ZPublisher.Publish, line 48, in call_object
 Module plone.z3cform.layout, line 66, in __call__
 Module plone.z3cform.layout, line 50, in update
 Module plone.dexterity.browser.add, line 112, in update
 Module plone.z3cform.fieldsets.extensible, line 59, in update
 Module plone.z3cform.patch, line 30, in GroupForm_update
 Module z3c.form.group, line 128, in update
 Module z3c.form.form, line 134, in updateWidgets
 Module z3c.form.field, line 277, in update
 Module z3c.formwidget.query.widget, line 108, in update
 Module z3c.formwidget.query.widget, line 95, in bound_source
 Module z3c.formwidget.query.widget, line 90, in source
AttributeError: 'RelationList' object has no attribute 'source'

Reason: You're trying to use a relation field on your Dexterity-based content type but
plone.app.relationfield [https://pypi.python.org/pypi/plone.app.relationfield] is not installed.

Solution: Follow the instructions on the Dexterity documentation as
relation support is no longer included by default [https://pypi.python.org/pypi/plone.app.dexterity#relation-support-no-longer-included-by-default].

AttributeError: 'module' object has no attribute 'HTTPSConnection'

Python has not been compiled with HTTPS support.

Try installing your Python, for example, using minitage.

See Python basics.

AttributeError: 'str' object has no attribute 'other' (Mixed zope.viewpagetemplate and Five.viewpagetemplate)

Traceback:

Module zope.tales.tales, line 696, in evaluate
 - URL: /home/moo/sits/src/plone.z3cform/plone/z3cform/crud/crud-master.pt
 - Line 17, Column 2
 - Expression: <PathExpr standard:u'form/render'>
 - Names:
 {'args': (),
 'context': <SitsPatient at /folder_sits/sitsngta/intranet/sitsdatabase/sitscountry_TE/sitshospital_TES/sitspatient.TETES2009062217>,
 'default': <object object at 0xb7d76538>,
 'loop': {},
 'nothing': None,
 'options': {},
 'repeat': {},
 'request': <HTTPRequest, URL=http://localhost:9000/folder_sits/sitsngta/intranet/sitsdatabase/sitscountry_TE/sitshospital_TES/sitspatient.TETES2009062217/@@ar>,
 'template': <zope.app.pagetemplate.viewpagetemplatefile.ViewPageTemplateFile object at 0xc6e552c>,
 'usage': <zope.pagetemplate.pagetemplate.TemplateUsage object at 0xf7fb78c>,
 'view': <Products.SitsPatient.browser.ar.ARCrudForm object at 0xf928ccc>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0xf7b4a0c>}
Module Products.PTProfiler.ProfilerPatch, line 32, in __patched_call__
Module zope.tales.expressions, line 217, in __call__
Module zope.tales.expressions, line 211, in _eval
Module z3c.form.form, line 143, in render
Module Shared.DC.Scripts.Bindings, line 313, in __call__
Module Shared.DC.Scripts.Bindings, line 348, in _bindAndExec
Module Shared.DC.Scripts.Bindings, line 1, in ?
Module Shared.DC.Scripts.Bindings, line 293, in _getTraverseSubpath
AttributeError: 'str' object has no attribute 'other'

Five ViewPageTemplate class file is slightly different than Zope 3's normal ViewPageTemplate file.
In this case Five ViewPageTemplate was used, when Zope 3's normal ViewPageTemplate was expected.

Another reason is that acquisition chain is not properly set-up in your custom views.

Difference:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

vs.:

from zope.pagetemplate.pagetemplatefile import PageTemplateFile

AttributeError: 'wrapper_descriptor' object has no attribute 'im_func'

Traceback:

File "/home/moo/code/gomobile/parts/zope2/lib/python/DocumentTemplate/DT_Util.py", line 19, in <module>
 from html_quote import html_quote, ustr # for import by other modules, dont remove!
File "/home/moo/code/gomobile/parts/zope2/lib/python/DocumentTemplate/html_quote.py", line 4, in <module>
 from ustr import ustr
File "/home/moo/code/gomobile/parts/zope2/lib/python/DocumentTemplate/ustr.py", line 18, in <module>
 nasty_exception_str = Exception.__str__.im_func
AttributeError: 'wrapper_descriptor' object has no attribute 'im_func'

Condition: This exception happens when starting Plone

Reason: You are trying to use Python 2.6 with Plone 3

Solution: With Plone 3 you need to use Python 2.4.

AttributeError: REQUEST in getObject

Traceback:

import ZPublisher, Zope
Traceback (most recent call last):
 File "<string>", line 1, in ?
 File "src/collective.mountpoint/collective/mountpoint/bin/update.py", line 31, in ?
 sys.exit(main(app))
 File "/srv/plone/saariselka/src/collective.mountpoint/collective/mountpoint/updateclient.py", line 243, in main
 exit_code = updater.updateAll()
 File "/srv/plone/saariselka/src/collective.mountpoint/collective/mountpoint/updateclient.py", line 151, in updateAll
 mountpoints = list(self.getMountPoints())
 File "/srv/plone/saariselka/src/collective.mountpoint/collective/mountpoint/updateclient.py", line 49, in getMountPoints
 return [brain.getObject() for brain in brains]
 File "/srv/plone/saariselka/parts/zope2/lib/python/Products/ZCatalog/CatalogBrains.py", line 86, in getObject
 target = parent.restrictedTraverse(path[-1])
 File "/srv/plone/saariselka/parts/zope2/lib/python/OFS/Traversable.py", line 301, in restrictedTraverse
 return self.unrestrictedTraverse(path, default, restricted=True)
 File "/srv/plone/saariselka/parts/zope2/lib/python/OFS/Traversable.py", line 259, in unrestrictedTraverse
 next = queryMultiAdapter((obj, self.REQUEST),
AttributeError: REQUEST

Reason: You are using command line script. getObject() fails for a catalog
brain, because the actual object is gone. However, unrestrictedTraverse()
does not handle this case gracefully.

AttributeError: Schema

Traceback:

Module zope.tales.tales, line 696, in evaluate
 - URL: file:/fast/xxxm2011/eggs/Products.Archetypes-1.7.10-py2.6.egg/Products/Archetypes/skins/archetypes/base_view.pt
 - Line 50, Column 4
 - Expression: <PythonExpr context.Schema().viewableFields(here)>
 - Names:
 {'container': <CourseInfo at /xxx/courses/professional-courses/business-management-courses/postgraduate-diploma-in-business-and-management-consultancy>,
 'context': <CourseInfo at /xxx/courses/professional-courses/business-management-courses/postgraduate-diploma-in-business-and-management-consultancy>,
 'default': <object object at 0x1002edb70>,
 'here': <CourseInfo at /xxx/courses/professional-courses/business-management-courses/postgraduate-diploma-in-business-and-management-consultancy>,
 'loop': {},
 'nothing': None,
 'options': {'args': ()},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x10b70a208>,
 'request': <HTTPRequest, URL=http://localhost:8090/xxx/courses/professional-courses/business-management-courses/postgraduate-diploma-in-business-and-management-consultancy/base_view>,
 'root': <Application at >,
 'template': <FSPageTemplate at /xxx/courses/professional-courses/business-management-courses/postgraduate-diploma-in-business-and-management-consultancy/base_view>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>}
Module Products.PageTemplates.ZRPythonExpr, line 48, in __call__
 - __traceback_info__: context.Schema().viewableFields(here)
Module PythonExpr, line 1, in <expression>
Module AccessControl.ImplPython, line 675, in guarded_getattr

Condition: This error may comes when you try to view your custom content type

Reason: It is picking up Archetypes default view template for your Dexterity content type.

Try if you can access your view by a directly calling it to by its name. E.g.:

http://yoursite.com/folder/content/@@view

If it's working then it is wrong data in portal_types.

Your content item might also be corrupted. It is trying to use dynamic view selector even if it's not supported. Try re-creating
the particular content item.

AttributeError: getPhysicalPath()

Traceback:

Module zope.tal.talinterpreter, line 408, in do_startTag
Module zope.tal.talinterpreter, line 485, in attrAction_tal
Module Products.PageTemplates.Expressions, line 230, in evaluateText
Module zope.tales.tales, line 696, in evaluate
 - URL: edit_header
 - Line 25, Column 14
 - Expression: <PythonExpr (view.getHeaderDefiner().absolute_url())>
 - Names:
 {'container': <Frontpage at /yourinstance/matkailijalle/yourinstance-1>,
 'context': <Frontpage at /yourinstance/matkailijalle/yourinstance-1>,
 'default': <object object at 0x7fabf9cec1f0>,
 'here': <Frontpage at /yourinstance/matkailijalle/yourinstance-1>,
 'loop': {},
 'nothing': None,
 'options': {'args': ()},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0xe617d88>,
 'request': <HTTPRequest, URL=http://localhost:9444/yourinstance/matkailijalle/yourinstance-1/@@edit_header>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0xe6105d0>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <Products.Five.metaclass.EditHeaderBehaviorView object at 0xe51ed10>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0xe610c10>}
Module zope.tales.pythonexpr, line 59, in __call__
 - __traceback_info__: (view.getHeaderDefiner().absolute_url())
Module <string>, line 0, in ?
Module OFS.Traversable, line 64, in absolute_url
Module OFS.Traversable, line 117, in getPhysicalPath
AttributeError: getPhysicalPath

Another possible error is:

AttributeError: absolute_url

This usually means that you should have used context.aq_inner when you have used context.
absolute_url() tries to get the path to the object, but object parent is set to view (context.aq_parent)
instead of real container object (context.aq_inner.aq_parent).

Warning

When setting a member attribute in BrowserView, the acquisition parent of objects changes to BrowserView instance.
All member attributes receive ImplicitAcquisitionWrapper automatically.

Demonstration

We try to set BrowserView member attribute defining_context to be some context object.:

(Pdb) self.defining_context = context
(Pdb) context.aq_parent
<PloneSite at /plone>
(Pdb) self.defining_context.aq_parent
<Products.Five.metaclass.HeaderAnimationHelper object at 0xadb5750>
(Pdb) self.defining_context.aq_inner.aq_parent
<Products.Five.metaclass.HeaderAnimationHelper object at 0xadb5750>
(Pdb) self.defining_context.aq_parent.aq_parent
<ATDocument at /plone/doc>
(Pdb) self.defining_context.aq_parent.aq_parent.aq_inner
<ATDocument at /plone/doc>
(Pdb) self.defining_context.aq_parent.aq_parent.aq_parent
<PloneSite at /plone>

To get the real object (as it was before set was called) you can create a helper getter:

def getDefiningContext(self):
 """
 Un-fuse automatically injected view from the acquisition chain

 @return: Real defining context object without bad acquistion
 """
 if self.defining_context is not None:
 return self.defining_context.aq_parent.aq_inner.aq_parent
 return None

AttributeError: type object 'IRAMCache' has no attribute '__iro__'

Traceback:

Module zope.component._api, line 130, in subscribers
Module zope.component.registry, line 290, in subscribers
Module zope.interface.adapter, line 535, in subscribers
Module zope.app.component.site, line 375, in threadSiteSubscriber
Module zope.app.component.hooks, line 61, in setSite
Module Products.CMFCore.PortalObject, line 75, in getSiteManager
Module ZODB.Connection, line 811, in setstate
Module ZODB.Connection, line 870, in _setstate
Module ZODB.serialize, line 605, in setGhostState
Module zope.component.persistentregistry, line 42, in __setstate__
Module zope.interface.adapter, line 80, in _createLookup
Module zope.interface.adapter, line 389, in __init__
Module zope.interface.adapter, line 426, in init_extendors
Module zope.interface.adapter, line 430, in add_extendor
AttributeError: type object 'IRAMCache' has no attribute '__iro__'

Condition: This error can happen when trying to open any page

Reason: You have probably imported a Data.fs using newer Plone/Zope version to old Plone, or
package pindowns are incorrect. If you are copying a site try re-checking that
source and target buildouts and package versions match.

BadRequest: The id "xxx" is invalid - it is already in use.

Traceback:

...
Module Products.CMFFormController.Script, line 145, in __call__
Module Products.CMFCore.FSPythonScript, line 140, in __call__
Module Shared.DC.Scripts.Bindings, line 313, in __call__
Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
Module Products.CMFCore.FSPythonScript, line 196, in _exec
Module None, line 1, in content_edit
<FSControllerPythonScript at /xxx/content_edit used for /xxx/sisalto/lomapalvelut/portal_factory/HolidayService/aktiviteetit>
Line 1
Module Products.CMFCore.FSPythonScript, line 140, in __call__
Module Shared.DC.Scripts.Bindings, line 313, in __call__
Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
Module Products.CMFCore.FSPythonScript, line 196, in _exec
Module None, line 9, in content_edit_impl
<FSPythonScript at /xxx/content_edit_impl used for /xxx/sisalto/lomapalvelut/portal_factory/HolidayService/aktiviteetit>
Line 9
Module Products.CMFPlone.FactoryTool, line 264, in doCreate
Module Products.ATContentTypes.lib.constraintypes, line 281, in invokeFactory
Module Products.CMFCore.PortalFolder, line 315, in invokeFactory
Module Products.CMFCore.TypesTool, line 716, in constructContent
Module Products.CMFCore.TypesTool, line 276, in constructInstance
Module Products.CMFCore.TypesTool, line 450, in _constructInstance
Module xxx.app.content.holidayservice, line 7, in addHolidayService
Module OFS.ObjectManager, line 315, in _setObject
Module Products.CMFCore.PortalFolder, line 333, in _checkId
Module OFS.ObjectManager, line 102, in checkValidId
BadRequest: The id "holidayservice.2010-03-18.4474765045" is invalid - it is already in use.

Todo

Not really sure why this happens.

Try portal_catalog rebuild as a fix.

ComponentLookupError: cmf.ManagePortal

Traceback:

zope.configuration.config.ConfigurationExecutionError: <class 'zope.component.interfaces.ComponentLookupError'>: (<InterfaceClass zope.security.interfaces.IPermission>, u'cmf.ManagePortal')
 in:
 File "/fast/x/src/collective.portletcollection/collective/portletcollection/portlets/configure.zcml", line 11.2-20.8

Condition: This error may happen when starting Plone

This is a sign of changed loading order, starting from Plone 4.1.
You need to explicitly include CMFCore/permissions.zcml in your configuration.zcml.

Example:

<include package="Products.CMFCore" file="permissions.zcml" />

See also

http://dev.plone.org/ticket/11837

Content status history won't render - traceback is content path reversed

Traceback:

Module zope.tales.tales, line 696, in evaluate
 - URL: file:/home/antti/workspace/plone/hotellilevitunturi/eggs/Plone-3.3.5-py2.4.egg/Products/CMFPlone/skins/plone_forms/content_status_history.cpt
 - Line 201, Column 14
 - Expression: <PythonExpr wtool.getTransitionsFor(target, here)>
 - Names:
 {'container': <PloneSite at /hotellilevitunturi>,
 'context': <MainFolder at /hotellilevitunturi/fi/ravintolamaailma>,
 'default': <object object at 0xb75d2540>,
 'here': <MainFolder at /hotellilevitunturi/fi/ravintolamaailma>,
 'loop': {},
 'nothing': None,
 'options': {'args': (),
 'state': <Products.CMFFormController.ControllerState.ControllerState object at 0x1055614c>},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x10556f6c>,
 'request': <HTTPRequest, URL=http://localhost:9888/hotellilevitunturi/fi/ravintolamaailma/content_status_history>,
 'root': <Application at >,
 'template': <FSControllerPageTemplate at /hotellilevitunturi/content_status_history used for /hotellilevitunturi/fi/ravintolamaailma>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>}
Module Products.PageTemplates.ZRPythonExpr, line 49, in __call__
 - __traceback_info__: wtool.getTransitionsFor(target, here)
Module PythonExpr, line 1, in <expression>
Module Products.CMFPlone.WorkflowTool, line 88, in getTransitionsFor
Module Products.CMFPlone.WorkflowTool, line 37, in flattenTransitions
Module Products.CMFPlone.WorkflowTool, line 69, in flattenTransitionsForPaths
Module OFS.Traversable, line 301, in restrictedTraverse
Module OFS.Traversable, line 284, in unrestrictedTraverse
 - __traceback_info__: ([u's', u'a', u'n', u'u', u'o', u'l', u'/', u'a', u'm', u'l', u'i', u'a', u'a', u'm', u'a', u'l', u'o', u't', u'n', u'i', u'v', u'a', u'r', u'/', u'i', u'f', u'/', u'i', u'r', u'u', u't', u'n', u'u', u't', u'i', u'v', u'e', u'l', u'i', u'l', u'l', u'e', u't', u'o', u'h'], u'/')
KeyError: u'/'

Todo

No solution

ContentProviderLookupError: plone.htmlhead

Traceback:

Module zope.tales.tales, line 696, in evaluate
 - URL: file:/home/moo/isleofback/eggs/Plone-3.3.5-py2.4.egg/Products/CMFPlone/skins/plone_templates/main_template.pt
 - Line 39, Column 4
 - Expression: <StringExpr u'plone.htmlhead'>
 - Names:
 {'container': <PloneSite at /isleofback>,
 'context': <PloneSite at /isleofback>,
 'default': <object object at 0xb75f2528>,
 'here': <PloneSite at /isleofback>,
 'loop': {},
 'nothing': None,
 'options': {'args': (<isleofback.app.browser.company.CompanyCreationForm object at 0xea5e80c>,)},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0xea62dcc>,
 'request': <HTTPRequest, URL=http://localhost:9666/isleofback/@@create_company>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0xea62bcc>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <UnauthorizedBinding: context>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0xea62d2c>}
Module Products.Five.browser.providerexpression, line 25, in __call__
ContentProviderLookupError: plone.htmlhead

This is not a bug in Zope. It is caused by trying to render a Plone page frame in an context
which has not acquisition chain properly set up. Plone main_template.pt
tries to look up viewlet managers by
acquistion traversing to parent objects. plone.htmlhead is the first viewlet manager to
be looked up like this, and it will fail firstly.

Some possible causes:

	You are trying to embed main_template inside form/view which is already rendered in main_template frame.
Please see how to embed forms and wrap forms manually.

	You might be using wrong ViewPageTemplate import (Five vs. zope.pagetemplate - explained elsewhere in this documentation)

	Make sure that you call __of__() method for views and other objects you construct by hand
which expects themselves to be in the acquisition chain (normally discovered by traversing)

See also

https://bugs.launchpad.net/zope2/+bug/176566

ERROR ZODB.Connection Couldn't load state for 0x00

Traceback:

2010-07-14 05:02:33 ERROR ZODB.Connection Couldn't load state for 0x00
Traceback (most recent call last):
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/Connection.py", line 811, in setstate
 self._setstate(obj)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/Connection.py", line 870, in _setstate
 self._reader.setGhostState(obj, p)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/serialize.py", line 604, in setGhostState
 state = self.getState(pickle)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/serialize.py", line 597, in getState
 return unpickler.load()
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/serialize.py", line 471, in _persistent_load
 return self.load_oid(reference)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/serialize.py", line 537, in load_oid
 return self._conn.get(oid)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/Connection.py", line 244, in get
 p, serial = self._storage.load(oid, self._version)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/FileStorage/FileStorage.py", line 470, in load
 pos = self._lookup_pos(oid)
 File "/Users/moo/yourinstance/eggs/ZODB3-3.8.4-py2.4-macosx-10.6-i386.egg/ZODB/FileStorage/FileStorage.py", line 462, in _lookup_pos
 raise POSKeyError(oid)
POSKeyError: 0x01

Condition: This error can happen when you try to start Zope

Reason: Data.fs might have been damaged. You might be using blobs with Plone 3 and they don't work perfectly.
. . . or a bunch other issues which generally mean that your day is screwed.

See also

http://plonechix.blogspot.com/2009/12/definitive-guide-to-poskeyerror.html

Error _restore_index() when starting instance / ZEO server

Traceback:

2011-05-09 09:42:20 INFO ZServer HTTP server started at Mon May 9 09:42:20 2011
 Hostname: 0.0.0.0
 Port: 10997
2011-05-09 09:42:21 INFO Marshall libxml2-python not available. Unable to register libxml2 based marshallers, at least SimpleXMLMarshaller
2011-05-09 09:42:22 INFO DocFinderTab Applied patch version 1.0.4.
Traceback (most recent call last):
 File "/home/moo/code/python2/parts/opt/lib/python2.4/pdb.py", line 1066, in main
 pdb._runscript(mainpyfile)
 File "/home/moo/code/python2/parts/opt/lib/python2.4/pdb.py", line 991, in _runscript
 self.run(statement, globals=globals_, locals=locals_)
 File "/home/moo/code/python2/parts/opt/lib/python2.4/bdb.py", line 366, in run
 exec cmd in globals, locals
 File "<string>", line 1, in ?
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/run.py", line 56, in ?
 run()
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/run.py", line 21, in run
 starter.prepare()
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 102, in prepare
 self.startZope()
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 278, in startZope
 Zope2.startup()
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/__init__.py", line 47, in startup
 _startup()
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/App/startup.py", line 59, in startup
 DB = dbtab.getDatabase('/', is_root=1)
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/datatypes.py", line 280, in getDatabase
 db = factory.open(name, self.databases)
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/datatypes.py", line 178, in open
 DB = self.createDB(database_name, databases)
 File "/home/moo/xxx/parts/zope2/lib/python/Zope2/Startup/datatypes.py", line 175, in createDB
 return ZODBDatabase.open(self, databases)
 File "/home/moo/xxx/parts/zope2/lib/python/ZODB/config.py", line 97, in open
 storage = section.storage.open()
 File "/home/moo/xxx/parts/zope2/lib/python/ZODB/config.py", line 135, in open
 quota=self.config.quota)
 File "/home/moo/xxx/parts/zope2/lib/python/ZODB/FileStorage/FileStorage.py", line 154, in __init__
 r = self._restore_index()
 File "/home/moo/xxx/parts/zope2/lib/python/ZODB/FileStorage/FileStorage.py", line 365, in _restore_index
 index = info.get('index')

Reason: Data.fs.index is corrupted.

Solution: Remove Data.fs.index file. The index will be rebuilt on the launch.

Error: Incorrect padding

Traceback:

2012-02-06 16:52:25 ERROR Zope.SiteErrorLog 1328539945.430.234286547911 http://localhost:9888/index_html
Traceback (innermost last):
 Module ZPublisher.Publish, line 110, in publish
 Module ZPublisher.BaseRequest, line 588, in traverse
 Module Products.PluggableAuthService.PluggableAuthService, line 233, in validate
 Module Products.PluggableAuthService.PluggableAuthService, line 559, in _extractUserIds
 Module Products.PluggableAuthService.plugins.CookieAuthHelper, line 121, in extractCredentials
 Module base64, line 321, in decodestring
Error: Incorrect padding

Condition: This error can happen when you try to access any Plone site URL

Reason: It means that your browser most likely tries to serve bad
cookies / auth info to Zope.

Solution: Clear browser cache, cookies, etc.

Exception: Type name not specified in createObject

Traceback:

Module ZPublisher.Publish, line 119, in publish
Module ZPublisher.mapply, line 88, in mapply
Module ZPublisher.Publish, line 42, in call_object
Module Products.CMFFormController.FSControllerPythonScript, line 104, in __call__
Module Products.CMFFormController.Script, line 145, in __call__
Module Products.CMFCore.FSPythonScript, line 140, in __call__
Module Shared.DC.Scripts.Bindings, line 313, in __call__
Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
Module Products.CMFCore.FSPythonScript, line 196, in _exec
Module None, line 11, in createObject
<FSControllerPythonScript at /xxx/createObject used for /xxx/sisalto/lomapalvelut>
Line 11
Exception: Type name not specified

Todo

Complete

ExpatError: portlets.xml: unbound prefix

Traceback:

Traceback (innermost last):
 Module plone.postpublicationhook.hook, line 74, in publish
 Module ZPublisher.mapply, line 88, in mapply
 Module ZPublisher.Publish, line 42, in call_object
 Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 589, in installProducts
 Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 526, in installProduct
 - __traceback_info__: ('mfabrik.app',)
 Module Products.GenericSetup.tool, line 390, in runAllImportStepsFromProfile
 - __traceback_info__: profile-mfabrik.app:default
 Module Products.GenericSetup.tool, line 1179, in _runImportStepsFromContext
 Module Products.GenericSetup.tool, line 1090, in _doRunImportStep
 - __traceback_info__: portlets
 Module plone.app.portlets.exportimport.portlets, line 707, in importPortlets
 Module Products.GenericSetup.utils, line 543, in _importBody
ExpatError: portlets.xml: unbound prefix: line 15, column 1

Condition: This error can happen while installing a new portlet portlets.xml

Reason: You have i18n:attributes="title; description" in your
portlets.xml.

Solution: Remove it or declare the i18n namespace in XML like this:

<portlets xmlns:i18n="http://namespaces.zope.org/i18n">

Similar applies for actions.xml, etc.

IOError: [Errno url error] unknown url type: 'https'

Traceback:

File "/home/moo/code/python/parts/opt/lib/python2.4/urllib.py", line 89, in urlretrieve
 return _urlopener.retrieve(url, filename, reporthook, data)
File "/home/moo/code/python/parts/opt/lib/python2.4/urllib.py", line 222, in retrieve
 fp = self.open(url, data)
File "/home/moo/code/python/parts/opt/lib/python2.4/urllib.py", line 187, in open
 return self.open_unknown(fullurl, data)
File "/home/moo/code/python/parts/opt/lib/python2.4/urllib.py", line 199, in open_unknown
 raise IOError, ('url error', 'unknown url type', type)
IOError: [Errno url error] unknown url type: 'https'

Reason: Python and Python socket modules have not been compiled with SSL support.

Solution: Make sure that you have SSL development libraries installed (Ubuntu/Debian example)

sudo apt-get install libssl-dev

Make sure that Python is built with SSL support

./configure --with-package=_ssl

You can test Python after compilation:

moo@murskaamo:~/code/python$ source python-2.4/bin/activate
(python-2.4)moo@murskaamo:~/code/python$ python
Python 2.4.6 (#1, Jul 16 2010, 10:31:46)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import _ssl
>>>

Also you might want try

easy_install pyopenssl

ImportError: Couldn't import ZPublisherEventsBackport

The following traceback on instance start-up:

File "/Users/moo/twinapex/parts/zope2/lib/python/zope/configuration/config.py", line 1383, in toargs
 args[str(name)] = field.fromUnicode(s)
File "/Users/moo/twinapex/parts/zope2/lib/python/zope/configuration/fields.py", line 141, in fromUnicode
 raise schema.ValidationError(v)
zope.configuration.xmlconfig.ZopeXMLConfigurationError: File "/Users/moo/twinapex/parts/instance/etc/site.zcml", line 14.2-14.55
 ZopeXMLConfigurationError: File "/Users/moo/twinapex/parts/instance/etc/package-includes/009-gomobile.mobile-configure.zcml", line 1.0-1.59
 ZopeXMLConfigurationError: File "/Users/moo/twinapex/src/gomobile.mobile/gomobile/mobile/configure.zcml", line 15.4-15.51
 ZopeXMLConfigurationError: File "/Users/moo/twinapex/eggs/plone.postpublicationhook-1.1-py2.4.egg/plone/postpublicationhook/configure.zcml", line 5.4-8.10
 ConfigurationError: ('Invalid value for', 'package', "ImportError: Couldn't import ZPublisherEventsBackport, No module named ZPublisherEventsBackport")

Reason: plone.postpublicationhook 1.1 depends on new package, ZPublisherEventsBackport, for Plone 3.3.

Solution: You eed to include them both in your buildout.
You need to include both eggs:

eggs =
 ZPublisherEventsBackport
 plone.postpublicationhook

ImportError: Inappropriate file type for dynamic loading

Traceback:

File "/Users/moo/twinapex/twinapex/parts/zope2/lib/python/ZConfig/datatypes.py", line 398, in get
 t = self.search(name)
File "/Users/moo/twinapex/twinapex/parts/zope2/lib/python/ZConfig/datatypes.py", line 423, in search
 package = __import__(n, g, g, component)
File "/Users/moo/twinapex/twinapex/parts/zope2/lib/python/Zope2/Startup/datatypes.py", line 20, in ?
 from ZODB.config import ZODBDatabase
File "/Users/moo/twinapex/twinapex/eggs/ZODB3-3.8.2-py2.4-macosx-10.6-i386.egg/ZODB/__init__.py", line 20, in ?
 from persistent import TimeStamp
File "/Users/moo/twinapex/twinapex/eggs/ZODB3-3.8.2-py2.4-macosx-10.6-i386.egg/persistent/__init__.py", line 19, in ?
 from cPersistence import Persistent, GHOST, UPTODATE, CHANGED, STICKY
ImportError: Inappropriate file type for dynamic loading

Condition: When starting Zope

Reason: You probably have files lying over from wrong CPU architecture

	Hand copied eggs between servers

	Migrated OS to new version

	You have several Python interpreters installed and you try to run Zope using
the wrong interpreter (the one which the code is not compiled for)

Solution: Delete /parts and /eggs buildout folders,
run bootstrap, run buildout.

ImportError: No module named PIL

Traceback:

...
Traceback (most recent call last):
 File "/home/moo/isleofback/bin/idelauncher.py", line 140, in ?
 execfile(ZOPE_RUN)
 File "/home/moo/isleofback/bin/../parts/zope2/lib/python/Zope2/Startup/run.py", line 56, in ?
 run()
 File "/home/moo/isleofback/bin/../parts/zope2/lib/python/Zope2/Startup/run.py", line 21, in run
 starter.prepare()
 File "/home/moo/isleofback/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 102, in prepare
 self.startZope()
 File "/home/moo/isleofback/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 278, in startZope
 Zope2.startup()
 File "/home/moo/isleofback/parts/zope2/lib/python/Zope2/__init__.py", line 47, in startup
 _startup()
 File "/home/moo/isleofback/parts/zope2/lib/python/Zope2/App/startup.py", line 45, in startup
 OFS.Application.import_products()
 File "/home/moo/isleofback/parts/zope2/lib/python/OFS/Application.py", line 686, in import_products
 import_product(product_dir, product_name, raise_exc=debug_mode)
 File "/home/moo/isleofback/parts/zope2/lib/python/OFS/Application.py", line 709, in import_product
 product=__import__(pname, global_dict, global_dict, silly)
 File "/home/moo/isleofback/eggs/Products.ATContentTypes-1.3.4-py2.4.egg/Products/ATContentTypes/__init__.py", line 64, in ?
 import Products.ATContentTypes.content
 File "/home/moo/isleofback/eggs/Products.ATContentTypes-1.3.4-py2.4.egg/Products/ATContentTypes/content/__init__.py", line 26, in ?
 import Products.ATContentTypes.content.link
 File "/home/moo/isleofback/eggs/Products.ATContentTypes-1.3.4-py2.4.egg/Products/ATContentTypes/content/link.py", line 39, in ?
 from Products.ATContentTypes.content.base import registerATCT
 File "/home/moo/isleofback/eggs/Products.ATContentTypes-1.3.4-py2.4.egg/Products/ATContentTypes/content/base.py", line 63, in ?
 from Products.CMFPlone.PloneFolder import ReplaceableWrapper
 File "/home/moo/isleofback/eggs/Plone-3.3.5-py2.4.egg/Products/CMFPlone/__init__.py", line 215, in ?
 from browser import ploneview
 File "/home/moo/isleofback/eggs/Plone-3.3.5-py2.4.egg/Products/CMFPlone/browser/ploneview.py", line 12, in ?
 from Products.CMFPlone import utils
 File "/home/moo/isleofback/eggs/Plone-3.3.5-py2.4.egg/Products/CMFPlone/utils.py", line 6, in ?
 from PIL import Image
ImportError: No module named PIL

Reason: Python Imaging Library is not properly installed. The default PIL
package does not work nicely as egg.

Solution: Remove all existing PIL eggs from buildout/eggs folder.

Install PIL for your development Python environment:

easy_install http://dist.repoze.org/PIL-1.1.6.tar.gz

ImportError: No module named html

Traceback:

from lxml.html import defs
zope.configuration.xmlconfig.ZopeXMLConfigurationError: File "/srv/plone/yourinstance/parts/client1/etc/site.zcml", line 14.2-14.55
ZopeXMLConfigurationError: File "/srv/plone/yourinstance/parts/client1/etc/package-includes/012-yourinstance.mobi-configure.zcml", line 1.0-1.59
ZopeXMLConfigurationError: File "/srv/plone/yourinstance/src/yourinstance.mobi/yourinstance/mobi/configure.zcml", line 13.2-13.43
ZopeXMLConfigurationError: File "/srv/plone/yourinstance/src/gomobiletheme.basic/gomobiletheme/basic/configure.zcml", line 16.2-16.39
ZopeXMLConfigurationError: File "/srv/plone/yourinstance/src/gomobile.mobile/gomobile/mobile/configure.zcml", line 19.4-19.34
ZopeXMLConfigurationError: File "/srv/plone/yourinstance/src/gomobile.mobile/gomobile/mobile/browser/configure.zcml", line 24.4-29.10
ImportError: No module named html

Condition: This error can happen when starting an instance

Reason: The system lxml version is too old

Let's see if we are getting too old system wide lxml installation:

plone@mansikki:/srv/plone/yourinstance$ python2.4
Python 2.4.5 (#2, Jan 21 2010, 20:05:55)
[GCC 4.2.4 (Ubuntu 4.2.4-1ubuntu3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import lxml
>>> lxml.__file__
'/usr/lib/python2.4/site-packages/lxml/__init__.pyc'
>>> dir(lxml)
['__builtins__', '__doc__', '__file__', '__name__', '__path__']
>>> from lxml import html
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: cannot import name html

If we cannot fix the system lxml (your system software depends on it) the only workaround is to
create virtualenv. We cannot force Python 2.6, 2.5 or 2.4 not to use system libraries.

Example:

root@mansikki:/srv/plone# virtualenv -p /usr/bin/python2.4 --no-site-packages py24

Include standalone lxml + libxml compilation in your buildout.cfg:

parts =
 ...
 lxml

[lxml]
recipe = z3c.recipe.staticlxml
egg = lxml==2.2.6
force = false

If there are exiting lxml builds in buildout be sure they are removed:

rm -rf eggs/lxml*

Then as the non-root re-bootstrap the buildout using non-system wide Python:

plone@mansikki:/srv/plone/yourinstance-2010/yourinstance$ source /srv/plone/py24/bin/activate
(py24)plone@mansikki:/srv/plone/yourinstance-2010/yourinstance$ python bootstrap.py
...
(py24)plone@mansikki:/srv/plone/yourinstance-2010/yourinstance$ bin/buildout
...

... and after this it should no longer pull the bad system lxml.

ImportError: No module named pkgutil

Traceback:

Traceback (most recent call last):
 File "/Users/moo/plonecommunity/bin/idelauncher.py", line 101, in <module>
 exec(data, globals())
 File "<string>", line 543, in <module>
 File "/Users/moo/plonecommunity/eggs/plone.app.z3cform-0.5.0-py2.6.egg/plone/__init__.py", line 5, in <module>
 from pkgutil import extend_path
ImportError: No module named pkgutil

If you are using Eclipse, idelauncher.py has been updated for Plone 4.

Invalid or Duplicate property id

Traceback:

* Dry run selected.
* Starting the migration from version: 3.1.4
* Attempting to upgrade from: 3.1.4
* Upgrade aborted
* Error type: zExceptions.BadRequest
* Error value: Invalid or duplicate property id
* File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/MigrationTool.py",
line 210, in upgrade newv, msgs = self._upgrade(newv)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/MigrationTool.py",
line 321, in _upgrade res = function(self.aq_parent)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/migrations/v3_1/final_three1x.py",
line 15, in three14_three15 loadMigrationProfile(portal,
'profile-Products.CMFPlone.migrations:3.1.3-3.1.4')
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/migrations/migration_util.py",
line 107, in loadMigrationProfile tool.runAllImportStepsFromProfile(profile,
purge_old=False)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Products.GenericSetup-1.4.5-py2.4.egg/Products/GenericSetup/tool.py",
line 390, in runAllImportStepsFromProfile
ignore_dependencies=ignore_dependencies)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Products.GenericSetup-1.4.5-py2.4.egg/Products/GenericSetup/tool.py",
line 1179, in _runImportStepsFromContext message =
self._doRunImportStep(step, context)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Products.GenericSetup-1.4.5-py2.4.egg/Products/GenericSetup/tool.py",
line 1090, in _doRunImportStep return handler(context)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/exportimport/propertiestool.py",
line 37, in importPloneProperties importer.body = body
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Products.GenericSetup-1.4.5-py2.4.egg/Products/GenericSetup/utils.py",
line 544, in _importBody self._importNode(dom.documentElement)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/exportimport/propertiestool.py",
line 103, in _importNode self._initObjects(node)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/exportimport/propertiestool.py",
line 154, in _initObjects importer.node = child
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Plone-3.3-py2.4.egg/Products/CMFPlone/exportimport/propertiestool.py",
line 77, in _importNode self._initProperties(node)
 * File
"/usr/local/Plone3.2.3/buildout-cache/eggs/Products.GenericSetup-1.4.5-py2.4.egg/Products/GenericSetup/utils.py",
line 724, in _initProperties obj._setProperty(prop_id, val, prop_type)
 * File
"/usr/local/Plone3.2.3/Zope-2.10.7-final-py2.4/lib/python/OFS/PropertyManager.py",
line 186, in _setProperty raise BadRequest, 'Invalid or duplicate property
id'
 * End of upgrade path, migration has finished
 * The upgrade path did NOT reach current version
 * Migration has failed
 * Dry run selected, transaction aborted

Condition: This exception can happen during Plone migration to the newer version

It is caused by a property (site setting) which already exists and migration tries to create it.
The usual reason is that one has edited site settings in new Plone version before running the migration.

Try remove violating property ids from the site_properties manually in Zope.

Potential candidates to be removed:

	enable_inline_editing

	lock_on_ttw_edit (boolean)

Potential candidates which need to be added manually:

	redirect_links (boolean)

See also

http://www.mail-archive.com/setup@lists.plone.org/msg03988.html

InvalidInterface: Concrete attribute

Traceback:

/zope/interface/interface.py", line 495, in __init__
 raise InvalidInterface("Concrete attribute, " + name)
zope.configuration.xmlconfig.ZopeXMLConfigurationError: File "/Users/mikko/code/buildout.deco/parts/instance/etc/site.zcml", line 15.2-15.55
 ZopeXMLConfigurationError: File "/Users/mikko/code/buildout.deco/parts/instance/etc/package-includes/002-plone.app.widgets-configure.zcml", line 1.0-1.61
 ZopeXMLConfigurationError: File "/Users/mikko/code/buildout.deco/src/plone.app.widgets/plone/app/widgets/configure.zcml", line 56.2-62.6
 InvalidInterface: Concrete attribute, multiChoiceCheckbox

Condition: Your zope.schema based schema breaks on Plone startup.

Reason: You have extra comma in your schema. Like this:

 class IChoiceExamples(model.Schema):

 multiChoiceCheckbox = zope.schema.List(
 title=u"Checkbox multiple choices",
 description=u"Select multiple checkboxes using checkboxes and store values in zope.schema.List (maps to python List)." + DEFAULT_MUTABLE_WARNING,
 required=False,
 value_type=zope.schema.Choice(vocabulary="plone.app.vocabularies.PortalTypes")), # <---- This is the guilty comma

Iteration over non-sequence in _normalizeargs

Case 1

The following log trace will appear when you try to render
the site, but you can access ZMI normally:

2009-09-23 20:47:18 WARNING OFS.Uninstalled Could not import class 'IPloneCommentsLayer' from module 'quintagroup.plonecomments.interfaces'
2009-09-23 20:47:18 ERROR Zope.SiteErrorLog 1253728038.160.534632167217 http://localhost:9444/XXX
Traceback (innermost last):
 Module plone.postpublicationhook.hook, line 65, in publish
 Module ZPublisher.BaseRequest, line 424, in traverse
 Module ZPublisher.BeforeTraverse, line 99, in __call__
 Module Products.CMFCore.PortalObject, line 94, in __before_publishing_traverse__
 Module zope.event, line 23, in notify
 Module zope.component.event, line 26, in dispatch
 Module zope.component._api, line 130, in subscribers
 Module zope.component.registry, line 290, in subscribers
 Module zope.interface.adapter, line 535, in subscribers
 Module zope.component.event, line 33, in objectEventNotify
 Module zope.component._api, line 130, in subscribers
 Module zope.component.registry, line 290, in subscribers
 Module zope.interface.adapter, line 535, in subscribers
 Module plone.browserlayer.layer, line 18, in mark_layer
 Module zope.interface.declarations, line 848, in directlyProvides
 Module zope.interface.declarations, line 1371, in _normalizeargs
 Module zope.interface.declarations, line 1370, in _normalizeargs
TypeError: iteration over non-sequence
2009-09-23 20:47:18 ERROR root Exception while rendering an error message
Traceback (most recent call last):
 File "/home/moo/XXX/parts/zope2/lib/python/OFS/SimpleItem.py", line 227, in raise_standardErrorMessage
 v = s(**kwargs)
 File "/home/moo/workspace2/collective.skinny/collective/skinny/patch.py", line 8, in standard_error_message
 return self.restrictedTraverse('@@404.html')()
 File "/home/moo/workspace2/collective.skinny/collective/skinny/fourohfour.py", line 22, in __call__
 return skins.plone_templates.standard_error_message.__of__(
 File "/home/moo/XXX/eggs/Products.CMFCore-2.1.2-py2.4.egg/Products/CMFCore/FSPythonScript.py", line 140, in __call__
 return Script.__call__(self, *args, **kw)
 File "/home/moo/XXX/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 313, in __call__
 return self._bindAndExec(args, kw, None)
 File "/home/moo/XXX/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 350, in _bindAndExec
 return self._exec(bound_data, args, kw)
 File "/home/moo/XXX/eggs/Products.CMFCore-2.1.2-py2.4.egg/Products/CMFCore/FSPythonScript.py", line 196, in _exec
 result = f(*args, **kw)
 File "Script (Python)", line 27, in standard_error_message
AttributeError: default_error_message

This usually means that you have copied Data.fs from another
system, but you do not have identical add-on product configuration
installed.

traceback to the console similar to the following if you have started Zope
process on foreground:

2008-11-09 22:53:13 INFO Zope Ready to handle requests
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'ATSETemplateTool' from module 'Products.ATSchemaEditorNG.ATSETemplateTool'
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'SchemaEditorTool' from module 'Products.ATSchemaEditorNG.SchemaEditorTool'
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'SchemaManagerTool' from module 'Products.GenericPloneContent.SchemaManagerTool'
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'FormGenTool' from module 'Products.PloneFormGen.tools.formGenTool'
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'TemplatedDocument' from module 'collective.easytemplate.content.TemplatedDocument'
2008-11-09 22:54:50 WARNING OFS.Uninstalled Could not import class 'FormFolder' from module 'Products.PloneFormGen.content.form'
2008-11-09 22:54:52 WARNING OFS.Uninstalled Could not import class 'IDropdownSpecific' from module 'webcouturier.dropdownmenu.browser.interfaces'
2008-11-09 22:54:52 ERROR Zope.SiteErrorLog http://localhost:8080/lsm
Traceback (innermost last):
 Module ZPublisher.Publish, line 110, in publish
 Module ZPublisher.BaseRequest, line 424, in traverse
 Module ZPublisher.BeforeTraverse, line 99, in __call__
 Module Products.CMFCore.PortalObject, line 94, in __before_publishing_traverse__
 Module zope.event, line 23, in notify
 Module zope.component.event, line 26, in dispatch
 Module zope.component._api, line 130, in subscribers
 Module zope.component.registry, line 290, in subscribers
 Module zope.interface.adapter, line 535, in subscribers
 Module zope.component.event, line 33, in objectEventNotify
 Module zope.component._api, line 130, in subscribers
 Module zope.component.registry, line 290, in subscribers
 Module zope.interface.adapter, line 535, in subscribers
 Module plone.browserlayer.layer, line 18, in mark_layer
 Module zope.interface.declarations, line 848, in directlyProvides
 Module zope.interface.declarations, line 1371, in _normalizeargs
 Module zope.interface.declarations, line 1370, in _normalizeargs
TypeError: iteration over non-sequence

notice the 'Could not import class' message.

Reason: You do not have identical product configuration on the new server.
Please install the missing products and site should work fine again.

Please note that you can get a 'TypeError: iteration over non-sequence'
exception in other contexts not related with missing products at all. Look
for the 'Could not import class' message in your traceback.

Case 2

Example traceback:

Traceback (most recent call last):
 File "/home/moo/twinapex/bin/idelauncher.py", line 158, in ?
 execfile(ZOPE_RUN)
 File "/home/moo/twinapex/bin/../parts/zope2/lib/python/Zope2/Startup/run.py", line 56, in ?
 run()
 File "/home/moo/twinapex/bin/../parts/zope2/lib/python/Zope2/Startup/run.py", line 21, in run
 starter.prepare()
 File "/home/moo/twinapex/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 102, in prepare
 self.startZope()
 File "/home/moo/twinapex/parts/zope2/lib/python/Zope2/Startup/__init__.py", line 278, in startZope
 Zope2.startup()
 File "/home/moo/twinapex/parts/zope2/lib/python/Zope2/__init__.py", line 47, in startup
 _startup()
 File "/home/moo/twinapex/parts/zope2/lib/python/Zope2/App/startup.py", line 45, in startup
 OFS.Application.import_products()
 File "/home/moo/twinapex/parts/zope2/lib/python/OFS/Application.py", line 686, in import_products
 import_product(product_dir, product_name, raise_exc=debug_mode)
 File "/home/moo/twinapex/parts/zope2/lib/python/OFS/Application.py", line 709, in import_product
 product=__import__(pname, global_dict, global_dict, silly)
 File "/home/moo/twinapex/eggs/Products.PloneHelpCenter-4.0a1-py2.4.egg/Products/PloneHelpCenter/__init__.py", line 9, in ?
 from Products.PloneHelpCenter import content
 File "/home/moo/twinapex/eggs/Products.PloneHelpCenter-4.0a1-py2.4.egg/Products/PloneHelpCenter/content/__init__.py", line 10, in ?
 import HowToFolder, HowTo
 File "/home/moo/twinapex/eggs/Products.PloneHelpCenter-4.0a1-py2.4.egg/Products/PloneHelpCenter/content/HowTo.py", line 40, in ?
 class HelpCenterHowTo(PHCContentMixin, ATCTOrderedFolder):
 File "/home/moo/twinapex/parts/zope2/lib/python/zope/interface/advice.py", line 132, in advise
 return callback(newClass)
 File "/home/moo/twinapex/parts/zope2/lib/python/zope/interface/declarations.py", line 485, in _implements_advice
 classImplements(cls, *interfaces)
 File "/home/moo/twinapex/parts/zope2/lib/python/zope/interface/declarations.py", line 462, in classImplements
 spec.declared += tuple(_normalizeargs(interfaces))
 File "/home/moo/twinapex/parts/zope2/lib/python/zope/interface/declarations.py", line 1372, in _normalizeargs
 _normalizeargs(v, output)
 File "/home/moo/twinapex/parts/zope2/lib/python/zope/interface/declarations.py", line 1371, in _normalizeargs
 for v in sequence:
TypeError: iteration over non-sequence

Reason: You are trying to use Plone 4 (Zope 2.12) add-on on Plone 3 (Zope 2.10). Zope interface declarations have been changed.

Solution 1: Pick the older version for the add-on which is known to work with Plone 3. Make sure that you
delete all "too eggs" from eggs/ and src/ folders.

Solution 2: Upgrade your site to Plone.

LinguaPlone: ImportError: cannot import name permissions

Traceback:

File "/home/moo/code/finnmall/finnmall/src/abita.theme/abita/theme/browser/viewlets/selector.py", line 12, in <module>
 from Products.LinguaPlone.interfaces import ITranslatable
File "/home/moo/code/finnmall/finnmall/eggs/Products.LinguaPlone-3.1-py2.6.egg/Products/LinguaPlone/__init__.py", line 3, in <module>
 from Products.LinguaPlone import permissions
ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/parts/instance/etc/site.zcml", line 15.2-15.55
 ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/parts/instance/etc/package-includes/001-abita.policy-configure.zcml", line 1.0-1.56
 ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/src/abita.policy/abita/policy/configure.zcml", line 8.4-8.37
 ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/src/abita.theme/abita/theme/configure.zcml", line 9.2-9.32
 ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/src/abita.theme/abita/theme/browser/configure.zcml", line 10.2-10.33
 ZopeXMLConfigurationError: File "/home/moo/code/finnmall/finnmall/src/abita.theme/abita/theme/browser/viewlets/configure.zcml", line 6.2-11.6
 ImportError: cannot import name permissions

This seems to be Plone 4 issue of some sort.
Import Products.ATContentTypes before importing LinguagePlone.

See also

	http://plone.org/products/linguaplone/issues/253

	http://plone.org/products/linguaplone/issues/253

NameError: name 'test' is not defined

Condition: This exception occurs when you try to customize TAL page template code using test() function.
test() function has been dropped in Zope 3 page templates. You should no longer
use test() function anywhere.

Solution: replace test() with common Python expression in your customized template.

For example the orignal:

tal:attributes="class python:test(here.Format() in ('text/structured', 'text/x-rst',), 'stx' + kss_class, 'plain', + kss_class)"

would need to be written as:

tal:attributes="class python:here.Format() in ('text/structured', 'text/x-rst',) and 'stx' + kss_class or 'plain' + kss_class"

NotFound error (Page not found) when accessing @@manage-portlets

If you get Page not found error when accessing @@manage-portlets the first thing
you need to do is to enable logging of NotFound exceptions in ZMI in error_log.

After that reload @@manage-portlets.

When you try to access @@manage-portlets an exception a NotFound exception is raised:

2009-11-09 12:56:13 ERROR Zope.SiteErrorLog 1257764173.180.738005333766 http://localhost:8080/yourinstance/@@manage-portlets
Traceback (innermost last):
 Module ZPublisher.Publish, line 119, in publish
 Module Products.PageTemplates.Expressions, line 223, in evaluateStructure
 ...
 Module zope.tales.tales, line 696, in evaluate
 - URL: file:/Users/moo/workspace/plonetheme.yourinstance/plonetheme/yourinstance/skins/plonetheme_yourinstance_custom_templates/main_template.pt
 - Line 92, Column 18
 - Expression: <StringExpr u'plone.leftcolumn'>
 - Names:
 {'container': <PloneSite at /yourinstance>,
 'context': <PloneSite at /yourinstance>,
 'default': <object object at 0x194520>,
 'here': <PloneSite at /yourinstance>,
 'loop': {},
 'nothing': None,
 'options': {'args': (<Products.Five.metaclass.SimpleViewClass from /Users/moo/yourinstance/eggs/plone.app.portlets-1.2-py2.4.egg/plone/app/portlets/browser/templates/manage-contextual.pt object at 0x67e43b0>,)},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x73b59b8>,
 'request': <HTTPRequest, URL=http://localhost:8080/yourinstance/@@manage-portlets>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0x73b29f0>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <Products.Five.metaclass.SimpleViewClass from /Users/moo/yourinstance/eggs/plone.app.portlets-1.2-py2.4.egg/plone/app/portlets/browser/templates/manage-contextual.pt object at 0x67e43b0>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0x73b23d0>}
 Module Products.Five.browser.providerexpression, line 37, in __call__
 ...
 Module zope.tales.tales, line 696, in evaluate
 - URL: index
 - Line 18, Column 12
 - Expression: <PathExpr standard:'view/addable_portlets'>
 - Names:
 {'container': <PloneSite at /yourinstance>,
 'context': <PloneSite at /yourinstance>,
 'default': <object object at 0x194520>,
 'here': <PloneSite at /yourinstance>,
 'loop': {},
 'nothing': None,
 'options': {'args': ()},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x7941be8>,
 'request': <HTTPRequest, URL=http://localhost:8080/yourinstance/@@manage-portlets>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0x78be050>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <plone.app.portlets.browser.editmanager.ContextualEditPortletManagerRenderer object at 0x789eb90>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0x790a870>}
 Module zope.tales.expressions, line 217, in __call__
 Module Products.PageTemplates.Expressions, line 163, in _eval
 Module Products.PageTemplates.Expressions, line 125, in render
 Module plone.app.portlets.browser.editmanager, line 154, in addable_portlets
 Module plone.app.portlets.browser.editmanager, line 149, in check_permission
 Module OFS.Traversable, line 301, in restrictedTraverse
 Module OFS.Traversable, line 284, in unrestrictedTraverse
 - __traceback_info__: ([], 'collective.easytemplate.TemplatedPortlet')
NotFound: collective.easytemplate.TemplatedPortlet

This usually means that your site has an portlet assignment which code is not present anymore.

In this case you can see that portlet type "collective.easytemplate.TemplatedPortlet" is missing.

Ä Check that you include the corresponding product (collective.easytemplate) in eggs= section in buildout.cfg

	Reinstall removed egg which has the code for the portlet

	Check that you include the corresponding product (collective.easytemplate) in zcml= section in buildout.cfg

	Make sure that portlet name is the same in ZCML and GenericSetup XML

	Make sure you use <include package=".portlets" /> in your code

Manually removing the portlet

If you have a traceback like this:

URL: index
Line 18, Column 12
Expression: <PathExpr standard:'view/addable_portlets'>
Names:
{'container': <ATFolder at /webandmobile/support>,
 'context': <ATFolder at /webandmobile/support>,
 'default': <object object at 0x7f7e3af1a200>,
 'here': <ATFolder at /webandmobile/support>,
 'loop': {},
 'nothing': None,
 'options': {'args': ()},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x11dee1b8>,
 'request': <HTTPRequest, URL=http://webandmobile.mfabrik.com/support/@@manage-portlets>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0x7f7e2a9199d0>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <plone.app.portlets.browser.editmanager.ContextualEditPortletManagerRenderer object at 0xf0526d0>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0x7f7e2a919810>}
Module zope.tales.expressions, line 217, in __call__
Module Products.PageTemplates.Expressions, line 163, in _eval
Module Products.PageTemplates.Expressions, line 125, in render
Module plone.app.portlets.browser.editmanager, line 154, in addable_portlets
Module plone.app.portlets.browser.editmanager, line 149, in check_permission
Module OFS.Traversable, line 301, in restrictedTraverse
Module OFS.Traversable, line 284, in unrestrictedTraverse
__traceback_info__: ([], 'gomobile.convergence.ContentMedia')
NotFound: gomobile.convergence.ContentMedia

It usually means that there is a portlet in your content which product code has been removed.

Reinstall the add-on providing the portlet, remove the portlet and then uninstall the add-on again.

NotFound while accessing a BrowserView based view

Traceback:

Traceback (innermost last):
 Module ZPublisher.Publish, line 110, in publish
 Module ZPublisher.BaseRequest, line 506, in traverse
 Module ZPublisher.HTTPResponse, line 686, in debugError
NotFound: <h2>Site Error</h2>

Condition: You'll get a NotFound error when accessing view using view traverse notation,
event though the view exist.

Example URL:

http://yoursite/@@myview

Reason: This is because there is an exception raised in your view's __init__()
method. Views are Zope multi-adapters. Exception in multi-adapter factory
method causes ComponentLookUpError. Zope 2 publisher translates
this to NotFound error.

Solution:
* Put pdb break statement to the beginning of the __init__() method of your view. Then step through view code to see where the exception is raisen.
* If your view does not have __init__() method, then copy the source code __init__() method to your view class from the first parent class which has a view

POSKeyError

POSKeyError is when the database has been unable to convert a reference to an object into the object itself
It's a low level error usually caused by a corrupt or incomplete database.

	You did not copy blobs when you copied Data.fs

	Your data is corrupted

	Glitch in database (very unlikely)

See also

http://rpatterson.net/blog/poskeyerror-during-commit

PicklingError: Can't pickle <class 'collective.singing.async.IQueue'>: import of module collective.singing.async

Singing & Dancing add-on does not uninstall cleanly. Try this command-line script to get it fixed (not tested).
Some parts may work, some not, depending on how messed up your site is.

Note that you need to have S & D present in the buildout when running this and
then you can remove it afterwards:

import transaction
from collective.singing.interfaces import ISalt
from collective.singing.async import IQueue

Your site here
portal = app.mfabrik
sm = portal.getSiteManager()

util_obj = sm.getUtility(ISalt)
sm.unregisterUtility(provided=ISalt)
del util_obj

sm.utilities.unsubscribe((), ISalt)
del sm.utilities.__dict__['_provided'][ISalt]
del sm.utilities._subscribers[0][ISalt]

util = sm.queryUtility(IQueue, name='collective.dancing.jobs')
sm.unregisterUtility(util, IQueue, name='collective.dancing.jobs')
del util
del sm.utilities._subscribers[0][IQueue]

transaction.commit()

RuntimeError: maximum recursion depth exceeded (Archetypes field problem)

Traceback:

- __traceback_info__: ('memberimage', <TTMemberImage at tt_member_image.2010-01-23.8138248069>, {'field': <Field memberimage(image:rw)>})
Module Products.Archetypes.Storage, line 96, in get
Module Products.Archetypes.utils, line 808, in shasattr
Module Products.Archetypes.fieldproperty, line 101, in __get__
Module Products.Archetypes.Field, line 997, in get
Module Products.Archetypes.Field, line 709, in get
 - __traceback_info__: ('memberimage', <TTMemberImage at tt_member_image.2010-01-23.8138248069>, {'field': <Field memberimage(image:rw)>})
RuntimeError: maximum recursion depth exceeded

Condition: The following code will generate this error when you try to access the object:

atapi.ImageField(
 'memberimage',
 # storage=atapi.AnnotationStorage(), # paster version
 storage=atapi.AttributeStorage(), # results in "max recursion depth exceeded" error
 widget=atapi.ImageWidget(
 label=_(u"New Field"),
 description=_(u"Field description"),
),
 validators=('isNonEmptyFile'),
 original_size=(600,600),
 sizes={ 'mini' : (80,80),
 'normal' : (200,200),
 'big' : (300,300),
 'maxi' : (500,500)},
),

Reason: Schema fields using AttributeStorage (usually images, files) cannot have ATFieldProperty in the class:

class Sample(base.ATCTContent):

 # This does not work with AttributeStorage
 memberimage = atapi.ATFieldProperty('memberimage')

Solution: simply remove ATFieldProperty() declaration for the problematic field. You cannot
access the field value anymore by calling object.memberimage but you need to call object.getMemberimage() instead.

TraversalError with lots of tuples and lists (METAL problem)

Traceback:

File "/home/moo/yourinstance/parts/zope2/lib/python/zope/tales/expressions.py", line 217, in __call__
 return self._eval(econtext)
File "/home/moo/yourinstance/parts/zope2/lib/python/Products/PageTemplates/Expressions.py", line 155, in _eval
 ob = self._subexprs[-1](econtext)
File "/home/moo/yourinstance/parts/zope2/lib/python/zope/tales/expressions.py", line 124, in _eval
 ob = self._traverser(ob, element, econtext)
File "/home/moo/yourinstance/parts/zope2/lib/python/Products/PageTemplates/Expressions.py", line 85, in boboAwareZopeTraverse
 request=request)
File "/home/moo/yourinstance/parts/zope2/lib/python/zope/traversing/adapters.py", line 164, in traversePathElement
 return traversable.traverse(nm, further_path)
 - __traceback_info__: ({u'main': [('version', '1.6'), ('mode', 'html'), ('setPosition', (7, 0)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('beginScope', {u'define-macro': u'main'}), ('optTag', (u'metal:main-macro', None, 'metal', 0, [('startTag', (u'metal:main-macro', [(u'define-macro', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1)), ('setPosition', (8, 1)), ('defineSlot', (u'main', [('beginScope', {u'define-slot': u'main'}), ('optTag', (u'metal:main-slot', None, 'metal', 0, [('startTag', (u'metal:main-slot', [(u'define-slot', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1))])), ('endScope', ())])), ('setPosition', (9, 1)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('rawtextColumn', (u'\n', 0))])), ('endScope', ())]}, 'master')
File "/home/moo/yourinstance/parts/zope2/lib/python/zope/traversing/adapters.py", line 52, in traverse
 raise TraversalError(subject, name)
 - __traceback_info__: ({u'main': [('version', '1.6'), ('mode', 'html'), ('setPosition', (7, 0)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('beginScope', {u'define-macro': u'main'}), ('optTag', (u'metal:main-macro', None, 'metal', 0, [('startTag', (u'metal:main-macro', [(u'define-macro', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1)), ('setPosition', (8, 1)), ('defineSlot', (u'main', [('beginScope', {u'define-slot': u'main'}), ('optTag', (u'metal:main-slot', None, 'metal', 0, [('startTag', (u'metal:main-slot', [(u'define-slot', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1))])), ('endScope', ())])), ('setPosition', (9, 1)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('rawtextColumn', (u'\n', 0))])), ('endScope', ())]}, 'master', [])
TraversalError: ({u'main': [('version', '1.6'), ('mode', 'html'), ('setPosition', (7, 0)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('beginScope', {u'define-macro': u'main'}), ('optTag', (u'metal:main-macro', None, 'metal', 0, [('startTag', (u'metal:main-macro', [(u'define-macro', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1)), ('setPosition', (8, 1)), ('defineSlot', (u'main', [('beginScope', {u'define-slot': u'main'}), ('optTag', (u'metal:main-slot', None, 'metal', 0, [('startTag', (u'metal:main-slot', [(u'define-slot', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1))])), ('endScope', ())])), ('setPosition', (9, 1)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('rawtextColumn', (u'\n', 0))])), ('endScope', ())]}, 'master') (Also, the following error occurred while attempting to render the standard error message, please see the event log for full details: ({u'main': [('version', '1.6'), ('mode', 'html'), ('setPosition', (7, 0)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('beginScope', {u'define-macro': u'main'}), ('optTag', (u'metal:main-macro', None, 'metal', 0, [('startTag', (u'metal:main-macro', [(u'define-macro', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1)), ('setPosition', (8, 1)), ('defineSlot', (u'main', [('beginScope', {u'define-slot': u'main'}), ('optTag', (u'metal:main-slot', None, 'metal', 0, [('startTag', (u'metal:main-slot', [(u'define-slot', u'main', 'metal')]))], [('rawtextColumn', (u'\n\t', 1))])), ('endScope', ())])), ('setPosition', (9, 1)), ('setSourceFile', 'file:/home/moo/workspace2/collective.skinny/collective/skinny/skins/skinny_faux_layer/main_template.pt'), ('rawtextColumn', (u'\n', 0))])), ('endScope', ())]}, 'master'))

Some template tries to call macro inside another template and the macro is not defined in the target template.

TraversalError(subject, name) in expressions

Traceback:

File "/home/moo/sits/parts/zope2/lib/python/ZPublisher/Publish.py", line 119, in publish
 request, bind=1)
File "/home/moo/sits/parts/zope2/lib/python/ZPublisher/mapply.py", line 88, in mapply
 if debug is not None: return debug(object,args,context)
File "/home/moo/sits/parts/zope2/lib/python/ZPublisher/Publish.py", line 42, in call_object
 result=apply(object,args) # Type s<cr> to step into published object.
File "/home/moo/sits/parts/zope2/lib/python/Products/Five/browser/metaconfigure.py", line 417, in __call__
 return self.index(self, *args, **kw)
File "/home/moo/sits/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 313, in __call__
 return self._bindAndExec(args, kw, None)
File "/home/moo/sits/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 350, in _bindAndExec
 return self._exec(bound_data, args, kw)
File "/home/moo/sits/parts/zope2/lib/python/Products/PageTemplates/PageTemplateFile.py", line 129, in _exec
 return self.pt_render(extra_context=bound_names)
File "/home/moo/sits/parts/zope2/lib/python/Products/PageTemplates/PageTemplate.py", line 98, in pt_render
 showtal=showtal)
File "/home/moo/sits/parts/zope2/lib/python/zope/pagetemplate/pagetemplate.py", line 117, in pt_render
 strictinsert=0, sourceAnnotations=sourceAnnotations)()
File "/home/moo/sits/parts/zope2/lib/python/zope/tal/talinterpreter.py", line 271, in __call__
 self.interpret(self.program)
File "/home/moo/sits/parts/zope2/lib/python/zope/tal/talinterpreter.py", line 346, in interpret
 handlers[opcode](self, args)
File "/home/moo/sits/parts/zope2/lib/python/zope/tal/talinterpreter.py", line 891, in do_useMacro
 self.interpret(macro)
 handlers[opcode](self, args)

...

File "/home/moo/sits/parts/zope2/lib/python/zope/tal/talinterpreter.py", line 586, in do_setLocal_tal
 self.engine.setLocal(name, self.engine.evaluateValue(expr))
File "/home/moo/sits/parts/zope2/lib/python/zope/tales/tales.py", line 696, in evaluate
 return expression(self)
File "/home/moo/sits/parts/zope2/lib/python/zope/tales/expressions.py", line 218, in __call__
 return self._eval(econtext)
File "/home/moo/sits/parts/zope2/lib/python/Products/PageTemplates/Expressions.py", line 153, in _eval
 ob = self._subexprs[-1](econtext)
File "/home/moo/sits/parts/zope2/lib/python/zope/tales/expressions.py", line 124, in _eval
 ob = self._traverser(ob, element, econtext)
File "/home/moo/sits/parts/zope2/lib/python/Products/PageTemplates/Expressions.py", line 103, in trustedBoboAwareZopeTraverse
 request=request)
File "/home/moo/sits/parts/zope2/lib/python/zope/traversing/adapters.py", line 164, in traversePathElement
 return traversable.traverse(nm, further_path)
File "/home/moo/sits/parts/zope2/lib/python/zope/traversing/adapters.py", line 52, in traverse
 raise TraversalError(subject, name)

Reason: From line Products/PageTemplates/Expressions.py you can see the error comes from TAL templates.
TAL templates are trying to execute path based expressions.

If you can view this error through error_log the error_log traceback will contain information
what expression causes the exception. However if this only happens with unit tests you can have something like:

def __call__(self, econtext):
 if self._name == 'exists':
 return self._exists(econtext)
 print "Evaluating expression:" + self._s
 return self._eval(econtext)

manually injected to zope.tales.expression module.

TraversalError: @@standard_macros

Traceback:

- Warning: Macro expansion failed
- Warning: zope.traversing.interfaces.TraversalError: (<plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>, '++view++standard_macros')
Module zope.tal.talinterpreter, line 271, in __call__
Module zope.tal.talinterpreter, line 346, in interpret
Module zope.tal.talinterpreter, line 870, in do_useMacro
Module zope.tales.tales, line 696, in evaluate
 - URL: form
 - Line 1, Column 0
 - Expression: <PathExpr standard:'context/@@standard_macros/page'>
 - Names:
 {'container': <plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>,
 'context': <plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>,
 'default': <object object at 0x100311200>,
 'here': <plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>,
 'loop': {},
 'nothing': None,
 'options': {'args': (<plone.app.headeranimation.browser.forms.AddHeaderAnimationForm object at 0x1102dc490>,)},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0x110845758>,
 'request': None,
 'root': None,
 'template': <ImplicitAcquirerWrapper object at 0x11084ff10>,
 'traverse_subpath': [],
 'user': <PropertiedUser 'admin'>,
 'view': <UnauthorizedBinding: context>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0x110844310>}
Module zope.tales.expressions, line 217, in __call__
Module Products.PageTemplates.Expressions, line 155, in _eval
Module zope.tales.expressions, line 124, in _eval
Module Products.PageTemplates.Expressions, line 105, in trustedBoboAwareZopeTraverse
Module zope.traversing.adapters, line 154, in traversePathElement
 - __traceback_info__: (<plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>, '@@standard_macros')
Module zope.traversing.namespace, line 107, in namespaceLookup
TraversalError: (<plone.app.headeranimation.browser.forms.HeaderCRUDForm object at 0x110289590>, '++view++standard_macros')

Wrapping is missing from your form object.

Solution:

def update(self):
 super(HeaderCRUDForm, self).update()

 addform = self.addform_factory(self, self.request)
 editform = self.editform_factory(self, self.request)

 import zope.interface
 from plone.z3cform.interfaces import IWrappedForm

 zope.interface.alsoProvides(addform, IWrappedForm)
 addform.update()
 editform.update()
 self.subforms = [editform, addform]

TraversalError: No traversable adapter found

Traceback:

...
* Module ZPublisher.Publish, line 202, in publish_module_standard
* Module Products.LinguaPlone.patches, line 66, in new_publish
* Module ZPublisher.Publish, line 150, in publish
* Module Zope2.App.startup, line 221, in zpublisher_exception_hook
* Module ZPublisher.Publish, line 119, in publish
* Module ZPublisher.mapply, line 88, in mapply
* Module ZPublisher.Publish, line 42, in call_object
* Module Shared.DC.Scripts.Bindings, line 313, in __call__
* Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
* Module Products.CMFCore.FSPageTemplate, line 216, in _exec
* Module Products.CMFCore.FSPageTemplate, line 155, in pt_render
* Module Products.PageTemplates.PageTemplate, line 98, in pt_render
* Module zope.pagetemplate.pagetemplate, line 117, in pt_render
 Warning: Macro expansion failed
 Warning: zope.traversing.interfaces.TraversalError: ('No traversable adapter found',

This traceback is followed by long dump of template code internals.

Usual cause: Some add-on product fails to initialize.

Solution: Start Zope in foreground mode (bin/instance fg) to see which product fails.

TypeError: 'ExtensionClass.ExtensionClass' object is not iterable

Traceback:

Module ZPublisher.Publish, line 126, in publish
Module ZPublisher.mapply, line 77, in mapply
Module ZPublisher.Publish, line 46, in call_object
Module Shared.DC.Scripts.Bindings, line 322, in __call__
Module Products.PloneHotfix20110531, line 106, in _patched_bindAndExec
Module Shared.DC.Scripts.Bindings, line 359, in _bindAndExec
Module App.special_dtml, line 185, in _exec
Module DocumentTemplate.DT_Let, line 77, in render
Module DocumentTemplate.DT_In, line 647, in renderwob
Module DocumentTemplate.DT_In, line 772, in sort_sequence
Module ZODB.Connection, line 860, in setstate
Module ZODB.Connection, line 914, in _setstate
Module ZODB.serialize, line 612, in setGhostState
Module ZODB.serialize, line 605, in getState
Module zope.interface.declarations, line 756, in Provides
Module zope.interface.declarations, line 659, in __init__
Module zope.interface.declarations, line 45, in __init__
Module zope.interface.declarations, line 1382, in _normalizeargs
Module zope.interface.declarations, line 1381, in _normalizeargs
TypeError: ("'ExtensionClass.ExtensionClass' object is not iterable", <function Provides at 0x9f04d84>, (<class 'Products.ATContentTypes.content.folder.ATFolder'>, <class 'Products.Carousel.interfaces.ICarouselFolder'>))

Condition: This error tends to happen after moving a Data.fs to a new instance that does not have the identical add-ons to the original instance.

In this example traceback the missing add-on is Products.Carousel which provides the marker interface Products.Carousel.interfaces.ICarousel

Solution: Install the missing add-on(s)

TypeError: 'NoneType' object is not callable during upgrade

Traceback:

Traceback (innermost last):
 Module ZPublisherEventsBackport.patch, line 77, in publish
 Module ZPublisher.mapply, line 88, in mapply
 Module ZPublisher.Publish, line 42, in call_object
 Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 589, in installProducts
 Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 526, in installProduct
 - __traceback_info__: ('mfabrik.plonezohointegration',)
 Module Products.GenericSetup.tool, line 390, in runAllImportStepsFromProfile
 - __traceback_info__: profile-mfabrik.plonezohointegration:default
 Module Products.GenericSetup.tool, line 1179, in _runImportStepsFromContext
 Module Products.GenericSetup.tool, line 1090, in _doRunImportStep
 - __traceback_info__: toolset
 Module Products.GenericSetup.tool, line 128, in importToolset
TypeError: 'NoneType' object is not callable

Condition: This error can happen during add-on install run / site upgrade

Reason: This means that your site database contains installed add-on utility objects
for which Python code is no longer present.

More pointers for resolving the tool can be found using pdb:

(Pdb) tool_id
'portal_newsletters'

This happens when you have used Singing and Dancing news letter product. This add-on
is problematic and does not uninstall cleanly.

	Reinstall Singing & Dancing

	Uninstall Singing & Dancing

	Hope your site works again

See also

	http://plone.org/documentation/kb/manually-removing-local-persistent-utilities/

	http://opensourcehacker.com/2011/06/01/plone-4-upgrade-results-and-steps/

	https://pypi.python.org/pypi/wildcard.fixpersistentutilities

TypeError: argument of type 'NoneType' is not iterable

Traceback:

Module ZPublisher.Publish, line 115, in publish
 Module ZPublisher.BaseRequest, line 437, in traverse
 Module Products.CMFCore.DynamicType, line 147, in __before_publishing_traverse__
 Module Products.CMFDynamicViewFTI.fti, line 215, in queryMethodID
 Module Products.CMFDynamicViewFTI.fti, line 182, in defaultView
 Module Products.CMFPlone.PloneTool, line 831, in browserDefault
 Module plone.app.folder.base, line 65, in index_html
 Module plone.folder.ordered, line 202, in __contains__
TypeError: argument of type 'NoneType' is not iterable

Reason Plone 3 > Plone 4 migration has not been run. Run the migration
in portal_migrations under ZMI.

TypeError: len() of unsized object in smtplib

Traceback:

Traceback (innermost last):
 Module ZPublisher.Publish, line 119, in publish
 Module ZPublisher.mapply, line 88, in mapply
 Module ZPublisher.Publish, line 42, in call_object
 Module Products.CMFFormController.FSControllerPageTemplate, line 90, in __call__
 Module Products.CMFFormController.BaseControllerPageTemplate, line 28, in _call
 Module Products.CMFFormController.ControllerBase, line 231, in getNext
 Module Products.CMFFormController.Actions.TraverseTo, line 38, in __call__
 Module ZPublisher.mapply, line 88, in mapply
 Module ZPublisher.Publish, line 42, in call_object
 Module Products.CMFFormController.FSControllerPythonScript, line 104, in __call__
 Module Products.CMFFormController.Script, line 145, in __call__
 Module Products.CMFCore.FSPythonScript, line 140, in __call__
 Module Shared.DC.Scripts.Bindings, line 313, in __call__
 Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
 Module Products.CMFCore.FSPythonScript, line 196, in _exec
 Module None, line 102, in order_email
 - <FSControllerPythonScript at /MySite/order_email>
 - Line 102
 Module Products.SecureMailHost.SecureMailHost, line 246, in secureSend
 Module Products.SecureMailHost.SecureMailHost, line 276, in _send
 Module Products.SecureMailHost.mail, line 126, in send
 Module smtplib, line 576, in login
 Module smtplib, line 536, in encode_cram_md5
 Module hmac, line 50, in __init__
TypeError: len() of unsized object

Reason: Your SMTP password has been set empty. Please reset your SMTP password in Mail control panel.

See also

http://plone.293351.n2.nabble.com/Plone-3-3-5-sending-emails-len-of-unsized-object-error-NO-ESMTP-PASSWORD-tp5415484p5415484.html

Unauthorized: The object is marked as private

Traceback:

File "/home/moo/twinapex/parts/zope2/lib/python/zope/tales/expressions.py", line 124, in _eval
 ob = self._traverser(ob, element, econtext)
File "/home/moo/twinapex/parts/zope2/lib/python/Products/PageTemplates/Expressions.py", line 105, in trustedBoboAwareZopeTraverse
 request=request)
File "/home/moo/twinapex/parts/zope2/lib/python/zope/traversing/adapters.py", line 164, in traversePathElement
 return traversable.traverse(nm, further_path)
File "/home/moo/twinapex/parts/zope2/lib/python/zope/traversing/adapters.py", line 44, in traverse
 attr = getattr(subject, name, _marker)
File "/home/moo/twinapex/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 184, in __getattr__
 return guarded_getattr(self._wrapped, name, default)
File "/home/moo/twinapex/parts/zope2/lib/python/AccessControl/ImplPython.py", line 563, in validate
 self._context)
File "/home/moo/twinapex/parts/zope2/lib/python/AccessControl/ImplPython.py", line 443, in validate
 accessed, container, name, value, context)
File "/home/moo/twinapex/parts/zope2/lib/python/AccessControl/ImplPython.py", line 808, in raiseVerbose
 raise Unauthorized(text)
Unauthorized: The object is marked as private. Access to 'showVideo' of (Products.Five.metaclass.SimpleViewClass from /home/moo/twinapex/src/mfabrik.app/mfabrik/app/browser/campaigntopview.pt object at 0x11003a0c) denied.

Condition:This error is raised when you try to access view functions or objects
for a view, which you call manually from the code.

Reason: View acquisition chain is not properly set up and the security manager cannot traverse acquisition
chain parents to properly determine permissions.

Solution: You need to use __of__() method to set-up the acquisition chain for the view:

def getHeadingView(self):
 """
 Check if we have campaign view avaiable for this content and use it.
 """
 view = queryMultiAdapter((self.context, self.request), name="mfabrik_heading")
 view = view.__of__(self.context) # <---------- here
 return view

Unknown message (kss optimized for production mode) in Javascript console

This is a KSS error message. KSS is an technology used in Plone 3
and started to be phased out in Plone 4.

Possible causes:

	Problems with KSS files (see portal_kss registry)

	Browser bugs (Google around for the fixes)

Solution:

	Go to portal_kss

	Remove are stale entries (missing files, marked on red)

Also:

	Put portal_kss for debug mode (in development environment)

ValueError: Non-zero version length. Versions aren't supported.

Traceback:

File "/Users/moo/code/buildout-cache/eggs/zope.component-3.7.1-py2.6.egg/zope/component/registry.py", line 323, in subscribers
 return self.adapters.subscribers(objects, provided)
File "/Users/moo/code/buildout-cache/eggs/ZODB3-3.9.5-py2.6-macosx-10.6-i386.egg/ZODB/Connection.py", line 838, in setstate
 self._setstate(obj)
File "/Users/moo/code/buildout-cache/eggs/ZODB3-3.9.5-py2.6-macosx-10.6-i386.egg/ZODB/Connection.py", line 888, in _setstate
 p, serial = self._storage.load(obj._p_oid, '')
File "/Users/moo/code/buildout-cache/eggs/ZODB3-3.9.5-py2.6-macosx-10.6-i386.egg/ZEO/ClientStorage.py", line 810, in load
 data, tid = self._server.loadEx(oid)
File "/Users/moo/code/buildout-cache/eggs/ZODB3-3.9.5-py2.6-macosx-10.6-i386.egg/ZEO/ServerStub.py", line 176, in loadEx
 return self.rpc.call("loadEx", oid)
File "/Users/moo/code/buildout-cache/eggs/ZODB3-3.9.5-py2.6-macosx-10.6-i386.egg/ZEO/zrpc/connection.py", line 703, in call
 raise inst # error raised by server
ValueError: Non-zero version length. Versions aren't supported.

Condition: When trying to open any page

Reason: Most likely a corrupted Data.fs. Stop zeoserver. Recopy Data.fs. Recopy blobs.

See also

	http://stackoverflow.com/questions/8387902/plone-upgrade-3-3-5-to-plone-4-1-2

	https://mail.zope.org/pipermail/zodb-dev/2010-September/013620.html

Zope suddenly dies on OSX without a reason

Symptoms: you do a HTTP request to a Plone site running OSX. Zope quits without a reason.

Reason: Infinite recursion is not properly handled by Python on OSX. This is because
OSX C stack size is smaller than Python default stack size. The underlying Python interpreter
dies before being able to raise stack size limit exception.

Solution

Edit python-2.4/lib/python2.4/site.py or corresponding Python interpreter site.py
file (Python site installation customization file).

Put in to the first code line:

sys.setrecursionlimit(800)

This will force smaller Python stack not exceeding native OSX C stack.
You might want to test other values and report back the findings.

See also

http://blog.crowproductions.de/2008/12/14/a-buildout-to-tame-the-snake-pit/ (comments)

from zopeskel.basic_namespace import BasicNamespace

When starting ZopeSkel:

File "/home/moo/code/python2/parts/opt/lib/python2.6/pkgutil.py", line 238, in load_module
 mod = imp.load_module(fullname, self.file, self.filename, self.etc)
File "/home/moo/code/plonecommunity/eggs/ZopeSkel-2.19-py2.6.egg/zopeskel/__init__.py", line 2, in <module>
 from zopeskel.basic_namespace import BasicNamespace

Or on paster with local commands:

File "/fast/buildout-cache/eggs/templer.core-1.0b4-py2.6.egg/templer/core/basic_namespace.py", line 3, in <module>
 from templer.core.base import BaseTemplate
File "/fast/buildout-cache/eggs/templer.core-1.0b4-py2.6.egg/templer/core/base.py", line 8, in <module>
 from paste.script import command
ImportError: cannot import name command

System-wide templer / paster / zopeskel installation is affecting your buildout installation.

Remove system-wide installation:

rm -rf /home/moo/code/python2/python-2.6/lib/python2.6/site-packages/ZopeSkel-2.19-py2.6.egg/

Re-run buildout.

Enjoy.

getUtility() fails: ComponentLookupError

Traceback:

-> filter = getUtility(IConvergenceMediaFilter)
(Pdb) n
ComponentLookupError: <zope.component.interfaces.ComponentLookupError instance at 0x1038166c>

Solution: Make sure that your class object implements in the utility interface in the question:

class ConvergedMediaFilter(object):
 zope.interface.implements(IConvergenceMediaFilter)

get_language: 'NoneType' object has no attribute 'getLocaleID'

Traceback:

Module ZPublisher.Publish, line 202, in publish_module_standard
Module ZPublisherEventsBackport.patch, line 115, in publish
Module plone.app.linkintegrity.monkey, line 21, in zpublisher_exception_hook_wrapper
Module Zope2.App.startup, line 221, in zpublisher_exception_hook
Module ZPublisherEventsBackport.patch, line 77, in publish
Module ZPublisher.mapply, line 88, in mapply
Module ZPublisher.Publish, line 42, in call_object
Module Products.Five.browser.metaconfigure, line 417, in __call__
Module Shared.DC.Scripts.Bindings, line 313, in __call__
Module Shared.DC.Scripts.Bindings, line 350, in _bindAndExec
Module Products.PageTemplates.PageTemplateFile, line 129, in _exec
Module Products.CacheSetup.patch_cmf, line 126, in PT_pt_render
Warning: Macro expansion failed
Warning: exceptions.TypeError: ('Could not adapt', <HTTPRequest, URL=http://mansikki.redinnovation.com:9666/isleofback/sisalto/etusivu/isleofbackfrontpage_view>, <InterfaceClass zope.i18n.interfaces.IUserPreferredLanguages>)
Module zope.tal.talinterpreter, line 271, in __call__
Module zope.tal.talinterpreter, line 346, in interpret
Module zope.tal.talinterpreter, line 891, in do_useMacro
Module zope.tal.talinterpreter, line 346, in interpret
Module zope.tal.talinterpreter, line 536, in do_optTag_tal
Module zope.tal.talinterpreter, line 521, in do_optTag
Module zope.tal.talinterpreter, line 516, in no_tag
Module zope.tal.talinterpreter, line 346, in interpret
Module zope.tal.talinterpreter, line 534, in do_optTag_tal
Module zope.tal.talinterpreter, line 516, in no_tag
Module zope.tal.talinterpreter, line 346, in interpret
Module zope.tal.talinterpreter, line 745, in do_insertStructure_tal
Module Products.PageTemplates.Expressions, line 223, in evaluateStructure
Module zope.tales.tales, line 696, in evaluate
URL: file:/srv/plone/saariselka.fi/src/plonetheme.isleofback/plonetheme/isleofback/skins/plonetheme_isleofback_custom_templates/main_template.pt
Line 58, Column 4
Expression: <StringExpr u'plone.htmlhead.links'>
Names:

{'container': <IsleofbackFrontpage at /isleofback/sisalto/etusivu>,
 'context': <IsleofbackFrontpage at /isleofback/sisalto/etusivu>,
 'default': <object object at 0x7fd445785220>,
 'here': <IsleofbackFrontpage at /isleofback/sisalto/etusivu>,
 'loop': {},
 'nothing': None,
 'options': {'args': (<Products.Five.metaclass.SimpleViewClass from /srv/plone/saariselka.fi/src/isleofback.app/isleofback/app/browser/isleofbacknewfrontpageview.pt object at 0xbaa9910>,)},
 'repeat': <Products.PageTemplates.Expressions.SafeMapping object at 0xcd1b3f8>,
 'request': <HTTPRequest, URL=http://mansikki.redinnovation.com:9666/isleofback/sisalto/etusivu/isleofbackfrontpage_view>,
 'root': <Application at >,
 'template': <ImplicitAcquirerWrapper object at 0xcd208d0>,
 'traverse_subpath': [],
 'user': <SpecialUser 'Anonymous User'>,
 'view': <Products.Five.metaclass.SimpleViewClass from /srv/plone/saariselka.fi/src/isleofback.app/isleofback/app/browser/isleofbacknewfrontpageview.pt object at 0xbaa9910>,
 'views': <zope.app.pagetemplate.viewpagetemplatefile.ViewMapper object at 0xcd20d90>}

Module Products.Five.browser.providerexpression, line 37, in __call__
Module plone.app.viewletmanager.manager, line 83, in render
Module plone.memoize.volatile, line 265, in replacement
Module plone.app.layout.links.viewlets, line 28, in render_cachekey
Module plone.app.layout.links.viewlets, line 19, in get_language

AttributeError: <exceptions.AttributeError instance at 0xcd1bb48> (Also, the following error occurred while attempting to render the standard error message, please see the event log for full details: 'NoneType' object has no attribute 'getLocaleID')

Some sort of Products.CacheSetup related problem on Plone 3.3.x, hiding the real error.
Zope component architecture loading has failed (you are missing critical bits). This is
just the first entry where it tries to use an unloaded code.

Start your instance on the foreground and you should see the actual error.

importToolset: TypeError: 'NoneType' object is not callable

Traceback:

Module ZPublisher.Publish, line 47, in call_object
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 575, in installProducts
Module Products.CMFQuickInstallerTool.QuickInstallerTool, line 512, in installProduct
 - __traceback_info__: ('plone.app.registry',)
Module Products.GenericSetup.tool, line 323, in runAllImportStepsFromProfile
 - __traceback_info__: profile-plone.app.registry:default
Module Products.GenericSetup.tool, line 1080, in _runImportStepsFromContext
Module Products.GenericSetup.tool, line 994, in _doRunImportStep
 - __traceback_info__: toolset
Module Products.GenericSetup.tool, line 123, in importToolset

Condition: This happens when you try to install an add-on
product through Add-ons configuration panel.

Reason: You have leftovers from some old add-on installation (persistent tool)
and Python egg code is no longer present for this tool.

You should see a warning in logs giving you a hint when running add-on installer:

2011-05-29 16:40:25 INFO GenericSetup.toolset Class Products.Notifica.NotificaTool.NotificaTool not found for tool notifica_tool

Solution: see informatin below (Removing portal tools part)

	http://plone.org/documentation/kb/manually-removing-local-persistent-utilities/

Example: start site debug shell:

bin/instance debug

Then run the script for your site id and problem tool id:

bad_tool = 'notifica_tool'
site = app.yoursiteid

setup_tool = site.portal_setup
toolset = setup_tool.getToolsetRegistry()
if bad_tool in toolset._required.keys():
 del toolset._required[bad_tool]
 setup_tool._toolset_registry = toolset
else:
 print "Tool not found:" + bad_tool

import transaction ; transaction.commit()
app._p_jar.sync()

In debug shell you can also check what all leftoverts toolset contains:

>>> toolset._required.keys()
['portal_historyidhandler', 'portal_actions', 'portal_skins', 'portal_form_controller',
'portal_workflow', 'portal_catalog', 'portal_languages', 'kupu_library_tool', 'portal_diff',
'portal_repository', 'reference_catalog', 'portal_groupdata', 'portal_search_and_replace',
'portal_atct', 'mimetypes_registry', 'portal_purgepolicy', 'formgen_tool', 'uid_catalog',
'error_log', 'portal_modifier', 'portal_discussion', 'portal_actionicons', 'portal_calendar', 'portal_metadata', 'portal_url',
'portal_archivist', 'portal_tinymce', 'portal_factory', 'content_type_registry', 'portal_groups', 'portal_controlpanel',
'portal_uidannotation', 'portal_transforms', 'portal_memberdata', 'portal_javascripts', 'portal_registration', 'portal_css',
'portal_facets_catalog', 'portal_password_reset', 'plone_utils', 'caching_policy_manager',
'portal_historiesstorage', 'portal_undo', 'portal_placeful_workflow', 'translation_service',
'archetype_tool', 'portal_view_customizations', 'portal_syndication', 'portal_quickinstaller', 'portal_uidhandler',
'portal_referencefactories', 'portal_interface', 'portal_facetednavigation', 'portal_membership',
'MailHost', 'portal_properties', 'portal_migration', 'portal_types', 'portal_uidgenerator']

See also

http://plone.293351.n2.nabble.com/importToolset-NoneType-object-is-not-callable-upon-product-install-td5553065.html

z3c.form based form updateWidgets() raises ComponentLookupError

Case 1: z3c.form with Plone 3

Traceback:

Error in test test_render_form (gomobile.convergence.tests.test_mobile_overrides.TestMobileOverrides)
Traceback (most recent call last):
 File "/Users/moo/twinapex/twinapex/parts/zope2/lib/python/Testing/ZopeTestCase/profiler.py", line 98, in __call__
 testMethod()
 File "/Users/moo/twinapex/twinapex/src/gomobile.convergence/gomobile/convergence/tests/test_mobile_overrides.py", line 65, in test_render_form
 result()
 File "/Users/moo/twinapex/twinapex/eggs/z3c.form-1.9.0-py2.4.egg/z3c/form/form.py", line 189, in __call__
 self.update()
 File "/Users/moo/twinapex/twinapex/eggs/z3c.form-1.9.0-py2.4.egg/z3c/form/form.py", line 184, in update
 super(Form, self).update()
 File "/Users/moo/twinapex/twinapex/eggs/z3c.form-1.9.0-py2.4.egg/z3c/form/form.py", line 134, in update
 self.updateWidgets()
 File "/Users/moo/twinapex/twinapex/eggs/z3c.form-1.9.0-py2.4.egg/z3c/form/form.py", line 120, in updateWidgets
 self.widgets = zope.component.getMultiAdapter(
 File "/Users/moo/twinapex/twinapex/eggs/zope.component-3.5.1-py2.4.egg/zope/component/_api.py", line 104, in getMultiAdapter
 raise ComponentLookupError(objects, interface, name)
ComponentLookupError: ((<Products.Five.metaclass.documentoverriderform object at 0x711c6f0>, <HTTPRequest, URL=http://nohost>, <ATDocument at /plone/doc>), <InterfaceClass z3c.form.interfaces.IWidgets>, u'')

Reason: To use z3c.form based forms z3c.form.interfaces.IFormRequest must be enabled for HTTP request
object to make form layer adaptions work.

Solution:

	Wrap your forms with plone.z3cform.layout.wrap_form() call as instructed in plone.z3cform README

The same error occurs if plone.app.z3cform, plone.z3cform and z3c.form are not properly included through ZCML.
In order to be sure that those modules are properly included, you can add the following lines into your configure.zcml

<include package="plone.app.z3cform" />
<include package="plone.z3cform" />
<include package="z3c.form" />

...or you can use autoinclude feature for Plone 3.3+

in configure.zcml

<includeDependencies package="." />

and then your add-on product setup.py file:

 install_requires=[
 'setuptools',
 'plone.app.z3cform',
 # -*- Extra requirements: -*-
],

Also remember to run Plone add-on installer for plone.app.z3cform (though it is unrelated to this error).

Case 2: missing plone.app.z3cform migration

Traceback:

Traceback (innermost last):
 Module ZPublisher.Publish, line 126, in publish
 Module ZPublisher.mapply, line 77, in mapply
 Module ZPublisher.Publish, line 46, in call_object
 Module z3c.form.form, line 215, in __call__
 Module z3c.form.form, line 208, in update
 Module plone.z3cform.patch, line 21, in BaseForm_update
 Module z3c.form.form, line 149, in update
 Module z3c.form.form, line 129, in updateWidgets
 Module zope.component._api, line 109, in getMultiAdapter
ComponentLookupError: ((<Products.Five.metaclass.EditForm object at 0x117a97dd0>, <HTTPRequest, URL=http://localhost:8080/folder_xxx/xxxngta/@@dgftreeselect-test>, <PloneSite at /folder_xxx/xxxngta>), <InterfaceClass z3c.form.interfaces.IWidgets>, u'')

Reason: You are running Plone 4 with plone.app.directives form which does not
open. The reason is that you most likely have old plone.app.z3cform
installation which is not upgraded properly. In particular,
the following layer is missing

<layer name="plone.app.z3cform" interface="plone.app.z3cform.interfaces.IPloneFormLayer" />

This enables z3c.form widgets on a Plone site.

Solution: portal_setup > Import. Choose profile Plone z3cform support.
and import. The layer gets properly inserted to your site database.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Buildout troubleshooting

Description

How to solve problems related to running buildout and some common
exceptions you might encounter when running buildout for Plone.

	Introduction

	Network errors and timeouts
	Individual package failing outside PyPI

	parts/instance/etc/zope.conf: [Errno 2] No such file or directory

	Buildout and SyntaxErrors

	Version conflicts
	Dump picked versions
	More information

	Good-py service

	Extracting version numbers from instance script

	Plone 3.1

	Common pindowns

	Getting distribution for distribute

	UnknownExtra: zope.i18n 0.0 has no such extra feature 'zcml'

	We already have: zope.interface 4.0.3

	We already have: zope.location 3.4.0

	ImportError: No module named lxml

	UnknownExtra: zope.i18n 3.4.0 has no such extra feature 'zcml'

	Can't run bootstrap.py - VersionConflict for zc.buildout

	An error occurred when trying to install lxml - error: Setup script exited with error: command 'gcc' failed with exit status 1

	VersionConflict: distribute 0.6.19

	argparse 1.2.1

	Error: Picked: <some.package> = <some.version>

	Buildout error: Not a recognized archive type

	VersionConflict: zope.browserpage 3.9.0 requires 'zope.publisher>=3.8'.

	Distribute / setuptools tries to mess with system Python and Permission denied

	UnboundLocalError: local variable 'clients' referenced before assignment

	Couldn't install: BTrees 4.0.5

	error: None

Introduction

This document tells how to resolve buildout problems.

Network errors and timeouts

The usual reason for download error or timeout is that either

	pypi.python.org server is down, or

	one of plone.org servers is down, or

	other Python package source server is down.

Here are instructions how to deal with community servers down situations

	http://jacobian.org/writing/when-pypi-goes-down/

Mirrors

	http://www.pypi-mirrors.org/

Individual package failing outside PyPI

To figure out which file buildout tries to download, usually the only way
is to use buildout -D pdb debug mode and step up in stack frames to see
what is going on.

parts/instance/etc/zope.conf: [Errno 2] No such file or directory

You see this error when trying to start Plone.
This means that buildout did not complete correctly and did not generate configuration files.

Rerun buildout and fix errors in buildout.cfg based on buildout command output.

Buildout and SyntaxErrors

You may see SyntaxError exceptions when running buildout:

SyntaxError: ("'return' outside function", ('/usr/local/Plone/buildout-cache/eggs/tmpzTKrEI/Products.ATExtensions-1.1a3-py2.6.egg/Products/ATExtensions/skins/at_extensions/getDisplayView.py', 11, None, 'return value\n'))

They are harmless.

The reason: Buildout uses a Python tool called setuptools internally to
install the packages. setuptools scans all .py files inside the Python
package and assumes they are Python modules. However, Plone has something
called RestrictedPython. RestrictedPython
allows untrusted users to execute Python code in Plone (Python Scripts in
the ZMI). RestrictedPython scripts use slightly modified Python
syntax compared to plain Python modules.

setuptools does not know which files are normal .py and which files are
RestrictedPython and tries to interpret them all using standard Python
syntax rules. Then it fails. However, setuptools only tries to scan files
(for what?) but still installs them correctly. No harm done.

Version conflicts

Buildout gives you an error if there is a dependency shared by two components, and
one of the components wants to have a different version of this dependency.

Example:

 Installing.
 Getting section zeoserver.
 Initializing part zeoserver.
Error: There is a version conflict.
We already have: zope.component 3.8.0
but five.localsitemanager 1.1 requires 'zope.component<3.6dev'.

If your buildout is fetching strange versions:

	try running buildout in verbose mode: bin/buildout -vvv

	Use dumppickedversions (below)

	Manually pin down version in the [versions] section of your buildout.

Further reading:

	http://maurits.vanrees.org/weblog/archive/2010/08/fake-version-pinning

	http://www.uwosh.edu/ploneprojects/documentation/how-tos/how-to-use-buildout-to-pin-product-versions

Dump picked versions

This buildout extension will automatically dump picked Python egg versions
to a file.

Add to your buildout.cfg:

extensions = buildout.dumppickedversions
dump-picked-versions-file = versions.cfg

More information

	dumppickedversions [https://pypi.python.org/pypi/buildout.dumppickedversions]

Good-py service

Good-py contains some good known versions sets. These are most convenient to
use if you are using complex configuration of add-ons that you are not
familiar with.

Some good-py configurations take a Plone version as a paremeter.

Example:

[buildout]
extends =
 base.cfg
 http://dist.plone.org/release/3.3.5/versions.cfg
 http://good-py.appspot.com/release/dexterity/1.0-next?plone=3.3.5

Or:

extends =
 http://dist.plone.org/release/4.0/versions.cfg
 http://good-py.appspot.com/release/dexterity/1.0b2?plone=4.0

Extracting version numbers from instance script

Example:

cat bin/instance | grep eggs | sed -r 's#.*eggs/(.*)-py2.[0-9].*#\1#g' | sed -r 's#-# = #g' | sed -r 's#_#-#g' | grep -E ' = [0-9\.]' | xargs -0 echo -e "[versions]\n" | sed -r 's#^\s+##g' > versions-extracted.cfg; cat versions-extracted.cfg

More info

	http://davidjb.com/blog/2011/06/extracting-a-buildout-versions-cfg-from-a-zope-instance-script/

Plone 3.1

Plone 3.1 and earlier are not eggified.
Below are links how to keep Plone 3.1 and earlier buildouts running.

See:

	http://www.netsight.co.uk/blog/resurrecting-old-plone-3-buildouts

Common pindowns

Here is a pindown example from 2010/02:

[versions]
zope.app.catalog 3.6.0 requires zope.index 3.5.0
zope.index 3.5.0 requires 'ZODB3>=3.8.0b1'
This will conflict with the fake ZODB egg.
zope.app.catalog = 3.5.2
zope.component = 3.5.1
plone.app.z3cform=0.4.2
plone.recipe.zope2instance = 3.6
zope.sendmail = 3.6.0
Products.PluggableAuthService = 1.6.2
plone.z3cform = 0.5.8
five.intid=0.4.2
plone.reload = 0.11
Products.GenericSetup = 1.5.0

Getting distribution for distribute

You try to run buildout, but it is stuck in a loop:

Getting distribution for 'distribute'.
Getting distribution for 'distribute'.
....
Getting distribution for 'distribute'.
Getting distribution for 'distribute'.
Getting distribution for 'distribute'.

Your system-wide Distribute version is older than the latest release.
Buildout tries to update it, but since system wide site-packages version
overrides anything buildout can do, it is stuck in a loop.

Fix: update Distribute in system-wide Python:

easy_install -U Distribute
Searching for Distribute
Reading https://pypi.python.org/simple/Distribute/
Reading http://packages.python.org/distribute
Best match: distribute 0.6.12
Downloading https://pypi.python.org/packages/source/d/distribute/distribute-0.6.12.tar.gz#md5=5a52e961f8d8799d243fe8220f9d760e
Processing distribute-0.6.12.tar.gz
Running distribute-0.6.12/setup.py -q bdist_egg --dist-dir /tmp/easy_install-jlL3e7/distribute-0.6.12/egg-dist-tmp-IV9SiQ
Before install bootstrap.
Scanning installed packages
Setuptools installation detected at /home/moo/py24/lib/python2.4/site-packages
Non-egg installation
Removing elements out of the way...
Already patched.
/home/moo/py24/lib/python2.4/site-packages/setuptools-0.6c11-py2.4.egg-info already patched.
After install bootstrap.
/home/moo/py24/lib/python2.4/site-packages/setuptools-0.6c11-py2.4.egg-info already exists
Removing distribute 0.6.10 from easy-install.pth file
Adding distribute 0.6.12 to easy-install.pth file
Installing easy_install script to /home/moo/py24/bin
Installing easy_install-2.4 script to /home/moo/py24/bin

UnknownExtra: zope.i18n 0.0 has no such extra feature 'zcml'

You get the following traceback when running buildout:

 File "/home/moo/rtv/eggs/plone.recipe.zope2instance-2.7-py2.4.egg/plone/recipe/zope2instance/__init__.py", line 93, in update
 requirements, ws = self.egg.working_set()
 File "/home/moo/rtv/eggs/zc.recipe.egg-1.1.0-py2.4.egg/zc/recipe/egg/egg.py", line 93, in working_set
 allow_hosts=self.allow_hosts,
 File "/tmp/tmpGFbvPP/zc.buildout-1.5.0b2-py2.4.egg/zc/buildout/easy_install.py", line 800, in install
 File "/tmp/tmpGFbvPP/zc.buildout-1.5.0b2-py2.4.egg/zc/buildout/easy_install.py", line 660, in install
 File "/home/moo/py24/lib/python2.4/site-packages/distribute-0.6.10-py2.4.egg/pkg_resources.py", line 551, in resolve
 requirements.extend(dist.requires(req.extras)[::-1])
 File "/home/moo/py24/lib/python2.4/site-packages/distribute-0.6.10-py2.4.egg/pkg_resources.py", line 2164, in requires
 raise UnknownExtra(
UnknownExtra: zope.i18n 0.0 has no such extra feature 'zcml'

You might be using an add-on meant for Plone 4 with Plone 3. Check if
setup.py contains Zope2 as a dependency. If it does, then you need to
use earlier version of the add-on for your Plone 3 site.

More info:

	http://groups.google.com/group/singing-dancing/browse_thread/thread/331cdfe78cf371ed

We already have: zope.interface 4.0.3

Example:

Getting distribution for 'zope.testing==3.9.7'.
warning: no files found matching 'sampletests' under directory 'src'
Got zope.testing 3.9.7.
While:
 Installing.
 Getting section test.
 Initializing section test.
 Installing recipe zc.recipe.testrunner.
Error: There is a version conflict.
We already have: zope.interface 4.0.3

Your system Python or virtualenv'd Python already has zope.interface library installed.
A lot of Python software uses this library. However, the system version is wrong and cannot be overridden.

Solutions.

For virtualenv: rm -rf ~/code/plone-venv/lib/python2.7/site-packages/zope.interface-4.0.3-py2.7-macosx-10.8-x86_64.egg

For system Python: You need to create a virtualenv'd Python and to use it to drive buildout,
so that there is no conflict with zope.interface versions.

We already have: zope.location 3.4.0

When running buildout, Plone 3.3.5:

While:
 Installing.
 Getting section zopepy.
 Initializing section zopepy.
 Getting option zopepy:eggs.
 Getting section client1.
 Initializing section client1.
 Getting option client1:zeo-address.
 Getting section zeo.
 Initializing part zeo.
Error: There is a version conflict.
We already have: zope.location 3.4.0
but zope.traversing 3.13 requires 'zope.location>=3.7.0'.

Solution:

rm -rf fake-eggs/*
bin/buildout install zope2
bin/buildout

ImportError: No module named lxml

lxml as a PyPi package dependency fails even though it is clearly
installed.

Example traceback when running buildout:

...
Processing openxmllib-1.0.6.tar.gz
<snip Unpacking... >
Running openxmllib-1.0.6/setup.py bdist_egg --dist-dir /tmp/easy_install-Urh6x4/openxmllib-1.0.6/egg-dist-tmp-ju0TuT
Traceback (most recent call last):
<snip Traceback... >
 File "setup.py", line 5, in <module>
 File "/tmp/easy_install-Urh6x4/openxmllib-1.0.6/openxmllib/__init__.py", line 17, in <module>
 File "/tmp/easy_install-Urh6x4/openxmllib-1.0.6/openxmllib/wordprocessing.py", line 5, in <module>
 File "/tmp/easy_install-Urh6x4/openxmllib-1.0.6/openxmllib/document.py", line 14, in <module>
ImportError: No module named lxml
An error occurred when trying to install openxmllib 1.0.6. Look above this message for any errors that were output by easy_install.
While:
 Installing plone-core-addons.
 Getting distribution for 'openxmllib>=1.0.6'.
Error: Couldn't install: openxmllib 1.0.6

Solution: ensure lxml compilation happens before openxmllib is being
compiled.

For instance, if you are installing something like Products.OpenXml, you
will have likely included this egg under your Plone [instance] section
of your buildout. You should consider using something like
collective.recipe.staticlxml to build lxml and to do this before this
egg's installation is invoked. Like so in your buildout.cfg:

[buildout]
parts =
 lxml
 ...
 instance
...

[lxml]
recipe = z3c.recipe.staticlxml
egg = lxml

More information:

	http://www.niteoweb.com/blog/order-of-parts-when-compiling-lxml

	http://plone.293351.n2.nabble.com/lxml-installs-but-Products-OpenXml-openxmllib-can-t-see-it-tp5565184p5565184.html

UnknownExtra: zope.i18n 3.4.0 has no such extra feature 'zcml'

Traceback:

An internal error occurred due to a bug in either zc.buildout or in a
recipe being used:
Traceback (most recent call last):
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/buildout.py", line 1660, in main
 getattr(buildout, command)(args)
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/buildout.py", line 416, in install
 [self[part]['recipe'] for part in install_parts]
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/buildout.py", line 964, in __getitem__
 options._initialize()
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/buildout.py", line 1048, in _initialize
 recipe_class = _install_and_load(reqs, 'zc.buildout', entry, buildout)
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/buildout.py", line 1004, in _install_and_load
 allow_hosts=buildout._allow_hosts
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/easy_install.py", line 800, in install
 return installer.install(specs, working_set)
 File "/Users/moo/code/gomobile/eggs/zc.buildout-1.4.3-py2.6.egg/zc/buildout/easy_install.py", line 660, in install
 ws.resolve(requirements)
 File "/Users/moo/code/gomobile/eggs/distribute-0.6.14-py2.6.egg/pkg_resources.py", line 557, in resolve
 requirements.extend(dist.requires(req.extras)[::-1])
 File "/Users/moo/code/gomobile/eggs/distribute-0.6.14-py2.6.egg/pkg_resources.py", line 2180, in requires
 "%s has no such extra feature %r" % (self, ext)
UnknownExtra: zope.i18n 3.4.0 has no such extra feature 'zcml'

Solution: Check that you have the correct Dexteriry or XDV pindowns / Known
Good Set of versions or whether you are using a Plone 4 extension in Plone
3. For example: plone.reload 2.0 will raise this with a Plone 3.3
buildout, while plone.reload 1.5 will work with Plone 3.3.

See Also: UnknownExtra: zope.i18n 0.0 has no such extra feature 'zcml'

Can't run bootstrap.py - VersionConflict for zc.buildout

Traceback when running python bootstrap.py:

Traceback (most recent call last):
 File "/Users/moo/code/collective.buildout.python/parts/opt/lib/python2.6/pdb.py", line 1283, in main
 pdb._runscript(mainpyfile)
 File "/Users/moo/code/collective.buildout.python/parts/opt/lib/python2.6/pdb.py", line 1202, in _runscript
 self.run(statement)
 File "/Users/moo/code/collective.buildout.python/parts/opt/lib/python2.6/bdb.py", line 368, in run
 exec cmd in globals, locals
 File "<string>", line 1, in <module>
 File "bootstrap.py", line 256, in <module>
 ws.require(requirement)
 File "/Users/moo/code/collective.buildout.python/python-2.6/lib/python2.6/site-packages/distribute-0.6.8-py2.6.egg/pkg_resources.py", line 633, in require
 needed = self.resolve(parse_requirements(requirements))
 File "/Users/moo/code/collective.buildout.python/python-2.6/lib/python2.6/site-packages/distribute-0.6.8-py2.6.egg/pkg_resources.py", line 535, in resolve
 raise VersionConflict(dist,req) # XXX put more info here
VersionConflict: (zc.buildout 1.5.0b2 (/Users/moo/code/collective.buildout.python/python-2.6/lib/python2.6/site-packages/zc.buildout-1.5.0b2-py2.6.egg), Requirement.parse('zc.buildout==1.5.2'))

Solution: update the zc.buildout installed in your system Python:

easy_install -U zc.buildout

An error occurred when trying to install lxml - error: Setup script exited with error: command 'gcc' failed with exit status 1

Traceback when running buildout:

...
src/lxml/lxml.etree.c:143652: error: ‘__pyx_v_4lxml_5etree_XSLT_DOC_DEFAULT_LOADER’ undeclared (first use in this function)
src/lxml/lxml.etree.c:143652: error: ‘xsltDocDefaultLoader’ undeclared (first use in this function)
src/lxml/lxml.etree.c:143661: error: ‘__pyx_f_4lxml_5etree__xslt_doc_loader’ undeclared (first use in this function)
error: Setup script exited with error: command 'gcc' failed with exit status 1
An error occurred when trying to install lxml 2.2.8. Look above this message for any errors that were output by easy_install.
While:
 Installing instance.
 Getting distribution for 'lxml==2.2.8'.
Error: Couldn't install: lxml 2.2.8

Solution: install the libxml and libxslt development headers.

On Ubuntu/Debian you could do this as follows:

sudo apt-get install libxml2-dev libxslt-dev

VersionConflict: distribute 0.6.19

When running buildout you see something like this:

 File "/home/danieltordable.es/buildout-cache/eggs/zc.buildout-1.4.4-py2.6.egg/zc/buildout/easy_install.py", line 606, in _maybe_add_setuptools
 if ws.find(requirement) is None:
 File "/home/danieltordable.es/buildout-cache/eggs/distribute-0.6.19-py2.6.egg/pkg_resources.py", line 474, in find
 raise VersionConflict(dist,req) # XXX add more info
VersionConflict: (distribute 0.6.19 (/home/danieltordable.es/buildout-cache/eggs/distribute-0.6.19-py2.6.egg), Requirement.parse('distribute==0.6.15'))

Buildout uses the system-wide Distribute installation (python-distribute
or similar package, depends on your OS). To fix this, you need to update
system-wide distribution.

Note

It is preferred to do your Python + buildout
installation in a virtualenv, in order not to break your OS

Update Distribute (Plone universal installer, using supplied
easy_install script):

python/bin/easy_install -U Distribute

Update Distribute (OSX/Ubuntu/Linux):

easy_install -U Distribute

argparse 1.2.1

If you get:

While:
 Installing.
 Loading extensions.
Error: There is a version conflict.
We already have: argparse 1.2.1

Rerun bootstrap.py with the correct Python interpreter.

Error: Picked: <some.package> = <some.version>

If you get something like this:

We have the distribution that satisfies 'zc.recipe.testrunner==1.2.1'.
Installing 'collective.recipe.backup'.
Picked: collective.recipe.backup = 2.4
Could't load zc.buildout entry point default
from collective.recipe.backup:
Picked: collective.recipe.backup = 2.4.
While:
 Installing.
 Getting section backup.
 Initializing section backup.
 Installing recipe collective.recipe.backup.
 Getting distribution for 'collective.recipe.backup'.
Error: Picked: collective.recipe.backup = 2.4

This means that your buildout has "allow picked versions" set to false.
You need to pin the version for the picked version (or turn on "allow picked
versions").

Buildout error: Not a recognized archive type

If you run across an error like this when running buildout:

...
Installing instance.
Getting distribution for 'collective.spaces'.
error: Not a recognized archive type: /home/plone/.buildout/downloads/dist/collective.spaces-1.0.zip

the error is likely stemming from an incorrect download of this egg. Check
the given file to ensure that the file is correct (for instance, it is a
non-zero length file or verifying the content using something like
md5sum) before delving deep into your Python install's workings. This
error makes it look as if your Python install doesn't have support for this
type of archive, but in fact it can be caused by a corrupt download.

VersionConflict: zope.browserpage 3.9.0 requires 'zope.publisher>=3.8'.

Plone 3.3.x package pindown problems.

Example:

Error: There is a version conflict.
We already have: zope.publisher 3.5.6
but zope.browserpage 3.9.0 requires 'zope.publisher>=3.8'.

Plone 3.x problem. Pin plone.uuid to 1.0.0.

For Plone 3.3.x You need to pindown:

extends =
 ...
 http://good-py.appspot.com/release/dexterity/1.1?plone=3.3.5

[versions]
plone.uuid = 1.0.0
zope.interface = 3.8.0
zope.proxy = 3.6.1
transaction = 1.1.1
zc.queue = 1.2.1
zope.copy = 3.5.0

Distribute / setuptools tries to mess with system Python and Permission denied

When running bootsrap.py your buildout files
because it tries to write to system-wide Python installation.

Example:

Getting distribution for 'distribute==0.6.24'.
Before install bootstrap.
Scanning installed packages
No setuptools distribution found
warning: no files found matching 'Makefile' under directory 'docs'
warning: no files found matching 'indexsidebar.html' under directory 'docs'
After install bootstrap.
Creating /srv/plone/python/python-2.7/lib/python2.7/site-packages/setuptools-0.6c11-py2.7.egg-info
error: /srv/plone/python/python-2.7/lib/python2.7/site-packages/setuptools-0.6c11-py2.7.egg-info: Permission denied
An error occurred when trying to install distribute 0.6.24. Look above this message for any errors that were output by easy_install.
While:
 Bootstrapping.
 Getting distribution for 'distribute==0.6.24'.
Error: Couldn't install: distribute 0.6.24

Solution:

This bug has been fixed in Distiribute 0.6.27 [https://pypi.python.org/pypi/distribute/0.6.27#id2] - make sure your system-wide Python
uses this version or above:

sudo /srv/plone/python/python-2.7/bin/easy_install -U Distribute

UnboundLocalError: local variable 'clients' referenced before assignment

Example traceback when running buildout:

Traceback (most recent call last):
 File "/srv/plone/x/eggs/zc.buildout-1.4.4-py2.7.egg/zc/buildout/buildout.py", line 1683, in main
 getattr(buildout, command)(args)
 File "/srv/plone/x/eggs/zc.buildout-1.4.4-py2.7.egg/zc/buildout/buildout.py", line 555, in install
 installed_files = self[part]._call(recipe.install)
 File "/srv/plone/x/eggs/zc.buildout-1.4.4-py2.7.egg/zc/buildout/buildout.py", line 1227, in _call
 return f()
 File "/srv/plone/x/eggs/plone.recipe.unifiedinstaller-4.3.1-py2.7.egg/plone/recipe/unifiedinstaller/__init__.py", line 65, in install
 for part in clients
UnboundLocalError: local variable 'clients' referenced before assignment

Solution: Your buildout contains leftovers from the past. Remove clients variable
in [unifiedinstaller] section.

Couldn't install: BTrees 4.0.5

Example:

Unpacking persistent-4.0.6/docs/using.rst to /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/docs/using.rst
Unpacking persistent-4.0.6/docs/index.rst to /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/docs/index.rst
Unpacking persistent-4.0.6/docs/glossary.rst to /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/docs/glossary.rst
Reading configuration from /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/setup.cfg
Adding new section [easy_install] to /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/setup.cfg
Writing /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/setup.cfg
Running persistent-4.0.6/setup.py -q bdist_egg --dist-dir /tmp/easy_install-71ggL3/BTrees-4.0.5/temp/easy_install-B8bWf7/persistent-4.0.6/egg-dist-tmp-xnqDMG
In file included from persistent/cPersistence.c:19:0:
persistent/cPersistence.h:19:25: fatal error: bytesobject.h: No such file or directory
compilation terminated.
error: Setup script exited with error: command 'gcc' failed with exit status 1
An error occurred when trying to install BTrees 4.0.5. Look above this message for any errors that were output by easy_install.
While:
 Installing.
 Getting section zeoserver.
 Initializing part zeoserver.
 Getting distribution for 'BTrees'.
Error: Couldn't install: BTrees 4.0.5

Plone 3.3.5 buildout fake-eggs is not working properly when you boostrap
the buildout in a new environment.

Try install manually the core buildout part where you have fake-eggs defined:

disable zeoserver, clients in buildout.cfg
 bin/buildout install zope2
 bin/buildout install instance
 # enable zeoserver, clients in buildout
bin/buildout install client1
 bin/buildout
 # Don't touch anything to break it

error: None

This means .tar.gz is corrupted:

error: None
An error occurred when trying to install lxml 2.3.6. Look above this message for any errors that were output by easy_install.
While:
 Installing instance.
 Getting distribution for 'lxml==2.3.6'.
Error: Couldn't install: lxml 2.3.6

Buildout download cache is corrupted. Run bin/buildout -vvv for more info. Then do something like this:

Corrupted .tar.gz download
rm /Users/mikko/code/buildout-cache/downloads/dist/lxml-2.3.6.tar.gz

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Unicode encoding and decoding

	Introduction: Why unicode is difficult?

	safe_unicode()

	sys.setdefaultencoding()

	UnicodeEncodeError

	UnicodeDecodeError

	Infamous non-breaking Unicode space \xa0
	How to fix

Introduction: Why unicode is difficult?

Python 2.x does not make a clear distinction between:

	8-bit strings (byte data)

	16-bit unicode strings (character data)

Developers use these two formats interchangeably, because it is so easy and
Python does not warn you about this.

However, it will only work as long as the input does not encounter any
international, non-ASCII, characters. When 8-bit encoded string data and
16-bit raw Unicode string data gets mixed up, by being run through encoding
first, really nasty things start to happen.

Read more:

	http://evanjones.ca/python-utf8.html

safe_unicode()

Plone's core contains a helper function which allows you
to safely decode strings to unicode without fear of UnicodeDecodeException.
Use this in your own code to decode unicode in the cases you are
not sure if the input is 8-bit bytestrings or real unicode strings.

https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/utils.py#L434

Example:

-*- coding: utf-8 -*-

from Products.CMFPlone.utils import safe_unicode

foobar = safe_unicode("Ärrinmurrin taas on Plonea joku jättänyt dokumentoimatta")

sys.setdefaultencoding()

Python has a system-wide setting to enforce encoding of all unicode
input automatically to utf-8 when used as 8-bit string.

Warning

This is a wrong way to fix things and it will break other things.
You have been warned.

	http://tarekziade.wordpress.com/2008/01/08/syssetdefaultencoding-is-evil/

There is also sitecustomization.py trick to set sys.setdefaultencoding("utf-8") on per-script basis

	http://stackoverflow.com/a/7892892/315168

UnicodeEncodeError

UnicodeEncodeError: 'ascii' codec can't encode character u'xe4' in position 4: ordinal not in range(128)

This is usually because you are trying to output/store unicode data using
outdated methods, e.g.

	printing,

	logging,

	using 7-bit ids ...

Instead of:

print foo

do:

print foo.encode("utf-8") # You are sure this is a unicode string

Filtering example:

def safe_print(x):
 """ Do not die on bad input when doing debug prints """
 if type(x) == str:
 print x
 else:
 print x.decode("utf-8")

UnicodeDecodeError

	http://wiki.python.org/moin/UnicodeDecodeError

	http://pyref.infogami.com/__unicode__

Infamous non-breaking Unicode space \xa0

Press CTRL+space / AltGr space on Linux to accidentally create it.

You can't see it. But it breaks everything.

How to fix

Example to how to fix non-breaking space characters which have ended up
in reStructuredText .txt files. This is Unicode character code A0.

Example fix_wtf_space.py:

-*- coding: utf-8 -*-
""" Fix non-breaking space characters which have ended up to reST
 .txt files. This is Unicode character code A0.

 Press CTRL+space / AltGr space on Linux to accidentally create it.

 E.g. as a sympton the following exception is raised if you try
 to upload Python egg::

 File "/Library/Python/2.6/site-packages/docutils-0.6-py2.6.egg/docutils/parsers/rst/states.py", line 2621, in blank
 self.parent += self.literal_block()
 File "/Library/Python/2.6/site-packages/docutils-0.6-py2.6.egg/docutils/parsers/rst/states.py", line 2712, in literal_block
 literal_block = nodes.literal_block(data, data)
 File "/Library/Python/2.6/site-packages/docutils-0.6-py2.6.egg/docutils/nodes.py", line 810, in __init__
 TextElement.__init__(self, rawsource, text, *children, **attributes)
 File "/Library/Python/2.6/site-packages/docutils-0.6-py2.6.egg/docutils/nodes.py", line 798, in __init__
 textnode = Text(text)
 File "/Library/Python/2.6/site-packages/docutils-0.6-py2.6.egg/docutils/nodes.py", line 331, in __new__
 return reprunicode.__new__(cls, data)
 UnicodeDecodeError: 'ascii' codec can't decode byte 0xc2 in position 715: ordinal not in range(128)
"""

import os

def fix(name):
 """ Fix a single .txt file
 """
 input = open(name, "rt")
 text = input.read()
 input.close()
 text = text.decode("utf-8")

 # Show if we get bad hits
 for c in text:
 if c == u"\xa0":
 print "Ufff"

 text = text.replace(u"\xa0", u" ")
 text = text.encode("utf-8")

 output = open(name, "wt")
 output.write(text)
 output.close()

Process all .txt files in the
current folder
for f in os.listdir(os.getcwd()):
 if f.endswith(".txt"):
 fix(f)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Image troubleshooting

Description

Problems with imaging libraries, image loading and image scaling.

	How to test see if your Python Imaging set-up works

	Images are not loading

	IOError when scaling images on Plone 4

	Installing libraries on Ubuntu / Debian

	Forcing libjpeg path

	libjpeg.so.8: cannot open shared object file: No such file or directory

How to test see if your Python Imaging set-up works

Example how to check if Python, Python Imaging Library (PIL) and
libjpeg are correctly working together.

Get a sample image:

wget http://upload.wikimedia.org/wikipedia/commons/b/bb/JohnCarrollGilbertStuart.jpg

Start Python with Zope libraries in PYTHONPATH or Plone debug shell (latter):

bin/zopepy

bin/instance debug # <--- needs Plone site stopped first

Run the following on the interactive Python prompt started above:

import PIL
from PIL import Image
im = Image.open("JohnCarrollGilbertStuart.jpg") # Open downloaded image
im.thumbnail((64, 64), Image.ANTIALIAS) # See that PIL resize works
im.save("test.jpg") # See that PIL JPEG writing works

No Python exceptions should be risen.

Images are not loading

Plone is not loading images or resized images are not available
is usually caused by broken PIL installation: PIL used by Python virtual machine driving
Plone does not have proper native libraries (libjpeg) available to perform imaging operations.

If you run Zope on foreground you usually see errors like this:

2009-10-22T17:31:04 ERROR Archetypes None
Traceback (most recent call last):
 File "/home/xxx/xxx/parts/plone/Archetypes/Field.py", line 2333, in createScales
 imgdata, format = self.scale(data, w, h)
 File "/home/xxx/xxx/parts/plone/Archetypes/Field.py", line 2382, in scale
 image.thumbnail(size, self.pil_resize_algo)
 File "/usr/lib/python2.5/site-packages/PIL/Image.py", line 1523, in thumbnail
 self.load()
 File "/usr/lib/python2.5/site-packages/PIL/ImageFile.py", line 155, in load
 self.load_prepare()
 File "/usr/lib/python2.5/site-packages/PIL/ImageFile.py", line 223, in load_prepare
 self.im = Image.core.new(self.mode, self.size)
 File "/usr/lib/python2.5/site-packages/PIL/Image.py", line 36, in __getattr__
 raise ImportError("The _imaging C module is not installed")
ImportError: The _imaging C module is not installed

In the above case PYTHONPATH incorrectly tries to load Python 2.5 libraries,
though Plone 3.x exclusively uses Python 2.4. In this case the proper fix
is to clean-up damaged start up scripts in bin/ folder:

xxx@xxx:~/xxx/bin$ grep -Ri "python2.5" *
buildout: '/usr/lib/python2.5/site-packages',
instance: '/usr/lib/python2.5/site-packages',
zopepy: '/usr/lib/python2.5/site-packages',

This can be achieved by

	Removed all py2.5 eggs under eggs/ folder

	Removing setuptools egg which may contain references to Python 2.5

	Running bootstrap.py using python2.4

	Rerunning buildout after this

For further debugging the problem you can start the particular Python interpreter and try to import _imaging yourself.

Run Python in verbose mode to print all imports (the example below has been shortened):

(python-2.4)moo@murskaamo:~/isleofback$ python -v
Python 2.4.6 (#1, Jul 16 2010, 10:31:46)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import _imaging
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: libjpeg.so.8: cannot open shared object file: No such file or directory
>>> exit

In this case we have a custom Python build based on collective.buildout.python [http://blog.mfabrik.com/2010/07/16/easily-install-all-python-versions-under-linux-and-osx-using-collective-buildout-python/] recipe.
It will compile us a custom libjpeg version and should not use OS libjpeg:

(python-2.4)moo@murskaamo:~/code/python$ find . -iname libjpeg*
./python-2.4/lib/libjpeg.la
./python-2.4/lib/libjpeg.so.8
./python-2.4/lib/libjpeg.so
./python-2.4/lib/libjpeg.so.8.0.2
./python-2.4/lib/libjpeg.a

However, looks like this libjpeg does not end up in the OS LD_LIBRARY_PATH import list automatically.

For more information see

	http://permalink.gmane.org/gmane.comp.web.zope.plone.product-developers/4946

IOError when scaling images on Plone 4

Example:

Traceback (most recent call last):
 File "/srv/plone/xxx/plone-new/eggs/plone.app.imaging-1.0.4-py2.6.egg/plone/app/imaging/traverse.py", line 73, in createScale
 imgdata, format = field.scale(data, width, height)
 File "/srv/plone/xxx/plone-new/eggs/Products.Archetypes-1.6.6-py2.6.egg/Products/Archetypes/Field.py", line 2501, in scale
 image.save(thumbnail_file, format, quality=self.pil_quality)
 File "/srv/plone/python/python-2.6/lib/python2.6/site-packages/PIL-1.1.6-py2.6-linux-x86_64.egg/PIL/Image.py", line 1372, in save
 self.load()
 File "/srv/plone/python/python-2.6/lib/python2.6/site-packages/PIL-1.1.6-py2.6-linux-x86_64.egg/PIL/ImageFile.py", line 207, in load
 raise IOError(error + " when reading image file")
IOError: decoding error when reading image file

This means that libjpeg setup is not working. See above to how to test your set-up.

Installing libraries on Ubuntu / Debian

This applies if you are using system Python to run Plone.
Version may vary so apt-cache search and grep
commands are your friends:

sudo apt-get install libpng12-dev libjpeg62-dev python-imaging

Forcing libjpeg path

Try in buildout.cfg:

[instance]
...
environment-vars =
 LD_LIBRARY_PATH /srv/plone/python/python-2.6/lib

libjpeg.so.8: cannot open shared object file: No such file or directory

On Ubuntu you'll get this error when you try:

bin/zopepy
import _imaging

Some tips

	http://stackoverflow.com/questions/5545580/pil-libjpeg-so-8-cannot-open-shared-object-file-no-such-file-or-directory

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Database and transactions troubleshooting

Description

How to debug and fix ZODB database problems in Plone

	Introduction

	BLOBs and POSKeyErrors

	Transactions
	ConflictError

	How to debug which object causes ConflictErrors

	If every transaction appears as write transaction
	How to debug it

	zeostorage Client has seen newer transactions than server

	Updating objects created by older code

Introduction

This document contains information to fix and debug ZODB databases with Plone.

BLOBs and POSKeyErrors

The Plone CMS [http://plone.org] from version 4.x onwards
stores files and images uploaded to the ZODB [http://www.zodb.org/]
as blob.
They exist in a var/blobstorage folder structure on the file system,
files being named after (opaque) persistent object ids.
When using the default backend, the objects themselves,
without file payload,
are stored in an append-only database file called
filestorage and usually the name of this file is Data.fs.

If you copy the Plone site database object data (Data.fs) and
forget to copy the blobstorage folder(s),
or if data gets out of the sync during the copy,
various problems appear on the Plone site:

	You cannot access a content item for which the a corresponding blob file
is missing from the file system;

	you cannot rebuild the portal_catalog indexes;

	database packing may fail.

Instead, you'll see something like this - an evil POSKeyError exception
(POS referring to Persistent Object Storage):

Traceback (most recent call last):
 File "/fast/xxx/eggs/ZODB3-3.10.3-py2.6-macosx-10.6-i386.egg/ZODB/Connection.py", line 860, in setstate
 self._setstate(obj)
 File "/fast/xxx/eggs/ZODB3-3.10.3-py2.6-macosx-10.6-i386.egg/ZODB/Connection.py", line 922, in _setstate
 obj._p_blob_committed = self._storage.loadBlob(obj._p_oid, serial)
 File "/fast/xxx/eggs/ZODB3-3.10.3-py2.6-macosx-10.6-i386.egg/ZODB/blob.py", line 644, in loadBlob
 raise POSKeyError("No blob file", oid, serial)
POSKeyError: 'No blob file'

The proper solution to this problem is to:

	Re-copy blobstorage folder;

	restart Plone twice in foreground mode
(sometimes a freshly copied blobstorage folder does not get picked up -
some kind of timestamp issue?).
Restarting ZEO clients once seems to be enough.

	Copy a Plone site

However you may have failed.
You may have damaged or lost your blobstorage forever.
To get the Plone site to a working state,
all content with bad BLOB data must be deleted
(which usually entails losing some site images and uploaded files).

Below is Python code for a BrowserView which you can drop in to your own Plone.
It creates an admin view which you can call directly via an URL.
This code will walk through all the content on your Plone site and try to
delete bad content items with BLOBs missing.

The code handles both Archetypes and Dexterity subsystems' content types.

Note

Fixing Dexterity blobs with this code has never been tested -
please feel free to update the code in collective.developermanual
on GitHub if you find it not working properly.

The code, fixblobs.py:

"""

 A Zope command line script to delete content with missing BLOB in Plone, causing
 POSKeyErrors when content is being accessed or during portal_catalog rebuild.

 Tested on Plone 4.1 + Dexterity 1.1.

 http://stackoverflow.com/questions/8655675/cleaning-up-poskeyerror-no-blob-file-content-from-plone-site

 Also see:

 https://pypi.python.org/pypi/experimental.gracefulblobmissing/

"""

Zope imports
from ZODB.POSException import POSKeyError
from zope.component import queryUtility
from Products.CMFCore.interfaces import IPropertiesTool
from Products.CMFCore.interfaces import IFolderish

Plone imports
from Products.Five import BrowserView
from Products.Archetypes.Field import FileField
from Products.Archetypes.interfaces import IBaseContent
from plone.namedfile.interfaces import INamedFile
from plone.dexterity.content import DexterityContent

def check_at_blobs(context):
 """ Archetypes content checker.

 Return True if purge needed
 """

 if IBaseContent.providedBy(context):

 schema = context.Schema()
 for field in schema.fields():
 id = field.getName()
 if isinstance(field, FileField):
 try:
 field.get_size(context)
 except POSKeyError:
 print "Found damaged AT FileField %s on %s" % (id, context.absolute_url())
 return True

 return False

def check_dexterity_blobs(context):
 """ Check Dexterity content for damaged blob fields

 XXX: NOT TESTED - THEORETICAL, GUIDELINING, IMPLEMENTATION

 Return True if purge needed
 """

 # Assume dexterity contennt inherits from Item
 if isinstance(context, DexterityContent):

 # Iterate through all Python object attributes
 # XXX: Might be smarter to use zope.schema introspection here?
 for key, value in context.__dict__.items():
 # Ignore non-contentish attributes to speed up us a bit
 if not key.startswith("_"):
 if INamedFile.providedBy(value):
 try:
 value.getSize()
 except POSKeyError:
 print "Found damaged Dexterity plone.app.NamedFile %s on %s" % (key, context.absolute_url())
 return True
 return False

def fix_blobs(context):
 """
 Iterate through the object variables and see if they are blob fields
 and if the field loading fails then poof
 """

 if check_at_blobs(context) or check_dexterity_blobs(context):
 print "Bad blobs found on %s" % context.absolute_url() + " -> deleting"
 parent = context.aq_parent
 parent.manage_delObjects([context.getId()])

def recurse(tree):
 """ Walk through all the content on a Plone site """
 for id, child in tree.contentItems():

 fix_blobs(child)

 if IFolderish.providedBy(child):
 recurse(child)

class FixBlobs(BrowserView):
 """
 A management view to clean up content with damaged BLOB files

 You can call this view by

 1) Starting Plone in debug mode (console output available)

 2) Visit site.com/@@fix-blobs URL

 """
 def disable_integrity_check(self):
 """ Content HTML may have references to this broken image - we cannot fix that HTML
 but link integrity check will yell if we try to delete the bad image.

 http://collective-docs.readthedocs.org/en/latest/content/deleting.html#bypassing-link-integrity-check "
 """
 ptool = queryUtility(IPropertiesTool)
 props = getattr(ptool, 'site_properties', None)
 self.old_check = props.getProperty('enable_link_integrity_checks', False)
 props.enable_link_integrity_checks = False

 def enable_integrity_check(self):
 """ """
 ptool = queryUtility(IPropertiesTool)
 props = getattr(ptool, 'site_properties', None)
 props.enable_link_integrity_checks = self.old_check

 def render(self):
 #plone = getMultiAdapter((self.context, self.request), name="plone_portal_state")
 print "Checking blobs"
 portal = self.context
 self.disable_integrity_check()
 recurse(portal)
 self.enable_integrity_check()
 print "All done"
 return "OK - check console for status messages"

Registering the view in ZCML:

<browser:view
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 name="fix-blobs"
 class=".fixblobs.FixBlobs"
 permission="cmf.ManagePortal"
 />

More info

	http://stackoverflow.com/questions/8655675/cleaning-up-poskeyerror-no-blob-file-content-from-plone-site

	https://pypi.python.org/pypi/experimental.gracefulblobmissing/

Transactions

Transactions are usually problematic only when many
ZEO front-end clients are used.

ConflictError

When the site gets more load, ConflictErrors start to occur.
Zope tries to solve the situation by replaying HTTP requests
for ConflictErrors and has a default threshold (3) of
how many times the request is replayed.

More info

	http://www.zopyx.com/blog/on-zodb-conflict-resolution

How to debug which object causes ConflictErrors

ConflictErrors are caused by concurrent transactions trying to write to the same object(s) -
usually portal_catalog.
They are harmless, but slow down badly coded sites.
Plone will retry the HTTP request and transaction three times before giving up.

The OID is visible in the ConflictError traceback.

You can turn OID back to the corresponding Python object,
as mentioned by A. Jung:

from ZODB.utils import p64
app._p_jar[p64(oid)]

If every transaction appears as write transaction

If you are not careful, you may accidentally write code
which turns all transactions to write transactions.
This typically happens when you call some method without realizing that
that method eventually modifies a persistent object,
causing a database write.

Symptoms:

	Your Undo tab in ZMI will be full of entries, one added per
page request.

	If you run the server in single Zope server mode, it is slow.

	If you run the server in ZEO mode you get the exceptions like one below.
It may happen even with one user.
This is because each page load requres more than one HTTP request:
HTML load, image load, CSS load and so on. Browser makes many requests
per page and those transactions are conflicting, because they are
all write transactions.

Traceback example:

 * Module ZPublisher.Publish, line 202, in publish_module_standard
 * Module Products.LinguaPlone.patches, line 67, in new_publish
 * Module ZPublisher.Publish, line 170, in publish
 * Module Products.LinguaPlone.patches, line 67, in new_publish
 * Module ZPublisher.Publish, line 170, in publish
 * Module Products.LinguaPlone.patches, line 67, in new_publish
 * Module ZPublisher.Publish, line 170, in publish
 * Module Products.LinguaPlone.patches, line 67, in new_publish
 * Module ZPublisher.Publish, line 157, in publish
 * Module plone.app.linkintegrity.monkey, line 15, in zpublisher_exception_hook_wrapper
 * Module ZPublisher.Publish, line 125, in publish
 * Module Zope2.App.startup, line 238, in commit
 * Module transaction._manager, line 96, in commit
 * Module transaction._transaction, line 395, in commit
 * Module transaction._transaction, line 495, in _commitResources
 * Module ZODB.Connection, line 510, in commit
 * Module ZODB.Connection, line 547, in _commit

ConflictError: database conflict error (oid 0x2b92, class Products.CMFPlone.PropertiesTool.SimpleItemWithProperties)

How to debug it

Zope 2 doesn't have many well-documented ZODB debugging tools.
Below is one snippet to examine the contents of the last transactions
of an offline Data.fs file.
It is an evolved version of
this original script [http://www.mail-archive.com/zodb-dev@zope.org/msg04387.html].

	Do something on a badly behaving site.

	Stop Zope instance.

	Run the script below (debug.py) on the Data.fs file to see what
objects have been changed.

	Guess the badly behaving code from the object class name.

Example how to run the script for the last 30 transaction under a Zope egg
environment using the zopepy script:

bin/zopepy debug.py -n 30 Data.fs

Warning

The following is obsolete with current Zope. FileIterator does not
take a pos argument any more.

Code for debug.py:

##
#
Copyright (c) 2001, 2002 Zope Corporation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE
#
##
"""Tool to dump the last few transactions from a FileStorage."""

from ZODB.fstools import prev_txn
from ZODB.serialize import ObjectReader, get_refs
from persistent.TimeStamp import TimeStamp
from ZODB.FileStorage.FileStorage import FileIterator
import cStringIO, cPickle
import optparse, getopt
import sys

class Nonce(object): pass

class Reader(ObjectReader):

 def __init__(self):
 self.identity = None

 def _get_unpickler(self, pickle):
 file = cStringIO.StringIO(pickle)
 unpickler = cPickle.Unpickler(file)
 unpickler.persistent_load = self._persistent_load

 def find_global(modulename, name):
 self.identity ="%s.%s"%(modulename, name)
 return Nonce

 unpickler.find_global = find_global

 return unpickler

 def getIdentity(self, pickle):
 self.identity = None
 unpickler = self._get_unpickler(pickle)
 unpickler.load()
 return self.identity

 def getObject(self, pickle):
 unpickler = self._get_unpickler(pickle)
 ob = unpickler.load()
 return ob

def pretty_size(size):
 if size < 1024:
 return "%sB"%(size)
 kb = size / 1024.0
 if kb < 1024.0:
 return '%0.1fKb'%kb
 else:
 mb = kb/1024.0
 return '%0.1fMb'%mb

def run(path, ntxn):
 f = open(path, "rb")
 f.seek(0, 2)

 th = prev_txn(f)
 for i in range(ntxn):
 th = th.prev_txn()
 f.close()
 reader = Reader()
 iterator = FileIterator(path, pos=th._pos)
 for i in iterator:
 print "Transaction ", TimeStamp(i.tid), i.user, i.description
 object_types = {}
 for o in i:
 ot = reader.getIdentity(o.data)
 if ot in object_types:
 size, count = object_types[ot]
 object_types[ot] = (size+len(o.data), count+1)
 else:
 object_types[ot] = (len(o.data),1)

 ob = cPickle.loads(o.data)

 print "Object data for :" + str(o)

 # Not sure why some objects are stored as tuple (object, ())
 if type(ob) == tuple and len(ob) == 2:
 ob = ob[0]

 if hasattr(ob, "__dict__"):
 for i in ob.__dict__.items():
 if not callable(i[1]):
 print i
 else:
 print "can't extract:" + str(ob)

 print "---"

 keys = object_types.keys()
 keys.sort()
 for k in keys:
 # count, class, size (aggregate)
 print " - ", object_types[k][1], k, pretty_size(object_types[k][0])

def main():
 ntxn = 20
 opts, args = getopt.getopt(sys.argv[1:], "n:")
 path, = args
 for k, v in opts:
 if k == '-n':
 ntxn = int(v)
 run(path, ntxn)

if __name__ == "__main__":
 main()

zeostorage Client has seen newer transactions than server

If you get:

ClientStorageError: zeostorage Client has seen newer transactions than server!

, you can fix it by removing cache-data.zec from parts/instace/var/.

Updating objects created by older code

In the course of development, classes may be renamed or moved.
When an object is read from the ZODB,
the class required to unpickle the serialized object is named in the pickle data.
If this name cannot be imported, you have a broken object on your hands.

In the Zope event log that will show up as, for example:

2014-06-19 11:04:04 WARNING OFS.Uninstalled Could not import class 'ATSimpleStringCriterion' from module 'Products.ATContentTypes.types.criteria.ATSimpleStringCriterion'

To make the object usable again,
the reference needs to be updated to refer to a class that can instantiate this object.
One tool that can help you with this is
zodbupdate [https://pypi.python.org/pypi/zodbupdate]

In this case, the ATSimpleStringCriterion class in question has moved from
Products.ATContentTypes.types.criteria.ATSimpleStringCriterion to
Products.ATContentTypes.criteria.simplestring.

To make zodbupdate handle this, add a zodbupdate entry point to
ATContentTypes. Depending on your configuration, that may look like
this:

$ cat .../buildout-cache/eggs/Products.ATContentTypes-2.1.13-py2.7.egg/EGG-INFO/entry_points.txt
[zodbupdate]
renames=Products.ATContentTypes:rename_dict

Next, define rename_dict in the __init__.py of the named package, e.g.:

 .../buildout-cache/eggs/Products.ATContentTypes-2.1.13-py2.7.egg/Products/ATContentTypes/__init__.py

In this case, our ``rename_dict`` will look like this:

rename_dict = {
 'Products.ATContentTypes.types.criteria.ATSimpleStringCriterion ATSimpleStringCriterion':
 'Products.ATContentTypes.criteria.simplestring ATSimpleStringCriterion'}

Note

As always, work on a copy of your data first, before working on the live site.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Managing, Administration of Plone »

 	Troubleshooting »

Manually Removing Local Persistent Utilities

Description

This document explains how you can manually remove local persistent utilities that were not properly removed from a product while uninstalling.

Note

Update

There is now a useful tool available, wildcard.fixpersistentutilities [https://pypi.python.org/pypi/wildcard.fixpersistentutilities] , to address these issues TTW (Through The Web). I would suggest trying it before you go through this article.

Purpose

Occasionally you'll download and install a product in Plone that uses local persistent utilities.
This usually seems pretty innocent in itself; however, it sometimes happens that when you uninstall the product and remove its egg from the file system, the utility is still registered.
This will essentially break your instance unless you make the egg available again so the ZODB can reference the utilities during lookups.
This how-to will explain how to remove these utilities manually.

Symptoms

You'll find zope throwing errors like this,

AttributeError: type object 'IQueue' has no attribute '__iro__'

or

AttributeError: type object 'ISalt' has no attribute '__iro__'

Prerequisites

You will need appropriate access to the zope server in order to run the site in debug mode.

Step by step

First off, fire up the instance in debug mode

./bin/instance debug

Get the site manager for your Plone instance. 'app' references the zope root.

sm = app.Plone.getSiteManager()

Then you'll want to import the guilty utility's interface, unregister it and delete it. It should look somethings like this,

from collective.product.interfaces import IUtility, INamedUtility

for unnamed utility
util = sm.getUtility(IUtility)
sm.unregisterUtility(IUtility)
del util
sm.utilities.unsubscribe((), IUtility)
del sm.utilities.__dict__['_provided'][IUtility]
del sm.utilities._subscribers[0][IUtility]

#also for named utility
util = sm.queryUtility(INamedUtility, name='utility-name')
sm.unregisterUtility(util, INamedUtility, name='utility-name')
del util
del sm.utilities._subscribers[0][INamedUtility]

Now you need to commit your changes to the ZODB.

import transaction
transaction.commit()
app._p_jar.sync()

An Example

I found myself in this situation with the Singing and Dancing product so I'll just go through the code here to fix both a normal utility and named utility found in it.

from collective.singing.interfaces import ISalt
from collective.singing.async import IQueue
import transaction

portal = app.Plone
sm = portal.getSiteManager()

util_obj = sm.getUtility(ISalt)
sm.unregisterUtility(provided=ISalt)
del util_obj
sm.utilities.unsubscribe((), ISalt)
del sm.utilities.__dict__['_provided'][ISalt]
del sm.utilities._subscribers[0][ISalt]

util = sm.queryUtility(IQueue, name='collective.dancing.jobs')
sm.unregisterUtility(util, IQueue, name='collective.dancing.jobs')
del util
del sm.utilities._subscribers[0][IQueue]
Handling subscribers, adapters and utilities
sm = app.myportal.getSiteManager()
adapters = sm.utilities._adapters
for x in adapters[0].keys():
 if x.__module__.find("collective.myproduct") != -1:
 print "deleting %s" % x
 del adapters[0][x]
sm.utilities._adapters = adapters

subscribers = sm.utilities._subscribers
for x in subscribers[0].keys():
 if x.__module__.find("collective.myproduct") != -1:
 print "deleting %s" % x
 del subscribers[0][x]
sm.utilities._subscribers = subscribers

provided = sm.utilities._provided
for x in provided.keys():
 if x.__module__.find("collective.myproduct") != -1:
 print "deleting %s" % x
 del provided[x]
sm.utilities._provided = provided

from transaction import commit
commit()
app._p_jar.sync()

Removing portal tools

If you still have problems (re)installing products after you removed the broken local persistent components, you probably have to clean the Portal setup tool.You probably see something like this in the error log :

setup_tool = app.myportal.portal_setup
toolset = setup_tool.getToolsetRegistry()
if 'portal_myproduct' in toolset._required.keys():
 del toolset._required['portal_myproduct']
 setup_tool._toolset_registry = toolset

from transaction import commit
commit()
app._p_jar.sync()

References

I didn't by any means figure this all our on my own so please do not give me credit for it. Actually, most of this is shamelessly stolen. Thanks for the original fixers of the problem! Here are my references:

	http://blog.fourdigits.nl/removing-a-persistent-local-utility

	http://blog.fourdigits.nl/removing-a-persistent-local-utility-part-ii

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Developing for Plone

Developing add-ons

	Develop Plone Add ons
	Bootstrapping Plone add-on development

	Creating a Dexterity project

	Releasing an addon

	Component architecture

	Javascript

	Javascript coding conventions

	AJAX

	Hello World Tutorial

	Schema-driven forms

Programming with Plone

	Programming Plone
	Getting started

	HTTP serving and traversing site data

	Views, viewlets and layers

	Content management

	Models, forms, fields and widgets

	ZODB, persistency and transactions

	Functionality and features

	Queries, search and indexing

	Internationalization (i18n)

	Users and members

	Security

	Sessions and cookies

	Images

	Syndication

	Miscellaneous information

Developing for Plone Core

	Process for Plone core's development
	Introduction

	Table of Awesome

	Others

	Translations available

Dev helper packages

plone.app.testing

	Welcome to plone.app.testing's documentation!

	Indices and tables

plone.api

	A Plone API

plone.app.multilingual

plone.app.contenttypes

	plone.app.contenttypes documentation

plone.app.contentlisting

	Listing and working with Plone content objects using plone.app.contentlisting

plone.app.robotframework

	Writing Robot Framework tests for Plone

Importing content from other systems

	Importing content from other sources
	Introduction

	Transmogrify

	collective.transmogrifier

	Transmogrify helpers

Tutorials

“Mastering Plone”-training [http://plone-training.readthedocs.org]

Mastering Plone is intended as a week-long training for people who are new to Plone or want to learn about the current best-practices of Plone-development.

It is in active use by various trainers in the Plone world, and is being developed as a 'collaborative syllabus'.

	Plone Todo list application tutorial

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Develop Plone Add ons

	Bootstrapping Plone add-on development
	Introduction

	Add-on creation and installation steps

	Adding ZopeSkel to your buildout

	ZopeSkel Templates

	Creating an add-on product skeleton

	Local commands

	Site setup and Add-on installation

	In-depth background information

	Creating a Dexterity project
	Create a dexterity product

	Add your package to buildout

	Add content using paster

	Releasing an addon
	Setup necessary packages

	Releasing a package

	Component architecture
	Introduction

	Javascript
	Introduction

	Plone default Javascript libraries

	Creating Javascripts for Plone

	Executing Javascript code on page load

	Registering javascripts to portal_javascripts

	Popup overlays and forms

	Messages and translation

	Passing dynamic settings to Javascripts

	Generating Javascript dynamically

	Upgrading jQuery

	Having multiple jQuery versions (noConflict)

	Loading Javascript files for certain edit views only (to be used with widgets)

	Converting page links to pop-up windows

	AJAX-y view loading

	Checking if document is in WYSIWYG edit mode

	Image hovers

	Disabling KSS

	Javascript coding conventions
	Introduction

	Progressive Enhancement

	Unobtrusive JavaScript

	Coding Standards

	Platform Testing

	Testing

	AJAX
	Introduction

	JSON views and loading data via AJAX

	Cross-Origin Resource Sharing (CORS) proxy view

	Speeding up AJAX loaded content HTML

	Hello World Tutorial
	Introduction

	Build development environment

	Extend Plone

	Ideas for improvement

	Schema-driven forms
	Introduction

	Creating a simple form

	Customising form behaviour

	Form types

	Customising form presentation

	Further reading

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Bootstrapping Plone add-on development

Description

ZopeSkel is a tool which generates a code skeleton template for your
Plone add-on you wish to develop.

	Introduction

	Add-on creation and installation steps

	Adding ZopeSkel to your buildout
	Troubleshooting

	ZopeSkel Templates

	Creating an add-on product skeleton

	Local commands
	Adding a Content Type to your package

	Site setup and Add-on installation

	In-depth background information
	How paster local commands work

	setup.py install_requires

	paster and install_requires

Introduction

ZopeSkel provides a command-line utility and a number of templates that help
you to generate skeleton code for a Plone project. Using ZopeSkel you can
create Plone buildouts, add-on packages and themes. The skeleton code
created by ZopeSkel follows generally accepted best practices, and will get
you started developing for the Plone CMS.

Add-on creation and installation steps

There are three steps in your add-on creation and installation procedure:

	Create the add-on code skeleton using ZopeSkel as instructed below. The
tool will provide sensible
defaults for all options, so if you unsure about an answer, simple accept
the default.

	Make your new add-on available in buildout as described in the
installation instructions below.
Adding code to buildout is done only once.
After this you can see your package listed in the
bin/instance script when you open the file.

	After this, Zope will load your Python and ZCML code every time Zope is
restarted.

Adding ZopeSkel to your buildout

To install ZopeSkel in your buildout, add the following to your
buildout.cfg in the appropriate places:

add a 'zopeskel' part to the list of parts in the [buildout] section.
parts =
 ... # some other parts here
 zopeskel # Add this as the last line

Add this bit at the end of your buildout.cfg
create zopeskel command in bin/
with Plone templates
[zopeskel]
recipe = zc.recipe.egg
unzip = true
eggs =
 ZopeSkel <= 3.0
 Paste
 PasteDeploy
 PasteScript
 zopeskel.dexterity
 zopeskel.diazotheme
 ${buildout:eggs}

Note

In buildout.cfg # marks comment at the end of the line - you don't need to type those

After adding this, run buildout and it will install ZopeSkel
that it requires. After buildout completes, you will find the zopeskel
command in the bin
directory of your buildout. You can use this command to list template, run
them, and build the
skeleton code you need to get started.

To find out what templates are available, run:

bin/zopeskel --list

To get extensive documentation on the abilities of ZopeSkel, run:

bin/zopeskel --help

Troubleshooting

If you get any exceptions running this command see
troubleshooting.
If self-service help doesn't get you anywhere file issues on Github [https://github.com/collective/ZopeSkel/issues].

Note

If you are migrating from a version of ZopeSkel prior to 3.0,
you may need to remove the old ZopeSkel
egg before you begin.

ZopeSkel Templates

Note

The templates listed below may not be the only ones available when you
install ZopeSkel.
New templates are being developed actively.

	archetypes

	Creates a package skeleton for
Archetypes based content types.

	dexterity

	Creates a package for developing Dexterity content types.

	plone_basic

	Creates a basic skeleton good for general Plone add-on packages.
Minimal and clean. You can use this package to set up views, forms,
portlets, and many other add-on features.

	plone3_theme

	Creates a basic skeleton good for creating old style theme for Plone
(views, viewlets and so on)

	plone_nested

	Creates a nested namespace package with the same basic skeleton as
plone_basic. This is generally used for packages that are meant to
be part of a set, like collective.blog.feeds,
collective.formwidget.autocomplete or collective.geo.mapwidget.

Creating an add-on product skeleton

After you have followed the steps above how include ZopeSkel to your
buildout, you can create your first add-on.

To create an Archetypes-based content types package:

Actual location is your Plone installation
Usually the folder name is zintance or zeocluster
cd /path/to/buildout
cd src
Here replace "archetype" with scaffold name you want to use
For the complete list of different templates
run ../bin/zopeskel command without arguments
../bin/zopeskel archetype yourcompany.productname

Now it will ask you a series of question for the add-on properties. After this yourcompany.productname
folder is created with prepopulated subfolders and files.

Note

If you are unsure about questions, you may type ? to get more
information.
You can also just hit enter to accept the default value.
These are sensible for most cases.

After answering the questions, you'll have a new python package in the
src directory of your buildout.
To begin using this code, you'll need to include the newly created package
in your buildout.cfg:

eggs =
 yourcompany.productname

develop =
 src/yourcompany.productname

Rerun buildout to pick up the new package.

Restart Plone in foreground mode.
If your new code files contain errors it usually fails at this point
with a Python traceback.
This traceback will contain valuable information about what went wrong,
and will be the first thing anyone will ask for if you seek help.

Once Plone has started, log in as admin and go to Site Setup >
Add-ons.
If your package has a GenericSetup profile, you should see your add-on
in the list of available add-ons at the top of the page.

Local commands

Besides project templates, ZopeSkel allows templates to define local commands.
Local commands are context-aware commands that allow you to add more
functionality to an existing project generated by ZopeSkel.

Examples of the kind of Plone functionality you can add with local commands:

	Content types inside your add-on.

	Schemas for your content types.

	Browser views

	Browser layers (to allow you to isolate add-on code to sites where your
package is activated)

	etc.

Warning

Local commands work only with paster command run from buildout bin/
directory. Do not try to run local commands with system-wide paster
command.

Local commands are not available until your egg is registered as
development egg in your buildout, you have run buildout and
you use paster command provided by buildout.

If you follow the instructions
below and do not see an add local command, please verify that your
package has been properly added to your buildout and that buildout has
been re-run afterwards.

Adding a Content Type to your package

In this example we will continue yourcompany.productname development
and add our first Archetypes-based content type.

Example of creating a content type:

First create an add-on skeleton if one does not exist
cd yourcompany.productname/src

Note

You must create the src folder inside your package.
Otherwise the paster add command cannot work.

To list the local commands available to your package, type:

../../../bin/paster add --list

This will display local commands that will work for the package you have
created.
Different package types have different local commands.
Next you can use the paster add local
command to add new functionality to your existing code.

For example, to add a special content type for managing lectures:

../../../bin/paster add at_contenttype

After the content type is added, you can add schema fields for the type:

../../../bin/paster add at_schema_field

Note

New content types are added to Plone using GenericSetup.
GenericSetup profiles are run when an add-on product is activated.
To see the content type you create, you'll need
to restart Plone and reinstall the add-on.

Site setup and Add-on installation

If you want your add-on to be 'activated' by going to the Plone Add-on
control panel, you will
need to have a GenericSetup profile.
ZopeSkel can set this up for you, just say 'Yes' if you are asked.
Some templates require a profile, and will not ask.
This profile modifies the site database
every time you run Add-on installer your site setup.
If you make changes to your profile, you need to
re-run the installation of your package to pick up those changes.

A GenericSetup profile is just a bunch of XML files with information that is
written to the database when the add-on is installed. This is independent of
Python and ZCML code, and GenericSetup XML can be updated without restarting
the site.

Not all add-ons provide GenericSetup profiles.
If an add-on does not modify the site database
in any way, e.g. they provide only new views,
it may not require one.
But a GenericSetup profile is required in order to have the add-on appear in
the list of 'available add-ons' in the Plone Add-ons control panel.

In-depth background information

How paster local commands work

Paster reads setup.py. If it finds a paster_plugins section there,
it will look for local commands.

This allows paster to know that packages created by that template provide
local commands
defined by the templer system which underlies ZopeSkel.

More about paster templates.

setup.py install_requires

Python modules can specify dependencies to other modules by using the
install_requires section in setup.py.
For example, a Plone add-on might read:

install_requires=['setuptools',
 # -*- Extra requirements: -*-
 "plone.directives.form"
],

This means that when you use setuptools/buildout/pip/whatever Python package
installation tool to install your package from the
Python Package Index (PyPi) [https://pypi.python.org/pypi]
it will also automatically install Python packages declared in
install_requires.

paster and install_requires

Warning

Never use a system-wide paster installation with local
commands. This is where things usually go haywire. Paster is not
aware of this external Python package configuration set (paster
cannot see them in its PYTHONPATH). Also don't try to execute
system-wide paster in a Python source code
folder containing setup.py. Otherwise paster downloads all the
dependencies mentioned in the setup.py into that folder even
though they would be available in the eggs folder (which
paster is not aware of).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Creating a Dexterity project

Dexterity is covered in detail in the Dexterity Developer Manual [http://docs.plone.org/external/plone.app.dexterity/docs/], which includes an extensive tutorial on setting up a Dexterity development environment and creating Dexterity add-on packages.

Here, we'll just add a few details on setting up and using the ZopeSkel package creator for use with Dexterity.

The only prerequisite is a working Plone buildout and to have added the ZopeSkel part described in bootstrapping.

Create a dexterity product

Use zopeskel to create a Python package which contains a Dexterity-based product.
(Note: just select default options - press Enter - for all questions during installation, except for project name which must be collective.example)

Use zopeskel to create a Python egg which contains a Dexterity-based product.
(Note: just select default options for all questions during installation, except for _project name_, for which we'll use collective.example.)

cd to your buildout directory
$ cd src
$../bin/zopeskel dexterity
dexterity: A Dexterity-based product

This template expects a project name with 1 dot in it (a 'basic
namespace', like 'foo.bar').

Enter project name: collective.example

[...]

usage: paster COMMAND

Commands:
 addcontent Adds plone content types to your project

For more information: paster help COMMAND
--

Add your package to buildout

Edit your buildout.cfg file to add the package to your egg list and your develop list. Run buildout.

Note

If you try to use a local command without this step, paster will suggest you run python setup.py develop. Do not do that. Instead, add your package to your buildout and run buildout.

Add content using paster

Use paster to list the types of content that can be added:

$../bin/paster addcontent -l
Available templates:
 dexterity_behavior: A behavior skeleton
 dexterity_content: A content type skeleton

Add a content-type:

$../bin/paster addcontent dexterity_content
Enter contenttype_name (Content type name) ['Example Type']: Example content
Enter contenttype_description (Content type description) ['Description of the Example Type']: Just an example
(Use default values for rest - press Enter)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Releasing an addon

Your addon should be listed and hosted on PyPI if you want other people to use your addon.

Warning

Everything on PyPI is public.
Be careful not to hardcore passwords in any file.

Setup necessary packages

To setup all needed packages you need to run the following command.

This takes care of everything you should do:
- Check if all files will be in the package.
- Set the version number
- Tag the release
- Compile any .mo file to .po files
- Make the actual release
- Bump the version.

Note

This installs the packages into your global python installation.
An alternative would be installing the packages in a virtualenv.

Releasing a package

Use the fullrelease command in the root of your checkout.

$ fullrelease

See also
- how to use virtualenv controlled non-system wide Python
- Full zest.releaser documentation http://zestreleaser.readthedocs.org/en/latest/
- "plone.api coding conventions"
- http://opensourcehacker.com/2012/08/14/high-quality-automated-package-releases-for-python-with-zest-releaser/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Component architecture

Introduction

Plone logic is wired together by Zope 3 component architecture.
It provides "enterprise business logic" engine for Plone.

The architecture provides pluggable system interfaces,
adapters, utilities
and registries. The wiring of components is done on XML based language
called ZCML.

Database drops using Generic setup

Zope 3 components act on Python codebase level which is shared by all sites in the
same Zope application server process.
When you install new add-ons to Plone site, the add-ons modify the site database
using GenericSetup framework. GenericSetup
is mostly visible as /profiles/default folder and its XML files
in your add-on.

More info

	http://www.muthukadan.net/docs/zca.html

	Interfaces

	Adapters

	Utilities

	ZCML

	Add-on installation and export framework: GenericSetup

	Events

	Customizing Plone

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Interfaces

	Introduction

	Common interfaces

	Implementing one or multiple interfaces
	Removing parent class interface implementations

	Checking whether object provides an interface
	providedBy

	plone_interface_info

	Interface resolution order

	Getting interface string id

	Getting interface class by its string id

	Applying interfaces for several content types

	Dynamic marker interfaces
	Setting dynamic marker interfaces programmatically

	Tagged values

Introduction

Interfaces define what methods an object provides.
Plone extensively uses interfaces to define APIs between
different subsystems. They provide a more consistent and declarative
way to define bridges between two different things, when duck-typing
is not enough.

An interface defines the shape of a hole where different pieces fit.
The shape of the piece is defined by the interface, but the implementation
details like color, material, etc. can vary.

See zope.interface package README [https://pypi.python.org/pypi/zope.interface].

Common interfaces

Some interfaces are commonly used throughout Plone.

The usual use case is that a
context directive for a view
is provided, specifying where the view is available
(e.g. for which content types).

	zope.interface.Interface

	Base class of all interfaces. Also used as a * wildcard when
registering views, meaning that the view applies on every object.

	Products.CMFCore.interfaces.IContentish

	All content items on the site.
In the site root, this interface excludes Zope objects like
acl_users (the user folder) and portal_skins which might
otherwise appear in the item listing when you iterate through the root
content.

	Products.CMFCore.interfaces.IFolderish

	All folders in the site.

	Products.CMFCore.interfaces.ISiteRoot

	The Plone site root object.

	plone.app.layout.navigation.interfaces import INavigationRoot

	Navigation top object - where the breadcrumbs are anchored.
On multilingual sites, this is the top-level folder for the current
language.

Implementing one or multiple interfaces

Use zope.interface.implements() in your class body.
Multiple interfaces can be provided as arguments.

Example:

from zope.interface import implements
from collective.mountpoint.interfaces import ILocalSyncedContent
from ora.objects.interfaces import IORAResearcher

class MyContent(folder.ATFolder):
 """A Researcher synchronized from ORA"""
 implements(IORAResearcher, ILocalSyncedContent)

Removing parent class interface implementations

implementsOnly() redeclares all inherited interface implementations.
This is useful if you, for example, want to make
z3c.form
widget bindings more accurate.

Example:

zope.interface.implementsOnly(IAddressWidget)

Checking whether object provides an interface

providedBy

In Python you can use code:

from yourpackage.interfaces import IMyInterface

if IMyInterface.providedBy(object):
 # do stuff
else:
 # was not the kind of object we wanted

plone_interface_info

In page templates you can use plone_interface_info helper view:

<div tal:define="iinfo context/@@plone_interface_info">

 Do stuff requiring your interface.

</div>

See also

	https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/globals/interface.py

Interface resolution order

Interface resolution order (IRO) is the list of interfaces provided by the
object (directly, or implemented by a class), sorted by priority.

Interfaces are evaluated from zero index (highest priority) to the last index
(lowest priority).

You can access this information for the object for debugging purposes using
a magical attribute:

object.__provides__.__iro__.

Note

Since adapter factories are dynamic (adapter interfaces not hardcoded
on the object), the object can still adapt to interfaces which are not
listed in __iro__.

Getting interface string id

The interface id is stored in the __identifier__ attribute.

Example file yourpackage/interfaces.py:

import zope.interface

class IFoo(zope.interface.Interface).
 pass

id is yourpackage.interfaces.IFoo
id = IFoo.__identifier__

Note that this attribute does not respect import aliasing.

Example: Products.ATContentTypes.interfaces.IATDocument.__identifier__
is Products.ATContentTypes.interfaces.document.IATDocument.

Getting interface class by its string id

Use the zope.dottedname [https://pypi.python.org/pypi/zope.dottedname] package.

Example:

import zope.interface
from zope.dottedname.resolve import resolve

class IFoo(zope.interface.Interface).
 pass

id is yourpackage.interfaces.IFoo
id = IFoo.__identifier__
interface_class == resolve(id)
assert IFoo == interface_class

Applying interfaces for several content types

You can apply marker interfaces to content types at any time.

Example use cases:

	You want to assign a viewlet to a set of particular content types.

	You want to enable certain behavior on certain content types.

Note

A marker interface is needed only when you need to create a common
nominator for several otherwise unrelated classes.
You can use one existing class or interface as a context without
explicitly creating a marker interface.
Places accepting zope.interface.Interface as a context
usually accept a normal Python class as well (isinstance behavior).

You can assign the marker interface for several classes in ZCML using
a <class> declaration. Here we're assigning ILastModifiedSupport
to documents, events and news items:

<!-- List of content types where "last modified" viewlet is enabled -->
<class class="Products.ATContentTypes.content.document.ATDocument">
 <implements interface=".interfaces.ILastModifiedSupport" />
</class>

<class class="Products.ATContentTypes.content.event.ATEvent">
 <implements interface=".interfaces.ILastModifiedSupport" />
</class>

<class class="Products.ATContentTypes.content.newsitem.ATNewsItem">
 <implements interface=".interfaces.ILastModifiedSupport" />
</class>

Then we can have a view for these content types only using the following:

.. code-block:: python

from Products.Five import BrowserView
from interfaces import ILastModifiedSupport
from plone.app.layout.viewlets.interfaces import IBelowContent

	class LastModified(BrowserView):

	""" View for .interfaces.ILastModifiedSupport only
"""

<browser:view
 for=".interfaces.ILastModifiedSupport"
 name="lastmodified"
 class=".views.LastModified"
 template="templates/lastmodified.pt"
 />

Related:

	zope.dottedname [https://pypi.python.org/pypi/zope.dottedname] allows you to resolve dotted names to Python objects
manually

Dynamic marker interfaces

Zope allows to you to dynamically turn on and off interfaces on any content
objects through the ZMI.
Browse to any object and visit the Interfaces tab.

Marker interfaces might need to be explicitly declared using the
ZCML <interface> directive, so that Zope can find them:

<!-- Declare marker interface, so that it is available in ZMI -->
<interface interface="mfabrik.app.interfaces.promotion.IPromotionsPage" />

Note

The interface dotted name must refer directly to the interface class and
not to an import from other module, like __init__.py.

Setting dynamic marker interfaces programmatically

Use the mark() function from Products.Five [https://github.com/zopefoundation/Zope/blob/master/src/Products/Five/README.txt].

Example:

from Products.Five.utilities.marker import mark

mark(portal.doc, interfaces.IBuyableMarker)

Note

This marking persists with the object: it is not temporary.

Under the hood:
mark() delegates to zope.interface.directlyProvides() — with
the result that
a persistent object (e.g. content item) has a reference to the interface
class you mark it with in its __provides__ attribute; this attribute
is
serialized and loaded by ZODB like any other reference to a class, and
zope.interface [https://pypi.python.org/pypi/zope.interfaces] uses object specification descriptor magic (just like
it does
for any other object, persistent or not) to resolve provided interfaces.

To remove a marker interface from an object, use the erase() function
from Products.Five [https://github.com/zopefoundation/Zope/blob/master/src/Products/Five/README.txt].

Example:

from Products.Five.utilities.marker import erase

erase(portal.doc, interfaces.IBuyableMarker)

Tagged values

Tagged values are arbitrary metadata you can stick on
zope.interface.Interface subclasses.
For example, the plone.autoform [https://pypi.python.org/pypi/plone.autoform] package uses them to set form widget
hints for zope.schema [https://pypi.python.org/pypi/zope.schema] data model declarations.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Adapters

	Introduction
	Example adapters users

	Registering an adapter
	Registering using ZCML

	Registering using Python

	Generic adapter contexts

	Multi-adapter registration

	Getting the adapter

	Listing adapter registers
	Alternative listing adapters

	Local adapters

Introduction

Adapters make it possible to extend the behavior of a class without
modifying the class itself. This allows more modular, readable code in
complex systems where there might be hundreds of methods per class. Some
more advantages of this concept are:

	The class interface itself is more readable (less visible clutter);

	class functionality can be extended outside the class source code;

	add-on products may extend or override parts of the class functionality.
Frameworks use adapters extensively, because adapters provide easy
integration
points. External code can override adapters to retrofit/modify
functionality. For example: a theme product might want to override a
searchbox viewlet to have a search box with slightly different
functionality and theme-specific goodies.

The downside is that adapters cannot be found by "exploring" classes or
source code. They must be well documented in order to be discoverable.

Read more about adapters in the
zope.component README [http://docs.zope.org/zope.component/narr.html#adapters].

Adapter ZCML [http://docs.zope.org/zope.component/zcml.html#adapter].

Adapters are matched by:

	Provider interface (what functionality adapter provides).

	Parameter interfaces.

There are two kinds of adapters:

	Normal adapters that take only one parameter.

	Multi-adapters take many parameters in the form of a tuple.

Example adapters users

	http://plone.org/documentation/manual/theme-reference/buildingblocks/components/themespecific

Registering an adapter

Registering using ZCML

An adapter provides functionality to a class. This functionality becomes
available when the interface is queried from the instance of class.

Below is an example how to make a custom "image provider". The image
provider provides a list of images for arbitrary content.

This is the image provider interface:

from zope.interface import Interface

class IProductImageProvider(Interface):

 def getImages(self):
 """ Get Images associated with the product.

 @return: iterable of Image objects
 """

This is our content class:

class MyShoppableItemType(folder.ATFolder):
 """ Buyable physical good with variants of title and price and multiple images
 """
 implements(IVariantProduct)

 meta_type = "VariantProduct"
 schema = VariantProductSchema

This is the adapter for the content class:

import zope.interface

from getpaid.variantsproduct.interfaces.multiimageproduct import IProductImageProvider

class FolderishProductImageProvider(object):
 """ Mix-in class which provide product image management functions.

 Assume the content itself is a folderish archetype content type and
 all contained image objects are product images.
 """

 zope.interface.implements(IProductImageProvider)

 def __init__(self, context):
 # Each adapter takes the object itself as the construction
 # parameter and possibly provides other parameters for the
 # interface adaption
 self.context = context

 def getImages(self):
 """ Return a sequence of images.

 Perform folder listing and filter image content from it.
 """

 images = self.context.listFolderContents(
 contentFilter={"portal_type" : "Image"})
 return images

Register the adapter for your custom content type MyShoppableItemType in
the configure.zcml file of your product:

<adapter
 for=".shop.MyShoppableItemType"
 provides=".interfaces.IProductImageProvider"
 factory=".images.FolderishProductImageProvider"
 />

Then we can query the adapter and use it. Unit testing example:

def test_get_images(self):
 self.loginAsPortalOwner()
 self.portal.invokeFactory("MyShoppableItemType", "product")
 product = self.portal.product
 image_provider = IProductImageProvider(product)
 images = image_provider.getImages()

 # Not yet any uploaded images
 self.assertEqual(len(images), 0)

Registering using Python

Register to Global Site Manager using registerAdapter().

Example:

from zope.component import getGlobalSiteManager

layer = klass.layer

gsm = getGlobalSiteManager()
gsm.registerAdapter(factory=MyClass, required=(layer,),
 name=klass.__name__, provided=IWidgetDemo)
return klass

More info

	http://www.muthukadan.net/docs/zca.html#registration

Generic adapter contexts

The following interfaces are useful when registering adapters:

	zope.interface.Interface

	Adapts to any object

	Products.CMFCore.interfaces.IContentish

	Adapts to any Plone content object

	zope.publisher.interfaces.IBrowserView

	Adapts to any BrowserView(context, request) object

Multi-adapter registration

You can specify any number of interfaces in the <adapter for="" />
attribute. Separate them with spaces or newlines.

Below is a view-like example which registers against:

	any context (zope.interface.Interace);

	HTTP request objects (zope.publisher.interfaces.browser.IBrowserRequest).

Emulate view registration (context, request):

<adapter
 for="zope.interface.Interface
 zope.publisher.interfaces.browser.IBrowserRequest"
 provides="gomobile.mobile.interfaces.IMobileTracker"
 factory=".bango.BangoTracker"
 />

Getting the adapter

There are two functions that may be used to get an adapter:

	zope.component.getAdapter will raise an exception if the adapter is
not found.

	zope.component.queryAdapter will return None if the adapter is not
found.

getAdapter/queryAdapter arguments:

	# Tuple consisting of: (Object implementing the first interface,

	object implementing the second interface, ...)
The interfaces are in the order in which they were declared in the
<adapter for=""> attribute.

Adapter marker interface.

Example registration:

<!-- Register header animation picking logic - override this for your custom logic -->
<adapter
 provides="plone.app.headeranimation.interfaces.IHeaderAnimationPicker"
 for="plone.app.headeranimation.behaviors.IHeaderBehavior
 Products.CMFCore.interfaces.IContentish
 zope.publisher.interfaces.browser.IBrowserRequest"
 factory=".picker.RandomHeaderAnimationPicker"
 />

Corresponding query code, to look up an adapter implementing the interfaces:

from zope.component import getUtility, getAdapter, getMultiAdapter

header implements IHeaderBehavior
doc implements Products.CMFCore.interfaces.IContentish
request implements zope.publisher.interfaces.browser.IBrowserRequest

from Products.CMFCore.interfaces import IContentish
from zope.publisher.interfaces.browser import IBrowserRequest

self.assertTrue(IHeaderBehavior.providedBy(header))
self.assertTrue(IContentish.providedBy(doc))
self.assertTrue(IBrowserRequest.providedBy(self.portal.REQUEST))

Throws exception if not found
picker = getMultiAdapter((header, doc, self.portal.REQUEST), IHeaderAnimationPicker)

Note

You cannot get adapters on module-level code during import, as the Zope
Component Architecture is not yet initialized.

Listing adapter registers

The following code checks whether the IHeaderBehavior adapter is
registered correctly:

from zope.component import getGlobalSiteManager
sm = getGlobalSiteManager()

registrations = [a for a in sm.registeredAdapters() if a.provided == IHeaderBehavior]
self.assertEqual(len(registrations), 1)

Alternative listing adapters

Getting all multi-adapters (context, request):

from zope.component import getAdapters
adapters = getAdapters((context, request), provided=Interface)

Warning

This does not list locally-registered adapters such as Zope views.

Local adapters

Local adapters are effective only inside a certain container, such as a
folder. They use five.localsitemanager to register themselves.

	http://opkode.net/media/blog/schema-extending-an-object-only-inside-a-specific-folder

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Utilities

Description

Utility design pattern in Zope 3 allows easily overridable singleton class instances
for your code.

	Introduction
	Local and global utilities

	Registering a global utility

	Registering a local utility

	Overriding utility

	Getting a utility

	Getting all named utilities of one interface

	Unregistering utilities

	Removing persistent local utilities

Introduction

	Utility classes provide site-wide utility functions.

	They are registered by marker interfaces.

	Site customization logic or add-on products can override utilities for
enhanced or modified functionality

	Utilities can be looked up by name or interface

	Compared to "plain Python functions", utilities provide the advantage of
being plug-in points without need of
monkey-patching.

Read more in

	zope.component documentation [http://docs.zope.org/zope.component/].

Local and global utilities

Utilities can be

	global - registered during Zope start-up

	local - registered during add-on installer for a certain site/content item

Local utilities are registered to persistent objects.
The context of local utilities is stored in a thread-local variable which is set
during traversal. Thus, when you ask for local utilities, they usually
come from a persistent registry set up in the Plone site root object.

Global utilities are registered in ZCML and affect all Zope application
server and Plone site instances.

Some hints:

<Moo^_^> what's difference between gsm.queryUtility() (global site manager) and zope.component.queryUtility()
<agroszer> Moo^_^, I think gsm... takes the global registrations, z.c.queryUtility respects the current context

Registering a global utility

A utility is constructed when Plone is started and ZCML is read.
Utilities take no constructor parameters. If you need to use parameters
like context or request, consider using views or adapters instead.
Utilities may or may not have a name.

	A utility can be provided by a function: the function is called and it
returns the utility object.

	A utility can be provided by a class: the class __call__() method
itself acts as an factory and returns a new class instance.

ZCML example:

<!-- Register header animation picking logic - override this for your custom logic -->
<utility
 provides="gomobile.convergence.interfaces.IConvergenceMediaFilter"
 factory=".filter.ConvergedMediaFilter"
 />

Python example (named utility):

def registerOnsitePaymentProcessor(processor_class):
 """ """

 # Make OnsitePaymentProcessor class available as utiltiy
 processor = processor_class()
 gsm = component.getGlobalSiteManager()
 gsm.registerUtility(processor, interfaces.IOnsitePaymentProcessor, processor.name)

The utility class "factory" is in its simplest form a class which implements
the interface:

class ConvergedMediaFilter(object):
 """ Helper class to deal with media state of content objects.
 """

 zope.interface.implements(IConvergenceMediaFilter)

 def foobar(x):
 """ An example method """
 return x+2

Class is constructed / factory is run during the ZCML initialization.

To use this class:

from gomobile.convergence.interfaces import IConvergenceMediaFilter

def something():
 filter = getUtility(IConvergenceMediaFilter)
 x = filter.foobar(3)

Registering a local utility

	http://plone.org/documentation/manual/developer-manual/generic-setup/reference/component-registry

	http://davisagli.com/blog/registering-add-on-specific-components-using-z3c.baseregistry

	https://pypi.python.org/pypi/z3c.baseregistry

Warning

Local utilities may be destroyed when the add-on product that
provides them is reinstalled.
Do not use them to store any data.

	http://markmail.org/thread/twuhyldgyje7p723

Overriding utility

If you want to override any existing utility you can re-register the utility
in the overrides.zcml file in your product.

Getting a utility

There are two functions:

	zope.component.getUtility

	will raise an exception if the utility is not found.

	zope.component.queryUtility

	will return None if the utility is not found.

Utility query parameters are passed to the utility class constructor.

Example:

from zope.component import getUtility, queryUtility

context and request are passed to the utility class constructor
they are optional and depend on the utility itself
picker = getUtility(IHeaderAnimationPicker, context, request)

Note

You cannot use getUtility() on Python module level code
during import, as the Zope Component Architecture is not yet initialized
at that time.
Always call getUtility() from an HTTP request end point or after
Zope has been started.

Query local + global utilities:

zope.component.queryUtility() for local utilities, with global fallback.

Query only global utilities:

from zope.app import zapi
gsm = zapi.getGlobalSiteManager()
return gsm.getUtility(IConvergenceMediaFilter)

Warning

Due to Zope component architecture initialization order, you cannot call
getUtility() in module-level Python code.
Module-level Python code is run when the module is being
imported, and Zope components are not yet set up at this point.

Getting all named utilities of one interface

Use zope.component.getUtilitiesFor().

Example:

def OnsitePaymentProcessors(context):
 """ List all registered on-site payment processors.

 Mostly useful for validating form input.

 Vocabulary contains all payment processors, not just active ones.

 @return: zope.vocabulary.SimpleVocabulary
 """

 utilities = component.getUtilitiesFor(interfaces.IOnsitePaymentProcessor)
 for name, instance in utilities:
 pass

Unregistering utilities

	http://www.muthukadan.net/docs/zca.html#unregisterutility

Removing persistent local utilities

	http://plone.org/documentation/kb/manually-removing-local-persistent-utilities

	http://blog.fourdigits.nl/removing-a-persistent-local-utility

	http://blog.fourdigits.nl/removing-a-persistent-local-utility-part-ii

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

ZCML

Description

What Plone programmers should know about ZCML.

	Introduction

	ZCML workflow

	Overrides

	Specify files and code from another package

	Conditionally run ZCML
	Examples

Introduction

ZCML stands for the Zope Configuration Mark-up Language. It is an
XML-based language used to extend and plug into systems based on the Zope
Component Architecture (ZCA).

It provides:

	conflict resolution (e.g. two plug-ins cannot overlap);

	extensible syntax based on namespaces.

Downsides of ZCML are:

	it is cumbersome to write by hand;

	lack of end-user documentation.

Plone uses ZCML to:

	register components with various places in the system, both core and
add-ons.

Note

Everything you can do in ZCML can also be done in Python code.

More info:

	ZCML reference [http://docs.zope.org/zope3/ZCML/@@staticmenu.html] (does not include Plone specific directives)

	http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html

ZCML workflow

Each Plone component (core, add-on) has a base configure.zcml in the
package root. This ZCML file can include additional nested
configuration files using the <include> directive.

	ZCML is always interpreted during Plone start-up.

	Your unit test may need to
manually include ZCML.

	Funny exception error messages occur if Plone is started in the
production mode and ZCML was not properly read for all the packages

When Plone is started all ZCML files are read.

	New way: Python egg setup.py file contains a
autoinclude [http://plone.org/products/plone/roadmap/247]
hint and is picked up automatically when all the packages are scanned.

	Old way: ZCML reference must be manually added to the zcml = section
in buildout.cfg

If ZCML contains errors
Plone does not start up in the foreground

Overrides

Besides layer overrides, ZCML provides more hardcore
ways to override things in buildout.
These overrides can also override utilities etc. and overrides take effect
during ZCML parsing, not when site is run.

	Create overrides.zcml file in your egg to the same folder as configure.zcml

	Syntax is 100% same as in configure.zcml

	Restart Plone.

Note

Before Plone 3.3, ZCML directives could not be automatically picked up from
eggs. To make Plone pick up the directions in overrides.zcml, you'd
have to add this line in buildout.cfg:

zcml =
 ...
 myegg-overrides

Since Plone 3.3, the z3c.autoinclude plugin can do this
(http://plone.org/products/plone/roadmap/247/).

Specify files and code from another package

If you ever find yourself needing to use a template
from another package, you can do so with using the
configure tag which will then run the block of ZCML
in the context of that package.

Here is an example of defining portlet manager to be
defined in another manager:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="my.package">

 <!-- Moved viewlet registration -->
 <configure package="Products.ContentWellPortlets">
 <browser:viewlet
 name="contentwellportlets.portletsabovecontent"
 class="Products.ContentWellPortlets.browser.viewlets.PortletsAboveViewlet"
 manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle"
 layer="Products.ContentWellPortlets.browser.interfaces.IContentWellPortlets"
 permission="zope2.View"
 template="browser/templates/portletsabovecontent.pt"
 />
 </configure>

</configure>

Conditionally run ZCML

You can conditionally run ZCML if a certain package or feature is
installed.

First, include the namespace at the top of the ZCML file:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:zcml="http://namespaces.zope.org/zcml"
 i18n_domain="my.package">
....

Examples

conditionally run for package:

<include zcml:condition="installed some.package" package=".package" />
<include zcml:condition="not-installed some.package" package=".otherpackage" />

conditionally run for feature:

<include zcml:condition="have plone-4" package=".package" />
<include zcml:condition="not-have plone-4" package=".otherpackage" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Add-on installation and export framework: GenericSetup

Description

GenericSetup is a framework to modify the Plone site during add-on
product installation and uninstallation. It provides XML-based rules
to change the site settings easily.

	Introduction

	Creating a profile

	Add-on-specific issues

	Listing available profiles

	Installing a profile
	PloneTestCase.setupPloneSite

	Manually

	Upgrade steps

	Uninstall profile

	Dependencies

	Custom installer code (setuphandlers.py)

	Overriding import step order
	Controlling the import step execution order

	Upgrade steps
	Increment profile version

	Add upgrade step

	Add upgrade code

	Add-on product appears twice in the installer list

	Preventing uninstall

	Plone GenericSetup Reference
	portlets.xml

	viewlets.xml

	cssregistry.xml

	jsregistry.xml

	kssregistry.xml

	Resource Registries

	Content Generation

	Generic Setup files
	sharing.xml

	tinymce.xml

	propertiestool.xml

	metadata.xml

	actions.xml

	skins.xml

	workflows.xml

	repositorytool.xml

	contentrules.xml

	pluginregistry.xml

	Best Practices

Introduction

GenericSetup is an XML-based way to import and export Plone site configurations.

It is mainly used to prepare the Plone site for add-on products, by:

	registering CSS files,

	registering Javascript files,

	setting various properties,

	registering portlets,

	registering portal_catalog search query indexes,

	...and so on...

GenericSetup is mostly used to apply add-on-specific changes to the site
configuration, and to enable add-on-specific behavior when the add-on
installer is run.

GenericSetup XML files are usually in a profiles/default folder inside
the add-on product.

All run-time configurable items, like viewlets order through
/@@manage-viewlets page, are made repeatable using GenericSetup profile
files.

You do not need to hand-edit GenericSetup profile files.
You can always change the configuration options through Plone
or using the Zope Management Interface. Then you can export the resulting
profile as an XML file, using the Export tab in the portal_setup ZMI
tool.

Directly
editing XML profile files does not change anything on the site, even after
Zope restart. This is because run-time configurable items are stored in the
database. If you edit profile files, you need reimport edited files using
the portal_setup tool or rerun the add-on product installer in Plone
control panel. This import will read XML files and change Plone database
accordingly.

Note

Difference between ZCML and GenericSetup

ZCML changes affect loaded Python code in
all sites inside Zope whereas
GenericSetup XML files affect only one Plone site and its database.
GenericSetup XML files are always database changes.

Relationship between ZCML and site-specific behavior is usually done
using layers. ZCML
directives, like viewlets and views, are registered
to be active on a certain layer only using layer
attribute. When GenericSetup XML is imported
through portal_setup, or the product add-on installer is
run for a Plone site, the layer is activated for the
particular site only, enabling all views registered
for this layer.

Note

The metadata.xml file (add-on dependency and version
information) is read during Plone start-up.
If this file has problems your add-on might not appear in the installer control panel.

	GenericSetup tutorial [http://plone.org/documentation/tutorial/genericsetup]

	GenericSetup product page [https://pypi.python.org/pypi/Products.GenericSetup/1.4.5].

	Source code [http://svn.zope.org/Products.GenericSetup/trunk/Products/GenericSetup/README.txt?rev=87436&view=auto].

Todo

should the link be specifically to rev=87436?

Creating a profile

You use <genericsetup> directive in your add-on product's configure.zcml.
The name for the default profile executed by the Plone add-on installer
is "default". If you need different profiles for e.g. unit testing
you can declare them here.

Profile XML files go in the profiles/default folder inside your add-on
product.

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="gomobile.mobile">

 <genericsetup:registerProfile
 name="default"
 title="Plone Go Mobile"
 directory="profiles/default"
 description='Mobile CMS add-on'
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

Add-on-specific issues

Add-on products may contain:

	A default GenericSetup XML profile which is automatically run when the
product is installed using the quick-installer. The profile name is
"default".

	Other profiles which the user may install using the portal_setup Import tab, or which can be manually enabled for unit tests.

	An "Import various" step, which runs Python code every time the GenericSetup XML profile is installed.

For more information about custom import steps, see:

	http://n2.nabble.com/indexing-of-content-created-by-Generic-Setup-tp4454703p4454703.html

Listing available profiles

Example:

Run the default quick installer profile
setup_tool = self.portal.portal_setup

profiles = setup_tool.listProfileInfo()
for profile in profiles:
 print str(profile)

Results:

{'product': 'PluggableAuthService', 'description': 'Content for an empty PAS (plugins registry only).', 'for': <InterfaceClass Products.PluggableAuthService.interfaces.authservice.IPluggableAuthService>, 'title': 'Empty PAS Content Profile', 'version': 'PluggableAuthService-1.5.3', 'path': 'profiles/empty', 'type': 1, 'id': 'PluggableAuthService:empty'}
{'product': 'Products.CMFDefault', 'description': u'Profile for a default CMFSite.', 'for': <InterfaceClass Products.CMFCore.interfaces._content.ISiteRoot>, 'title': u'CMFDefault Site', 'version': 'CMF-2.1.1', 'path': u'profiles/default', 'type': 1, 'id': u'Products.CMFDefault:default'}
{'product': 'Products.CMFPlone', 'description': u'Profile for a default Plone.', 'for': <InterfaceClass Products.CMFPlone.interfaces.siteroot.IPloneSiteRoot>, 'title': u'Plone Site', 'version': u'3.1.7', 'path': u'/home/moo/sits/parts/plone/CMFPlone/profiles/default', 'type': 1, 'id': u'Products.CMFPlone:plone'}
{'product': 'Products.Archetypes', 'description': u'Extension profile for default Archetypes setup.', 'for': None, 'title': u'Archetypes', 'version': u'1.5.7', 'path': u'/home/moo/sits/parts/plone/Archetypes/profiles/default', 'type': 2, 'id': u'Products.Archetypes:Archetypes'}
...

Installing a profile

This is usually unit test specific question how to enable certain add-ons for unit testing.

PloneTestCase.setupPloneSite

See Running add-on installers and extensions profiles for unit tests.

Manually

You might want to install profiles manually if they need to be enabled only for certain tests.

The profile name is in the format profile-${product name}:${profile id}

Unit testing example:

Run the extended profile which will create email_catalog
setup_tool.runAllImportStepsFromProfile('profile-betahaus.emaillogin:exdended')

Upgrade steps

If you need to migrate data or settings on new add-on versions

	http://stackoverflow.com/questions/15316583/how-to-define-a-procedure-to-upgrade-an-add-on

Uninstall profile

For the theory, see:
http://blog.keul.it/2013/05/how-to-make-your-plone-add-on-products.html

For an example, see the collective.pdfpeek source code [http://svn.plone.org/svn/collective/collective.pdfpeek/trunk/collective/pdfpeek/profiles/].

Dependencies

GenericSetup profile can contain dependencies to other add-on product installers and profiles.

	More information about GenericSetup dependencies [http://plone.org/products/plone/roadmap/195/].

For example, if you want to declare dependency to collective.basket add-on product, so that it
is automatically installed when your add-on installed you can use the declaration below.
This way, you can be sure that all layers, portlets, etc. features which require database changes
are usable from collective.basket add-on products when your add-on product is run.

metadata.xml:

<?xml version="1.0"?>
<metadata>
 <version>1000</version>
 <dependencies>
 <dependency>profile-collective.basket:default</dependency>
 </dependencies>
</metadata>

collective.basket declares the profile in its configure.zcml:

<genericsetup:registerProfile
 name="default"
 title="collective.basket"
 directory="profiles/default"
 description='Collector portlet framework'
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

Warning

Unlike other GenericSetup XML files,
metadata.xml is read on the start-up and this read is cached.
Always restart Plone after editing metadata.xml.
If your metadata.xml file contains syntax errors
or dependencies to a missing or non-existent product
(e.g. due to a typo in a name) your add-on will disappear from the
installation control panel.

Note

The Products.* Python namespace needs to declare generic setup
dependencies specially:
You actually do not mention Products.xxx space.

To declare dependency to Products.Carousel:

<?xml version="1.0"?>
<metadata>
 <version>1000</version>
 <!-- Install Products.Carousel on the site when this add-on is installed -->
 <dependencies>
 <dependency>profile-Carousel:default</dependency>
 </dependencies>
</metadata>

Custom installer code (setuphandlers.py)

Besides out-of-the-box XML steps which easily provide both install and uninstall,
GenericSetup provides a way to run a custom Python code when your
add-on product is installed and uninstalled.
This is not very straightforward process, though.

The best practice is to create a setuphandlers.py file
which contains function setupVarious() which runs required
Python code to make changes to Plone site object.
This function is registerd as a custom genericsetup:importStep
in XML.

Note

When you do custom importSteps, remember to write uninstallation
code as well.

However, the trick is that all GenericSetup import steps, including
your custom step, are run for every add-on product
when they are installed. Thus, if your need to run
code which is specific during your add-on install only
you need to use a marker text file which is checked by GenericSetup
context.

Also you need to register this custom import step in configure.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup">

 <!-- Register the import step -->
 <genericsetup:importStep
 name="your.package"
 title="your.package special import handlers"
 description=""
 handler="your.package.setuphandlers.setupVarious"
 />

</configure>

setuphandlers.py example

__docformat__ = "epytext"

def runCustomCode(site):
 """ Run custom add-on product installation code to modify Plone site object and others

 @param site: Plone site
 """

def setupVarious(context):
 """
 @param context: Products.GenericSetup.context.DirectoryImportContext instance
 """

 # We check from our GenericSetup context whether we are running
 # add-on installation for your product or any other proudct
 if context.readDataFile('your.package.marker.txt') is None:
 # Not your add-on
 return

 portal = context.getSite()

 runCustomCode(portal)

And add a dummy text file
your.package/your/package/profiles/default/your.package.marker.txt:

This text file can contain any content - it just needs to be present

More information

	http://keeshink.blogspot.com/2009/02/creating-portal-content-in.html

	http://maurits.vanrees.org/weblog/archive/2009/12/catalog (unrelated, but contains pointers)

Overriding import step order

You need import_steps.xml.

More information

	http://plone.293351.n2.nabble.com/Overriding-import-step-order-td2189638.html

	http://dev.communesplone.org/trac/browser/communesplone/urban/trunk/profiles/default/import_steps.xml?rev=5652

Controlling the import step execution order

	http://plone.293351.n2.nabble.com/indexing-of-content-created-by-Generic-Setup-td4454703.html

Upgrade steps

You can define upgrade steps to run code only when someone upgrades your
product from version x to y.

As an example, let's say that the new version of YOUR.PRODUCT defines a
price field on a content type MyType to be a string, but previously
(version 1.1. and earlier) it was a float. Code that uses this field and
assumes it to be a float will break after the upgrade, so you'd like to
automatically convert existing values for the field to string.

(Obviously, you could do this very quickly in a simple script, but having a
GenericSetup upgrade step means non-technical people can do it as well. As it
turns out, once you have the script, it's easy to put its code in an upgrade
step.)

Increment profile version

First increase the number of the version in the profiles/default/metadata.xml. This version
number should be an integer. Package version are different because they
add sens like the status of the addon: is it stable, is it in dev, in beta,
which branch it is. A profile version indicate only that you have to migrate
data in the database.

Add upgrade step

Next we add an upgrade step:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="YOUR.PRODUCT">

 <genericsetup:upgradeStep
 title="Convert Price to strings"
 description="Price was previously a float field, it should be converted to string"
 source="1000"
 destination="1100"
 handler="YOUR.PRODUCT.upgrades.convert_price_to_string"
 sortkey="1"
 profile="YOUR.PRODUCT:default"
 />

</configure>

	You can use a wildcard character for source to indicate an upgrade for any
previous version. To run the upgrade step only when upgrading from a specific
version, use that version's number.

	A sortkey can be used to indicate the order in which upgrade steps are
run.

Add upgrade code

The code for the upgrade method itself is best placed in a upgrades.py module:

import logging
PROFILE_ID='profile-YOUR.PRODUCT:default'

def convert_price_to_string(context, logger=None):
 """Method to convert float Price fields to string.

 When called from the import_various method, 'context' is
 the plone site and 'logger' is the portal_setup logger.

 But this method will be used as upgrade step, in which case 'context'
 will be portal_setup and 'logger' will be None.

 """
 if logger is None:
 # Called as upgrade step: define our own logger.
 logger = logging.getLogger('YOUR.PRODUCT')

 # Run the catalog.xml step as that may have defined new metadata
 # columns. We could instead add <depends name="catalog"/> to
 # the registration of our import step in zcml, but doing it in
 # code makes this method usable as upgrade step as well.
 # Remove these lines when you have no catalog.xml file.
 setup = getToolByName(context, 'portal_setup')
 setup.runImportStepFromProfile(PROFILE_ID, 'catalog')

 catalog = getToolByName(context, 'portal_catalog')
 brains = catalog(portal_type='MyType')
 count = 0
 for brain in brains:
 current_price = brain.getPrice
 if type(current_price) != type('a string'):
 voorstelling = brain.getObject()
 voorstelling.setPrice(str(current_price))
 voorstelling.reindexObject()
 count += 1

 setup.runImportStepFromProfile(PROFILE_ID, 'catalog')
 logger.info("%s fields converted." % count)

Other examples of using generic setup to run import steps are below

If you want to call types.xml use typeinfo:

setup.runImportStepFromProfile(PROFILE_ID, 'typeinfo')

If you want to call workflow.xml use workflow:

setup.runImportStepFromProfile(PROFILE_ID, 'workflow')

The ids of the various default import steps are defined in the import_steps.xml of CMFDefault.
visit it at http://svn.zope.org/CMF/branches/2.1/CMFDefault/profiles/default/import_steps.xml?logsort=date&rev=78624&view=markup

XXX Fix the link above

After restarting Zope, your upgrade step should be visible in the ZMI: The
portal_setup tool has a tab Upgrades. Select your product profile to see
which upgrade steps Zope knows about for your product.

You can create many upgrade steps under one migration. This is useful when
you want to have the ability to re-run some parts of the migration and make
your code more re-useable (for example cook css resource of your theme).

Here is an example of many upgrade steps you can have to achieve on a
site policy:

<genericsetup:upgradeSteps
 source="3900"
 destination="4000"
 profile="project.policy:default">

 <genericsetup:upgradeStep
 title="Upgrade addons"
 description="Install and upgrades add-ons"
 handler=".v4.upgrade_addons"
 />

 <genericsetup:upgradeStep
 title="Remove LDAP PAS Plugin"
 description="Execute this upgrade after the plonesite upgrade"
 handler=".v4.upgrade_pas"
 />

 <genericsetup:upgradeStep
 title="Upgrade resources"
 description="Update javascripts and css"
 handler=".v4.upgrade_resources"
 />

 <genericsetup:upgradeStep
 title="Apply new steps of of policy"
 description=""
 handler=".v4.upgrade_of_policy"
 />

 <genericsetup:upgradeStep
 title="upgrade rules"
 description="collective.contentrules.mail is deprecated, replace with default"
 handler=".v4.upgrade_contentrules"
 />

 <genericsetup:upgradeStep
 title="upgrade views"
 description="get ride of dot in viewname zone1.html -> zone1_view"
 handler=".v4.upgrade_views"
 />

 <genericsetup:upgradeStep
 title="remove instance of deprecated portlets"
 description=""
 handler=".v4.remove_portlets"
 />

</genericsetup:upgradeSteps>

Add-on product appears twice in the installer list

This happens if you are developing your own add-on and keep changing things.
You have an error in your add-on product ZCML code which causes
portal_quickinstaller to have two entries.

More information

	http://plone.293351.n2.nabble.com/Product-twice-in-quickinstaller-td5345492.html#a5345492

Preventing uninstall

You might want to prevent your add-on product uninstall for some reason.

Example:

from zExceptions import BadRequest

def uninstall(self, reinstall):
 if reinstall == False:
 raise BadRequest('This product cannot be uninstalled!')

Note

This example if for Extensions/install.py, old Plone 2 way of writing installers

Plone GenericSetup Reference

portlets.xml

When creating custom portlet managers, you will need to extend
existing portlets to be addable to that manager:

<portlet extend="True" addview="portlets.Calendar">
 <for interface="my.package.interfaces.ICustomPortletManager"/>
</portlet>

You can also change the title and description of the portlet with the
extend attribute:

<portlet
 extend="True"
 title="Dates of inquisition"
 description="Nobody expects the SpanishInquisition!"
 addview="portlets.Calendar"/>

Remove a portlet definition using the 'remove' attribute so that it can
no longer be added via @@manage-portlets. This does not remove
any assignments:

<portlet remove="True" addview="portlets.Calendar"/>

viewlets.xml

The following examples would all be added into the viewlets.xml file.

Re-order viewlets:

<order manager="plone.portaltop" skinname="Plone
Default">
 <viewlet name="plone.header"/>
 <viewlet name="plone.personal_bar"/>
</order>

Move a viewlet using insert-before and insert-after (this will only affect
the skinname that is specified, in this case 'My Custom Theme'):

<order manager="plone.portalheader" skinname="My
Custom Theme" based-on="Plone Default">
 <viewlet name="plone.global_sections" insertbefore="*"/>
 <viewlet name="plone.site_actions" insertafter="plone.searchbox"/>
</order>

Hide a viewlet (here we hide the colophon for 'My Custom Theme'):

<hidden manager="plone.portalfooter" skinname="My
Custom Theme">
 <viewlet name="plone.colophon"/>
</hidden>

Unhide a specific viewlet using the remove attribute:

<hidden manager="plone.portalfooter" skinname="My
Custom Theme">
 <viewlet name="plone.colophon" remove="True"/>
</hidden>

Unhide all viewlets for a given manager using the purge attribute:

<hidden manager="plone.portalfooter" skinname="My
Custom Theme" purge="True"/>

Hide a viewlet for all skins:

<hidden manager="plone.portalfooter" skinname="*">
 <viewlet name="plone.colophon"/>
</hidden>

Pro Tip: Using skinname="*" currently only works if the manager has
already been registered in each skin (see Plone Trac ticket #7166)

cssregistry.xml

see Resource Registries

jsregistry.xml

see Resource Registries

kssregistry.xml

see Resource Registries

Resource Registries

Content Generation

Filesystem exporter / importer adapters.

	
class Products.GenericSetup.content.FolderishExporterImporter(context)

	Tree-walking exporter / importer for "folderish" types.

Folderish instances are mapped to directories within the 'structure'
portion of the profile, where the folder's relative path within the site
corresponds to the path of its directory under 'structure'.

The subobjects of a folderish instance are enumerated in the '.objects'
file in the corresponding directory. This file is a CSV file, with one
row per subobject, with the following wtructure:

"<subobject id>","<subobject portal_type>"

Subobjects themselves are represented as individual files or
subdirectories within the parent's directory.

	
export(export_context, subdir, root=False)

	See IFilesystemExporter.

	
import_(import_context, subdir, root=False)

	See IFilesystemImporter.

	
listExportableItems()

	See IFilesystemExporter.

Generic Setup files

sharing.xml

The sharing.xml file let you add custom roles to the sharing tab.
For reference, visit: Local Roles.

tinymce.xml

propertiestool.xml

In the propertiestool.xml you can change all values of the portal_properties.

take a look at: http://plone.org/documentation/manual/developer-manual/generic-setup/reference/properties-ref

metadata.xml

actions.xml

skins.xml

workflows.xml

DCWorkflow export / import support.

$Id: exportimport.py 121521 2011-05-03 13:13:36Z erico_andrei $

repositorytool.xml

	
class Products.CMFEditions.exportimport.repository.RepositoryToolXMLAdapter(context, environ)

	Mode in- and exporter for RepositoryTool.

contentrules.xml

pluginregistry.xml

This configures PAS plugin orderings and active plugins. It isn't part of Plone
itself, it is used by other frameworks and can be used in Plone with a little
extra configuration.

First, you need a monkey patch in your __init__.py` to point the importer at
where Plone keeps its PAS plugins.

from Products.PluginRegistry import exportimport
from Products.PluginRegistry.interfaces import IPluginRegistry
def getRegistry(site):
 return IPluginRegistry(site.acl_users.plugins)
exportimport._getRegistry = getRegistry

Secondly, code to handle the import step needs to be activated in Plone:

<genericsetup:importStep
 name="PAS Plugin Registry"
 title="PAS Plugin Registry"
 description=""
 handler="Products.PluginRegistry.exportimport.importPluginRegistry"
 />

Now you can use pluginregistry.xml in your generic setup profiles:

<?xml version="1.0"?>
<plugin-registry>
 <plugin-type id="IAuthenticationPlugin"
 title="authentication"
 description="Authentication plugins are responsible for validating credentials generated by the Extraction Plugin."
 interface="Products.PluggableAuthService.interfaces.plugins.IAuthenticationPlugin">
 <plugin id="source_users"/>
 <plugin id="session"/>
 <plugin id="sql"/>
 </plugin-type>

 <plugin-type id="IPropertiesPlugin" title="properties"
 description="Properties plugins generate property sheets for users."
 interface="Products.PluggableAuthService.interfaces.plugins.IPropertiesPlugin">
 <plugin id="sql" />
 <plugin id="mutable_properties"/>
 </plugin-type>

 <plugin-type id="IRolesPlugin" title="roles"
 description="Roles plugins determine the global roles which a user has."
 interface="Products.PluggableAuthService.interfaces.plugins.IRolesPlugin">
 <plugin id="portal_role_manager"/>
 <plugin id="sql"/>
 </plugin-type>

 <plugin-type id="IUserEnumerationPlugin"
 title="user_enumeration"
 description="Enumeration plugins allow querying users by ID, and searching for users who match particular criteria."
 interface="Products.PluggableAuthService.interfaces.plugins.IUserEnumerationPlugin">
 <plugin id="source_users"/>
 <plugin id="mutable_properties"/>
 <plugin id="sql"/>
 </plugin-type>

 <plugin-type id="IUserAdderPlugin" title="user_adder"
 description="User Adder plugins allow the Pluggable Auth Service to create users."
 interface="Products.PluggableAuthService.interfaces.plugins.IUserAdderPlugin">
 </plugin-type>
</plugin-registry>

Best Practices

When importing items such as property sheets, make sure not to
override other profile settings by setting the purge attribute to False.
This will add the items listed to the property instead of resetting the
property. Example:

<property name="metaTypesNotToList" type="lines" purge="False">
 <element value="File"/>
 <element value="Image"/>
</property>

Only use the configuration that you need. When you export your site's
configuration, it will include things that you don't need. For example,
if you needed to change only the 'Allow anonymous to view about'
property, this is what your propertiestool.xml would look like:

<?xml version="1.0"?>
<object name="portal_properties" meta_type="Plone Properties Tool">
 <object name="site_properties" meta_type="Plone Property Sheet">
 <property name="allowAnonymousViewAbout" type="boolean">True</property>
 </object>
</object

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Events

Description

How to add event hooks to your Plone code to perform actions when
something happens on a Plone site.

	Introduction

	Registering an event handler
	Example: Register an event-handler on your contenttype's creation

	Subscribing using ZCML

	Subscribing using Python

	Firing an event

	Event types
	Creation events

	Modified events

	Delete events

	Copy events

	Workflow events

	Zope startup events

	Asynchronous event handling

	See also

Introduction

This document briefly discusses event handling using the zope.event module.
The Zope Component Architecture's
zope.event package [https://pypi.python.org/pypi/zope.event] is
used to manage subscribeable events in Plone.

Some of the notable characteristics of the Plone event system are:

	it is simple;

	subscriber calling order is not modifiable — you cannot set the order
in which event handlers are called;

	events cannot be cancelled — all handlers will always get the event;

	event handlers cannot have return values;

	exceptions raised in an event handler will interrupt the request
processing.

Registering an event handler

Plone events can be scoped:

	globally (no scope)

	per content type

Example: Register an event-handler on your contenttype's creation

In your.product/your/product/configure.zcml insert:

<subscriber
 for=".interfaces.IMyContentTypeClass
 zope.lifecycleevent.IObjectCreatedEvent"
 handler=".your_python_file.your_method"
 />

The first line defines to which interface you want to bind the execution of your code, which means here,
that the code will only be executed if the object is one of your contenttype's.
If you want this to be interface-agnostic, insert an asterix as a wildcard instead.

The second line defines the event on which this should happen, which is here 'IObjectCreatedEvent' -- for Archetypes you should use 'Products.Archetypes.interfaces.IObjectInitializedEvent' instead.
For more available possible events to be used as a trigger, see event handler documentation

The third line gives the path to the script that is supposed to be executed.

Create your.product/your/product/your_python_file.py and insert:

def your_method(object, event):

 # do sth with your created contenttype

	For Dexterity-contenttype's and additional ZOPE-Illumination see also:

	event handler documentation

Subscribing using ZCML

Subscribing to a global event using ZCML.

<subscriber
 for="Products.PlonePAS.events.UserLoggedOutEvent"
 handler=".smartcard.clear_extra_cookies_on_logout"
 />

For this event, the Python code in smartcard.py would be:

def clear_extra_cookies_on_logout(event):
 # What event contains depends on the
 # triggerer of the event and event class
 request = event.object.REQUEST
 ...

Custom event example subscribing to all IMyEvents when fired by
IMyObject:

<subscriber
 for=".interfaces.IMyObject
 .interfaces.IMyEvent"
 handler=".content.MyObject.myEventHandler"
 />

Life cycle events example:

<subscriber
 zcml:condition="installed zope.lifecycleevent"
 for=".interfaces.ISitsPatient
 zope.lifecycleevent.IObjectModifiedEvent"
 handler=".content.SitsPatient.objectModified"
 />

Subscribing using Python

The following subscription is valid through the process life cycle. In unit
tests, it is important to clear test event handlers between the test steps.

Example:

import zope.component

def my_event_handler(context, event):
 """
 @param context: Zope object for which the event was fired. Usually this is a Plone content object.

 @param event: Subclass of event.
 """
 pass

gsm = zope.component.getGlobalSiteManager()
gsm.registerHandler(my_event_handler, (IMyObject,IMyEvent))

Firing an event

Use zope.event.notify() to fire event objects to their subscribers.

Example of how to fire an event in unit tests:

import zope.event
from plone.postpublicationhook.event import AfterPublicationEvent

event = AfterPublicationEvent(self.portal, self.portal.REQUEST)
zope.event.notify(event)

Event types

Creation events

	Products.Archetypes.interfaces.IObjectInitializedEvent

	is fired for an Archetypes-based object when it's being initialised;
i.e. when it's being populated for the first time.

	Products.Archetypes.interfaces.IWebDAVObjectInitializedEvent

	is fired for an Archetypes-based object when it's being initialised via
WebDAV.

	zope.lifecycleevent.IObjectCreatedEvent

	is fired for all Zopeish objects when they are being created (they don't
necessarily need to be content objects).

Warning

Archetypes and Zope 3 events might not be compatible with each other.
Please see links below.

Other resources:

	http://plone.org/documentation/manual/developer-manual/archetypes/other-useful-archetypes-features/how-to-use-events-to-hook-the-archetypes-creation-process

	http://n2.nabble.com/IObjectInitializedEvent-tp4784897p4784897.html

Modified events

Two different content event types are available and might work differently
depending on your scenario:

	Products.Archetypes.interfaces.IObjectEditedEvent

	called for Archetypes-based objects that are not in the creation stage
any more.

Note

Products.Archetypes.interfaces.IObjectEditedEvent is fired after
reindexObject() is called. If you manipulate your content object in a
handler for this event, you need to manually reindex new values, or the
changes will not be reflected in the portal_catalog.

	zope.lifecycleevent.IObjectModifiedEvent

	called for creation-stage events as well, unlike the previous event type.

	Products.Archetypes.interfaces.IWebDAVObjectEditedEvent

	called for Archetypes-based objects when they are being edited via WebDAV.

	Products.Archetypes.interfaces.IEditBegunEvent

	called for Archetypes-based objects when an edit operation is begun.

	Products.Archetypes.interfaces.IEditCancelledEvent

	called for Archetypes-based objects when an edit operation is canceled.

Delete events

Delete events can be fired several times for the same object.
Some delete event transactions are rolled back.

	Read more about Delete events in this discussion [http://plone.293351.n2.nabble.com/Event-on-object-deletion-td3670562.html].

Copy events

	zope.lifecycleevent.IObjectCopiedEvent

	is triggered when an object is copied.

Workflow events

	Products.DCWorkflow.interfaces.IBeforeTransitionEvent

	is triggered before a workflow transition is executed.

	Products.DCWorkflow.interfaces.IAfterTransitionEvent

	is triggered after a workflow transition has been executed.

The DCWorkflow events are low-level events that can tell you a lot about the
previous and current states.

	Products.CMFCore.interfaces.IActionSucceededEvent

	this is a higher level event that is more commonly used to react after a
workflow action has completed.

Zope startup events

	zope.processlifetime.IProcessStarting

	is triggered after component registry has been loaded and Zope is
starting up.

	zope.processlifetime.IDatabaseOpened

	is triggered after the main ZODB database has been opened.

Asynchronous event handling

	http://stackoverflow.com/questions/15875088/running-plone-subscriber-events-asynchronously

See also

	https://pypi.python.org/pypi/zope.event/3.4.1

	http://apidoc.zope.org/++apidoc++/ZCML/http_co__sl__sl_namespaces.zope.org_sl_zope/subscriber/index.html

	zope.component.registry

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Component architecture »

Customizing Plone

	Introduction

	Through-the-web changes

	Through the code changes

Introduction

Plone can be customized in two different ways,
depending on which kind of component you are trying to change:

	Through-the-web.

	By add-on products.

You should never edit files directly in an egg folder.
Instead you usually create a customized version of the
item you wish to modify and then configure Plone to use your customized
version instead of the stock one.

Through-the-web changes

Minor configuration changes can be done through the web. These
changes are effective immediately and don't require you to write
any code or restart Zope application server. The downside is that
since through-the-web changes don't have a source code "recipe" for
what you did,
the changes are not automatically repeatable.
If you need to do the same changes
for another site again, or you need heavily modify your site, you
need go through manual steps to achieve the same customization.

Possible through-the-web changes are:

	Site settings: E.g. adding/removing content rules [http://plone.org/documentation/how-to/content-rules]

	Showing and hiding viewlets (parts of the page) using @@manage-viewlets

	Exporting and importing parts of the site configuration in portal_setup

	Customizing viewlet templates in portal_view_customization

	Customize portal_skins layer theme files in portal_skins

	Uploading Javascript files, CSS files and images through Zope management
interface and registering using portal_css and portal_javascripts

Through the code changes

To expand Plone using Python, you have to create your own add-on product.
Add-on products are distributed as packaged Python modules called eggs.
The recommended way is to use the paster command to generate an add-on
product skeleton which you can
use as a starting point for your development.
Paster also contains useful subcommands, like addcontent,
which automate various Plone add-on development tasks.

	Another paster tutorial [http://www.unc.edu/~jj/plone/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Javascript

Description

Writing, including and customizing Javascript for Plone add-ons

	Introduction
	Javascript basic tips

	Plone default Javascript libraries

	Creating Javascripts for Plone

	Executing Javascript code on page load

	Registering javascripts to portal_javascripts
	Bundles

	Include Javascript on every page

	Including Javascript for authenticated users only

	Including Javascripts for widgets and other special conditions

	Popup overlays and forms

	Messages and translation

	Passing dynamic settings to Javascripts
	Default passed in variables

	Passing settings on every page

	Passing settings on one page only

	Generating Javascript dynamically

	Upgrading jQuery

	Having multiple jQuery versions (noConflict)

	Loading Javascript files for certain edit views only (to be used with widgets)

	Converting page links to pop-up windows

	AJAX-y view loading
	Loading by page load

	Loading when element becomes visible

	Checking if document is in WYSIWYG edit mode

	Image hovers

	Disabling KSS

Introduction

Javascripts files must be distributed to Plone

	By creating them through-the-web editor in portal_skins.
are stored in ZODB in this case.

	By add-on products using resource folders

Then the Javascript must be registered on the site

	Through-the-web in portal_javascripts in ZMI

	Using GenericSetup jsregistry.xml which
is run (and rerun) when you use the add-on installer in the control panel

Plone Javascripts are managed by resource registry portal_javascripts.
You can find this in Zope Management interface, under your portal root folder.

portal_javascript will automatically

	compress JS files

	merge JS load requests

	determine which files are included on which HTML page

	support IE conditional comments

Javascript basic tips

When using jQuery etc. libraries with Plone write your code so that you pass
the library global reference to your script as a local - this way you can
include several library versions in one codebase.

(function($) {
 $(document).ready(function() {
 ... do stuff here ...
 })
})(jQuery);

Always use DOM ready event before executing your DOM manipulation.

Don't include Javascript inline in HTML code unless you are passing variables from Python to Javascript.

Use JSLint with your code editor and ECMAStrict 5 strict mode to catch common Javascript mistakes (like missing var).

For more Javascript tips see brief introduction to good Javascript practices and JSLint [http://opensourcehacker.com/2011/11/05/javascript-how-to-avoid-the-bad-parts/]

Plone default Javascript libraries

You can use any Javascript library with Plone
after inclusion it to JS registry (see below).

Plone 4.1 ships with

	jQuery

	jQuery tools [http://jquerytools.org/]: Use jQuery Tools for tabs, tooltips, overlays, masking and scrollables.

	jQuery Form Plugin [http://jquery.malsup.com/form/]: Use it for AJAX form input marshaling and submission. Note that jQuery’s built-in form input marshaling is inadequate for many forms as it does not handle submit-button or file-input data.

Also see

	Plone compatible jQuery UI package [http://plone.org/products/collective.js.jqueryui].

	Useful Plone out of the box Javascripts [http://www.sixfeetup.com/blog/2009/7/31/utilize-available-javascript-in-plone-without-knowing-javascript].

Creating Javascripts for Plone

The following ste

	Put ZMI -> portal_javascripts to debug mode

	Include new JS files

	Use ZCML configuration directive resourceFolder to
include static media files in your add-on product

	Put in new Javascript via ZMI upload (you can use Page Template type) to portal_skins/custom folder

	Register Javascript in portal_javascripts

	Do it through-the-web using portal_javascripts ZMI user interface ...or...

	Add profiles/default/jsregistry.xml file to describe Javascript files included with your add-on product

Executing Javascript code on page load

Plone includes JQuery library which has ready()
event handler to run Javascript code when DOM tree
loading is done (HTML is loaded, images and media files
are not necesssarily loaded).

Create following snippet:

jQuery(function($) {
 // TODO: Execute your page manipulating Javascript code here;
 // "jQuery" is aliased to "$"
});

This makes use of the facts that 1) functions passed to jQuery are executed on ready; and 2) jQuery passes
itself to such functions.

Registering javascripts to portal_javascripts

Javascript files need to be registered in order to appear in Plone's <html> <head>
and in the Javascript merge compositions.

Javascripts are registered to portal_javascripts tool using profiles/default/jsregistry.xml GenericSetup
profile file. The following options are available

	id (required): URI from where the Javascript is loaded

	expression empty string or TAL condition which determines whether the file is served to the user.
The files with the same condition are grouped to the same compression bundle. For more information,
see expressions documentation.

	authenticated (Plone 4+) is expression override, which tells
to load the script for authenticated users only

	cookable is merging of Javascript files allowed during the compression

	inline is script server as inline inside <script>...</script> tag

	enabled shortcut to disable some Javascripts

	compression none, safe or full. See full option list from portal_javascripts.

	insert-before and insert-after control the position of the Javascript file
in relation to other served Javascript files

Example:

<?xml version="1.0"?>
<object name="portal_javascripts" meta_type="JavaScripts Registry">
 <javascript enabled="True" expression="" id="++resource++your.product/extra.js"
 authenticated="False" />
</object>

Bundles

There are several compressed Javascript bundles served by Plone.
The process of compressing & merging files to different bundles
is internally called "cooking"

You can examine available bundles in portal_javascripts
Zope Management Interface Tool, on Merged Compositions tab.

Usually the following bundles are served

	Anonymous users (no condition)

	Logged in users (condition: not: portal/portal_membership/isAnonymousUser)

	Visual editor (TinyMCE) related Javascripts

Include Javascript on every page

The following example includes Javascript file intended for anonymous site users.
It is included after toc.js so that the file ends up as the last script
of the compressed JS bundle which is served for all users.

The Javascript file itself is usually yourcompany/app/static/yourjsfile.js
in your add-on product.

It is mapped to URI like:

http://localhost:8080/Plone/++resource++yourcompany.app/yourjsfile.js

by Zope 3 resource subsystem.

Example profiles/default/jsregistry.xml in your add-on product.

<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript
 id="++resource++plonetheme.xxx.scripts/cufon-yui.js"
 cacheable="True" compression="safe" cookable="True"
 enabled="True" expression="" inline="False" insert-after="toc.js"/>
</object>

Note

If <javascript> does not have insert-after or insert-before, the script will end up as the last
of the Javascript registry.

Including Javascript for authenticated users only

The following registers two Javascript files which are aimed
to edit mode and authenticated users. The Javascript are
added to the merge bundle and compressed, so they do not increase
the load time of the page. The files are loaded from portal_skins
(not from resource folder) and can be referred by their direct filename -
Plone resolves portal_skins files magically for the site root and every
folder.

jsregistry.xml:

<?xml version="1.0"?>
<object name="portal_javascripts">

 <javascript
 id="json.js"
 authenticated="True"
 cacheable="True" compression="safe" cookable="True"
 enabled="True" expression="" inline="False" insert-after="tiny_mce.js"/>

 <javascript
 id="orapicker.js"
 authenticated="True"
 cacheable="True" compression="safe" cookable="True"
 enabled="True" expression="" inline="False" insert-after="json.js"/>

</object>

Including Javascripts for widgets and other special conditions

Here is described a way to include Javascript for
certain widgets or certain pages only.

Note

Since Plone loads very heavy Javascripts for logged in users (TinyMCE),
it often makes sense to decrease the count of HTTP requests and
just merge your custom scripts with this bundle instead of trying
to have fine-tuned Javascript load conditions for rare cases.

	Javascripts are processed through portal_javascripts

	A special condition is created in Python code to determine when to include the script or not

	Javascripts are served from a static media folder.

The example here shows how to include a Javascript
if the following conditions are met

	Content type has a certain Dexterity behavior applied on it

	Different files are served for view and edit modes

Note

There is no easy way to currently directly check whether a certain
widget and widget mode is active on a particular view. Thus,
we do some assumptions and checks manually.

jsregistry.xml:

<?xml version="1.0"?>
<object name="portal_javascripts">

 <!-- View mode javascript -->
 <javascript
 id="++resource++yourcompany.app/integration.js"
 authenticated="False"
 cacheable="True" compression="safe" cookable="True"
 enabled="True" expression="context/@@integration_javascript"
 inline="False"
 />

 <!-- Edit mode javascript -->
 <javascript
 id="++resource++yourcompany.app/integration.edit.js"
 authenticated="False"
 cacheable="True" compression="safe" cookable="True"
 enabled="True" expression="context/@@edit_integration_javascript"
 inline="False"
 />

</object>

We create special conditions using Views views.

imports
from Acquisition import aq_inner
from zope.interface import Interface
from Products.Five import BrowserView
from zope.component import getMultiAdapter

from yourcompany.app.behavior.lsmintegration import IYourWidgetIntegration

class IntegrationJavascriptHelper(BrowserView):
 """ Used by portal_javascripts to determine when to include our
 custom Javascript integration code.

 This view is referred from the expression in jsregistry.xml.
 """

 def __call__(self):
 """ Check if we are in a specific content type.

 Check that the Dexterity content type has a certain
 behavior set on it through Dexterity settings panel.

 Alternative, just check for a marker interface here.
 """

 try:
 # Check if a Dexterity behavior is available on the current context object
 # - if it is not, behavior adapter will raise TypeError
 avail = IYourWidgetIntegration(self.context)
 except TypeError:
 return False

 # If called directly from the browser like
 # http://localhost:8080/Plone/integration_javascript
 # will return HTTP 204 No Content

 return True

class EditModeIntegrationJavascriptHelper(IntegrationJavascriptHelper):
 """ Used by portal_javascripts to determine when to include our custom Javascript
 integration code *on edit pages* only.

 Subclass the existing checked and add more limiting conditions.
 """

 def __call__(self):
 """
 @return True: If this template is rendered "Edit view" of the item
 """

 if not IntegrationJavascriptHelper.render(self):
 # We are not even on the correct content type
 return False

 # This is a hacked together as Plone does not provide a real
 # mechanism to separate edit views to other views.
 # We simply check if the current view URI ends with "edit"

 path = self.request.get("PATH_INFO", "")

 if path.endswith("/edit") or path.endswith("/@@edit"):
 return True

 return False

Related ZCML registration:

<browser:page
 name="integration_javascript"
 for="*"
 class=".views.IntegrationJavascriptHelper"
 />

<browser:page
 name="edit_integration_javascript"
 for="*"
 class=".views.EditModeIntegrationJavascriptHelper"
 />

Popup overlays and forms

plone.app.jquerytools provides a “prepOverlay” plugin that makes it easy to create popup overlays to display images or AJAX-loaded content from other pages. It also handles AJAX submission of forms in popups.

The prepOverlay plugin is well-documented at https://pypi.python.org/pypi/plone.app.jquerytools. Many usage examples are available in Products/CMFPlone/skins/plone_ecmascript/popupforms.js, which provides the setup for Plone 4’s standard popup forms.

Messages and translation

JavaScript components should include as few messages as possible. Whenever possible, the messages you display via JavaScript should be drawn from the page.

If that’s not possible, it is your responsibility to assure that the messages you need are translatable.
Our current mechanism for doing that is to include the messages via Products/CMFPlone/browser/jsvariables.py. This will nearly certainly be changed.

Passing dynamic settings to Javascripts

Default passed in variables

Plone passes in some variables, like portal_url to Javascript by default.

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/jsvariables.py

More info

	http://stackoverflow.com/questions/12530308/accessing-portal-url-in-javascript-in-plone/12530378#12530378

Passing settings on every page

Here is described a way to pass data from site or context object to a Javascripts easily.
For each page, we create a <script> section which will include all the options
filled in by Python code.

We create the script tag in <head> section using a Viewlet.

viewlet.py:

-*- coding: utf-8 -*-
"""

 Viewlets related to application logic.

"""

Python imports
import json

Zope imports
from Acquisition import aq_inner
from zope.interface import Interface
from plone.app.layout.viewlets.common import ViewletBase
from zope.component import getMultiAdapter

The generated HTML snippet going to <head>
TEMPLATE = u"""
<script type="text/javascript" class="javascript-settings">
 var %(name)s = %(json)s;
</script>
"""

class JavascriptSettingsSnippet(ViewletBase):
 """ Include dynamic Javascript code in <head>.

 Include some code in <head> section which initializes
 Javascript variables. Later this code can be used
 by various scripts.

 Useful for settings.
 """

 def getSettings(self):
 """
 @return: Python dictionary of settings
 """

 context = aq_inner(self.context)
 portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state')

 # Create youroptions Javascript object and populate in these variables
 return {
 # Pass dynamically allocated site URL to the Javascripts (virtual host monster thing)
 "staticMediaURL" : portal_state.portal_url() + "/++resource++yourcompany.app",
 # Some other example parameters
 "schoolId" : 3,
 "restService" : "http://yourserver.com:8080/rest"
 }

 def render(self):
 """
 Render the settings as inline Javascript object in HTML <head>
 """
 settings = self.getSettings()
 json_snippet = json.dumps(settings)

 # Use Python string template facility to produce the code
 html = TEMPLATE % { "name" : "youroptions", "json" : json_snippet }

 return html

	configure.zcml::

	
	<browser:viewlet

	name="javascriptsettingssnippet"
manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
class=".viewlets.JavascriptSettingsSnippet"
permission="zope2.View"
/>

Passing settings on one page only

Here is an example like above, but is

	Specific to one view and this view provides the JSON code to populate the settings

	Settings are included using METAL slots instead of viewlets

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master">

 <metal:block fill-slot="javascript_head_slot">
 <script tal:replace="structure view/getSetupJavascript" />
 </metal:block>

from Products.Five import BrowserView

class TranslatorMaster(BrowserView):
 """
 Translate content to multiple languages on a single view.
 """

 def getSetupJavascript(self):
 """
 Set some global helpers

 Generate Javascript code to set ``windows.silvupleOptions`` object from ``getJavascriptContextVars()``
 method output.
 """
 settings = {'my': 'settings'}
 json_snippet = json.dumps(settings)

 # Use Python string template facility to produce the code
 html = SETTINGS_TEMPLATE % { "name" : "silvupleOptions", "json" : json_snippet }

 return html

Related ZCML registration:

<browser:page
 name="translatormaster"
 for="*"
 class=".views.TranslatorMaster"
 />

Generating Javascript dynamically

TAL template language is not suitable for non-XML generation.
Use Python string templates.

Don't put dynamically generated javascripts to portal_javascripts registry unless you want to cache them
and they do not differ by the user.

For example, see FacebookConnectJavascriptViewlet

	http://svn.plone.org/svn/collective/mfabrik.like/trunk/mfabrik/like/viewlets.py

Upgrading jQuery

jquery.js lives in Products.CMFPlone portal_skins/plone_3rdparty/jquery.js.
Plone 4.1 ships with compressed jQuery 1.4.4.

Here are instructions to change jQuery version. Please note that this may
break Plone core functionality (tabs, overlays).

These instructions also apply if you want to enable debug version (non-compressed)
jQuery on your site.

	Download new jQuery from http://docs.jquery.com/Downloading_jQuery and save it to your local disk

	In ZMI, go to plone_3rdparty, customize jquery.js

	Upload new jQuery from your hard disk

Having multiple jQuery versions (noConflict)

	http://noenieto.com/blog/having-two-jquery-versions-in-one-plone

Loading Javascript files for certain edit views only (to be used with widgets)

	http://stackoverflow.com/questions/5469844/registering-a-javascript-to-be-loaded-on-edit-view

Converting page links to pop-up windows

plone.app.jquerytools [http://plone.org/products/plone.app.jquerytools]
can convert links, images and forms to AJAX pop-up windows.
Plone 4 uses this e.g. for the login box pop-up functionality.

Below is an example code how you can convert any of the links
on your site to a pop-up window.

Example code

(function($) {

 "use strict";

 /**
 * Convert one front page link to AJAX pop-up
 */
 function linkPopupPage() {
 $(".oma-kalajoki-button a").prepOverlay({
 subtype: 'ajax',
 // part of Plone page going into pop-up dialog content area
 filter: '#content > *'
 });
 }

 $(document).ready(function() {
 linkPopupPage();
 });

})(jQuery);

AJAX-y view loading

Loading by page load

Let's imagine we have this piece of synchronous page template code.
The code is a view page template code which includes another view inside it.

<tal:finnish condition="python:context.restrictedTraverse('@@plone_portal_state').language() == 'fi'">
 <div tal:replace="structure here/productappreciation_view" />
</tal:finnish>

To make it load the view asynchronous, to be loaded with AJAX call when the page loading has been completed, you can do:

<tal:finnish condition="python:context.restrictedTraverse('@@plone_portal_state').language() == 'fi'">

 <div id="comment-placefolder">

 <!-- Display spinning AJAX indicator gif until our AJAX call completes -->

 <p class="loading-indicator">
 <!-- Image is in Products.CMFPlone/skins/plone_images -->
 Loading comments
 </p>

 <!-- Hidden link to a view URL which will render the view containing the snippet for comments -->

 <script>

 // Generate URL to ta view

 jQuery(function($) {

 // Extract URL from HTML page
 var commentURL = $("#comment-placefolder a").attr("href");

 if (commentURL) {
 // Trigger AJAX call
 $("#comment-placefolder").load(commentURL);
 }
 });
 </script>
 </div>

Loading when element becomes visible

Here is another example where more page data is lazily loaded
when the user scrolls down to the page and the item becomes visible.

// Generate URL to ta view

jQuery(function($) {

 // http://remysharp.com/2009/01/26/element-in-view-event-plugin/
 $("#comment-placeholder").bind("inview", function() {

 // This function is executed when the placeholder becomes visible

 // Extract URL from HTML page
 var commentURL = $("#comment-placeholder a").attr("href");

 if (commentURL) {
 // Trigger AJAX call
 $("#comment-placeholder").load(commentURL);
 }

 });

});

More info

	http://blog.mfabrik.com/2011/03/09/lazily-load-elements-becoming-visible-using-jquery/

	http://remysharp.com/2009/01/26/element-in-view-event-plugin/

Checking if document is in WYSIWYG edit mode

WYSIWYG editor (TinyMCE) is loaded in its own <iframe>.
Your UI related Javascript mode might want to do some special checks
for running different code paths when the text is being edited.

Example:

// Check if we are in edit or view mode
if(document.designMode.toLowerCase() == "on") {
 // Edit mode document, do not tabify
 // but let the user create the content
 return;
} else {
 kuputabs.collectTabs();
}

Image hovers

Here is a simple jQuery method to enable image roll-over effects (hover).
This method is suitable for content editors who can only images through TinyMCE
or normal upload - only naming image files specially is needed.
No CSS, Javascript or other knowledge needed by the person who needs
to add the images.

Just include this script on your HTML page and it will automatically
scan image filenames, detects image filenames with special roll-over marker
strings and then applies the roll-over effect on them. Roll-over
images are preloaded to avoid image blinking on slow connections.

The script

/**
 * Automatic image hover placement with jQuery
 *
 * If image has -normal tag in it's filename assume there exist corresponding
 * file with -hover in its name.
 *
 * E.g. http://host.com/test_normal.gif -> http://host.com/test_hover.gif
 *
 * This image is preloaded and shown when mouse is placed on the image.
 *
 * Copyright Mikko Ohtamaa 2011
 *
 * http://twitter.com/moo9000
 */

(function (jQuery) {
 var $ = jQuery;

 // Look for available images which have hover option
 function scanImages() {
 $("img").each(function() {

 $this = $(this);

 var src = $this.attr("src");

 // Images might not have src attribute, if they
 if(src) {

 // Detect if this image filename has hover marker bit
 if(src.indexOf("-normal") >= 0) {

 console.log("Found rollover:" + src);

 // Mangle new URL for over image based on orignal
 var hoverSrc = src.replace("-normal", "-hover");

 // Preload hover image
 var preload = new Image(hoverSrc);

 // Set event handlers

 $this.mouseover(function() {
 this.src = hoverSrc;
 });

 $this.mouseout(function() {
 this.src = src;
 });

 }
 }
 });
 }

 $(document).ready(scanImages);

})(jQuery);

Disabling KSS

KSS, not used since Plone 3, may cause Javascript errors on migrated sites and new browsers.

Here is jsregistry.xml snippet to get rid of KSS on your site:

<javascript
 id="sarissa.js"
 enabled="False" />

<javascript
 id="++resource++base2-dom-fp.js"
 enabled="False" />

<javascript
 id="++resource++kukit.js"
 enabled="False" />

<javascript
 id="++resource++kukit-devel.js"
 enabled="False" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Javascript coding conventions

Description

Styleguides for writing Javascript for Plone

	Introduction

	Progressive Enhancement

	Unobtrusive JavaScript

	Coding Standards
	JSLint

	Strict Mode

	Globals

	Platform Testing

	Testing

Introduction

Here we have collected community best practices for writing Javascript for Plone.
These apply for Plone core and are suggested to be applied in your own add-on.

Progressive Enhancement

Pages presented in Plone, including forms and form widgets, must be fully usable in situations where JavaScript is not available. The availability of JavaScript on the browser side should enhance the presentation of the page and its content. Additionally, the structured document delivered via HTML/XHTML should be semantically correct and complete in meaning.

The best way to accomplish these goals is to: first. compose complete and useful content in HTML; second, style its presentation with CSS; and third, make use of JavaScript behaviors to enhance presentation and interaction.

Unobtrusive JavaScript

JavaScript should nearly never be present in the content area of a page. Typically, it will only appear via link and script elements in the head of the document (or at its very end when that improved rendering).
In particular, HTML tags should nearly never have event-handler (e.g., onclick or onsubmit) tag attributes or JavaScript in URLs. Coding JavaScript into HTML tags generally makes for code that is hard to maintain and nearly impossible to test.

Instead of coding event handlers in HTML attributes, use jQuery's "bind" and its various convenience aliases like "click" methods to attach event handlers to elements. Use "live" if installing behaviors that need to operate in AJAX-loaded HTML.

Coding Standards

JSLint

All JavaScript components that are incorporated into the Plone core must pass JSLint code quality tests. At some point in the 4.x series, this will become part of Plone's continuous integration testing.
JSLint has many options, and it is our goal that our code pass "The Good Parts" tests. A couple of acceptable deviations from the good parts settings are to:

Assume a browser /*jslint browser: true */;
Relax white-space requirements (removing "white: true") to allow for idiomatic composition of jQuery cascades.

Assume availability of the globals jQuery, browser, window and location.

You may set these options by including at the top of your JavaScript file:

/*jslint white:false, onevar:true, undef:true, nomen:true, eqeqeq:true, plusplus:true, bitwise:true, regexp:true, newcap:true, immed:true, strict:false, browser:true */

/*global jQuery:false, document:false, window:false, location:false */

These settings are available as a file in Products/CMFPlone/skins/plone_ecmascript/js-standards.js. If you use those settings, you only need set the options for any deviations needed by the current file. Deviations like turning off the regular-expression "." prohibition, are perfectly reasonable when porting old code, but should be avoided in new code.

A common way to execute a command-line jslint test using these options would be to execute:

cat js-standards.js accessibility.js | jslint

if you were testing the "accessibility.js" file. JSLint is also available as a plugin for most popular web code editors and can be set to test on save. An example of setting up TextMate to run jslint on save:
* JSLint on Save

Strict Mode

Use strict in nested function scopy only:

(function($) {
 "use strict";

})

If you use "strict", you must test on a browser that supports it. Otherwise, your code may break when
it encounters such a browser.

Globals

JavaScript components should create as few as possible global variables. If a component must create globals, it should only create one: a namespace object with a very distinctive name. Please document your new global at the top of the component file.

Platform Testing

JavaScript for Plone core must be tested on

	IE 7, 8, 9

	Firefox, current release and most-recent beta or rc for the next release, if available

	Webkit browsers: Current

In general, degrade gracefully to no-js behavior when a platform cannot be supported. You need not support IE 6, but if you know that a feature works poorly on IE 6, simply turn it off:

if (jQuery.browser.msie && parseInt(jQuery.browser.version, 10) < 7) {
 return;
}

Testing

As of this writing, the Plone community has not settled on standards for JavaScript unit and integration testing. QUnit is (as of this writing), the most common unit-testing mechanism. Selenium and Windmill are both in use for
unit testing.

Plone 4.2 is expected to include strong recommendations for both unit and integration testing, and these will be supported by our continuous integration testing.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

AJAX

Description

Creating AJAX programming logic in Plone.

	Introduction

	JSON views and loading data via AJAX

	Cross-Origin Resource Sharing (CORS) proxy view

	Speeding up AJAX loaded content HTML

Introduction

´AJAX <http://en.wikipedia.org/wiki/Ajax_%28programming%29>`_ (an acronym for Asynchronous JavaScript and XML) is a group of interrelated web development techniques used on the client-side to create asynchronous web applications.

JSON views and loading data via AJAX

The best way to output JSON for AJAX call endpoints is to use Python's dict structure and convert
it to JSON using Python json.dumps() call.

You should pass the AJAX target URLs to your Javascript using the settings passing pattern explained above.

Examples

Generator

	https://github.com/miohtama/silvuple/blob/master/silvuple/views.py#L342

AJAX loader

	https://github.com/miohtama/silvuple/blob/master/silvuple/static/main.js#L247

Cross-Origin Resource Sharing (CORS) proxy view

Old web browsers do not support Allow-acces-origin HTTP header [https://developer.mozilla.org/en/HTTP_access_control]
needed to do cross-domain AJAX requests (IE6, IE7).

Below is an example how to work around this for jQuery getJSON() calls by

	Detecting browsers which do not support this using jQuery.support API

	Doing an alternative code path through a local website proxy view which uses Python urllib
to make server-to-server call and return it as it would be a local call, thus
working around cross-domain restriction

This example is for Plone, but the code is easily port to other web frameworks.

Note

This is not a full example code. Basic Python and Javascript skills are needed
to interpret and adapt the code for your use case.

Javascript example

/**
 * Call a RESTful service vie AJAX
 *
 * The final URL is constructed by REST function name, based
 * on a base URL from the global settings.
 *
 * If the browser does not support cross domain AJAX calls
 * we'll use a proxy function on the local server. For
 * performance reasons we do this only when absolutely needed.
 *
 * @param {String} functionName REST function name to a call
 *
 * @param {Object} Arguments as a dictionary like object, passed to remote call
 */
function callRESTful(functionName, args, callback) {

 var src = myoptions.restService + "/" +functionName;

 // set to true to do proxied request on every browser
 // useful if you want to use Firebug to debug your server-side proxy view
 var debug = false;

 console.log("Doing remote call to:" + src)

 // We use jQuery API to detect whether a browser supports cross domain AJAX calls
 // http://api.jquery.com/jQuery.support/
 if(!jQuery.support.cors || debug) {
 // http://alexn.org/blog/2011/03/24/cross-domain-requests.html
 // Opera 10 doesn't have this feature, neither do IExplorer < 8, Firefox < 3.5

 console.log("Mangling getJSON to go through a local proxy")

 // Change getJSON to go to our proxy view on a local server
 // and pass the orignal URL as a parameter
 // The proxy view location is given as a global JS variable
 args.url = src;
 src = myoptions.portalUrl + "/@@proxy";
 }

 // Load data from the server
 $.getJSON(src, args, function(data) {
 // Parse incoming data and construct Table rows according to it
 console.log("Data successfully loaded");
 callback(data, args);

 });

}

The server-side view:

import socket
import urllib
import urllib2
from urllib2 import HTTPError

from Products.Five import BrowserView
from mysite.app import options

class Proxy(BrowserView):
 """
 Pass a AJAX call to a remote server. This view is mainly indended to be used
 with jQuery.getJSON() requests.

 This will work around problems when a browser does not support Allow-Access-Origin HTTP header (IE).

 Asssuming only HTTP GET requests are made.s
 """

 def isAllowed(self, url):
 """
 Check whether we are allowed to call the target URL.

 This prevents using your service as an malicious proxy
 (to call any internet service).
 """

 allowed_prefix = options.REST_SERVICE_URL

 if url.startswith(allowed_prefix):
 return True

 return False

 def render(self):
 """
 Use HTTP GET ``url`` query parameter for the target of the real request.
 """

 # Make sure any theming layer won't think this is HTML
 # http://stackoverflow.com/questions/477816/the-right-json-content-type
 self.request.response.setHeader("Content-type", "application/json")

 url = self.request.get("url", None)
 if not url:
 self.request.response.setStatus(500, "url parameter missing")

 if not self.isAllowed(url):
 # The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeate
 self.request.response.setStatus(403, "proxying to the target URL not allowed")
 return

 # Pass other HTTP GET query parameters direclty to the target server
 params = {}
 for key, value in self.request.form.items():
 if key != "url":
 params[key] = value

 # http://www.voidspace.org.uk/python/articles/urllib2.shtml
 data = urllib.urlencode(params)

 full_url = url + "?" + data
 req = urllib2.Request(full_url)

 try:

 # Important or if the remote server is slow
 # all our web server threads get stuck here
 # But this is UGLY as Python does not provide per-thread
 # or per-socket timeouts thru urllib
 orignal_timeout = socket.getdefaulttimeout()
 try:
 socket.setdefaulttimeout(10)

 response = urllib2.urlopen(req)
 finally:
 # restore orignal timeoout
 socket.setdefaulttimeout(orignal_timeout)

 # XXX: How to stream respone through Zope
 # AFAIK - we cannot do it currently

 return response.read()

 except HTTPError, e:
 # Have something more useful to log output as plain urllib exception
 # using Python logging interface
 # http://docs.python.org/library/logging.html
 logger.error("Server did not return HTTP 200 when calling remote proxy URL:" + url)
 for key, value in params.items():
 logger.error(key + ": " + value)

 # Print the server-side stack trace / error page
 logger.error(e.read())

 raise e

Registering the view in ZCML:

<browser:view
 for="Products.CMFPlone.interfaces.IPloneSiteRoot"
 name="proxy"
 class=".views.Proxy"
 permission="zope.Public"
 />

Speeding up AJAX loaded content HTML

By observing Plone's main_template.pt, having a True value on the ajax_load request key means some parts of the page aren't displayed, hence the speed:

	No CSS or Javascript from <head /> tag is loaded

	Nothing from the plone.portaltop ViewletManager, such as the personal bar, searchbox, logo and main menu

	Nothing from the plone.portalfooter ViewletManager, which contains footer and colophon information, site actions and the Analytics javascript calls if you have that configured in your site

	Neither the left nor the right column, along with all the portlets there assigned

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Hello World Tutorial

Description

A simple tutorial introducing the basics of Plone development.

	Introduction

	Build development environment
	Build Python

	Create a virtual_env

	Install Plone

	Extend Plone
	Create an add-on package

	Files and Directories

	Add a simple form

	Add a content-type

	Add a custom view

	Ideas for improvement

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

Introduction

Description

A simple tutorial introducing the basics of Plone development.

This tutorial uses simple examples to introduce Plone development. The examples cover a basic form, custom content-type, and dynamic view.

It also has detailed sections on building a development environment, installing Plone, and creating an add-on package for your development code.

Note

There are many ways to install Plone.

In the examples, we build a new version of Python 2.7 and create a virtual_env using the new Python. We then install Plone within the virtual_env using ZopeSkel 2.21.2.

This can be a lot of work, just to try some hello world examples in Plone.

You don't have to do it this way. You can create a similar environment using the Plone 4 installers [http://plone.org/products/plone/releases/4.2]. The examples should all work with little or no adjustment.

There are benefits to managing your own Python development environment. The choice is up to you.

This tutorial is only an introduction to Plone development. Other areas of the developer manual have more detailed information. We link to some of those areas in the examples below.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

Build development environment

Description

A simple tutorial introducing the basics of Plone development.

	Build Python

	Create a virtual_env

	Install Plone

In this tutorial, we build a Python development environment suitable for Plone. The environment should also be useful for any other Python development projects you have.

In these examples, the python_dev directory contains our entire development environment. This makes the examples easier, but may not work for everyone. You may need to adapt these examples to fit your situation.

There are 3 main steps in building our development environment; build Python 2.7, create a virtual_env, and install Plone. These correspond to 3 directories in our development environment:

	buildout.python sits inside python_dev. It contains our build of Python 2.7

	env-27 sits inside python_dev. It is our virtual_env.

	hello_world is our Plone installation. It sits inside env-27.

The python_dev directory can sit anywhere on your filesystem that makes sense.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Build development environment »

Build Python

Description

A simple tutorial introducing the basics of Plone development.

The first thing we need to do is build Python.

Buildout is a tool to manage a software build. It uses configurations so you can always reproduce the same environment. In these examples, we use it to manage both our Python and Plone builds.

For our buildout configuration, we will use buildout.python. It is a project on github that maintains configurations for building different versions of Python. We will use it to build Python 2.7.

	Create a directory for your development environment if you don't already have one, and make it your working directory.:

mkdir python_dev
cd python_dev

	Get buildout.python from github.

	If you have git, you can clone the buildout.python repository.:

git clone https://github.com/collective/buildout.python.git buildout.python

	You can also download buildout.python from their web interface. Open https://github.com/collective/buildout.python in your browser, and click on the Downloads link on the right hand side.

[image: ../../../../_images/buildout_python-web.png]
On the next page, click on Download as zip or Download as tar.gz to download the buildout files. When the download is complete, uncompress the file and rename the resulting directory to buildout.python.

Whether you cloned with git or downloaded from the webiste, you should end up with a directory named buildout.python that contains these items.:

[michaelc@Cullerton python_dev]$ ll buildout.python
total 56
-rw-r--r-- 1 michaelc staff 1895 Aug 25 12:28 README.rst
-rw-r--r-- 1 michaelc staff 4122 Aug 25 12:28 bootstrap-1.4.4.py
-rw-r--r-- 1 michaelc staff 10107 Aug 25 12:28 bootstrap.py
-rw-r--r-- 1 michaelc staff 815 Aug 25 12:28 buildout.cfg
drwxr-xr-x 6 michaelc staff 204 Aug 25 12:28 docs
drwxr-xr-x 30 michaelc staff 1020 Aug 25 12:28 src

	Bootstrap buildout.python with your system Python.:

cd buildout.python
python bootstrap.py

This creates the bin, parts, eggs, and develop-eggs directories and adds the buildout binary to the bin directory.:

[michaelc@Cullerton buildout.python]$ ll
total 56
-rw-r--r-- 1 michaelc staff 1895 Aug 25 13:31 README.rst
drwxr-xr-x 3 michaelc staff 102 Aug 25 13:32 bin
-rw-r--r-- 1 michaelc staff 4122 Aug 25 13:31 bootstrap-1.4.4.py
-rw-r--r-- 1 michaelc staff 10107 Aug 25 13:31 bootstrap.py
-rw-r--r-- 1 michaelc staff 815 Aug 25 13:31 buildout.cfg
drwxr-xr-x 2 michaelc staff 68 Aug 25 13:32 develop-eggs
drwxr-xr-x 6 michaelc staff 204 Aug 25 13:31 docs
drwxr-xr-x 4 michaelc staff 136 Aug 25 13:32 eggs
drwxr-xr-x 2 michaelc staff 68 Aug 25 13:32 parts
drwxr-xr-x 30 michaelc staff 1020 Aug 25 13:31 src

[michaelc@Cullerton buildout.python]$ ll bin
total 8
-rwxr-xr-x 1 michaelc staff 301 Aug 25 13:32 buildout

The current version of buildout.python builds Python 2.4, 2.5, 2.6, 2.7, 3.2 and 3.3. This can take a long time. We only need Python 2.7.

We can keep buildout from building the other versions by commenting them out in the buildout.cfg file. We do this by adding a # to the beginning of a line we want buildout to ignore.

	To only build Python 2.7, open the buildout.cfg file in a text editor, comment out the other versions in both extends and parts sections, and save your changes.:

[buildout]
extends =
 src/base.cfg
 src/readline.cfg
 src/libjpeg.cfg
src/python24.cfg
src/python25.cfg
src/python26.cfg
 src/python27.cfg
src/python32.cfg
src/python33.cfg
 src/links.cfg

parts =
 ${buildout:base-parts}
 ${buildout:readline-parts}
 ${buildout:libjpeg-parts}
${buildout:python24-parts}
${buildout:python25-parts}
${buildout:python26-parts}
 ${buildout:python27-parts}
${buildout:python32-parts}
${buildout:python33-parts}
 ${buildout:links-parts}

	Run buildout to build Python.:

./bin/buildout

This creates a new python-2.7 directory containing it's own binaries, libraries and include files.:

[michaelc@Cullerton buildout.python]$ ll
total 56
-rw-r--r-- 1 michaelc staff 1895 Aug 25 12:28 README.rst
drwxr-xr-x 5 michaelc staff 170 Aug 25 12:44 bin
-rw-r--r-- 1 michaelc staff 4122 Aug 25 12:28 bootstrap-1.4.4.py
-rw-r--r-- 1 michaelc staff 10107 Aug 25 12:28 bootstrap.py
-rw-r--r--@ 1 michaelc staff 835 Aug 25 12:31 buildout.cfg
drwxr-xr-x 3 michaelc staff 102 Aug 25 12:30 develop-eggs
drwxr-xr-x 6 michaelc staff 204 Aug 25 12:28 docs
drwxr-xr-x 12 michaelc staff 408 Aug 25 12:41 eggs
drwxr-xr-x 10 michaelc staff 340 Aug 25 12:44 parts
drwxr-xr-x 5 michaelc staff 170 Aug 25 12:44 python-2.7
drwxr-xr-x 32 michaelc staff 1088 Aug 25 12:44 src

[michaelc@Cullerton buildout.python]$ ll python-2.7/
total 0
drwxr-xr-x 17 michaelc staff 578 Aug 25 12:44 bin
drwxr-xr-x 7 michaelc staff 238 Aug 25 12:44 include
drwxr-xr-x 11 michaelc staff 374 Aug 25 12:44 lib

[michaelc@Cullerton buildout.python]$ ll python-2.7/bin/
total 8184
-rw-r--r-- 1 michaelc staff 2228 Aug 25 12:44 activate
-rw-r--r-- 1 michaelc staff 1115 Aug 25 12:44 activate.csh
-rw-r--r-- 1 michaelc staff 2423 Aug 25 12:44 activate.fish
-rw-r--r-- 1 michaelc staff 1129 Aug 25 12:44 activate_this.py
-rwxr-xr-x 1 michaelc staff 369 Aug 25 12:44 easy_install
-rwxr-xr-x 1 michaelc staff 377 Aug 25 12:44 easy_install-2.7
-rwxr-xr-x 1 michaelc staff 230 Aug 25 12:44 pilconvert.py
-rwxr-xr-x 1 michaelc staff 228 Aug 25 12:44 pildriver.py
-rwxr-xr-x 1 michaelc staff 224 Aug 25 12:44 pilfile.py
-rwxr-xr-x 1 michaelc staff 224 Aug 25 12:44 pilfont.py
-rwxr-xr-x 1 michaelc staff 226 Aug 25 12:44 pilprint.py
-rwxr-xr-x 1 michaelc staff 321 Aug 25 12:44 pip
-rwxr-xr-x 1 michaelc staff 329 Aug 25 12:44 pip-2.7
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 12:44 python
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 12:44 python2.7

Buildout also creates the virtualenv-2.7 script in the bin directory. We will use the virtualenv-2.7 script in the next tutorial.:

[michaelc@Cullerton buildout.python]$ ll bin
total 24
-rwxr-xr-x 1 michaelc staff 296 Aug 25 12:41 buildout
-rwxr-xr-x 1 michaelc staff 609 Aug 25 12:44 install-links
-rwxr-xr-x 1 michaelc staff 155 Aug 25 12:44 virtualenv-2.7

Note

You can build any of the other versions of Python by uncommenting their lines in the buidout.cfg file,:

[buildout]
extends =
 src/base.cfg
 src/readline.cfg
 src/libjpeg.cfg
 src/python24.cfg
 src/python25.cfg
 src/python26.cfg
 src/python27.cfg
 src/python32.cfg
 src/python33.cfg
 src/links.cfg

parts =
 ${buildout:base-parts}
 ${buildout:readline-parts}
 ${buildout:libjpeg-parts}
 ${buildout:python24-parts}
 ${buildout:python25-parts}
 ${buildout:python26-parts}
 ${buildout:python27-parts}
 ${buildout:python32-parts}
 ${buildout:python33-parts}
 ${buildout:links-parts}

and rerunning buildout.:

./bin/buildout

It just takes a while.

Note

If you have trouble running buildout, you may need to run the bootstrap step above with the 1.4.4 version.:

python bootstrap-1.4.4.py
./bin/buildout

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Build development environment »

Create a virtual_env

Description

A simple tutorial introducing the basics of Plone development.

Now that we have a clean install of Python 2.7 we can move on to the second step in our process, creating the virtual_env.

	Use the virtualenv script from the Build Python section above, create our virtual_env directory.:

change your working directory to python_dev
cd ..
./buildout.python/bin/virtualenv-2.7 env-27

This creates the env-27 directory.:

[michaelc@Cullerton python_dev]$ ll
total 0
drwxr-xr-x 16 michaelc staff 544 Aug 25 20:27 buildout.python
drwxr-xr-x 5 michaelc staff 170 Aug 25 20:39 env-27

The virtual_env has its own Python bin, include and lib directories.:

[michaelc@Cullerton python_dev]$ ll env-27/
total 0
drwxr-xr-x 12 michaelc staff 408 Aug 25 20:39 bin
drwxr-xr-x 3 michaelc staff 102 Aug 25 20:39 include
drwxr-xr-x 3 michaelc staff 102 Aug 25 20:39 lib

In the bin directory, the virtual_env has 2 copies of Python 2.7; python and python2.7. It also has easy_install and pip, to install Python packages.:

[michaelc@Cullerton python_dev]$ ll env-27/bin/
total 8144
-rw-r--r-- 1 michaelc staff 2227 Aug 25 20:39 activate
-rw-r--r-- 1 michaelc staff 1114 Aug 25 20:39 activate.csh
-rw-r--r-- 1 michaelc staff 2422 Aug 25 20:39 activate.fish
-rw-r--r-- 1 michaelc staff 1129 Aug 25 20:39 activate_this.py
-rwxr-xr-x 1 michaelc staff 368 Aug 25 20:39 easy_install
-rwxr-xr-x 1 michaelc staff 376 Aug 25 20:39 easy_install-2.7
-rwxr-xr-x 1 michaelc staff 320 Aug 25 20:39 pip
-rwxr-xr-x 1 michaelc staff 328 Aug 25 20:39 pip-2.7
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 20:39 python
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 20:39 python2.7

Note

The bin directory also has an activate script you can use to isolate your commands within your virtual_env. It modifies your $PATH so its first entry is the virtualenv's bin/ directory

Note

Now that we have our virtual_env, we won't use buildout.python again for these examples. However, you can return there later to create new virtual environments for other Python projects.:

from the **python_dev** directory
./buildout.python/bin/virtualenv-2.7 some_other_env-27

You can also build the versions of Python that we skipped in the Build Python section above, and then use them to build new Python virtual_envs.:

from the **python_dev** directory
./buildout.python/bin/virtualenv-3.2 some_env-32

For more information about virtualenv, see the virtualenv documentation [http://www.virtualenv.org/en/latest/index.html] .

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Build development environment »

Install Plone

Description

A simple tutorial introducing the basics of Plone development.

	Install ZopeSkel

	Install Plone using ZopeSkel
	Quick Review

Now that we have a virtual_env, we can move on the to third step of our process; installing Plone. First, we need to install ZopeSkel.

Install ZopeSkel

ZopeSkel simplifies the process of setting up Plone development.

The Plone community is transitioning between ZopeSkel 2.21.2 and a major rewrite currently at 3.0b3. Currently, the Plone installers use version 2.21.2. (August 2012) For more information about ZopeSkel see the Bootstrapping Plone add-on development section of this manual.

We will install ZopeSkel 2.21.2 in our virtual_env and and use it to install Plone.

	Install ZopeSkel 2.21.2.:

change your working directory to the virtual_env
cd env-27
./bin/easy_install -U ZopeSkel==2.21.2

This adds some files to the bin directory, including zopeskel.:

[michaelc@Cullerton env-27]$ ll bin/
total 8176
-rw-r--r-- 1 michaelc staff 2227 Aug 25 20:39 activate
-rw-r--r-- 1 michaelc staff 1114 Aug 25 20:39 activate.csh
-rw-r--r-- 1 michaelc staff 2422 Aug 25 20:39 activate.fish
-rw-r--r-- 1 michaelc staff 1129 Aug 25 20:39 activate_this.py
-rwxr-xr-x 1 michaelc staff 220 Aug 25 21:02 cheetah
-rwxr-xr-x 1 michaelc staff 236 Aug 25 21:02 cheetah-compile
-rwxr-xr-x 1 michaelc staff 368 Aug 25 20:39 easy_install
-rwxr-xr-x 1 michaelc staff 376 Aug 25 20:39 easy_install-2.7
-rwxr-xr-x 1 michaelc staff 356 Aug 25 21:02 paster
-rwxr-xr-x 1 michaelc staff 320 Aug 25 20:39 pip
-rwxr-xr-x 1 michaelc staff 328 Aug 25 20:39 pip-2.7
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 20:39 python
-rwxr-xr-x 1 michaelc staff 2065616 Aug 25 20:39 python2.7
-rwxr-xr-x 1 michaelc staff 354 Aug 25 21:02 zopeskel

Install Plone using ZopeSkel

ZopeSkel uses templates to build structure for Python, Zope and Plone projects. Here, we use the plone4_buildout template to create a Plone 4 buildout in the hello_world directory.

	Create the Plone 4 buildout with zopeskel.:

./bin/zopeskel plone4_buildout hello_world

ZopeSkel displays some information and then asks what version of Plone we want to install. We want 4.2.:

Plone Version (Plone version # to install) ['4.1']: 4.2

The tutorial sometimes refers to the hello_world directory as the buildout directory. It contains the buildout.cfg file.:

[michaelc@Cullerton env-27]$ ll
total 0
drwxr-xr-x 16 michaelc staff 544 Aug 25 21:02 bin
drwxr-xr-x 7 michaelc staff 238 Aug 25 21:25 hello_world
drwxr-xr-x 3 michaelc staff 102 Aug 25 20:39 include
drwxr-xr-x 3 michaelc staff 102 Aug 25 20:39 lib

[michaelc@Cullerton env-27]$ ll hello_world/
total 32
-rw-r--r-- 1 michaelc staff 5773 Aug 25 21:25 README.txt
-rw-r--r-- 1 michaelc staff 3784 Aug 25 21:25 bootstrap.py
-rw-r--r-- 1 michaelc staff 2789 Aug 25 21:25 buildout.cfg
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:25 src
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:25 var

	Bootstrap the system with the Python included in our virtual_env.:

change your working directory to hello_world
cd hello_world
../bin/python bootstrap.py

The bootstrap process creates some directories and adds a buildout script to the bin directory.:

[michaelc@Cullerton hello_world]$ ll
total 32
-rw-r--r-- 1 michaelc staff 5773 Aug 25 21:25 README.txt
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:31 bin
-rw-r--r-- 1 michaelc staff 3784 Aug 25 21:25 bootstrap.py
-rw-r--r-- 1 michaelc staff 2789 Aug 25 21:25 buildout.cfg
drwxr-xr-x 2 michaelc staff 68 Aug 25 21:31 develop-eggs
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:31 parts
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:25 src
drwxr-xr-x 3 michaelc staff 102 Aug 25 21:25 var

[michaelc@Cullerton hello_world]$ ll bin
total 8
-rwxr-xr-x 1 michaelc staff 331 Aug 25 21:31 buildout

	Run buildout to install Plone. This can take a while.:

./bin/buildout

Buildout uses recipes that tell it what to install. These recipes can specify the versions of modules they need. Buildout picks a version when one is not specified. It keeps track of these picked versions and displays them when it is finished. You can add these to the [versions] section of buildout.cfg to pin them. This gives you a known good set you can work from, allowing you to rerun buildout in the future or on a different machine, and know you have the same environment.:

*************** PICKED VERSIONS ****************
[versions]
Cheetah = 2.2.1
ZopeSkel = 3.0b3
i18ndude = 3.2.2
templer.buildout = 1.0b1
templer.core = 1.0b4
templer.localcommands = 1.0b2
templer.plone = 1.0b1
templer.plone.localcommands = 1.0b1
templer.zope = 1.0b2
zopeskel.dexterity = 1.4

*************** /PICKED VERSIONS ***************

Notice that the Plone buildout installed ZopeSkel 3.0b3 for us. It is installed in the bin directory. We now have access to both versions of ZopeSkel; 2.21.2 in our virtual_env, and 3.0b3 in our Plone installation.:

[michaelc@Cullerton hello_world]$ ll bin/
total 136
-rwxr-xr-x 1 michaelc staff 331 Aug 25 21:31 buildout
-rwxr-xr-x 1 michaelc staff 375 Aug 25 21:35 develop
-rwxr-xr-x 1 michaelc staff 1495 Aug 25 21:36 i18ndude
-rwxr-xr-x 1 michaelc staff 15806 Aug 25 21:36 instance
-rwxr-xr-x 1 michaelc staff 999 Aug 25 21:36 paster
-rwxr-xr-x 1 michaelc staff 15818 Aug 25 21:36 test
-rwxr-xr-x 1 michaelc staff 16064 Aug 25 21:36 zopepy
-rwxr-xr-x 1 michaelc staff 1015 Aug 25 21:36 zopeskel

Also notice the script named instance. Use this script to start, stop and restart Plone.:

./bin/instance start
./bin/instance stop
./bin/instance restart

You can also start Plone in foreground mode. This prints log messages to your terminal which is nice during development.:

./bin/instance fg

You can always look at the event log directly. It should be located at var/log/instance.log. You can watch it using the tail command.:

tail -f var/log/instance.log

You can access the Plone site in your browser at:

http://localhost:8080/

The first time you access the site, you will need to click on the Create a new Plone site button to perform some initialization.

[image: ../../../../_images/createplonesite.png]

You'll be presented with a form titled Create a Plone site. Keep the defaults for now, and click on the Create Plone Site button at the bottom. After a few moments, you should see the Home page of your site.

[image: ../../../../_images/welcometoplone.png]

Quick Review

Before moving on, lets review what our directory structure lools like. Inside the python_dev directory we have buildout.python and env-27.

Inside env-27 we have the hello_world directory, our Plone installation. Called the buildout_directory, it has the buildout.cfg file, and a script in the bin directory named instance used to start and stop Plone.

[image: ../../../../_images/directory_structure_plone.png]

Note

Now that we have our virtual_env, we won't use buildout.python again for these examples. However, you can return there later to create new virtual environments for other Python projects.:

from the **python_dev** directory
./buildout.python/bin/virtualenv-2.7 some_other_env-27

You can also build the versions of Python that we skipped in the Build Python section above, and then use them to build new Python virtual_envs.:

from the **python_dev** directory
./buildout.python/bin/virtualenv-3.2 some_env-32

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

Extend Plone

Description

A simple tutorial introducing the basics of Plone development.

	Create an add-on package

	Files and Directories

	Add a simple form
	Register the form

	Python code

	Access the form

	Add a content-type
	Install code template with ZopeSkel

	Build the content-type

	Add content to the site

	Add a custom view
	Register the view

	Create Python class

	Create page template

	Access the view

In these examples the tutorial extends Plone. First, we create an add-on package on the filesystem to put our code. Then within that package, we add a simple form, a content-type, and a custom view.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Extend Plone »

Create an add-on package

Description

A simple tutorial introducing the basics of Plone development.

Before extending Plone, we need to create an add-on package to hold our changes. It's possible you would have more than one add-on package. One popular approach is to have a theme product and a product containing your business logic.

We will use ZopeSkel to create a skeleton template for the project. For more information on ZopeSkel, see the section on Bootstrapping Plone add-on development.

Put your projects in the src directory of your buildout directory.

	Change your working directory to the src directory of your buildout.:

from your buildout directory
cd src

	Create a project using ZopeSkel 2.21.2 from our virtual_env. Here, we create an archetypes based project in a directory named example.helloworld.:

../../bin/zopeskel archetype example.helloworld

	ZopeSkel will ask you a series of questions. For now, you can use the defaults for Expert Mode and Version. Use Hello World for the Project Title. We will reference it in another step below.:

Expert Mode? (What question mode would you like? (easy/expert/all)?) ['easy']:
Project Title (Title of the project) ['Example Name']: Hello World
Version (Version number for project) ['1.0']:
Description (One-line description of the project) ['']: Simple Hello World Example

The zopeskel command creates a directory in the src directory named example.helloworld.:

[michaelc@Cullerton src]$ ll
total 8
-rw-r--r-- 1 michaelc staff 62 Aug 25 21:25 README.txt
drwxr-xr-x 12 michaelc staff 408 Aug 28 23:33 example.helloworld

Before we move one, lets examine our directory structure. We have env-27, our virtual_env. It contains hello_world, our Plone installation. We also call this the buildout directory. The buildout directory contains the buildout.cfg file. It also contains the src directory, which contains our project example.helloworld.

[image: image of directory structure]
Looking further into example.helloworld, we have the example directory which contains the helloworld directory.

In the examples below, we sometimes refer to the helloworld directory as the product directory. It contains the browser directory. Most of the changes we make take place in the browser directory.

Here it is from the command-line.:

[michaelc@Cullerton src]$ ll example.helloworld/
total 48
-rw-r--r-- 1 michaelc staff 94 Aug 28 23:31 CHANGES.txt
-rw-r--r-- 1 michaelc staff 12 Aug 28 23:31 CONTRIBUTORS.txt
-rw-r--r-- 1 michaelc staff 47 Aug 28 23:31 MANIFEST.in
-rw-r--r-- 1 michaelc staff 371 Aug 28 23:31 README.txt
drwxr-xr-x 6 michaelc staff 204 Aug 28 23:31 docs
drwxr-xr-x 5 michaelc staff 170 Aug 28 23:32 example
drwxr-xr-x 11 michaelc staff 374 Aug 28 23:31 example.helloworld.egg-info
-rw-r--r-- 1 michaelc staff 33 Aug 28 23:31 setup.cfg
-rw-r--r-- 1 michaelc staff 1858 Aug 28 23:31 setup.py

[michaelc@Cullerton src]$ ll example.helloworld/example
total 16
-rw-r--r-- 1 michaelc staff 244 Aug 28 23:31 __init__.py
-rw-r--r-- 1 michaelc staff 410 Aug 28 23:32 __init__.pyc
drwxr-xr-x 16 michaelc staff 544 Aug 28 23:50 helloworld

[michaelc@Cullerton src]$ ll example.helloworld/example/helloworld/
total 64
-rw-r--r-- 1 michaelc staff 2093 Aug 28 23:31 README.txt
-rw-r--r-- 1 michaelc staff 2079 Aug 28 23:31 __init__.py
-rw-r--r-- 1 michaelc staff 1513 Aug 28 23:41 __init__.pyc
drwxr-xr-x 5 michaelc staff 170 Aug 28 23:42 browser
-rw-r--r-- 1 michaelc staff 133 Aug 28 23:31 config.py
-rw-r--r-- 1 michaelc staff 326 Aug 28 23:41 config.pyc
-rw-r--r--@ 1 michaelc staff 1054 Aug 28 23:42 configure.zcml
drwxr-xr-x 5 michaelc staff 170 Aug 28 23:42 content
drwxr-xr-x 3 michaelc staff 102 Aug 28 23:31 interfaces
-rw-r--r--@ 1 michaelc staff 1377 Aug 28 23:53 person.py
-rw-r--r-- 1 michaelc staff 2838 Aug 28 23:50 person.pyc
drwxr-xr-x 5 michaelc staff 170 Aug 28 23:42 portlets
drwxr-xr-x 3 michaelc staff 102 Aug 28 23:31 profiles
drwxr-xr-x 5 michaelc staff 170 Aug 28 23:31 tests

To use the code in your project, you'll need to reference it in your buildout.cfg file.

	Edit the buildout.cfg file.

Add example.helloworld to the eggs section.:

eggs =
 PIL
 Plone
 example.helloworld

Add src/example.helloworld to the develop section.:

develop =
 src/example.helloworld

Then save your changes.

	You need to rerun buildout for the changes to take effect.:

from your buildout directory
./bin/buildout

	Then start or restart your Plone instance.:

from your buildout directory
./bin/instance start
or
./bin/instance restart

Note:

If you are running ZEO instead of a stand-alone instance you'll need to use something like::

 ./bin/client1 restart

Now you can install your product from the Add-ons are of Site Setup. You can access Site Setup from the admin menu in the top right corner of your Plone site.

[image: ../../../../_images/sitesetup.png]

You can also access Site Setup using an url like

http://localhost:8080/Plone/plone_control_panel

	Select Add-ons from the Site Setup page. On the Add-ons page, select the Hello World add-on and click on Activate.

[image: ../../../../_images/addons.png]

Now that you created and installed an add-on package, you can use it to extend Plone.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Extend Plone »

Files and Directories

Description

A simple tutorial introducing the basics of Plone development.

Before we start writing code, I want to review some important files and directories. In the examples above, we created the hello_world directory that contains our Plone installation. We sometimes refer to it as the buildout directory. It contains the buildout.cfg file.

We also created an add-on package named example.helloworld. It contains the example directory which contains the helloworld directory. We also call the helloworld directory the product directory. Among other things, the product directory contains the browser directory. Many of the changes in our examples happen in the browser directory.

[image: ../../../../_images/directory_structure.png]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Extend Plone »

Add a simple form

Description

A simple tutorial introducing the basics of Plone development.

	Register the form

	Python code

	Access the form

In this tutorial we add a simple form.

There are many ways to add a form to Plone. In this tutorial, we use z3c.form.

There are two steps to building a simple z3c.form form; registering the form in configure.zcml, and writing the Python code to handle the form.

Register the form

To register our form, we need to add an entry in configure.zcml.

	Edit the configure.zcml file in the browser directory. Open configure.zcml in your editor and add this just before the closing </configure> tag.:

<browser:page
 name="hello_world_form"
 for="*"
 permission="zope2.View"
 class=".hello_world_form.HelloWorldFormView"
 />

Note

	We use the name attribute to access the form.

	The for attribute allows us to limit context to a particular interface. With the asterisk, we are not limiting access.

	The permission attribute allows us to limit access with a permission. In this case, we have a wide open permission.

	The class attribute points to our Python class. Here, we have a HelloWorldFormView class in a file named hello_world_form.py.

Our entry uses the browser prefix, so we need to define it in configure.zcml before we can use it.

	Add xmlns:browser="http://namespaces.zope.org/browser" at the top of configure.zcml so it looks something like:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.helloworld">

When we are done, configure.zcml should look something like this.:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.helloworld">

<include package="plone.app.contentmenu" />

<!-- -*- extra stuff goes here -*- -->

<browser:page
 name="hello_world_form"
 for="*"
 permission="zope2.View"
 class=".hello_world_form.HelloWorldFormView"
 />

</configure>

Python code

Now we need to create the code to handle our form.

	create the file hello_world_form.py in the browser directory.:

touch hello_world_form.py

Open the hello_world_form.py file in your editor and add the following code.

	Define our form field in an interface.

The imports:

from zope.interface import Interface
from zope.schema import TextLine
from zope.i18nmessageid import MessageFactory
_ = MessageFactory('hello_world')

The interface:

class IHelloWorldForm(Interface):

 hello_world_name = TextLine(
 title=_(u'Name'),
 description=_(u'Please enter your name.'),
 required=False)

This defines a TextLine field with an id of hello_world_name. The title and description will show up on the form. It is not a required field.

	Create a class for our logic. This is used when our view is accessed.

The imports:

from Products.statusmessages.interfaces import IStatusMessage
from z3c.form import button
from z3c.form import form, field

The class:

class HelloWorldForm(form.Form):

 fields = field.Fields(IHelloWorldForm)
 ignoreContext = True

 def updateWidgets(self):
 super(HelloWorldForm, self).updateWidgets()

 @button.buttonAndHandler(u'Save')
 def handleSave(self, action):
 data, errors = self.extractData()
 if errors:
 return False

 if data['hello_world_name'] is not None:
 hello_name = data['hello_world_name']
 else:
 hello_name = 'World'

 IStatusMessage(self.request).addStatusMessage(
 "Hello %s" % hello_name,
 'info')
 redirect_url = "%s/@@hello_world_form" % self.context.absolute_url()
 self.request.response.redirect(redirect_url)

 @button.buttonAndHandler(u'Cancel')
 def handleCancel(self, action):
 IStatusMessage(self.request).addStatusMessage(
 "Hello No One",
 'info')
 redirect_url = "%s/@@hello_world_form" % self.context.absolute_url()
 self.request.response.redirect(redirect_url)

Note

	We first import the field from our interface above.

	The ignoreContext directive means this form is not meant to be called in the context of an object.

	We define updateWidgets to the same method belonging to our parent.

	We create 2 button handlers.

The fun parts here are the two button handlers; handleSave and handleCancel.

	At the bottom of hello_world_form.py we need to use wrap_form on our class. This wraps our form in the standard Plone layout, placing our form in the content area. This also creates the view HelloWorldFormView referenced in configure.zcml.:

from plone.z3cform.layout import wrap_form
HelloWorldFormView = wrap_form(HelloWorldForm)

Access the form

You can access the form with an url like:

http://localhost:8080/Plone/@@hello_world_form

[image: ../../../../_images/helloworldformblank.png]
[image: ../../../../_images/jimbobform.png]
Type in a name and click Save, or just click Cancel.

[image: ../../../../_images/helloworldform.png]
[image: ../../../../_images/hellojimbobform.png]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Extend Plone »

Add a content-type

Description

A simple tutorial introducing the basics of Plone development.

	Install code template with ZopeSkel

	Build the content-type

	Add content to the site

In this tutorial we add a custom content-type.

Plone comes with built-in content-types like Collection, Event, File, Folder, Image, Link, News Item, and Page. If you need a custom content-type, you can extend an existing content-type, or create your own from scratch. In this example, we'll create a simple archetypes based content-type from scratch.

Install code template with ZopeSkel

	First, we'll change our working directory to the project we created above.:

from your buildout directory
cd src/example.helloworld

	Use paster to create a content-type skeleton. Paster is included with ZopeSkel.:

../../../bin/paster addcontent contenttype

	Again, you'll be asked a series of questions. Use Person for the contenttype_name.:

Enter contenttype_name (Content type name) ['Example Type']: Person
Enter contenttype_description (Content type description) ['Description of the Example Type']: Simple Person Content Type
Enter folderish (True/False: Content type is Folderish) [False]:
Enter global_allow (True/False: Globally addable) [True]:
Enter allow_discussion (True/False: Allow discussion) [False]:

This creates a few files, and edits some others. For our purposes, the most important one is person.py contained in the src/example.helloworld/example/helloworld/content/ directory. Open this file in your text editor.

Build the content-type

Edit PersonSchema inside person.py so it looks like this.:

PersonSchema = schemata.ATContentTypeSchema.copy() + atapi.Schema((

 # -*- Your Archetypes field definitions here ... -*-
 atapi.StringField(
 name='hello_name',
 required=True,
 widget=atapi.StringWidget(
 label='Name',
 description='Please enter your name.',
 visible= {'view': 'visible', 'edit': 'visible'},
),
),

))

This adds a new field to our schema named hello_name. It is a string filed, and is required. It is visible on both the view and edit pages.

Restart your instance to have access to the new content-type.:

from your buildout directory
./bin/instance restart

Add content to the site

To create a new object using the new content-type, select Person from the Add new... menu of your Plone site. This brings up the edit view.

[image: ../../../../_images/helloworldpersonform.png]
Fill in the fields and click Save. This brings up the view view.

[image: ../../../../_images/helloworldpersonprivate.png]
You should see an info message telling you your changes were saved, and a new tab in the navigation bar with the title of your object.

Notice the State menu on the right hand side of the green bar. It tells you your content is Private, meaning only you can see it. You need to select Publish from the State menu.

Also notice the url of the page. It is based on the Title of the object, with two main differences. The letters are all lower case, and spaces are turned into dashes.:

http://localhost:8080/Plone/my-hello-world-person/

For more information about content in Plone, see the Content management section of this manual. For more information about content types, see Content Types.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

 	Extend Plone »

Add a custom view

Description

A simple tutorial introducing the basics of Plone development.

	Register the view

	Create Python class

	Create page template

	Access the view

In this tutorial we add a browser view. Plone uses views to display dynamic content.

For more information about views, see the Views and viewlets section.

There are 3 parts to our view; a Python class, a page template, and a ZCML registration. We will add the two files and edit configure.zcml in the browser directory.

Register the view

	Edit the configure.zcml file in the browser directory. Open configure.zcml in your editor and add this just before the closing </configure> tag.:

<browser:page
 name="hello_world_view"
 for="*"
 permission="zope2.View"
 class=".hello_world_view.HelloWorldView"
 />

Note

	We use the name attribute to access the view.

	The for attribute allows us to limit context to a particular interface. With the asterisk, we are not limiting access.

	The permission attribute allows us to limit access with a permission. In this case, we have a wide open permission.

	The class attribute points to our Python class. Here, we have a HelloWorldView class in a file named hello_world_view.py.

	If you have not already done so, you need to define the browser namespace in configure.zcml by adding this to the configure tag.:

xmlns:browser="http://namespaces.zope.org/browser"

If you also went through the simple form tutorial, then configure.zcml should look something like this when you are done.:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.helloworld">

 <include package="plone.app.contentmenu" />

 <!-- -*- extra stuff goes here -*- -->

 <!-- this is our simple form -->
 <browser:page
 name="hello_world_form"
 for="*"
 class=".hello_world_form.HelloWorldFormView"
 permission="zope2.View"
 />

 <!-- this is our custom view -->
 <browser:page
 name="hello_world_view"
 for="*"
 permission="zope2.View"
 class=".hello_world_view.HelloWorldView"
 />

</configure>

Create Python class

	We need to create our Python class. In the browser directory, create a file named hello_world_view.py and add the following code.:

from Products.Five import BrowserView
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class HelloWorldView(BrowserView):

 template = ViewPageTemplateFile('hello_world_view.pt')

 def __call__(self):
 """"""
 self.hello_name = getattr(self.context, 'hello_name', 'World')
 return self.template()

Our BrowserView class is a Python callable. The __call__() method is the entry point. In it, we add a hello_name attribute to the view. Our page template will use the value of hello_name when the page is rendered.

The logic in our class is pretty simple. If our context has a hello_name attribute, then we use its value in our view. If not, we use the string 'World'.

In the class, we also define our page template hello_world_view.pt and save it in the template attribute.

Create page template

The third part of our view is the page template.

	In the browser directory, create a file named hello_world_view.pt and add the following:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 metal:use-macro="context/main_template/macros/master">

 <metal:block fill-slot="content-core">
 <div>
 <h1>Hello
 this gets replaced
 </h1>
 </div>
 </metal:block>

</html>

Plone uses Zope Page Templates (ZPT). For great documentation on ZPT and the TAL, TALES, and METAL languages, see the TAL page templates section of the developer manual, and the
TAL/TALES & METAL Reference Guide [http://www.owlfish.com/software/simpleTAL/tal-guide.html/]

In the above code, we define some xml namespaces; metal and tal that we use in our template.:

xmlns:metal="http://xml.zope.org/namespaces/metal"
xmlns:tal="http://xml.zope.org/namespaces/tal"

The metal:use-macro statement tells ZPT to use main_template to draw our page.:

metal:use-macro="context/main_template/macros/master"

The master template main_template contains predefined slots, or areas on the page, that we can fill with content from our template.

Anything in our code, between the:

<metal:block fill-slot="content-core">

and:

</metal:block>

gets put in the content-core area of main_template and is displayed on our page.

We also have access to our view class using the view namespace. In our case, we are interested in view/hello_name.:

this gets replaced

In our Python class, we defined a hello_name attribute. This code says take the value of the view/hello_name attribute and use it as the content for the span tag. So, the string "this gets replaced" gets replaced with the value of view/hello_name.

Access the view

To access the view, restart your instance to have access to the new view

Then, add @@hello_world_view to the end of an object url in your plone site.:

http://localhost:8080/Plone/my-hello-world-person/@@hello_world_view

Since our object has a hello_name attribute, the value is displayed along with the word Hello.

[image: ../../../../_images/hellojimbobview.png]
We can also call our view on the root of the site.:

http://localhost:8080/Plone/@@hello_world_view

The root of the site does not have a hello_name attribute, so Hello World is displayed.

[image: ../../../../_images/helloworldview.png]
For a more in depth explanation of views, see the Views and viewlets section of this manual.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Hello World Tutorial »

Ideas for improvement

Description

A simple tutorial introducing the basics of Plone development.

Ideas for improving the tutorial

	Add more information about universal installer.

	Add section on Dexterity content-type.

	Put example code on Github as collective.hello_world.

	
	General editing

	
	allow individual sections to stand on their own

	better narrative if read beginning to end

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

Schema-driven forms

This tutorial covers how to build schema-driven forms, using the z3c.form
and plone.autoform libraries.

	Introduction
	Tools

	A note about versions

	Creating a simple form
	Creating a package

	Creating a schema

	Creating the form view

	Testing the form

	Customising form behaviour
	Validation

	Vocabularies

	Widgets

	Actions (buttons)

	Fieldsets

	Form types
	Base forms and schema forms

	Page forms

	Add forms

	Edit forms

	Display forms

	Customising form presentation
	Layout templates

	Error snippets

	Further reading

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Introduction

What is z3c.form all about?

HTML forms are the cornerstone of modern web applications. When you interact with Plone, you use forms all the time - to search the content store, to edit content items, to fill in your personal details. You will notice that most of these forms use the same layout and conventions, and that they all rely on common patterns such as server-side validation and different buttons resulting in different actions.

Over the years, several approaches have evolved to deal with forms. A few of the most important ones are:

	Creating a simple view with an HTML form that submits to itself (or
another view), where the request is validated and processed in custom
Python code. This is very flexible and requires little learning, but
can also be fairly cumbersome, and it is harder to maintain a common
look and feel and behaviour across all forms. See the Views and viewlets for some hints on one way to build such views.

	Using the CMFFormController library. This relies on special page
objects known as “controller page templates” that submit to
“controller python scripts”. The form controller takes care of the
flow between forms and actions, and can invoke validator scripts.
This only superficially addresses the creation of standard form
layouts and widgets, however. It is largely deprecated, although
Plone still uses it internally in places.

	Using zope.formlib. This is a library which ships with Zope. It is
based on the principle that a schema interface defines a number of
form fields, constraints and so on. Special views are then used to
render these using a standard set of widgets. Formlib takes care of
page flow, validation and the invocation of actions - methods that
correspond to buttons on the form. Formlib is used for Plone’s
control panels and portlets. However, it can be cumbersome to use,
especially when it comes to creating custom widgets or more dynamic
forms.

	Using `z3c.form`_. This is a newer library, inspired by formlib,
but more flexible and modern.

This manual will show you how to use z3c.form in a Plone context.
It will use tools and patterns that are consistent with those used for Dexterity development, as shown in the Dexterity developer manual, but the information contained herein is not Dexterity specific. Note that Dexterity’s standard add and edit forms are all based on z3c.form.

Tools

As a library, z3c.form has spawned a number of add-on modules, ranging
from new field types and widgets, to extensions that add functionality
to the forms built using the framework. We will refer to a number of
packages in this tutorial. The most important packages are:

	z3c.form [https://pypi.python.org/pypi/z3c.form] itself, the basic form library. This defines the standard
form view base classes, as well the default widgets. The z3c.form
documentation [http://docs.zope.org/z3c.form] applies to the forms created here, but some of the
packages below simplify or enhance the integration experience.

	plone.z3cform [https://pypi.python.org/pypi/plone.z3cform] makes z3c.form usable in Zope 2. It also adds a
number of features useful in Zope 2 applications, notably a mechanism
to extend or modify the fields in forms on the fly.

	plone.app.z3cform [https://pypi.python.org/pypi/plone.app.z3cform] configures z3c.form to use Plone-looking
templates by default, and adds few services, such as a widget to use
Plone’s visual editor and “inline” on-the-fly validation of forms.
This package must be installed for z3c.form-based forms to work in
Plone.

	plone.autoform [https://pypi.python.org/pypi/plone.autoform] improves z3c.form’s ability to create a form from
a schema interface. By using the base classes in this package,
schemata can be more self-describing, for example specifying a custom
widget, or specifying relative field ordering. We will use
plone.autoform in this tutorial to simplify form setup.

	plone.directives.form [https://pypi.python.org/pypi/plone.directives.form] provides tools for registering forms using
convention-over-configuration instead of ZCML. We
will use plone.directives.form to configure our forms in this
manual.

A note about versions

This manual is targeted at Plone 4.1 and above (Zope 2.13).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Creating a simple form

	Creating a package

	Creating a schema

	Creating the form view

	Testing the form

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Creating a simple form »

Creating a package

Giving our forms a home

For the purposes of this tutorial, we will create a simple package that
adds the necessary dependencies. If you have an existing package that
requires a form, you should be able to add the same dependencies. If you
have read the Dexterity developer manual, most of this should be familiar.

For details about creating new packages, see
Bootstrapping Plone add-on development.

First, we create a new package:

$ paster create -t plone example.dexterityforms

After answering the relevant questions, we edit setup.py to add
plone.app.z3cform and plone.directives.form as dependencies. This
will pull in the other pre-requisites, including plone.z3cform and
z3c.form itself. We have also removed the ZopeSkel local command
support, which we will not need, although there is no harm in keeping it
in. Finally, we have added a tests extra to pull in
collective.testcaselayer for our integration tests.

from setuptools import setup, find_packages
import os

version = '1.0b1'

setup(name='example.dexterityforms',
 version=version,
 description="Examples of forms using plone.directives.form",
 long_description=open("README.rst").read() + "\n" +
 open(os.path.join("docs", "HISTORY.rst")).read(),
 # Get more strings from https://pypi.python.org/pypi?%3Aaction=list_classifiers
 classifiers=[
 "Framework :: Plone",
 "Programming Language :: Python",
],
 keywords='',
 author='Martin Aspeli',
 author_email='optilude@gmail.com',
 url='http://plone.org/products/dexterity/documentation/manual/schema-driven-forms',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['example'],
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'setuptools',
 'plone.app.z3cform',
 'plone.directives.form',
],
 extras_require={
 'tests': ['collective.testcaselayer',]
 },
 entry_points="""
 [z3c.autoinclude.plugin]
 target = plone
 """,
)

Next, we edit configure.zcml to add some boilerplate:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 xmlns:grok="http://namespaces.zope.org/grok"
 i18n_domain="example.dexterityforms">

 <includeDependencies package="." />
 <grok:grok package="." />

 <genericsetup:registerProfile
 name="default"
 title="Example forms"
 directory="profiles/default"
 description="Example forms using plone.directives.forms"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

</configure>

This will:

	Include the configuration of the packages we have listed in the
install_requires line in setup.py. This saves us from manually
including them with individual ZCML <include /> statements.

	“Grok” the package, to configure the forms we will add. See the
five.grok manual for more details.

	Create an installation profile that will install this package and its
dependencies.

The installation profile contains the instructions to install our
package’s dependencies into the Plone site. We create a
profiles/default directory, and add to it a metadata.xml:

<metadata>
 <version>1</version>
 <dependencies>
 <dependency>profile-plone.app.z3cform:default</dependency>
 </dependencies>
</metadata>

We need to install plone.app.z3cform to ensure that our forms have the
proper widgets and templates available.

Next, we add a message factory to allow the titles and descriptions in
our form to be translated. We’ll do this in a module interfaces.py at
the root of our package:

import zope.i18nmessageid
MessageFactory = zope.i18nmessageid.MessageFactory('example.dexterityforms')

The name of the factory should normally be the name of the package.

Finally, we add this package to our buildout.cfg and re-run
bin/buildout.

[buildout]
extends =
 http://dist.plone.org/release/4-latest/versions.cfg
...
develop =
 src/example.dexterityforms

eggs =
 example.dexteriyforms

...

[tests]
recipe = zc.recipe.testrunner
eggs =
 example.dexterityforms [tests]

Obviously, we have omitted large parts of the buildout configuration
here. The important things to note are:

	We have included the known good set (KGS) of package versions for
the latest 4.x release of Plone.

	We list the new egg as a develop egg, and make sure it is in an eggs
list that gets used for the Zope instance.

	We use the [tests] extra when listing the testable eggs in the
tests section. This ensures that collective.testcaselayer is
installed for the testrunner.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Creating a simple form »

Creating a schema

The starting point for our form

With the form package created and installed, we can create our form
schema. Whilst it is strictly not necessary yet, we will use the
Schema interface base from plone.autoform. This lets us use
schema directives (as seen in Dexterity content type schemata) to
configure custom widgets, set up hidden fields and so on. Later in this
manual, we will cover in more detail how you can perform these
operations imperatively in Python code.

The example we’ll use for this form is a pizza ordering form. We’ll
build on this form over the coming sections, so if you look at the
example source code, you may find a few extra bits. However, the basics
are simple enough.

We’ll create a module called order.py inside our package
(example/dexterityforms/order.py), and add the following code to it:

from plone.supermodel import model
from plone.directives import form

from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

from example.dexterityforms.interfaces import MessageFactory as _

class IPizzaOrder(model.Schema):

 name = schema.TextLine(
 title=_(u"Your full name"),
)

 address1 = schema.TextLine(
 title=_(u"Address line 1"),
)

 address2 = schema.TextLine(
 title=_(u"Address line 2"),
 required=False,
)

 postcode = schema.TextLine(
 title=_(u"Postcode"),
)

 telephone = schema.ASCIILine(
 title=_(u"Telephone number"),
 description=_(u"We prefer a mobile number"),
)

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(values=[_(u'Margherita'), _(u'Pepperoni'), _(u'Hawaiian')])
)

For now, this form is quite simple. The list of pizzas is hard-coded,
and we can only choose one of each type. We will make it (a little) more
realistic later by adding a better vocabulary, creating a custom widget
for the pizza order part, and improving the look and feel with a custom
template.

At the top, we have included a number of imports. Some of these pertain to the form view, which will be described next.
Other than that, we have simply defined a schema that describes the form’s fields. The title and description of each field are used as label and help text, respectively.
The required attribute can be set to False for optional fields.
For a full field and widgets reference, see the Dexterity developer manual.
(It is no accident that the Dexterity content type fields and widgets are defined in the same manner as those of a standalone form!)

Also notice how all the user-facing strings are wrapped in the message
factory to make them translatable. The message factory is imported as
_, which helps tools like gettext extract strings for translation.
If you are sure your form will never need to be translated, you can skip
the message factory in interfaces.py and use plain unicode strings,
i.e. u“Postcode” instead of _(u“Postcode”)

We are almost done with our most basic form. Before we can use the form,
however, we need to create a form view and define some actions
(buttons). That is the subject of the next section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Creating a simple form »

Creating the form view

Using our schema in a form

To render our form, we need to create a view that uses a z3c.form base
class. The view is registered like any other, either in ZCML or, as we
will show here, by using convention-over-configuration ala five.grok [https://pypi.python.org/pypi/five.grok].
It is then configured with the schema to use for form fields, the label
(page title) and description (lead-in text) to show, and actions to
render as buttons.

Still in order.py, we add the following:

class OrderForm(form.SchemaForm):
 grok.name('order-pizza')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 schema = IPizzaOrder
 ignoreContext = True

 label = _(u"Order your pizza")
 description = _(u"We will contact you to confirm your order and delivery.")

 def update(self):
 # disable Plone's editable border
 self.request.set('disable_border', True)

 # call the base class version - this is very important!
 super(OrderForm, self).update()

 @button.buttonAndHandler(_(u'Order'))
 def handleApply(self, action):
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 # Handle order here. For now, just print it to the console. A more
 # realistic action would be to send the order to another system, send
 # an email, or similar

 print u"Order received:"
 print u" Customer: ", data['name']
 print u" Telephone:", data['telephone']
 print u" Address: ", data['address1']
 print u" ", data['address2']
 print u" ", data['postcode']
 print u" Order: ", ', '.join(data['orderItems'])
 print u""

 # Redirect back to the front page with a status message

 IStatusMessage(self.request).addStatusMessage(
 _(u"Thank you for your order. We will contact you shortly"),
 "info"
)

 contextURL = self.context.absolute_url()
 self.request.response.redirect(contextURL)

 @button.buttonAndHandler(_(u"Cancel"))
 def handleCancel(self, action):
 """User cancelled. Redirect back to the front page.
 """
 contextURL = self.context.absolute_url()
 self.request.response.redirect(contextURL)

Let’s go through this in some detail:

	We derive our form view from one of the standard base classes in
plone.directives.form. The SchemaForm is a plone.autoform-based
form (so it configures the form fields from the schema automatically
and takes schema hints into account), without any of the standard
actions that can be found on more specialised base classes such as
SchemaAddForm or SchemaEditForm. It basically mirrors the
z3c.form.form.Form base class.

	We then use the standard five.grok view directives to register the
view: grok.name() gives it a friendly name (used as a path segment
in the URL); grok.context() sets the type of context where the form
is available (here, we make it available on the Plone site root,
though any interface or class may be passed; to make the form
available on any context, use zope.interface.Interface as the
context); grok.require() specifies a permission which the user must
have to be able to view the form (here, we use the standard
zope2.View permission). See the views section in the five.grok
manual for more detail.

	Next, we specify the schema via the schema attribute. This is the
equivalent of assigning the fields attribute to a field.Fields()
instance, as you may have seen in documentation for “plain”
z3c.form. (*In fact, the "*fields = field.Fields(ISchema)" pattern
of working is supported if you use plone.directives.form.Form as a
base class instead of SchemaForm, but you will then be unable to
use form schema hints in the schema itself - more on this later.)

	We set ignoreContext to True. This tells z3c.form not to
attempt to read the current value of any of the form fields from the
context. The default behaviour is to attempt to adapt the context
(the Plone site root in this case) to the schema interface and read
the schema attribute value from this adapter when first populating
the form. This makes sense for edit forms and things like control
panels, but not for a standalone form like this.

	We then set a label and description for the form. In the standard
form template, these are rendered as a page header and lead-in text,
respectively.

	We override the update() method to set the disable_border
request variable. This hides the editable border when rendering the
form. We then call the base class version of update(). This is
crucial for the form to work! update() is a good place to perform
any pre-work before the form machinery kicks in (before calling the
base class version) or post-processing afterwards (after calling the
base class version). See the section on the form rendering lifecycle
later in this manual for the gory details.

	Finally, we define two actions, using the
@button.buttonAndHandler() decorator. Each action is rendered as a
button (in order). The argument is a (translated) string that will be
used as a button label. The decorated handler function will be called
when the button is clicked.

For the purposes of this test, the actual work we do with the main
handler is relatively contrived. However, the patterns are generally
applicable.

The second button (cancel) is the simpler of the two. It performs no
validation and simply redirects to the context’s default view, i.e. the
portal front page in this case.

The first button actually extracts the data from the form, using
self.extractData(). This returns a tuple of the form data, which has
been converted to the field’s underlying type by each widget (thus, the
value corresponding to the Set field contains a set) and any errors.
If there are errors, we abort, setting self.status to confer an error
message at the top of the page. Otherwise, we use the form data (here
just printing the output to the console - you need to run Zope in
foreground mode to see these messages), add a cookie-tracked status
message (so that it can appear on the next page) and redirect the user
to the context’s default view. In this case, that means the portal front
page.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Creating a simple form »

Testing the form

Seeing the form in action

The schema and (grokked) form view is all that’s needed to create the
first iteration of the form. We can now install our new package and test
the form.

First, we make sure that we have run bin/buildout so that the new
package is available to the Zope instance script. We then start up Zope
in foreground mode:

bin/instance fg

Next, we create or go to a Plone site, and install the new Example
forms product via the new Plone site creation form or the Add-ons
control panel. This should also install the product called Plone
z3c.form support (from the plone.app.z3cform package) as a
dependency.

We haven’t created any links to the form yet (though you could easily do
so in a content item or portlet by inserting a manually-entered URL),
but the form can be visited by going to the @@order-pizza view on the
Plone site root, e.g.:

http://localhost:8080/Plone/@@order-pizza

It should look something like this:

[image: Basic form]

Try to fill in the form and use the two buttons. You should see the
validation (both on-the-fly and after submit if you ignore the
on-the-fly warnings), as well a message printed to the console if a
valid form is submitted when clicking the Order button.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Customising form behaviour

	Validation
	Field-level validation

	Form-level validation

	Invoking validators

	Vocabularies
	Static vocabularies

	Dynamic vocabularies

	Parameterised sources

	Named vocabularies

	Widgets
	Selecting a custom widget using form directives

	Widget reference

	Actions (buttons)
	Access keys

	Conditional actions

	Updating button properties

	Fieldsets

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form behaviour »

Validation

How to validate a form prior to processing

All forms apply some form of validation. In z3c.form, validators can
be executed in action handlers. If the validation fails, the action
handler can choose how to proceed. For “submit” type buttons, that
typically means showing error messages next to the relevant form fields.
For “cancel” type buttons, the validation is normally skipped entirely.

Form validation takes two forms: field-level validation, pertaining to
the value of an individual field, and form-level validation, pertaining
to the form as a whole. Form-level validation is less common, but can be
useful if fields have complex inter-dependencies.

Field-level validation

The simplest field-level validation is managed by the fields themselves.
All fields support a required attribute, defaulting to True. The
default field validator will return an error if a required field is not
filled in. Some fields also support more specific properties that affect
validation:

	Text fields like Bytes, BytesLine, ASCII, ASCIILine, Text*and
*TextLine, as well as sequence fields like Tuple, List,
Set,**Frozenset and Dict all support two properties, min_length
and max_length, which can be set to control the minimum and
maximum allowable length of the field’s value.

	Numeric fields like Int, Float and Decimal, as well as temporal
fields like Date, Datetime and Timedelta all support two
properties, min and max, setting minimum and maximum (inclusive)
allowable values. In this case, the min/max value needs to be of the
same type as field, so for an Int field, the value of this property
is an integer, whereas for a Datetime field, it is a Python
datetime object.

	A Choice field only allows values in a particular vocabulary. We
will cover vocabularies in the next section.

Constraints

If you require more specific validation, and you have control over the
schema, you can specify a constraint function. This will be passed the
submitted value (which is converted to a value appropriate for the
field, so that e.g. a List field is passed a list). If the value is
acceptable, the function should return True. If not, it should raise a
zope.schema.Invalid exception or a derivative (returning False will
also result in an error, but one without a meaningful error message).

Here is the order form schema again, this time with a constraint
function:

from five import grok
from plone.supermodel import model

from zope.interface import Invalid
from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

from example.dexterityforms.interfaces import MessageFactory as _

def postcodeConstraint(value):
 """Check that the postcode starts with a 6
 """
 if not value.startswith('6'):
 raise Invalid(_(u"We can only deliver to postcodes starting with 6"))
 return True

class IPizzaOrder(model.Schema):

 name = schema.TextLine(
 title=_(u"Your full name"),
)

 address1 = schema.TextLine(
 title=_(u"Address line 1"),
)

 address2 = schema.TextLine(
 title=_(u"Address line 2"),
 required=False,
)

 postcode = schema.TextLine(
 title=_(u"Postcode"),
 constraint=postcodeConstraint,
)

 telephone = schema.ASCIILine(
 title=_(u"Telephone number"),
 description=_(u"We prefer a mobile number"),
)

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(values=[_(u'Margherita'), _(u'Pepperoni'), _(u'Hawaiian')])
)

Notice how the postcodeConstraint()*function is passed a value (a
unicode string in this case, since the field is a *TextLine), which we
validate. If we consider the value to be invalid, we raise an Invalid
exception, with the error message passed as the exception argument.
Otherwise, we return True.

Field widget validators

Constraints are relatively easy to write, but they have two potential
drawbacks: First of all, they require that we change the underlying
interface. This is no problem if the interface exists only for the form,
but could be a problem if it is used in other contexts as well. Second,
if we want to re-use a validator for multiple forms, we would need to
modify multiple schemata.

z3c.form’s field widget validators address these shortcomings. These are
specific to the form; by contrast, constraints are a feature of
zope.interface interfaces and apply in other scenarios where
interfaces are used as well. plone.directives.form provides a
convenience decorator for creating simple field validators.

For example:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.interface import Invalid
from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

from example.dexterityforms.interfaces import MessageFactory as _

...

class IPizzaOrder(model.Schema):

 ...

class OrderForm(form.SchemaForm):

 ...

@form.validator(field=IPizzaOrder['name'])
def validateName(value):
 """Ensure names have a space (indicating a first name and surname)
 """

 if ' ' not in value:
 raise Invalid(_(u"Please give a full name"))

The @form.validator() decorator registers a validator adapter. When
the validation is invoked, the decorated function will be called with
the field’s value as an argument and given an opportunity to raise a
validation error, much like the constraint above. Again like the
constraint, the default validator is called first, so things like the
required flag and indeed any custom constraint are processed first.

The @form.validator() decorator can take keyword arguments to make the
validator more specific or more generic. The valid values are:

	context

	The form’s context, typically an interface. This allows a validator
to be invoked only on a particular type of content object.

	request

	The form’s request. Normally, this is used to specify a browser
layer.

	view

	The form view itself. This allows a validator to be invoked for a
particular type of form. As with the other options, we can pass
either a class or an interface.

	field

	A field instance, as illustrated above, or a field type, e.g. an
interface like zope.schema.IInt.

	widget

	The widget being used for the field

It is important to realise that if we don’t specify the field
discriminator, or if we pass a field type instead of an instance, the
validator will be used for all fields in the form (of the given type).
Also note how we had to define the constraint function before the form
schema interface (since it was referenced in the schema itself), but we
define this validator after the schema and form, since here we need the
interface to have been defined before we use it.

Advanced field widget validators

z3c.form validators are in fact a little more powerful than what we have
seen above. A validator is registered as a multi-adapter providing
z3c.form.interfaces.IValidator and adapting the objects (context,
request, view, field, widget), corresponding to the discriminants seen
above. You may wish to register an adapter directly instead of using the
@form.validator() decorator if you:

	want to skip the default validation of field properties like
required or min/max

	need to access the context, request, form, field and/or widget
instances to validate the value

We won’t show a full example here, but as an outline, consider the
following code snippet:

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import validator

...

class SampleValidator(validator.SimpleFieldValidator):

 def validate(self, value):
 super(SampleValidator, self).validate(value)

 # validate here

validator.WidgetValidatorDiscriminators(SampleValidator, field=IPizzaOrder['orderItems'], view=OrderForm)
grok.global_adapter(SampleValidator)

This registers an adapter, extending the SimpleFieldValidator base
class, and calling the superclass version of validate() to gain the
default validation logic. In the validate() method, we can use variables
like self.context, self.request, self.view, self.field and self.widget
to access the adapted objects. The WidgetValidatorDiscriminators class
takes care of preparing the adapter discriminators. It takes the same
keyword arguments as @form.validator() seen above.

Form-level validation

Form level validation is less common than field-level validation, but is
useful if your fields are inter-dependent in any ways. As with
field-level validation, there are two options:

	Invariants are specified at the interface level. As such, they are
analogous to constraints.

	Widget manager validators are standalone adapters that are specific
to z3c.form. As such, they are analogous to field widget
validators.

Invariants

Invariants work much like constraints, in that they are called during
the form validation cycle and may raise Invalid exceptions to indicate
a validation problem. Because they are not tied to fields specifically,
an error resulting from an invariant check is displayed at the top of
the form.

Invariants are written as functions inside the interface definition,
decorated with the zope.interface.invariant decorator. They are passed
a data object that provides the schema interface. In the case of a
z3c.form form, this is actually a special object that provides the
values submitted in the request being validated, rather than an actual
persistent object.

For example:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.interface import invariant, Invalid
from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

from example.dexterityforms.interfaces import MessageFactory as _

...

class IPizzaOrder(model.Schema):

 name = schema.TextLine(
 title=_(u"Your full name"),
)

 address1 = schema.TextLine(
 title=_(u"Address line 1"),
)

 address2 = schema.TextLine(
 title=_(u"Address line 2"),
 required=False,
)

 postcode = schema.TextLine(
 title=_(u"Postcode"),
 constraint=postcodeConstraint,
)

 telephone = schema.ASCIILine(
 title=_(u"Telephone number"),
 description=_(u"We prefer a mobile number"),
)

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(values=[_(u'Margherita'), _(u'Pepperoni'), _(u'Hawaiian')])
)

 @invariant
 def addressInvariant(data):
 if data.address1 == data.address2:
 raise Invalid(_(u"Address line 1 and 2 should not be the same!"))

Here we have defined a single invariant, although there is no limit to
the number of invariants that you can use.

Widget manager validators

Invariants have most of the same benefits and draw-backs as constraints:
they are easy to write, but require modifications to the schema
interface, and cannot be generalised beyond the interface. Not
surprisingly therefore, z3c.form provides another option, in the form
of a widget manager validator. This is a multi-adapter for (context,
request, view, schema, widget manager) providing
z3c.form.interfaces.IManagerValidator. The default simply checks
invariants, although you can register your own override.

That said, overriding the widget manager validator is not particularly
common, because if you need full-form validation and you don’t want to
use invariants, it is normally easier to place validation in the action
handler, as we will see next.

Invoking validators

Unlike some of the earlier form libraries, z3c.form does not
automatically invoke validators on every form submit. This is actually a
good thing, because it makes it much easier to decide when validation
makes sense (e.g. there is no need to validate a “cancel” button).

We have already seen the most common pattern for invoking validation in
our handler for the “order” button:

@button.buttonAndHandler(_(u'Order'))
def handleApply(self, action):
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 # Handle order here. For now, just print it to the console. A more
 # realistic action would be to send the order to another system, send
 # an email, or similar

 ...

Notice how we call extractData(), which returns both a dictionary of
the submitted data (for valid fields, converted to the underlying field
value type) and a dictionary of errors (which is empty if all fields are
valid).

Validating in action handlers

Sometimes, it may be useful to perform additional validation in the
action handler itself. We can inspect the data dictionary, as well as
any other aspect of the environment (like self.context, the context
content object, or self.request, the request), to perform validation.

To signal an error, we use one of two exception types:

	z3c.form.interfaces.ActionExecutionError, for generic, form-wide
errors

	z3c.form.interfaces.WidgetActionExecutionError, for
field/widget-specific errors

In both cases, these exceptions wrap an Invalid exception. Let’s add
two examples to our action handler.

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.interface import invariant, Invalid
from zope import schema

from z3c.form import button
from z3c.form.interfaces import ActionExecutionError, WidgetActionExecutionError

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

from example.dexterityforms.interfaces import MessageFactory as _

...

class OrderForm(form.SchemaForm):

 ...

 @button.buttonAndHandler(_(u'Order'))
 def handleApply(self, action):
 data, errors = self.extractData()

 # Some additional validation
 if 'address1' in data and 'address2' in data:

 if len(data['address1']) < 2 and len(data['address2']) < 2:
 raise ActionExecutionError(Invalid(_(u"Please provide a valid address")))
 elif len(data['address1']) < 2 and len(data['address2']) > 10:
 raise WidgetActionExecutionError('address2', Invalid(u"Please put the main part of the address in the first field"))

 if errors:
 self.status = self.formErrorsMessage
 return

Notice how we perform the check after the extractData() call, but
before the possible premature return in case of validation errors. This
is to ensure all relevant errors are displayed to the user. Also note
that whilst the invariant is passed an object providing the schema
interface, the data dictionary is just that - a dictionary. Hence, we
use “dot notation” (data.address1) to access the value of a field in
the invariant, but “index notation” (data[‘address1’])**to access the
value of a field in the handler.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form behaviour »

Vocabularies

Static and dynamic lists of valid values

The term “vocabulary” here refers to a list of values that are allowable
by a given field. In most cases, that implies a field using a selection
widget, like a multi-select list box or a drop-down.

Selection fields use the Choice field type. To allow the user to
select a single value, use a Choice field directly:

class ISimplePizza(model.Schema):
 topping = schema.Choice(
 title=_(u"Choose your topping"),
 values=[_(u'Chicken'), _(u'Pepperoni'), _(u'Tomato')]
)

For a multi-select field, use a List, Tuple, Set or Frozenset with
a Choice as the value_type:

class IPizzaOrder(model.Schema):

 ...

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(values=[_(u'Margherita'), _(u'Pepperoni'), _(u'Hawaiian')])
)

The Choice field must be passed one of the following arguments,
specifying its vocabulary:

	values can be used to give a list of static values

	source can be used to refer to an IContextSourceBinder or
ISource instance

	vocabulary can be used to refer to an IVocabulary instance or
(more commonly) a string giving the name of an
IVocabularyFactory named utility.

We’ll now explore various ways in which we can improve on the
orderItems list.

Static vocabularies

Up until now, we have been using a static vocabulary, passing the list
of allowable values as the values parameters to the Choice field.
This is simple, but has a few draw-backs:

	If the vocabulary changes, we have to change the interface code.

	There is no way to separate the label that the user sees in the
selection widget from the value that is extracted.

Dynamic vocabularies

To implement a more dynamic vocabulary, we can use a source. Before we
do that, though, let’s consider where our data will come from.

We want to make the “order items” list more dynamic, and allow the list
of available pizza types to be managed through the web. There are
various ways to do this, including modelling pizzas as content items and
creating a source that performs a catalog query to find them all. To
manage a simple list, however, we can use plone.app.registry and
install the list with our product’s extension profile. An administrator
could then use the registry control panel to change the list. We won’t
go into plone.app.registry in detail here, but you can read its
documentation [https://pypi.python.org/pypi/plone.app.registry] to get a full understanding of what it is and how it
works.

First, we need to add plone.app.registry as a dependency in
setup.py:

install_requires=[
 'setuptools',
 'plone.app.z3cform',
 'plone.directives.form',
 'plone.app.registry',
],

We also want to configure it when our product is installed in Plone, so
we edit profiles/default/metadata.xml as follows:

<metadata>
 <version>1</version>
 <dependencies>
 <dependency>profile-plone.app.z3cform:default</dependency>
 <dependency>profile-plone.app.registry:default</dependency>
 </dependencies>
</metadata>

Next, we create a registry.xml containing the following:

<registry>

 <record name="example.dexterityforms.pizzaTypes">
 <field type="plone.registry.field.Tuple">
 <title>Pizza types</title>
 <value_type type="plone.registry.field.TextLine" />
 </field>
 <value>
 <element>Margherita</element>
 <element>Pepperoni</element>
 <element>Hawaiian</element>
 </value>
 </record>

</registry>

After re-running buildout and (re-)installing our product in the

Terminology

When working with dynamic vocabularies, we come across some terminology
that is worth explaining:

	A term is an entry in the vocabulary. The term has a value. Most
terms are tokenised terms which also have a token, and some terms
are titled, meaning they have a title that is different to the
token.

	The token must be an ASCII string. It is the value passed with the
request when the form is submitted. A token must uniquely identify a
term.

	The value is the actual value stored on the object. This is not
passed to the browser or used in the form. The value is often a
unicode string, but can be any type of object.

	The title is a unicode string or translatable message. It is used
in the form and displayed to the user.

One-off sources with a context source binder

We can make a one-off dynamic vocabulary using a context source binder.
This is simply a callable (usually a function or an object with a
__call__ method) that provides the IContextSourceBinder
interface and takes a context parameter. The context argument is the
context of the form view. The callable should return a vocabulary, which
is most easily achieved by using the SimpleVocabulary class from
zope.schema.

Here is an example that returns our pizza types:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.component import queryUtility

from zope import schema

from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary

from plone.registry.interfaces import IRegistry

...

@grok.provider(IContextSourceBinder)
def availablePizzas(context):
 registry = queryUtility(IRegistry)

 terms = []

 if registry is not None:
 for pizza in registry.get('example.dexterityforms.pizzaTypes', ()):
 # create a term - the arguments are the value, the token, and
 # the title (optional)
 terms.append(SimpleVocabulary.createTerm(pizza, pizza.encode('utf-8'), pizza))

 return SimpleVocabulary(terms)

Here, we have defined a function acting as the*IContextSourceBinder*, as
specified via the @*grok.provider()* decorator. This looks up the
registry and looks for the record we created with registry.xml above
(remember to re-install the product in the Add-on control panel or the
portal_quickinstaller tool if you modify this file). We then use the
SimpleVocabulary helper class to create the actual vocabulary.

The SimpleVocabulary class additionally contains two class methods
that can be used to create vocabularies from lists:

	fromValues() takes a simple list of values and returns a tokenised
vocabulary where the values are the items in the list, and the tokens
are created by calling str() on the values.

	fromItems() takes a list of (token, value) tuples and creates a
tokenised vocabulary with the token and value specified.

We can also instantiate a SimpleVocabulary directly and pass a list of
terms in the initialiser as we have done above. The createTerm() class
method can be used to create a term from a value, token and title.
Only the value is required.

To use this context source binder, we use the source argument to the
Choice constructor:

class IPizzaOrder(model.Schema):

 ...

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(source=availablePizzas)
)

Parameterised sources

Sometimes, it is useful to parameterise the source. For example, we
could generalise the pizza source to work with any registry value
containing a sequence, by passing the registry key as an argument. This
would allow us to create many similar vocabularies and call upon them in
code easily.

This degree of generalisation is probably overkill for our use case, but
to illustrate the point, we’ll outline the solution below.

First, we turn our IContextSourceBinder into a class that is
initialised with the registry key

class RegistrySource(object):
 grok.implements(IContextSourceBinder)

 def __init__(self, key):
 self.key = key

 def __call__(self, context):
 registry = queryUtility(IRegistry)
 terms = []

 if registry is not None:
 for value in registry.get(self.key, ()):
 terms.append(SimpleVocabulary.createTerm(value, value.encode('utf-8'), value))

 return SimpleVocabulary(terms)

Notice how in our first implementation, the function provided the
IContextSourceBinder*interface, but the class here *implements it.
This is because the function was the context source binder callable
itself. Conversely, the class is a factory that creates
IContextSourceBinder objects, which in turn are callable.

Again, the source is set using the source argument to the Choice
constructor.

orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(source=RegistrySource('example.dexterityforms.pizzaTypes'))
)

When the schema is initialised on startup, the a RegistrySource object
is instantiated, storing the desired registry key in an instance
variable. Each time the vocabulary is needed, this object will be called
(i.e. the __call__() method is invoked) with the context as an
argument, and is expected to return an appropriate vocabulary.

Named vocabularies

Context source binders are great for simple dynamic vocabularies. They
are also re-usable, since we can import the source from a single
location and use it in multiple instances. However, we may want to
provide an additional level of decoupling, by locating a vocabulary by
name, not necessarily caring where or how it is implemented.

Named vocabularies are similar to context source binders, but are
components registered as named utilities, referenced in the schema by
name only. This allows local overrides of the vocabulary via the
Component Architecture, and makes it easier to distribute vocabularies
in third party packages.

Note

Named vocabularies cannot be parameterised in the way as we did
with the context source binder above, since they are looked up by name
only.

We can turn our first dynamic vocabulary into a named vocabulary by
creating a named utility providing IVocabularyFactory, like so:

from five import grok
from zope.component import queryUtility

from zope import schema
from zope.schema.interfaces import IVocabularyFactory

from zope.schema.vocabulary import SimpleVocabulary

from plone.registry.interfaces import IRegistry

class PizzasVocabulary(object):
 grok.implements(IVocabularyFactory)

 def __call__(self, context):
 registry = queryUtility(IRegistry)
 terms = []
 if registry is not None:
 for pizza in registry.get('example.dexterityforms.pizzaTypes', ()):
 # create a term - the arguments are the value, the token, and
 # the title (optional)
 terms.append(SimpleVocabulary.createTerm(pizza, pizza.encode('utf-8'), pizza))
 return SimpleVocabulary(terms)
grok.global_utility(PizzasVocabulary, name=u"example.dexterityforms.availablePizzas")

Note

By convention, the vocabulary name is prefixed with the package name, to
ensure uniqueness.

We can make use of this vocabulary in any schema by passing its name to
the vocabulary argument of the Choice field constructor:

orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(vocabulary='example.dexterityforms.availablePizzas')
)

As you might expect, there are a number of standard vocabularies that
come with Plone and third party packages, most of which are named
vocabularies. Many of these can be found in the plone.app.vocabularies
package, and add-ons such as plone.principalsource.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form behaviour »

Widgets

Changing the widget used to render a field

Like most form libraries, z3c.form separates a field – a
representation of the value being provided by the form – from its widget
– a UI component that renders the field in the form. In most cases, the
widget is rendered as a simple HTML <input /> element, although more
complex widgets may use more complex markup.

The simplest widgets in z3c.form are field-agnostic. However, we
nearly always work with field widgets, which make use of field
attributes (e.g. constraints or default values) and optionally the
current value of the field (in edit forms) during form rendering.

Most of the time, we don’t worry too much about widgets: each of the
standard fields has a default field widget, which is normally
sufficient. If we need to, however, we can override the widget for a
given field with a new one.

Selecting a custom widget using form directives

plone.directives.form provides a convenient way to specify a custom
widget for a field, using the form.widget() directive:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope import schema

from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

...

class IPizzaOrder(model.Schema):

 ...

 form.widget('notes', WysiwygFieldWidget)
 notes = schema.Text(
 title=_(u"Notes"),
 description=_(u"Please include any additional notes for delivery"),
 required=False
)

The argument can be either a field widget factory, as shown here, or the
full dotted name to one (plone.app.z3cform.wysiwyg.WysiwygFieldWidget
in this case).

Updating widget settings

All widgets expose properties that control how they are rendered. You
can set these properties by passing them to the widget directive:

class IPizzaOrder(model.Schema):

 ...

 form.widget('postcode', size=4)
 postcode = schema.TextLine(
 title=_(u"Postcode"),
)

Note

Support for specifying widget properties was added in plone.autoform 1.4.

Some of the more useful properties are shown below. These generally
apply to the widget’s <input /> element.

	klass, a string, can be set to a CSS class.

	style, a string, can be set to a CSS style string

	title, a string, can be used to set the HTML attribute with the
same name

	onclick, ondblclick, etc can be used to associate JavaScript code
with the corresponding events

	disabled can be set to True to disable input into the field

Other widgets also have attributes that correspond to the HTML elements
they render. For example, the default widget for a Text field renders
a <textarea /> , and has attributes like rows and cols. For a
TextLine, the widget renders an <input type=“text” />, which
supports a size attribute, among others.

Take a look at z3c.form’s browser/interfaces.py for a full list of
attributes that are used.

Supplying a widget factory

Later in this manual, we will learn how to set up the fields attribute
of a form manually, as is done in “plain” z3c.form, instead of using
the schema shortcut that is provided by plone.autoform. If you are
using this style of configuration (or simply looking at the basic
z3c.form documentation), the syntax for setting a widget factory is:

class OrderForm(Form):

 fields = field.Fields(IPizzaOrder)
 fields['notes'].widgetFactory = WysiwygFieldWidget

 ...

Widget reference

You can find the default widgets in the browser package in z3c.form.
The z3c.form documentation [https://pythonhosted.org/z3c.form/] contains a listing [https://pythonhosted.org/z3c.form/browser/README.html] of all the default
widgets that shows the HTML output of each.

In addition, the Dexterity manual contains an overview of common custom widgets.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form behaviour »

Actions (buttons)

Defining form buttons and executing code when they are clicked

z3c.form defines a rich framework for defining, processing and
executing actions, an abstraction of the “outcome” of a form. Actions
are not necessarily related to form buttons, but for the vast majority
of use cases, we can think of forms buttons as a special type of widget
that represents an underlying action. Such “button actions” are usually
the only type of action we will ever use. Actions are nearly always
associated with a handler method, which will be called by the framework
when a form was submitted in response to a click of a particular button.

The usual way to define actions and buttons is to use the
@button.buttonAndHandler() decorator. This takes as a minimum the
button title as an argument. We have already seen two examples of this
in our pizza order form:

@button.buttonAndHandler(_(u'Order'))
def handleApply(self, action):
 ...

@button.buttonAndHandler(_(u"Cancel"))
def handleCancel(self, action):
 ...

The name of the method is not particularly important, so long as it is
unique. The body of the handler function may react to the button however
is appropriate for the form’s use case. It may perform a redirect or
update form properties prior to re-rendering of the form. It should not
return anything. Use the self.extractData() helper to return a tuple
of the form’s submitted data and any errors, as shown in the preceding
examples.

The action argument is the action that was executed. We normally
ignore this, but it may be introspected to find out more about the
action. The isExecuted() method can be used to determine if the
corresponding button was indeed clicked, and would normally be True
within any action handler that is called by the framework. The title
attribute contains the button title as shown to the user.

Access keys

To define a HTML access key for a button, use the accessKey keyword
argument:

@button.buttonAndHandler(_(u'Order'), accessKey=u"o")
 def handleApply(self, action):
 ...

Conditional actions

If a button should only be shown in some cases, we can use the
condition keyword argument, passing a function that takes as its only
parameter the form to which the button belongs. If this does not return
True, the button will be omitted from the form:

...

import datetime

def daytime(form):
 hour = datetime.datetime.now().hour
 return hour >= 9 and hour <= 17:

class MyForm(form.SchemaForm)

 ...

 @button.buttonAndHandler(_(u'Give me a call'), condition=daytime)
 def handleCallBackRequest(self, action):
 ...

Updating button properties

As with regular widgets, it is sometimes useful to set properties on
buttons after they have been instantiated by z3c.form. One common
requirement is to add a CSS class to the button. The standard edit form
in*plone.directives.form* does this, for example, to add Plone’s
standard CSS classes. The usual approach is to override
updateActions(), which is called during the form update cycle:

def updateActions(self):
 super(AddForm, self).updateActions()
 self.actions["save"].addClass("context")
 self.actions["cancel"].addClass("standalone")

Notice how we call the base class version first to ensure the actions
have been properly set up. Also bear in mind that if a button is
conditional, it may not be in self.actions at all.

Buttons are really just HTML input widgets, so you can set other
properties too, including attributes like onclick or ondblclick to
install client-side JavaScript event handlers.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form behaviour »

Fieldsets

Breaking forms into multiple fieldsets

z3c.form supports the grouping of form fields into what is known as
groups. A form class may mix in z3c.form.group.GroupForm to gain
support for groups, setting the groups variable to a list of Group
subclasses. The Group base class behaves much like the Form base
class, but is used only for grouping fields, and cannot have actions.

In Plone, groups are represented as fieldsets. The standard templates
make these look like dynamic tabs, much like those we can find in the
edit forms for most Plone content. For this reason,
plone.supermodel provides a directive called model.fieldset(),
which can be used to create fieldsets.

Note

The z3c.form Group idiom is
still supported, and can be mixed with the more declarative
model.fieldset() approach. However, the latter is usually easier to
use.

To illustrate fieldsets, let’s give customers the option to leave
feedback on our pizza ordering form. To keep our main form short, we
will put this in a separate fieldset. Note that there is still only one
set of submit buttons, i.e. all fieldsets are submitted at once. This is
purely for aesthetic effect.

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope import schema

from example.dexterityforms.interfaces import MessageFactory as _

...

class IPizzaOrder(model.Schema):

 # Main form

 name = schema.TextLine(
 title=_(u"Your full name"),
)

 address1 = schema.TextLine(
 title=_(u"Address line 1"),
)

 address2 = schema.TextLine(
 title=_(u"Address line 2"),
 required=False,
)

 postcode = schema.TextLine(
 title=_(u"Postcode"),
 constraint=postcodeConstraint,
)

 telephone = schema.ASCIILine(
 title=_(u"Telephone number"),
 description=_(u"We prefer a mobile number"),
)

 orderItems = schema.Set(
 title=_(u"Your order"),
 value_type=schema.Choice(source=availablePizzas)
)

 form.widget('notes', WysiwygFieldWidget)
 notes = schema.Text(
 title=_(u"Notes"),
 description=_(u"Please include any additional notes for delivery"),
 required=False
)

 # Feedback fieldset

 model.fieldset(
 'feedback',
 label=_(u"Feedback"),
 fields=['feedbackNote', 'feedbackEmail']
)

 feedbackNote = schema.Text(
 title=_(u"Feedback"),
 description=_(u"Please provide any feedback below"),
 required=False,
)

 feebackEmail = schema.TextLine(
 title=_(u"Email address"),
 description=_(u"If you'd like us to contact you, please give us an email address below"),
 required=False,
)

 ...

Note

Since this approach uses form schema hints, the schema must derive from
model.Schema and the form base class must extend plone.autoform.AutoExtensibleForm. In our example, we are using SchemaForm,
a subclass of AutoExtensibleForm.

Above, we have declared a single fieldset, and listed the fields within
it. Those fields not explicitly associated with a fieldset end up in the
“default” fieldset. We also set a fieldset name and label. The label is
optional.

It is possible to use the same fieldset name multiple times in the same
form. This is often the case when we use the additional_schemata
property to set secondary schemata for our form. In this case, the
label from the first fieldset directive encountered will be used.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Form types

	Base forms and schema forms
	Context and request

	Primary and additional schemata in schema forms

	Page forms

	Add forms

	Edit forms

	Display forms

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Form types »

Base forms and schema forms

Understanding the two types of forms work with in this manual

z3c.form comes with a few base classes for forms, covering common use
cases including page forms, edit forms, add forms and display forms. In
this manual, we are actually using some intermediary base classes from
plone.directives.form, which serve two purposes: they allow the forms
to be “grokked”, for example to associate a page template or register
the form as a view using directives like grok.context() and
grok.name(); some of them also provide a hook for schema forms,
which use form hints supplied in directives (like form.widget() as we
saw in the previous section) that are interpreted by plone.autoform to
configure the form’s fields. Whilst we can do everything in code using
the plain z3c.form API, many people may prefer the more declarative
style of configuration that comes with plone.autoform and
plone.directives.form, because it involves less code and keeps the
field-specific form configuration closer to the field definitions.

Over the next several sections, we will discuss the various form base
classes. A brief overview follows.

	z3c.form.form.BaseForm

	This base class is not to be used directly, but is the ancestor of
all z3c.form forms. It defines attributes like label (the form’s
title), mode (the default mode for the form’s fields, usually
‘input’ in regular forms and ‘display’ in display forms),
ignoreContext, ignoreRequest (see below) and
ignoreReadonly (which omits readonly fields from the form). It
also defines the basic update() and render() methods that are
the basis of the form rendering cycle, which we will explain towards
the end of this manual, and the getContent() helper method which
can be used to tell the form about an alternative context - see
below.

	plone.directives.form.Form (extending z3c.form.form.Form)

	A basic full-page form. It supports actions (buttons), and will by
default read field values from the request (unless ignoreRequest
is True) or the context (unless ignoreContext is True).

	plone.directives.form.SchemaForm

	This is identical to Form, except that it will construct its fields
plone.autoform schema hints. The schema attribute is required,
and must be a schema interface. The additional_schemata attribute
may be set to a tuple of additional schemata - see below.

	plone.directives.form.AddForm (extending z3c.form.form.AddForm)

	A basic content add form with two actions - save and cancel. This
implements default Plone semantics for adding content. Note that if
you are using Dexterity, you should use the Dexterity add form
instead. See the Dexterity documentation for details.

	plone.directives.form.SchemaAddForm

	The schema form equivalent of AddForm.

	plone.directives.form.EditForm

	A basic edit form with two actions - save and cancel. This operates
on the context returned by the getContent() helper method. By
default, that’s the context of the form view (self.context), but
we can override getContent() to operate on something else. In
particular, it is possible to operate on a dictionary. See the
section on edit forms shortly. Note that if you are using Dexterity,
you should use the Dexterity edit form instead. See the Dexterity
documentation for details.

	plone.directives.form.SchemaEditForm

	The schema form equivalent of EditForm.

	plone.directives.dexterity.DisplayForm

	This is a display form view based on the WidgetsView base class
from plone.autoform. You can use this much like grok.View,
except that it must be initialised with a schema, and optionally a
tuple of additional_schemata. There are several helper variables
set during the update() cycle which provide easy access to the
form’s widgets in display mode.

Context and request

When a form is first rendered, it will attempt to fill fields based on
the following rules:

	If ignoreRequest is False (as is the default for all forms bar
display forms), and a value corresponding to the field is in the
request, this will be used. This normally means that the form was
submitted, but that some validation failed, sending the user back to
the form to correct their mistake.

	If no request value was found and ignoreContext is False (as is
the default for all forms bar add forms), the form will look for an
associated interface for each widget. This is normally the schema
interface of the field that the widget is rendering. It will then
attempt to adapt the context to that interface (if the context
provides the interface directly, as is often the case for edit and
display forms, the context is used as-is). If no such adapter exists,
form setup will fail. If this happens, you can either set
ignoreContext = True (which is normally appropriate for
free-standing forms like the examples earlier in this manual), supply
an adapter (which is normally appropriate for forms that edit some
aspect of the context), or override getContent() to return a
content that is adaptable to the schema interface.

	If no request or context value was found and the field has a default
value, this will be used.

Primary and additional schemata in schema forms

When using a schema form, it is possible to set two form properties
supplying schemata for the form:

	schema is required for all schema forms, and must point to a schema
interface. This is known as the default or primary schema for the
form.

	additional_schemata is optional, and can be set to a tuple or list
of schema interfaces. These will also be included in the form.

Note

If you want to make the schema dynamic, you can implement these as
read-only properties. this is how Dexterity’s add and edit forms work,
for example - they look up the primary schema from the type information
in portal_types, and additional schemata from behaviours.

Later in this manual, we will learn about creating tabbed fieldsets,
also known as groups. The schema forms support a property autoGroups
which default to False. When set to True, the primary schema will be
used as the primary fieldset, and each schema in additional_schemata
will become its own fieldset. The schema name will become the fieldset
name, and its docstring will become its description. This is obviously
somewhat inflexible, but can be useful for certain forms where the
fieldsets need to be dynamically looked up.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Form types »

Page forms

The most basic type of form

A page form, or simply “form”, is a basic, “standalone” form. The pizza
order example in this manual is a page form.

Page forms derive from z3c.form.form.Form, which is extended by
plone.directives.form.Form and plone.directives.form.SchemaForm as
described in this manual. They will typically have actions, and be
registered as a view for some context. For a completely standalone form,
the site root is often good choice.

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import ISiteRoot

class IMyForm(model.Schema):

 ...

class MyForm(form.SchemaForm):
 grok.name('my-form')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 schema = IMyForm
 ignoreContext = True

 label = _(u"My form")
 description = _(u"A sample form.")

 @button.buttonAndHandler(_(u'Ok'))
 def handleOk(self, action):
 data, errors = self.extractData()

 if errors:
 self.status = self.formErrorsMessage
 return

 ...

 @button.buttonAndHandler(_(u"Cancel"))
 def handleCancel(self, action):
 ...

A non-schema version would look like this:

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import ISiteRoot

class IMyForm(model.Schema):

 ...

class MyForm(form.Form):
 grok.name('my-form')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 fields = field.Fields(IMyForm)
 ignoreContext = True

 label = _(u"My form")
 description = _(u"A sample form.")

 @button.buttonAndHandler(_(u'Ok'))
 def handleOk(self, action):
 data, errors = self.extractData()

 if errors:
 self.status = self.formErrorsMessage
 return

 ...

 @button.buttonAndHandler(_(u"Cancel"))
 def handleCancel(self, action):
 ...

Many “standalone” page forms will set ignoreContext = True. If it is
False (the default), the form will read the current value of each
field from the context, by attempting to adapt it to the form schema, as
described in the previous section.

Sometimes, we want to populate the form with initial values that are not
attributes of the context (or an adapter thereof). z3c.form allows us
to change the object from which the form’s data is read, by overriding
the getContent() method. We can return another object that provides or
is adaptable to the schema interface(s) associated with the form’s
fields, but we can also return a dictionary with keys that match the
names of the fields in the form schema. This is usually easier than
creating an adapter on some arbitrary context (e.g. the site root)
solely for the purpose of pre-populating form values. It also makes it
easy to construct the form’s initial values dynamically.

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope import schema

from z3c.form import button, field
from Products.CMFCore.interfaces import ISiteRoot

...

class IMyForm(model.Schema):

 foo = schema.TextLine(title=_(u"Foo"))
 bar = schema.TextLine(title=_(u"Bar"))

class MyForm(form.SchemaForm):
 grok.name('my-form')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 schema = IMyForm
 ignoreContext = True

 label = _(u"My form")
 description = _(u"A sample form.")

 def getContent(self):
 data = {}
 data['foo'] = u"Foo"
 data['bar'] = u"Bar"
 return data

 @button.buttonAndHandler(_(u'Ok'))
 def handleOk(self, action):
 data, errors = self.extractData()

 if errors:
 self.status = self.formErrorsMessage
 return

 ...

 @button.buttonAndHandler(_(u"Cancel"))
 def handleCancel(self, action):
 ...

Note how the fields in the data dictionary returned by getContent()
correspond to the fields of the schema interface from which the form’s
fields are built. If we had fields from multiple interfaces (e.g. using
the additional_schemata tuple), we would need to populate keys based
on the fields from all interfaces.

Also note that the values in the dictionary must be valid for the
fields. Here, we have used TextLine fields, which expect unicode
string values. We would likely get an error if the value was a byte
string or integer, say.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Form types »

Add forms

Forms to create new content objects

An add form, as its name implies, is used to add content to a container.
Add forms are usually registered as views on a container. For generic
CMF or Plone content, the IFolderish interface is normally a good
candidate. The fields in an add form usually represent the fields in the
type that is being added.

Note

If you are using Dexterity or Archetypes, these frameworks have their
own add form factories, which you probably want to use instead of the
more basic version described here.

Add forms derive from z3c.form.form.AddForm, which is extended by
plone.directives.form.AddForm and
plone.directives.form.SchemaAddForm, adding grok support and standard
Plone semantics.

To use an add form, you must implement two methods - create() and
add(). The form then takes care of emitting the proper events and
directing the user to the newly added content item. You can also set the
immediate_view property to the URL of a page to visit after adding the
content item.

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import IFolderish

class IMyType(model.Schema):

 ...

class MyAddForm(form.SchemaAddForm):
 grok.name('add-my-type')
 grok.require('cmf.AddPortalContent')
 grok.context(IFolderish)

 schema = IMyType

 label = _(u"Add my type of content")
 description = _(u"A sample form.")

 def create(self, data):
 type = MyType()
 type.id = data['id']
 type.title = data['title']
 ...

 return type

 def add(self, object):
 self.context._setObject(object.id, object)

create() is called after validation, and is passed a dictionary of
marshalled form fields. It should construct and return the object being
added. That object is then passed to add() (after an object-created
event has been fired), which should add it, normally to self.context
(the container).

A non-schema version would look like this:

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import IFolderish

class IMyType(model.Schema):

 ...

class MyAddForm(form.AddForm):
 grok.name('add-my-type')
 grok.require('cmf.AddPortalContent')
 grok.context(IFolderish)

 fields = field.Fields(IMyType)

 label = _(u"Add my type of content")
 description = _(u"A sample form.")

 def create(self, data):
 type = MyType()
 type.id = data['id']
 type.title = data['title']
 ...

 return type

 def add(self, object):
 self.context._setObject(object.id, object)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Form types »

Edit forms

Forms that edit something

Edit forms, unsurprisingly, are used to edit content objects or other
contexts. They derive from z3c.form.form.EditForm, which is extended
by plone.directives.form.EditForm and
plone.directives.form.SchemaEditForm, adding grok support and Plone
semantics. The edit form takes care of firing object-modified events,
and implements default save and cancel actions.

Note

As with add forms, frameworks like Archetypes and Dexterity provide
their own default edit forms, which should use for editing content
objects built with those frameworks.

The schema of an edit form is normally a content object schema, which
normally also describes the context of the form view. That is, the edit
form is normally a view on the object that is being edited

That said, we can implement getContent() to supply a different
context. This would normally provide the schema interface, but it does
not need to. As with any form, the context need only be adaptable to the
interface(s) associated with its fields.

A simple edit form in a view called @@edit that edits a content object
providing IMyType would look like this:

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import IFolderish

class IMyType(form.Schema):

 ...

class MyAddForm(form.SchemaEditForm):
 grok.name('edit')
 grok.require('cmf.ModifyPortalContent')
 grok.context(IMyType)

 schema = IMyType

 label = _(u"Edit my type")
 description = _(u"Make your changes below.")

There is no need to define any actions or implement any methods. The
default save button handler will adapt the context to IMyType and then
set each field in the interface with the submitted form values.

A non-schema example would look like:

from five import grok
from plone.supermodel import model
from plone.directives import form

from z3c.form import button, field
from Products.CMFCore.interfaces import IFolderish

class IMyType(model.Schema):

 ...

class MyAddForm(form.EditForm):
 grok.name('edit')
 grok.require('cmf.ModifyPortalContent')
 grok.context(IMyType)

 fields = field.Fields(IMyType)

 label = _(u"Edit my type")
 description = _(u"Make your changes below.")

As a slightly ore interesting example, here is one adapted from
plone.app.registry’s control panel form base class:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.component import getUtility

from z3c.form import button, field
from Products.CMFCore.interfaces import ISiteRoot

from plone.registry.interfaces import IRegistry

class IMySettings(model.Schema):

 ...

class MyAddForm(form.EditForm):
 grok.name('edit')
 grok.require('zope2.View')
 grok.context(IMyType)

 fields = field.Fields(IMyType)

 label = _(u"Edit my type")
 description = _(u"Make your changes below.")

class EditSettings(form.SchemaEditForm):
 grok.name('edit-my-settings')
 grok.require('cmf.ManagePortal')
 grok.context(ISiteRoot)

 schema = IMySettings

 label = _(u"Edit settings")

 def getContent(self):
 return getUtility(IRegistry).forInterface(self.schema)

The idea here is that IMySettings, which is set as the schema for this
schema edit form, is installed in the registry as a set of records. The
forInterace() method on the IRegistry utility returns a so-called
records proxy object, which implements the interface, but reads/writes
values from/to the configuration registry. The form view is registered
on the site root, but we override getContent() to return the records
proxy. Hence, the initial form values is read from the proxy, and when
the form is successfully submitted, the proxy (and hence the registry)
is automatically updated.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Form types »

Display forms

Using widgets in display mode

Both forms and widgets support the concept of a “mode”. The form’s mode
acts as a default for its widgets. The most commonly used mode is
‘input’, as indicated by the constant
z3c.form.interfaces.INPUT_MODE, but there is also ‘hidden’
(HIDDEN_MODE) and ‘display’ (DISPLAY_MODE). The latter is the
form mode for display forms.

Display forms derive from z3c.form.display.DisplayForm, which is
extended by plone.directives.dexterity.DisplayForm. This also mixes in
plone.autoform.view.WidgetsView, which provides various conveniences
for dealing with display mode widgets and fieldsets (groups). Note that
this is a “schema form”, i.e. we must set the schema property (and
optionally additional_schemata) to a schema deriving from
form.Schema.

Note

If you require a grokked alternative that is not a schema form, you can
derive from z3c.form.form.DisplayForm and
plone.directives.form.form.GrokkedForm.

Display forms are not very common outside framework code. In most cases,
it is easier to just create a standard view that renders the context. In
a framework such as Dexterity, display forms are used as the default
views of content items. The main reason to use display forms for
anything bespoke is to use a complex widget that has a display mode
rendering that is difficult to replicate in a custom template.

It is also possible to put some widgets into input mode (by setting
the mode attribute in the updateWidgets() hook), thus placing a
widget into a form that is otherwise not managed by z3c.form.

Display forms are used much like standard views. For example:

from give import grok
from plone.supermodel import model
from plone.directives import dexterity, form

...

class IMyContent(model.Schema):

 ...

class MyDisplayForm(dexterity.DisplayForm):
 grok.name('view')
 grok.require('zope2.View')
 grok.context(IMyContent)

There would typically also be a template associated with this class.
This uses standard five.grok view semantics. If the display form above
was in a module called display.py, a template may be found in
display_templates/mydisplayform.pt.

The DisplayForm base class in plone.directives.form makes the
following view attributes available to the template:

	view.w is a dictionary of all the display widgets, keyed by field
names. This includes widgets from alternative fieldsets.

	view.widgets contains a list of widgets in schema order for the
default fieldset.

	view.groups contains a list of fieldsets in fieldset order.

	view.fieldsets contains a dict mapping fieldset name to fieldset

	On a fieldset (group), you can access a widgets list to get widgets
in that fieldset

The w dict is the mostly commonly used. To render a widget named foo
in the template, we could do:

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Customising form presentation

	Layout templates

	Error snippets

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form presentation »

Layout templates

Creating a custom layout for our form

So far, we have relied on Plone (in fact, plone.app.z3cform) to supply
a default template for our forms. This uses the default Plone form
markup, which is consistent with that used in other forms in Plone. For
many forms, this is all we need. However, it is sometimes useful to
create a custom template.

Custom templates are normally needed for one of two reasons: Either, to
insert some additional markup around or inside the form itself; or to
radically change the form markup itself. The former is more common,
since changing the form look-and-feel is normally done better with CSS.
For that reason, plone.app.z3cform registers a view called
@@ploneform-macros, which provides useful macros for rendering forms
using the standard markup. We will illustrate how to use this below.

The easiest way to associate a template with a form is to use the
default grokked template association. Our form is called OrderForm and
lives a module called order.py, so the grokker will look for a
template in order_templates/orderform.pt.

Note

With the exception of DisplayForms, there is always a default template
for forms extending the grokked base classes in plone.directives.form.
Therefore, the template is optional. Unlike grok.View views, there is
no need to override render() if the template is omitted.

As an example, let’s create such a template and add some content before
the form tag:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="example.dexterityforms"
 metal:use-macro="context/main_template/macros/master">

 <metal:block fill-slot="main">

 <h1 class="documentFirstHeading" tal:content="view/label | nothing" />

 <p>Welcome to Backgammon Pizza! We hope you enjoy our food.</p>

 <div id="content-core">
 <metal:block use-macro="context/@@ploneform-macros/titlelessform" />
 </div>

 </metal:block>

</html>

Notice how the @@ploneform-macros view does most of the work. This
contains a number of useful macros:

	form is a full page form, including the label

	titlelessform includes the form status at the top, the <form />
element, and the contents of the fields and actions macros. It
also defines three slots: formtop, just inside the <form> opening
tag; formbottom, just before the </form> closing tag; and
beforeactions, just before the form actions (buttons) are output.

	fields iterates over all widgets in the form and renders each,
using the contents of the field macro.

	field renders a single field. It expects the variable widget to
be defined in the TAL scope, referring to a z3c.form widget
instance. It will output an error message if there is a field
validation error, a label, a marker to say whether the field is
required, the field description, and the widget itself (normally just
an <input /> element).

	actions renders all actions on the form. This normally results in a
row of <input type=“submit” … /> elements.

Note

If you require more control, you can always create your form from
scratch. Take a look at macros.pt in plone.app.z3cform for
inspiration.

If you don’t require tabbed fieldsets or “inline” field validation, the
template can be simplified substantially. See macros.pt in
plone.z3cform for a cleaner example.

The most important variables used in the template are:

	view.id, a unique id for the form

	view.enctype, the form’s enctype attribute

	view.label, the form’s title

	view.description, the forms’ description

	view.status, a status message that is often set in action handlers.

	view.groups, a list of fieldsets (groups), as represented by
Group instances.

	view.widgets, which contains all widgets. view.widgets.errors
contains a list of error snippet views. Otherwise, widgets behaves
like an ordered dictionary. Iterating over its values() will yield
all widgets in order. The widgets have been updated, and can be
output using their render() method.

	view.actions, contains an ordered dictionary of actions (buttons).
Iterating over its values() will yield all actions in order. The
actions have been updated, and can be output using their render()
method.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

 	Customising form presentation »

Error snippets

Customising error messages

When creating custom validators, as shown earlier in this manual, it is
easy to tailor an error message. However, zope.schema and z3c.form
already perform a fair amount of validation for us, which results in
generic error messages. For example, if a required field is not
completed, a rather bland error message (“Required input is missing”)
will be shown. Sometimes, we may want to change these messages.

z3c.form allows error messages to be customised at various levels of
detail. For example, it is possible to register a
custom z3c.form.interfaces.IErrorViewSnippet adapter, which behaves
like a mini-view and can output arbitrary HTML. However, in most cases,
we only want to update the output text string. For this, we use what’s
known as a “value adapter”. This is simply an adapter which z3c.form’s
default IErrorViewSnippet implementations will look up to determine
which message to show.

The easiest way to create an error message value adapter is to use the
@form.error_message() decorator from plone.directives.form. This
decorator should be applied to a function that takes as its only
argument the (invalid) value that was submitted, and return a unicode
string or message indicating the error. To illustrate this, we will add
a new function to order.py, just after the interface definition:

from five import grok
from plone.supermodel import model
from plone.directives import form

from zope.interface import invariant, Invalid
from zope.component import queryUtility

from zope import schema

from zope.schema.interfaces import IContextSourceBinder
from zope.schema.interfaces import RequiredMissing
from zope.schema.vocabulary import SimpleVocabulary

...

from example.dexterityforms.interfaces import MessageFactory as _

...

class IPizzaOrder(model.Schema):

 ...

 telephone = schema.ASCIILine(
 title=_(u"Telephone number"),
 description=_(u"We prefer a mobile number"),
)

 ...

@form.error_message(field=IPizzaOrder['telephone'], error=RequiredMissing)
def telephoneOmittedErrorMessage(value):
 return u"Without your telephone number, we can't contact you in case of a problem."

As with the @form.validator() decorator, the @form.error_message()
validator takes a number of keyword arguments, used to control where the
error message is applied. The allowable arguments are:

	error

	The type of error, which is normally represented by an exception
class. The most general type will usually be a
zope.schema.interfaces.ValidationError. See below for a list of
other common exception types.

	request

	The current request. This is normally used to supply a browser layer
marker interface. This is a good way to ensure a general error
message is only in force when our product is installed.

	widget

	The widget which was used to render the field.

	field

	The field to which the error message applies. If this is omitted,
the message would apply to all fields on the form (provided form
is supplied) of the given error (provided error is applied).

	form

	The form class. We can use this either to apply a single message to
a given error across multiple fields in one form (in which case
field would be omitted), or to customise an error message for a
particular form only if a schema is used in more than one form.

	content

	The content item (context) on which the form is being rendered.

Note

In almost all cases, you will want to supply both field and error at
a minimum, although if you have multiple fields that may raise a
particular error, and you want to create a message for all instances of
that error, you can omit field and use form instead. If you supply
just error, the validator will apply to all instances of that error,
on all forms, site-wide, which is probably not a good idea if you intend
your code to be-usable. At the very least, you should use the request
field to specify a browser layer in this case, and install that layer
with browserlayer.xml in your product’s installation profile.

The exception types which may be used for the error discriminator are
field-specific. The standard fields as defined in zope.schema use the
following exceptions, all of which can be imported from
zope.schema.interfaces:

	RequiredMissing, used when a required field is submitted without a
value

	WrongType, used when a field is passed a value of an invalid type

	TooBig and TooSmall, used when a value is outside the min
and/or max range specified for ordered fields (e.g. numeric or date
fields)

	TooLong and TooShort, used when a value is outside the
min_length and/or max_length range specified for length-aware
fields (e.g. text or sequence fields)

	InvalidValue, used when a value is invalid, e.g. a non-ASCII
character passed to an ASCII field

	ConstraintNotSatisfied, used when a constraint method returns
False

	WrongContainedType, used if an object of an invalid type is added
to a sequence (i.e. the type does not conform to the field’s
value_type)

	NotUnique, used if a uniqueness constraint is violated

	InvalidURI, used for URI fields if the value is not a valid URI

	InvalidId, used for Id fields if the value is not a valid id

	InvalidDottedName, used for DottedName fields if the value is not
a valid dotted name

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Develop Plone Add ons »

 	Schema-driven forms »

Further reading

Where to find more information

To find out more about z3c.form and its uses in Plone, consult the
following references:

	The z3c.form [https://pythonhosted.org/z3c.form/] documentation. This provides a detailed guide to
z3c.form’s inner workings.

	The plone.z3cform [https://pypi.python.org/pypi/plone.z3cform] documentation. Describes how to use “raw”
z3c.form forms in Zope 2, and documents the Zope 2-specific
extensions provided by this package.

	The plone.app.z3cform [https://pypi.python.org/pypi/plone.z3cform] documentation. Describes how to use “raw”
z3c.form forms in Plone.

	The plone.autoform [https://pypi.python.org/pypi/plone.autoform] documentation. Explains the raw behaviour of
the plone.autoform library and its directives.

	The plone.directives.form [https://pypi.python.org/pypi/plone.directives.form] documentation. Lists the form base classes.

	The Dexterity manual. Illustrates in various sections how
z3c.form is used in Dexterity.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Programming Plone

	Getting started
	Introduction

	Installing Plone

	Non-programming approaches for customizing Plone

	Enabling debug mode

	Plone add-ons as Python packages

	Finding and installing add-on packages

	Creating your first add-on

	Plone development workflow

	Plone add-on features

	Development mode restarts

	Through-the-web customizations

	Hello World Tutorial

	Plone resources

	Zope resources

	Python resources

	Debug mode explained

	HTTP serving and traversing site data
	HTTP request and response

	Traversing

	Publishing

	XML-RPC

	WebDAV

	FTP

	Views, viewlets and layers
	Views

	Viewlets

	Layers

	Tutorial: Overriding Viewlets

	Content management
	Creating objects

	Listing objects

	Manipulating objects

	Deleting

	Renaming content

	Content types

	Workflows

	Content identification (ids)

	Ownership of content

	Timestamps

	Dynamic views

	Behaviors

	History and versioning

	Importing and exporting content

	Eventish content types

	Content rules

	Archetypes

	Dexterity

	Models, forms, fields and widgets
	Modelling data

	Forms, fields and widgets

	Creating forms through-the-web without programming

	ZODB, persistency and transactions
	ZODB Database

	Persistent objects

	Transactions

	Object lifecycles

	Storage

	Migrations

	Functionality and features
	Actions

	Expressions

	Portlets

	Site setup and configuration

	Dashboard

	RSS

	Collections

	Locked content

	Breadcrumbs (path bar)

	Sitemap protocol

	Discussion and comments

	Contact forms

	Queries, search and indexing
	Catalogs

	Indexes and metadata

	Querying

	Internationalization (i18n)
	Contents

	Users and members
	Member manipulation

	Member profiles

	Members as content

	Sharing

	Security
	Permissions

	Available permissions in Plone

	Standard permissions and roles

	Custom permissions

	Cross-Site Request Forgery (CSRF)

	Local roles

	Dynamic roles

	Sandboxing and RestrictedPython

	Using SELinux with Plone

	Sessions and cookies
	Sessions

	Cookies

	Status messages

	Login and logout

	Images
	Image-like content

	Images in page templates

	Python Imaging Library (PIL)

	Syndication
	Introduction

	Customize how a content type is syndicated

	Register your Folderish type as syndicatable

	Create your own feed type

	Available FeedItem properties to override

	Available feed properties to override

	Miscellaneous information
	Helper views and tools

	Zope DateTime

	Sending email

	Annotations

	Normalizing ids

	Monkey-patching

	Command-line interaction and scripting

	Clock and asyncronous tasks

	Flowplayer

	Navigation trees

	Search engine optimization (seo)

	Creating your own Paster templates

	Facebook integration

	Slidehows and carousels

	Upgrade tips

	HTML manipulation and transformations

	SQL

	Changing Portal Transforms Settings via Python

	Running plone.org site locally

	Looking ahead towards Plone 5

	Things We Don’t Like About Having to Rely Only on Browser Views

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Getting started

How to get started with Plone development.

	Introduction

	Installing Plone

	Non-programming approaches for customizing Plone

	Enabling debug mode

	Plone add-ons as Python packages

	Finding and installing add-on packages

	Creating your first add-on

	Plone development workflow

	Plone add-on features

	Development mode restarts

	Through-the-web customizations

	Hello World Tutorial

	Plone resources

	Zope resources

	Python resources

	Debug mode explained

Introduction

Plone is developed in the Python programming language. You should master Python basics
before you can efficiently customize Plone. If you are very new to Python, Plone or software development,
it is suggested that you read the Professional Plone 4 Development book [http://www.packtpub.com/professional-plone-4-development/book]
before you attempt to develop your own solutions.

If you quickly want to learn about current best-practices in developing with Plone you should also work through the
Todo list application tutorial [http://tutorialtodoapp.readthedocs.org/en/latest/index.html].

Plone runs on the top of the Zope 2 application server, meaning that one Zope 2 server process
can contain and host several Plone sites. Plone also uses Zope 3 components. Zope 3 is not an upgrade for Zope 2,
but a separate project.

Internally, Plone uses the objected-oriented ZODB database and the development
mindset greatly differs from that of SQL based systems. SQL backends can still be integrated with Plone,
like for any other Python application, but this is a more advanced topic.

Installing Plone

It is recommended that you do Plone development on Linux or OS X. Development on Windows is possible,
but you need to have much more experience dealing with Python and Windows related problems, so starting
on Windows is not so easy.

See installation instructions for how to create a Plone installation
suitable for development.

Non-programming approaches for customizing Plone

If you lack programming skill or resources, you can still get some things done in Plone:

	Plomino is a a powerful and flexible web-based application builder for Plone [http://www.plomino.net]

	PloneFormGen allows you to build forms in a web browser [http://plone.org/products/ploneformgen]

	Plone 4+ comes with through-the-web Dexterity content type editor

However, for heavy customization, Python, JavaScript, TAL page templates and CSS programming is needed.

Enabling debug mode

By default, Plone runs in a production mode where changed files in the file system
are not reflected in the served HTML. When you start developing Plone you need to
first put it into a debug mode.

Plone add-ons as Python packages

Plone sites can be customized by installing Plone add-ons, which add or customize functionality.
You can install existing add-ons that others have developed or you can develop and install your own add-ons.
Add-ons are developed and distributed as
Python packages [http://packages.python.org/distribute/setuptools.html]. Many open-source Python packages,
including Plone add-ons, are available from PyPI (the Python Package index) [https://pypi.python.org].

Plone uses a tool called Buildout [http://www.buildout.org/] to manage the set of Python packages
that are part of your Plone installation.
Using Buildout involves using the buildout.cfg configuration file and the bin/buildout command.

Note

In prior versions of Plone and Zope, add-ons were referred to as "products" and they were installed by copying
them into a special folder called products. This method is now deprecated in favor of using
standard Python packages, managed by Buildout.

Finding and installing add-on packages

Plone add-ons can be found at the plone.org Products [http://plone.org/products] page or at the PyPI (the Python
Package index) [https://pypi.python.org].

See the Installing add-on packages using buildout section for more details.

Creating your first add-on

Since Python egg package structure is little bit complex, to get started with your first add-on
you can create a code skeleton (scaffold) for it using Plone ZopeSkel code templates.

	ZopeSkel generates a basic Python egg package with some Plone files in-place.

	This package is registered to buildout as a development egg in the buildout.cfg file.

	Buildout is rerun which regenerates your bin/instance script with the new set of Python eggs.

	You start your Plone instance in debug mode.

	You install your add-on through Add/remove add-ons

Note

There are different scaffolds for different kind of add-ons. The most typically used are plone3_theme,
archetype (create Archetypes content), dexterity (create Dexterity content) and plone
(barebone Plone add-on).

Please read how to use ZopeSkel to bootstrap your first add-on.

If you want to create a package with Dexterity content types please read about Setting up a Dexterity project.

Plone development workflow

You never edit Plone files directly. Everything under parts and eggs
folders in your Plone installation is downloaded from the Internet and dynamically generated by Buildout,
based on buildout.cfg. Buildout is free to override these files on any update.

You need to have your own add-on in the src/ folder as created above.
There you overlay changes to the existing Plone core through extension mechanisms provided by Plone:

	Layers

	Adapters

	Installation profiles

Plone development always happens on your local computer or the development server.
The changes are moved to production through version control system like Git or Subversion.

The best practice is that you install Plone on your local computer for development.

Plone add-on features

Plone add-ons usually:

	Create custom content types or extend existing ones for your specialized need. Plone has
two subsystems for <content types: Dexterity (new) and Archetypes (old).

	Add new views for your site and its content.

	Create Python-processed forms on your site.

	Theme your site

	etc.

A lot of Plone functionality is built on Zope 3 development patterns
like adapters and interfaces. These design patterns take some time to learn, but they are crucial in complex
component based software like Plone.

Development mode restarts

Plone must be started in the development mode using bin/instance fg command. Then

	Javascript files are in debug mode and automatically loaded when you hit refresh

	CSS files are in debug mode and automatically loaded when you hit refresh

	TAL page templates (.pt files) are automatically reloaded on every request

	GenericSetup XML files are reloaded

Please note that Plone development mode does not reload .py or .zcml files by default.
This is possible, however. Use the sauna.reload [https://pypi.python.org/pypi/sauna.reload/] package
to make Plone reload your Python code automatically when it is changed.

Through-the-web customizations

Some aspects of Plone can be changed through the Zope Management Interface (ZMI).
Documentation here does not focus on extending functionality through the ZMI because this method is severely
limited and usually can take you only half way there.

Hello World Tutorial

We have a tutorial introducing the basics of Plone development.

The tutorial covers a basic form, a custom content-type, and a dynamic view.
It also has detailed sections on building a development environment, installing Plone, and
creating an add-on package for your development code.

Plone resources

	Plone Trac [http://dev.plone.org/plone] contains bug reports, Plone source
code and commits. Useful when you encounter a new exception or you are
looking for a reference on how to use the API.

	Plone source code in version control system [https://github.com/plone].

	Plone API (in development) [http://ploneapi.readthedocs.org/].

Zope resources

	Zope source code in version control system [http://svn.zope.org/].

	Zope 2 book [http://docs.zope.org/zope2/zope2book/]. This describes old
Zope 2 technologies. The book is mostly good for explaining some old things,
but '''do not''' use it as a reference for building new things.

The chapters on Zope Page Templates however are still the best reference
on the topic.

Python resources

	Python for beginners
	Introduction

	Python tutorials and online classes

Debug mode explained

	Debug mode
	Introduction

	Reloading Python code

	Javascript and CSS issues with production mode

	Refresh issues

	Starting Plone in debug mode on Microsoft Windows

	Starting Plone in debug mode on UNIX

	Determining programmatically whether Zope is in debug mode

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Getting started »

Python for beginners

Description

The basics of Python programming, and performing Python interpreter installations.

Introduction

Python [http://python.org] is the programming language used by
Plone [http://plone.org] and Zope [http://zope.org]. One needs to have at least basic Python experience
before considering building Plone add-ons or customizations.

Note

You should not try to write programs for Plone before you can program Python on the basic level.

Python tutorials and online classes

	Official Python tutorial [http://docs.python.org/tutorial/]

	Google Python classes [http://code.google.com/edu/languages/google-python-class/]

	Free Python books [http://pythonbooks.revolunet.com/]

	Dive into Python book [http://www.diveintopython.net/toc/index.html]

	Python at codeacademy.org [http://www.codecademy.com/#!/exercises/0]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Getting started »

Debug mode

Description

Plone can be put in the debug mode where one can diagnose start up failures and
any changes to CSS, Javascript and page templates take effect immediately.

	Introduction

	Reloading Python code

	Javascript and CSS issues with production mode

	Refresh issues

	Starting Plone in debug mode on Microsoft Windows
	Installation

	Starting and Stopping Plone

	Accessing Plone

	Starting Plone in debug mode on UNIX
	Single instance installation ("zope")

	Clustered installation ("zeo")

	Determining programmatically whether Zope is in debug mode

Introduction

By default when you start Plone you start it in a production mode.

	Plone is faster

	CSS and Javascript files are merged instead of causing multiple HTTP request to load these assets.
CSS and Javascript behavior is different in production versus debug mode, especially with files with syntax errors
because of merging.

	Plone does not reload changed files from the disk

Because of above optimizations the development against a production mode is not feasible.
Instead you need to start Plone in debug mode (also known as development mode) if you
are doing any site development.

In debug mode

	If Plone start-up fails, the Python traceback of the error is printed in the terminal

	All logs and debug messages are printed in the terminal; Zope process does not detach
from the terminal

	Plone is slower

	CSS and Javascript files are read file-by-file so line numbers match on the actual files on the disk.
(portal_css and portal_javascript is set to debug mode when Plone is started in debug mode)

	Plone reloads CSS, Javascript and .pt files when the page is refreshed

Note

Plone does not reload .py or .zcml files in the debug mode by default.

Reloading Python code

Reloading Python code automatically can be enabled with sauna.reload add-on [https://pypi.python.org/pypi/sauna.reload/].

Javascript and CSS issues with production mode

See portal_css and portal_javascript in ZMI to inspect how your scripts are bundled.

Make sure your Javascript and CSS files are valid, mergeable and compressable. If they
are not then you can tweak the settings for individual file in the corresponding
management tool.

Refresh issues

Plone production mode should re-read CSS and Javascript files on Plone start-up.

Possible things to debug and force refresh of static assets

	Check HTML <head> links and the actual file contents

	Go to portal_css, press Save to force CSS rebundling

	Make sure you are not using plone.app.caching and doing caching forever

	Use hard browser refresh [http://support.mozilla.org/en-US/questions/746138] to override local cache

Starting Plone in debug mode on Microsoft Windows

This document explains how to start and run the latest Plone (Plone 4.1.4) on Windows 7. This document explains post-installer steps on how to start and enter into a Plone site.
Installation

Installation

This quick start has been tested on Windows 7. Installation remains the same on older versions of Windows through WinXP.

	Run installer from Plone.org [http://plone.org/products] download page

	The Plone buildout directory will be installed in C:\Plone41

	The installer will launch your Plone instance when it finishes. To connect, direct your browser to: http://127.0.0.1:8080

Note

In the buildout bin directory you'll find the executable files to control Plone instance.

Starting and Stopping Plone

If your Plone instance is shutdown you can start and control it from the command prompt.

Note

To control Plone you need to execute your command prompt as an administrator.

In the command prompt enter the following command to access your buildout directory
(the varies according to Plone version):

cd "C:\\Plone41"

To start Plone in debug mode type:

bin\instance fg

You can interrupt the instance by pressing CTRL-C. This will also take down the Zope application server and your Plone site.

Accessing Plone

When you launch Plone in debug or daemon mode it will take a few moments to launch. If you are in debug mode, Plone will be ready serve pages when the following line is displayed in your command prompt:

INFO Zope Ready to handle requests

When the instance is running and listing to port 8080, point your browser to address on your local computer:

http://127.0.0.1:8080

The Plone welcome screen will load and you can create your first Plone site directly by clicking the Create a new Plone Site button.

A form will load asking for the Path Identifier (aka the site id) and Title for a new Plone site. It will also allow you to select the main site language, and select any add-on products you wish to install with the site.

Note

These entries can all be modified once the site is created. Changing the site id is possible, but not recommended.

To create your site, fill in this form and click the Create Plone Site button. Plone will then create and load your site.

Note

The url of your local Plone instance will end with the site id you set when setting up your site. If the site id were Plone then the resultant URL is: http://127.0.0.1:8080/Plone.

Congratulations! You should be now logged in as an admin to your new Plone instance and you'll see the front page of Plone.

Starting Plone in debug mode on UNIX

Single instance installation ("zope")

Enter to your installation folder using cd command (depends on where you have installed Plone):

cd ~/Plone/zintance # Default local user installation location

For root installation the default location is /usr/local/Plone.

Type in command:

bin/instance fg

Press CTRL+C to stop.

Clustered installation ("zeo")

If you have ZEO cluster mode installation you can start individual processes in debug mode:

cd ~/Plone/zeocluster
bin/zeoserver fg & # Start ZODB database server
bin/client1 fg & # Start ZEO front end client 1 (usually port 8080)
bin/client2 fg # For debugging issues it is often enough to start client1

Determining programmatically whether Zope is in debug mode

Zope2's shared global data Globals, keeps track on whether Zope2 is started
in debug mode or not.:

import Globals
if Globals.DevelopmentMode:
 # Zope is in debug mode

Note

There is a difference between Zope being in debug mode and the Javascript
and CSS resource registries being in debug mode (although they will
automatically be set to debug mode if you start Zope in debug mode).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

HTTP serving and traversing site data

Serving content from your site to your users is effectively a mechanism to
generate HTTP responses to HTTP requests.

In Plone, answering to HTTP requests can be divided to three subproblems:

	managing the lifecycle of the HTTP request and response pair;

	publishing, by traversing the request to the target object by its URI;

	choosing different parts of the code depending on active layers.

Plone and Zope 2 application servers support FTP, WebDAV and XML-RPC protocols besides plain HTTP.

	HTTP request and response

	Traversing

	Publishing

	XML-RPC

	WebDAV

	FTP

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

HTTP request and response

Description

Accessing and manipulating Zope's HTTP request and response objects programmatically.

	Introduction

	Lifecycle

	Webservers

	HTTP Request
	Request method

	Request URL

	Query string

	Request path

	REQUEST_URI

	Request client IP

	GET variables

	POST variables

	Request body

	HTTP headers

	Query string

	Web environment

	Hostname

	Request port

	Published object

	Flat access

	Request mutability

	Accessing HTTP request outside context
	zope.globalrequest.getRequest

	HTTP response
	Accessing response

	Response headers

	Content disposition

	Return code

	Response body

	Redirects

	Cookies

	Middleware-like hooks

	Transform chain

	Post-publication hook

	Custom redirect mappings
	Extracting useful information in the post-publication hook

	Cross-origin resource sharing (CORS)

Introduction

This chapter explains the basics of Zope HTTP requests and responses:

	request and response objects lifecycle;

	data which can be extracted from the request;

	data which can be placed on the response.

Lifecycle

Unlike some other web frameworks, in Plone you do not explicitly create or
return HTTP response objects. A HTTP request object always has a HTTP response
object associated with it, and the response object is created as soon as the
request hits the webserver.

The response is available for the whole lifetime of request processing. This
effectively allows you to set and modify response headers at any point in the
code.

Webservers

Usually Plone runs on Zope's ZServer [https://github.com/zopefoundation/Zope/blob/master/src/ZServer/README.txt] (based on Sam Rushing's Medusa [http://www.amk.ca/python/code/medusa.html]). Other
alternatives are WSGI [http://ivory.idyll.org/articles/wsgi-intro/what-is-wsgi.html] compatible web servers like Repoze [http://repoze.org/].

The web server will affect how your HTTP objects are constructed.

HTTP Request

All incoming HTTP requests are wrapped in Zope's ZPublisher [http://www.python.org/] HTTPRequest [https://github.com/zopefoundation/Zope/blob/master/src/ZPublisher/HTTPRequest.py]
objects. This is a multi-mapping: it contains mappings for environment
variables, other variables, form data, and cookies, but the keys of all these
mappings can also be looked up directly on the request object (i.e.
request['some_form_id'] and request.form['some_form_id'] are
equivalent).

Usually your view function or instance will receive an HTTP request object,
along with a traversed context, as its construction parameter.

You can access the request in your view:

from Products.Five.browser import BrowserView

class SampleView(BrowserView):

 def __init__(self, context, request):
 # Each view instance receives context and request as construction parameters
 self.context = context
 self.request = request

 def __call__(self):
 # Entry point of request processing
 # Dump out incoming request variables
 print self.request.items()

Request method

The request method (GET or POST) can be read:

request["REQUEST_METHOD"] == "POST" # or "GET"

Request URL

To get the requested URL:

>>> request["ACTUAL_URL"]
'http://localhost:8080/site'

To get the URL of the served object use the following (this might be different
from the requested URL, since Plone does all kinds of default page and default
view magic):

>>> request["URL"]
'http://m.localhost:8080/site/matkailijallefolder/@@frontpage'

Note

URLs, as accessed above, do not contain query string.

Query string

The unparsed query string can be accessed.

E.g. if you go to http://localhost:8080/site?something=foobar:

>>> self.request["QUERY_STRING"]
'something=foobar'

If the query string is not present in the HTTP request, it is an empty string.

Note

You can also use the request.form dictionary to access parsed query
string content.

Request path

The request URI path can be read from request.path, which returns a list of
path components. request.path is a virtual path, and has the site id
component removed from it.

Example:

reconstructed_path = "/".join(request.path)

Other possible headers:

('PATH_INFO', '/plonecommunity/Members')
('PATH_TRANSLATED', '/plonecommunity/Members')

Todo

What's the difference?

REQUEST_URI

To get the variable which corresponds to REQUEST_URI in e.g. PHP the
following helps:

Concatenate the user-visible URL and query parameters
full_url = request.ACTUAL_URL + "?" + request.QUERY_STRING
parsed = urlparse.urlsplit(full_url)

Extract path part and add the query if it existed
uri = parsed[2]
if parsed[3]:
 uri += "?" + parsed[3]

For more information, see:

	http://www.teamrubber.com/blog/_serverrequest_uri-in-zope/

	http://www.doughellmann.com/PyMOTW/urlparse/index.html

Request client IP

Example:

def get_ip(request):
 """ Extract the client IP address from the HTTP request in a proxy-compatible way.

 @return: IP address as a string or None if not available
 """
 if "HTTP_X_FORWARDED_FOR" in request.environ:
 # Virtual host
 ip = request.environ["HTTP_X_FORWARDED_FOR"]
 elif "HTTP_HOST" in request.environ:
 # Non-virtualhost
 ip = request.environ["REMOTE_ADDR"]
 else:
 # Unit test code?
 ip = None

 return ip

For functional tests based on zope.testbrowser use the addHeader method
to add custom headers to a browser.

GET variables

HTTP GET variables are available in request.form if the REQUEST_METHOD was GET.

Example:

http://yoursite.com/@@testview/?my_param_id=something
print self.request.form["my_param_id"]

POST variables

HTTP POST varibles are available in request.form:

print request.form.items() # Everything POST brought to us

There is no difference in accessing GET and POST variables.

Request body

The request body can be retrieved from the HTTPRequest [https://github.com/zopefoundation/Zope/blob/master/src/ZPublisher/HTTPRequest.py] object by using the get method with the key BODY:

print request.get('BODY') # Prints the content of the request body

HTTP headers

HTTP headers are available through request.get_header() and the
request.environ dictionary.

Example:

referer = self.request.get_header("referer") # Page referer (the page from user came from)

if referer == None: # referer will be none if it was missing
 pass

Dumping all headers:

for name, value in request.environ.items():
 print "%s: %s" % (name, value)

A simple ZMI Python script to dump all HTTP request headers:

from StringIO import StringIO

Import a standard function, and get the HTML request and response objects.
from Products.PythonScripts.standard import html_quote
request = container.REQUEST
response = request.response

buffer = StringIO()

response.setHeader("Content-type", "text/plain")

for name, value in request.environ.items():
 print >> buffer, "%s: %s" % (name, value)

return buffer.getvalue()

Query string

To access the raw HTTP GET query string:

query_string = request["QUERY_STRING"]

Web environment

The web server exposes its own environment variables in request.other
(ZServer [https://github.com/zopefoundation/Zope/blob/master/src/ZServer/README.txt]) or request.environ (Repoze [http://repoze.org/] and other WSGI [http://ivory.idyll.org/articles/wsgi-intro/what-is-wsgi.html]-based web servers):

print request.other.items()

user_agent = request.other["HTTP_USER_AGENT"]

user_agent = request.environ["HTTP_USER_AGENT"] # WSGI or Repoze server

Hostname

Below is an example to get the HTTP server name in a safe manner, taking
virtual hosting into account:

def get_hostname(request):
 """ Extract hostname in virtual-host-safe manner

 @param request: HTTPRequest object, assumed contains environ dictionary

 @return: Host DNS name, as requested by client. Lowercased, no port part.
 Return None if host name is not present in HTTP request headers
 (e.g. unit testing).
 """

 if "HTTP_X_FORWARDED_HOST" in request.environ:
 # Virtual host
 host = request.environ["HTTP_X_FORWARDED_HOST"]
 elif "HTTP_HOST" in request.environ:
 # Direct client request
 host = request.environ["HTTP_HOST"]
 else:
 return None

 # separate to domain name and port sections
 host=host.split(":")[0].lower()

 return host

See also

	http://httpd.apache.org/docs/2.1/mod/mod_proxy.html#x-headers

	http://zotonic.googlecode.com/hg/doc/varnish.zotonic.vcl (X-Forwarded-Host)

Request port

It is possible to extract the Zope instance port from the request. This is
useful e.g. for debugging purposes if you have multiple ZEO front ends running,
and you want to identify them easily:

port = request.get("SERVER_PORT", None)

Note

The SERVER_PORT variable returns the port number as a string, not an integer.

Note

This port number is not the one visible to the external traffic (port 80, HTTP)

Published object

request["PUBLISHED"] points to a view, method or template which was the last item in the
traversing chain to be called to render the actual page.

To extract the relevant content item from this information you can do e.g. in the after publication hook:

def find_context(request):
 """Find the context from the request

 http://stackoverflow.com/questions/10489544/getting-published-content-item-out-of-requestpublished-in-plone
 """
 published = request.get('PUBLISHED', None)
 context = getattr(published, '__parent__', None)
 if context is None:
 context = request.PARENTS[0]
 return context

	You might also want to filter out CSS etc. requests

	Please note that request[PUBLISHED] is set after language negotiation and authentication

	More complete example [https://github.com/miohtama/silvuple/blob/master/silvuple/negotiator.py]

Flat access

GET, POST and web environment variables are flat mapped
to the request object as a dictionary look up:

Comes from POST
request["input_username"] == request.form["input_username"]

Comes from environ
request.get('HTTP_USER_AGENT') == request.environ["HTTP_USER_AGENT"]

Request mutability

Even if you can write and add your own attributes to HTTP request objects, this
behavior is discouraged. If you need to create cache variables for request
lifecycle use annotations [https://pypi.python.org/pypi/zope.annotation/3.4.1].

Todo

Add link to internal annotations examples when written.

Accessing HTTP request outside context

There are often cases where you would like to get hold of the HTTP request
object, but the underlying framework does not pass it to you. In these cases
you have two ways to access the request object:

	Use acquisition to get the request object from the site root. When Plone
site traversal starts, the HTTP request is assigned to current site object
as the site.REQUEST attribute.

	Use https://pypi.python.org/pypi/five.globalrequest.

Example of getting the request using acquisition:

context is any traversed Plone content item
request = getattr(context, "REQUEST", None)
if request is not None:
 # Do the normal flow
 ...
else:
 # This code path was not initiated by an incoming web server request
 # Handle cases like
 # - command line scripts
 # - add-on installer
 # - code called during Zope start up
 # -etc.
 ...

zope.globalrequest.getRequest

See

	https://pypi.python.org/pypi/five.globalrequest

HTTP response

Usually you do not return HTTP responses directly from your views. Instead, you
modify the existing HTTP response object (associated with the request) and
return the object which will be HTTP response payload.

The returned payload object can be:

	a string (str) 8-bit raw data; or

	an iterable: the response is streamed, instead of memory-buffered.

Accessing response

You can access the HTTP response if you know the request:

from Products.Five.browser import BrowserView

class SampleView(BrowserView):

 def __init__(context, request):
 # Each view instance receives context and request as construction parameters
 self.context = context
 self.request = request

 def __call__(self):
 response = self.request.response
 return "<html><body>Hello world!</body></html>"

Response headers

Use HTTPResponse [https://github.com/zopefoundation/Zope/blob/master/src/ZPublisher/HTTPResponse.py] setHeader() to set headers:

The response is a dynamically generated image
self.request.response.setHeader("Content-type", "image/jpeg")
return image_data

Content disposition

The Content-Disposition header is used to set the filename of a download.
It is also used by Flash 10 to check whether Flash download is valid.

Example of setting the download and downloadable filename:

response = self.request.response
response.setHeader("Content-type", "text/x-vCard; charset=utf-8")
response.setHeader("Content-Transfer-Encoding", "8bit")

cd = 'attachment; filename=%s.vcf' % (context.id)
response.setHeader('Content-Disposition', cd)

For more information, see:

	http://www.littled.net/new/2008/10/17/plone-and-flash-player-10/

	http://support.microsoft.com/kb/260519

Return code

Use HTTPResponse.setStatus(self, status, reason=None, lock=None)
to set HTTP return status ("404 Not Found", "500 Internal Error", etc.).

If lock=True, no further modification of the HTTPResponse status are
allowed, and will fail silently.

Response body

You might want to read or manipulate the response body in the post-publication
hook.

The response body is not always a string or basestring: it can be a generator
or iterable for blob data.

The body is available as the response.body attribute.

You can change the body using setBody and locking it:

#lets empty the body and lock it
response.setBody('', lock=True)

If lock=True, no further modification of the HTTPResponse body
are allowed, and will fail silently.

Redirects

Real redirects

Use the response.redirect() method:

This will send a "302 Temporary Redirect" notification to the browser
response.redirect(new_url)

This will send a "301 Permanent Redirect" notification to the browser
response.redirect(new_url, status=301)

You can lock the status to not let other change the status later in the process

response.redirect(new_url, lock=True)

Javascript redirects

You can invoke this Javascript redirect trick from a page template head slot
in a hacky way

Cookies

See cookies documentation.

Middleware-like hooks

Plone does not have a middleware concept, as everything happens through traversal.
Middleware behavior can be emulated with the before traverse hook.
This hook can be installed on any persistent object in the traversing graph.
The hook is persistent, so it is a database change and must be installed using
custom GenericSetup Python code.

Warning

Before traverse hooks cannot create new HTTP responses, or return
alternative HTTP responses. Only exception-like HTTP response modification
is supported, e.g. HTTP redirects. If you need to rewrite the whole
response, the post-publication hook must be used.

For more information, see:

	http://blog.fourdigits.nl/changing-your-plone-theme-skin-based-on-the-objects-portal_type

	http://zebert.blogspot.com/2008_01_01_archive.html

	http://svn.repoze.org/thirdparty/zopelib/branches/2.9.8/ZPublisher/tests/testBeforeTraverse.py

Examples:

	Redirector: https://plonegomobile.googlecode.com/svn/trunk/gomobile/gomobile.mobile/gomobile/mobile/postpublication.py

Transform chain

Transform chain is a hook into repoze.zope2 that allows third party packages to register a sequence of hooks
that will be allowed to modify the response before it is returned to the browser.

It is used e.g. by plone.app.caching.

More information

	https://pypi.python.org/pypi/plone.transformchain

Post-publication hook

The post-publication hook is run when:

	the context object has been traversed;

	after the view has been called and the view has rendered the response;

	before the response is sent to the browser;

	before the transaction is committed.

This is practical for caching purposes: it is the ideal place to determine and
insert caching headers into the response.

Read more at the plone.postpublicationhook package page [https://pypi.python.org/pypi/plone.postpublicationhook/].

Custom redirect mappings

Below is an example how you use five.grok
to install an event handler which checks in the site root for a TTW Python
script and if such exist it asks it to provide a HTTP redirect.

This behavior allows you to write site-wide redirects easily

	In Python (thank god no Apache regular expressions)

	Redirects can access Plone content items

	You can easily have some redirects migrated from the old (non-Plone) sites

redirect.py - no modifications needed for your site, just copy-paste this to your Grok add-on folder.
Remember to add url to Parameter list of the script on the script edit view:

"""

 Call a custom TTW script and allow it to handle redirects.

 Use Zope Management Interface to add a ``Script (Python)`` item named ``redirect_handler``
 to your site root - you can edit this script in fly to change the redirects.

 * Redirect script must contain ``url`` in its parameter list

"""

import logging

Now we import things through the last decade...

Really old old stuff
from zExceptions import Redirect

Really old stuff
from Products.CMFCore.interfaces import ISiteRoot

Old stuff
from zope.traversing.interfaces import IBeforeTraverseEvent

Modern stuff
from five import grok

logger = logging.getLogger("redirect")

@grok.subscribe(ISiteRoot, IBeforeTraverseEvent)
def check_redirect(site, event):
 """
 Check if we have a custom redirect script in Zope application server root.

 If we do then call it and see if we get a redirect.

 The script itself is TTW Python script which may return
 string in the case of redirect or None if no redirect is needed.

 For more examples, check

 https://github.com/zopefoundation/Zope/blob/master/src/Zope2/App/tests/testExceptionHook.py
 """
 request = event.request

 url = request["ACTUAL_URL"]

 if "no_redirect" in request.form:
 # Use no_redirect query parameter to disable this behavior in the case
 # you mess up with the redirect script
 return

 # Check if we have a redirect handler script in the site root
 if "redirect_handler" in site:

 try:
 # Call the script and get its output
 value = site.redirect_handler(url)
 except Exception, e:
 # No silent exceptions plz
 logger.error("Redirect exception for URL:" + url)
 logger.exception(e)
 return

 if value is not None and value.startswith("http"):
 # Trigger redirect, but only if the output value looks sane
 raise Redirect, value

Then an example redirect_handler script added through ZMI. Remember
to add url to the Parameter List field of TTW interface:

if "blaablaa" in url:
 return "http://webandmobile.mfabrik.com"

Or more complex example:

Don't leak non-themed interface fom port 80
if ("manage.") in url and (not "8080" in url):
 return "http://manage.underconstruction.mfabrik.com:8080/LS"

if url == "http://underconstruction.mfabrik.com/":
 return "http://underconstruction.mfabrik.com/special-front-page"

Redirect to the actual front page
if url == "http://site.com/":
 return "http://www.site.com/special-front-page"

if url == "http://www.site.com/":
 return "http://www.site.com/special-front-page"

if url.startswith("http://underconstruction.mfabrik.com/"):
 return url.replace("underconstruction.mfabrik.com", "www.site.com")

Make sure that search engines and visitors access the site only using www. prefix
if url.startswith("http://site.com/"):
 return url.replace("site.com", "www.site.com")

Extracting useful information in the post-publication hook

Example:

from zope.component import adapter, getUtility, getMultiAdapter
from plone.postpublicationhook.interfaces import IAfterPublicationEvent
from Products.CMFCore.interfaces import IContentish

def get_contentish(object):
 """
 Traverse acquisition upwards until we get contentish object used for the HTTP response.
 """

 contentish = object
 while not IContentish.providedBy(contentish):
 if hasattr(contentish, "aq_parent"):
 contentish = contentish.aq_parent
 else:
 break

 return contentish

This must be referred in configure.zcml
@adapter(Interface, IAfterPublicationEvent)
def language_fixer(object, event):
 """ Redirect mobile users to mobile site using gomobile.mobile.interfaces.IRedirector.

 Note: Plone does not provide a good hook doing this before traversing, so we must
 do it in post-publication. This adds extra latency, but is doable.
 """

 request = event.request
 response = request.response

 # object can be a page template, view, whichever happens to be at the very end of traversed acquisition chain
 context = get_contentish(object)

Cross-origin resource sharing (CORS)

Todo

Complete.

	http://enable-cors.org/

	https://developer.mozilla.org/En/HTTP_access_control

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

Traversing

Description

Plone content is organized to a tree. Traversing means looking up
content from this tree by path. When HTTP request hits a Plone
server, Plone will traverse the corresponding content item
and its view function by URI.

	Introduction

	Object ids
	Path

	Exploring Zope application server

	Attribute traversing

	Container traversing

	Traversing by full path

	Getting the object path
	Getting physical path

	Getting virtual path

	Getting item path relative to the site root

	Getting canonical object (breadcrumbs, visual path)

	Getting object URL

	Getting the parent
	Getting all parents

	Getting the site root
	Using portal_url tool

	Using getSite()

	Traversing back to the site root

	Checking for the site root

	Navigation root

	Getting Zope application server handle

	Acquisition effect

	Default content item
	Checking if an item is the site front page

	Custom traversal

	Traverse events

	Advanced traversing with search conditions

	Other resources

Introduction

In Plone, all content is mapped to a single tree: content objects, user
objects, templates, etc. Even most object methods are directly mapped to
HTTP-accessible URIs.

Each object has a path depending on its location. Traversal is a
method of getting a handle on a persistent object in the ZODB object graph
from its path.

Traversal can happen in two places:

	When an HTTP request hits the server, the method on the object which will
generate the HTTP response is looked up using traversal.

	You can manually traverse the ZODB tree in your code to locate objects by
their path.

When an HTTP request is being published the traversing happens in
ZPublisher.BaseRequest.traverse

	http://svn.zope.org/Zope/trunk/src/ZPublisher/BaseRequest.py?rev=122282&view=auto

... but Zope includes other traversers, like unrestrictedTraverse() in
the OFS module. Different traversing methods behave differently and may
fire different events.

Object ids

Each content object has an id string which identifies the object in the
parent container. The id string is visible in the browser address bar when
you view the object. Ids are also visible in the Zope Management interface.

Besides id strings, the content objects have Unique Identifiers, or UID [https://pypi.python.org/pypi/Products.CMFUid],
which do not change even if the object is moved or renamed.

Though it's technically possible for ids to contain spaces or slashes, this
is seldom a good idea, as it complicates working with ids in various
situations.

Path

The Zope path is the location of the object in the object graph.
It is a sequence of id components from the parent node(s) to the child
separated by slashes.

Note

A path need not always be a sequence of object ids. During
traversal, an object may consume subsequent path elements, interpreting
them however it likes.

Example:

documentation/howTos/myHowTo

Exploring Zope application server

You can use the Zope Management interface to explore the content of your
Zope application server:

	Sites

	Folders within the sites

	...and so on

The ZMI does not expose individual attributes. It only exposes traversable
content objects.

Attribute traversing

Zope exposes child objects as attributes.

Example:

you have obtained the plone.org portal root object somehow and it's
stored in local variable "portal"

documentation = portal.documentation
howTos = getattr(portal, "how-to") # note that we need use getattr because dash is invalid in syntax
myHowTo = getattr(howTos, "manipulating-plone-objects-programmatically")

Container traversing

Zope exposes child objects as container accessor.

Example:

you have obtained the plone.org portal root object somehow and it's
stored in a local variable "portal"

documentation = portal["documentation"]
howTos = documentation["how-to"]
myHowTo = howTos["manipulating-plone-objects-programmatically"]

Traversing by full path

Any content object provides the methods restrictedTraverse() and
unrestrictedTraverse(). See Traversable [https://github.com/zopefoundation/Zope/blob/master/src/OFS/Traversable.py].

Security warning: restrictedTraverse() executes with the privileges
of the currently logged-in user. An Unauthorized [https://github.com/zopefoundation/AccessControl/blob/master/src/AccessControl/unauthorized.py] exception is raised if
the code tries to access an object for which the user lacks the Access
contents information and View permissions.

Example:

myHowTo = portal.restrictedTraverse("documentation/howTos/myHowTo")

Bypass security
myHowTo = portal.unrestrictedTraverse("documentation/howTos/myHowTo")

Warning

restrictedTraverse()/unrestrictedTraverse() does not honor
IPublishTraverse adapters. Read more about the issue in this
discussion [http://mail.zope.org/pipermail/zope-dev/2009-May/036665.html].

Getting the object path

An object has two paths:

	The physical path is the absolute location in the current ZODB object
graph. This includes the site instance name as part of it.

	The virtual path is the object location relative to the Plone site root.

Path mangling warning: Always store paths as virtual paths, or
persistently stored paths will corrupt if you rename your site instance.

See Traversable [https://github.com/zopefoundation/Zope/blob/master/src/OFS/Traversable.py].

Getting physical path

Use getPhysicalPath(). Example:

path = portal.getPhysicalPath() # returns "plone"

Getting virtual path

For content items you can use absolute_url_path() from OFS.Traversable [http://svn.zope.org/Zope/trunk/src/OFS/Traversable.py?rev=122638&view=auto]:

path = context.absolute_url_path()

Map physical path to virtual path using HTTP request object
physicalPathToVirtualPath(). Example:

request = self.request # HTTPRequest object

path = portal.document.getPhysicalPath()

virtual_path = request.physicalPathToVirtualPath(path) # returns "document"

Note

The virtual path is not necessarily the path relative to the site root,
depending on the virtual host configuration.

Getting item path relative to the site root

There is no a direct, easy way to accomplish this.

Example:

from zope.component import getMultiAdapter

def getSiteRootRelativePath(context, request):
 """ Get site root relative path to an item

 @param context: Content item which path is resolved

 @param request: HTTP request object

 @return: Path to the context object, relative to site root, prefixed with a slash.
 """

 portal_state = getMultiAdapter((context, request), name=u'plone_portal_state')
 site = portal_state.portal()

 # Both of these are tuples
 site_path = site.getPhysicalPath();
 context_path = context.getPhysicalPath()

 relative_path = context_path[len(site_path):]

 return "/" + "/".join(relative_path)

Getting canonical object (breadcrumbs, visual path)

The visual path is presented in the breadcrumbs. It is how the site visitor
sees the object path.

It may differ from the physical path:

	The default content item is not shown in the visual path.

	The default view is not shown in the visual path.

The canonical object is the context object which the user sees from the
request URL:

Example:

context_helper = getMultiAdapter((context, self.request), name="plone_context_state")
canonical = context_helper.canonical_object()

Getting object URL

Use absolute_url(). See Traversable [https://github.com/zopefoundation/Zope/blob/master/src/OFS/Traversable.py].

URL mangling warning: absolute_url() is sensitive to virtual host
URL mappings. absolute_url() will return different results depending on
if you access your site from URLs http://yourhost/ or
http://yourhost:8080/Plone. Do not persistently store the result of
absolute_url().

Example:

url = portal.absolute_url() # http://nohost/plone in unit tests

Getting the parent

The object parent is accessible is acquisition [http://docs.zope.org/zope2/zope2book/source/Acquisition.html] chain for the object is
set.

Use aq_parent:

parent = object.aq_parent

The parent is defined as __parent__ attribute of the object instance:

object.__parent__ = object.aq_parent

__parent__ is set when object's __of__() method is called:

view = MyBrowserView(context, request)
view = view.__of__(context) # Inserts view into acquisition chain and acquisition functions become available

Getting all parents

Example:

def getAcquisitionChain(object):
 """
 @return: List of objects from context, its parents to the portal root

 Example::

 chain = getAcquisitionChain(self.context)
 print "I will look up objects:" + str(list(chain))

 @param object: Any content object
 @return: Iterable of all parents from the direct parent to the site root
 """

 # It is important to use inner to bootstrap the traverse,
 # or otherwise we might get surprising parents
 # E.g. the context of the view has the view as the parent
 # unless inner is used
 inner = object.aq_inner

 iter = inner

 while iter is not None:
 yield iter

 if ISiteRoot.providedBy(iter):
 break

 if not hasattr(iter, "aq_parent"):
 raise RuntimeError("Parent traversing interrupted by object: " + str(parent))

 iter = iter.aq_parent

Getting the site root

You can resolve the site root if you have the handle to any context object.

Using portal_url tool

Example:

from Products.CMFCore.utils import getToolByName

you know some object which is referred as "context"
portal_url = getToolByName(context, "portal_url")
portal = portal_url.getPortalObject()

You can also do shortcut using acquisition:

portal = context.portal_url.getPortalObject()

Note

Application code should use the getToolByName method, rather
than simply acquiring the tool by name, to ease forward migration (e.g.,
to Zope3).

Using getSite()

Site is also stored as a thread-local variable. In Zope each request is
processed in its own thread. Site thread local is set when the request
processing starts.

You can use this method even if you do not have the context object
available, assuming that your code is called after Zope has traversed the
context object once.

Example:

from zope.component.hooks import getSite

site = getSite() # returns portal root from thread local storage

Note

Before Plone 4.3 getSite resided in zope.app.component.hooks. See
http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-4.2-to-4.3/referencemanual-all-pages

Note

Due to the fact that Plone does not show the default content item
as a separate object, the page you are viewing in the browser from the
site root URL is not necessary the root item itself. For example, in the
default Plone installation this URL internally maps to Page whose id is
front-page and you can still query the actual parent object which is
the site root.

If you need to traverse using user visible breadcrumbs, see how
breadcrumbs viewlet code does it.

Traversing back to the site root

Sometimes getSite() or portal_url are not available, but you still
have the acquisition chain intact. In these cases you can simply traverse
parent objects back to the site root by iterating over the aquisition-chain or using the aq_parent accessor:

from Products.CMFCore.interfaces import ISiteRoot

def getSite(context):

 if not ISiteRoot.providedBy(context):
 return context
 else:
 for item in context.aq_chain:
 if ISiteRoot.providedBy(item):
 return item

Checking for the site root

You can check if the current context object is Plone the site root:

from Products.CMFCore.interfaces import ISiteRoot

if ISiteRoot.providedBy(context):
 # Special case
else:
 # Subfolder or on a page

Navigation root

In Plone, the Plone site root is not necessarily the navigation root (one
site can contain many navigation trees for example for the nested subsites).

The navigation root check has the same mechanism as the site root check:

from plone.app.layout.navigation.interfaces import INavigationRoot

if INavigationRoot.providedBy(context):
 # Top level, no up navigation
else:
 # Up navigation and breadcrumbs

More info

	http://plone.org/products/plone/roadmap/234

Getting Zope application server handle

You can also access other sites within the same application server from your
code.

Example:

app = context.restrictedTraverse('/') # Zope application server root
site = app["plone"] # your plone instance
site2 = app["mysiteid"] # another site

Acquisition effect

Sometimes traversal can give you attributes which actually do not exist on
the object, but are inherited from the parent objects in the persistent
object graph. See acquisition.

Default content item

Default content item or view sets some challenges for the traversing, as the
object published path and internal path differ.

Below is an example to get the folder of the published object (parent folder
for the default item) in page templates:

<div tal:define="folder context/@@plone_context_state/canonical_object"
 tal:condition="python:hasattr(folder, 'carousel') and
 hasattr(folder['carousel'],
 'carouselText')">xxx</div>

More info:

	See plone_context_state helper

Checking if an item is the site front page

Example code below:

from zope.component import getMultiAdapter
from plone.app.layout.navigation.interfaces import INavigationRoot

def isFrontPage(self):
 """
 Check if the viewlet is on a front page.

 Handle canonical paths correctly.
 """
 # Get path with "Default content item" wrapping applied
 context_helper = getMultiAdapter((self.context, self.request), name="plone_context_state")
 canonical = context_helper.canonical_object()

 path = canonical.absolute_url_path()

 return INavigationRoot.providedBy(canonical)

Custom traversal

There exist many ways to make your objects traversable:

	__getitem__() which makes your objects act like Python dictionary.
This is the simplest method and recommended.

	IPublishTraverse interface. There is an example below and works for
making nice urls and path munging.

	ITraversable interface. You can create your own traversing hooks.
zope.traversing.interfaces.ITraversable
provides an interface traversable objects must provider. You need to
register ITraversable as adapter for your content types. This is only
for publishing methods for HTTP requests.

	__bobo_traverse__() which is an archaic method from the early 2000s.

Warning

Zope traversal is a minefield. There are different traversers.
One is the ZPublisher traverser which does HTTP request looks. One is
OFS.Traversable.unrestrictedTraverse() which is used when you call
traverse from Python code. Then another case is
zope.tales.expression.PathExpr which uses a really simple traverser.

Warning

If an AttributeError is risen inside a traverse()
function bad things happen, as Zope publisher specially handles this and
raises a NotFound exception which will mask the actual problem.

Example using __getitem__():

class Viewlets(BrowserView):
 """ Expose arbitrary viewlets to traversing by name.
 Exposes viewlets to templates by names.
 Example how to render plone.logo viewlet in arbitrary template
 code point::

 <div tal:content="context/@@viewlets/plone.logo" />

 """

 ...

 def __getitem__(self, name):
 """
 Allow travering intoviewlets by viewlet name.

 @return: Viewlet HTML output

 @raise: ViewletNotFoundException if viewlet is not found
 """
 viewlet = self.setupViewletByName(name)
 if viewlet is None:
 active_layers = [str(x) for x in self.request.__provides__.__iro__]
 active_layers = tuple(active_layers)
 raise ViewletNotFoundException("Viewlet does not exist by"
 "name %s for the active theme layer set %s."
 "Probably theme interface not registered in "
 "plone.browserlayers. Try reinstalling the theme."
 % (name, str(active_layers)))

 viewlet.update()
 return viewlet.render()

Example using IPublishTraverse:

from Products.Five.browser import BrowserView
from zope.publisher.interfaces import IPublishTraverse
from zope.interface import implementer
from zope.component import getMultiAdapter
from AccessControl import getSecurityManager
from AccessControl import Unauthorized
from plone import api

@implementer(IPublishTraverse)
class MyUser(BrowserView):
 """Registered as a browser view at '/user', collect the username and
 view name from the url, check security, and display that page. For
 example, '/user/jjohns/log' will look up the log view for user
 'jjohns'
 """
 path = []

 def publishTraverse(self, request, name):
 # stop traversing, we have arrived
 request['TraversalRequestNameStack'] = []
 # return self so the publisher calls this view
 return self

 def __init__(self, context, request):
 """Once we get to __call__, the path is lost so we
 capture it here on initialization
 """
 super(MyUser, self).__init__(context, request)
 self.section = 'profile-latest' # default page
 if len(request.path) == 2:
 [self.section, profileid] = request.path
 elif len(self.request.path) == 1:
 self.section = request.path[0]

 def __call__(self):
 # do the permission check here, now that Zope has set
 # up the security context. It can't be checked in __init__
 # because the security manager isn't set up on traverse
 self.checkPermission()

 # XXX: still need to check the permission of the view
 try:
 view = api.content.get_view(self.section,
 self.context,
 self.request)
 except api.exc.InvalidParameterError:
 # just return the default view
 view = api.content.get_view('profile-latest',
 self.context,
 self.request)
 return view()

 def checkPermission(self):
 """You might want to do other stuff"""
 raise Unauthorized

More information:

	http://play.pixelblaster.ro/blog/archive/2006/10/21/custom-traversing-with-five-and-itraversable

Traverse events

Use zope.traversing.interfaces.IBeforeTraverseEvent for register a
traversing hook for Plone site object or such.

Example:

from Products.CMFCore.interfaces import ISiteRoot
from zope.traversing.interfaces import IBeforeTraverseEvent
from five import grok

@grok.subscribe(ISiteRoot, IBeforeTraverseEvent)
def check_redirect(site, event):
 """
 """
 request = event.request

 # XXX: To something

Use ZPublisher.BeforeTraverse to register traverse hooks for any
objects.

Todo

Example - not sure if before travese hooks are persistent or not

Advanced traversing with search conditions

All Plone content should exist in the portal_catalog. Catalog provides fast query access with
various indexes to the Plone content.

Other resources

See object publishing [http://docs.zope.org/zope2/zope2book/source/ZopeArchitecture.html#fundamental-zope-concepts].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

Publishing

To publish an object means to make it available in the Zope traversal
graph and URLS.

A published object may have a reverse-mapping of object to path via
getPhysicalPath() and absolute_url() but this is not always the
requirement.

You can publish objects by providing a browser:page view which
implements the zope.publisher.interfaces.IPublishTraverse interface.

Example publishers

	A widget to make specified files downloadable: plone.formwidgets.namedfile.widget [https://github.com/plone/plone.formwidget.namedfile/blob/master/plone/formwidget/namedfile/widget.py].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

XML-RPC

	Introduction

	Authentication

	ZPublisher client

	Web Services API for Plone (wsapi4plone)
	Importing an Image Using WSAPI

	More information

Description

Using XML-RPC remote call protocol to manipulate Plone site.

Introduction

Zope provides transparent XML-RPC support for any traversable object.

Example:

URL to the object
target = 'http://localhost:8080/plone'

Call remote method
path = xmlrpclib.ServerProxy(target).getPhysicalPath()

Warning

Zope object handles are not transferable across function call boundaries.
Thus, you can only call functions with primitive arguments. If you
need to call function with object arguments you need to create
server side helper code first.

For more information see

	transmogrifier.ploneremote

Authentication

The simplest way to authenticate the user for XML-RPC calls
is to embed HTTP Basic Auth data to URL:

URL to the object
target = 'http://admin:admin@localhost:8080/plone'

Call remote method
path = xmlrpclib.ServerProxy(target).getPhysicalPath()

ZPublisher client

XML-RPC does not marshal objects reliable between remote calls.
Getting the real remote object can be done with ZPublisher.Client.Object.

Note

This approach works only for Python clients and
needs Zope libraries available at the client side.

Warning

Zope object handles are not transferable across function call boundaries.
Thus, you can only call functions with primitive arguments. If you
need to call function with object arguments you need to create
server side helper code first.

	http://svn.zope.org/Zope/tags/ajung-final-zpt-integration-before-merge-savepoint/utilities/load_site.py?rev=67269&view=auto

	http://maurits.vanrees.org/weblog/archive/2009/10/lighting-talks-friday#id2

Web Services API for Plone (wsapi4plone)

This is an add-on product exposes more methods available through Zope's
XML-RPC api.

	http://plone.org/products/wsapi4plone.core

Importing an Image Using WSAPI

In the following example we retrieve, from the 'Pictures' folder, an image called 'red-wine-glass.jpg',
post it to a folder called 'ministries' and give it the name 'theimage'.

import os
from xmlrpclib import ServerProxy
from xmlrpclib import Binary

client = ServerProxy("http://username:password@localhost:8080/path/to/plone")

data = open(os.path.join('Pictures', 'red-wine-glass.jpg')).read()

myimage = {'ministries/theimage': [{'title': 'a beautiful wine glass', 'image':Binary(data)},'Image']}

output = client.get_object(client.post_object(myimage))

For more information see wsapi4plone.core [http://plone.org/products/wsapi4plone.core/] add-on product adds XML-RPC operations
support for Plone.

More information

	http://www.zope.org/Members/Amos/XML-RPC

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

WebDAV

Description

WebDAV is a protocol to manage your site directly from MS Windows
Explorer and such. Plone supports WebDAV without add-ons.

	Introduction
	Enabling WebDAV on an extra port in Zope

	Disabling WebDAV
	Nginx

	Apache

	Supporting WebDAV in your custom content

	WebDAV notes
	Background

	HEAD

	GET

	PUT

	DELETE

	PROPFIND

	PROPPATCH

	MKCOL

	COPY

	MOVE

	LOCK

	UNLOCK

	Fields on container objects

Introduction

WebDAV is enabled by default. A Zope server listening on port 8080 will also
accept WebDAV traffic on that port. For common cases, client-side tools
should work reasonably well.
(http://plone.293351.n2.nabble.com/webdav-status-td7570063.html)
(http://stackoverflow.com/questions/9127269/how-can-i-stop-people-accessing-a-plone-server-via-webdav)

Enabling WebDAV on an extra port in Zope

Modify your buildout configuration's client setup to add a webdav address:

Short buildout.cfg example:

[instance]
...
recipe = plone.recipe.zope2instance
...
webdav-address=1980
...

Alternative buildout.cfg configuration snippet which might be needed for
some WebDAV clients:

[instance]
...
zope-conf-additional =
 enable-ms-author-via on
 <webdav-source-server>
 address YOUR_SERVER_PUBLIC_IP_ADDRESS_HERE:1980
 force-connection-close off
 </webdav-source-server>

These snippets will be in the generated parts/instance/etc/zope.conf
after buildout has been re-run.

This will enable the WebDAV server on http://www.mydomain.com:1980/. Note
that you cannot use this URL in your web browser, just in WebDAV clients.
Using the web browser will give you an error message AttributeError:
manage_FTPget. You could also just run the WebDAV server on localhost
with address 1980, forcing you to either use a WebDAV client locally or
proxy WebDAV through Apache.

Disabling WebDAV

You can't disable WebDAV in Plone itself, it's tightly integrated in Zope.
You could take away the "Access WebDAV" permission from everyone, but the
Zope server will still answer each request.

What you can do: Make your web server filter out the WebDAV commands.
This will stop WebDAV requests from reaching your Zope server.

Nginx

For nginx, this is done by adding:

dav_methods off

to the server block in your nginx.conf. (http://wiki.nginx.org/HttpDavModule)

If you do not use the HttpDavModule, you can add:

limit_except GET POST {
 deny all;
}

to the location block.

Apache

For Apache, you can use the limit statement, see http://httpd.apache.org/docs/current/mod/core.html#limit

Supporting WebDAV in your custom content

Please read more about it in the
Dexterity WebDAV manual [https://github.com/plone/plone.dexterity/blob/master/docs/WebDAV.txt].

WebDAV notes

WebDAV uses a number of HTTP verbs to perform different operations. The
following notes describe how they are implemented in Zope 2 and Dexterity.

Background

Basic WebDAV support can be found in the webdav package. This defines two
base classes, webdav.Resource.Resource and
webdav.Collection.Collection. Collection extends Resource. These
are mixed into item and container content objects, respectively.

The webdav package also defines the NullResource object. A
NullResource is a kind of placeholder, which supports the HTTP verbs HEAD,
PUT, and MKCOL.

Containers based on ObjectManager (including those in Dexterity) will
return a NullResource if they cannot find the requested object and the
request is a WebDAV request.

The zope.filerepresentation package defines a number of interfaces which
are intended to help manage file representations of content objects. Dexterity
uses these interfaces to allow the exact file read and write operations to
be overridden without subclassing.

HEAD

A HEAD request retrieves headers only.

Resource.HEAD() sets Content-Type based on self.content_type(),
Content-Length based on self.get_size(), Last-Modified based on
self._p_mtime, and an ETag based on self.http__etag(), if available.

Collection.HEAD() looks for self.index_html.HEAD() and returns its
value if that exists. Otherwise, it returns a 405 Method Not Allowed response.
If there is no index_html object, it returns 404 Not Found.

GET

A GET request retrieves headers and body.

Zope calls manage_DAVget() to retrieve the body. The default
implementation calls manage_FTPget().

In Dexterity, manage_FTPget() adapts self to IRawReadFile and uses
its mimeType and encoding properties to set the Content-Type
header, and its size() method to set Content-Length.

If the IRawReadFile adapter is also an IStreamIterator, it will be
returned for the publisher to consume directly. This provides for efficient
serving of large files, although it does require that the file can be read
in its entirety with the ZODB connection closed. Dexterity solves this problem
by writing the file content to a temporary file on the server.

If the IRawReadFile adapter is not a stream iterator, its contents are
returned as a string, by calling its read() method. Note that this loads
the entire file contents into memory on the server.

The default IRawReadFile implementation for Dexterity content returns an
RFC 2822 [https://tools.ietf.org/html/rfc2822.html] style message document. Most fields on the object and any enabled
behaviours will be turned into UTF-8 encoded headers. The primary field, if
any, will be returned in the body, also most likely encoded as an UTF-8
encoded string. Binary data may be base64 encoded instead.

A type which wishes to override this behaviour can provide its own adapter.
For example, an image type could return the raw image data.

PUT

A PUT request reads the body of a request and uses it to update a resource
that already exists, or to create a new object.

By default Resource.PUT() fails with 405 Method Not Allowed. That is, it
is not by default possible to PUT to a resource that already exists. The same
is true of Collection.PUT().

In Dexterity, the PUT() method is overridden to adapt self to
zope.filerepresentation.IRawWriteFile, and call its write() method one
or more times, writing the contents of the request body, before calling
close(). The mimeType and encoding properties will also be set
based on the value of the Content-Type header, if available.

The default implementation of IRawWriteFile for Dexterity objects assumes
the input is an RFC 2822 [https://tools.ietf.org/html/rfc2822.html] style message document. It will read header values
and use them to set fields on the object or in behaviours, and similarly read
the body and update the corresponding primary field.

NullResource.PUT() is responsible for creating a new content object and
initialising it (recall that a NullResource may be returned if a WebDAV
request attempts to traverse to an object which does not exist). It sniffs the
content type and body from the request, and then looks for the
PUT_factory() method on the parent folder.

In Dexterity, PUT_factory() is implemented to look up an IFileFactory
adapter on self and use it to create the empty file. The default
implementation will use the content_type_registry tool to determine a
type name for the request (e.g. based on its extension or MIME type), and
then construct an instance of that type.

Once an instance has been constructed, the object will be initialised by
calling its PUT() method, as above.

Note that when content is created via WebDAV, an IObjectCreatedEvent will
be fired from the IFileFactory adapter, just after the object has been
constructed. At this point, none of its values will be set. Subsequently,
at the end of the PUT() method, an IObjectModifiedEvent will be fired.
This differs from the event sequence of an object created through the web.
Here, only an IObjectCreatedEvent is fired, and only after the object
has been fully initialised.

DELETE

A DELETE request instructs the WebDAV server to delete a resource.

Resource.DELETE() calls manage_delObjects() on the parent folder to delete
an object.

Collection.DELETE() does the same, but checks for write locks of all
children of the collection, recursively, before allowing the delete.

PROPFIND

A PROPFIND request returns all or a set of WebDAV properties. WebDAV
properties are metadata used to describe an object, such as the last modified
time or the author.

Resource.PROPFIND() parses the request and then looks for a
propertysheets attribute on self.

If an allprop request is received, it calls dav__allprop(), if
available, on each property sheet. This method returns a list of name/value
pairs in the correct WebDAV XML encoding, plus a status.

If a propnames request is received, it calls dav__propnames(), if
available, on each property sheet. This method returns a list of property
names in the correct WebDAV XML encoding, plus a status.

If a propstat request is received, it calls dav__propstats(), if
available, on each property sheet, for each requested property. This method
returns a property name/value pair in the correct WebDAV XML encoding, plus a
status.

The PropertyManager mixin class defines the propertysheets variable to
be an instance of DefaultPropertySheets. This in turn has two property
sheets, default, a DefaultProperties instance, and webdav, a
DAVProperties instance.

The DefaultProperties instance contains the main property sheet. This
typically has a title property, for example.

DAVProperties will provides various core WebDAV properties. It defines a
number of read-only properties: creationdate, displayname,
resourcetype, getcontenttype, getcontentlength, source,
supportedlock, and lockdiscovery. These in turn are delegated to
methods prefixed with dav__, so e.g. reading the creationdate property
calls dav__creationdate() on the property sheet instance. These methods
in turn return values based on the property manager instance (i.e. the
content object). In particular:

	creationdate

	returns a fixed date (January 1st, 1970).

	displayname

	returns the value of the title_or_id() method

	resourcetype

	returns an empty string or <n:collection/>

	getlastmodified

	returns the ZODB modification time

	getcontenttype

	delegates to the content_type() method, falling
back on the default_content_type() method. In Dexterity,
content_type() is implemented to look up the IRawReadFile adapter
on the context and return the value of its mimeType property.

	getcontentlength

	delegates to the get_size() method (which is also
used for the "size" column in Plone folder listings). In Dexterity,
this looks up a zope.size.interfaces.ISized adapter on the object and
calls sizeForSorting(). If this returns a unit of 'bytes', the
value portion is used. Otherwise, a size of 0 is returned.

	source

	returns a link to /document_src, if that attribute exists

	supportedlock

	indicates whether IWriteLock is supported by the content item

	lockdiscovery

	returns information about any active locks

Other properties in this and any other property sheets are returned as stored
when requested.

If the PROPFIND request specifies a depth of 1 or infinity
(i.e. the client wants properties for items in a collection),
the process is repeated for all
items returned by the listDAVObjects() methods,
which by default returns
all contained items via the objectValues() method.

PROPPATCH

A PROPPATCH request is used to update the properties on an existing object.

Resource.PROPPATCH() deals with the same types of properties from property
sheets as PROPFIND(). It uses the PropertySheet API to add or update
properties as appropriate.

MKCOL

A MKCOL request is used to create a new collection resource, i.e. create a
new folder.

Resource.MKCOL() raises 405 Method Not Allowed, because the resource
already exists (remember that in WebDAV, the MKCOL request, like a PUT for a
new resource, is sent with a location that specifies the desired new resource
location, not the location of the parent object).

NullResource.MKCOL() handles the valid case where a MKCOL request has
been sent to a new resource. After checking that the resource does not already
exist, that the parent is indeed a collection (folderish item), and that the
parent is not locked, it calls the MKCOL_handler() method on the parent
folder.

In Dexterity, MKCOL()_handler is overridden to adapt self to an
IDirectoryFactory from zope.filerepresentation and use this to create
a directory. The default implementation simply calls manage_addFolder()
on the parent. This will create an instance of the Folder type.

COPY

A COPY request is used to copy a resource.

Resource.COPY() implements this operation using the standard Zope content
object copy semantics.

MOVE

A MOVE request is used to relocate or rename a resource.

Resource.MOVE() implements this operation using the standard Zope content
object move semantics.

LOCK

A LOCK request is used to lock a content object.

All relevant WebDAV methods in the webdav package are lock aware.
That is,
they check for locks before attempting any operation that would violate a
lock.

Also note that plone.locking uses the lock implementation from the
webdav package by default.

Resource.LOCK() implements locking and lock refresh support.

NullResource.LOCK() implements locking on a NullResource. In effect,
this means locking the name of the non-existent resource. When a
NullResource is locked, it is temporarily turned into a
LockNullResource object, which is a persistent object set onto the
parent (remember that a NullResource is a transient object returned
when a child object cannot be found in a WebDAV request).

UNLOCK

An UNLOCK request is used to unlock a locked object.

Resource.UNLOCK() handles unlock requests.

LockNullResource.UNLOCK() handles unlocking of a LockNullResource.
This deletes the LockNullResource object from the parent container.

Fields on container objects

When browsing content via WebDAV, a container object (folderish item) will
appear as a folder. Most likely, this object will also have content in the
form of schema fields. To make this accessible, Dexterity containers expose
a pseudo-file with the name '_data', by injecting this into the return value
of listDAVObjects() and adding a special traversal hook to allow its
contents to be retrieved.

This pseudo-file supports HEAD, GET, PUT, LOCK,
UNLOCK, PROPFIND and PROPPATCH requests
(an error will be raised if the user attempts to rename, copy, move
or delete it). These operate on the container object, obviously.
For example, when the data object is updated via a PUT request,
the PUT() method on the container is called,
by default delegating to an IRawWriteFile adapter on the container.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	HTTP serving and traversing site data »

FTP

Plone/Zope supports FTP in the default configuration.

FTP support is not very well maintained. WebDAV protocol is recommended over FTP.

Enabling FTP

See zope2instance recipe [https://pypi.python.org/pypi/plone.recipe.zope2instance].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Views, viewlets and layers

View and viewlet patterns used to create dynamic pages in plone.

	Views
	Introduction

	Customizing views

	Creating and registering a view

	Content type, mimetype and Template start tag

	Zope ViewPageTemplateFile vs. Five ViewPageTemplateFile

	Overriding a view class in a product

	Helper views

	Reusing view template snippets or embedding another view

	Accessing a view instance in code

	Listing available views

	Default view of a content item

	Allowing the contentmenu on non-default views

	Views and automatic member variable acquisition wrapping

	Viewlets
	Introduction

	Finding viewlets

	Creating a viewlet

	Re-using code from a View

	Creating a viewlet manager

	Viewlet behavior

	Conditionally rendering viewlets

	Rendering viewlet by name

	Rendering viewlets with accurate layout

	Viewlets for one page only

	<head> viewlets

	Finding viewlets programmatically

	Poking viewlet registrations programmatically

	Layers
	Introduction

	Using layers

	Creating a layer

	Troubleshooting instructions for layers

	Checking active layers

	Testing Layers

	Tutorial: Overriding Viewlets
	Overriding the Logo

	Overriding the Title

	Discussion

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Views, viewlets and layers »

Views

Description

Rendering HTML pages in Plone using the Zope 3 view pattern.

	Introduction
	Plain Zope 3 vs. Grok

	More information

	View components

	Customizing views
	Overriding view template

	Overriding view class

	Creating and registering a view
	Creating a view using Grok
	configure.zcml

	setup.py and buildout

	Python logic code

	Page template

	Content slots

	Accessing your newly created view
	Setting view permissions

	Creating a view using ZCML
	Registering a view

	Relationship between views and templates

	Overriding a view template at run-time

	Several templates per view

	View __init__() method special cases

	Layers

	Register and unregister view directly using zope.component architecture

	Content type, mimetype and Template start tag

	Zope ViewPageTemplateFile vs. Five ViewPageTemplateFile

	Overriding a view class in a product

	Helper views
	More information

	Historical perspective

	Reusing view template snippets or embedding another view

	Accessing a view instance in code
	By using getMultiAdapter()

	By using traversal

	Use a skin-based template in a Five view

	Listing available views
	Listing all views of certain type

	Default view of a content item

	Allowing the contentmenu on non-default views

	Views and automatic member variable acquisition wrapping

Introduction

Plone/Zope uses a view pattern to output dynamically generated HTML pages.

Views are the basic elements of modern Python web frameworks. A view runs
code to setup Python variables for a rendering template. Output is not
limited to HTML pages and snippets, but may contain JSON,
file download payloads, or other data formats.

Views are usually a combination of:

	a Python class, which performs the user interface logic setup, and a

	corresponding ZPT page template, or direct Python string output.

By keeping as much of the view logic in a separate Python class as we
can and making the page template as simple as possible, better component
readability and reuse is achieved. You can override the Python logic
or the template file, or both.

When you are working with Plone, the most usual view type is BrowserView
from the Products.Five [http://svn.zope.org/Zope/trunk/src/Products/Five/README.txt?view=markup] package, but there are others.

Each BrowserView class is a Python callable.
The BrowserView.__call__() method acts as an entry point to executing
the view code. From Zope's point of view, even a function would be
sufficient, as it is a callable.

Plain Zope 3 vs. Grok

Views were introduced in Zope 3 and made available in Plone by way of
the Products.Five [http://svn.zope.org/Zope/trunk/src/Products/Five/README.txt?view=markup] package, which provides some Plone/Zope 2 specific
adaptation hooks to the modern Zope 3 code base. However, Zope 3's way
of XML-based configuration using ZCML and separating things to three
different files (Python module, ZCML configuration, TAL template) was
later seen as cumbersome.

Later, a project called Grok [http://grok.zope.org/] was started to
introduce an easy API to Zope 3, including a way to set up and maintain
views. For more information about how to use Grok (found in
the five.grok [https://pypi.python.org/pypi/five.grok] package) with Plone,
please read the Plone and Grok tutorial [http://docs.plone.org/appendices/five-grok].

Note

At the time of writing (Q1/2010), all project templates in Paster
still use old-style Zope views.

More information

	Zope view tutorial [http://plone.org/documentation/tutorial/borg/zope-3-views].

View components

Views are Zope Component Architecture (ZCA) multi-adapter
registrations.

Views are looked up by name. The Zope publisher always does a view lookup,
instead of traversing, if the name to be traversed is prefixed with @@.

Views are resolved with three inputs:

	context

	Any class/interface for which the view applies. If not given, zope.interface.Interface
is used (corresponds to a registration for="*"). Usually this is a content item
instance.

	request

	The current HTTP request. Interface
zope.publisher.interfaces.browser.IBrowserRequest is used.

	layer

	Theme layer and addon layer interface. If not given,
zope.publisher.interfaces.browser.IDefaultBrowserLayer is used.

Views return HTTP request payload as the output. Returned
strings are turned to HTML page responses.

Views can be any Python class taking in (context, request) construction parameters. Minimal view would be:

class MyView(object):

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 return "Hello world. You are rendering this view at the context of %s" % self.context

However, in the most of cases

	Full Plone page views are subclass of Products.Five.browser.BrowserView [https://github.com/zopefoundation/Zope/blob/master/src/Products/Five/browser/__init__.py#L23]
which is a wrapper class. It wraps zope.publisher.browser.BrowserView [https://github.com/zopefoundation/zope.publisher/blob/master/src/zope/publisher/browser.py#L896]
and adds an acquisition (parent traversal) support for it.

	Views have index attribute which points to TAL page template
responsible rendering the HTML code. You get the HTML output by doing self.index() and page template
gets a context argument view pointing to the view class instance. index value
is usually instance of Products.Five.browser.pagetemplate.ViewPageTemplateFile [https://github.com/zopefoundation/Zope/blob/master/src/Products/Five/browser/pagetemplatefile.py#L33]
(full Plone pages) or zope.pagetemplate.pagetemplatefile.PageTemplateFile [https://github.com/zopefoundation/zope.pagetemplate/blob/master/src/zope/pagetemplate/pagetemplatefile.py#L40]
(HTML snippets, no acquisition)

	View classes should implement interface
zope.browser.interfaces.IBrowserView [https://github.com/zopefoundation/zope.browser/blob/master/src/zope/browser/interfaces.py#L27]

Views rendering page snippets and parts can be subclasses of zope.publisher.browser.BrowserView directly
as snippets might not need acquisition support which adds some overhead to the rendering process.

Customizing views

To customize existing Plone core or add-on views you have different options.

	Usually you can simply override the related page template file (.pt).

	Sometimes you need to change the related Python view class code also.
In this case, you override the Python class by using your own add-on which
installs a view class replacement using add-on layer.

Overriding view template

Follow instructions how to use z3c.jbot to override templates.

Overriding view class

Here is a short introduction on finding how existing views are defined.

First, you go to portal_types to see what views have been registered for
a particular content type.

For example, if you want to override the Tabular view of a Folder,
you find out that it is registered as the handler for
/folder_tabular_view.

So you look for both folder_tabular_view old-style page templates and
@@folder_tabular_view BrowserView ZCML registrations in the Plone
source tree — it can be either.

Example of how to search for this using UNIX tools (assuming that
collective.recipe.omelette [https://pypi.python.org/pypi/collective.recipe.omelette] is in use, to keep included code together):

find old style .pt files:
find parts/omelette -follow -name "folder_tabular_view*"
find new style view registrations in ZCML files:
grep -ri --include="*.zcml" folder_tabular_view parts/omelette

The folder_tabular_view is found in
the skin layer
called plone_content in the CMFPlone product.

More info:

	How to override old style page templates

Creating and registering a view

This shows how to create and register view in a Zope 3 manner.

Creating a view using Grok

This is the simplest method and recommended for Plone 4.1+ onwards.

First, create your add-on product using
Dexterity project template. The most important
thing in the add-on is that your registers itself to grok
which allows Plone to scan all Python files for grok() directives and
furter automatically pick up your views (as opposite using old Zope 3 method
where you manually register views by typing them in to ZCML in ZCML).

configure.zcml

First make sure the file configure.zcml in your add-on root folder
contains the following lines. These lines are needed only once, in the root
configuration ZCML file:

<configure
 ...
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:grok="http://namespaces.zope.org/grok"
 >

 <include package="five.grok" />

 <five:registerPackage package="." initialize=".initialize" />

 <!-- Grok the package to initialise schema interfaces and content classes -->
 <grok:grok package="." />

</configure>

setup.py and buildout

Either you need to have five.grok
registered in your buildout [http://plone.org/documentation/kb/installing-add-ons-quick-how-to]
or have five.grok in your setup.py. If you didn't add it in this
point and run buildout again to download and install five.grok package.

Python logic code

Add the file yourcompany.app/yourcompany/app/browser/views.py:

""" Viewlets related to application logic.
"""

Zope imports
from zope.interface import Interface
from five import grok

Search for templates in the 'templates' directory
grok.templatedir('templates')

class MyView(grok.View):
 """ Render the title and description of item only (example)
 """

 # The view is available on every content item type
 grok.context(Interface)
 ...

The view in question is not registered against any
layer, so it is immediately available after
restart without need to run Add/remove in Site setup.

The grok.context(Interface) statement makes the view available for
every content item and the site root: you can use it in URLs like
http://yoursite/news/newsitem/@@yourviewname or
http://yoursite/news/@@yourviewname. In the first case, the incoming
self.context parameter received by the view would be the newsitem
object, and in the second case, it would be the news container.

Alternatively, you could use the content interface
docs to make the view available only for certain content types. Example
grok.context() directives could be:

View is registered in portal root only
from Products.CMFCore.interfaces import ISiteRoot

grok.context(ISiteRoot)

Any content with child items
from Products.CMFCore.interfaces import IFolderish

grok.context(IFolderish)

Only "Page" Plone content type
from Products.ATContentTypes.interface import IATDocument

grok.context(IATDocument)

Page template

Then create a page template for your view..
Create yourcompany.app/yourcompany/app/browser/templates and add
the related template:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master">

 <metal:block fill-slot="content-core">
 XXX - this text comes below title and description
 </metal:block>

</html>

Now when you restart to Plone (or use auto-restart add-on)
the view should be available through your browser. After enabled,
grok will scan all Python files for available files, so it doesn't matter
what .py filename you use.

Content slots

Available slot
options you can use for <metal fill-slot=""> in your template which
inherits from <html metal:use-macro="context/main_template/macros/master">:

	content

	render edit border yourself

	main

	overrides main slot in main template; you must render title and description yourself

	content-title

	title and description prerendered, Plone version > 4.x

	content-core

	content body specific to your view, Plone version > 4.x

	header

	A slot for inserting content above the title; may be useful in conjunction with
content-core slot if you wish to use the stock content-title provided by the
main template.

Accessing your newly created view

Now you can access your view within the news folder:

http://localhost:8080/Plone/news/myview

... or on a site root:

http://localhost:8080/Plone/myview

... or on any other content item.

You can also use the @@ notation at the front of the view name to make
sure that you are looking up a view, and not a content item that happens
to have the same id as a view:

http://localhost:8080/Plone/news/@@myview

More info

	http://plone.org/products/dexterity/documentation/manual/five.grok/browser-components/views

Setting view permissions

Use grok.require [http://grok.zope.org/doc/current/reference/directives.html#grok-require]

Example:

from five import grok

class MyView(grok.View):

 # Require admin to access this view
 grok.require("cmf.ManagePortal")

Use available permissions in Zope 3 style strings.

More info:

	http://plone.org/products/dexterity/documentation/manual/five.grok/browser-components/views

Creating a view using ZCML

Example:

We must use BrowserView from view, not from zope.browser
from Products.Five.browser import BrowserView

class MyView(BrowserView):

 def __init__(self, context, request):
 """ Initialize context and request as view multi adaption parameters.

 Note that the BrowserView constructor does this for you.
 This step here is just to show how view receives its context and
 request parameter. You do not need to write __init__() for your
 views.
 """
 self.context = context
 self.request = request

 # by default call will call self.index() method which is mapped
 # to ViewPageTemplateFile specified in ZCML
 #def __call__():
 #

Warning

Do not attempt to run any code in the __init__() method of a
view. If this code fails and an exception is raised, the
zope.component machinery remaps this to a "View not found"
exception or traversal error.

Additionally, view class may be instantiated in other places than where
you intended to render the view.
For example, plone.app.contentmenu does this when creating the menu to
select a view layout.
This will result in the __init__() being called on unexpected
contexts, probably wasting a lot of time.

Instead, use a pattern where you have a setup() or similar
method which __call__() or view users can explicitly call.

Registering a view

Zope 3 views are registered in ZCML, an XML-based configuration
language. Usually, the configuration file, where the registration done, is
called yourapp.package/yourapp/package/browser/configure.zcml.

The following example registers a new view (see below for comments):

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 >

 <browser:page
 for="*"
 name="test"
 permission="zope2.Public"
 class=".views.MyView"
 />

</configure>

	for

	specifies which content types receive this view.
for="*" means that this view can be used for any content type. This
is the same as registering views to the zope.interface.Interface
base class.

	name

	is the name by which the view is exposed to traversal and
getMultiAdapter() look-ups. If your view's name is test, then
you can render it in the browser by calling
http://yourhost/site/page/@@test

	permission

	is the permission needed to access the view.
When an HTTP request comes in, the currently logged in user's access
rights in the current context are checked against this permission.
See Security chapter for Plone's
out-of-the-box permissions. Usually you want have zope2.View,
cmf.ModifyPortalContent, cmf.ManagePortal or zope2.Public
here.

	class

	is a Python dotted name for a class based on BrowserView, which is
responsible for managing the view. The Class's __call__() method is
the entry point for view processing and rendering.

Note

You need to declare the browser namespace in your
configure.zcml to use browser configuration directives.

Relationship between views and templates

The ZCML <browser:view template=""> directive will set the index
class attribute.

The default view's __call__() method will return the value
returned by a call to self.index().

Example: this ZCML configuration:

<browser:page
 for="*"
 name="test"
 permission="zope2.Public"
 class=".views.MyView"
 />

and this Python code:

from Products.Five.browser import BrowserView
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class MyView(BrowserView):

 index = ViewPageTemplateFile("my-template.pt")

is equal to this ZCML configuration:

<browser:page
 for="*"
 name="test"
 permission="zope2.Public"
 class=".views.MyView"
 template="my-template.pt"
 />

and this Python code:

class MyView(BrowserView):
 pass

Rendering of the view is done as follows:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class MyView(BrowserView):

 # This may be overridden in ZCML
 index = ViewPageTemplateFile("my-template.pt")

 def render(self):
 return self.index()

 def __call__(self):
 return self.render()

Overriding a view template at run-time

Below is a sample code snippet which allows you to override an already
constructed ViewPageTemplateFile with a chosen file at run-time:

import plone.z3cform
from zope.app.pagetemplate import ViewPageTemplateFile as Zope3PageTemplateFile
from zope.app.pagetemplate.viewpagetemplatefile import BoundPageTemplate

Construct template from a file which lies in a certain package
template = Zope3PageTemplateFile(
 'subform.pt',
 os.path.join(
 os.path.dirname(plone.z3cform.__file__),
 "templates"))

Bind template to context:
make the template callable with template() syntax and context
form_instance.template = BoundPageTemplate(template, form_instance)

Several templates per view

You can bind several templates to one view and render them individually.
This is very useful for reusable templating, or when you subclass
your functional views.

Example using five.grok [https://pypi.python.org/pypi/five.grok]:

class CourseTimetables(grok.View):

 # For communicating state variables from Python code to Javascript
 jsHeaderTemplate = grok.PageTemplateFile("templates/course-timetables-fees-js-snippet.pt")

 def renderJavascript(self):
 return self.jsHeaderTemplate.render(self)

And then call in the template:

<metal:javascriptslot fill-slot="javascript_head_slot">
 <script tal:replace="structure view/renderJavascript" />
</metal:javascriptslot>

View __init__() method special cases

The Python constructor method of the view, __init__(), is special.
You should never try to put your code there. Instead, use helper method or
lazy construction design pattern if you need to set-up view variables.

The __init__() method of the view might not have an
acquisition chain available, meaning that it
does not know the parent or hierarchy where the view is.
This information is set after the constructor have been run.
All Plone code which relies on acquisition chain, which means
almost all Plone helper code, does not work in __init__().
Thus, the called Plone API methods return None or tend to throw
exceptions.

Layers

Views can be registered against a specific layer interface.
This means that views are only looked up if the specified layer is in use.
Since one Zope application server can contain multiple Plone sites, layers
are used to determine which Python code is in effect for a given Plone site.

A layer is in use when:

	a theme which defines that layer is active, or

	if a specific add-on product which defines that layer is installed.

You should normally register your views against a certain
layer in your own code.

For more information, see

	browser layers

Register and unregister view directly using zope.component architecture

Example how to register:

import zope.component
import zope.publisher.interfaces.browser

zope.component.provideAdapter(
 # Our class
 factory=TestingRedirectHandler,
 # (context, request) layers for multiadapter lookup
 # We provide None as layers are not used
 adapts=(None, None),
 # All views are registered as IBrowserView interface
 provides=zope.publisher.interfaces.browser.IBrowserView,
 # View name
 name='redirect_handler')

Example how to unregister:

Dynamically unregister a view
gsm = zope.component.getGlobalSiteManager()
gsm.unregisterAdapter(factory=TestingRedirectHandler,
 required=(None, None),
 provided=zope.publisher.interfaces.browser.IBrowserView,
 name="redirect_handler")

Content type, mimetype and Template start tag

If you need to produce non-(X)HTML output, here are some resources:

	http://plone.293351.n2.nabble.com/Setting-a-mime-type-on-a-Zope-3-browser-view-td4442770.html

Zope ViewPageTemplateFile vs. Five ViewPageTemplateFile

Warning

There are two different classes that share the same
ViewPageTemplateFile name.

	Zope BrowserView source code [http://svn.zope.org/zope.publisher/trunk/src/zope/publisher/browser.py?rev=101538&view=auto].

	Five version [http://svn.zope.org/Zope/trunk/src/Products/Five/browser/__init__.py?rev=96262&view=markup].
Products.Five [http://svn.zope.org/Zope/trunk/src/Products/Five/README.txt?view=markup] is a way to access some Zope 3 technologies from the Zope
2 codebase, which is used by Plone.

Difference in code:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

vs.:

from zope.app.pagetemplate import ViewPageTemplateFile

The difference is that the Five version supports:

	Acquisition.

	The provider: TAL expression.

	Other Plone-specific TAL expression functions like test().

	Usually, Plone code needs the Five version of ViewPageTemplateFile.

	Some subsystems, notably the z3c.form package, expect the Zope 3
version of ViewPageTemplateFile instances.

Overriding a view class in a product

Most of the code in this section is copied from a tutorial by Martin Aspeli
(on slideshare.net) [http://www.slideshare.net/wooda/martin-aspeli-extending-and-customising-plone-3].
The main change is that, at least for Plone 4, the interface should subclass
plone.theme.interfaces.IDefaultPloneLayer instead of
zope.interface.Interface.

In this example we override the @@register form from the
plone.app.users package, creating a custom form which subclasses the
original.

	Create an interface in interfaces.py:

from plone.theme.interfaces import IDefaultPloneLayer

class IExamplePolicy(IDefaultPloneLayer):
 """ A marker interface for the theme layer
 """

	Then create profiles/default/browserlayer.xml:

<layers>
 <layer
 name="example.policy.layer"
 interface="example.policy.interfaces.IExamplePolicy"
 />
</layers>

	Create browser/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 i18n_domain="example.policy">
 <browser:page
 name="register"
 class=".customregistration.CustomRegistrationForm"
 permission="zope2.View"
 layer="..interfaces.IExamplePolicy"
 />
</configure>

	Create browser/customregistration.py:

from plone.app.users.browser.register import RegistrationForm

class CustomRegistrationForm(RegistrationForm):
 """ Subclass the standard registration form
 """

Helper views

Not all views need to return HTML output, or output at all. Views can be
used as helpers in the code to provide APIs to objects. Since views
can be overridden using layers, a view is a natural plug-in point which an
add-on product can customize or override in a conflict-free manner.

View methods are exposed to page templates and such, so you can also call
view methods directly from a page template, not only from Python code.

More information

	Context helpers

	Expressions

Historical perspective

Often, the point of using helper views is that you can have reusable
functionality which can be plugged in as one-line code around the system.
Helper views also get around the following limitations:

	TAL security.

	Limiting Python expression to one line.

	Not being able to import Python modules.

Note

Using RestrictedPython scripts (creating Python through the
ZMI) and Zope 2 Extension modules is discouraged.
The same functionality can be achieved with helper views, with less
potential pitfalls.

Reusing view template snippets or embedding another view

To use the same template code several times you can either:

	create a separate BrowserView for it and then call this view (see
Accessing a view instance in code below);

	share a ViewPageTemplate instance between views and using it several
times.

Note

The Plone 2.x way of doing this with TAL template language macros is
discouraged as a way to provide reusable functionality in your add-on
product.
This is because macros are hardwired to the TAL template language, and
referring to them outside templates is difficult.

Also, if you ever need to change the template language, or mix in other
template languages, you can do it much more easily when templates are a
feature of a pure Python based view, and not vice versa.

Here is an example of how to have a view snippet which can be used by
subclasses of a base view class. Subclasses can refer to this template
at any point of the view rendering, making it possible for subclasses
to have fine-tuned control over how the template snippet is
represented.

Related Python code:

from Products.Five import BrowserView
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class ProductCardView(BrowserView):
 """
 End user visible product card presentation.
 """
 implements(IProductCardView)

 # Nested template which renders address box + buy button
 summary_template = ViewPageTemplateFile("summarybox.pt")

 def renderSummary(self):
 """ Render summary box

 @return: Resulting HTML code as Python string
 """
 return self.summary_template()

Then you can render the summary template in the main template associated
with ProductCardView by calling the renderSummary() method and TAL
non-escaping HTML embedding.

<h1 tal:content="context/Title" />

<div tal:replace="structure view/renderSummary" />

<div class="description">
 <div tal:condition="python:context.Description().decode('utf-8') != u'None'" tal:replace="structure context/Description" />
</div>

The summarybox.pt itself is just a piece of HTML code without the
Plone decoration frame (main_template/master etc. macros). Make sure
that you declare the i18n:domain again, or the strings in this
template will not be translated.

<div class="summary-box" i18n:domain="your.package">
 ...
</div>

Accessing a view instance in code

You need to get access to the view in your code if you are:

	calling a view from inside another view, or

	calling a view from your unit test code.

Below are two different approaches for that.

By using getMultiAdapter()

This is the most efficient way in Python.

Example:

from Acquisition import aq_inner
from zope.component import getMultiAdapter

def getView(context, request, name):
 # Remove the acquisition wrapper (prevent false context assumptions)
 context = aq_inner(context)
 # May raise ComponentLookUpError
 view = getMultiAdapter((context, request), name=name)
 # Add the view to the acquisition chain
 view = view.__of__(context)
 return view

By using traversal

Traversal is slower than directly calling getMultiAdapter(). However,
traversal is readily available in templates and RestrictedPython
modules.

Example:

def getView(context, name):
 """ Return a view associated with the context and current HTTP request.

 @param context: Any Plone content object.
 @param name: Attribute name holding the view name.
 """

 try:
 view = context.unrestrictedTraverse("@@" + name)
 except AttributeError:
 raise RuntimeError("Instance %s did not have view %s" % (str(context), name))

 view = view.__of__(context)

 return view

You can also do direct view look-ups and method calls in your template
by using the @@-notation in traversing.

<div tal:attributes="lang context/@@plone_portal_state/current_language">
 We look up lang attribute by using BrowserView which name is "plone_portal_state"
</div>

Use a skin-based template in a Five view

Use aq_acquire(object, template_name).

Example: Get an object by its path and render it using its default
template in the current context.

from Acquisition import aq_base, aq_acquire
from Products.Five.browser import BrowserView

class TelescopeView(BrowserView):
 """
 Renders an object in a different location of the site when passed the
 path to it in the querystring.
 """
 def __call__(self):
 path = self.request["path"]
 target_obj = self.context.restrictedTraverse(path)
 # Strip the target_obj of context with aq_base.
 # Put the target in the context of self.context.
 # getDefaultLayout returns the name of the default
 # view method from the factory type information
 return aq_acquire(aq_base(target_obj).__of__(self.context),
 target_obj.getDefaultLayout())()

Listing available views

This is useful for debugging purposes:

from plone.app.customerize import registration
from zope.publisher.interfaces.browser import IBrowserRequest

views is generator of zope.component.registry.AdapterRegistration objects
views = registration.getViews(IBrowserRequest)

Listing all views of certain type

How to filter out views which provide a certain interface:

from plone.app.customerize import registration
from zope.publisher.interfaces.browser import IBrowserRequest

views is generator of zope.component.registry.AdapterRegistration objects
views = registration.getViews(IBrowserRequest)

Filter out all classes which implement a certain interface
views = [view.factory for view in views if IBlocksView.implementedBy(view.factory)]

Default view of a content item

Objects have views for default, view, edit, and so on.

The distinction between the default and view views are that for files,
the default can be download.

The default view ...

	This view is configured in portal_types.

	This view is rendered when a content item is called — even though
they are objects, they have the __call__() Python method
defined.

If you need to get a content item's view for page
rendering explicitly, you can do it as follows:

def viewURLFor(item):
 cstate = getMultiAdapter((item, item.REQUEST),
 name='plone_context_state')
 return cstate.view_url()

More info:

	Context helpers and utilities

	http://plone.293351.n2.nabble.com/URL-to-content-view-tp6028204p6028204.html

Allowing the contentmenu on non-default views

In general, the contentmenu (where the actions, display views, factory types,
workflow, and other dropdowns are) is not shown on non-default views. There are
some exceptions, though.

If you want to display the contentmenu in such non-default views, you have to
mark them with the IViewView interface from plone.app.layout either by letting
the class provide IViewView by declaring it with zope.component.implements or
by configuring it via ZCML like so:

<class class="dotted.path.to.browser.view.class">
 <implements interface="plone.app.layout.globals.interfaces.IViewView" />
</class>

Views and automatic member variable acquisition wrapping

View class instances will automatically assign themselves as a parent for all member
variables. This is because five package based views inherit from Acquisition.Implicit base class.

E.g. you have a Basket content item with absolute_url() of:

http://localhost:9666/isleofback/sisalto/matkasuunnitelmat/d59ca034c50995d6a77cacbe03e718de

Then if you use this object in a view code's member variable assignment in e.g. Viewlet.update() method:

self.basket = my_basket

... this will mess up the Basket content item's acquisition chain:

<Basket at /isleofback/sisalto/yritykset/katajamaan_taksi/d59ca034c50995d6a77cacbe03e718de>

This concerns views, viewlets and portlet renderers. It will, for example, make the following code to fail:

self.obj = self.context.reference_catalog.lookupObject(value)
return self.obj.absolute_url() # Acquistion chain messed up, getPhysicalPath() fails

One workaround to avoid this mess is to use aq_inner when accessing self.obj values:

	http://stackoverflow.com/a/11755348/315168

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Views, viewlets and layers »

Viewlets

Description

Viewlets are parts of the page in Plone page rendering process.
You can create, hide and shuffle them freely.

	Introduction
	What viewlets do

	Finding viewlets

	Creating a viewlet

	Re-using code from a View
	Stock viewlets

	Creating a viewlet manager
	Creating a viewlet manager

	Viewlet behavior
	Creating a viewlet using Python code and ZCML

	Registering a viewlet using ZCML

	Conditionally rendering viewlets

	Rendering viewlet by name

	Rendering viewlets with accurate layout

	Viewlets for one page only

	<head> viewlets

	Finding viewlets programmatically

	Poking viewlet registrations programmatically

Introduction

Viewlets are view snippets which will render a part of the HTML page.
Viewlets provide conflict-free way to contribute new user-interface actions and
HTML snippets to Plone pages.

Each viewlet is associated with a viewlet manager. To add viewlets to your HTML code you first need
to add them to a viewlet manager, which allows you to shuffle viewlets around through-the-web.

What viewlets do

	Viewlets are managed using /@@manage-viewlets page

	Viewlets can shown and hidden through-the-web

	Viewlets can be reordered (limited to reordering within container in Plone 3.x)

	Viewlets can be registered and overridden in a theme specific manner using layers

	Viewlets have update() and render() methods

	Viewlets should honour zope.contentprovider.interfaces.IContentProvider call contract [http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto].

A viewlet can be configured so that it is only available for:

	a certain interface, typically a content type (for= in ZCML)

	a certain view (view= in ZCML)

More info

	Plone 4 Viewlet and viewlet manager reference [http://plone.org/documentation/manual/theme-reference/elements/elementsindexsunburst4]

	ZCML viewlet definition [http://apidoc.zope.org/++apidoc++/ZCML/http_co__sl__sl_namespaces.zope.org_sl_browser/viewlet/index.html].

	https://pypi.python.org/pypi/zope.viewlet/

Finding viewlets

There are two through-the-web tools to start looking what viewlets are available on your installation. The
available viewlets may depend on installed Plone version and installed add-ons.

	The portal_view_customizations tool in ZMI will show you viewlet registrations (and the viewlet managers they are registered for). As with views, you can hover over the viewlet name to see where it is registered in a tool tip.

	To discover the name of a particular viewlet, you can use the @@manage-viewlets view, e.g. http://localhost:8080/plone/@@manage-viewlets.

Creating a viewlet

A viewlet consists of

	Python class

	Page template (.pt) file

	A browser layer defining which add-on product must be installed, so that the viewlet is rendered

	A ZCML directive to register the viewlet to a correct viewlet manager with a correct layer

Re-using code from a View

In the case where you might want a Viewlet and View to share the same code,
remember that the View instance is available in the Viewlet under the view
attribute.

Thus, you can use self.view to get the view, and then use its methods.

Stock viewlets

These can be found in plone.app.layout.viewlet module [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/viewlets/configure.zcml].

The language selector lives in plone.app.i18n.locales.browser [https://github.com/plone/plone.app.i18n/blob/master/plone/app/i18n/locales/browser/configure.zcml],
but it is a view. Don't know why.

Creating a viewlet manager

Viewlet managers contain viewlets. A viewlet manager is itself
a Zope 3 interface which contains an OrdereredViewletManager implementation.
OrderedViewletManagers store the order of the viewlets in the site database
and provide the fancy /@@manage-viewlets output.

A viewlet manager can be rendered in a page template code using the following expression:

<div tal:replace="structure provider:viewletmanagerid" />

Each viewlet manager allows you to shuffle viewlets inside a viewlet manager.
This is done by using /@@manage-viewlets view. These settings
are stored in the site database, so a good practice is to export viewlets.xml
using portal_setup and then include the necessary bits of this viewlets.xml
with your add-on installer so that when your add-on is installed, the viewlet
configuration is changed accordingly.

Note

You cannot move viewlets between viewlet managers.
I know it sucks, but life is hard and Plone is harder.
Hide viewlets in one manager using /@@manage-viewlets and viewlets.xml
export, then re-register the same viewlet to a new manager.

Viewlet managers are based on zope.viewlet.manager.ViewletManager [http://svn.zope.org/zope.viewlet/trunk/src/zope/viewlet/manager.py?rev=113069&view=auto]
and plone.app.viewletmanager.manager.OrderedViewletManager [https://github.com/plone/plone.app.viewletmanager/blob/master/plone/app/viewletmanager/manager.py].

More info

	http://svn.zope.org/zope.viewlet/trunk/src/zope/viewlet/viewlet.py?rev=113069&view=auto

	http://plone.org/documentation/manual/theme-reference/elements/viewletmanager/anatomy/

Creating a viewlet manager

Usually viewlet managers are dummy interfaces and the actual implementation
comes from plone.app.viewletmanager.manager.OrderedViewletManager.

In this example we put two viewlets in a new viewlet manager so that we can
properly CSS float then and close this float.

Note

This example uses extensive Python module nesting: plonetheme.yourtheme.browser.viewlets is just too deep.
You really don't need to do some many levels,
but the orignal plone3_theme paster templates do it in bad way. One of Python golden
rules is that flat is better than nested. You can just dump everything to the
root of your plonetheme.yourtheme package.

In your browser/viewlets/manager.py or similar file add:

<browser:viewletManager
 name="plonetheme.yourtheme.headerbottommanager"
 provides="plonetheme.yourtheme.browser.viewlets.manager.IHeaderBottomViewletManager"
 class="plone.app.viewletmanager.manager.OrderedViewletManager"
 layer="plonetheme.yourtheme.browser.interfaces.IThemeSpecific"
 permission="zope2.View"
 template="headerbottomviewletmanager.pt"
 />

Then in browser/viewlets/configure.zcml:

<browser:viewletManager
 name="plonetheme.yourock.browser.viewlets.MyViewletManager"
 provides=".viewlets.MyViewletManager"
 class="plone.app.viewletmanager.manager.OrderedViewletManager"
 layer="plonetheme.yourock.interfaces.IThemeLayer"
 permission="zope2.View"
 />

Optionally you can include a template which renders some wrapping HTML around viewlets. browser/viewlets/headerbottomviewletmanager.pt:

<div id="header-bottom">
 <tal:comment replace="nothing">
 <!-- Rendeder all viewlets inside this manager.

 Pull viewlets out of the manager and render then one-by-one
 -->
 </tal:comment>

 <tal:viewlets repeat="viewlet view/viewlets">
 <tal:viewlet replace="structure python:viewlet.render()" />
 </tal:viewlets>

 <div style="clear:both"><!-- --></div>
</div>

And then re-register some stock viewlets against your new viewlet manager in browser/viewlets/configure.zcml:

 <!-- Re-register two stock viewlets to the new manager -->

 <browser:viewlet
 name="plone.path_bar"
 for="*"
 manager="plonetheme.yourtheme.browser.viewlets.manager.IHeaderBottomViewletManager"
 layer="plonetheme.yourtheme.browser.interfaces.IThemeSpecific"
 class="plone.app.layout.viewlets.common.PathBarViewlet"
 permission="zope2.View"
 />

<!-- This is a customization for rendering the a bit different language selector -->
<browser:viewlet
 name="plone.app.i18n.locales.languageselector"
 for="*"
 manager="plonetheme.yourtheme.browser.viewlets.manager.IHeaderBottomViewletManager"
 layer="plonetheme.yourtheme.browser.interfaces.IThemeSpecific"
 class=".selector.LanguageSelector"
 permission="zope2.View"
 />

Now, we need to render our viewlet manager somehow. One place to do it is in a main_template.pt,
but because we need to add this HTML output to a header section which is produced by another
viewlet manager, we need to create a new viewlet just for rendering our viewlet manager.
Yo dawg - we put viewlets in your viewlets so you can render viewlets!

browser/viewlets/headerbottom.pt:

<tal:comment replace="nothing">
 <!-- Render our precious viewlet manager -->
</tal:comment>
<tal:render-manager replace="structure provider:plonetheme.yourtheme.headerbottommanager" />

Only six files needed to change a bit of HTML code - welcome to the land of productivity!
On the top of this you also need to create a new viewlets.xml export for your theme.

More info

	http://plone.org/documentation/manual/theme-reference/elements/viewletmanager/override

Viewlet behavior

Viewlets have two important methods

	update() - set up all variables

	render() - generate the resulting HTML code by evaluating the template with context variables set up in update()

These methods should honour zope.contentprovider.interfaces.IContentProvider call contract [http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto].

See

	http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto

	https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/viewlets/common.py

Creating a viewlet using Python code and ZCML

Here is an example code which extends an existing Plone base viewlet (found from plone.app.layout.viewlets.base package)
and then puts this viewlet to a one of viewlet managers using ZCML.

Example Python code for viewlets.py:

"""

 Facebook like viewlet for Plone.

 http://mfabrik.com

"""

import urllib

from plone.app.layout.viewlets import common as base

class LikeViewlet(base.ViewletBase):
 """ Add a Like button

 http://developers.facebook.com/docs/reference/plugins/like
 """

 def contructParameters(self):
 """ Create HTTP GET query parameters send to Facebook used to render the button.

 href=http%253A%252F%252Fexample.com%252Fpage%252Fto%252Flike&layout=standard&show_faces=true&width=450&action=like&font&colorscheme=light&height=80
 """

 context = self.context.aq_inner
 href = context.absolute_url()

 params = {
 "href" : href,
 "layout" : "standard",
 "show_faces" : "true",
 "width" : "450",
 "height" : "40",
 "action" : "like",
 "colorscheme" : "light",
 }

 return params

 def getIFrameSource(self):
 """
 @return: <iframe src=""> string
 """
 params = self.contructParameters()
 return "http://www.facebook.com/plugins/like.php" + "?" + urllib.urlencode(params)

 def getStyle(self):
 """ Construct CSS style for Like-button IFRAME.

 Use width and height from contstructParameters()

 style="border:none; overflow:hidden; width:450px; height:80px;"

 @return: style="" for <iframe>
 """
 params = self.contructParameters()
 return "margin-left: 10px; border:none; overflow:hidden; width:%spx; height:%spx;" % (params["width"], params["height"])

Then a sample page template (like.pt). You can use TAL template variable view to refer to your viewlet class instance:

<iframe scrolling="no"
 frameborder="0"
 allowTransparency="true"
 tal:attributes="src view/getIFrameSource; style view/getStyle"
 >
</iframe>

Registering a viewlet using ZCML

Example configuration ZCML snippets below. You usually <viewlet> to browser/configure.zcml folder.

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="mfabrik.like">

 <browser:viewlet
 name="mfabrik.like"
 manager="plone.app.layout.viewlets.interfaces.IBelowContent"
 template="like.pt"
 layer="mfabrik.like.interfaces.IAddOnInstalled"
 permission="zope2.View"
 />

</configure>

Conditionally rendering viewlets

There are two primary methods to render viewlets only on some pages

	Register viewlet against some marker interface or content type class -
the viewlet is rendered on this content type only. You can
use dynamic marker interfaces
to toggle interface on some individual pages through ZMI

	Hard-code a condition to your viewlet in Python code.

Below is an example of overriding a render() method to conditionally render your viewlet:

import Acquisition
from zope.component import getUtility

from plone.app.layout.viewlets import common as base
from plone.registry.interfaces import IRegistry

class LikeViewlet(base.ViewletBase):
 """ Add a Like button

 http://developers.facebook.com/docs/reference/plugins/like
 """

 def isEnabledOnContent(self):
 """
 @return: True if the current content type supports Like-button
 """
 registry = getUtility(IRegistry)
 content_types = registry['mfabrik.like.content_types']

 # Don't assume that all content items would have portal_type attribute
 # available (might be changed in the future / very specialized content)
 current_content_type = portal_type = getattr(Acquisition.aq_base(self.context), 'portal_type', None)

 # Note that plone.registry keeps values as unicode strings
 # make sure that we have one also
 current_content_type = unicode(current_content_type)

 return current_content_type in content_types

 def render(self):
 """ Render viewlet only if it is enabled.

 """

 # Perform some condition check
 if self.isEnabledOnContent():
 # Call parent method which performs the actual rendering
 return super(LikeViewlet, self).render()
 else:
 # No output when the viewlet is disabled
 return ""

Rendering viewlet by name

Below is a complex example how to expose viewlets without going through a viewlet manager.

See collective.fastview [http://svn.plone.org/svn/collective/collective.fastview/trunk/] for updates
and more information.

from Acquisition import aq_inner
import zope.interface

from plone.app.customerize import registration

from Products.Five.browser import BrowserView

from zope.traversing.interfaces import ITraverser, ITraversable
from zope.publisher.interfaces import IPublishTraverse
from zope.publisher.interfaces.browser import IBrowserRequest
from zope.viewlet.interfaces import IViewlet
from zExceptions import NotFound

class Viewlets(BrowserView):
 """ Expose arbitrary viewlets to traversing by name.

 Exposes viewlets to templates by names.

 Example how to render plone.logo viewlet in arbitrary template code point::

 <div tal:content="context/@@viewlets/plone.logo" />

 """
 zope.interface.implements(ITraversable)

 def getViewletByName(self, name):
 """ Viewlets allow through-the-web customizations.

 Through-the-web customization magic is managed by five.customerize.
 We need to think of this when looking up viewlets.

 @return: Viewlet registration object
 """
 views = registration.getViews(IBrowserRequest)

 for v in views:

 if v.provided == IViewlet:
 # Note that we might have conflicting BrowserView with the same name,
 # thus we need to check for provided
 if v.name == name:
 return v

 return None

 def setupViewletByName(self, name):
 """ Constructs a viewlet instance by its name.

 Viewlet update() and render() method are not called.

 @return: Viewlet instance of None if viewlet with name does not exist
 """
 context = aq_inner(self.context)
 request = self.request

 # Perform viewlet regisration look-up
 # from adapters registry
 reg = self.getViewletByName(name)
 if reg == None:
 return None

 # factory method is responsible for creating the viewlet instance
 factory = reg.factory

 # Create viewlet and put it to the acquisition chain
 # Viewlet need initialization parameters: context, request, view
 try:
 viewlet = factory(context, request, self, None).__of__(context)
 except TypeError:
 # Bad constructor call parameters
 raise RuntimeError("Unable to initialize viewlet %s. Factory method %s call failed." % (name, str(factory)))

 return viewlet

 def traverse(self, name, further_path):
 """
 Allow travering intoviewlets by viewlet name.

 @return: Viewlet HTML output

 @raise: RuntimeError if viewlet is not found
 """

 viewlet = self.setupViewletByName(name)
 if viewlet is None:
 raise NotFound("Viewlet does not exist by name %s for theme layer %s" % name)

 viewlet.update()
 return viewlet.render()

Rendering viewlets with accurate layout

Default viewlet managers render viewlets as HTML code string concatenation, in the order of appearance.
This is unsuitable to build complex layouts.

Below is an example which defines master viewlet HeaderViewlet which will place other viewlets
into the manually tuned HTML markup below.

theme/browser/header.py:

from Acquisition import aq_inner

Use template files with acquisition support
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

Import default Plone viewlet classes
from plone.app.layout.viewlets import common as base

Import our customized viewlet classes
This is important as the header.py file will ignore much of the settings
inside the configure.zcml file describing the affected viewlets. Without
creating this file, your viewlets will render with Plone's default settings,
which will result in your custom changes being ignored.
import plonetheme.something.browser.common as something

def render_viewlet(factory, context, request):
 """ Helper method to render a viewlet """

 context = aq_inner(context)
 viewlet = factory(context, request, None, None).__of__(context)
 viewlet.update()
 return viewlet.render()

class HeaderViewlet(base.ViewletBase):
 """ Render header with special markup.

 Though we render viewlets internally we not inherit from the viewlet manager,
 since we do not offer the option for the site manager or integrator
 shuffle viewlets - they are fixed to our templates.
 """

 index = ViewPageTemplateFile('header_items.pt')

 def update(self):

 base.ViewletBase.update(self)

 # Dictionary containing all viewlets which are rendered inside this viewlet.
 # This is populated during render()
 self.subviewlets = {}

 def renderViewlet(self, viewlet_class):
 """ Render one viewlet

 @param viewlet_class: Class which manages the viewlet
 @return: Resulting HTML as string
 """
 return render_viewlet(viewlet_class, self.context, self.request)

 def render(self):

 # Customized viewlet
 self.subviewlets["logo"] = self.renderViewlet(something.SomethingLogoViewlet)

 # Customized viewlet
 self.subviewlets["sections"] = self.renderViewlet(something.SomethingGlobalSectionsViewlet)

 # Base Plone viewlet
 self.subviewlets["search"] = self.renderViewlet(base.SearchBoxViewlet)

 # Customized viewlet
 self.subviewlets["site_actions"] = self.renderViewlet(something.SiteActionsViewlet)

 # Call template to perform rendering
 return self.index()

theme/browser/header_items.pt

<header>
 <div id="logo">
 <div tal:replace="structure view/subviewlets/logo" />
 </div>

 <nav>
 <div tal:replace="structure view/subviewlets/sections" />
 </nav>

 <div id="search">
 <div tal:replace="structure view/subviewlets/search" />
 <div id="actions">
 <div tal:replace="structure view/subviewlets/site_actions" />
 </div>
 </div>
</header>

theme/browser/configure.zcml

<configure xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:plone="http://namespaces.plone.org/plone"
 xmlns:zcml="http://namespaces.zope.org/zcml"
 >

 <!--

 Public localizable site header

 See viewlets.xml for order/hidden
 -->

 <!-- Changes class and provides attributes to work with our changes -->
 <browser:viewletManager
 name="plone.portalheader"
 provides=".interfaces.ISomethingHeader"
 permission="zope2.View"
 class=".header.HeaderViewlet"
 layer=".interfaces.IThemeSpecific"
 />

 <!-- Site actions-->
 <browser:viewlet
 name="plonetheme.something.site_actions"
 class=".common.SiteActionsViewlet"
 permission="zope2.View"
 template="templates/site_actions.pt"
 layer=".interfaces.IThemeSpecific"
 allowed_attributes="site_actions"
 manager=".interfaces.ISomethingHeader"
 />

 <!-- The logo; even though we include the template attribute, it will be ignored.
 Needs to be set again in common.py -->
 <browser:viewlet
 name="plonetheme.something.logo"
 class=".common.SomethingLogoViewlet"
 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"
 template="templates/logo.pt"
 manager=".interfaces.ISomethingHeader"
 />

 <!-- Searchbox -->
 <browser:viewlet
 name="plone.searchbox"
 for="*"
 class="plone.app.layout.viewlets.common.SearchBoxViewlet"
 permission="zope2.View"
 template="templates/searchbox.pt"
 layer=".interfaces.IThemeSpecific"
 manager=".interfaces.ISomethingHeader"
 />

 <!-- First level navigation; even though we include the template attribute, it will be ignored.
 Needs to be set again in common.py -->
 <browser:viewlet
 name="plonetheme.something.global_sections"
 for="*"
 class=".common.SomethingGlobalSectionsViewlet"
 permission="zope2.View"
 template="templates/sections.pt"
 layer=".interfaces.IThemeSpecific"
 manager=".interfaces.ISomethingHeader"
 />

</configure>

theme/browser/templates/portal_header.pt

<div id="portal-header">
 <div tal:replace="structure provider:plone.portalheader" />
</div>

theme/browser/interfaces.py code:

from plone.theme.interfaces import IDefaultPloneLayer
from zope.viewlet.interfaces import IViewletManager

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 browser layer.
 If you need to register a viewlet only for the
 "Something" theme, this interface must be its layer
 (in theme/viewlets/configure.zcml).
 """

class ISomethingHeader(IViewletManager):
 """Creates fixed layout for Plone header elements.
 """

We need to create this common.py file so we can tell Plone to render our custom templates for these
viewlets. Without this piece in place, our viewlets will render with Plone defaults.

theme/browser/common.py code:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
from plone.app.layout.viewlets import common

You may also use index in place of render for these subclasses

class SomethingLogoViewlet(common.LogoViewlet):
 render = ViewPageTemplateFile('templates/logo.pt')

class SomethingSiteActionsViewlet(common.SiteActionsViewlet):
 render = ViewPageTemplateFile('templates/site_actions.pt')

class SomethingGlobalSectionsViewlet(common.GlobalSectionsViewlet):
 render = ViewPageTemplateFile('templates/sections.pt')

Viewlets for one page only

Viewlets can be registered to one special page only
using a marker interface. This allow loading
a page specific CSS files.

	How to get a different look for some pages of a plone-site [http://www.starzel.de/blog/how-to-get-a-different-look-for-some-pages-of-a-plone-site]

<head> viewlets

You can register custom Javascript or CSS files to HTML <head> section using viewlets.

Below is an head.pt which will be injected in <head>. This examples shows how to dynamically generate
<script> elements. Example is taken from mfabrik.like add-on [https://svn.plone.org/svn/collective/mfabrik.like/trunk].

<script type="text/javascript" tal:attributes="src view/getConnectScriptSource"></script>
<script tal:replace="structure view/getInitScriptTag" />

Then you register it against viewlet manager plone.app.layout.viewlets.interfaces.IHtmlHead in configure.zcml

<browser:viewlet
 name="mfabrik.like.facebook-connect-head"
 class=".viewlets.FacebookConnectJavascriptViewlet"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
 template="facebook-connect-head.pt"
 layer="mfabrik.like.interfaces.IAddOnInstalled"
 permission="zope2.View"
 />

viewlet.py code:

class FacebookConnectJavascriptViewlet(LikeButtonOnConnectFacebookBaseViewlet):
 """ This will render Facebook Javascript load in <head>.

 <head> section is retrofitted only if the viewlet is enabled.

 """

 def getConnectScriptSource(self):
 base = "http://static.ak.connect.facebook.com/connect.php/"
 return base + self.getLocale()

 def getInitScriptTag(self):
 """ Get <script> which boostraps Facebook stuff.
 """
 return '<script type="text/javascript">FB.init("%s");</script>' % self.settings.api_key

 def isEnabled(self):
 """
 @return: Should this viewlet be rendered on this page.
 """
 # Some logic based self.context here whether Javascript should be included on this page or not
 return True

 def render(self):
 """ Render viewlet only if it is enabled.

 """

 # Perform some condition check
 if self.isEnabled():
 # Call parent method which performs the actual rendering
 return super(LikeButtonOnConnectFacebookBaseViewlet, self).render()
 else:
 # No output when the viewlet is disabled
 return ""

Finding viewlets programmatically

Occasionaly, you may need to get hold of your viewlets in python code, perhaps in tests. Since the availability of a viewlet is ultimately controlled by the viewlet manager to which it has been registered, using that manager is a good way to go

from zope.component import queryMultiAdapter
from zope.viewlet.interfaces import IViewletManager

from Products.Five.browser import BrowserView as View

from my.package.tests.base import MyPackageTestCase

class TestMyViewlet(MyPackageTestCase):
 """ test demonstrates that registration variables worked
 """

 def test_viewlet_is_present(self):
 """ looking up and updating the manager should list our viewlet
 """
 # we need a context and request
 request = self.app.REQUEST
 context = self.portal

 # viewlet managers also require a view object for adaptation
 view = View(context, request)

 # finally, you need the name of the manager you want to find
 manager_name = 'plone.portalfooter'

 # viewlet managers are found by Multi-Adapter lookup
 manager = queryMultiAdapter((context, request, view), IViewletManager, manager_name, default=None)
 self.assertIsNotNone(manager)

 # calling update() on a manager causes it to set up its viewlets
 manager.update()

 # now our viewlet should be in the list of viewlets for the manager
 # we can verify this by looking for a viewlet with the name we used
 # to register the viewlet in zcml
 my_viewlet = [v for v in manager.viewlets if v.__name__ == 'mypackage.myviewlet']

 self.assertEqual(len(my_viewlet), 1)

Since it is possible to register a viewlet for a specific content type and for
a browser layer, you may also need to use these elements in looking up your
viewlet

from zope.component import queryMultiAdapter
from zope.viewlet.interfaces import IViewletManager
from Products.Five.browser import BrowserView as View
from my.package.tests.base import MyPackageTestCase

this time, we need to add an interface to the request
from zope.interface import alsoProvides

we also need our content type and browser layer
from my.package.content.mytype import MyType
from my.package.interfaces import IMyBrowserLayer

class TestMyViewlet(MyPackageTestCase):
 """ test demonstrates that zcml registration variables worked properly
 """

 def test_viewlet_is_present(self):
 """ looking up and updating the manager should list our viewlet
 """
 # our viewlet is registered for a browser layer. Browser layers
 # are applied to the request during traversal in the publisher. We
 # need to do the same thing manually here
 request = self.app.REQUEST
 alsoProvides(request, IMyBrowserLayer)

 # we also have to make our context an instance of our content type
 content_id = self.folder.invokeFactory('MyType', 'my-id')
 context = self.folder[content_id]

 # and that's it. Everything else from here out is identical to the
 # example above.

Poking viewlet registrations programmatically

Below is an example how one can poke viewlets registration for a Plone site.

from zope.component import getUtility
from plone.app.viewletmanager.interfaces import IViewletSettingsStorage

def fix_tinymce_viewlets(site):
 """
 Make sure TinyMCE viewlet is forced to be in Plone HTML <head> viewletmanager.

 For some reason, runnign in our viewlets.xml has no effect so we need to fix this by hand.
 """

 # Poke me like this: for i in storage._hidden["Isle of Back theme"].items(): print i
 storage = getUtility(IViewletSettingsStorage)
 manager = "plone.htmlhead'"
 skinname = site.getCurrentSkinName()

 # Force tinymce.configuration out of hidden viewlets in <head>
 hidden = storage.getHidden(manager, skinname)
 hidden = (x for x in hidden if x != u'tinymce.configuration')
 storage.setHidden(manager, skinname, hidden)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Views, viewlets and layers »

Layers

Description

Layers allow you to easily enable and disable views and other site
functionality based on installed add-ons and themes.

	Introduction

	Using layers
	Unconditional overrides

	Creating a layer
	Theme layer

	Add-on layer for clean extensions

	Add-on layer for changing existing behavior

	Manual layers

	Troubleshooting instructions for layers

	Checking active layers
	Layers are activated on the current request object

	Active themes and add-on products

	Getting active theme layer

	Debugging active layers

	Testing Layers

Introduction

Layers allow you to activate different code paths and modules depending on
the external configuration.

Examples:

	Code belonging to a theme is only active when that theme has been selected.

	Mobile browsing code is only active when the site is being browsed on a
mobile phone.

Layers are marker interfaces applied to the HTTPRequest [http://svn.zope.org/Zope/trunk/src/ZPublisher/HTTPRequest.py?rev=99866&view=markup] object.
They are usually used in conjunction with ZCML directives to
dynamically activate various parts
of the configuration (theme files, add-on product functionality).

Layers ensure that only one add-on product can override the specific Plone
instance functionality in your site at a time, while still allowing you
to have possibly conflicting add-on products in your buildout and
ZCML. Remember that multiple Plone site instances can share
the same ZCML and code files.

Many ZCML directives take the optional layer parameter. See example,
resourceDirectory [http://apidoc.zope.org/++apidoc++/ZCML/http_co__sl__sl_namespaces.zope.org_sl_browser/resourceDirectory/index.html]

Layers can be activated when an add-on product is installed or a certain
theme is picked.

For more information, read

	Making components theme specific [http://plone.org/documentation/manual/theme-reference/buildingblocks/components/themespecific]

	Browser Layer tutorial [http://plone.org/documentation/tutorial/customization-for-developers/browser-layers].

	Zope 3 Developer Handbook, Skinning [http://zope3.xmu.me/skinning.html]

Using layers

Some ZCML directives (for example: browser:page [http://apidoc.zope.org/++apidoc++/ZCML/http_co__sl__sl_namespaces.zope.org_sl_browser/page/index.html])
take a layer attribute.

If you have:

	# plonetheme.yourthemename.interfaces.IThemeSpecific layer defined in

	Python code

	# YourTheme product installed through add-on product installer on your

	site instance

then views and viewlets from your product can be enabled on the site
instance using the following ZCML:

<!-- Site actions override in YourTheme -->
<browser:viewlet
 name="plone.site_actions"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class=".siteactions.SiteActionsViewlet"
 layer="plonetheme.yourthemename.interfaces.IThemeSpecific"
 permission="zope2.View"
 />

Unconditional overrides

If you want to override a view or a viewlet unconditionally for all sites
without the add-on product installer
support you need to use overrides.zcml.

Creating a layer

Theme layer

Theme layers can be created via the following steps:

	Subclass an interface from IDefaultPloneLayer:

from plone.theme.interfaces import IDefaultPloneLayer

class IThemeSpecific(IDefaultPloneLayer):
 """Marker interface that defines a Zope 3 skin layer bound to a Skin
 Selection in portal_skins.
 If you need to register a viewlet only for the "YourSkin"
 skin, this is the interface that must be used for the layer attribute
 in YourSkin/browser/configure.zcml.
 """

	Register it in ZCML. The name must match the theme name.

<interface
 interface=".interfaces.IThemeSpecific"
 type="zope.publisher.interfaces.browser.IBrowserSkinType"
 name="SitsSkin"
 />

	Register and set your theme as the default theme in profiles/default/skins.xml. Theme layers require that they are set as the default theme and not just activated on your Plone site. Example:

<object name="portal_skins" allow_any="False" cookie_persistence="False"
 default_skin="SitsSkin">

 <!-- define skins-based folder objects here if any -->

 <skin-path name="SitsSkin" based-on="Plone Default">
 <layer name="plone_skins_style_folder_name"
 insert-before="*"/>
 </skin-path>

</object>

Add-on layer for clean extensions

An add-on product layer is enabled when an add-on product is installed.
Since one Zope application server may contain several Plone sites,
you need to keep enabled code paths separate by using add-on layers -
otherwise all views and viewlets apply to all sites in one Zope application server.

	You can enable views and viewlets specific to functional add-ons.

	Unlike theme layers, add-on layers depend on the activated add-on
products, not on the selected theme.

An add-on layer is a marker interface which is applied on the
HTTP request object
by Plone core logic.

First create an interface for your layer in
your.product.interfaces.py:

""" Define interfaces for your add-on.
"""

import zope.interface

class IAddOnInstalled(zope.interface.Interface):
 """ A layer specific for this add-on product.

 This interface is referred in browserlayer.xml.

 All views and viewlets register against this layer will appear on
 your Plone site only when the add-on installer has been run.
 """

You then need to refer to this in the profile/default/browserlayer.xml
file of your add-on installer
setup profile:

<layers>
 <layer
 name="your.product"
 interface="your.product.interfaces.IAddOnInstalled"
 />
</layers>

Note

The add-on layer registry is persistent and stored in the database.
The changes to add-on
layers are applied only when add-ons are installed or uninstalled.

More information

	https://pypi.python.org/pypi/plone.browserlayer

	See example in LinguaPlone [https://github.com/plone/Products.LinguaPlone/blob/master/Products/LinguaPlone/profiles/default/browserlayer.xml].

Add-on layer for changing existing behavior

You can also use layers to modify the behavior of plone or another Add-on.

To make sure that your own view is used, your Layer must be mor specific than the layer where original view is registered.

For example, some z3cform things register their views on the IPloneFormLayer from plone.app.z3cform.interfaces.

If you want to override the ploneform-macros view that is registered on the IPloneFormLayer, your own Layer must be a subclass of IPloneFormLayer.

If a view does not declare a specific Layer, it becomes registered on the IDefaultBrowserLayer from zope.publisher.interfaces.browser.IDefaultBrowserLayer.

Manual layers

Apply your layer to the HTTPRequest [http://svn.zope.org/Zope/trunk/src/ZPublisher/HTTPRequest.py?rev=99866&view=markup] in the before_traverse hook or
before you call the code which looks up the interfaces.

Choosing skin layer dynamically 1: http://blog.fourdigits.nl/changing-your-plone-theme-skin-based-on-the-objects-portal_type

Choosing skin layer dynamically 2: http://code.google.com/p/plonegomobile/source/browse/trunk/gomobile/gomobile.mobile/gomobile/mobile/monkeypatch.py

See the plone.app.z3cform.z2 [http://svn.zope.org/plone.z3cform/trunk/plone/z3cform/z2.py?rev=88331&view=markup] module.

In the example below we turn on a layer for the request which is later
checked by the rendering code.
This way some pages can ask for special View/Viewlet rendering.

Example:

Defining layer

from zope.publisher.interfaces.browser import IBrowserRequest

class INoHeaderLayer(IBrowserRequest):
 """ When applied to HTTP request object, header animations or images are not rendered on this.

 If this layer is on request do not render header images.
 This allows uncluttered editing of header animations and images.
 """

Applying layer for some requests (manually done in view)
The browser page which renders the form
class EditHeaderAnimationsView(FormWrapper):

 form = HeaderCRUDForm

 def __call__(self):
 """ """

 # Signal viewlet layer that we are rendering
 # edit view for header animations and it is not meaningful
 # to try to render the big animation on this page
 zope.interface.alsoProvides(self.request, INoHeaderLayer)

 # Render the edit form
 return FormWrapper.__call__(self)

Troubleshooting instructions for layers

	Check that your view or whatever is working without a layer assigned
(globally);

	Check that configure.zcml has a layer entry. Put some garbage to
trigger a syntax error in configure.zcml to make sure that it is being
loaded;

	Add-on layer: check that profiles/default/browserlayer.xml has a
matching entry with a matching name;

	Theme layer: if it's a theme layer, check that there is a matching
skins.xml entry

	Check that layer name is correctly spelt in the view declaration.

Checking active layers

Layers are activated on the current request object

Example:

if INoHeaderLayer.providedBy(self.request):
 # The page has asked to suspend rendering of the header animations
 return ""

Active themes and add-on products

The registered_layers() method returns a list of all layers active on
the site.
Note that this is different to the list of layers which are applied on the
current HTTP request object:
the request object may contain manually activated layers.

Example:

from interfaces import IThemeSpecific
from plone.browserlayer.utils import registered_layers

if IThemeSpecific in registered_layers():
 # Your theme specific code
 pass
else:
 # General code
 pass

Getting active theme layer

Only one theme layer can be active at once.

The active theme name is defined in portal_skins properties.
This name can be resolved to a theme layer.

Debugging active layers

You can check the activated layers from HTTP request object by looking at
self.request.__provides__.__iro__.
Layers are evaluated from zero index (highest priority) the last index
(lowest priority).

Testing Layers

Plone testing tool kits won't register layers for you, you have to do it
yourself somewhere in the boilerplate code:

from zope.interface import directlyProvides

directlyProvides(self.portal.REQUEST, IThemeLayer)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Views, viewlets and layers »

Tutorial: Overriding Viewlets

This tutorial [1] describes two simple examples of overriding viewlets. To learn more about views and viewlets, see the Developer Manual section on Views and Viewlets [http://collective-docs.readthedocs.org/en/latest/views/index.html]

Overriding the Logo

In this example, we override the logo for the site. I assume you have a theme product named my.theme with an IThemeSpecific interface.

	Create an entry in browser/configure.zcml of your theme to override the viewlet.:

<browser:viewlet
 name="plone.logo"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class="plone.app.layout.viewlets.common.LogoViewlet"
 template="logo.pt"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

	Create a template file named logo.pt inside the browser directory that displays your logo image. It could contain something as simple as this.:

<div>
 <a metal:define-macro="portal_logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">

</div>

	Add your logo image to the browser/images directory of your theme. In this example, ++resource++my.theme.images/my_logo.png points to a file named my_logo.png inside the theme's browser/images resource directory.

Overriding the Title

In this example we override the view class associated with the title viewlet. I assume you have a theme product with an IThemeSpecific interface.

	Create an entry in browser/configure.zcml of your theme to override the view class.:

<browser:viewlet
 name="plone.htmlhead.title"
 manager="plone.app.layout.viewlets.interfaces.IHtmlHead"
 class=".common.TitleViewlet"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

	Create a class named TitleViewlet inside browser/common.py of your theme containing code to return the appropriate title.:

class TitleViewlet(ViewletBase):

 def update(self):
 # do any setup you need

 def index(self):
 ...
 return the appropriate title

Discussion

Overriding the logo

To override a viewlet in Plone, you need to know which viewlet to override. Using @@manage-viewlets is helpful here. It shows you all the viewlet managers on a page and the viewlets they contain.

You can add /@@manage-viewlets to any url in your site and see the active viewlets there. Something like:

http://localhost:8080/Plone/@@manage-viewlets

Using this shows us that the logo is in the plone.logo Viewlet within the plone.portalheader ViewletManager

[image: ../../../_images/manage_viewlets.png]

Viewlets are defined in the plone/app/layout/viewlets/configure.zcml file within the eggs area of your buildout. Looking inside that configure.zcml file we see:

<!-- The logo -->
<browser:viewlet
 name="plone.logo"
 manager=".interfaces.IPortalHeader"
 class=".common.LogoViewlet"
 permission="zope2.View"
 />

Here's our overriding entry from above to compare:

<browser:viewlet
 name="plone.logo"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class="plone.app.layout.viewlets.common.LogoViewlet"
 template="templates/logo.pt"
 layer=".interfaces.IThemeSpecific"
 permission="zope2.View"
 />

The name is the same as the item we are overriding. Notice that we give the full path to the manager, and that we are reusing the class. We also declare the name and location of our overriding template file, use our theme's interface, and set a permission.

Overriding the title

Here is TitleViewlet from plone.app.layout. It has the page title on the left and the portal title on the right, with an emdash in between.:

class TitleViewlet(ViewletBase):
 index = ViewPageTemplateFile('title.pt')

 def update(self):
 portal_state = getMultiAdapter((self.context, self.request),
 name=u'plone_portal_state')
 context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')
 page_title = escape(safe_unicode(context_state.object_title()))
 portal_title = escape(safe_unicode(portal_state.navigation_root_title()))
 if page_title == portal_title:
 self.site_title = portal_title
 else:
 self.site_title = u"%s — %s" % (page_title, portal_title)

Here is an example for comparison that switches page title and portal title, and separates them with a pipe. The only differences are on the last line.:

class TitleViewlet(ViewletBase):
 index = ViewPageTemplateFile('title.pt')

 def update(self):
 portal_state = getMultiAdapter((self.context, self.request),
 name=u'plone_portal_state')
 context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')
 page_title = escape(safe_unicode(context_state.object_title()))
 portal_title = escape(safe_unicode(portal_state.navigation_root_title()))
 if page_title == portal_title:
 self.site_title = portal_title
 else:
 self.site_title = u"%s | %s" % (portal_title, page_title)

More information about the title tag can be found at the HTML Head Title [http://plone.org/documentation/manual/theme-reference/elements/hiddenelements/plone.htmlhead.title] page which is part of the Plone Theme Reference [http://plone.org/documentation/manual/theme-reference].

	[1]	http://plone.org/author/spanky

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Content management

In Plone, User editable objects are content objects. Content objects have different flavours
depending on their type.

Examples:

	Pages (ATDocument class)

	Images (ATImage class)

	News items

	Events

	etc.

There are two different subsystems to create content objects in Plone

	Archetypes (Plone 2.x and Plone 3.x)

	Dexterity (Plone 4.x and Plone 3.x)

	Creating objects

	Listing objects

	Manipulating objects

	Deleting

	Renaming content

	Content types

	Workflows

	Content identification (ids)

	Ownership of content

	Timestamps

	Dynamic views

	Behaviors

	History and versioning

	Importing and exporting content

	Eventish content types

	Content rules

	Archetypes

	Dexterity

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Creating objects

Description

Creating and controlling creation of Plone content items
programmatically.

	Creating content objects
	Permission-aware way (Dexterity)

	Permission-aware way (Archetypes and Dexterity)

	Bypassing permissions when creating content item

	Manual friendly id generation
	PortalFactory

	Restricting creating on content types
	Restricting available types per content type

	Restricting available types per folder instance

	Other restrictions

	Creating OFS objects

	Object construction life cycle
	Rename after creation

	Factory type information

	Content does not show in Add menu, or Unauthorized errors

	Link to creation page

	Populating folder on creation

	Creating content from PloneFormGen

	Creating content using Generic Setup
	Purpose

	Step by step

	Limitations

	Troubleshooting
	I don't see titles in the navigation, only ids

	Further information

Creating content objects

Permission-aware way (Dexterity)

These instructions apply for Dexterity content
types.

Example:

from plone.dexterity.utils import createContentInContainer

Factory-type information id is the same as in types.xml
optionally you can set checkConstraints=False to skip permission checks
item = createContentInContainer(folder, "your.app.dexterity.fti.information", title=title)

Permission-aware way (Archetypes and Dexterity)

invokeFactory() is available on all folderish content objects.
invokeFactory() calls the portal_factory persistent utility to
create content item.

Example:

def createResearcherById(folder, id):
 """ Create one researcher in a folder based on its X id.

 @param id: X id of the researcher

 @returns: Newly created researcher
 """

 # Call X REST service to get JSON blob for this researcher
 # Note: queryById parses JSON back to Python to do some sanity checks for it
 index = XPeopleIndex()
 oraData = index.queryById(id)

 # Need to have temporary id
 id = str(random.randint(0, 99999999))

 folder.invokeFactory("XResearcher", id)
 content = folder[id]

 # XResearcher stores its internal data as JSON
 json_data = json.dumps(oraData)
 content.setXData(json_data)

 # Will finish Archetypes content item creation process,
 # rename-after-creation and such
 content.processForm()

 return content

Example (from unit tests):

self.loginAsPortalOwner()
self.portal.invokeFactory("Folder", "folder")
self.portal.folder.invokeFactory("Folder", "subfolder")
self.portal.folder.subfolder.invokeFactory("Document", "doc")

invokeFactory() will raise an Unauthorized exception if the
logged-in user does not have permission to create content in the folder
(lacks type specific creation permission and Add portal content
permissions). This exception can be imported as follows:

from Products.Archetypes.exceptions import AccessControl_Unauthorized

Note

If the content class has _at_rename_after_creation = True
(Archetypes-based content) the next call to obj.update() (edit form
post) will automatically generate a friendly id for the object based on
the title of the object.

Bypassing permissions when creating content item

If you need to have special workflows where you bypass the workflow and
logged in users when creating the content item, do as follows:

def construct_without_permission_check(folder, type_name, id, *args, **kwargs):
 """ Construct a new content item bypassing creation and content add permissions checks.

 @param folder: Folderish content item where to place the new content item
 @param type_name: Content type id in portal_types
 @param id: Traversing id for the new content
 @param args: Optional arguments for the construction (will be passed to the creation method if the type has one)
 @param kwargs: Optional arguments for the construction (will be passed to the creation method if the type has one)
 @return: Reference to newly created content item
 """

 portal_types = getToolByName(folder, "portal_types")

 # Get this content type definition from content types registry
 type_info = portal_types.getTypeInfo(type_name)

 # _constructInstance takes optional *args, **kw parameters too
 new_content_item = type_info._constructInstance(folder, id)

 # Return reference to justly created content
 return new_content_item

Note

The function above only bypasses the content item construction permission
check. It does not bypass checks for setting field values for initially
created content.

There is also an alternative way:

Note that by default Add portal member permissions
is only for the owner, so we need to by bass it here
from Products.CMFPlone.utils import _createObjectByType
_createObjectByType("YourContentType", folder, id)

Manual friendly id generation

If you are creating Plone objects by hand e.g. in a batch
job and Plone automatic id generation does not kick in,
you can use the following example to see how to create friendly
object ids manually:

from zope.component import getUtility
from plone.i18n.normalizer.interfaces import IIDNormalizer

import transaction

def createResearcherById(folder, id):
 """ Create one researcher in a folder based on its ORA id.

 @param id: X id of the researcher

 @returns: Newly created researcher
 """

 # Call X REST service to get JSON blob for this researcher
 # Note: queryById parses JSON back to Python to do some sanity checks for it
 index = XPeopleIndex()

 # Need to have temporary id
 id = str(random.randint(0, 99999999))

 folder.invokeFactory("XResearcher", id)
 content = folder[id]

 # XXX: set up content item data

 # Will finish Archetypes content item creation process,
 # rename-after-creation and such
 content.processForm()

 # make _p_jar on content
 transaction.savepoint(optimistic=True)

 # Need to perform manual normalization for id,
 # as we don't have title available during the creation time
 normalizer = getUtility(IIDNormalizer)
 new_id = normalizer.normalize(content.Title())

 if new_id in folder.objectIds():
 raise RuntimeError("Item already exists:" + new_id + " in " + folder.absolute_url())

 content.aq_parent.manage_renameObject(id, new_id)

 return content

PortalFactory

PortalFactory (only for Archetypes) creates the object in a temporary
folder and only moves it to the real folder when it is first saved.

Note

To see if content is still temporary, use
portal_factory.isTemporary(obj).

Restricting creating on content types

Plone can restrict which content types are available for creation in a
folder via the Add... menu.

Restricting available types per content type

portal_types defines which content types can be created inside a
folderish content type. By default, all content types which have the
global_allow property set can be added.

The behavior can be controlled with allowed_content_types setting.

	You can change it through the portal_types management interface.

	You can change it in your add-on installer GenericSetup profile.

Example for Dexterity content type. The file
would be something like
profiles/default/types/yourcompany.app.typeid.xml:

<!-- List content types we allow here -->
<property name="filter_content_types">True</property>
<property name="allowed_content_types">
 <element value="yourcompany.app.courseinfo" />
</property>
<property name="allow_discussion">False</property>

Example for Archetypes content. The file
would be something like profiles/default/types/YourType.xml:

<property name="filter_content_types">True</property>

<property name="allowed_content_types">
 <element value="YourContentTypeName" />
 <element value="Image" />
 <element value="News Item" />
 ...
</property>

Restricting available types per folder instance

In the UI, you can access this feature via the Add... menu
Restrict option.

Type contraining is managed by the ATContentTypes product:

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/lib/constraintypes.py

Example:

Set allowed content types
from Products.ATContentTypes.lib import constraintypes

Enable contstraining
folder.setConstrainTypesMode(constraintypes.ENABLED)

Types for which we perform Unauthorized check
folder.setLocallyAllowedTypes(["ExperienceEducator"])

Add new... menu listing
folder.setImmediatelyAddableTypes(["ExperienceEducator"])

You can also override the contraintypes accessor method to have
programmable logic regarding which types are addable and which not.

Other restrictions

See this discussion thread:

	http://plone.293351.n2.nabble.com/Folder-constraints-not-applicable-to-custom-content-types-tp6073100p6074327.html

Creating OFS objects

Zope has facilities for basic folder and contained objects using the OFS
subsystem. You do not need to work with raw objects unless you are doing
your custom lightweight, Plone-free, persistent data.

More examples in:

	Singing & Dancing [https://svn.plone.org/svn/collective/collective.dancing/trunk/collective/dancing/channel.py].

Object construction life cycle

Note

The following applies to Archetypes-based objects only. The process
might be different for Dexterity-based content.

Archetypes content construction has two phases:

	The object is created using a ?createType= URL or a
Folder.invokeFactory()
call. If createType is used then the object is given a temporary id.
The object has an "in creation" flag set.

	The object is saved for the first time and the final id is generated
based on the object title. The object is renamed. The creation flag is
cleared.

You are supposed to call either object.unmarkCreationFlag() or
object.processForm() after content is created manually using
invokeFactory().

processForm() will perform the following tasks:

	unmarks creation flag;

	renames object according to title;

	reindexes object;

	invokes the after_creation script and fires the ObjectInitialized
event.

If you don't want some particular step to be executed, study
Archetypes/BaseObject.py and call only what you really want. But unless
unmarkCreationFlag() is called, the object will behave strangely after
the first edit.

Rename after creation

To prevent the automatic rename on the first through-the-web save, add the
following attribute to your class:

_at_rename_after_creation = False

Factory type information

Factory type information (FTI) is responsible for content creation in the
portal. It is independent from content type (Archetypes, Dexterity)
subsystems.

Warning

The FTI codebase is old (updated circa 2001). Useful documentation
might be hard to find.

FTI is responsible for:

	Which function is called when new content type is added;

	icons available for content types;

	creation views for content types;

	permission and security;

	whether discussion is enabled;

	providing the factory_type_information dictionary. This is used
elsewhere in the code (often in __init__.py of a product) to set the
initial values for a ZODB Factory Type Information object (an object in
the portal_types tool).

See:

	FTI source code [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/TypesTool.py?rev=101748&view=auto].

	Scriptable Types Information HOW TO [http://www.zope.org/Products/CMF/docs/devel/using_scriptable_type_info/view]

	Notes Zope types mechanism [http://www.zope.org/Products/CMF/docs/devel/taming_types_tool/view]

Content does not show in Add menu, or Unauthorized errors

These instructions are for Archetypes content to debug issues
when creating custom content types which somehow fail to become creatable.

When creating new content types, many things can silently fail due to human
errors in the complex content type setup chain and security limitations.
The consequence is that you don't see your content type in the Add
drop-down menu. Here are some tips for debugging.

	Is your product broken due to Python import time errors? Check
ZMI: Control panel -> Products.
Turn on Zope debugging mode to trace import errors.

	Have you rerun the quick installer (GenericSetup) after
creating/modifying the content type?

	Do you have a correct Add permission for the product? Check
__init__.py ContentInit() call.

	Does it show up in the portal factory?
Check ZMI: portal_factory and factorytool.xml.

	Is it corretly registered as a portal type and implictly addable? Check
ZMI: portal_types.
Check default/profiles/type/yourtype.xml.

	Does it have correct product name defined? Check ZMI:
portal_types.

	Does it have a proper factory method? Check ZMI:
portal_types.
Check Zope logs for _queryFactory and import errors.

	Does it register itself with Archetypes? Check ZMI:
archetypes_tool.
Make sure that you have ContentInit properly run in your
__init__.py. Make sure that all modules having Archetypes content
types defined and registerType() call are imported in __init__py.

Link to creation page

	The Add... menu contains links for creating individual content types.
Copy the URLs that you see there.

	If you want to the user to have a choice about which content type to
create, you can link to /folder_factories page. (This is also the
creation page when Javascript is disabled).

Populating folder on creation

Archetypes have a hook called initializeArchetype(). Your content type
subclass can override this.

Example:

class LandingPage(folder.ATFolder):
 """Landing page"""

 def initializeArchetype(self, **kwargs):
 """
 Prepopulate folder during the creation.

 Create five subfolders of "BigBlock" type, with title and id preset.
 """
 folder.ATFolder.initializeArchetype(self, **kwargs)

 for i in range(0, 5):
 id = "container" + str(i)
 self.invokeFactory("BigBlock", id, title="Big block " + str(i+1))
 item = self[id]

 # Clear creation flag
 item.markCreationFlag()

Creating content from PloneFormGen

PloneFormGen is a popular add-on for Plone.

Below is a snippet for a Custom Script Adapter which allows to create
content straight out of PloneFormGen in the pending review state (it is
not public and will appear in the review list):

Folder id where we create content is "directory" under site root
target = context.portal_url.getPortalObject()["directory"]

The request object has an dictionary attribute named
form that contains the submitted form content, keyed
by field name
form = request.form

We need to engineer a unique ID for the object we're
going to create. If your form submit contained a field
that was guaranteed unique, you could use that instead.
from DateTime import DateTime
uid = str(DateTime().millis())

We use the "invokeFactory" method of the target folder
to create a content object of type "Document" with our
unique ID for an id and the form submission's topic
field for a title.

Field id have been set in Form Folder Contents view,
using rename functionality
target.invokeFactory("Document", id=uid,
 title=form['site-name'],
 description=form['site-description'],
 remoteUrl=form["link"]
)

Find our new object in the target folder
obj = target[uid]

Trigger rename-after-creation behavior
where actual id is generated from the title
obj.processForm()

Make item to pending state
portal_workflow = context.portal_workflow
portal_workflow.doActionFor(obj, "submit")

More info:

	http://plone.org/products/ploneformgen/documentation/how-to/creating-content-from-pfg

	http://plone.org/products/ploneformgen/documentation/how-to/creating-content-from-pfg

Creating content using Generic Setup

Purpose

You want your product to create default content in the site. (For example,
because you have a product which adds a new content type, and you want to
create a special folder to put these items in.)

You could do this programmatically, but if you don't want anything fancy (see
"Limitations" below), Generic Setup can also take care of it.

Step by step

	In your product's profiles/default folder, create a directory called structure.

	To create a top-level folder with id my-folder-gs-created, add a directory of that name to the structure folder.

	Create a file called .objects in the structure directory

	Create a file called .properties in the my-folder-gs-created directory

	Create a file called .preserve in the structure directory

	.objects registers the folder to be created:

my-folder-gs-created,Folder

	.properties sets properties of the folder to be created:

[DEFAULT]
description = Folder for imported Projects
title = My folder (created by generic setup)

	.preserve will make sure the folder isn't overwritten if it already exists:

my-folder-gs-created

Limitations

	This will only work for Plone's own content types

	Items will be in their initial workflow state

If you want to create objects of a custom content type, or manipulate them
more, you'll have to write a setuphandler. See below under "Further
Information".

Troubleshooting

I don't see titles in the navigation, only ids

You may notice that the new generated content's title appears to be set to its
id. In this case, the catalog needs to be updated. You can do this through the
ZMI, in portal_catalog.

You could automate this process by adding a GS import step in configure.zcml, which looks like this:

<genericsetup:importStep
 name="my.policy_updateCatalog"
 title="Update catalog"
 description="After creating content (from profiles/default/structure), the catalog needs to be updated."
 handler="my.policy.setuphandlers.updateCatalog">
 <depends name="content"/>
 </genericsetup:importStep>

This is the preferred way to define dependencies for import profiles: The
import step declares its dependency on the content import step. 'content' is
the name for the step which creates content from profiles/default/structure.
You could then add a method which updates the catalog in the product's
setuphandlers.py:

def updateCatalog(context, clear=True):
 portal = context.getSite()
 logger = context.getLogger('my.policy updateCatalog')
 logger.info('Updating catalog (with clear=%s) so items in profiles/default/structure are indexed...' % clear)
 catalog = portal.portal_catalog
 err = catalog.refreshCatalog(clear=clear)
 if not err:
 logger.info('...done.')
 else:
 logger.warn('Could not update catalog.')

Further information

	Original manual:
http://vanrees.org/weblog/creating-content-with-genericsetup

	If you want to do things like workflow transitions or setting default views
after creating, read
http://keeshink.blogspot.de/2011/05/creating-plone-content-when-installing.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Listing objects

Description

How to programmatically generate folder listings in Plone.

	Introduction

	Ensuring that the content item is a folder

	Getting all content objects inside a folder

	Querying folder through catalog
	Getting indexed objects

	Getting full objects

	Getting folder objects filtered
	Rules for filtering items

	Why does folder_listing not list my contents?

	orderObjects() to set a key for ordering the items in a particular folder

	Enforcing manual sort order

	Getting object ids

	Getting non-contentish Zope objects

	Checking for the existence of a particular object id
	Plone 4

	Plone 3

	Listing the folder items using portal_catalog

	Count of content items
	Counting items using getFolderContents

	Counting items using contentItems

	Navigational view URL

	Custom folder listing
	Making view available in the Display... menu

	Preventing folder listing

	Complex folder listings and filtering

	Empty listing view

Introduction

Plone has several methods of getting the list of folder items,
depending on whether:

	you want to get all items, or only items visible for the currently logged in user;

	you want to get hold of the item objects themselves or just indexed
metadata
(the latter is faster);

	you want to get Plone's contentish items only (contentItems)
or Zope 2 management objects too (objectIds);
the latter covers various site utilities found in the portal root and
otherwise hidden magical items.

Special attention must be paid also to object ids.
Zope locates all objects by traversing the site graph using ids.
The id mapping is usually a property of a parent object, not the child.
Thus most of the listing methods tend to return (id, object) tuples instead
of plain objects.

Ensuring that the content item is a folder

All Plone folderish content types provide the IFolderish interface.
Check that this is present to make sure that a content item is a
folder, and that contentItems() and the other methods are available:

from Products.CMFCore.interfaces import IFolderish

def recurse_all_content(portal):

 output = StringIO()

 def recurse(context):
 """ Recurse through all content on Plone site """

 print >> output, "Recursing to item:" + str(context)

 # Make sure that we recurse to real folders only,
 # otherwise contentItems() might be acquired from higher level
 if IFolderish.providedBy(context):
 for id, item in context.contentItems():
 recurse(item)

 recurse(portal)

 return output

Getting all content objects inside a folder

The contentItems method is defined in CMFCore/PortalFolder.py.
From Plone 4 and later, you can also use folder.items() instead
(this applies to the whole section below).
See source code for details, e.g. filtering and other forms of listing.

Querying folder through catalog

These methods apply for real folders, and not for collections.

Getting indexed objects

This is a faster method. portal_catalog must be up-to-date for the folder.
This will return brain objects:

brains = folder.getFolderContents()

Getting full objects

items = folder.contentItems() # return Python list of children object tuples (id, object)

Warning

The contentItems() call may be costly, since it will return the
actual content objects,
not the indexed metadata from the portal_catalog.
You should avoid this method if possible.

Warning

folder.contentItems() returns all items regardless of the user security context.

Getting folder objects filtered

The listFolderContents() method retrieves the content objects from the
folder.
It takes contentFilter as an argument to specify filtering of the
results.
contentFilter uses the same syntax as portal_catalog queries,
but does not
support all the same parameters; e.g. object_provides is not supported.
See the ContentFilter class [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/PortalFolder.py?view=markup]
for details.

Example:

List all types in this folder whose portal_type is "CourseModulePage"
return self.listFolderContents(contentFilter={"portal_type" : "CourseModulePage"})

Warning

Security warning: listFolderContents() honors the currently
logged-in user roles.

Warning

Performance warning: slow for large folders. Rather use
portal_catalog
and path-based queries to query items in a large folder.

Rules for filtering items

Plone applies some default rules for listFolderContents()

	portal_properties.nav_tree_properties.metaTypesNotToQuery: folders (large
folders) don't generate listing.

	default_page are not listed.

	portal_properties.nav_tree_properties: meta types marked here do not
appear in the listing.

Why does folder_listing not list my contents?

The site search settings (Site Setup--> Search) modifies the way
folder_listing works.

So for example, if you specifify that you do not want to search objects
of type Page, they will not appear in folder_listing anymore.

From this thread [http://lists.plone.org/pipermail/plone-product-developers/2012-March/thread.html#11436].

orderObjects() to set a key for ordering the items in a particular folder

With Plone 4+ an adapter can be registered and used to apply a custom
order to a particular folder: see setOrdering. The
DefaultOrdering adapter allows a key to be set for a particular
folder, and optionally to reverse the order. This can be adjusted via
a method on the folder:

context.orderObjects(key="Title", reverse=True)

Note

Unlike the python sort() and sorted() methods, the key parameter
expects an attribute, not a function.

Enforcing manual sort order

Below is an example of how to order content items by their manual sort order
(the one you create via drag and drop on the contents tab):

from OFS.interfaces import IOrderedContainer

queried_objects = list(folder.listFolderContents())

def get_position_in_parent(obj):
 """
 Use IOrderedContainer interface to extract the object's manual ordering position
 """
 parent = obj.aq_inner.aq_parent
 ordered = IOrderedContainer(parent, None)
 if ordered is not None:
 return ordered.getObjectPosition(obj.getId())
 return 0

def sort_by_position(a, b):
 """
 Python list sorter cmp() using position in parent.

 Descending order.
 """
 return get_position_in_parent(a) - get_position_in_parent(b)

queried_objects = sorted(queried_objects, sort_by_position)

Getting object ids

If you need to get ids only, use the objectIds() method,
or keys() in Plone 4. This is a fast method:

Return a list of object ids in the folder
ids = folder.objectIds() # Plone 3 or older
ids = folder.keys() # Plone 4 or newer

Warning

objectIds() and keys() will return ids for raw Zope 2 objects
too,
not just Plone content. If you call objectIds() on the portal root
object, you will get objects like acl_users, portal_workflow and
so on ...

Getting non-contentish Zope objects

In some special cases, it is necessary to manipulate non-contentish Zope objects.

This listing method applies to all OFS.Folder.Folder objects [http://svn.zope.org/Zope/trunk/src/OFS/interfaces.py?rev=96262&view=auto],
not just Plone content objects:

for id, item in folder.objectItems():
 # id is 8-bit string of object id in the folder
 # item is the object itself
 pass

Checking for the existence of a particular object id

If you want to know whether the folder has a certain item or not,
you can use the following snippet.

Plone 4

Use has_key:

if folder.has_key("my-object-id"):
 # Exists
else:
 # Does not exist

Plone 3

There is a special case for Large Plone Folders (BTree-based).
The following is optimal code, but you can simplify it if you don't need to
check if the folder is a BTreeFolder:

Use the BTreeFolder API if possible
myid = "index_html"

if base_hasattr(context, 'has_key'):
 # BTreeFolder's has_key returns numeric values
 return context.has_key(myid) and True or False
elif myid in context.objectIds():
"elif myid in context:" in Plone 4 or newer
 return True
else:
 return False

Listing the folder items using portal_catalog

This should be your preferred method for querying folder items.
portal_catalog searches are fast,
because they return catalog brain objects
instead of the real content objects (less database look ups).

Warning

Returned catalog brain data, such as Title, will be UTF-8 encoded.
You need to call brain["title"].decode("utf-8") or similar
on all text you want to extract from the data.

Simple example how to get all items in a folder:

Get the physical path (includes Plone site name)
to the folder
path = folder.getPhysicalPath()

Convert getPhysicalPath() tuples result to
slash separated string, which is used by ExtendedPathIndex
path = "/".join(path)

This will fetch catalog brains.
Includes also unpublished items, not caring about workflow state.
depth = 1 means that subfolder items are not included

brains = context.portal_catalog(path={"query": path, "depth": 1})

Here's a complex example of how to perform various filtering operations,
honouring some default
Plone filtering rules. This example is taken from
Products.CMFPlone/skins/plone_scripts/getFolderContents:

mtool = context.portal_membership
cur_path = '/'.join(context.getPhysicalPath())
path = {}

if not contentFilter:
 # The form and other are what really matters
 contentFilter = dict(getattr(context.REQUEST, 'form',{}))
 contentFilter.update(dict(getattr(context.REQUEST, 'other',{})))
else:
 contentFilter = dict(contentFilter)

if not contentFilter.get('sort_on', None):
 contentFilter['sort_on'] = 'getObjPositionInParent'

if contentFilter.get('path', None) is None:
 path['query'] = cur_path
 path['depth'] = 1
 contentFilter['path'] = path

show_inactive = mtool.checkPermission(
 'Access inactive portal content', context)

Evaluate in catalog context because some containers override queryCatalog
with their own unrelated method (Topics)
contents = context.portal_catalog.queryCatalog(
 contentFilter, show_all=1, show_inactive=show_inactive)

if full_objects:
 contents = [b.getObject() for b in contents]

if batch:
 from Products.CMFPlone import Batch
 b_start = context.REQUEST.get('b_start', 0)
 batch = Batch(contents, b_size, int(b_start), orphan=0)
 return batch

return contents

Count of content items

Counting items using getFolderContents

The least expensive call for this, if you have tens of items, is to call
len() on the result of calling getFolderContents(), which is a
portal_catalog based query:

items = len(self.getFolderContents())

Counting items using contentItems

Alternatively, if you know there are not many objects in in the folder,
you can call contentItems() (or simply items() in Plone 4 or newer),
as this will potentially wake fewer items than a complex catalog query.

Warning

Security: This method does not consider access rights.

Example (AT content class method):

def getMainImage(self):
 items = self.contentItems() # id, object tuples
 # "items = self.items()" in Plone 4 or newer
 if len(items) > 0:
 return items[1]

Navigational view URL

Plone has a special default navigation URL which is used in

	Folder listing

	Navigation tree

It is not necessarily the object URL itself (/folder/item),
but can be e.g. /folder/item/@@yourcustomview

The view action URL must be configured in portal_types and separately
enabled for the content type in site_properties.

For more information see

	http://stackoverflow.com/questions/12033414/change-link-in-contents-listing-for-custom-content-type#comment16065296_12033414

Custom folder listing

Here is an example how to create a view which will render a custom listing
for a folder or a collection (ATTopic).

The view is called ProductSummaryView and it is registered with the name
productsummary.
This example is not suitable for your add-on product as is:
you need to tailor it for your specific needs.

Warning

If you are going to call item/getObject on a catalog brain, it might
cause excessive database load as it causes a new database query per
object.
Try use information available in the catalog
or add more catalog indexes. To know more about the
issue read about waking up database objects.

	First, let's register our view.
We could limit content types for which the view is enabled by specifying
Products.ATContentTypes.interface.IATFolder or
Products.ATContentTypes.interface.IATTopic in the for attribute.
Cf. the configure.zcml snippet below:

<browser:page
 for="*"
 name="productcardsummary"
 class=".productcardsummaryview.ProductCardSummaryView"
 template="productcardsummaryview.pt"
 allowed_interface=".productcardsummaryview.IProductCardSummaryView"
 permission="zope2.View"
 />

	Below is the example view code, named as productcardsummaryview.py:

from zope.interface import implements, Interface

from zope import schema

from Products.Five import BrowserView
from Products.CMFCore.utils import getToolByName

from Products.ATContentTypes.interface import IATTopic

zope.18n message translator for your add-on product
from yourproduct.namespace import appMessageFactory as _

class IProductCardSummaryView(Interface):
 """ Allowed template variables exposed from the view.
 """

 # Item list as iterable Products.CMFPlone.PloneBatch.Batch object
 contents = schema.Object(Interface)

class ProductCardSummaryView(BrowserView):
 """
 List summary information for all product cards in the folder.

 Batch results.
 """
 implements(IProductCardSummaryView)

 def query(self, start, limit, contentFilter):
 """ Make catalog query for the folder listing.

 @param start: First index to query

 @param limit: maximum number of items in the batch

 @param contentFilter: portal_catalog filtering dictionary with index -> value pairs.

 @return: Products.CMFPlone.PloneBatch.Batch object
 """

 # Batch size
 b_size = limit

 # Batch start index, zero based
 b_start = start

 # We use different query method, depending on
 # whether we do listing for topic or folder
 if IATTopic.providedBy(self.context):
 # ATTopic like content
 # Call Products.ATContentTypes.content.topic.ATTopic.queryCatalog() method
 # This method handles b_start internally and
 # grabs it from HTTPRequest object
 return self.context.queryCatalog(contentFilter, batch=True, b_size=b_size)
 else:
 # Folder or Large Folder like content
 # Call CMFPlone(/skins/plone_scripts/getFolderContents Python script
 # This method handles b_start parametr internally and grabs it from the request object
 return self.context.getFolderContents(contentFilter, batch=True, b_size=b_size)

 def __call__(self):
 """ Render the content item listing.
 """

 # How many items is one one page
 limit = 3

 # What kind of query we perform?
 # Here we limit results to ProductCard content type
 filter = { "portal_type" : "ProductCard" }

 # Read the first index of the selected batch parameter as HTTP GET request query parameter
 start = self.request.get("b_start", 0)

 # Perform portal_catalog query
 self.contents = self.query(start, limit, filter)

 # Return the rendered template (productcardsummaryview.pt), with content listing information filled in
 return self.index()

	Below is the corresponding page template skeleton productcardsummaryview.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="yourproduct.namespace">
<body>
 <div metal:fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 metal:use-macro="here/kss_generic_macros/macros/generic_title_view">
 Title or id
 </h1>

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <p metal:use-macro="here/kss_generic_macros/macros/generic_description_view">
 Description
 </p>

 <div tal:replace="structure provider:plone.abovecontentbody" />

 <tal:listing define="batch view/contents">

 <tal:block tal:repeat="item batch">
 <div class="tileItem visualIEFloatFix vevent"
 tal:define="normalizeString nocall: context/plone_utils/normalizeString;
 item_url item/getURL|item/absolute_url;
 item_id item/getId|item/id;
 item_title_or_id item/pretty_title_or_id;
 item_description item/Description;
 item_type item/portal_type;
 item_type_title item/Type;
 item_type_class python: 'contenttype-' + normalizeString(item_type);
 item_modified item/ModificationDate;
 item_created item/CreationDate;
 item_wf_state item/review_state|python: wtool.getInfoFor(item, 'review_state', '');
 item_wf_state_class python:'state-' + normalizeString(item_wf_state);
 item_creator item/Creator;
 item_start item/start/ISO|item/StartDate|nothing;
 item_end item/end/ISO|item/EndDate|nothing;
 "
 tal:attributes="class string:tileItem visualIEFloatFix vevent ${item_type_class}">

 <a href="#"
 tal:attributes="href item_url">
 <img src="" alt=""
 witdh="64"
 height="64"
 tal:condition="item_object/main_image|python:False"
 tal:attributes="src item_object/main_image" />

 <h2 class="tileHeadline"
 metal:define-macro="listitem">

 <a href="#"
 class="summary url"
 tal:attributes="href item_url"
 tal:content="item_title_or_id">
 Item Title

 </h2>

 <p class="tileBody">

 description

 </p>

 <p class="tileFooter">
 <a href=""
 tal:attributes="href item_url"
 i18n:translate="read_more">
 Read More…

 </p>

 <div class="visualClear"><!-- --></div>

 </div>
 </tal:block>

 <!-- Navigation -->
 <div metal:use-macro="here/batch_macros/macros/navigation" />

 </tal:listing>

 <div tal:replace="structure provider:plone.belowcontentbody" />

 </tal:main-macro>
 </div>
</body>
</html>

	Go to view page by adding /@@productsummary to your folder URL.

Making view available in the Display... menu

You need to add the browser:menuItem entry to make your view appear in the
Display... menu
from which folders and topics can choose the style of the display.

See dynamic views.

You need to add:

	<browser:menuItem> configuration directive with view id (e.g.
@@productsummary)

	New properties to Folder.xml or Topic.xml so that the view becomes
available

Preventing folder listing

If the users can access the content items they can usually also list them.

Here is a no-warranty hack how to prevent folder_listing if needed:

from zope.component import adapter
from ZPublisher.interfaces import IPubEvent,IPubAfterTraversal
from Products.CMFCore.utils import getToolByName
from AccessControl.unauthorized import Unauthorized
from zope.app.component.hooks import getSite

@adapter(IPubAfterTraversal)
def Protector(event):
 """ Protect anonymous users from access to folder_listing etc. """

 site = getSite()
 if not site:
 return

 ms = getToolByName(site, 'portal_membership')
 member = ms.getAuthenticatedMember()
 if not member.getUserName() == 'Anonymous User':
 return

 URL = event.request.URL
 if '/folder_' in URL:
 raise Unauthorized('unable to access folder listing')

Complex folder listings and filtering

The following example is for a very complex folder listing view.
You can call view methods to returns the listed items themselves and render
the HTML in another view --- this allows you to recycle this listing code
easily.

The view does the various sanity checks that normal Plone item listings do:

	no meta items,

	no large folders,

	no default views,

	filter by active language,

	do not list items where you do not have the View permission,

	perform the listing on the parent container if the context itself
is not folderish.

Example code:

class FolderListingView(BrowserView):
 """ Mobile folder listing helper view

 Use getItems() to get list of mobile folder listable items for
 automatically generated mobile folder listings (touch button list).
 """

 def getListingContainer(self):
 """ Get the item for which we perform the listing
 """
 context = self.context.aq_inner
 if IFolderish.providedBy(context):
 return context
 else:
 return context.aq_parent

 def getActiveTemplate(self):
 state = getMultiAdapter(
 (self.context, self.request),
 name=u'plone_context_state')
 return state.view_template_id()

 def getTemplateIdsNoListing(self):
 """
 @return: List of mobile-specific ids found from portal_properties where not to show folder listing
 """

 try:
 from gomobile.mobile.utilities import getCachedMobileProperties
 context = aq_inner(self.context)
 mobile_properties = getCachedMobileProperties(context, self.request)
 except:
 mobile_properties = None

 return getattr(mobile_properties, "no_folder_listing_view_ids", [])

 def filterItems(self, container, items):
 """ Apply mobile specific filtering rules

 @param items: List of context brains
 """

 # Filter out default content
 default_page_helper = getMultiAdapter(
 (container, self.request),
 name='default_page')

 portal_state = getMultiAdapter(
 (container, self.request),
 name='plone_portal_state')

 # Active language
 language = portal_state.language()

 # Return the default page id or None if not set
 default_page = default_page_helper.getDefaultPage(container)

 security_manager = getSecurityManager()

 meta_types_not_to_list = container.portal_properties.navtree_properties.metaTypesNotToList

 def show(item):
 """ Filter whether the user can view a mobile item.

 @param item: Real content object (not brain)

 @return: True if item should be visible in the listing
 """

 # Check from mobile behavior should we do the listing
 try:
 behavior = IMobileBehavior(item)
 appearInFolderListing = behavior.appearInFolderListing
 except TypeError:
 # Site root or some weird object, give up
 appearInFolderListing = True

 if not appearInFolderListing:
 # Default to appearing
 return False

 # Default page should not appear in the quick listing
 if item.getId() == default_page:
 return False

 if item.meta_type in meta_types_not_to_list:
 return False

 # Two letter language code
 item_lang = item.Language()

 # Empty string makes language netral content
 if item_lang not in ["", None]:
 if item_lang != language:
 return False

 # Note: getExcludeFromNav not necessarily exist on all content types
 if hasattr(item, "getExcludeFromNav"):
 if item.getExcludeFromNav():
 return False

 # Does the user have a permission to view this object
 if not security_manager.checkPermission(permissions.View, item):
 return False

 return True

 return [i for i in items if show(i) == True]

 def constructListing(self):

 # Iterable of content items for the item listing
 items = []

 # Check from mobile behavior should we do the listing
 try:
 behavior = IMobileBehavior(self.context)
 do_listing = behavior.mobileFolderListing
 except TypeError:
 # Site root or some weird object, give up
 do_listing = False

 # Do listing by default, must be explicitly disabledc
 if not do_listing:
 # No mobile behavior -> no mobile listing
 return None

 container = self.getListingContainer()

 # Do not list if already doing folder listing
 template = self.getActiveTemplate()
 print "Active template id:" + template
 if template in self.getTemplateIdsNoListing():
 # Listing forbidden by mobile rules
 return None

 portal_properties = getToolByName(container, "portal_properties")
 navtree_properties = portal_properties.navtree_properties
 if container.meta_type in navtree_properties.parentMetaTypesNotToQuery:
 # Big folder... listing forbidden
 return None

 state = container.restrictedTraverse('@@plone_portal_state')

 items = container.listFolderContents()

 items = self.filterItems(container, items)

 return items

 def getItems(self):
 """
 @return: Iterable of content objects. Never return None.
 """
 items = self.constructListing()
 if items == None:
 return []
 return items

Empty listing view

Sometimes you want a show folder without listing its content.
You can create a dynamic view
in your add-on which is available from Display... menu.

Example configure.zcml bit

<browser:page
 name="empty-listing"
 for="Products.CMFCore.interfaces.IFolderish"
 permission="zope2.View"
 layer=".interfaces.IThemeSpecific"
 template="empty-listing.pt"
 />

Example empty-listing.pt

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="example.dexterityforms"
 metal:use-macro="context/main_template/macros/master">

 <metal:block fill-slot="content-title">
 </metal:block>

 <metal:block fill-slot="content-core">
 </metal:block>

</html>

Example profiles/default/types/Folder.xml

<?xml version="1.0"?>
<object name="Folder"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone"
 meta_type="Factory-based Type Information with dynamic views" >
 <property name="view_methods" purge="False">
 <!-- We retrofit these new views for Folders in portal_types info -->
 <element value="empty_listing"/>
 </property>
</object>

Reinstall your add-on.

empty-listing should appear in Display... menu.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Manipulating objects

	Introduction

	Reindexing modified objects

Introduction

Manipulating objects depends on whether they are based on the Archetypes
subsystem or on the Dexterity subsystem.

For more information, consult the manual of the relevant subsystem:

	Archetypes examples.

	See Manipulating Content Objects in the Dexterity manual

Reindexing modified objects

After modifying the object, you need to reindex it in the portal_catalog
to update the search and listing information.

Cataloging has a quirk regarding the modified metadata: when calling
reindexObject on an object, the value for modified in
portal_catalog will be set to the time of the reindex, regardless of the
value of the modified property of the object.

In order to store the correct value you can do an extra reindex of the
object with the modified index as parameter.

First do a normal reindexObject, then call it with the modified index
explicitly:

object.reindexObject()
object.reindexObject(idxs=['modified'])

For more information, see ** How to update this document.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Deleting

Description

Deleting content items in Plone programmatically.
How link integrity checks work and how (and when!) to avoid them.

	Introduction

	Deleting content by id
	Permissions

	Bypassing permissions

	Deleting all content in a folder

	Bypassing link integrity check

	Fail safe deleting

	Purging site from old content

Introduction

This document explains how to programmatically delete objects in Plone.

Deleting content by id

Deleting content objects is done by IObjectManager.

IObjectManager definition [http://svn.zope.org/Zope/trunk/src/OFS/interfaces.py?rev=96262&view=auto].

Example:

manage_delObjects takes list of ids as an argument
folder.manage_delObjects(["list", "of", "ids", "to", "delete"])

Or:

parent = context.aq_parent
parent.manage_delObjects([context.getId()])

Permissions

The user must have Zope 2 Delete objects permission on the content item being
deleted. This is checked in Products.CMFPlone.PloneFolder.manage_delObjects().

Otherwise an Unauthorized exception is raised.

Example how to check for this permission:

from Products.CMFCore import permissions

hospital = self.portal.country.hospital
item = hospital.patient1

mt = getToolByName(self.portal, 'portal_membership')
if mt.checkPermission(permissions.DeleteObjects, item):
 # Can delete
 raise AssertionError("Oooops. Deletion allowed")
else:
 pass

Bypassing permissions

This is handy if you work e.g. in a debug shell
and you are deleting badly behaved objects:

from AccessControl.SecurityManagement import newSecurityManager
admin = app.acl_users.getUserById("admin")
app.folder_sits.sitsngta.manage_delObjects("examples")
Try harder:
app.folder_sits.sitsngta._delObject("examples", suppress_events=True)
import transaction ; transaction.commit()

Deleting all content in a folder

This can be a bit tricky. An example:

ids = folder.objectIds() # Plone 3 or older
ids = folder.keys() # Plone 4 or newer

if len(ids) > 0:
 # manage_delObject will mutate the list
 # so we cannot give it tuple returned by objectIds()
 ids = list(ids)
 folder.manage_delObjects(ids)

Bypassing link integrity check

If link integrity checks has been enabled in the site setup, you cannot
delete objects which themselves are link targets or if their children
are link targets.

Instead, a LinkIntegrityException will be raised.
The LinkIntegrityException contains information identifying
the content which could not be deleted.

The plone.app.linkintegrity.browser.remote module contains
code which allows you to delete the object in any case.
It catches the exception, modifies the HTTP request
to contain a marker interface allowing delete to happen
and then replays the transaction.

In case the link integrity check fails for manage_delObjects(),
you will be shown a confirmation dialog. The original request payload
gets pickled and is stored encoded in the HTML form.

When the user presses confirm, the original request gets unpickled
from the HTTP POST payload. Then the view modifies the Zope publisher
so that it will play the original unpickled HTTP POST
with the marker interface
"Do not care about link integrity breaches" turned on.

Here is an sample batch delete code which tries to work around the link
integrity check:

from zope.component import queryUtility
from Products.CMFCore.interfaces import IPropertiesTool

We need to disable link integrity check,
because it cannot handle several delete calls in
one request
ptool = queryUtility(IPropertiesTool)
props = getattr(ptool, 'site_properties', None)
old_check = props.getProperty('enable_link_integrity_checks', False)
props.enable_link_integrity_checks = False

for b in items:
 count += 1
 obj = b.getObject()
 logger.info("Deleting:" + obj.absolute_url() + " " + str(obj.created()))

 try:
 obj.aq_parent.manage_delObjects([obj.getId()])
 except Exception, e:
 # E.g. linkintegrityerror or some other
 logger.error("Could not remove item:" + obj.absolute_url())
 logger.exception(e)
 continue

 if count % transaction_threshold == 0:
 # Prevent transaction becoming too large (memory buffer)
 # by committing now and then
 logger.info("Committing transaction")
 transaction.commit()

props.enable_link_integrity_checks = old_check

logger.info(msg)

Fail safe deleting

Sometimes deletion might fail because it dispatches
events which might raise exception due to bad broken objects
or badly behaving code.

OFS.ObjectManager [http://svn.zope.org/Zope/trunk/src/OFS/ObjectManager.py?rev=115507&view=auto], the base class for Zope folders,
provides an internal method to delete
objects from a folder without firing any events:

Delete object with id "broken-folder" without firing any delete events
site._delObject("broken-folder", suppress_events=True)

The best way to clean up bad objects on your site is via a
command line script,
in which case remember to commit the transaction
after removing the broken objects.

Purging site from old content

This term:ZMI script allows you to find content items of certain type and
delete them if they are created too long ago:

Delete FeedfeederItem content items which are more than three months old

from StringIO import StringIO
import DateTime

buf = StringIO()

DateTime deltas are days as floating points
end = DateTime.DateTime() - 30*3
start = DateTime.DateTime(2000, 1,1)

date_range_query = { 'query':(start,end), 'range': 'min:max'}

items = context.portal_catalog.queryCatalog({
 "portal_type":"FeedFeederItem",
 "created" : date_range_query,
 "sort_on" : "created" })

items = list(items)

print >> buf, "Found %d items to be purged" % len(items)

count = 0
for b in items:
 count += 1
 obj = b.getObject()
 print >> buf, "Deleting:" + obj.absolute_url() + " " + str(obj.created())
 obj.aq_parent.manage_delObjects([obj.getId()])

return buf.getvalue()

Below is an advanced version for old item-date-based deletion code
which is suitable for huge sites.
This snippet is from the Products.feedfeeder package.
It will look for Feedfeeder items
(automatically generated from RSS) which
are older than X days and delete them.

It's based on Zope 3 page registration (sidenote: I noticed that views do not
need to be based on BrowserView page class).

	Transaction thresholds make sure the code runs faster and does not
run out of RAM

	Logging to Plone event log files

	Number of days to look into past is not hardcoded

	Manage rights needed to execute the code

You can call this view like:

http://localhost:9999/plonecommunity/@@feed-mega-cleanup?days=90

Here is the view Python source code:

import logging

import transaction
from zope import interface
from zope import component
import DateTime
import zExceptions

logger = logging.getLogger("feedfeeder")

class MegaClean(object):
 """ Clean-up old feed items by deleting them on the site.

 This is intended to be called from cron weekly.
 """

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def clean(self, days, transaction_threshold=100):
 """ Perform the clean-up by looking old objects and deleting them.

 Commit ZODB transaction for every N objects to that commit buffer does not grow
 too long (timewise, memory wise).

 @param days: if item has been created before than this many days ago it is deleted

 @param transaction_threshold: How often we commit - for every nth item
 """

 logger.info("Beginning feed clean up process")

 context = self.context.aq_inner
 count = 0

 # DateTime deltas are days as floating points
 end = DateTime.DateTime() - days
 start = DateTime.DateTime(2000, 1,1)

 date_range_query = {'query':(start,end), 'range': 'min:max'}

 items = context.portal_catalog.queryCatalog({
 "portal_type": "FeedFeederItem",
 "created": date_range_query,
 "sort_on": "created" })

 items = list(items)

 logger.info("Found %d items to be purged" % len(items))

 for b in items:
 count += 1
 obj = b.getObject()
 logger.info("Deleting:" + obj.absolute_url() + " " + str(obj.created()))
 obj.aq_parent.manage_delObjects([obj.getId()])

 if count % transaction_threshold == 0:
 # Prevent transaction becoming too large (memory buffer)
 # by committing now and then
 logger.info("Committing transaction")
 transaction.commit()

 msg = "Total %d items removed" % count
 logger.info(msg)

 return msg

 def __call__(self):

 days = self.request.form.get("days", None)
 if not days:
 raise zExceptions.InternalError("Bad input. Please give days=60 as HTTP GET query parameter")

 days = int(days)

 return self.clean(days)

Then we have the view ZCML registration:

<page
 name="feed-mega-cleanup"
 for="Products.CMFCore.interfaces.ISiteRoot"
 permission="cmf.ManagePortal"
 class=".feed.MegaClean"
 />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Renaming content

Description

How to programmatically rename Plone content items

	Introduction

	Renaming objects

Introduction

This page tells how to rename Plone content objects and change their ids.

	This only concerns URL path ids

	Archetypes' Unique ID (UID) is not affected by the rename operation

	Title can be changed using setTitle() (Archetypes) or related mutator

Renaming objects

OFS interface has facilities to rename objects

	http://svn.zope.org/Zope/trunk/src/OFS/interfaces.py?rev=105745&view=auto

	manage_renameObject(oldid, newid) for one item

	manage_renameObject([oldid, oldid2], [newid, newid2]) for rename many items

	Products.CMFPlone.PloneFolder overrides manage_renameObject() to have hooks
to reindex the new object path

Warning

Security warning: "Copy or Move" permission is needed on the object by
the logged in user.

Warning

New id must be a 8-bit string, not unicode.
The system might accept values in invalid format.

Example how to rename object lc to have -old suffix:

id = lc.getId()
if not lc.cb
parent = lc.aq_parent
parent.manage_renameObject(id, id + "-old")

These checks performed before rename by the manage_renameObject():

if not lc.cb_userHasCopyOrMovePermission():
 print "Does not have needed permission"
 return

if not lc.cb_isMoveable():
 # This makes sanity checks whether the object is
 # properly connected to the database
 print "Object problem"
 return

Warning

Testing warning: Rename mechanism relies of Persistent attribute called _p_jar to be present
on the content object. By default, this is not the case on unit tests. You need to call
transaction.savepoint() to make _p_jar appear on persistent objects.

If you don't do this, you'll receive a "CopyError" when calling manage_renameObjects
that the operation is not supported.

Unit testing example:

import transaction

self.portal.invokeFactory("Document", doc")
doc = self.portal.doc

Make sure all persistent objects have _p_jar attribute
transaction.savepoint(optimistic=True)

Call manage_renameCode()...

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Content types

Description

Plone's content type subsystems and creating new content types programmatically.

	Introduction

	Type information registry
	Listing available content types

	Creating a new content type
	Install ZopeSkel

	Create an archetypes product

	Install the product

	Create a new content type

	Debugging new content type problems

	Creating new content types through-the-web
	Dexterity

	Plomino (Archetypes-based add-on)

	Implicitly allowed

	Constraining the addable types per type instance

Introduction

Plone has two kind of content types subsystems:

	Archetypes-based

	Dexterity-based (new)

	See also Plomino (later in this document).

Flexible architecture allows other kinds of content type subsystems as well.

Type information registry

Plone maintains available content types in the portal_types tool.

portal_types is a folderish object which stores type information as
child objects,
keyed by the portal_type property of the types.

portal_factory is a tool responsible for creating the persistent object representing the content.

TypesTool source code [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/TypesTool.py?rev=101748&view=auto].

Listing available content types

Often you need to ask the user to choose specific Plone content types.

Plone offers two Zope 3 vocabularies for this purpose:

	plone.app.vocabularies.PortalTypes

	a list of types installed in portal_types

	plone.app.vocabularies.ReallyUserFriendlyTypes

	a list of those types that are likely to mean something to users.

If you need to build a vocabulary of user-selectable content types in
Python instead, here's how:

from Acquisition import aq_inner
from zope.app.component.hooks import getSite
from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm
from Products.CMFCore.utils import getToolByName

def friendly_types(site):
 """ List user-selectable content types.

 We cannot use the method provided by the IPortalState utility view,
 because the vocabulary factory must be available in contexts where
 there is no HTTP request (e.g. when installing add-on product).

 This code is copied from
 https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/globals/portal.py

 @return: Generator for (id, type_info title) tuples
 """

 context = aq_inner(site)
 site_properties = getToolByName(context, "portal_properties").site_properties
 not_searched = site_properties.getProperty('types_not_searched', [])

 portal_types = getToolByName(context, "portal_types")
 types = portal_types.listContentTypes()

 # Get list of content type ids which are not filtered out
 prepared_types = [t for t in types if t not in not_searched]

 # Return (id, title) pairs
 return [(id, portal_types[id].title) for id in prepared_types]

Creating a new content type

These instructions apply to
Archetypes-based content types.

Install ZopeSkel

Add ZopeSkel to your buildout.cfg and run buildout:

[buildout]
...
parts =
 instance
 zopeskel

...
[zopeskel]
recipe = zc.recipe.egg
eggs =
 PasteScript
 ZopeSkel

Create an archetypes product

Run the following command and answer the questions e.g. for the
project name use my.product:

./bin/paster create -t archetype

Install the product

Adjust your buildout.cfg and run buildout again:

[buildout]
develop = my.product
...
parts =
 instance
 zopeskel

...
[instance]
eggs = my.product

Note

You need to install your new product using buildout before you
can add a new content type in the next step. Otherwise paster
complains with the following message: "Command 'addcontent' not
known".

Create a new content type

Change into the directory of the new product and then use paster to
add a new content type:

cd my.product
../bin/paster addcontent contenttype

Related how-tos:

	http://lionfacelemonface.wordpress.com/tutorials/zopeskel-archetypes-howto/

	http://docs.openia.com/howtos/development/plone/creating-a-site-archetypes-object-and-contenttypes-with-paster?set_language=fi&cl=fi

	http://www.unc.edu/~jj/plone/

Note

Creating types by hand is not worth the trouble. Please use a
code generator to create the skeleton for your new content type.

Warning

The content type name must not contain spaces.
Neither the content type name or the description
may contain non-ASCII letters. If you need to change these please
create a translation catalog which will translate the text to
one with spaces or international letters.

Debugging new content type problems

Creating types by hand is not worth the trouble.

	Why doesn't my custom content type show up in add menu [http://plone.org/documentation/faq/why-doesnt-my-custom-content-type-show-up-in-add-menu/] checklist.

Creating new content types through-the-web

There exist solutions for non-programmers and Plone novices
to create their content types more easily.

Dexterity

	http://plone.org/products/dexterity

	Core feature

	Use Dexterity control panel in site setup

Plomino (Archetypes-based add-on)

	With Plomino you can make an entire web application that can organize &
manipulate data with very limited programming experience.

	http://www.plomino.net/

	http://www.youtube.com/view_play_list?p=469DE37C742F31D1

Implicitly allowed

Implictly allowed is a flag specifying whether the content is
globally addable or
must be specifically enabled for certain folders.

The following example allows creation of Large Plone Folder
anywhere at the site
(it is disabled by default). For available properties, see
TypesTool._advanced_properties.

Example:

portal_types = self.context.portal_types
lpf = portal_types["Large Plone Folder"]
lpf.global_allow = True # This is "Globally allowed" property

Constraining the addable types per type instance

For the instances of some content types, the user may manually
restrict which kinds of objects may be added inside. This is done by clicking
the Add new... link on the green edit bar and then choosing
Restrictions....

This can also be done programmatically on an instance of a content type that
supports it.

First, we need to know whether the instance supports this.

Example:

from Products.Archetypes.utils import shasattr # To avoid acquisition
if shasattr(context, 'canSetConstrainTypes'):
 # constrain the types
 context.setConstrainTypesMode(1)
 context.setLocallyAllowedTypes(('News Item',))

If setConstrainTypesMode is 1, then only the types enabled by using
setLocallyAllowedTypes will be allowed.

The types specified by setLocallyAllowedTypes must be a subset
of the allowable
types specified in the content-type's FTI (Factory Type Information) in the
portal_types tool.

If you want the types to appear in the :guilabel:
Add new.. dropdown menu, then you must
also set the immediately addable types. Otherwise, they will appear under the
more submenu of Add new...

Example:

context.setImmediatelyAddableTypes(('News Item',))

The immediately addable types must be a subset of the locally allowed types.

To retrieve information on the constrained types, you can just use the accessor
equivalents of the above methods.

Example:

context.getConstrainTypesMode()
context.getLocallyAllowedTypes()
context.getImmediatelyAddableTypes()
context.getDefaultAddableTypes()
context.allowedContentTypes()

Be careful of Acquisition. You might be acquiring these methods from the
current instance's parent. It would be wise to first check whether the current
object has this attribute,
either by using shasattr or by using hasattr on the
object's base (access the base object using aq_base).

The default addable types are the types that are addable when
constrainTypesMode is 0 (i.e not enabled).

For more information, see Products/CMFPlone/interfaces/constraints.py

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Workflows

Description

Programming workflows in Plone.

	Introduction

	Creating workflows
	Model the workflow online

	Putting it in your product

	Configure workflow via GenericSetup
	Assign a workflow

	Assigning a workflow globally as default

	Binding a workflow to a content type

	Disabling workflow for a content type

	Updating security settings after changing workflow

	Programatically
	Getting the current workflow state

	Filtering content item list by workflow state

	Changing workflow state

	Gets the list of ids of all installed workflows

	Getting default workflow for a portal type

	Getting workflows for an object

	Via HTTP

Introduction

The DCWorkflow product manages the default Plone workflow system.

A workflow state is not directly stored on the object. Instead, a separate
portal_workflow tool must be used to access a workflow state. Workflow look-ups
involve an extra database fetch.

For more information, see

	http://www.martinaspeli.net/articles/dcworkflows-hidden-gems

Creating workflows

The recommended method is to use the portal_workflow user interface in the Zope Management Interface
to construct the workflow through-the-web and then you can export it using GenericSetup's portal_setup tool.

Include necessary parts from exported workflows.xml and workflows folder in your add-on product
GenericSetup profile (add-on folder profiles/default).

Model the workflow online

Go to 'http:yourhost.com:8080/yourPloneSiteName/portal_workflows/manage_main', copy and paste
'simple_publication_workflow', to have a skeleton for start-off, rename 'copy_of_simple_publication_workflow'
to 'your_workflow' or add a new workflow via the dropdwon-menu and have a tabula rasa.

Add and remove states and transitions, assign permissions etc.

Putting it in your product

Go to 'http:yourhost.com:8080/yourPloneSiteName/portal_setup/manage_exportSteps', check 'Workflow Tool' and hit
'Export selected steps', unzip the downloaded file and put the definitions.xml-file in
'your/product/profiles/default/workflows/your_workflow/' (you'll need to create the latter two directories).

Configure workflow via GenericSetup

Assign a workflow

In your/product/profiles/default/workflows.xml, insert:

<?xml version="1.0" ?>
<object name="portal_workflow" meta_type="Plone Workflow Tool" purge="False">

 <object name="your_workflow" meta_type="Workflow" />

 </object>

Assigning a workflow globally as default

In your/product/profiles/default/workflows.xml, add:

<object name="portal_workflow">
 (...)
 <bindings>
 <default>
 <bound-workflow workflow_id="simple_publication_workflow" />
 </default>
 </bindings>

Binding a workflow to a content type

Example with GenericSetup workflows.xml

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
 <bindings>
 <type type_id="Image">
 <bound-workflow workflow_id="plone_workflow" />
 </type>
 </bindings>
</object>

Disabling workflow for a content type

If a content type doesn't have a workflow it uses its parent container security settings.
By default, content types Image and File have no workflow.

Workflows can be disabled by setting the workflow setting empty in portal_workflow in ZMI.

Example how to do it with GenericSetup workflows.xml

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
 <property
 name="title">Contains workflow definitions for your portal</property>
 <bindings>
 <!-- Bind nothing for these content types -->
 <type type_id="Image"/>
 <type type_id="File"/>
 </bindings>
</object>

Updating security settings after changing workflow

Through the web this would be done by going to
ZMI > portal_workflow > update security settings

To update security settings programmatically use the method updateRoleMappings.
The snippet below demonstrates this:

from Products.CMFCore.utils import getToolByName
Do this after installing all workflows
wf_tool = getToolByName(self, 'portal_workflow')
wf_tool.updateRoleMappings()

Programatically

Getting the current workflow state

Example:

workflowTool = getToolByName(self.portal, "portal_workflow")
Returns workflow state object
status = workflowTool.getStatusOf("plone_workflow", object)
Plone workflows use variable called "review_state" to store state id
of the object state
state = status["review_state"]
assert state == "published", "Got state:" + str(state)

Filtering content item list by workflow state

Here is an example how to iterate through content item list
and let through only content items having certain state.

Note

Usually you don't want to do this, but use content
aware folder listing method or portal_catalog query
which does filtering by permission check.

Example:

portal_workflow = getToolByName(self.context, "portal_workflow")

Get list of all objects
all_objects = [obj for obj in self.all_content if ISubjectGroup.providedBy(obj) or IFeaturedCourses.providedBy(obj) == True]

Filter objects by workflow state (by hand)
for obj in all_objects:
 status = portal_workflow.getStatusOf("plone_workflow", obj)
 if status and status.get("review_state", None) == "published":
 yield obj

Changing workflow state

You cannot directly set the workflow to any state, but you must push
it through legal state transitions.

Security warning: Workflows may have security assertations which are bypassed by admin user.
Always test your workflow methods using a normal user.

Example how to publish content item banner:

from Products.CMFCore.WorkflowCore import WorkflowException

workflowTool = getToolByName(banner, "portal_workflow")
try:
 workflowTool.doActionFor(banner, "publish")
except WorkflowException:
 # a workflow exception is risen if the state transition is not available
 # (the sampleProperty content is in a workflow state which
 # does not have a "submit" transition)
 logger.info("Could not publish:" + str(banner.getId()) + " already published?")
 pass

Example how to submit to review:

from Products.CMFCore.WorkflowCore import WorkflowException

portal.invokeFactory("SampleContent", id="sampleProperty")

workflowTool = getToolByName(context, "portal_workflow")
try:
 workflowTool.doActionFor(portal.sampleProperty, "submit")
except WorkflowException:
 # a workflow exception is risen if the state transition is not available
 # (the sampleProperty content is in a workflow state which
 # does not have a "submit" transition)
 pass

Example how to cause specific transitions based on another event (e.g. a parent folder state change).
This code must be part of your product's trusted code not a workflow script because of the permission
issues mentioned above. See also see Events

Subscribe to the workflow transition completed action
from five import grok
from Products.DCWorkflow.interfaces import IAfterTransitionEvent
from Products.CMFCore.interfaces import IFolderish

@grok.subscribe(IFolderish, IAfterTransitionEvent)
def make_decisions_visible(context,event):
if (event.status['review_state'] != 'cycle_complete'):
 #nothing to do
 return
children = context.getFolderContents()
wftool = context.portal_workflow
#loop through the children objects
for obj in children:
 state = obj.review_state
 if (state=="alternate_invisible"):
 # below is workaround for using getFolderContents() which provides a
 # 'brain' rather than an python object. Inside if to avoid overhead
 # of getting object if do not need it.
 what = context[obj.id]
 wftool.doActionFor(what, 'to_alternate')
 elif (state=="denied_invisible"):
 what = context[obj.id]
 wftool.doActionFor(what, 'to_denied')
 elif (...

Gets the list of ids of all installed workflows

Useful to test if a particular workflow is installed:

Get all site workflows
ids = workflowTool.getWorkflowIds()
self.assertIn('link_workflow', ids, "Had workflows " + str(ids))

Getting default workflow for a portal type

Get default workflow for the type:

chain = workflowTool.getChainForPortalType(ExpensiveLink.portal_type)
self.assertEqual(chain, ('link_workflow',), "Had workflow chain" + str(chain))

Getting workflows for an object

How to test which workflow the object has:

See that we have a right workflow in place
workflowTool = getToolByName(context, "portal_workflow")
Returns tuple of all workflows assigned for a context object
chain = workflowTool.getChainFor(context)

there must be only one workflow for our object
self.assertEqual(len(chain), 1)

this must must be the workflow name
self.assertEqual(chain[0], 'link_workflow', "Had workflow " + str(chain[0]))

Via HTTP

Plone provides a workflow_action script which is able to trigger the status
modification through an HTTP request (browser address bar).

Example:

http://localhost:9020/site/page/content_status_modify?workflow_action=publish

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Content identification (ids)

Description

Different ids, UIDs, integer ids or whatever can identify your Plone
content and give access to it.

	Introduction

	Id

	UID and UUID

	UUID Acquisition problem with Dexterity Content Types

	intids

	Archetypes

	Getting the object's UID

	Looking up object by UID

Introduction

Id

Content id generally refers the item id within the folder. Together with folder path this
identifies the content in unique way.

Naturally, this id changes when the content is renamed or moved.

Use traversing to resolve object by path+id.

UID and UUID

UID is a unique, non-human-readable identifier for a content object which stays
on the object even if the object is moved.

Plone uses UUIDs for

	Storing content-to-content references (Archetypes, ReferenceField)

	Linking by UIDs (Kupu) - this enables persistent links even though the object is moved

	Plain UID is supported by Archetypes only and is based on reference_catalog

	UUID is supported by Archetypes and Dexterity both and you should use this for new projects

UIDs are available for Archetypes content and unified UUIDs for both Archetypes and
Dexterity content items since plone.app.dexterity version 1.1.

Note

If you have pre-Dexterity 1.1 content items you must run a migration step in portal_setup to
give them UUIDs.

To get object UUID you can use plone.app.uuid [https://pypi.python.org/pypi/plone.app.uuid/] package.

Getting object UUID:

from plone.uuid.interfaces import IUUID

BrowserView helper method
def getUID(self):
 """ AT and Dexterity compatible way to extract UID from a content item """
 # Make sure we don't get UID from parent folder accidentally
 context = self.context.aq_base
 # Returns UID of the context or None if not available
 # Note that UID is always available for all Dexterity 1.1+
 # content and this only can fail if the content is old not migrated
 uuid = IUUID(context, None)
 return uuid

Looking up object by UUID:

Use plone.app.uuid.utils.uuidToObject [https://github.com/plone/plone.app.uuid/blob/master/plone/app/uuid/utils.py]:

from plone.app.uuid.utils import uuidToObject

...
obj = uuidToObject(uuid)
if not obj:
 # Could not find object
 raise RuntimeError(u"Could not look-up UUID:", uuid)

More info:

	http://stackoverflow.com/questions/8618917/portal-catalog-unique-ids-for-both-archetypes-and-dexterity-content

UUID Acquisition problem with Dexterity Content Types

Make sure your Dexterity content type has the plone.app.referenceablebehavior.interfaces.IReferenceable [https://github.com/plone/plone.app.referenceablebehavior/blob/master/plone/app/referenceablebehavior/interfaces.py] behavior enabled. If not, when querying for an object's UUID, you will get its parent UUID. Then you can end up with a lot of objects with the same UUID as their parent.

If you run into this issue, here's an easy upgrade step to fix it:

import transaction
from plone.uuid.handlers import addAttributeUUID
from Products.CMFCore.utils import getToolByName

...
def recalculate_uuids(setup_tool):

 # Re-import types definition, so IReferenceable is enabled.
 setup_tool.runImportStepFromProfile(
 "profile-my.package:default",
 'typeinfo')

 catalog = getToolByName(setup_tool, 'portal_catalog')
 for index, brain in enumerate(catalog(portal_type="my.custom.content.type")):
 obj = brain.getObject()

 if not getattr(obj, '_plone.uuid', None) is None:
 # If an UUID has already been calculated for this object, remove it
 delattr(obj, '_plone.uuid')

 # Recalculate object's UUID
 addAttributeUUID(obj, None)
 obj.reindexObject(idxs=['UID'])

 if index % 100:
 # Commit every 100 items
 transaction.commit()

 # Commit at the end
 transaction.commit()

Make sure to have the IReferenceable behavior listed in the content type XML definition before running the upgrade step.
Also note that this upgrade step will recalculate the UUID for all "my.custom.content.type" objects.

intids

Integer ids ("intids") are fast look-up ids provided by plone.app.intid
and five.intid packages. Instead of relying on globally unique
identifier strings (UIDs) they use 64-bit integers, making low-level
resolution faster.

	https://github.com/plone/plone.app.intid

	http://stackoverflow.com/questions/8629390/how-to-use-intids

Archetypes

This info only for Plone 3.x projects.

Getting the object's UID

Use UID() accessor function

Example how to get UID of events folder:

>>> site.events.UID()
'ce380ef0f10a85beb864025928e1819b'

Looking up object by UID

Use lookupObject() in reference catalog.

>>> site.reference_catalog.lookupObject('ce380ef0f10a85beb864025928e1819b')
<ATBTreeFolder at /test/events>

None will be returned if there is content item with matching UID (the item has been deleted).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Ownership of content

	Introduction

	Getting the owner of the item

	Changing ownership of content

	Contributors

Description

Programmatically manipulate Plone content item's ownership

Introduction

Each content item has an owner user.

Owned item instances are of subclass of AccessControl.Owned

	http://svn.zope.org/Zope/trunk/src/AccessControl/Owned.py?rev=96262&view=auto

Getting the owner of the item

Example:

Returns PropertiedUser for Zope admin
Returns PloneUser for normal users object
context.getOwner()

Changing ownership of content

You can use AccessControl.Owner.changeOwnership:

changeOwnership(self, user, recursive=0)

User is PropertiedUser object.

Example:

Get the user handle from member data object
user = member.getUser()

Make the member owner of his home folder
home_folder.changeOwnership(user, recursive=False)
home_folder.reindexObjectSecurity()

Warning

This only changes the owner attribute, not the role assignments. You
need to change those too.

Example how to add ownership for additional user using local roles:

home_folder.manage_setLocalRoles(username, ["Owner",])
home_folder.reindexObjectSecurity()

Note

This does not update Dublin Core metadata fields like
creator.

Contributors

Contributors is an automatically managed list where persons, who have been editing in the past,
real names are listed. Contributors data is available as Python list of real names.

Note

Contributors does not store user references, because one might want to maintain
contributor data even after the user has been deleted.

Some sample code:

def format_contributors(contribs):
 """
 @return: String of comma separated list of all contributors
 """

 if len(contribs) == 0:
 return None

 return ", ".join(contribs)

 data = {
 "contributors" : format_contributors(obj.Contributors()),
 }

 Jim Smith, Jane Doe

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Timestamps

Description

How to read created and modified timestamps on
Plone content items programmatically

local

	Timestamps
	Introduction

	Last modification date
	Setting modification date explicitly

	Viewlet example

	Creation date

	IsExpired()

Introduction

Here are some useful timestamps you can extract from content objects
and examples how to use them.

Timestamps are part of metadata. For Archetypes, metadata is defined
in ExtensibleMetadata [https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/ExtensibleMetadata.py].

Zope 2 DateTime date objects are used.

Last modification date

Products.Archetypes.ExtensibleMetadata.modified() function will give the last
modification date as Zope DateTime object. This is part of Dublin Core metadata.

Example (Zope console debug mode):

>>> app.yoursite.yourpage.modified()
DateTime('2009/02/04 10:56:25.740 Universal')

Setting modification date explicitly

You might want to manual set modification date

	When you migrate content

	When you edit content subobjects and want to update the timestamp of parent object to reflect this changes

Example (Zope console debug mode, assume obj is Archetypes content item):

>>> obj.modified()
>>> DateTime('2009/10/05 16:18:32.813 GMT+2')

>>> import DateTime

>>> now = DateTime.DateTime()
>>> now
>>> DateTime('2010/01/20 12:58:38.033 GMT+2')

>>> obj.setModificationDate(now)
>>> obj.modified()
>>> DateTime('2010/01/20 12:58:38.033 GMT+2')

Viewlet example

Below is an example how to create a custom last modified viewlet.

Viewlet code:

from zope.component import getMultiAdapter
from plone.app.layout.viewlets.common import ViewletBase

class LastModifiedViewlet(ViewletBase):
 """ Viewlet to change the document last modification time.
 """

 def modified(self):
 """

 https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/ploneview.py

 @return: Last modified as a string, local time format
 """

 # Get Plone helper view
 # which we use to convert the date to local format
 plone = getMultiAdapter((self.context, self.request), name="plone")

 time = self.context.modified()

 return plone.toLocalizedTime(time)

Template (lastmodified.py):

<div id="last-modified">
 Last modified:
</div>

Viewlet registration:

<!-- Last modification date, register only for contentish context objects -->
<browser:viewlet
 name="yourapp.lastmodified"
 for="Products.CMFCore.interfaces.IContentish"
 manager="plone.app.layout.viewlets.interfaces.IBelowContent"
 template="viewlets/lastmodified.pt"
 class=".common.LastModifiedViewlet"
 permission="zope2.View"
 />

CSS:

#last-modified {
 text-align: right;
 font-size: 80%;
 color: #888;
}

Creation date

Products.Archetypes.ExtensibleMetadata.created() function will give the
creation date as Zope DateTime object. This is part of Dublin Core metadata.

Example (Zope console debug mode):

>>> app.yoursite.yourpage.created()
DateTime('2009/02/04 10:56:25.740 Universal')

IsExpired()

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/utils.py#L112

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Dynamic views

	Introduction
	Permission for changing the view template of an item

	Default dynamic views

	Creating a dynamic view
	Registering a dynamic view menu item

	Working around broken default view

	Checking that your view is available

	Getting active layout

	Changing default view programmatically

	Default page

	Disabling dynamic views

	Setting a view using marker interfaces

	Migration script from default view to another

	Method aliases

	Other resources

Description

How to programmatically change the active view of a Plone content item

Introduction

Dynamic views are views which the content editor can choose for his or her
content from the Display... drop-down menu in the green edit
frame.

By default, Plone comes with dynamic views for:

	Folder listing

	Summary

	Photo album

	etc.

The default view can be also a content item picked from the folder.
Available content item types can be managed from the ZMI at
portal_properties -> site_properties ->
default_page_types.

More info

	http://stackoverflow.com/questions/9432229/enabling-folder-as-one-of-default-content-item-views

Permission for changing the view template of an item

A user needs the Modify view template permission to use the
dynamic view dropdown.
If you want to restrict this ability,
grant or revoke this permission as appropriate.

This can be useful for some content-types like Dexterity ones, where
dynamic views are enabled by default, and the easiest way to disable
them is using this permission.

Default dynamic views

Plone supports a few dynamic views for folders out of the box:

	Summary view (folder_summary_view)

	Tabular view (folder_tabular_view)

	Album view (atct_album_view)

	Listing (folder_listing)

	Full view (folder_full_view)

These are defined in portal_types information
for the Folder content type and mapped to the Display menu all
over in ZCML using browser:menuItem as described below.

Newly created folders have this dynamic view applied:

	Products.CMFPlone/skins/plone_content/folder_summary_view.pt
(a non-view based old style Zope 2 page template)

More info

	Overriding views

Creating a dynamic view

Here are instructions how to create your own dynamic view.

There is also an example product
Listless view [https://github.com/miohtama/listlessview],
which provides "no content listing" view for Folder content types.

Registering a dynamic view menu item

In order to be able to register dynamic views,
your content type must support them.

To do this, the content type should subclass
Products.CMFDynamicViewFTI.browserdefault.BrowserDefaultMixin.

Then, you need to register a dynamic view menu item with the corresponding
view in your configure.zcml:

<browser:menuItem
 for="Products.ATContentTypes.interface.IATFolder"
 menu="plone_displayviews"
 title="Product listing"
 action="@@product_listing"
 description="List folder contents as product summary view"
 />

Note

Products.ATContentTypes uses a non-standard name for the
interfaces package.
There, it is interface, while all other packages use interfaces.

The view must be listed in portal_types for the content type.
In this case, we should enable it for Archetypes folders using the following
GenericSetup XML: profiles/default/types/Folder.xml.

Note that you don't need to copy the whole Folder.xml / Topic.xml
from Products/CMFPlone/profiles/default/types.
Including the changed view_methods in the XML code is enough.

You can also change this through portal_types in the ZMI.

Note

view_methods must not have the @@view signature in their method
name.

<?xml version="1.0"?>
<object name="Folder"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone"
 meta_type="Factory-based Type Information with dynamic views" >
 <property name="view_methods" purge="False">
 <!-- We retrofit these new views for Folders in portal_types info -->
 <element value="product_listing"/>
 </property>
</object>

Also, if you want Collections to have this listing, you need to
add the following profiles/default/types/Topic.xml.

<?xml version="1.0"?>
<object name="Topic"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone"
 meta_type="Factory-based Type Information with dynamic views" >
 <property name="view_methods">
 <element value="folder_listing"/>
 <element value="folder_summary_view"/>
 <element value="folder_tabular_view"/>
 <element value="atct_album_view"/>
 <element value="atct_topic_view"/>

 <!-- We retrofit these new views for Folders in portal_types info -->
 <element value="product_listing"/>

 </property>
</object>

Working around broken default view

If you manage to:

	Create a new view

	set it to the default as a folder

	and this view has a bug

... you cannot access the folder anymore, because you are taken to the
broken view stack trace instead instead of rendering the green edit menubar.

The fix is to reset the view by browsing to the select_default_view
directly.
Access your folder like this:

http://servername/plonesite/folder/select_default_view

Checking that your view is available

Products.CMFDynamicViewFTI.browserdefault.BrowserDefaultMixin.getAvailableLayouts()
returns the list of known layouts in the following format:

[('folder_summary_view', 'Summary view'),
('folder_tabular_view', 'Tabular view'),
('atct_album_view', 'Thumbnail view'),
('folder_listing', 'Standard view'),
('product_listing', u'Product listing')]

So to see if your view is available, check it against the ids from that
result:

layout_ids = [id for id, title in self.portal.folder.getAvailableLayouts()]
self.assertTrue("product_list" in layout_ids)

Getting active layout

>>> self.portal.folder.getLayout()
'atct_album_view'

Changing default view programmatically

self.portal.folder.setLayout("product_listing")

Default page

The default page is a content item chosen to be displayed when the visitor
arrives at a URL without any subpages or views selected.

This is useful if you are doing the folder listing manually and you want
to replace the default view.

The default_page helper view can be used to manipulate default pages.

Getting the default page:

Filter out default content
container = self.getListingContainer()
default_page_helper = getMultiAdapter(
 (container, self.request), name='default_page')

Return content object which is the default page or None if not set
default_page = default_page_helper.getDefaultPage(container)

Another example how to use this:

from Products.CMFCore.interfaces import IFolderish

def hasTabs(self):
 """Determine whether the page itself, or default page, in the case
 of folders, has setting showTabs set true.

 Show tab setting defined in dynamicpage.py.
 """

 page = self.context

 try:
 if IFolderish.providedBy(self.context):
 folder = self.context
 default_page_helper = getMultiAdapter(
 (folder, self.request), name='default_page')
 page_name = default_page_helper.getDefaultPage(folder)
 page = folder[page_name]
 except:
 pass

 tabs = getattr(page, "showTabs", False)

 return tabs

Todo

Bare except?

Setting the default page can be done as simply as setting a default_page
attribute on the folder to the id of the default page:

folder.default_page = "my_content_id"

More information can be found in

	https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/globals/context.py

	https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/navigation/defaultpage.py

Disabling dynamic views

Add to your content type class:

def canSetDefaultPage(self):
 """
 Override BrowserDefaultMixin because default page stuff doesn't make
 sense for topics.
 """
 return False

Setting a view using marker interfaces

If you need to have a view for few individual content items only, it
is best to do this using marker interfaces.

	Register a view against a marker interface

	Assign this marker interface to a content item using the Zope
Management Interface (ZMI)

For more info, see

	http://www.netsight.co.uk/blog/2010/5/21/setting-a-default-view-of-a-folder-in-plone

	marker interfaces

Migration script from default view to another

Below is a script snippet which allows you to change the default view
for all folders to another type. You can execute the script through
the ZMI as a Python Script.

Script code:

from StringIO import StringIO

orignal = 'fancy_zoom_view'
target = 'atct_album_view'
for brain in context.portal_catalog(portal_type="Folder"):
 obj = brain.getObject()
 if getattr(obj, "layout", None) == orignal:
 print "Updated:" + obj.absolute_url()
 obj.setLayout(target)
return printed

This will allow you to migrate from collective.fancyzoom to Plone
4's default album view or Products.PipBox.

Method aliases

Method aliases allow you to redirect basic actions (view, edit) to
content-type specific views. Aliases are configured in portal_types.

Other resources

	http://plone.org/documentation/how-to/how-to-create-and-set-a-custom-homepage-template-using-generic-setup

	CMFDynamicView plone.org product page [http://plone.org/products/cmfdynamicviewfti/]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Behaviors

Behaviors allow you the extend the functionality of existing content.

	Tutorial [http://plone.org/products/dexterity/documentation/manual/behaviors]

	Source code [https://github.com/plone/plone.behavior/blob/master/plone/behavior/]

	Good known component version set for plone.behavior [http://good-py.appspot.com/release/dexterity/1.0a1]

Examples

For Archetypes-based content:

	plone.app.headerimage [https://svn.plone.org/svn/collective/plone.app.headeranimation/trunk/plone/app/headeranimation/behaviors.py].

	gomobile.mobile [https://plonegomobile.googlecode.com/svn/trunk/gomobile/gomobile.mobile/gomobile/mobile/behaviors.py].

	gomobile.convergence [https://plonegomobile.googlecode.com/svn/trunk/gomobile/gomobile.convergence/gomobile/convergence/behaviors.py].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

History and versioning

	Introduction

	Enabling versioning on your custom content type (Plone 3 ONLY)

	Checking whether versioning is enabled

	Inspecting versioning policies

	How versioning (CMFEditions) works

	Getting the complete revision history for an object

	Purging history

Introduction

Plone versioning allows you to go back between older edits of the same content object.

Versioning allows you to restore and diff previous copies of the same content [http://plone.org/documentation/manual/plone-3-user-manual/managing-content/versioning-plone-v3.0-plone-v3.2].
More about CMFEditions here [http://plone.org/products/cmfeditions/documentation/refmanual/cmfeditionoverview].

See also

	Versioning tutorial for custom content types [http://www.uwosh.edu/ploneprojects/docs/how-tos/how-to-enable-versioning-history-tab-for-a-custom-content-type/].

Enabling versioning on your custom content type (Plone 3 ONLY)

Note

This information applies for Plone 3 only.

By default, version history is not enabled for custom content types.
Below are some notes how to enable it.

	Inherit HistoryAwareMixin in your content type class:

from Products.ATContentTypes.lib.historyaware import HistoryAwareMixin

..

class CustomContent(base.ATCTContent, HistoryAwareMixin):

	Add versioning migration code to your setuphandlers.py / custom import steps:

from Products.CMFCore.utils import getToolByName
from Products.CMFEditions.setuphandlers import VERSIONING_ACTIONS, ADD_POLICIES, DEFAULT_POLICIES

class DPSetup(object):

 def configureVersioning(self,portal):
 """
 Importing various settings
 Big thanks to amir toole from plone-users
 """

 for versioning_actions in ('MyositisPatient','MyositisVisit','MyositisOrdination','MyositisSeriousadverseevent','MyositisAdhoc','MyositisAdhoc1','MyositisAdhoc2','MyositisAdhoc3','MyositisAdhoc4'):
 VERSIONING_ACTIONS[versioning_actions] = 'version_document_view'
 portal_repository = getToolByName(portal, 'portal_repository')
 portal_repository.setAutoApplyMode(True)
 portal_repository.setVersionableContentTypes(VERSIONING_ACTIONS.keys())
 portal_repository._migrateVersionPolicies()
 portal_repository.manage_changePolicyDefs(ADD_POLICIES)
 for ctype in VERSIONING_ACTIONS:
 for policy_id in DEFAULT_POLICIES:
 portal_repository.addPolicyForContentType(ctype, policy_id)

 ...

 def importFinalSteps(context):
 """
 The last bit of code that runs as part of this setup profile.
 """
 site = context.getSite()
 configurator = DPSetup()
 configurator.configureVersioning(site)

	To see which fields differ between versions, diff tool must be configured to support your custom content types.
GenericSetup support is available after Plone 3.2. For older you must manually create entries in portal_diff_tool.
Example GenericSetup difftool.xml:

<?xml version="1.0"?>

<object>

 <difftypes>
 <type portal_type="Presentation">
 <!-- Field any will match all field names, otherwise you need to specify the field name in schema -->
 <field name="any" difftype="Compound Diff for AT types"/>
 </type>
 </difftypes>
</object>

	If you have customized the edit process of your content type,
make sure that your edit action traverses to update_version_before_edit.cpt. For hints how to do this,
see portal_form_controller actions tab. Example:

Script (Python) "diagnose_content_edit"
##title=Custom editing script for diagnose content type
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind state=state
##bind subpath=traverse_subpath
##parameters=id=''
##

context.plone_log("Diagnose edit by doctor")

#
TODO:
No freaking idea which of the update_version handlers is supposed to be run and when
#

Run versioning support code
context.update_version_before_edit()

state = context.content_edit_impl(state, id)

Run versioning support code
context.update_version_on_edit()

context.plone_log("Done")

Automatically trigger the workflow state change on edit
context.portal_workflow.doActionFor(context, "push_to_review")

return state

	If you are using custom roles you need to have at least CMFEditions: Save new version
permission enabled for the roles or you'll get exception:

...

* Module Products.PythonScripts.PythonScript, line 327, in _exec
* Module None, line 36, in update_version_before_edit
 <ControllerPythonScript at /xxx/update_version_before_edit used for /xxx/yyy>
 Line 36
* Module Products.CMFEditions.CopyModifyMergeRepositoryTool, line 287, in save
* Module Products.CMFEditions.CopyModifyMergeRepositoryTool, line 408, in _assertAuthorized

Unauthorized: You are not allowed to access 'save' in this context

	If your content type contains blob fields you want to version, you will need to edit
portal_modifier/CloneBlobs entry and add your portal type to the condition field.

For more information

	http://plone.org/documentation/manual/developer-manual/archetypes/appendix-practicals/enabling-versioning-on-your-custom-content-types

Checking whether versioning is enabled

The following check is performed by update_versioning_before_edit and update_versioning_on_edit scripts:

pr = context.portal_repository

isVersionable = pr.isVersionable(context)

if pr.supportsPolicy(context, 'at_edit_autoversion') and isVersionable:
 # Versioning should work
 pass
else:
 # Something is wrong....
 pass

Inspecting versioning policies

Example:

portal_repository = context.portal_repository
map = portal_repository.getPolicyMap()
for i in map.items(): print i

Will output (inc. some custom content types):

('File Disease Description', ['at_edit_autoversion', 'version_on_revert'])
('Document', ['at_edit_autoversion', 'version_on_revert'])
('Free Text Disease Description', ['at_edit_autoversion', 'version_on_revert'])
('ATDocument', ['at_edit_autoversion', 'version_on_revert'])
('Diagnose Description', ['at_edit_autoversion', 'version_on_revert'])
('ATNewsItem', ['at_edit_autoversion', 'version_on_revert'])
('Link', ['at_edit_autoversion', 'version_on_revert'])
('News Item', ['at_edit_autoversion', 'version_on_revert'])
('Event', ['at_edit_autoversion', 'version_on_revert'])

How versioning (CMFEditions) works

	http://svn.zope.de/plone.org/collective/Products.CMFEditions/trunk/doc/DevelDoc.html

Note

You might actually want to check out the package to get your web browser to
properly read the file.

Getting the complete revision history for an object

You may find yourself needing to (programmatically) get some/all of a content
object's revision history. The content history view can be utilised to do this;
this view is the same one that is visible through Plone's web interface at
@@contenthistory (or indirectly on @@historyview). This code works
with Plone 4.1 and has been utilised for exporting raw content modification
information:

from plone.app.layout.viewlets.content import ContentHistoryView
context = portal['front-page']
print ContentHistoryView(context, context.REQUEST).fullHistory()

If you want to run this from somewhere without a REQUEST available, such
as the Plone/Zope debug console, then you'll need to fake a request and access
level accordingly. Note the subtle change to using ContentHistoryViewlet
rather than ContentHistoryView - we need to avoid initialising an entire
view because this involves component lookups (and thus, pain). We also need to
fake our security as well to avoid anything being left out from the history.

from plone.app.layout.viewlets.content import ContentHistoryViewlet
from zope.publisher.browser import TestRequest
from AccessControl.SecurityManagement import newSecurityManager

admin = app.acl_users.getUser('webmaster')
request = TestRequest()
newSecurityManager(request,admin)

portal = app.ands
context = portal['front-page']
chv = ContentHistoryViewlet(context, request, None, None)
#These attributes are needed, the fullHistory() call fails otherwise
chv.navigation_root_url = chv.site_url = 'http://www.foo.com'
print chv.fullHistory()

The end result should look something like this, which has plenty of tasty
morsels to pull apart and use:

[{'action': u'Edited',
 'actor': {'description': '',
 'fullname': 'admin',
 'has_email': False,
 'home_page': '',
 'language': '',
 'location': '',
 'username': 'admin'},
 'actor_home': 'http://www.foo.com/author/admin',
 'actorid': 'admin',
 'comments': u'Initial revision',
 'diff_current_url': 'http://foo/Plone5/front-page/@@history?one=current&two=0',
 'preview_url': 'http://foo/Plone5/front-page/versions_history_form?version_id=0#version_preview',
 'revert_url': 'http://foo/Plone5/front-page/revertversion',
 'time': 1321397285.980262,
 'transition_title': u'Edited',
 'type': 'versioning',
 'version_id': 0},
 {'action': 'publish',
 'actor': {'description': '',
 'fullname': '',
 'has_email': False,
 'home_page': '',
 'language': '',
 'location': '',
 'username': 'admin'},
 'actor_home': 'http://www.foo.com/author/admin',
 'actorid': 'admin',
 'comments': '',
 'review_state': 'published',
 'state_title': 'Published',
 'time': DateTime('2011/11/15 09:49:8.023381 GMT+10'),
 'transition_title': 'Publish',
 'type': 'workflow'},
 {'action': None,
 'actor': {'description': '',
 'fullname': '',
 'has_email': False,
 'home_page': '',
 'language': '',
 'location': '',
 'username': 'admin'},
 'actor_home': 'http://www.foo.com/author/admin',
 'actorid': 'admin',
 'comments': '',
 'review_state': 'private',
 'state_title': 'Private',
 'time': DateTime('2011/11/15 09:49:8.005597 GMT+10'),
 'transition_title': u'Create',
 'type': 'workflow'}]

For instance, you can determine who the last person to modify this Plone
content was by looking at the first list element (and get all their details
from the actor information). Refer to the source of
plone.app.layout.viewlets.content for more information about
ContentHistoryView, ContentHistoryViewlet and
WorkflowHistoryViewlet. Using these other class definitions, you can see
that you can get just the workflow history using .workflowHistory() or just
the revision history using .revisionHistory().

Purging history

	http://stackoverflow.com/questions/9683466/purging-all-old-cmfeditions-versions

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Importing and exporting content

Description

Importing and exporting content between Plone sites and other CMS systems

	Introduction

	Zope 2 import / export

	collective.transmogrifier
	transmogrify.dexterity: CSV import

	transmogrify.dexterity: JSON import/export

	quintagroup.transmogrifier: Exporting single folder only
	Source site

	Target site

	More information

	Fast content import

	collective.jsonmigrator

	Simple JSON export

Introduction

Goal: you want to import and export content between Plone sites.

	If both sites have identical version and add-on product configuration you can use Zope Management Interface export/import

	If they don't (e.g. have different Plone version on source and target site),
you need to use add-on products to export and import the content to a common
format, e.g. JSON files.

Zope 2 import / export

Zope 2 can import/export parts of the site in .zexp format which is basically a Python pickle
data of the exported objects. Data is raw dump of Python internal data structures which means
that the source and the target Plone versions must be compatible regarding the data e.g.
no export from Plone 3 to Plone 4.

To export a folder from a site to another do

	Go to Zope Management Interface root

	Checkbox a folder

	Press Import / Export

	Export as .zexp

	Zope 2 will tell you the path where .zexp was created on the server

	Zope .zexp to youranothersite/var/instance folder

	Go to ZMI root of your another site

	Press Import / Export

	In Import from file you should see now your .zexp file

	Import it

	Go to portal_catalog -> Advanced tab. Clear and Rebuild the catalog (raw Zope pickle does not know about anything living inside the catalog)

collective.transmogrifier

On it's own collective.transmogrifier [https://pypi.python.org/pypi/collective.transmogrifier] isn't an import tool,
rather a generic framework for creating pipelines to process data.
Pipeline configs are .ini-style files that join together blueprints to quickly create a tool for processing data.

The following add-ons make it useful in a Plone context:

	plone.app.transmogrifier [https://pypi.python.org/pypi/plone.app.transmogrifier] provides integration with GenericSetup,
so you can run pipelines as part of import steps,
and some useful blueprints.

	quintagroup.transmogrifier [http://projects.quintagroup.com/products/wiki/quintagroup.transmogrifier] also provides it's own Plone integration,
and some useful blueprints.
See the site for some example configs for migration.

	transmogrify.dexterity [https://github.com/collective/transmogrify.dexterity] provides some blueprints relevant to Dexterity types,
and has some default pipelines for you to use.

transmogrify.dexterity: CSV import

transmogrify.dexterity will register the pipeline transmogrify.dexterity.csvimport,
which can be used to import from CSV to dexterity objects.

For more information on using, see the package documentation [https://github.com/collective/transmogrify.dexterity].

transmogrify.dexterity: JSON import/export

transmogrify.dexterity also contains some quintagroup.transmogrifier pipeline configs.
To use these, first install both quintagroup.transmogrifier and transmogrify.dexterity,
then add the following to your ZCML:

<include package="transmogrify.dexterity.pipelines" file="files.zcml" />

Then the "Content (transmogrifier)" generic setup import / export will import / export site content to JSON files.

For more information on using, see this transmogrify blog post [http://shuttlethread.com/blog/development-with-transmogrify.dexterity].

quintagroup.transmogrifier: Exporting single folder only

Here is explained how to export and import Plone CMS [http://plone.org]
folders between different Plonen versions, or
different CMS systems, using XML based content marshalling and
quintagroup.transmogrifier [http://projects.quintagroup.com/products/wiki/quintagroup.transmogrifier].

This overcomes some problems with Zope management based export/import which uses Python pickles [http://docs.python.org/library/pickle.html] and thus needs identical codebase on the source
and target site. Exporting and importing between Plone 3 and Plone 4 is possible.

You can limit export to cover source content to with arbitrary portal_catalog conditions.
If you limit source content by path you can effectively export single folder only.

The recipe described here assumes the exported and imported site have the same path for the folder.
Manually rename or move the folder on source or target to change its location.

Note

The instructions here requires quintagroup.transmogrify version 0.4 or later.

Source site

Execute these actions on the source Plone site.

Install quintagroup.transmogrifier via buildout and Plone add-on control panel.

Go to Site setup > Content migration.

Edit export settings. Remove unnecessary pipeline entries by looking the example below. Add a new catalogsource blueprint.
The exclude-contained option makes sure we do not export unnecessary items from the parent folders:

[transmogrifier]
pipeline =
 catalogsource
 fileexporter
 marshaller
 datacorrector
 writer
 EXPORTING

[catalogsource]
blueprint = quintagroup.transmogrifier.catalogsource
path = query= /isleofback/ohjeet
exclude-contained = true

Also we need to include some field-level excluding bits for the folders, because the target site does not necessary
have the same content types available as the source site and this may prevent
setting up folderish content settings:

[marshaller]
blueprint = quintagroup.transmogrifier.marshaller
exclude =
 immediatelyAddableTypes
 locallyAllowedTypes

You might want to remove other, unneeded blueprints from the export pipeline.
For example, portletexporter may cause problems if the source and target site
do not have the same portlet code.

Go to Zope Management Interface > portal_setup > Export tab. Check Content (transmogrifier) step.
Press Export Selected Steps at the bottom of the page. Now a .tar.gz file will be downloaded.

During the export process instance.log file is updated with status info. You might want to follow
it in real-time from UNIX command line

tail -f var/log/instance.log

In log you should see entries running like:

2010-12-27 12:05:30 INFO EXPORTING _path=sisalto/ohjeet/yritys/yritysten-tuotetiedot/tuotekortti
2010-12-27 12:05:30 INFO EXPORTING
Pipeline processing time: 00:00:02
 94 items were generated in source sections
 94 went through full pipeline
 0 were discarded in some section

Target site

Execute these actions on the target Plone site.

Install quintagroup.transmogrifier via buildout and Plone add-on control panel.

Open target site instance.log file for monitoring the import process

tail -f var/log/instance.log

Go to Zope Management Interface > portal_setup > Import tab.

Choose downloaded setup_toolxxx.tar.gz file at the bottom of the page,
for Import uploaded tarball input.

Run import and monitoring log file for possible errors. Note that the import
completes even if the target site would not able to process incoming content.
If there is a serious problem the import seems to complete successfully,
but no content is created.

Note

Currently export/import is not perfect. For example, ZMI content type icons are currently
lost in the process. It is recommended to do a test run on a staging server
before doing this process on a production server.
Also, the item order in the folder is being lost.

More information

	How to perform portal_catalog queries

	http://webteam.medsci.ox.ac.uk/integrators-developers/transmogrifier-i-want-to-.../

	https://svn.plone.org/svn/collective/quintagroup.transmogrifier/trunk/quintagroup/transmogrifier/catalogsource.py

Fast content import

For specific use-cases, you can create 'brains' first and import later
* See this blog post [http://blog.redturtle.it/redturtle-blog/fast-content-import]

collective.jsonmigrator

Convert Plone content to JSON and move it between sites.

See

	https://github.com/collective/collective.jsonmigrator

	https://github.com/collective/collective.jsonify

	http://stackoverflow.com/questions/13721016/exporting-plone-archetypes-data-in-json

Simple JSON export

Below is a simple helper script / BrowserView for a JSON export of Plone folder content.
Works Plone 3.3+. It handles also binary data and nested folders.

export.py:

"""

 Export folder contents as JSON.

 Can be run as a browser view or command line script.

"""

import os
import base64

try:
 import json
except ImportError:
 # Python 2.54 / Plone 3.3 use simplejson
 # version 2.3.3
 import simplejson as json

from Products.Five.browser import BrowserView
from Products.CMFCore.interfaces import IFolderish
from DateTime import DateTime

#: Private attributes we add to the export list
EXPORT_ATTRIBUTES = ["portal_type", "id"]

#: Do we dump out binary data... default we do, but can be controlled with env var
EXPORT_BINARY = os.getenv("EXPORT_BINARY", None)
if EXPORT_BINARY:
 EXPORT_BINARY = EXPORT_BINARY == "true"
else:
 EXPORT_BINARY = True

class ExportFolderAsJSON(BrowserView):
 """
 Exports the current context folder Archetypes as JSON.

 Returns downloadable JSON from the data.
 """

 def convert(self, value):
 """
 Convert value to more JSON friendly format.
 """
 if isinstance(value, DateTime):
 # Zope DateTime
 # https://pypi.python.org/pypi/DateTime/3.0.2
 return value.ISO8601()
 elif hasattr(value, "isBinary") and value.isBinary():

 if not EXPORT_BINARY:
 return None

 # Archetypes FileField and ImageField payloads
 # are binary as OFS.Image.File object
 data = getattr(value.data, "data", None)
 if not data:
 return None
 return base64.b64encode(data)
 else:
 # Passthrough
 return value

 def grabArchetypesData(self, obj):
 """
 Export Archetypes schemad data as dictionary object.

 Binary fields are encoded as BASE64.
 """
 data = {}
 for field in obj.Schema().fields():
 name = field.getName()
 value = field.getRaw(obj)
 print "%s" % (value.__class__)

 data[name] = self.convert(value)
 return data

 def grabAttributes(self, obj):
 data = {}
 for key in EXPORT_ATTRIBUTES:
 data[key] = self.convert(getattr(obj, key, None))
 return data

 def export(self, folder, recursive=False):
 """
 Export content items.

 Possible to do recursively nesting into the children.

 :return: list of dictionaries
 """

 array = []
 for obj in folder.listFolderContents():
 data = self.grabArchetypesData(obj)
 data.update(self.grabAttributes(obj))

 if recursive:
 if IFolderish.providedBy(obj):
 data["children"] = self.export(obj, True)

 array.append(data)

 return array

 def __call__(self):
 """
 """
 folder = self.context.aq_inner
 data = self.export(folder)
 pretty = json.dumps(data, sort_keys=True, indent=' ')
 self.request.response.setHeader("Content-type", "application/json")
 return pretty

def spoof_request(app):
 """
 http://docs.plone.org/develop/plone/misc/commandline.html
 """
 from AccessControl.SecurityManagement import newSecurityManager
 from AccessControl.SecurityManager import setSecurityPolicy
 from Products.CMFCore.tests.base.security import PermissiveSecurityPolicy, OmnipotentUser
 _policy = PermissiveSecurityPolicy()
 setSecurityPolicy(_policy)
 newSecurityManager(None, OmnipotentUser().__of__(app.acl_users))
 return app

def run_export_as_script(path):
 """ Command line helper function.

 Using from the command line::

 bin/instance script export.py yoursiteid/path/to/folder

 If you have a lot of binary data (images) you probably want

 bin/instance script export.py yoursiteid/path/to/folder > yourdata.json

 ... to prevent your terminal being flooded with base64.

 Or just pure data, no binary::

 EXPORT_BINARY=false bin/instance run export.py yoursiteid/path/to/folder

 :param path: Full ZODB path to the folder
 """
 global app

 secure_aware_app = spoof_request(app)
 folder = secure_aware_app.unrestrictedTraverse(path)
 view = ExportFolderAsJSON(folder, None)
 data = view.export(folder, recursive=True)
 # Pretty pony is prettttyyyyy
 pretty = json.dumps(data, sort_keys=True, indent=' ')
 print pretty

Detect if run as a bin/instance run script
if "app" in globals():
 run_export_as_script(sys.argv[1])

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Eventish content types

Description

Creating and programming event and eventish content types in Plone

	Introduction
	Further reading

	portal_calendar
	Adding a new event type to the calendar

	Getting eventish content types

	Getting calendar publishing states

	iCal export

	Purging old events

	Recurrence calendar support in Plone 3
	Making recurrent event appear in the calendar portlet

	Beta code notice

	Further reading

Introduction

Plone supports events as content. Events have a start time, end time
and other fields. They can be exported to standard vCal (compatible with
Outlook) and iCal (compatible with OSX) formats. A default calendar
shows published events in a calendar view.

Note

Recurring events (events repeating with an interval)
are not supported out-of-the-box on Plone 4.0 or older.

Further reading

	vs.event [http://plone.org/products/vs.event]

	recurring events for Plone 3 and 4.0

	plone.app.event [http://www.zopyx.com/blog/plone.app.event]

	recurring events for Plone 4.1+

	Dateable [http://plone.org/products/dateable]

	Plone code to bring all the different calendar extensions together

	http://www.inigo-tech.com/blog/customizing-p4a.calendar-and-the-power-of-collections-and-views

	http://regebro.wordpress.com/2009/01/28/ui-help-needed-recurring-events-form-usability/

portal_calendar

The portal_calendar service is provided by Products.CMFCalendar.
It provides facilities to query the event calendar conveniently.

The most useful portal_calendar call is
portal_calendar.getEventsForCalendar(month, year, path=navigation_root_path)
to get the event listing of a certain month.

Adding a new event type to the calendar

Use-case: you've created a content type and want it to be shown in
the calendar portlet.

First add a custom import step. In profiles/default/import_steps.xml

<?xml version="1.0"?>
<import-steps>
 <import-step
 id="compass-types-various"
 version="20090725-02"
 handler="compass.types.setuphandlers.importVarious"
 title="Additional Compass Types Setup">
 </import-step>
</import-steps>

Then in this custom step call the portal_calendar service.
Note that you might want to preserve the existing event types.
Plone's default event type is called Event.

setuphandlers.py:

from Products.CMFCore.utils import getToolByName

def addCalendarTypes(portal):
 portal_calendar = getToolByName(portal, 'portal_calendar')
 # 'Event' was already here, we're just adding the
 # 'DD Training Class' content-type.
 portal_calendar.calendar_types = ('Event', 'DD Training Class')

def importVarious(context):
 """Miscellaneous steps import handle
 """
 if context.readDataFile('compass.types_various.txt') is None:
 return
 portal = context.getSite()

 addCalendarTypes(portal)

Credits: ecarloshanson, optilude.

Getting eventish content types

portal_calendar maintains the list of eventish content types
appearing in Plone calendar services.

Example:

Get tuple of portal_type names for eventish content types
supported_event_types = portal_calendar.getCalendarTypes()

Getting calendar publishing states

Workflow states in which events appear in the calendar:

portal_calendar.getCalendarStates()

iCal export

Plone 3+ provides ics_view which applies to:

	Single Event content items

	Folders

The view creates an iCal export of the content.
A single exported iCal file (mimetype: text/calendar) can contain
several events.
When applied to a folder, the view exports all items that provide the
Products.ATContentTypes.interfaces.ICalendarSupport interface.

More info:

	http://stackoverflow.com/q/11862095/315168

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/browser/calendar.py#L25

Purging old events

After the event end day the event stays visible in Plone listings.

You need to have a special janiator script / job if you want to get old events
deleted from your site after they have been passed.

Below is a ZMI script which will delete events which are more than 30 days past their ending date:

from StringIO import StringIO
import DateTime

buf = StringIO()

DateTime deltas are days as floating points
Select events which have the event ending date more than one month in past
end = DateTime.DateTime() - 30*1
start = DateTime.DateTime(2000, 1,1)

date_range_query = { 'query':(start,end), 'range': 'min:max'}

items = context.portal_catalog.queryCatalog({
 "Language": "all", # Bypass LinguaPlone language check
 "portal_type":["CompanyEvent", "VSEvent"],
 "end" : date_range_query,
 "sort_on" : "created" })

items = list(items)

print >> buf, "Found %d items to be purged" % len(items)

count = 0
for b in items:
 count += 1
 obj = b.getObject()
 print >> buf, "Deleting:" + obj.absolute_url() + " " + str(obj.created())
 obj.aq_parent.manage_delObjects([obj.getId()])

return buf.getvalue()

Recurrence calendar support in Plone 3

vs.event has an index recurrence_days
which stores the dates when the recurrent event
appears five years ahead of the time when the event is saved.

Below is the glue code which is needed to support
the recurrent event in the Plone 3 calendar portlet.
It combines vs.event, plone.app.portlets and Products.CMFCalendar
bits to pull the necessary stuff together (a task which was not
trivial).

Making recurrent event appear in the calendar portlet

Below is a calendar portlet Renderer code
which can be used to make recurrent events appear in the
standard Plone calendar portlet:

"""

 Override the default Plone 3 calendar portlet to support
 rendering of recurring events.

"""

import datetime

from Acquisition import aq_inner
from DateTime import DateTime

from zope.i18nmessageid import MessageFactory
from zope.interface import implements
from zope.component import getMultiAdapter

from plone.app.portlets.portlets import calendar as base

Package with various calendar support code
- not very well documented
import dateable.kalends

def convert_to_indexed_format(year, month, daynumber):
 """ Convert datetime to vs.event recurrence_days index format.

 recurrence_days holds the date as compressed int format
 for efficiency reasons.

 See vs.event.context.recurrence for more information.

 @return: Indexed recurrenct_day format of given date or None if not supported
 """

 # This is an empty cell in the calendar and does not represent any meaningful day
 if daynumber == 0:
 return None

 cur_date = datetime.date(year, month, daynumber)

 return cur_date.toordinal()

def create_event_structure(portal_calendar, results, year, month):
 """ Create calendar dict/list struct for event presentation.

 This code is mostly ripped from Products.CMFCalendar.calendar.CalendarTool catalog_getevents()

 @param results: Iterable of eventish brain objects

 @return: Dict day number -> event data
 """

 last_day = portal_calendar._getCalendar().monthrange(year, month)[1]
 first_date = portal_calendar.getBeginAndEndTimes(1, month, year)[0]
 last_date = portal_calendar.getBeginAndEndTimes(last_day, month, year)[1]

 # compile a list of the days that have events
 eventDays={}
 for daynumber in range(1, 32): # 1 to 31
 eventDays[daynumber] = {'eventslist': [],
 'event': 0,
 'day': daynumber}
 includedevents = []
 for result in results:
 if result.getRID() in includedevents:
 break
 else:
 includedevents.append(result.getRID())
 event={}
 # we need to deal with events that end next month
 if result.end.month() != month:
 # doesn't work for events that last ~12 months
 # fix it if it's a problem, otherwise ignore
 eventEndDay = last_day
 event['end'] = None
 else:
 eventEndDay = result.end.day()
 event['end'] = result.end.Time()
 # and events that started last month
 if result.start.month() != month: # same as above (12 month thing)
 eventStartDay = 1
 event['start'] = None
 else:
 eventStartDay = result.start.day()
 event['start'] = result.start.Time()

 event['title'] = result.Title or result.getId

 if eventStartDay != eventEndDay:
 allEventDays = range(eventStartDay, eventEndDay+1)
 eventDays[eventStartDay]['eventslist'].append(
 {'end': None,
 'start': result.start.Time(),
 'title': event['title']})
 eventDays[eventStartDay]['event'] = 1

 for eventday in allEventDays[1:-1]:
 eventDays[eventday]['eventslist'].append(
 {'end': None,
 'start': None,
 'title': event['title']})
 eventDays[eventday]['event'] = 1

 if result.end == result.end.earliestTime():
 last_day_data = eventDays[allEventDays[-2]]
 last_days_event = last_day_data['eventslist'][-1]
 last_days_event['end'] = (result.end-1).latestTime().Time()
 else:
 eventDays[eventEndDay]['eventslist'].append(
 { 'end': result.end.Time()
 , 'start': None, 'title': event['title']})
 eventDays[eventEndDay]['event'] = 1
 else:
 eventDays[eventStartDay]['eventslist'].append(event)
 eventDays[eventStartDay]['event'] = 1

 # This list is not uniqued and isn't sorted
 # uniquing and sorting only wastes time
 # and in this example we don't need to because
 # later we are going to do an 'if 2 in eventDays'
 # so the order is not important.
 # example: [23, 28, 29, 30, 31, 23]
 return eventDays

class RecurrentEventCalendarPortletRenderer(base.Renderer):
 """ Support recurring events """

 def retroFitRecurrentEvents(self, year, month, weeks):
 """
 List recurrencing events in the calendar

 1. Get a list of supported event types
 2. Build a list of queried recurrence_days
 3. Query all recurrent events occurring in the given month
 4. Retrofit calendar data with these recurrent events.

 @param weeks: Array of displayable calendar weeks.
 """

 context = aq_inner(self.context)
 request = self.request

 portal_calendar = self.context.portal_calendar

 # Get tuple of portal_type names for eventish content types
 supported_event_types = portal_calendar.getCalendarTypes()

 # Build a list of queried dates in recurrence_days format
 recurrence_days_in_this_month = []
 for week in weeks:
 for day in week:
 # This is an empty cell in the calendar
 # and does not present a meaningful date
 daynumber = day['day']
 date = convert_to_indexed_format(year, month, daynumber)
 if date:
 recurrence_days_in_this_month.append(date)

 # print "recurrence_days:" + str(recurrence_days_in_this_month)

 # Query all events on the site
 # Note that there is no separate list for recurrent events
 # so if you want to speed up you can hardcode
 # recurrent event type list here.
 matched_recurrence_events = self.context.portal_catalog(
 portal_type=supported_event_types,
 recurrence_days={
 "query":recurrence_days_in_this_month,
 "operator" : "or"
 })

 # print "Matched events:" + str(len(list(matched_recurrence_events)))

 portal_catalog = self.context.portal_catalog

 for week in weeks:
 for day in week:
 daynumber = day['day']

 # This day is a filler slot and not a real date in a calendar
 if daynumber == 0:
 continue

 cur_date = convert_to_indexed_format(year, month, daynumber)

 for event in matched_recurrence_events:
 # The event hit this date
 # Get event brain result id
 rid = event.getRID()
 # Get list of recurrence_days indexed value.
 # ZCatalog holds internal Catalog object which we can directly poke in evil way
 # This call goes to Products.PluginIndexes.UnIndex.Unindex class and we
 # read the persistent value from there what it has stored in our index
 # recurrence_days
 indexed_days = portal_catalog._catalog.getIndex("recurrence_days").getEntryForObject(rid, default=[])

 if cur_date in indexed_days:
 # Construct event info
 # See CalendarTool.catalog_getevents()

 day["event"] = True # This day has events

 data = {}
 # Shortcut the event to be one day event (though this might not be a case)
 data["start"] = None
 data["end"] = None
 data["title"] = event["Title"]

 day["eventslist"].append(data)

 def getEventsForCalendar(self):
 """
 This has been overridden to call recurrent event fetcher.

 The code is basically copy-paste from the base class.
 """
 context = aq_inner(self.context)
 year = self.year
 month = self.month
 portal_state = getMultiAdapter((self.context, self.request), name=u'plone_portal_state')
 navigation_root_path = portal_state.navigation_root_path()
 weeks = self.calendar.getEventsForCalendar(month, year, path=navigation_root_path)

 # Patched recurrent events go in here
 self.retroFitRecurrentEvents(year, month, weeks)

 for week in weeks:
 for day in week:
 daynumber = day['day']

 if daynumber == 0:
 continue

 day['is_today'] = self.isToday(daynumber)
 if day['event']:
 cur_date = DateTime(year, month, daynumber)
 localized_date = [self._ts.ulocalized_time(cur_date, context=context, request=self.request)]
 day['eventstring'] = '\n'.join(localized_date+[' %s' % self.getEventString(e) for e in day['eventslist']])
 day['date_string'] = '%s-%s-%s' % (year, month, daynumber)

 return weeks

Beta code notice

Make sure that the recurrence_days index from vs.event is working -
if it isn't, check
Custom indexing example
how to create your own recurrency indexer.
After you save your vs.event content item,
you should see data in the recurrence_days index through
portal_catalog browsing interface.

Further reading

	http://plone.293351.n2.nabble.com/what-s-dateable-chronos-how-to-render-recurrence-events-in-a-calendar-portlet-tp5282788p5287261.html

	vs.event has KeywordIndex recurrence_days which contains a
* value
created by
vs.event.content.recurrence.VSRecurrenceSupport.getOccurrenceDays().
This value is a list of dates 5 years ahead when the event occurs.

	Plone 3 provides a view called calendar_view (configured in
* Products.CMFPlone/deprecated.zcml)
but this view is not used - do not it let fool you.

Required ZCML for the indexing:

<adapter factory=".indexing.recurrence_days"/>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Content rules

	User manual [http://plone.org/documentation/tutorial/creating-content-rule-conditions-and-actions/]

	Developer manual [http://plone.org/documentation/how-to/content-rules]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Archetypes

Archetypes is a subsystem to create content types in Plone 2.x, 3.x and 4.x.
Dexterity is replacing it, and is available in 4.1+, becoming the default content type system in Plone 5.
Archetypes will remain available through the Plone 5 series.

	Fields and widgets
	Introduction

	Getting hold of schema objects

	Schema introspection

	Field name

	Accessing Archetypes field value

	Validating objects

	Checking permissions

	Modifying all fields in schema

	Reordering fields

	Hiding widgets

	Rendering widget

	Creating your own Field

	Automatically generating description based on body text

	Vocabularies

	Rendering single field

	Hiding widgets conditionally

	Dynamic field definitions

	Field storages
	AttributeStorage

	AnnotationStorage

	SQLStorage

	FSSStorage

	Archetypes ReferenceFields
	Introduction

	Customizing editing interface
	Remove metadata tabs

	DataGridField
	Basics

	CheckboxColumn

	Other resources

	Validators
	Introduction

	List of default validators

	Creating a validator

	Files
	Download URL for files for ATFile content

	Checking whether a File field has uploaded content

	Setting max file size to FileField and ImageField

	Converting one Content Type into another
	Converting Pages into News Items

	Converting Images into News Items

	Templates
	Introduction

	The template loading mechanism

	References
	Introduction

	Using references

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Fields and widgets

Description

How to read, add, remove and create fields and widgets available for Archetypes content types.

	Introduction

	Getting hold of schema objects
	During application start-up

	During HTTP request processing

	Schema introspection
	Out of box schema source code

	Run-time introspection

	Field name

	Accessing Archetypes field value
	Accessor method

	Raw access

	Indirect access

	Validating objects

	Checking permissions

	Modifying all fields in schema

	Reordering fields

	Hiding widgets

	Rendering widget

	Creating your own Field

	Automatically generating description based on body text

	Vocabularies
	Dynamic vocabularies

	Rendering single field

	Hiding widgets conditionally

	Dynamic field definitions

Introduction

This document contains instructions how to manipulate Archetypes schema
(data model for content items) and fields and widgets it consists of.

Schema is list of fields associated with a content type.
Each field can belong to one schemata which corresponds to one Edit tab
sub-tab in Plone user interface.

Field schemata is chosen by setting field's schemata attribute.

Getting hold of schema objects

Archetypes based data model is defined as Schema object, which is a list of fields.

During application start-up

When your class is being constructed you can refer the schema simply in Python:

Assume you have YourContentSchema object
print YourContentSchema.fields()

class SitsCountry(ATBTreeFolder):
 schema =YourContentSchema

print SitsCountry.schema.fields()

During HTTP request processing

You can access context schema object by using Schema() accessor.

Note

Run-time schema patching is possible, so Schema() output might
differ what you put in to your content type during the construction.

Example:

schema = context.Schema()
print schema.fields()

Schema introspection

How to know what fields are available on content items.

Out of box schema source code

The default Plone schemas are defined

Id and title fields:

	https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/BaseObject.py

Category and owners schemata: Dublin core metadata

	https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/ExtensibleMetadata.py

Settings schemata: Exclude from navigation, related items and next/previous navigation

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/schemata.py

Document content

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/document.py

Image content

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/image.py

News content

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/newsitem.py

Run-time introspection

You can get hold of content item schema and its fields as in the example below.

You can do this either in

	Your own BrowserView Python code

	pdb breakpoint

	Command line Zope debug console

Example:

for field in context.Schema().fields():
 print "Field:" + str(field) + " value:" + str(field.get(context))

Field can be also accessed by name:

field = context.Schema()["yourfieldname"]

See

	https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/Schema/__init__.py

Field name

Field exposes its name through getName() attribute:

field = context.Schema()["yourfieldname"]
assert field.getName() == "yourfieldname"

Accessing Archetypes field value

Accessor method

Each field has accessor method. Accessor method is

	In your content type class

	Automatically generated if you don't give it manually

	Has name get + schema field name with first letter uppercase. E.g.
yourfield has accessor method context.getYourfield()
There are a few exceptions to this rule, for fields that correspond
to Dublin Core metadata. To conform to the Dublin Core specification,
the accessor method for the title field is Title() and
Description() for the description field.

Raw access

Archetypes has two kinds of access methods:

	normal, getSomething(), which filters output;

	raw, the so-called edit accessor, getRawSomething() which does not
filter output.

If you use direct attribute access, i.e. obj.something you can get a BaseUnit [https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/BaseUnit.py] object.
BaseUnit is an encapsulation of raw data for long text or file.
It contains information about mimetype, filename, encoding.
To get the raw value of a BaseUnit object you can use the getRaw
method, or more simply str(baseunit) (but take care that you don't
mess up the encoding).

Indirect access

You can use field.get(context) to read values of fields indirectly, without knowing the accessor method.

This example shows how to read and duplicate all values of lc object to nc:

from Products.Archetypes import public as atapi

nc = createObjectSomehow()

List of field names which we cannot copy
do_not_copy = ["id"]

Duplicate field data from one object to another
for field in lc.Schema().fields():
 name = field.getName()

 # ComputedFields are handled specially,
 # and UID also
 if not isinstance(field, atapi.ComputedField) and name not in do_not_copy:
 value = field.getRaw(lc)
 newfield = nc.Schema()[name]
 newfield.set(nc, value)

Mark creation flag to be set
nc.processForm()

Validating objects

Example for nc AT object:

errors = {}
nc.Schema().validate(nc, None, errors, True, True)
if errors:
 assert not errors, "Got errors:" + str(errors)

Checking permissions

field.writable() provides a short-cut whether the currently
logged in user can change the field value.

Example:

field = context.Schema()["phone_number"]
assert field.writable(), "Cannot set phone number"

There is also a verbose debugging version which will print the reason
to log if the writable condition is not effective:

field = context.Schema()["phone_number"]
assert field.writable(debug=True), "Cannot set phone number"

Modifying all fields in schema

You might want to modify all schema fields based on some criteria.

Example how to hide all metadata fields:

for f in ExperienceEducatorSchema.filterFields(isMetadata=True): f.widget.visible = { "edit" : "invisible" }

Reordering fields

See moveField() in Schema/__init__.py [https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/Schema/__init__.py].

Example

ProductCardFolderSchema = MountPointSchema.copy() + atapi.Schema((

 # -*- Your Archetypes field definitions here ... -*-
 atapi.StringField(
 'pageTitle',
 stxxxge=atapi.AnnotationStxxxge(),
 widget=atapi.StringWidget(
 label=_(u"Page title"),
 description=_(u"Title shown on the page text if differs from the navigation title"),
),
 default=""
),

 ...

))

schemata.finalizeATCTSchema(
 ProductCardFolderSchema,
 folderish=True,
 moveDiscussion=False
)

Reorder schema fields to the final order,
show special pageTitle field after actual Title field
ProductCardFolderSchema.moveField("pageTitle", after="title")

Hiding widgets

	You should not remove core Plone fields (Title, Description) as they
are used by Plone internally e.g. in the navigation tree

	But you can override their accessor functions Title() and
Description()

	You can also hide the widgets

The recommended approach is to hide the widgets,
then update the field contents when the relevant data is update.
E.g. you can generate title value from fields firstname and lastname.

Below is an example which uses custom JSON field as input,
and then sets title and description based on it:

"""Definition of the XXX Researcher content type
"""

import logging
import json # py2.6

from zope.interface import implements, directlyProvides, alsoProvides

from five import grok

from Products.Archetypes.interfaces import IObjectEditedEvent
from Products.Archetypes import atapi
from Products.ATContentTypes.content import folder
from Products.ATContentTypes.content import schemata

from xxx.objects import objectsMessageFactory as _
from xxx.objects.interfaces import IXXXResearcher
from xxx.objects.config import PROJECTNAME

XXXResearcherSchema = folder.ATFolderSchema.copy() + atapi.Schema((

 # -*- Your Archetypes field definitions here ... -*-

 # Stores XXX entry as JSON string
 atapi.TextField("XXXData",
 required = True,
 widget=atapi.StringWidget(
 label="XXX source entry",
 description="Start typing person's name"
)),

))

XXXResearcherSchema["title"].widget.visible = {"edit": "invisible" }
XXXResearcherSchema["description"].widget.visible = {"edit": "invisible" }

Set stxxxge on fields copied from ATFolderSchema, making sure
they work well with the python bridge properties.

schemata.finalizeATCTSchema(
 XXXResearcherSchema,
 folderish=True,
 moveDiscussion=False
)

class XXXResearcher(folder.ATFolder):
 """A Researcher synchronized from XXX.

 This content will have all

 """
 implements(IXXXResearcher)

 meta_type = "XXXResearcher"
 schema = XXXResearcherSchema

 # -*- Your ATSchema to Python Property Bridges Here ... -*-

 def refreshXXXData(self):
 """
 Performs collective.mountpoint synchronization for one object.
 """
 #synchronize_item(self, logging.WARNING)

 def updateXXX(self, json):
 """
 @param json: JSON payload as a string
 """
 data = self.parseXXXData(json)

 # Set this core Plone fields to actual values,
 # so that we surely co-operate with old legacy code

 title = self.getTitleFromData(data)
 desc = self.getDescriptionFromData(data)

 self.setTitle(title)
 self.setDescription(desc)

 def parseXXXData(self, jsonData):
 """
 @return Python dict
 """
 return json.loads(jsonData)

 def getParsedXXXData(self):
 """
 Return XXX JSON data parsed to Python object.
 """

 data = self.getXXXData()
 if data == "" or data is None:
 return None

 return self.parseXXXData(data)

 def getTitleFromData(self, data):
 """
 Use lastname + surname from FOAF data as the connt title.
 """

 title = data.get(u"foaf_name", None)

 if title == "" or title is None:
 # Title must have something so that the users
 # can click this item in list...
 title = "(unnamed)"

 # foaf_name is actually list of values, so we need to merge them
 title = " ".join(title)

 return title

 def getDescriptionFromData(self, data):
 """ Extract content item description from data blob """

 desc = data.get(u"dc_description", None)

 if desc is None or len(desc) == 0:
 # Decription is not required, we get omit it
 return None

 # dc_description is actually a list of description
 # let's merge them to string here
 desc = " ".join(desc)

 return desc

atapi.registerType(XXXResearcher, PROJECTNAME)

@grok.subscribe(XXXResearcher, IObjectEditedEvent)
def object_edited(context, event):
 """
 Event handler which will update title + description
 values every time the object has been edited.

 @param context: Object for which the event was fired
 """

 # Read JSON data entry which user entered on the form
 json = context.getXXXData()

 if json != None:

 # Update the core fields to reflect changes
 # in JSON data
 context.updateXXX(json)

 # Reflect object changes back to the portal catalog
 # Note that we are running reindexObject()
 # here again... edit itself runs it and
 # we could do some optimization here
 context.reindexObject()

Rendering widget

Archetypes is hardwired to render widgets from viewless TAL page templates.

Example how to render widget for field 'maintext':

<tal:fields tal:define="field_macro here/widgets/field/macros/view;
 field python:here.Schema()['maintext']">

 <tal:if_visible define="mode string:view;
 visState python:field.widget.isVisible(here, mode);
 visCondition python:field.widget.testCondition(context.aq_inner.aq_parent, portal, context);"
 condition="python:visState == 'visible' and visCondition">
 <metal:use_field use-macro="field_macro" />
 </tal:if_visible>
</tal:fields>

Creating your own Field

Here is an example how to create a custom field based on TextField.

Example (mfabrik/rstpage/archetypes/fields.py):

from Products.Archetypes import public as atapi
from Products.Archetypes.Field import TextField, ObjectField, encode, decode, registerField

from mfabrik.rstpage.transform import transform_rst_to_html

class RSTField(atapi.TextField):
 """ """

 def _getCooked(self, instance, text):
 """ Perform reST to HTML transformation for the field cotent.

 """
 html, errors = transform_rst_to_html(text)
 return html

 def get(self, instance, **kwargs):
 """ Field accessor.

 Define view mode accessor for the widget.

 @param instance: Archetypes content item instance

 @param kwargs: Arbitrary parameters passed to the field getter
 """

 # Read the stored field value from the instance
 text = ObjectField.get(self, instance, **kwargs)

 # raw = edit mode, get reST source in that case
 raw = kwargs.get("raw", False)

 if raw:
 # Return reST source
 return text
 else:
 # Return HTML for viewing
 return self._getCooked(instance, text)

registerField(RSTField,
 title='Restructured Text field',
 description=('Edit HTML as reST source'))

Automatically generating description based on body text

Below is a sample through-the-web Python Script which
you can drop to any Plone through Zope Management Interface.

Use case: People are lazy to write descriptions
(as in Dublin Core metadata). You can generate some kind
of description by taking the few first sentences of the text.
This is not perfect, but this is way better than empty description.

This script will provide one-time operation to automatically
generate content item descriptions based on their body text
by taking the first three sentences.

The script will provide logging output to standard Plone log
(var/log and stdout if Plone is run in the debug mode).

Example code:

def create_automatic_description(content, text_field_name="text"):
 """ Creates an automatic description from HTML body by taking three first sentences.

 Takes the body text

 @param content: Any Plone contentish item (they all have description)

 @param text_field_name: Which schema field is used to supply the body text (may very depending on the content type)
 """

 # Body is Archetype "text" field in schema by default.
 # Accessor can take the desired format as a mimetype parameter.
 # The line below should trigger conversion from text/html -> text/plain automatically using portal_transforms
 field = content.Schema()[text_field_name]

 # Returns a Python method which you can call to get field's
 # for a certain content type. This is also security aware
 # and does not breach field-level security provided by Archetypes
 accessor = field.getAccessor(content)

 # body is UTF-8
 body = accessor(mimetype="text/plain")

 # Now let's take three first sentences or the whole content of body
 sentences = body.split(".")

 if len(sentences) > 3:
 intro = ".".join(sentences[0:3])
 intro += "." # Don't forget closing the last sentence
 else:
 # Body text is shorter than 3 sentences
 intro = body

 content.setDescription(intro)

context is the reference of the folder where this script is run
for id, item in context.contentItems():
 # Iterate through all content items (this ignores Zope objects like this script itself)

 # Use RestrictedPython safe logging.
 # plone_log() method is permission aware and available on any contentish object
 # so we can safely use it from through-the-web scripts
 context.plone_log("Fixing:" + id)

 # Check that the description has never been saved (None)
 # or it is empty, so we do not override a description someone has
 # set before automatically or manually
 desc = context.Description() # All Archetypes accessor method, returns UTF-8 encoded string

 if desc is None or desc.strip() == "":
 # We use the HTML of field called "text" to generate the description
 create_automatic_description(item, "text")

This will be printed in the browser when the script completes successfully
return "OK"

See also

	http://blog.mfabrik.com/2010/06/04/automatically-generating-description-based-on-body-text/

Vocabularies

Archetypes has its own vocabulary infrastructure which is not compatible with zope.schema vocabularies.

Dynamic vocabularies

	http://www.universalwebservices.net/web-programming-resources/zope-plone/dynamic-vocabularies-in-plone-archetypes

Rendering single field

Example:

<metal:fieldMacro use-macro="python:context.widget(field.getName(), mode='edit')" />

Hiding widgets conditionally

AT widgets have condition expression.

Example how to set a condition for multiple widgets to call a BrowserView to ask whether the widget should be visible or not:

for field in ResearcherSchema.values():
 # setCondition() is in Products.Archetypes.Widget
 # possible expression variables are_ object, portal, folder.
 field.widget.setCondition("python:object.restrictedTraverse('@@msd_widget_condition')('" + field.getName() + "')")

The related view with some sample code:

class WidgetCondition(BrowserView):
 """
 This is referred in msd.researcher schema conditions field.
 """

 def __call__(self, fieldName):
 """

 """
 settings = getResearcherSettings(self.context)
 customization = settings.getFieldCustomization(fieldName, "visible")
 if customization is not None:
 return customization

 # Default is visible
 return True

Dynamic field definitions

You can override Schema() and Schemata() methods in your content type class
to poke the schema per HTTP request access basis.

Example:

def Schema(self):
 """ Overrides field definitions in fly.

 """

 # XXX: Cache this method?
 from Acquisition import ImplicitAcquisitionWrapper
 from Products.Archetypes.interfaces import ISchema

 # Create modifiable copy of schema
 # See Products.Archetypes.BaseObject
 schema = ISchema(self)
 schema = schema.copy()
 schema = ImplicitAcquisitionWrapper(schema, self)

 settings = self.getResearchSettings()

 for row in settings.getFieldCustomizations():
 name = row.get("fieldName", None)
 vocab = row.get("vocabToUse", None)

 field = schema.get(name, None)

 if field and vocab and hasattr(field, "vocabulary"):
 # Modify field copy ion

 displayList = settings.getVocabulary(vocab)
 if displayList is not None:
 field.vocabulary = displayList

 return schema

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Field storages

Field storage tells how the value of schema field is stored.

AttributeStorage

Products.Archetypes.storage.AttributeStorage

This is recommended for data which is always read when the object is
accessed:title, description, etc.

AnnotationStorage

Products.Archetypes.storage.annotation.AnnotationStorage

AnnotationStorage creates an object attribute __annotations__ which
is an OOBTree object. An OOBTree uses buckets as the smallest
persistent entity. A bucket usually holds a small number of items. Buckets
are loaded on request and as needed compared to using native Python
datatypes.

It is safe to assume that you can fit few variables to one bucket easily.

You also might want to define ATFieldProperty accessor if you are using
this storage. This allows you to read the object value using standard
Python attribute access notation.

Note that in this case the access goes through AT accessor and mutator
functions. This differs from raw storage value access: for example the AT
accessor encodes strings to UTF-8 before returning them.

Example:

VariantProductSchema['myField'].storage = atapi.AnnotationStorage()

class VariantProduct(folder.ATFolder):

 meta_type = "VariantProduct"
 schema = VariantProductSchema

 myField = atapi.ATFieldProperty('title')

product = VariantProduct()

product.setMyField("foobar") # Set field using AT mutator method

products.myField = # AT field property magic. This is equal to product.getMyField()

SQLStorage

This stores field values in an external SQL database.

	An old documentation how to use SQL storage [http://plone.sourceforge.net/archetypes/sqlstorage-howto.html].

FSSStorage

Store the raw values of fields on the file system.

Usual Zope/CMF/Plone/Archetypes imports
...
from iw.fss.FileSystemStorage import FileSystemStorage
...
my_schema = Schema((
 FileField('file',
 ...
 storage=FileSystemStorage(),
 widget=FileWidget(...)
),
 ...
))
...

	Official documentation of fss [https://pypi.python.org/pypi/iw.fss/].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Archetypes ReferenceFields

Description

Using ReferenceField to have references to other Archetypes content
items in Plone.

	Introduction

Introduction

Archetypes comes with a kind of field called ReferenceField which is used
to store references to other Archetypes objects, or any object providing the
IReferenceable interface.

References are maintained in the uid_catalog and reference_catalog
catalogs. You can find both at the root of your Plone site. Check them to
see their indexes and metadata.

Although you could use the ZCatalog API to manage Archetypes references,
these catalogs are rarely used directly. A ReferenceField and its API is
used instead.

Example declaration of a ReferenceField inside a schema:

MyCTSchema = atapi.Schema((
...
 atapi.ReferenceField('myReferenceField',
 relationship = 'somerelationship',
),
...
))

Check the Fields Reference section in the Archetypes Developer Manual at
http://plone.org to learn about the ReferenceField available options.

Archetypes reference fields just store the UID (Universal Object Identifier)
of an object providing the IReferenceable interface. Continuing with the
example above, you will usually use the regular field API (getters/setters).

You can get the UID of a referenceable object easily:

>>> areferenceableobject_uid = areferenceableobject.UID()

To set a reference, you can use the the setter method with either a list of
UIDs or one UID string, or one object or a list of objects (in the case the
ReferenceField is multi-valued) to which you want to add a reference to.
None and [] are equal.

In this example we set a reference from the myct1 object to the
areferenceableobject object:

>>> myct1.setMyReferenceField(areferenceableobject_uid)

To get the object(s) referenced, just use the getter. Note that what you get
is the objects themselves, not their
"brains":

.. TODO:: Add a glossary entry for brains.

More info in Varnish section of this manual.

>>> myct1.getMyReferenceField() == areferenceableobject
True

Todo

Code to exercise the IReferenceable API, including relationships and
back-references.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Customizing editing interface

Remove metadata tabs

Remove Manage properties permissions from the users who should not see metadata fields.
Do this for all fields under the schema.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

DataGridField

This document contains miscellaneous notes about DataGridField [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fplone.org%2Fproducts%2Fdatagridfield&ei=_ZtjSuiXDomD-Qbx0830DA&usg=AFQjCNGWg4ZN7xjGb7kCJwtLNbMPmmVWtQ&sig2=V-ZebsEdHEzPKIRQqjaanQ] field and DataGridWiget widget.

DataGridField is an Archetypes field and widget to add tabular structures to your custom content types.

Basics

DataGridField acts as any other Archetypes based field.

To read DGF content use accessor function:

data = myobject.getMyDGF() #

Data is a Python list of dictionaries. Each dictionary presents one row. Dictionary keys are column ids
and dictionary values are cell values.

To set DGF content you must replace all rows at once:

mydata = [
 { "column1" : "value", "column2" : "something else" }, # row 1
 { "column1" : "xxx", "column2" : "yyy" } # row 2
]

context.setMyDGF(mydata)

To append a row to DFG, you need to read it, manipulate the list, and then reset the value:

rows = myobject.getMyDGF() # This returns a copy which you can modify freely
rows.append({ "column1" : "value", "column2" : "something else" })
myobject.setMyDGF(rows) # Now set the value with one new row

Modify cell value in DGF:

rows = myobject.getMyDGF() # This returns a copy which you can modify freely
rows[0]["column1"] = "newvalue" # Set a string value for row 1, cell 1 (cell using column id column1)
myobject.setMyDGF(rows) # Now set the value with one new row

CheckboxColumn

Checkbox column values are handled specially:

def convertCheckboxValue(value):
 """ DataGridField value converter for CheckboxColumn """
 if value is None:
 return None

 if value == '':
 return False

 if value == '1':
 return True

 # XXX: Not sure if happens
 if value == '0':
 return False

 raise RuntimeError("Bad checkbox value:" + value)

Other resources

Please enable DEBUG in https://github.com/collective/Products.DataGridField/blob/master/Products/DataGridField/config.py
on your local computer. After this setting has been changed, you can run unit tests
and install example types on your computer.

Refer unit tests [https://github.com/collective/Products.DataGridField/blob/master/Products/DataGridField/tests/test_columns.py] for more code examples.

Refer Archetypes manual [http://plone.org/documentation/manual/archetypes-developer-manual] for basics Archetypes developer information.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Validators

	Introduction

	List of default validators

	Creating a validator

Introduction

This page has tips how to validate fields defined in Archetypes schema.

List of default validators

	https://github.com/plone/Products.validation/blob/master/Products/validation/validators/BaseValidators.py

Creating a validator

	http://play.pixelblaster.ro/blog/archive/2006/08/27/creating-an-archetypes-validator

	http://www.pererikstrandberg.se/blog/index.cgi?page=PloneArchetypesFieldValidator

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Files

Description

Using files with Archetype field

local

	Files
	Download URL for files for ATFile content

	Checking whether a File field has uploaded content

	Setting max file size to FileField and ImageField

Download URL for files for ATFile content

Append @@download view to URL.

Checking whether a File field has uploaded content

Calling AT File field accessor will return a File object:

(Pdb) self.context.getAttachment()
<File at /mfabrik/success-stories/case-studies/finnish-national-broadcasting-company/attachment>

Note that this may return None if the content item has been constructed
but the form has not been properly saved.

If the size is 0, the file is not yet uploaded:

(Pdb) attach.getSize()
0

Example how to check in a view whether AT context file size exists:

@property
def available(self):

 # Make sure that we have content item of right kind
 if ICaseStudy.providedBy(self.context):

 # Make sure the content item is not anymore in the creation stage
 if self.context.getAttachment() is not None:

 # Check the content of File field
 if self.context.getAttachment().getSize() > 0:
 return True

 return False

Setting max file size to FileField and ImageField

TODO

http://stackoverflow.com/questions/11347200/setting-max-upload-size-for-archetypes-filefield

Old, deprecated, info

	http://keeshink.blogspot.fi/2009/09/how-to-limit-file-upload-size.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Converting one Content Type into another

Description

It is possible to 'convert' one content type into another by extracting
content from the source content type and adding it to the new content
type.

local

	Converting one Content Type into another
	Converting Pages into News Items

	Converting Images into News Items

Converting Pages into News Items

In this example we take a folder of Pages (meta type: Document)
and create News Items from them:

"""
from the News Item type, the new items will be content copies
of their corresponding Pages (Documents)"""

source_contenttype = 'Document'
target_contenttype = 'Service'

items = context.listFolderContents(
 contentFilter={"portal_type": source_contenttype})

for item in items:
 id = "%s-new" % item.getId()
 title = item.Title()
 description = item.Description()
 text = item.getText()

 service = context.invokeFactory(target_contenttype, id,
 title=title,description=description,text=text)

Todo

content type "Service"?

Converting Images into News Items

This is similar to the example of converting pages into news items.
Notice that when we pass the image data to invokeFactory we need to
make it into a string:

source_contenttype = 'Image'
target_contenttype = 'News Item'

items = context.listFolderContents(
 contentFilter={"portal_type": source_contenttype})

for item in items:
 id = "%s-new" % item.getId()
 title = item.Title()
 imageCaption = text = description = item.Description()
 image = str(item.getImage())

 service = context.invokeFactory(
 target_contenttype,
 id,
 title=title,
 description=description,
 imageCaption=imageCaption,
 text=text,
 image=image)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

Templates

Description

Overriding templates with Archetypes

local

	Templates
	Introduction

	The template loading mechanism

Introduction

This document will tell how to create custom templates for Plone
and Archetypes based content.

This does not deal with

	browser views

	generic old style template overrides

The template loading mechanism

Archetypes tries to look up a template with name

	Content type name lowercased + _view.pt

	Content type name lowercased + _edit.cpt

from portal_skins.

Example controlled page template (cpt) file yourcontenttype.cpt:

Check More info links

For cpt files (controlled page template) you'll also need corresponding
.metadata file:

[default]
title = Edit Your Content Type

[validators]
validators = validate_atct
validators..form_add =
validators..cancel =

[actions]
action.success = traverse_to:string:content_edit
action.success..cancel = redirect_to:python:object.REQUEST['last_referer']
action.success_add_reference = redirect_to:python:object.REQUEST['last_referer']
action.failure = traverse_to_action:string:edit
action.next_schemata = traverse_to_action:string:edit

More info

	http://plone.org/documentation/manual/theme-reference/buildingblocks/skin/templates/how-to-customise-view-or-edit-on-archetypes-content-items

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

 	Archetypes »

References

Description

Inter-content references in Plone are done using the
reference_catalog tool.

	Introduction

	Using references

Introduction

Plone uses a persistent tool called reference_catalog to store
(Archetypes) object references. It is used by the out-of-the-box "Related
items" and you can use it in your own content types with ReferenceField.

reference_catalog references can be bidirectional.

The reference_catalog is a catalog just like the
portal_catalog — it just uses
different indexes and metadata.

The reference_catalog is defined in ReferenceEngine.py [https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/ReferenceEngine.py].

Using references

Here is an example how to use reference field to make
programme -> researcher references, and how to do reverse look-ups for
the relationship.

You use getReferences() and getBackReferences() methods to look up
relationships.

Example:

from Products.CMFCore.utils import getToolByName
from Products.Archetypes.config import REFERENCE_CATALOG

def getResearcherProgrammes(researcher):
 """
 Find all Programmes which refer to this researcher.

 The Programme<->Researcher relationship is defined in Programme as::

 atapi.ReferenceField(
 name='researchers',
 widget=ReferenceBrowserWidget(
 label="Researchers",
 description="Researchers involved in this project",
 base_query={'object_provides': IResearcher.__identifier__ },
 allow_browse=0,
 show_results_without_query=1,
),
 multiValued=1,
 relationship="researchers_in_theme"
),

 @param researcher: Content item on the site
 """
 reference_catalog = getToolByName(researcher, REFERENCE_CATALOG)

 # relationship: field name used
 # Plone 4.1: objects=True argument to fetch full objects, not just
 # index brains
 references = reference_catalog.getBackReferences(
 researcher,
 relationship="researchers_in_theme")
 # Resolve Reference objects to full objects
 # Return a generator method which will yield all full objects
 return [ref.getSourceObject() for ref in references]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Content management »

Dexterity

Description

Dexterity content subsystem for Plone: info for the developers.

	Introduction

	ZopeSkel templates

	Buildout example

	Content creation permissions

	Exclusion from navigation

	Custom add form/view

	Custom edit form

Introduction

Dexterity is a subsystem for content objects. It is intended to replace the
default Archetypes system from Plone 5 and onward and can be already used
with Plone 4.

	Dexterity developer manual

	How Dexterity is related to Archetypes

ZopeSkel templates

Please see ZopeSkel page for project skeleton
templates for Dexterity.

Here is an example how to create your own add-on using the buildout below

cd src
../bin/zopeskel dexterity yourcompany.app

Edit buildout.cfg and add:

eggs =
 yourcompany.app

develop =
 src/yourcompany.app

Then rerun buildout to get your new add-on skeleton included in the
configuration

cd ..
bin/buildout

Now you can start adding content into your add-on

cd src/yourcompany.app
../../bin/paster # Shows availablility of addcontent command
../../bin/paster addcontent -l # Shows available templates (content, field, behavior, etc...)

Buildout example

Below is a sample example which will install

	Plone 4.1 beta 1

	Dexterity 1.0 beta 7

	Paster command + Dexterity templates

Please tune the versions according the latest available releases.

buildout.cfg:

[buildout]
parts =
 instance
 zopepy
 i18ndude
 zopeskel
 test
 paster
 omelette

extends =
 http://dist.plone.org/release/4.1b1/versions.cfg
 http://good-py.appspot.com/release/dexterity/1.0b7?plone=4.1b1

Add additional egg download sources here. dist.plone.org contains archives
of Plone packages.
find-links =
 http://dist.plone.org/release/4.1b1
 http://dist.plone.org/thirdparty

extensions =
 mr.developer
 buildout.dumppickedversions
 buildout.threatlevel

sources = sources

versions = versions

Reference any folders where you have Python egg source code under development here
e.g.: develop = src/my.package
If you are using the mr.developer extension and have the source code in a
repository mr.developer will handle this automatically for you
develop =

Create bin/instance command to manage Zope start up and shutdown
[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8080
debug-mode = off
verbose-security = on
blob-storage = var/blobstorage

eggs =
 Plone
 plone.app.dexterity

Some pre-Plone 3.3 packages may need you to register the package name here in
order their configure.zcml to be run (http://plone.org/products/plone/roadmap/247)
- this is never required for packages in the Products namespace (Products.*)
zcml =

zopepy commands allows you to execute Python scripts using a PYTHONPATH
including all the configured eggs
[zopepy]
recipe = zc.recipe.egg
eggs = ${instance:eggs}
interpreter = zopepy
scripts = zopepy

create bin/i18ndude command
[i18ndude]
unzip = true
recipe = zc.recipe.egg
eggs = i18ndude

create bin/test command
[test]
recipe = zc.recipe.testrunner
defaults = ['--auto-color', '--auto-progress']
eggs =
 ${instance:eggs}

[paster]
recipe = zc.recipe.egg
eggs =
 ZopeSkel
 PasteScript
 PasteDeploy
 zopeskel.dexterity
 ${instance:eggs}
entry-points = paster=paste.script.command:run

create ZopeSkel command
[zopeskel]
unzip = true
recipe = zc.recipe.egg
eggs =
 ZopeSkel
 ${instance:eggs}

symlinks all Python source code to parts/omelette folder when buildout is run
windows users will need to install additional software for this part to build
correctly. See https://pypi.python.org/pypi/collective.recipe.omelette for
relevant details.
[omelette]
recipe = collective.recipe.omelette
eggs = ${instance:eggs}

Put your mr.developer managed source code repositories here, see
https://pypi.python.org/pypi/mr.developer for details on format for this part
[sources]
collective.developermanual = git git://github.com/collective/collective.developermanual.git

Version pindowns for new style products go here - this section extends one provided in http://dist.plone.org/release/
[versions]

Content creation permissions

By default, (global) Dexterity content types are addable to a folder if the
editor has the cmf.AddPortalContent permission.

You might want to fine-tune permissions so that only certain privileged
members are allowed to create certain content types.

Note

This behavior differs from Archetypes behavior where each content
type was automatically assigned a permission for controlling its
creation.

Create a permission with
collective.autopermission in
configure.zcml

<include package="collective.autopermission" />
<permission id="yourcompany.app.AddSuperContent" title="yourcompany.app: Add Super Content" />

Make sure that this permission becomes available on your site by adding the following to rolemap.xml

<?xml version="1.0"?>
<rolemap>
 <permissions>
 <permission
 name="yourcompany.app: Add Super Content"
 acquire="True">
 <role name="Manager" />
 </permission>
 </permissions>
</rolemap>

Add in your content type GenericSetup XML

<!-- add permission -->
<property name="add_permission">yourcompany.app.AddSuperContent</property>

Reinstall your add-on.

Confirm that the new permission appears on the Security tab in
the ZMI root.

Exclusion from navigation

This must be enabled separately for Dexterity content types with a behavior.

<property name="behaviors">
 <element value="plone.app.content.interfaces.INameFromTitle" />
 <element value="plone.app.dexterity.behaviors.metadata.IBasic"/>
 <element value="plone.app.dexterity.behaviors.exclfromnav.IExcludeFromNavigation"/>
</property>

Then you can manually also check this property:

for t in self.tabs:
 nav = None
 try:
 nav = IExcludeFromNavigation(t)
 except:
 pass
 if nav:
 if nav.exclude_from_nav == True:
 # FAQ page - do not show in tabs
 continue

Custom add form/view

Dexterity relies on ++add++yourcontent.type.name traverser hook defined
in Products/CMFCore/namespace.py.

It will look up a multi-adapter using this expression:

if ti is not None:
 add_view = queryMultiAdapter((self.context, self.request, ti),
 name=ti.factory)
 if add_view is None:
 add_view = queryMultiAdapter((self.context, self.request, ti))

The name parameter is the portal_types id of your content type.

You can register such an adapter in configure.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 >

 <adapter
 for="Products.CMFCore.interfaces.IFolderish
 Products.CMFDefault.interfaces.ICMFDefaultSkin
 plone.dexterity.interfaces.IDexterityFTI"
 provides="zope.publisher.interfaces.browser.IBrowserPage"
 factory=".flexicontent.AddView"
 name="your.app.flexiblecontent"
 />

</configure>

Then you can inherit from the proper plone.dexterity base classes:

from plone.dexterity.browser.add import DefaultAddForm, DefaultAddView

class AddForm(DefaultAddForm):

 def update(self):
 DefaultAddForm.update(self)

 def updateWidgets(self):
 """ """
 # Some custom code here

 def getBlockPlanJSON():
 return getBlockPlanJSON()

class AddView(DefaultAddView):
 form = AddForm

See also:

	FTI

	z3c.form

Custom edit form

Example:

from five import grok
from plone.directives import dexterity

class EditForm(dexterity.EditForm):

 grok.context(IFlexibleContent)

 def updateWidgets(self):
 """ """
 dexterity.EditForm.updateWidgets(self)

 # XXX: customize widgets here

Registering an edit form works by registering a normal browser page.

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 >

 <browser:page
 for="your.app.flexiblecontent"
 class=".flexicontent.EditView"
 name="edit"
 />

</configure>

In the example above it is important, that you give the browser page the name "edit".

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Models, forms, fields and widgets

Plone includes several alternative form mechanisms:

For content-oriented forms:

	Dexterity for Plone 4.1+

	Archetypes is used for content types in Plone 3.x

For convenience forms built and maintained through-the-web and where the results are stored in CSV sheet or emailed:

	PloneFormGen

For application and utility forms where custom logic is added by writing Python code:

	z3c.form for Plone 4.x

	zope.formlib is used for stock forms in Plone 3.x

This documentation applies only for form libraries.

You need to identify which form library you are dealing with and read the form library specific
documentation.

Zope 3 schema (zope.schema package) is database-neutral and framework-neutral way to describe Python data models.

Modelling data

	Modelling using zope.schema

	Vocabularies

Forms, fields and widgets

	Processing raw HTTP post requests

	z3c.form library

	Files and images

	WYSIWYG text editing and TinyMCE

Creating forms through-the-web without programming

	PloneFormGen

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

Modelling using zope.schema

Description

zope.schema package provide a storage-neutral way to define Python object
models with validators.

	Introduction
	More info

	Example of a schema

	Using schemas as data models

	Field constructor parameters

	Schema introspection
	Dumping schema data

	Finding the schema for a Dexterity type

	Field order

	Default values

	Validation and type constrains

	Persistent objects and schema

	Collections (and multichoice fields)
	Single-choice example

	Multi-choice example

	Dynamic schemas
	Replacing schema fields with dynamically modified copies

	Don't use dict {} or list [] as a default value

Introduction

Zope 3 schemas are a database-neutral and form-library-neutral way to
describe Python data models.

Plone uses Zope 3 schemas for these purposes:

	to describe persistent data models;

	to describe HTML form data;

	to describe ZCML configuration data.

Since Zope 3 schemas are not bound to e.g. a SQL database engine, it gives
you very reusable way to define data models.

Schemas are just regular Python classes, with some special attribute
declarations. They are always subclasses of zope.interface.Interface.
The schema itself cannot be a concrete object instance — you need to
either have a persistent.Persistent object (for database data) or a
z3c.form.form.Form object (for HTML forms).

Zope 3 schemas are used for tasks like:

	defining allowed input data format (string, integer, object, list, etc.)
for Python class instance attributes;

	specifying required attributes on an object;

	defining custom validators on input data.

The basic unit of data model declaration is the field, which specifies what
kind of data each Python attribute can hold.

More info

	zope.schema [https://pypi.python.org/pypi/zope.schema] on PyPi

	zope.schema source code [http://svn.zope.org/zope.schema/trunk/src/zope/schema/] - definite source for field types and usage.

zope.schema provides a very comprehensive set of fields out of the box.
Finding good documentation for them, however, can be challenging. Here are
some starting points:

	Dexterity field list.

Example of a schema

Let's define a data model to store addresses:

import zope.interface
from zope import schema

class ICheckoutAddress(zope.interface.Interface):
 """ Provide meaningful address information.

 This is not 1:1 with getpaid.core interfaces, but
 more like a better guess.
 """

 first_name = schema.TextLine(title=_(u"First name"), default=u"")
 last_name = schema.TextLine(title=_(u"Last name"), default=u"")
 organization = schema.TextLine(title=_(u"Organization"), default=u"")
 phone = schema.TextLine(title=_(u"Phone number"), default=u"")
 country = schema.Choice(title = _(u"Country"),
 vocabulary = "getpaid.countries", required=False, default=None)
 state = schema.Choice(title = _(u"State"),
 vocabulary="getpaid.states", required=False, default=None)
 city = schema.TextLine(title=_(u"City"), default=u"")
 postal_code = schema.TextLine(title=_(u"Postal code"), default=u"")
 street_address = schema.TextLine(title=_(u"Address"), default=u"")

Next, we define a concrete persistent class which uses this data model. We
can use this class to store data based on our model definition in the ZODB
database.

We use zope.schema.fieldproperty.FieldProperty to bind
persistent class attributes to the data definition.

Example:

from persistent import Persistent # Automagical ZODB persistent object
from zope.schema.fieldproperty import FieldProperty

class CheckoutAddress(Persistent):
 """ Store checkout address """

 # Declare that all instances of this class will
 # conform to the ICheckoutAddress data model:
 zope.interface.implements(ICheckoutAddress)

 # Provide the fields:
 first_name = FieldProperty(ICheckoutAddress["first_name"])
 last_name = FieldProperty(ICheckoutAddress["last_name"])
 organization = FieldProperty(ICheckoutAddress["organization"])
 phone = FieldProperty(ICheckoutAddress["phone"])
 country = FieldProperty(ICheckoutAddress["country"])
 state = FieldProperty(ICheckoutAddress["state"])
 city = FieldProperty(ICheckoutAddress["phone"])
 postal_code = FieldProperty(ICheckoutAddress["postal_code"])
 street_address = FieldProperty(ICheckoutAddress["street_address"])

For persistent objects, see persistent object documentation.

Using schemas as data models

Based on the example data model above, we can use it in e.g. content type
browser views to store arbitrary data as content
type attributes.

Example:

class MyView(BrowserView):
 """ Connect this view to your content type using a ZCML declaration.
 """

 def __call__(self):
 # Get the content item which this view was invoked on:
 context = self.context.aq_inner

 # Store a new address in it as the ``test_address`` attribute
 context.test_address = CheckoutAddress()
 context.test_address.first_name = u"Mikko"
 context.test_address.last_name = u"Ohtamaa"

 # Note that you can still add arbitrary attributes to any
 # persistent object. They are simply not validated, as they
 # don't go through the ``zope.schema`` FieldProperty
 # declarations.
 # Do not do this, you will regret it later.
 context.test_address.arbitary_attribute = u"Don't do this!"

Field constructor parameters

The Field base class defines a list of standard parameters that you can
use to construct schema fields. Each subclass of Field will have its own
set of possible parameters in addition to this.

See the full list here [http://apidoc.zope.org/++apidoc++/Code/zope/schema/_bootstrapfields/Field/index.html].

	Title

	field title as unicode string

	Description

	field description as unicode string

	required

	boolean, whether the field is required

	default

	Default value if the attribute is not present

... and so on.

Warning

Do not initialize any non-primitive values using the default keyword
parameter of schema fields. Python and the ZODB stores objects by
reference. Python code will construct only one field value during
schema construction, and share its content across all objects. This
is probably not what you intend. Instead, initialize objects in the
__init__() method of your schema implementer.

In particular, dangerous defaults are: default=[], default={},
default=SomeObject().

Schema introspection

The zope.schema._schema module provides some introspection functions:

	getFieldNames(schema_class)

	getFields(schema_class)

	getFieldNamesInOrder(schema) — retain the orignal field
declaration order.

	getFieldsInOrder(schema) — retain the orignal field declaration
order.

Example:

import zope.schema
import zope.interface

class IMyInterface(zope.interface.Interface):

 text = zope.schema.TextLine()

Get list of schema fields from IMyInterface
fields = zope.schema.getFields(IMyInterface)

Dumping schema data

Below is an example how to extract all schema defined fields from an object.

from collections import OrderedDict

import zope.schema

def dump_schemed_data(obj):
 """
 Prints out object variables as defined by its zope.schema Interface.
 """
 out = OrderedDict()

 # Check all interfaces provided by the object
 ifaces = obj.__provides__.__iro__

 # Check fields from all interfaces
 for iface in ifaces:
 fields = zope.schema.getFieldsInOrder(iface)
 for name, field in fields:
 # ('header', <zope.schema._bootstrapfields.TextLine object at 0x1149dd690>)
 out[name] = getattr(obj, name, None)

 return out

Finding the schema for a Dexterity type

When trying to introspect a Dexterity type, you can get a reference to the schema thus:

from zope.component import getUtility
from plone.dexterity.interfaces import IDexterityFTI

schema = getUtility(IDexterityFTI, name=PORTAL_TYPE_NAME).lookupSchema()

...and then inspect it using the methods above. Note this won't have behavior
fields added to it at this stage, only the fields directly defined in your
schema.

Field order

The order attribute can be used to determine the order in which fields in
a schema were defined. If one field was created after another (in the same
thread), the value of order will be greater.

Default values

To make default values of schema effective, class attributes must be
implemented using FieldProperty.

Example:

import zope.interface
from zope import schema
from zope.schema.fieldproperty import FieldProperty

class ISomething(zope.interface.Interface):
 """ Sample schema """
 some_value = schema.Bool(default=True)

class SomeStorage(object):

 some_value = FieldProperty(ISomething["some_value"])

something = SomeStorage()
assert something.some_value == True

Validation and type constrains

Schema objects using field properties provide automatic validation
facilities, preventing setting badly formatted attributes.

There are two aspects to validation:

	Checking the type constraints (done automatically).

	Checking whether the value fills certain constrains (validation).

Example of how type constraints work:

class ICheckoutData(zope.interface.Interface):
 """ This interface defines all the checkout data we have.

 It will also contain the ``billing_address``.
 """

 email = schema.TextLine(title=_(u"Email"), default=u"")

class CheckoutData(Persistent):

 zope.interface.implements(ICheckoutData)

 email = FieldProperty(ICheckoutData["email"])

def test_store_bad_email(self):
 """ Check that we can't put data to checkout """

 data = getpaid.expercash.data.CheckoutData()

 from zope.schema.interfaces import WrongContainedType, WrongType, NotUnique

 try:
 data.email = 123 # Can't set email field to an integer.
 raise AssertionError("Should never be reached.")
 except WrongType:
 pass

Example of validation (email field):

from zope import schema

class InvalidEmailError(schema.ValidationError):
 __doc__ = u'Please enter a valid e-mail address.'

def isEmail(value):
 if re.match('^'+EMAIL_RE, value):
 return True
 raise InvalidEmailError

class IContact(Interface):
 email = schema.TextLine(title=u'Email', constraint=isEmail)

Persistent objects and schema

ZODB persistent objects do not provide facilities for setting field defaults
or validating the data input.

When you create a persistent class, you need to provide field properties for
it, which will sanify the incoming and outgoing data.

When the persistent object is created it has no attributes. When you try to
access the attribute through a named
zope.schema.fieldproperty.FieldProperty
accessor, it first checks whether the attribute exists. If the attribute is
not there, it is created and the default value is returned.

Example:

from persistent import Persistent
from zope import schema
from zope.interface import implements, alsoProvides
from zope.component import adapts
from zope.schema.fieldproperty import FieldProperty

... other implementation code ...

class IHeaderBehavior(form.Schema):
 """ Sample schema """
 inheritable = schema.Bool(
 title=u"Inherit header",
 description=u"This header is visible on child content",
 required=False,
 default=False)

 block_parents = schema.Bool(
 title=u"Block parent headers",
 description=u"Do not show parent headers for this content",
 required=False,
 default=False)

 # Contains list of HeaderAnimation objects
 alternatives = schema.List(
 title=u"Available headers and animations",
 description=u"Headers and animations uploaded here",
 required=False,
 value_type=schema.Object(IHeaderAnimation))

alsoProvides(IHeaderAnimation, form.IFormFieldProvider)

class HeaderBehavior(Persistent):
 """ Sample persistent object for the schema """

 implements(IHeaderBehavior)

 #
 # zope.schema magic happens here - see FieldProperty!
 #

 # We need to declare field properties so that objects will
 # have input data validation and default values taken from schema
 # above

 inheritable = FieldProperty(IHeaderBehavior["inheritable"])
 block_parents = FieldProperty(IHeaderBehavior["block_parents"])
 alternatives = FieldProperty(IHeaderBehavior["alternatives"])

Now you see the magic:

header = HeaderBehavior()
This triggers the ``alternatives`` accessor, which returns the default
value, which is an empty list
assert header.alternatives = []

Collections (and multichoice fields)

Collections are fields composed of several other fields.
Collections also act as multi-choice fields.

For more information see:

	Using Zope schemas with a complex vocabulary and multi-select fields [http://www.upfrontsystems.co.za/Members/izak/sysadman/using-zope-schemas-with-a-complex-vocabulary-and-multi-select-fields]

	Collections section in zope.schema documentation [http://apidoc.zope.org/++apidoc++/Code/zope/schema/fields.txt/index.html]

	Schema field sources documentation [http://apidoc.zope.org/++apidoc++/Code/zope/schema/sources.txt/index.html]

	Choice field [http://apidoc.zope.org/++apidoc++/Code/zope/schema/_field/Choice/index.html]

	List field [http://apidoc.zope.org/++apidoc++/Code/zope/schema/_field/List/index.html].

Single-choice example

Only one value can be chosen.

Below is code to create Python logging level choice:

import logging

from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm

def _createLoggingVocabulary():
 """ Create zope.schema vocabulary from Python logging levels.

 Note that term.value is int, not string.

 _levelNames looks like::

 {0: 'NOTSET', 'INFO': 20, 'WARNING': 30, 40: 'ERROR', 10: 'DEBUG', 'WARN': 30, 50:
 'CRITICAL', 'CRITICAL': 50, 20: 'INFO', 'ERROR': 40, 'DEBUG': 10, 'NOTSET': 0, 30: 'WARNING'}

 @return: Iterable of SimpleTerm objects
 """
 for level, name in logging._levelNames.items():

 # logging._levelNames dictionary is bidirectional, let's
 # get numeric keys only

 if type(level) == int:
 term = SimpleTerm(value=level, token=str(level), title=name)
 yield term

Construct SimpleVocabulary objects of log level -> name mappings
logging_vocabulary = SimpleVocabulary(list(_createLoggingVocabulary()))

class ISyncRunOptions(Interface):

 log_level = schema.Choice(vocabulary=logging_vocabulary,
 title=u"Log level",
 description=u"One of python logging module constants",
 default=logging.INFO)

Multi-choice example

Using zope.schema.List, many values can be chosen once.
Each value is atomically constrained by value_type schema field.

Example:

from zope import schema
from plone.directives import form

from z3c.form.browser.checkbox import CheckBoxFieldWidget

class IMultiChoice(form.Schema):
 ...

 # Contains lists of values from Choice list using special "get_field_list" vocabulary
 # We also give a plone.form.directives hint to render this as
 # multiple checbox choices
 form.widget(yourField=CheckBoxFieldWidget)
 yourField = schema.List(title=u"Available headers and animations",
 description=u"Headers and animations uploaded here",
 required=False,
 value_type=zope.schema.Choice(source=yourVocabularyFunction),
)

Dynamic schemas

Schemas are singletons, as there only exist one class instance
per Python run-time. For example, if you need to feed schemas generated dynamically
to form engine, you need to

	If the form engine (e.g. z3c.form refers to schema fields, then
replace these references with dynamically generated copes)

	Generate a Python class dynamically. Output Python source code,
then eval() it. Using eval() is almost always considered
as a bad practice.

Warning

Though it is possible, you should not modify zope.schema classes
in-place
as the same copy is shared between different threads and
if there are two concurrent HTTP requests problems occur.

Replacing schema fields with dynamically modified copies

The below is an example for z3c.form. It uses Python copy
module to copy f.field reference, which points to zope.schema
field. For this field copy, we modify required attribute based
on input.

Example:

@property
def fields(self):
 """ Get the field definition for this form.

 Form class's fields attribute does not have to
 be fixed, it can be property also.
 """

 # Construct the Fields instance as we would
 # normally do in more static way
 fields = z3c.form.field.Fields(ICheckoutAddress)

 # We need to override the actual required from the
 # schema field which is a little tricky.
 # Schema fields are shared between instances
 # by default, so we need to create a copy of it
 if self.optional:
 for f in fields.values():
 # Create copy of a schema field
 # and force it unrequired
 schema_field = copy.copy(f.field) # shallow copy of an instance
 schema_field.required = False
 f.field = schema_field

Don't use dict {} or list [] as a default value

Because how Python object construction works, giving [] or {}
as a default value will make all created field values to share this same object.

http://effbot.org/zone/default-values.htm

Use value adapters instead

	https://pypi.python.org/pypi/plone.directives.form#value-adapters

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

Vocabularies

Description

Vocabularies are lists of (value -> human readable title) pairs used
by e.g. selection drop downs. zope.schema provides
tools to programmatically construct their vocabularies.

	Introduction
	Vocabulary terms

	Creating a vocabulary

	Stock vocabularies

	Creating vocabulary from list of objects
	Retrieving a vocabulary

	Getting a term

	Listing a vocabulary

	Dynamic vocabularies
	Registering a named vocabulary provider in ZCML

Introduction

Vocabularies specify options for choice fields.

Vocabularies are normally described using
zope.schema.vocabulary.SimpleVocabulary
and zope.schema.vocabulary.SimpleTerm objects.
See the source code [http://svn.zope.org/zope.schema/trunk/src/zope/schema/vocabulary.py?rev=75170&view=auto].

Vocabulary terms

zope.schema defines different vocabulary term possibilities.

A term is an entry in the vocabulary. The term has a value. Most terms are tokenised terms which also have a token, and some terms are titled, meaning they have a title that is different to the token.

In SimpleTerm instances

	SimpleTerm.token must be an ASCII string. It is the value passed with the request when the form is submitted. A token must uniquely identify a term.

	SimpleTerm.value is the actual value stored on the object. This is not passed to the browser or used in the form. The value is often a unicode string, but can be any type of object.

	SimpleTerm.title is a unicode string or translatable message. It is used in the form.

Some info:

class ITerm(Interface):
 """Object representing a single value in a vocabulary."""

 value = Attribute(
 "value", "The value used to represent vocabulary term in a field.")

class ITokenizedTerm(ITerm):
 """Object representing a single value in a tokenized vocabulary.
 """

 # TODO: There should be a more specialized field type for this.
 token = Attribute(
 "token",
 """Token which can be used to represent the value on a stream.

 The value of this attribute must be a non-empty 7-bit string.
 Control characters are not allowed.
 """)

class ITitledTokenizedTerm(ITokenizedTerm):
 """A tokenized term that includes a title."""

 title = TextLine(title=_(u"Title"))

Note

If you need international texts please note that
only title is, and should be, translated. Value and token
should always carry the same value.

Creating a vocabulary

Example:

from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm

items = [("value1", u"This is label for item"), ("value2", u"This is label for value 2")]

terms = [SimpleTerm(value=pair[0], token=pair[0], title=pair[1]) for pair in items]

vocabulary = SimpleVocabulary(terms)

Example 2:

from plone.directives import form

from zope import schema
from zope.schema.vocabulary import SimpleVocabulary

myVocabulary = SimpleVocabulary.fromItems((
 (u"Foo", "id_foo"),
 (u"Bar", "id_bar")))

class ISampleSchema(form.Schema):

 contentMedias = schema.Choice(vocabulary=myVocabulary,
 title=u"Test choice")

Stock vocabularies

Some vocabularies Plone provides out of the box

	Some common named vocabularies

	Thumbnail size vocabulary (TinyMCE) [https://github.com/plone/Products.TinyMCE/blob/master/Products/TinyMCE/vocabularies.py]

Creating vocabulary from list of objects

Here is one example where value = title in term:

SimpleVocabulary.fromValues('%s.%s.%s' % (at['package'],at['meta_type'],at['portal_type']) for at in list_of_ats)"

Retrieving a vocabulary

zope.schema's SimpleVocabulary objects are retrieved via factories registered as utilities.

To get one, use zope.component's getUtility:

from zope.component import getUtility
from zope.schema.interfaces import IVocabularyFactory

factory = getUtility(IVocabularyFactory, name)
vocabulary = factory(context)

Getting a term

By term value:

Returns SimpleTerm object by value look-up
term = vocabulary.getTerm("value1")

print "Term value is %s token is %s and title is %s" + (term.value, term.token, term.title)

Listing a vocabulary

Example:

for term in vocabulary:
 # Iterate vocabulary SimpleTerm objects
 print term.value + ": " + term.title

Dynamic vocabularies

Dynamic vocabularies' values may change run-time.
They are usually generated based on some context data.

Note that the examples below need grok package installed and <grok:grok package="...">
directive in configure.zcml.

Complete example with portal_catalog query, vocabulary creation and form

"""

 A vocabulary example where vocabulary gets populated from portal_catalog query
 and then this vocabulary is used in Dexterity form.

"""

from five import grok
from plone.directives import form

from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot, IFolderish
from Products.statusmessages.interfaces import IStatusMessage

from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm

def make_terms(items):
 """ Create zope.schema terms for vocab from tuples """
 terms = [SimpleTerm(value=pair[0], token=pair[0], title=pair[1]) for pair in items]
 return terms

@grok.provider(IContextSourceBinder)
def course_source(context):
 """
 Populate vocabulary with values from portal_catalog.

 @param context: z3c.form.Form context object (in our case site root)

 @return: SimpleVocabulary containing all areas as terms.
 """

 # Get site root from any content item using portal_url tool thru acquisition
 root = context.portal_url.getPortalObject()

 # Acquire portal catalog
 portal_catalog = root.portal_catalog

 # We need to get Plone site path relative to ZODB root
 # See traversing docs for more info about getPhysicalPath()
 site_physical_path = '/'.join(root.getPhysicalPath())

 # Target path we are querying
 folder_name = "courses"

 # Query all folder like objects in the target path
 # These portal_catalog query conditions are AND
 # but inside keyword query they are OR (the different content types
 # we are looking for)
 brains = portal_catalog.searchResults(path={ "query": site_physical_path + "/" + folder_name },
 portal_type=["CourseInfo", "Folder"])

 # Create a list of tuples (UID, Title) of results
 result = [(brain["UID"], brain["Title"]) for brain in brains]

 # Convert tuples to SimpleTerm objects
 terms = make_terms(result)

 return SimpleVocabulary(terms)

class IMyForm(form.Schema):
 """ Define form fields """

 name = schema.TextLine(
 title=u"Your name",
)

 courses = schema.List(title=u"Promoted courses",
 required=False,
 value_type=schema.Choice(source=course_source)
)

class MyForm(form.SchemaForm):
 """ Define Form handling

 This form can be accessed as http://yoursite/@@my-form

 """
 grok.name('my-form')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 schema = IMyForm
 ignoreContext = True

 @button.buttonAndHandler(u'Ok')
 def handleApply(self, action):
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 # Do something with valid data here

 # Set status on this form page
 # (this status message is not bind to the session and does not go through redirects)
 self.status = "Thank you very much!"

 @button.buttonAndHandler(u"Cancel")
 def handleCancel(self, action):
 """User cancelled. Redirect back to the front page.
 """

Complex example 2

from five import grok
from zope.schema.interfaces import IContextSourceBinder
from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm
from Products.CMFCore.utils import getToolByName
from plone.i18n.normalizer import idnormalizer

def make_terms(items):
 """ Create zope.schema terms for vocab from tuples """
 terms = [SimpleTerm(value=pair[0], token=pair[0], title=pair[1]) for pair in items]
 return terms

@grok.provider(IContextSourceBinder)
def area_source(context):
 """
 Populate vocabulary with values from portal_catalog.

 Custom index name getArea contains utf-8 strings of
 possible area field values found on all content objects.

 @param context: Form context object.

 @return: SimpleVocabulary containing all areas as terms.
 """

 # Get catalog brain objects of all accommodation content
 accommodations = context.queryAllAccommodation()

 # Extract getArea index from the brains
 areas = [a["getArea"] for a in accommodations]
 # result will contain tuples (term, title) of acceptable items
 result = []

 # Create a form choice "do not filter"
 # which is always present
 result.append(("all", _(u"All")))

 # done list filter outs duplicates
 done = []
 for area in areas:
 if area != None and area not in done:

 # Archetype accessors return utf-8
 area_unicode = area.decode("utf-8")

 # Id must be 7-bit
 id = idnormalizer.normalize(area_unicode)
 # Decode area name to unicode
 # show that form shows international area
 # names correctly
 entry = (id, area_unicode)
 result.append(entry)
 done.append(area)

 # Convert tuples to SimpleTerm objects
 terms = make_terms(result)

 return SimpleVocabulary(terms)

For another example, see the Dynamic sources
chapter in the Dexterity manual.

Registering a named vocabulary provider in ZCML

You can use <utility> in ZCML to register vocabularies by name
and then refer them by name via getUtility() or in zope.schema.Choice.

<utility
 provides="zope.schema.interfaces.IVocabularyFactory"
 component="zope.app.gary.paths.Favorites"
 name="garys-favorite-path-references"
 />

Then you can refer to vocabulary by its name:

class ISearchCriteria(form.Schema):
 """ Alternative header flash animation/imagae """

 area = schema.Choice(source="garys-favorite-path-references", title=_("Area"), required=False)

For more information see vocabularies API doc [http://docs.zope.org/zope3/ZCML/http_co__sl__sl_namespaces.zope.org_sl_zope/vocabulary/index.html].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

Processing raw HTTP post requests

Description

How to read incoming HTTP POST values without form frameworks

Introduction

See HTTP request object for basics.

Here is an example view which checks if a form button has been pressed,
and takes action accordingly. The view is implemented using
grok framework.

View code:

import logging

from five import grok

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

grok.templatedir("templates")

class YourViewName(grok.View):

 # This view is available on certain content types only
 grok.context(IYourContentTypeInterface)

 def update(self):

 if "button-name" in self.request.form:

 messages = IStatusMessage(self.request)

 try:
 # do something
 messages.addStatusMessage("Button pressed")

 except Exception, e:
 logger.exception(e)
 messages.addStatusMessage(u"It did not work out. This exception came when processing the form:" + unicode(e))

Page template code:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="ora.objects">
<body>
 <div metal:fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <h1 class="documentFirstHeading">
 Sample form
 </h1>

 <p class="documentDescription">
 Form description
 </p>

 <form action="@@yourviewname" method="POST">
 <button type="submit" name="button-name">
 Pres me
 </button>
 </form>

 </tal:main-macro>
 </div>
</body>
</html>

Magical Zope form variables

Zope provides some magical HTTP POST variable names which are automatically
converted to native Python primitives by ZPublisher.

Quick explanation

If you have HTML:

<INPUT TYPE="text" NAME="member.age:int"></P>

Then:

request.form["member.age"]

will return integer 30 instead of string "30".

Note

This behavior is hard-coded to ZPublisher and cannot be extended or disabled. The recommendation is
not to use it, but do the conversion of data-types yourself or use a more high-level
form framework like z3c.form.

More information

	http://www.zope.org/Members/Zen/howto/FormVariableTypes

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

z3c.form library

Description

z3c.form is flexible and powerful form library for Zope 3 applications.
It is the recommended way to create complex Python-driven forms for
Plone 4 and later versions.

	Introduction

	z3c.form big picture

	Form
	Simple boilerplate

	Setting form status message

	Emulating form HTTP POST in unit tests

	Changing form ACTION attribute

	Customizing form inner template

	Customizing form frame

	Rendering a form manually

	Fields
	Creating a field

	Adding a field to a form

	Modifying a field

	Accessing the schema of the field

	Read-only fields

	Dynamic schemas

	Date and time

	Making boolean field required

	Widgets
	Setting a widget for a field
	Using plone.directives.form schema hints

	Setting widget for z3c.form plain forms

	Setting widget dynamically Form.updateWidgets()

	Accessing a widget

	Introspecting form widgets

	Reordering and hiding widgets

	Modifying a widget

	Reorder form widgets

	Hiding fields

	Unprefixing widgets

	Making widgets required conditionally

	Setting widget types

	Widget save

	Widget value

	Adding a CSS class

	Accessing the schema of the field

	Getting selection widget vocabulary value as human readable text

	Setting widget templates

	Setting the template of an individual widget

	Setting template for your own widget type
	Setting widget frame template

	Combined widgets

	Buttons
	Adding a button to form

	Adding buttons conditionally

	Manipulating form buttons programmatically
	Reading buttons

	Removing or hiding buttons

	Adding buttons dynamically

	Subforms
	Adding an action to parent and subform

	Creating subforms at run-time

	CRUD form
	Examples

	Displaying the status message in a non-standard location

	Storage format and data managers
	Custom content objects

	Custom change applying

	WYSIWYG widgets

	Wrapped and non-wrapped forms

	Embedding z3c.form forms in portlets, viewlets and views
	Further reading

	Validators
	Introduction
	Field specific internal validators

	Constrain validators

	Invariant validators

	Form widget validators

	Custom field specific validation in form action handlers and update()

	Customizing and translating error messages

	Read-only and disabled fields

Introduction

Plone uses z3c.form library with the following integration steps

	plone.app.z3cform [https://pypi.python.org/pypi/plone.app.z3cform] provides
Plone specific widgets and main template

	plone.z3cform [https://pypi.python.org/pypi/plone.z3cform] integrates z3c.form
with applications using Zope 2 mechanisms like acquisition

	z3c.form [https://pypi.python.org/pypi/z3c.form/] is a form library which can be
used with any Python application using Zope 3 HTTP requests objects

	(Plone 4.4+ only) plone.app.widgets [https://github.com/plone/plone.app.widgets/]
provide a better widget set over z3c.form default with more JavaScript-enabled
features

Forms are modelled using zope.schema models written as Python classes.
Widgets for modelled data are set by using either plone.directives.form hints set onto
schema class or in z3c.form.form.Form based classes body.

Starting points to learn z3c.form in Plone

	Read about creating schema-driven forms with Dexterity content subsystem

	TODO app tutorial for Plone

Other related packages you might want to take a closer look

	Extra, more powerful widgets, from collective.z3cform.widgets [https://github.com/collective/collective.z3cform.widgets]

	Tabular data edit collective.z3cform.datagridfield [https://github.com/collective/collective.z3cform.datagridfield]

	Build JavaScript interfaces with plone.app.jqueryui [https://github.com/plone/plone.app.jqueryui]

	Handling image and file fields with plone.namedfile [https://github.com/plone/plone.namedfile]

	Configuring forms with plone.form.directives [https://pypi.python.org/pypi/plone.directives.form]

z3c.form big picture

The form model consists of:

	self.request

	The incoming HTTP request.

	self.context

	The Plone content item which was associated with the form view when URL
traversing was done.

	self.getContent()

	The actual object extracted from context and manipulated by the form if
ignoreContext is not False.

	self.status

	A message displayed at the top of the form to the user when the form is
rendered. Usually it will be "Please correct the errors below".

The call-chain for a form goes like this:

	Form.update() is called

	[plone.autoform-based forms only]
Calls Form.updateFields() - this will set widget factory
methods for fields. If you want to customize the type
of the widget associated with the field, do it here. If
your form is not plone.autoform-based you need to
edit form.schema widget factories on the module level code
after the class has been constructed. The logic
mapping widget hints to widgets is in plone.autoform.utils.

	Calls Form.updateWidgets() - you can customize widgets at this
point, if you override this method. The self.widgets instance
is created based on the self.fields property.

	Calls Form.updateActions()

	Calls the action handler (the handler for the button which was
clicked)

	If it's an edit form, the action handler calls applyChanges()
to store new values on the object and returns True
if any value was changed.

	Form.render() is called

	This renders the form as HTML, based on widgets and their templates.

Form

Simple boilerplate

Here is a minimal form implementation using z3c.form and Dexterity:

	Include Dexterity in your buildout as instructed by Dexterity manual

	Create Plone add-on product using Paster

	Include five.grok support in your add-on

	Toss form.py into your add-on product:

"""

 Simple sample form

"""

from five import grok
from plone.directives import form

from zope import schema
from z3c.form import button

from Products.CMFCore.interfaces import ISiteRoot
from Products.statusmessages.interfaces import IStatusMessage

class IMyForm(form.Schema):
 """ Define form fields """

 name = schema.TextLine(
 title=u"Your name",
)

class MyForm(form.SchemaForm):
 """ Define Form handling

 This form can be accessed as http://yoursite/@@my-form

 """
 grok.name('my-form')
 grok.require('zope2.View')
 grok.context(ISiteRoot)

 schema = IMyForm
 ignoreContext = True

 label = u"What's your name?"
 description = u"Simple, sample form"

 @button.buttonAndHandler(u'Ok')
 def handleApply(self, action):
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 # Do something with valid data here

 # Set status on this form page
 # (this status message is not bind to the session and does not go thru redirects)
 self.status = "Thank you very much!"

 @button.buttonAndHandler(u"Cancel")
 def handleCancel(self, action):
 """User cancelled. Redirect back to the front page.
 """

Setting form status message

The form's global status message tells whether the form action succeeded or
not.

The form status message will be rendered only on the form.
If you want to set a message which will be visible even if the user renders
another page after submitting the form,
you need to use Products.statusmessage.

To set the form status message:

form.status = u"My message"

Emulating form HTTP POST in unit tests

	The HTTP request must include at least one buttons field.

	Form widget naming must match HTTP post values. Usually widgets have
form.widgets prefix.

	You must emulate the ZPublisher behavior
which automatically converts string input to Python primitives.
For example, all choice/select values are Python lists.

	Some z3c widgets, like <select>, need to have
WIDGETNAME-empty-marker value set to
the integer 1 to be processed.

	Usually you can get the dummy HTTP request object via acquisition from
self.portal.REQUEST

Example (incomplete):

layout = "accommondationsummary_view"

Zope publisher uses Python list to mark <select> values
self.portal.REQUEST["form.widgets.area"] = [SAMPLE_AREA]
self.portal.REQUEST["form.buttons.search"] = u"Search"
view = self.portal.cards.restrictedTraverse(layout)

Call update() for form
view.process_form()
print view.form.render()

Always check form errors after update()
errors = view.errors
self.assertEqual(len(errors), 0, "Got errors:" + str(errors))

A more complete example:

-*- coding: utf-8 -*-
from freitag.membership.testing import FREITAGMEMBERSHIP_INTEGRATION_TESTING
from z3c.form.interfaces import IFormLayer
from zope.interface import alsoProvides

import unittest

FORM_ID = 'password_reset'

class TestPasswordReset(unittest.TestCase):

 layer = FREITAGMEMBERSHIP_INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']

 def test_nonexisting_fridge_rand(self):
 # create a password reset form
 self.portal.REQUEST["form.widgets.password"] = u'tatatata'
 self.portal.REQUEST["form.widgets.password_repeat"] = u'tatatata'
 self.portal.REQUEST["form.widgets.fridge_rand"] = 'nonexisting'
 self.portal.REQUEST["form.buttons.submit"] = u"Whatever"
 alsoProvides(self.portal.REQUEST, IFormLayer)
 form = self.portal.password_resetter.restrictedTraverse(FORM_ID)
 form.update()

 # data, errors = resetForm.extractData()
 data, errors = form.extractData()
 self.assertEqual(len(errors), 0)

Note that you will need to set IFormLayer on the request,
to prevent a ComponentLookupError.

Changing form ACTION attribute

By default, the HTTP POST request is made to context.absolute_url().
However you might want to make the post go to an external server.

	See how to set <form> action attribute [https://pypi.python.org/pypi/plone.app.z3cform#form-action]

Customizing form inner template

If you want to change the page template producing <form>...</form>
part of the HTML code, follow the instructions below.

Note

Generally, when you have a template which extends Plone's
main_template you need to use the
Products.Five.browser.pagetemplatefile.ViewPageTemplateFile
class.

Example:

Do not mix with Products.Five.browser.pagetemplatefile.ViewPageTemplateFile
from zope.app.pagetemplate import ViewPageTemplateFile as Zope3PageTemplateFile

class AddHeaderAnimationForm(crud.AddForm):
 """ Present form for adding a header animation """

 template = Zope3PageTemplateFile("custom-form-template.pt")

Customizing form frame

Please see plone.app.zc3form README [https://github.com/plone/plone.app.z3cform].

Rendering a form manually

You can directly create a form instance and call it's form.render() method.
This will output the full page HTML. However, there is a way to only render the form
body payload.

First create a form and update():

view.form = MyFormClass(self.context, self.request)
view.form.update()

Then you can invoke plone.app.z3cform macros directly to render the form body
in your view's page template.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone.app.widgets"
 lang="en"
 >
<body>

 <metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main">

 <h1 class="documentFirstHeading">Plone fields and widgets demo</h1>

 <div id="skel-contents">
 <tal:form repeat="form view/demos">

 <!-- plone.app.z3cform package provides view ploneform-macros
 which come with a helpers to render forms. This one
 will render the form body only. It also makes an assumption
 that form is presented in "view" TAL variable.

 -->
 <tal:with-form-as-view define="view nocall:form">
 <metal:block use-macro="form/@@ploneform-macros/titlelessform" />
 </tal:with-form-as-view>

 </tal:form>
 </div>

 </tal:main-macro>
 </metal:main>
</body>
</html>

Fields

A field is responsible for:
1) pre-populating form values from context
2) storing data to context after successful POST.

Form fields are stored in the form.fields variable,
which is an instance of the Fields class (ordered, dictionary-like).

Creating a field

Fields are created by adapting one or more zope.schema fields
for z3c.form using the Fields() constructor.

Example of creating one field:

import zope.schema
import z3c.form.field

schema_field = zope.schema.TextLine()
form_fields = z3c.form.field.Fields(schema_field)

This is a reference to newly created z3c.form.field.Field object
one_form_field = zfields.values()[0]

Another example:

import zope.schema
import z3c.form.field

...

field = zope.schema.Bool(
 __name__ = "death_autofill",
 title=_(u"Fill missing timepoints"),
 description=_(u"Automatically fill information in missing timepoints if they occur after the death time"),
 required=False,
 default=True)

Construct z3c.form field
fields_objects = z3c.form.field.Fields(field)

We can perform autofill only if we know the treatment time
form.fields += fields_objects

Adding a field to a form

Use the overridden += operator of a Fields instance.
Fields instances can be added to existing Fields instances.

Example:

self.form.fields += z3c.form.Fields(schema_field)

Modifying a field

Fields can be accessed by their name in form.fields. Example:

self.form.fields["myfieldname"].name = u"Foobar"

Accessing the schema of the field

A zope.schema Field is stored as a field attribute of a field.
Example:

textline = self.form.fields["myfieldname"].field # zope.schema.TextLine

Note

There exist only one singleton instance of a schema during run-time.
If you modify the schema fields, the changes are reflected to
all subsequent form updates and other forms which use the
same schema.

Read-only fields

There is field.readonly flag.

Example code:

class AREditForm(crud.EditForm):
 """ Form whose fields are dynamically constructed """

 def ar_editable(self):
 """ Arbitrary condition deciding whether fields on this form are
 patient=self.__parent__.__parent__
 if patient.getConfirmedAR() in (None,'','EDITABLE_AR'):
 return True
 return False

 @property
 def fields(self):
 """
 Dynamically create field data based on run-time constructed schema.

 Instead using static ``fields`` attribute, we use Python property
 which allows us to generate z3c.form.fields.Fields instance for the
 for run-time.
 """

 constructor = ARFormConstructor(self.context, self.context.context, self.request)

 # Create z3c.form.field.Fields object instance
 fields = constructor.getFields()

 if not self.ar_editable():
 # Disable all fields in edit mode if this form is locked out
 for f in fields.values():
 f.mode = z3c.form.interfaces.DISPLAY_MODE

 return fields

You might also want to disable the edit button if none of the fields are
editable:

Make the edit button conditional
AREditSubForm.buttons["apply"].condition = lambda form: form.has_edit_button()

Note

You can also set z3c.form.interfaces.DISPLAY_MODE in
updateWidgets()
if you are not dynamically poking form fields themselves.

Warning

Do not modify fields on singleton instances (form or fields objects are
shared between all forms).
This causes problems on concurrent access.

Note

zope.schema.Field has a readonly property.
z3c.form.field.Field does not have this property,
but has the mode property. Do not confuse these two.

Dynamic schemas

Below is an example of how to include new schemas on the fly:

class EditForm(dexterity.EditForm, Helper):

 grok.context(IFlexibleContent)

 def updateFields(self):

 super(dexterity.EditForm, self).updateFields()
 sections = self.getSections()

 # See plone.app.z3cform.fieldsets.extensible for more examples
 for s in sections:

 # s = {'schema': <InterfaceClass your.app.content.flexiblecontent.IBodyText>, 'id': u'title', 'name': u'Title'}
 if s == None:
 # This section has been removed from available flexi_blocks
 continue

 # convert zope schema interface to z3c.form.Fields instance
 schema = s["schema"]

 if not schema.providedBy(self.context):
 # We need to force the content item to provide
 # custom for interfaces or datamanger is not happy
 # Module z3c.form.datamanager, line 51, in adapted_context
 # TypeError: ('Could not adapt', <Item at /xxx/tydryd>, <InterfaceClass xxx.app.content.flexiblecontent.IColumns>)
 alsoProvides(self.context, schema) # XXX: This is persistent change?

 # We need to manually apply hints from plone.directives.form, as
 # updateFields() does it for base schema earlier
 processFields(self, schema, permissionChecks=True)

 print "Final results"
 for name, field in self.fields.items():
 print str(name) + " " + str(field)

Date and time

Example:

class IDeal(form.Schema):
 """
 Deals and discounts item
 """

 validUntil = schema.Datetime(title=u"Valid until")

See

	http://stackoverflow.com/questions/5776498/specify-datetime-format-on-zope-schema-date-on-plone

	http://svn.zope.org/zope.schema/trunk/src/zope/schema/tests/test_datetime.py?rev=113055&view=auto

Making boolean field required

E.g. to make "Accept Terms and Conditions" checkbox

	http://stackoverflow.com/questions/9670819/how-do-i-make-a-boolean-field-required-in-a-z3c-form

Widgets

Widget are responsible for
1) rendering HTML code for input;
2) parsing HTTP post input.

Widgets are stored as the widgets attribute of a form.
It is presented by an ordered dict-like Widgets class.

Widgets are only available after the form's update() and
updateWidgets() methods have been called.
updateWidgets() will bind widgets to the form context.
For example, vocabularies defined by name are resolved at this point.

A widget has two names:

	widget.__name__ is the name of the corresponding field.
Lookups from form.widgets[] can be done using this name.

	widget.name is the decorated name used in HTML code.
It has the format
${form name}.${field set name}.${widget.__name__}.

The Zope publisher will also mangle widget names based on what kind of input
the widget takes. When an HTTP POST request comes in,
Zope publisher automatically converts <select> dropdowns to lists and so
on.

Setting a widget for a field

Using plone.directives.form schema hints

Example:

from plone.directives import form
from zope import schema
from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

class ISampleSchema(form.Schema):

 # A fieldset with id 'extra' and label 'Extra information' containing
 # the 'footer' and 'dummy' fields. The label can be omitted if the
 # fieldset has already been defined.

 form.fieldset('extra',
 label=u"Extra information",
 fields=['footer', 'dummy']
)

 # Here a widget is specified as a dotted name.
 # The body field is also designated as the priamry field for this schema

 form.widget(body='plone.app.z3cform.wysiwyg.WysiwygFieldWidget')
 form.primary('body')
 body = schema.Text(
 title=u"Body text",
 required=False,
 default=u"Body text goes here"
)

More info

	Form schema hints

Setting widget for z3c.form plain forms

You can set field's widgetFactory after fields have
been declared in form class body.

Example:

import zope.schema
import zope.interface

import z3c.form
from z3c.form.browser.checkbox import CheckBoxFieldWidget

class IReportSchema(zope.interface.Interface):
 """ Define reporter form fields """

 variables = zope.schema.List(
 title=u"Variables",
 description=u"Choose which variables to include in the output report",
 required=False,
 value_type=zope.schema.Choice(vocabulary="output_variables"))

class ReportForm(z3c.form.form.Form):
 """ A form to output a HTML report from chosen parameters """

 fields = z3c.form.field.Fields(IReportSchema)

 fields["variables"].widgetFactory = CheckBoxFieldWidget

Setting widget dynamically Form.updateWidgets()

Widget type can be set dynamically based on external conditions.

class EditForm9(EditForm):
 label = u'Rendering widgets as blocks instead of cells'

 grok.name('demo-collective.z3cform.datagrid-block-edit')

 def updateWidgets(self):
 super(EditForm9, self).updateWidgets()
 # Set a custom widget for a field for this form instance only
 self.fields['address'].widgetFactory = BlockDataGridFieldFactory

Accessing a widget

A widget can be accessed by its field's name. Example:

class MyForm(z3c.form.Form):

 def update(self):
 z3c.form.Form.update(self)
 widget = form.widgets["myfieldname"] # Get one widget

 for w in widget.items(): print w # Dump all widgets

Introspecting form widgets

Example:

from z3c.form import form

class MyForm(form.Form):

 def updateWidgets(self):
 """ Customize widget options before rendering the form. """
 form.Form.updateWidgets(self)

 # Dump out all widgets - note that each <fieldset> is a subform
 # and this function only concerns the current fieldset
 for i in self.widgets.items():
 print i

Reordering and hiding widgets

With Dexterity forms you can use
plone.directives.form [https://pypi.python.org/pypi/plone.directives.form]:

from z3c.form.interfaces import IAddForm, IEditForm

class IFlexibleContent(form.Schema):
 """
 Description of the Example Type
 """

 # -*- Your Zope schema definitions here ... -*-
 form.order_before(sections='title')
 form.mode(sections='hidden')
 form.mode(IEditForm, sections='input')
 form.mode(IAddForm, sections='input')
 sections = schema.TextLine(title=u"Sections")

Modifying a widget

Widgets are stored in the form.widgets dictionary, which maps
field name to widget.
The widget label can be different than the field name.

Example:

from z3c.form import form

class MyForm(form.Form):

 def updateWidgets(self):
 """ Customize widget options before rendering the form. """

 self.widgets["myfield"].label = u"Foobar"

If you want to have a completely different Python class
for a widget, you need to override field's widget factory in
the module body code after fields have been constructed in the class,
or in the update() method for dynamically constructed fields:

def updateWidgets(self):
 self.fields["animation"].widgetFactory = HeaderFileFieldWidget

Reorder form widgets

plone.z3cform allows you to reorder the field widgets by overriding the
update method of the form class.

Example:

from z3c.form import form
from plone.z3cform.fieldsets.utils import move

class MyForm(form.Form):

 def update(self):
 super(MyForm, self).update()
 move(self, 'fullname', before='*')
 move(self, 'username', after='fullname')
 super(ProfileRegistrationForm, self).update()

For more information about how to reorder fields see the plone.z3cform
page at PyPI:

<https://pypi.python.org/pypi/plone.z3cform#fieldsets-and-form-extenders>`_

Hiding fields

Here's how to do it in pure z3c.form:

import z3c.form.interfaces
...

 def updateWidgets(self):
 self.widgets["getAvailability"].mode = z3c.form.interfaces.HIDDEN_MODE

If you want to hide a widget that is part of a group, you cannot use the updateWidgets method.
The groups and their widgets get initialized after the widgets have been updated.
Before that, the groups variable is just a list of group factories.
During the update method though, the groups have been initialized and have their own widget list each.
For hiding widgets there, you have to access the group in the update method like so:

import z3c.form.interfaces
...

 def update(self):
 for group in self.groups:
 if 'xxx' in group.widgets:
 group.widgets['xxx'].mode = z3c.form.interfaces.HIDDEN_MODE

groups itself is a list like object, you can also remove a complete group by just removing it from the group dictionary.

Unprefixing widgets

By default each form widget gets a name prefixed by the form id.
This allows you to combine several forms on the same page.

You can override this behavior in updateWidgets():

Remove prefix from form widget names, so that
the names are actual names on the remote server
for widget in self.widgets.values():
 # form.widgets.foobar -> foobar
 widget.id = widget.name = widget.field.__name__

Note

Some templates, like select_input.pt, have hard-coded
name suffixes like :list to satisfy ZPublisher machinery.
If you need to get rid of these, you need to override the template.

Making widgets required conditionally

If you want to avoid hardwired required on fields
and toggle then conditionally, you need to supply
a dynamically modified schema field to the
z3c.form.field.Fields instance of the form.

Example:

class ShippingAddressForm(CheckoutSubform):
 ignoreContext = True
 label = _(u"Shipping address")

 # Distinct fields on same <form> HTML element
 prefix = "shipping"

 def __init__(self, optional, content, request, parentForm):
 """
 @param optional: Whether shipping address should be validated or not.
 """
 subform.EditSubForm.__init__(self, content, request, parentForm)
 self.optional = optional

 @property
 def fields(self):
 """ Get the field definition for this form.

 Form class's fields attribute does not have to
 be fixed, it can be property also.
 """

 # Construct the Fields instance as we would
 # normally do in more static way
 fields = z3c.form.field.Fields(ICheckoutAddress)

 # We need to override the actual required from the
 # schema field which is a little tricky.
 # Schema fields are shared between instances
 # by default, so we need to create a copy of it
 if self.optional:
 for f in fields.values():
 # Create copy of a schema field
 # and force it unrequired
 schema_field = copy.copy(f.field) # shallow copy of an instance
 schema_field.required = False
 f.field = schema_field

 return fields

Setting widget types

By default, widgets for form fields are determined by FieldWidget
adapters (defined in ZCML).
You can override adapters per field using field's widgetFactory property.

Below is an example which creates a custom widget, its FieldWidget
factory, and uses it for one field in one form:

from zope.component import adapter, getMultiAdapter
from zope.interface import implementer, implements, implementsOnly

from z3c.form.interfaces import IFieldWidget
from z3c.form.widget import FieldWidget

from plone.formwidget.namedfile.widget import NamedFileWidget, NamedImageWidget

class HeaderFileWidget(HeaderWidgetMixin, NamedFileWidget):

 # Get download url for HeaderAnimation object's file.
 # Download URL is set externally by edit sub form and
 download_url = None

class HeaderImageWidget(HeaderWidgetMixin, NamedImageWidget):
 pass

@implementer(IFieldWidget)
def HeaderFileFieldWidget(field, request):
 """ Factory for creating HeaderFileWidget which is bound to one field
 """
 return FieldWidget(field, HeaderFileWidget(request))

class EditHeaderAnimationSubForm(crud.EditSubForm):
 """
 """

 def updateWidgets(self):
 """ Enforce custom widget types which get file/image attachment URL right """
 # Custom widget types are provided by FieldWidget factories
 # before updateWidgets() is called
 self.fields["animation"].widgetFactory = HeaderFileFieldWidget

 crud.EditSubForm.updateWidgets(self)

 # Make edit form aware of correct image download URLs
 self.widgets["animation"].download_url = "http://mymagicalurl.com"

Alternatively, you can use
plone.directives.form [https://pypi.python.org/pypi/plone.directives.form]
to add widget hints to form schema.

Widget save

After form.update() if the request was save and all data was valid,
form.applyChanges(data) is called.

By default widgets use datamanger.AttributeField and try to store their
values as a member attribute of the object returned by form.getContent().

Todo

How do add custom DataManager

Widget value

The widget value, either from form POST or previous context data,
is available as widget.value after the form.update() call.

Adding a CSS class

Widgets have a method addClass() to add extra CSS classes.
This is useful if you have
Javascript/JQuery associated with your special form:

widget.addClass("myspecialwidgetclass")

Note that these classes are directly applied to <input>, <select>,
etc. itself, and not to the wrapping <div> element.

Accessing the schema of the field

A zope.schema Field is stored as a field attribute of a widget.
Example:

textline = form.widgets["myfieldname"].field # zope.schema.TextLine

Warning

Widget.field is not a z3c.form.field.Field object.

Getting selection widget vocabulary value as human readable text

Example:

widget = self.widgets["myselectionlist"]

token = widget.value[0] # widget.value is list of unicode strings, each is token for the vocabulary

user_readable = widget.terms.getTermByToken(token).title

Example (page template)

<td tal:define="widget view/widgets/myselectionlist">
 <span tal:define="token python:widget.value[0]"
 tal:content="python:widget.terms.getTermByToken(token).title" />
</td>

Setting widget templates

You might want to customize the template of a widget to have custom HTML
code for a specific use case.

Setting the template of an individual widget

First copy the existing page template code of the widget.
For basic widgets you can find the template in the
z3c.form source tree [http://svn.zope.org/z3c.form/trunk/src/z3c/form/browser/].

yourwidget.pt (text area widget copied over an example text)

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 tal:omit-tag="">

<!-- Sections widget custom templates -->

<textarea
 id="" name="" class="" cols="" rows=""
 tabindex="" disabled="" readonly="" accesskey=""
 tal:attributes="id view/id;
 name view/name;
 class view/klass;
 style view/style;
 title view/title;
 lang view/lang;
 onclick view/onclick;
 ondblclick view/ondblclick;
 onmousedown view/onmousedown;
 onmouseup view/onmouseup;
 onmouseover view/onmouseover;
 onmousemove view/onmousemove;
 onmouseout view/onmouseout;
 onkeypress view/onkeypress;
 onkeydown view/onkeydown;
 onkeyup view/onkeyup;
 disabled view/disabled;
 tabindex view/tabindex;
 onfocus view/onfocus;
 onblur view/onblur;
 onchange view/onchange;
 cols view/cols;
 rows view/rows;
 readonly view/readonly;
 accesskey view/accesskey;
 onselect view/onselect"
 tal:content="view/value" />
</html>

Now you can override the template factory in the updateWidgets() method
of your form class

from zope.app.pagetemplate import ViewPageTemplateFile as Z3ViewPageTemplateFile
from z3c.form.interfaces import INPUT_MODE

class AddForm(DefaultAddForm):

 def updateWidgets(self):
 """ """
 # Call parent to set-up initial widget data
 DefaultAddForm.updateWidgets(self)

 # Note we need to be discreet to different form modes (view, edit, hidden)
 if self.fields["sections"].mode == INPUT_MODE:

 # Modify a widget with certain name for our purposes
 widget = self.widgets["sections"]

 # widget.template is a template factory -
 # Widget.render() will associate later this factory with the widget
 widget.template = Z3ViewPageTemplateFile("templates/sections.pt")

You can also interact with your form class instance from the widget
template

<!-- Some hidden JSON data for our Javascripts by calling a method on our form class -->

Setting template for your own widget type

You can set the template used by the widget with the
<z3c:widgetTemplate> ZCML directive

<z3c:widgetTemplate
 mode="display"
 widget=".interfaces.INamedFileWidget"
 layer="z3c.form.interfaces.IFormLayer"
 template="file_display.pt"
 />

You can also enforce the widget template in the render() method of the
widget class:

from zope.component import adapter, getMultiAdapter
from zope.interface import implementer, implements, implementsOnly
from zope.app.pagetemplate.viewpagetemplatefile import ViewPageTemplateFile

from z3c.form.interfaces import IFieldWidget, INPUT_MODE, DISPLAY_MODE, HIDDEN_MODE
from z3c.form.widget import FieldWidget

from plone.formwidget.namedfile.widget import NamedFileWidget, NamedImageWidget

class HeaderFileWidget(NamedFileWidget):
 """ Subclass widget a use a custom template """

 display_template = ViewPageTemplateFile("header_file_display.pt")

 def render(self):
 """See z3c.form.interfaces.IWidget."""

 if self.mode == DISPLAY_MODE:
 # Enforce template and do not query it from the widget template factory
 template = self.display_template

 return NamedFileWidget.render(self)

Widget template example:

<span id="" class="" i18n:domain="plone.formwidget.namedfile"
 tal:attributes="id view/id;
 class view/klass;
 style view/style;
 title view/title;
 lang view/lang;
 onclick view/onclick;
 ondblclick view/ondblclick;
 onmousedown view/onmousedown;
 onmouseup view/onmouseup;
 onmouseover view/onmouseover;
 onmousemove view/onmousemove;
 onmouseout view/onmouseout;
 onkeypress view/onkeypress;
 onkeydown view/onkeydown;
 onkeyup view/onkeyup"
 tal:define="value view/value;
 exists python:value is not None">
 <span tal:define="fieldname view/field/__name__ | nothing;
 filename view/filename;
 filename_encoded view/filename_encoded;"
 tal:condition="python: exists and fieldname">
 <a tal:content="filename"
 tal:attributes="href string:${view/download_url}">Filename
 — 100 KB

 No file

Setting widget frame template

You can change how the frame around each widget is rendered
in the widget rendering loop. This frame has elements like
label, required marker, field description and so on.

For instructions see plone.app.z3cform README [https://github.com/plone/plone.app.z3cform/]

Combined widgets

You can combine multiple widgets to one with z3c.form.browser.multil.MultiWidget and z3c.form.browser.object.ObjectWidget classes.

Example how to create a min max input widget.

Python code to setup the widget:

import zope.interface
import zope.schema
from zope.schema.fieldproperty import FieldProperty

import z3c.form
from z3c.form.object import registerFactoryAdapter

class IMinMax(zope.interface.Interface):
 """ Helper schema for min and max fields """

 min = zope.schema.Float(required=False)

 max = zope.schema.Float(required=False)

@zope.interface.implementer(IMinMax)
class MinMax(object):
 """ Store min-max field values """
 min = FieldProperty(IMinMax['min'])
 max = FieldProperty(IMinMax['max'])

registerFactoryAdapter(IMinMax, MinMax)

....

field = zope.schema.Object(__name__='mixmax', title=label, schema=IMinMax, required=False)

Then we do some widget marking in updateWidgets():

def updateWidgets(self):
 """
 """

 super(FilteringGroup, self).updateWidgets()

 # Add min and max CSS class rendering hints
 for widget in self.widgets.values():
 if isinstance(widget, z3c.form.browser.object.ObjectWidget):
 widget.template = Z3ViewPageTemplateFile("templates/minmax.pt")
 widget.addClass("min-max-widget")
 zope.interface.alsoProvides(widget, IFilterWidget)

And then the page template which renders both 0. widget (min) and 1. widget (max)
on the same line.

<div class="min-max-widget"
 tal:define="widget0 python:view.subform.widgets.values()[0]; widget1 python:view.subform.widgets.values()[1];">

 <tal:comment>
 <!-- Use label from the first widget -->
 </tal:comment>

 <div class="label">
 <label tal:attributes="for widget0/id">
 <span i18n:translate=""
 tal:content="widget0/label">label
 </label>
 </div>

 <div class="widget-left" tal:define="widget widget0">

 <div tal:content="structure widget/render">
 <input type="text" size="24" value="" />
 </div>

 </div>

 <div class="widget-separator">
 -
 </div>

 <div class="widget-right" tal:define="widget widget1">

 <div class="widget" tal:content="structure widget/render">
 <input type="text" size="24" value="" />
 </div>

 </div>

 <div tal:condition="widget0/error"
 tal:replace="structure widget/error/render">error</div>

 <div class="error" tal:condition="widget1/error"
 tal:replace="structure widget1/error/render">error</div>

 <div style="clear: both"><!-- --></div>

 <input name="field-empty-marker" type="hidden" value="1"
 tal:attributes="name string:${view/name}-empty-marker" />

</div>

Buttons

Buttons enable actions in forms. AddForm and EditForm
base classes come with default buttons (Save).

More information in z3c.form documentation

	http://packages.python.org/z3c.form/button.html

Adding a button to form

The easiest way to add handlers for buttons is to use
a function decorator z3c.form.button.buttonAndHandler().

The first parameter is the user visible label and
the second one is the <input> name.

Example:

from z3c.form import button

class Form(...):

 @button.buttonAndHandler(_('Add'), name='add')
 def handle_add(self, action):
 data, errors = self.extractData()
 if errors:
 self.status = "Please correct errors"
 return

 self.applyChanges(data)
 self.status = _(u"Item added successfully.")

The default z3c.form.form.AddForm and z3c.form.form.EditForm
Add and Save button handler calls are good code
examples.

	http://svn.zope.org/z3c.form/trunk/src/z3c/form/form.py?rev=114824&view=auto

If you created a form based on another form, the buttons defined on that other form get lost.
To prevent that, you must explicitly add the buttons of the base class in your form class:

from z3c.form import button
from z3c.form.form import EditForm

class Form(EditForm):

 buttons = EditForm.buttons.copy()

 @button.buttonAndHandler(...)
 def handle_add(...):
 ...

Adding buttons conditionally

The buttonAndHandler decorator can accept a condition argument.
The condition should be a function that accepts the form as an argument and returns a boolean.
Example, a button that only shows when a condition is met:

@button.buttonAndHandler(
 u"Delete Event",
 name="handleDelete",
 condition=lambda form: form.okToDelete()
)
def handleDelete(self, action):
 """
 Delete this event.
 """

 ...

 self.status = "Event deleted."

Manipulating form buttons programmatically

You want to manipulate buttons if you want to hide buttons dynamically,
manipulate labels, etc.

Buttons are stored in buttons class attribute.

Warning

Button storage is shared between all form instances,
so do not mutate its content. Instead create a copy
of it if you wish to have form-specific changes.

Reading buttons

Example:

self.mobile_form_instance = MobileForm(self.context, self.request)

for i in self.mobile_form_instance.buttons.items(): print i
('apply', <Button 'apply' u'Apply'>)

Removing or hiding buttons

Here is an example how to hide all buttons from a certain form instance.

Example:

import copy

def update(self):
 # Hide form buttons

 # Create immutable copy which you can manipulate
 self.mobile_form_instance.buttons = copy.deepcopy(self.mobile_form_instance.buttons)

 # Remove button using dictionary style delete
 for button_id in self.mobile_form_instance.buttons.keys():
 del self.mobile_form_instance.buttons[button_id]

Adding buttons dynamically

In the example below, the Buttons array is already constructed
dynamically
and we can manipulate it:

def setActions(self):
 """ Add button to the form based on dynamic conditions. """

 if self.isSaveEnabled():

 but = button.Button("save", title=u"Save")
 self.form.buttons += button.Buttons(but)

 self.form.buttons._data_keys.reverse() # Fix Save button to left

 handler = button.Handler(but, self.form.__class__.handleSave)
 self.form.handlers.addHandler(but, handler)

Subforms

Subforms are embedded z3c forms inside a master form.

Subforms may have their own
buttons or use the controls from the master form.
You need to call update() manually for subforms.

More info

	http://packages.python.org/z3c.form/subform.html

Adding an action to parent and subform

Parent and subform actions must be linked.

Example:

class CheckoutForm(z3c.form.form.EditForm):

 @button.buttonAndHandler(_('Continue'), name='continue')
 def handleContinue(self, action):
 """ Extract the checkout data to session and redirect to payment Arbitrary checkout screen.

 Note:

 """

 # Following has been copied from z3c.form.form.EditForm
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 changes = self.applyChanges(data)

 if changes:
 self.status = self.successMessage
 else:
 self.status = self.noChangesMessage

class CheckoutSubform(subform.EditSubForm):
 """ Add support for continue action. """

 def execute(self):
 """
 Make sure that the form is refreshed when parent
 form Continue is pressed.
 """

 data, errors = self.extractData()
 if errors:
 self.errors = errors
 self.status = self.formErrorsMessage
 return errors

 content = self.getContent()
 z3c.form.form.applyChanges(self, content, data)

 return None

 @button.handler(CheckoutForm.buttons['continue'])
 def handleContinue(self, action):
 """ What happens when the parent form button is pressed """
 self.execute()

Creating subforms at run-time

Below is an example how to convert existing form instance to
be used as an subform in another form:

def convertToSubForm(self, form_instance):
 """
 Make existing form object behave like subform object.

 * Do not render <form> frame

 * Do not render actions

 @param form_instance: Constructed z3c.form.form.Form object
 """

 # Create mutable copy which you can manipulate
 form_instance.buttons = copy.deepcopy(form_instance.buttons)

 # Remove subform action buttons using dictionary style delete
 for button_id in form_instance.buttons.keys():
 del form_instance.buttons[button_id]

 if HAS_WRAPPER_FORM:
 # Plone 4 / Plone 3 compatibility
 zope.interface.alsoProvides(form_instance, IWrappedForm)

 # Use subform template - this prevents getting embedded <form>
 # elements inside the master <form>
 import plone.z3cform
 #from zope.pagetemplatefile import ViewPageTemplateFile as Zope3PageTemplateFile
 from zope.app.pagetemplate import ViewPageTemplateFile as Zope3PageTemplateFile
 from zope.app.pagetemplate.viewpagetemplatefile import BoundPageTemplate
 template = Zope3PageTemplateFile('subform.pt', os.path.join(os.path.dirname(plone.z3cform.__file__), "templates"))
 form_instance.template = BoundPageTemplate(template, form_instance)

Note

If possible, try to construct your form class hierarchy so that
you can use the same class mix-in for normal forms and subforms.

CRUD form

CRUD (Create, read, update, delete) forms manage list of objects.

CRUD form elements:

	Add form creates new objects and renders the form below the table

	Edit sub-form edits existing object and renders one table row

	Edit form lists all objects and allows deleting them (table master)

	CRUD form orchestrates the whole thing and renders add and edit forms

	view_schema outputs read-only fields in CRUD table

	update_schema outputs editable fields in CRUD table.
Usually you want either view_schema or update_schema.

	add_schema outputs add form.

Note

the context attribute of add and edit form is the parent CRUD
form. The context attribute of an edit subform is the edit form.

Examples

	Easy: plone.app.headeranimation animation and image list manager [https://svn.plone.org/svn/collective/plone.app.headeranimation/trunk/plone/app/headeranimation/browser/forms.py].

	Complex: Singing & dancing channel manager example [https://svn.plone.org/svn/collective/collective.dancing/trunk/collective/dancing/browser/channel.py]

Displaying the status message in a non-standard location

By default, the status message is rendered inside plone.app.z3cform
macros.pt above the form:

<metal:define define-macro="titlelessform">

 <tal:status define="status view/status" condition="status">
 <dl class="portalMessage error" tal:condition="view/widgets/errors">
 <dt i18n:domain="plone" i18n:translate="">
 Error
 </dt>
 <dd tal:content="status" />
 </dl>
 <dl class="portalMessage info" tal:condition="not: view/widgets/errors">
 <dt i18n:domain="plone" i18n:translate="">
 Info
 </dt>
 <dd tal:content="status" />
 </dl>
 </tal:status>

We can decouple the status message from the form,
without overriding all the templates,
by copying status message variable to another variable and then playing
around with it in our wrapper view template.

Form class:

class HolidayServiceSearchForm(form.Form):
 """
 """

 @button.buttonAndHandler(_(u"Search"))
 def searchHandler(self, action):
 """ Search form submit handler for product card search.
 """

 data, errors = self.extractData()
 if len(self.search_results) == 0:
 self.status = _(u"No holiday services found.")
 else:
 msgid = _("found_results", default=u"Found ${results} holiday services.", mapping={u"results" : len(self.search_results)})
 self.status = self.context.translate(msgid)

 ...

 # Use non-standard location to display the status
 # for success messages
 if len(self.widgets.errors) == 0:
 self.result_message = self.status
 self.status = None

class HolidayServiceSearchView(FormWrapper):
 """ HolidayService browser view
 """

 form = HolidayServiceSearchForm

 def result_message(self):
 """ Display result message in non-standard location """

 if len(self.form_instance.widgets.errors) == 0:
 # Do not display form highlight errors here
 return self.form_instance.result_message

... and then we can use a special result_message view accessor in our
view template code

<tal:comment replace="nothing">Form submit anchor</tal:comment>

<tal:status define="status view/result_message" condition="python:status != None">
 <dl class="portalMessage info">
 <dt i18n:domain="plone" i18n:translate="">
 Info
 </dt>
 <dd tal:content="status" />
 </dl>
</tal:status>

Storage format and data managers

By default, z3c.form reads incoming context values as the object
attributes.
This behavior can be customized using data managers.

You can, for example, use Python dictionaries to read and store form data.

	http://packages.python.org/z3c.form/datamanager.html

Custom content objects

The following hack can be used if you have an object which does not conform
your form interface and you want to expose only certain object attribute to
the form to be edited.

Example:

class ISettings(zope.interface.Interface):

 # This maps to Archetypes field confirmedAR on SitsPatient
 confirmedAR = zope.schema.Choice(
 title=_(u"Confirm adherse reactions"),
 description=_(u"Confirm that all adherse reactions regarding the patient life cycle have been entered here and there will be no longer adherse reaction data"),
 vocabulary=make_zope_schema_vocabulary(ADVERSE_STATUS_VOCABULARY))

class ARSettingsForm(form.Form):
 """ General settings for all adherse reactions """

 fields = Fields(ISettings)

 def getContent(self):
 """ """

 # Create a temporary object holding the settings values out of the patient

 class TemporarySettingsContext(object):
 zope.interface.implements(ISettings)

 obj = TemporarySettingsContext()

 # Copy values we want to expose to the form from Plone context item to the temporary object
 obj.confirmedAR = self.context.confirmedAR

 return obj

Note

Since getContent() is also used in applyChanges(), you need to
override applyChanges() as well
to save values correctly to a persistent object.

Custom change applying

The default, the behavior of the z3c.form edit form is to write incoming
data as the attributes of the object returned by getContent().

You can override this behavior by overriding applyChanges() method.

Example:

def applyChanges(self, data):
 """
 Reflect confirmed status to Archetypes schema.

 @param data: Dictionary of cleaned form data, keyed by field
 """

 # This is the context given to the form when the form object was constructed
 patient = self.context

 assert ISitsPatient.providedBy(patient) # safety check

 # Call archetypes field mutator to store the value on the patient object
 patient.setConfirmedAR(data["confirmedAR"])

WYSIWYG widgets

By using plone.directives.form [https://pypi.python.org/pypi/plone.directives.form]
and plone.app.z3cform [https://pypi.python.org/pypi/plone.app.z3cform] packages you can do:

from plone.app.z3cform.wysiwyg import WysiwygFieldWidget

from mfabrik.plonezohointegration import _

class ISettings(form.Schema):
 """ Define schema for settings of the add-on product """

 form.widget(contact_form_prefix=WysiwygFieldWidget)
 contact_form_prefix = schema.Text(
 title=_(u"Contact form top text"),
 description=_(u"Custom text for the long contact form upper part"),
 required=False,
 default=u"")

More information

	https://pypi.python.org/pypi/plone.directives.form

Wrapped and non-wrapped forms

A z3c.form.form.Form object is "wrapped" when it is
rendered inside Plone page frame and having
acquisition chain in intact.

Since plone.app.z3cform 0.5.0 the behavior goes like this:

	Plone 3 forms are automatically wrapped

	Plone 4 forms are unwrapped

The wrapper is a plone.z3cform.interfaces.IWrappedForm
marker interface
on the form object, applied it after the form instance has been constructed.
If this marker interface is not applied,
plone.z3cform.ZopeTwoFormTemplateFactory
tries to embed the form into Plone page frame.
If the form is not intended to be rendered as a full page form,
this usually leads to the following exception:

*** ContentProviderLookupError: plone.htmlhead

The form tries to render the full Plone page.
Rendering this page needs an acquisition
chain set-up for the view and the template. Embedded forms do not have this,
or it would lead to recursion error.

If you are constructing form instances manually and want to render them
without Plone page decoration,
you must make sure that automatic form wrapping does not take place:

import zope.interface
from plone.z3cform.interfaces import IWrappedForm

class SomeView(BrowserView):

 def init(self):
 """ Constructor embedded sub forms """

 # Construct few embedded forms
 self.mobile_form_instance = MobileForm(
 self.context, self.request)
 zope.interface.alsoProvides(
 self.mobile_form_instance, IWrappedForm)

 self.publishing_form_instance = PublishingForm(
 self.context, self.request)
 zope.interface.alsoProvides(
 self.publishing_form_instance, IWrappedForm)

 self.override_form_instance = getMultiAdapter(
 (self.context, self.request),
 IOverrideForm)
 zope.interface.alsoProvides(
 self.override_form_instance, IWrappedForm)

Embedding z3c.form forms in portlets, viewlets and views

By default, when plone.app.z3cform is installed through
the add-on installer, all forms have full Plone page frame.
If you are rendering forms inside non-full-page objects,
you need to change the default template.

Below is an example how to include a z3c.form-based form in a portlet.

Note

plone.app.z3cform version 0.5.1 or later is needed,
as older versions do not support overriding form.action
property.

You need the following:

	a z3c.form class

	the viewlet/portlet class

	A form wrapper template which renders the frame around the form.
The default version renders the whole Plone page frame ---
you don't want this when the form is embedded,
otherwise you get infinite recursion
(plone page having a form having a plone page...)

	Portlet/viewlet template which refers to the form

	ZCML to register all components

Portlet code:

from plone.z3cform.layout import FormWrapper

class PortletFormView(FormWrapper):
 """ Form view which renders z3c.forms embedded in a portlet.

 Subclass FormWrapper so that we can use custom frame template. """

 index = ViewPageTemplateFile("formwrapper.pt")

class Renderer(base.Renderer):
 """ z3c.form portlet renderer.

 Instiate form and wrap it to a special layout template
 which will give the form suitable frame to be used in the portlet.

 We also set a form action attribute, so that
 the browser goes to another page after the form has been submitted
 (we really don't know what kind of page the portlet is displayed
 and is it safe to submit forms there, so we do this to make sure).
 The action page points to a browser:page view where the same
 form is displayed as full-page form, giving the user to better
 user experience to fix validation errors.
 """

 render = ViewPageTemplateFile('zohocrmcontact.pt')

 def __init__(self, context, request, view, manager, data):
 base.Renderer.__init__(self, context, request, view, manager, data)
 self.form_wrapper = self.createForm()

 def createForm(self):
 """ Create a form instance.

 @return: z3c.form wrapped for Plone 3 view
 """

 context = self.context.aq_inner

 returnURL = self.context.absolute_url()

 # Create a compact version of the contact form
 # (not all fields visible)
 form = ZohoContactForm(context, self.request, returnURLHint=returnURL, full=False)

 # Wrap a form in Plone view
 view = PortletFormView(context, self.request)
 view = view.__of__(context) # Make sure acquisition chain is respected
 view.form_instance = form

 return view

 def getContactFormURL(self):
 """ For rendering the form link at the bottom of the portlet.

 @return: URL leading to the full contact form
 """
 return self.form_wrapper.form_instance.action

formwrapper.pt is just a dummy form view template which wraps the form.
This differs from standard form wrapper by not rendering Plone
main layout around the form.

<div class="portlet-form">
 <div tal:replace="structure view/contents" />
</div>

Then the portlet template itself (zohoportlet.pt) renders the portlet.
The form is rendered using:
<form tal:replace="structure view/form_wrapper" />.

<dl class="portlet portletZohoCRMContact"
 i18n:domain="mfabrik.plonezohointegration">

 <dt class="portletHeader">

 Contact Us

 </dt>

 <dd class="portletItem odd">
 <form tal:replace="structure view/form_wrapper" />
 </dd>

 <dd class="portletFooter">

 <a href=""
 tal:attributes="href view/getContactFormURL"
 i18n:translate="box_more_news_link">
 Longer contact form…

 </dd>

</dl>

Note

Viewlets behave a little differently, since they do some acquisition
chain mangling when you assign variables to self. Thus you should
never have self.view = view or self.form = form in a viewlet.

Template example for viewlet (don't do sel.form_wrapper)

<div id="my-viewlet">
 <form tal:replace="structure python:view.createForm()()" />
</div>

Then the necessary parts of form itself:

class IZohoContactForm(zope.interface.Interface):
 """ Form field definitions for Zoho contact forms """

 first_name = schema.TextLine(title=_(u"First name"))

 last_name = schema.TextLine(title=_(u"Last name"))

 company = schema.TextLine(title=_(u"Company / organization"), description=_(u"The organization which you represent"))

 email = schema.TextLine(title=_(u"Email address"), description=_(u"Email address we will use to contact you"))

 phone_number = schema.TextLine(title=_(u"Phone number"),
 description=_(u"Your phone number in international format. E.g. +44 12 123 1234"),
 required=False,
 default=u"")

 returnURL = schema.TextLine(title=_(u"Return URL"),
 description=_(u"Where the user is taken after the form is successfully submitted"),
 required=False,
 default=u"")

class ZohoContactForm(Form):
 """ z3c.form used to handle the new lead submission.

 This form can be rendered

 * standalone (@@zoho-contact-form view)

 * embedded into the portlet

 ..note::

 It is recommended to use a CSS rule
 to hide form descriptions when rendered in the portlet to save
 some screen estate.

 Example CSS::

 .portletZohoCRMContact .formHelp {
 display: none;
 }
 """

 fields = Fields(IZohoContactForm)

 label = _(u"Contact Us")

 description = _(u"If you are interested our services leave your contact information below and our sales representatives will contact you.")

 ignoreContext = True

 def __init__(self, context, request, returnURLHint=None, full=True):
 """

 @param returnURLHint: Should we enforce return URL for this form

 @param full: Show all available fields or just required ones.
 """
 Form.__init__(self, context, request)
 self.all_fields = full

 self.returnURLHint = returnURLHint

 @property
 def action(self):
 """ Rewrite HTTP POST action.

 If the form is rendered embedded on the others pages we
 make sure the form is posted through the same view always,
 instead of making HTTP POST to the page where the form was rendered.
 """
 return self.context.portal_url() + "/@@zoho-contact-form"

 def updateWidgets(self):
 """ Make sure that return URL is not visible to the user.
 """
 Form.updateWidgets(self)

 # Use the return URL suggested by the creator of this form
 # (if not acting standalone)
 self.widgets["returnURL"].mode = z3c.form.interfaces.HIDDEN_MODE
 if self.returnURLHint:
 self.widgets["returnURL"].value = self.returnURLHint

 # Prepare compact version of this formw
 if not self.all_fields:
 # Hide fields which we don't want to bother user with
 self.widgets["phone_number"].mode = z3c.form.interfaces.HIDDEN_MODE

 @button.buttonAndHandler(_('Send contact request'), name='ok')
 def send(self, action):
 """ Form button hander. """

 data, errors = self.extractData()

 if not errors:

 settings = self.getZohoSettings()
 if settings is None:
 self.status = _(u"Zoho is not configured in Site Setup. Please contact the site administration.")
 return

 crm = CRM(settings.username, settings.password, settings.apikey)

 # Fill in data going to Zoho CRM
 lead = {
 "First Name" : data["first_name"],
 "Last Name" : data["last_name"],
 "Company" : data["company"],
 "Email" : data["email"],
 }

 phone = data.get("phone_number", "")
 if phone != "":
 # Only pass phone number to Zoho if it's set
 lead["Phone"] = phone

 # Pass in all prefilled lead fields configured in the site setup
 lead.update(self.parseExtraFields(settings.crm_lead_extra_data))

 # Open Zoho API connection
 try:
 # This will raise ZohoException and nuke the request
 # if Zoho credentials are wrong
 crm.open()

 # Make sure that wfTrigger is true
 # and Zoho does workflow actions for the new leads
 # (like informing sales about the availability of the lead)
 crm.insert_records([lead], {"wfTrigger" : "true"})
 except IOError:
 # Network down?
 self.status = _(u"Cannot connect to Zoho servers. Please contact web site administration")
 return

 ok_message = _(u"Thank you for contacting us. Our sales representatives will come back to you in few days")

 # Check whether this form was submitted from another page
 returnURL = data.get("returnURL", "")

 if returnURL != "" and returnURL is not None:

 # Go to page where we were sent and
 # pass the confirmation message as status message (in session)
 # as we are not in the control of the destination page
 from Products.statusmessages.interfaces import IStatusMessage
 messages = IStatusMessage(self.request)
 messages.addStatusMessage(ok_message, type="info")
 self.request.response.redirect(returnURL)
 else:
 # Act standalone
 self.status = ok_message
 else:
 # errors on the form
 self.status = _(u"Please fill in all the fields")

Further reading

This example code was taken from the mfabrik.plonezohointegration
product which is in the Plone collective.

Validators

Introduction

Please read Dexterity manual validators chapter [http://plone.org/products/dexterity/documentation/manual/schema-driven-forms/customising-form-behaviour/referencemanual-all-pages].

There are three kind of validation hooks you can use with z3c.form

	zope.schema field parameter specific

	zope.schema @invariant (validation is model specific)

	zope.schema constrain (validation is model specific)

	z3c.form (validation is bound ot the form instance)

Field specific internal validators

When you define your field with zope.schema
you can enable flags for field internal validation.
This include e.g.

	required is field required on the form or not

	min and max for number based fields

Example:

class LocalizationOfStenosisForm(form.Schema):

 degreeOfStenosis = schema.Float(
 title=u"Degree of stenosis %",
 required=False,
 min=0.0,
 max=100.0
)

For available internal validation options, see the field source code in zope.schema package.

Constrain validators

zope.schema fields take a callable argument constrain
which defines a Python function validating the incoming value.

Example:

import zope.interface

def lastNameConstraint(value):
 if value and value == value.lower():
 raise zope.interface.Invalid(u"Name must have at least one capital letter")
 return True

class IPerson(zope.interface.Interface):

 lastName = zope.schema.TextLine(
 title=u'Last Name',
 description=u"The person's last name.",
 default=u'',
 required=True,
 constraint=lastNameConstraint)

For more information, see zope.schema documentation.

Invariant validators

TODO: Are invariants useful with z3c.form??

Form widget validators

Validators are best added in the schema itself.

	If you are using plain z3c.form,
you can check the validators documentation [http://packages.python.org/z3c.form/validator.html].

	The plone.form.directives package provides convenient
decorators for form validators [https://pypi.python.org/pypi/plone.directives.form#validators].
If you use plone.form.directives validators, make sure your package
is grokked
(otherwise validators are not registered).

Example: How to use widget specific validators with z3c.form:

from z3c.form import validator
import zope.component

class IZohoContactForm(form.Schema):
 """ Form field definitions for Zoho contact forms """

 phone_number = schema.TextLine(title=_(u"Phone number"),
 description=_(u"Your phone number in international format. E.g. +44 12 123 1234"),
 required=False,
 default=u"")

class PhoneNumberValidator(validator.SimpleFieldValidator):
 """ z3c.form validator class for international phone numbers """

 def validate(self, value):
 """ Validate international phone number on input """
 allowed_characters = "+- () / 0123456789"

 if value != None:

 value = value.strip()

 if value == "":
 # Assume empty string = no input
 return

 # The value is not required
 for c in value:
 if c not in allowed_characters:
 raise zope.interface.Invalid(_(u"Phone number contains bad characters"))

 if len(value) < 7:
 raise zope.interface.Invalid(_(u"Phone number is too short"))

Set conditions for which fields the validator class applies
validator.WidgetValidatorDiscriminators(PhoneNumberValidator, field=IZohoContactForm['phone_number'])

Register the validator so it will be looked up by z3c.form machinery

zope.component.provideAdapter(PhoneNumberValidator)

More info

	http://plone.org/products/dexterity/documentation/manual/schema-driven-forms/customising-form-behaviour/validation

Custom field specific validation in form action handlers and update()

	http://stackoverflow.com/a/17466776/315168

Customizing and translating error messages

If you want to custom error messages on per-field level:

from zope.schema._bootstrapinterfaces import RequiredMissing
RequiredMissingErrorMessage = error.ErrorViewMessage(_(u'Required value is missing.'), error=RequiredMissing, field=IEmailFormSchema['email'])
zope.component.provideAdapter(RequiredMissingErrorMessage, name='message')

Leave field parameter out if you want the new error message to apply to
all fields.

Read-only and disabled fields

Read-only fields are not rendered in form edit mode:

courseModeAccordion = schema.TextLine(
 title=u"Courses by mode accordion",
 default=u"Automatically from database",
 readonly=True
)

If the widget mode is display then it is rendered as in form view mode,
so that the user cannot edit:

form.mode(courseModeAccordion="display")
courseModeAccordion = schema.TextLine(
 title=u"Courses by mode accordion",
 default=u"Automatically from database",
)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

Files and images

Description

How to program files and image fields for z3c.forms and Dexterity
content types

	Introduction

	Simple content item file or image field

	Simple upload form example

	File field contents

	Connstring download URLs
	Simple example

	Complex example

	Streaming file data

	POSKeyError on missing blob

	Widget download URLs

	Migrating custom content for blobs

	Form encoding

	File-system access in load-balanced configurations

Introduction

This chapter discuss about file uploads and downloads using
zope.schema based forms and content with Dexterity content subsystem.

Note

These instructions apply for Plone 4 and forward. These instructions
does not apply for Archetypes content or PloneFormGen.

Plone uses "blobs" (large binary objects) to store file-like data in the
ZODB. The ZODB writes these objects to the filesystem as separate files,
but due to security, performance and transaction consideration, the original
filename is not visible. The files are stored in a distributed tree.

For more introduction information, see:

	Dexterity developer manual

Simple content item file or image field

	
	Dexterity developer manual

Simple upload form example

The example below uses five.grok
to declare the form schema and form.

We use plone.namedfile [https://pypi.python.org/pypi/plone.namedfile]
for the upload field, which is a CSV file. We accept the upload and then
process the file.

You need to declare an extends directive to pin down required dependency
versions in buildout.cfg.
For more information, see buildout troubleshooting.

You also need to declare the following packages as dependencies in
the install_dependencies directive of your setup.py file:

	five.grok,

	plone.autoform,

	plone.directives.form.

After doing this, rerunning buildout will pull in these packages for you
and you will be able to import them successfully.
For more information, see plone.directives.form README [https://pypi.python.org/pypi/plone.directives.form].

Code:

Core Zope 2 + Zope 3 + Plone
from zope.interface import Interface
from zope import schema
from zope.app.component.hooks import getSite
from five import grok
from Products.CMFCore.interfaces import ISiteRoot
from Products.CMFCore.utils import getToolByName
from Products.CMFCore import permissions
from Products.statusmessages.interfaces import IStatusMessage

Form and validation
from z3c.form import field
import z3c.form.button
from plone.directives import form
from collective.z3cform.grok.grok import PloneFormWrapper
import plone.autoform.form

import StringIO
import csv

from plone.namedfile.field import NamedFile
from plone.i18n.normalizer import idnormalizer

class IImportUsersFormSchema(form.Schema):
 """ Define fields used on the form """

 csv_file = NamedFile(title=_(u"CSV file"))

class ImportUsersForm(form.SchemaForm):
 """ A sample form showing how to mass import users using an uploaded CSV file.
 """

 # Form label
 name = _(u"Import Companies")

 # Which plone.directives.form.Schema subclass is used to define
 # fields for this form
 schema = IImportUsersFormSchema

 # Permission required to
 grok.require("cmf.ManagePortal")

 ignoreContext = True

 # This form is available at the site root only
 grok.context(ISiteRoot)

 # appear as @@import_companies view
 grok.name("import_companies")

 def processCSV(self, data):
 """
 """
 io = StringIO.StringIO(data)

 reader = csv.reader(io, delimiter=',', dialect="excel", quotechar='"')

 header = reader.next()
 print header

 def get_cell(row, name):
 """ Read one cell on a

 @param row: CSV row as list

 @param name: Column name: 1st row cell content value, header
 """

 assert type(name) == unicode, "Column names must be unicode"

 index = None
 for i in range(0, len(header)):
 if header[i].decode("utf-8") == name:
 index = i

 if index is None:
 raise RuntimeError("CSV data does not have column:" + name)

 return row[index].decode("utf-8")

 # Map CSV import fields to a corresponding content item AT fields
 mappings = {
 u"Puhnro" : "phonenumber",
 u"Fax" : "faxnumber",
 u"Postinumero" : "postalCode",
 u"Postitoimipaikka" : "postOffice",
 u"Www-osoite" : "homepageLink",
 u"Lähiosoite" : "streetAddress",
 }

 updated = 0

 for row in reader:

 # do stuff ...
 updated += 1

 return updated

 @z3c.form.button.buttonAndHandler(_('Import'), name='import')
 def importCompanies(self, action):
 """ Create and handle form button "Create company"
 """

 # Extract form field values and errors from HTTP request
 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 # Do magic
 file = data["csv_file"].data

 number = self.processCSV(file)

 # If everything was ok post success note
 # Note you can also use self.status here unless you do redirects
 if number is not None:
 # mark only as finished if we get the new object
 IStatusMessage(self.request).addStatusMessage(_(u"Created/updated companies:") + unicode(number), "info")

File field contents

Example:

from zope import schema
from zope.interface import implements, alsoProvides
from persistent import Persistent
from plone import namedfile
from plone.namedfile.field import NamedBlobFile, NamedBlobImage
from zope.schema.fieldproperty import FieldProperty

class IHeaderAnimation(form.Schema):
 """ Alternative header flash animation/imagae """

 animation = NamedBlobFile(title=u"Header flash animation", description=u"Upload SWF file which is shown in the header", required=False)

Sample file data used in simulated uploads
sample_data = (
 'GIF89a\x10\x00\x10\x00\xd5\x00\x00\xff\xff\xff\xff\xff\xfe\xfc\xfd\xfd'
 '\xfa\xfb\xfc\xf7\xf9\xfa\xf5\xf8\xf9\xf3\xf6\xf8\xf2\xf5\xf7\xf0\xf4\xf6'
 '\xeb\xf1\xf3\xe5\xed\xef\xde\xe8\xeb\xdc\xe6\xea\xd9\xe4\xe8\xd7\xe2\xe6'
 '\xd2\xdf\xe3\xd0\xdd\xe3\xcd\xdc\xe1\xcb\xda\xdf\xc9\xd9\xdf\xc8\xd8\xdd'
 '\xc6\xd7\xdc\xc4\xd6\xdc\xc3\xd4\xda\xc2\xd3\xd9\xc1\xd3\xd9\xc0\xd2\xd9'
 '\xbd\xd1\xd8\xbd\xd0\xd7\xbc\xcf\xd7\xbb\xcf\xd6\xbb\xce\xd5\xb9\xcd\xd4'
 '\xb6\xcc\xd4\xb6\xcb\xd3\xb5\xcb\xd2\xb4\xca\xd1\xb2\xc8\xd0\xb1\xc7\xd0'
 '\xb0\xc7\xcf\xaf\xc6\xce\xae\xc4\xce\xad\xc4\xcd\xab\xc3\xcc\xa9\xc2\xcb'
 '\xa8\xc1\xca\xa6\xc0\xc9\xa4\xbe\xc8\xa2\xbd\xc7\xa0\xbb\xc5\x9e\xba\xc4'
 '\x9b\xbf\xcc\x98\xb6\xc1\x8d\xae\xbaFgs\x00\x00\x00\x00\x00\x00\x00\x00'
 '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
 '\x00,\x00\x00\x00\x00\x10\x00\x10\x00\x00\x06z@\x80pH,\x12k\xc8$\xd2f\x04'
 '\xd4\x84\x01\x01\xe1\xf0d\x16\x9f\x80A\x01\x91\xc0ZmL\xb0\xcd\x00V\xd4'
 '\xc4a\x87z\xed\xb0-\x1a\xb3\xb8\x95\xbdf8\x1e\x11\xca,MoC$\x15\x18{'
 '\x006}m\x13\x16\x1a\x1f\x83\x85}6\x17\x1b $\x83\x00\x86\x19\x1d!%)\x8c'
 '\x866#\'+.\x8ca`\x1c`(,/1\x94B5\x19\x1e"&*-024\xacNq\xba\xbb\xb8h\xbeb'
 '\x00A\x00;'
)

class HeaderAnimation(Persistent):
 """ Persistent storage object used in IHeaderBehavior.alternatives list.

 This holds information about one animation/image upload.
 """
 implements(IHeaderAnimation)

 animation = FieldProperty(IHeaderAnimation["animation"])

animation = HeaderAnimation()
animation.file = namedfile.NamedBlobFile(sample_data, filename=u"flash.swf")

Connstring download URLs

Simple example

In Dexterity you can specify a @@download field for content types:

<!-- Render link to video file if it's uploaded to this context item -->
<tal:video define="video nocall:context/videoFile"
 tal:condition="nocall:video">

</tal:video>

Complex example

You need to expose file content to the site user through a view and then
refer to the URL of the view in your HTML template. There are some tricks
you need to keep in mind:

	All file download URLs should be timestamped, or the reupload file change
will not be reflected in the browser.

	You might want to serve different file types from different URLs and set
special HTTP headers for them.

Complex example (plone.app.headeranimations):

from plone.namedfile.interfaces import INamedBlobFile, INamedBlobImage

<browser:page> providing blob object traverse and streaming
using download_blob() function below
download_view_name = "@@header_animation_helper"

def construct_url(context, animation_object_id, blob):
 """ Construct download URL for delivering files.

 Adds file upload timestamp to URL to prevent cache issues.

 @param context: Content object who own the files

 @param animation_object_id: Unique identified for the animation in the animation container
 (in the case there are several of them)

 @param field_value: NamedBlobFile or NamedBlobImage or None

 @return: None if there is no blob or the blob field value is empty (file has been removed from admin interface)
 """

 if blob == None:
 return None

 # This case occurs when the file has been removed thorugh form interfaces
 # (one of keep, replace, remove options on file widget)

 if animation_object_id == None:
 raise RuntimeError("Cannot have None id")

 # Timestamping prevents caching issues,
 # otherwise the browser shows the old version after reupload
 if hasattr(blob, "_p_mtime"):
 # Zope persistency timestamp is float seconds since epoch
 timestamp = blob._p_mtime
 else:
 timestamp = ""

 # We have different BrowserView methods for download depending on the file type
 # (to apply Flash fix)
 if INamedBlobFile.providedBy(blob):
 func_name = "download_animation"
 else:
 func_name = "download_image"

 # This looks like
 return context.absolute_url() + "/" + download_view_name + "/" + func_name + "?timestamp=" + str(timestamp)

Streaming file data

File data is delivered to the browser as a stream. The view function returns
a streaming iterator instead of raw data. This greatly reduces the latency
and memory usage when the file should not be buffered as a whole to
memory before sending.

Example (plone.app.headeranimation):

from zope.publisher.interfaces import IPublishTraverse, NotFound

from plone.namedfile.utils import set_headers, stream_data
from plone.namedfile.interfaces import INamedBlobFile, INamedBlobImage

def download_blob(context, request, file):
 """ Stream animation or image BLOB to the browser.

 @param context: Context object name is used to set the filename if blob itself doesn't provide one

 @param request: HTTP request

 @param file: Blob object
 """
 if file == None:
 raise NotFound(context, '', request)

 # Try determine blob name and default to "context_id_download"
 # This is only visible if the user tried to save the file to local computer
 filename = getattr(file, 'filename', context.id + "_download")

 # Sets Content-Type and Content-Length
 set_headers(file, request.response)

 # Set headers for Flash 10
 # http://www.littled.net/new/2008/10/17/plone-and-flash-player-10/
 cd = 'inline; filename=%s' % filename
 request.response.setHeader("Content-Disposition", cd)

 return stream_data(file)

class HeaderAnimationFieldDownload(BrowserView):
 """ Allow file and image downloads in form widgets.

 Unlike HeaderAnimationHelper, this does not do
 any kind of header resolving, but serves files always
 from the context object itself.
 """

 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.behavior = IHeaderBehavior(self.context)

 self.animation_object_id = self.request.form["animation_object_id"]

 def lookUpAnimation(self):
 """ Don't do look-up in init, since failure there will raise ComponentLookupError instead of NotFound.

 @return: Blob object to be streamed
 """
 if not self.animation_object_id in self.behavior.alternatives:
 raise NotFound(self, "Bad animation id:" + self.animation_object_id , self.request)

 return self.behavior.alternatives[self.animation_object_id]

 def download_animation(self):
 """ """
 animation = self.lookUpAnimation()
 return download_blob(self.context, self.request, animation.animation)

 def download_image(self):
 """ """
 animation = self.lookUpAnimation()
 stream_iterator = download_blob(self.context, self.request, animation.image)
 return stream_iterator

POSKeyError on missing blob

A POSKeyError is raised when you try to access blob attributes, but
the actual file is not available on the disk. You can still load the blob
object itself fine (as it's being stored in the ZODB, not on the
filesystem).

Example:

Module ZPublisher.Publish, line 119, in publish
Module ZPublisher.mapply, line 88, in mapply
Module ZPublisher.Publish, line 42, in call_object
Module plone.app.headeranimation.browser.views, line 92, in download_image
Module plone.app.headeranimation.browser.views, line 75, in _download_blob
Module plone.app.headeranimation.browser.download, line 90, in download_blob
Module plone.namedfile.utils, line 58, in stream_data
Module ZODB.Connection, line 811, in setstate
Module ZODB.Connection, line 876, in _setstate
Module ZODB.blob, line 623, in loadBlob
POSKeyError: 'No blob file'

This might occur for example because you have copied the Data.fs file to
another computer, but not blob files.

You probably want to catch POSKeyError s and return something more
sane instead:

def download_blob(context, request, file):
 """ Stream animation or image BLOB to the browser.

 @param context: Context object name is used to set the filename if blob itself doesn't provide one

 @param request: HTTP request

 @param file: Blob object
 """

 from ZODB.POSException import POSKeyError
 try:
 if file == None:
 raise NotFound(context, '', request)

 # Try determine blob name and default to "context_id_download"
 # This is only visible if the user tried to save the file to local computer
 filename = getattr(file, 'filename', context.id + "_download")

 set_headers(file, request.response)

 # Set headers for Flash 10
 # http://www.littled.net/new/2008/10/17/plone-and-flash-player-10/
 cd = 'inline; filename=%s' % filename
 request.response.setHeader("Content-Disposition", cd)

 return stream_data(file)
 except POSKeyError:
 # Blob storage damaged
 logger.warn("Could not load blob for " + str(context))
 raise NotFound(context, '', request)

See also

	https://pypi.python.org/pypi/experimental.gracefulblobmissing/

Widget download URLs

Some things you might want to keep in mind when playing with forms and
images:

	Image data might be incomplete (no width/height) during the first POST.

	Image URLs might change in the middle of request (image was updated).

If your form content is something else than traversable context object then
you must fix file download URLs manually.

See example in plone.app.headeranimations [https://svn.plone.org/svn/collective/plone.app.headeranimation/trunk/plone/app/headeranimation/browser/widgets.py].

Migrating custom content for blobs

Some hints how to migrate your custom content:

	http://plone.293351.n2.nabble.com/plone-4-upgrade-blob-and-large-files-tp5500503p5500503.html

Form encoding

Warning

Make sure that all forms containing file content are posted as
enctype="multipart/form-data". If you don't do this, Zope decodes
request POST values as string input and you get either empty strings
or filenames as your file content data. The older plone.app.z3cform
templates do not necessarily declare enctype, meaning that you need
to use a custom page template file for forms doing uploads.

Example correct form header:

<form action="." enctype="multipart/form-data" method="post" tal:attributes="action request/getURL">

File-system access in load-balanced configurations

The plone.namedfiled [http://plone.org/products/plone.app.blob]
product page contains configuration instructions
for plone.namedfile and ZEO.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

WYSIWYG text editing and TinyMCE

Description

WYSIWYG text field editor programming in Plone.

	Introduction

	Disabling HTML filtering and safe HTML transformation

	Content linking

	Editor preferences
	Text format selector

	Applying styles only edit view

	Customizing TinyMCE options

	Custom field-specific style list for TinyMCE
	Dexterity

	Archetypes

	Rich text transformations

	Hacking TinyMCE Javascript

	TinyMCE plug-ins

	Adding a new plug-in
	Media resources

	Language resources

	Customizing existing plug-in
	Overriding plug-in

	Overriding plug-in resources

	Ploneboard and anonymous editor

	TinyMCE shortcuts

Introduction

Plone supports TinyMCE (default), Kupu and CKEditor.

TinyMCE and Plone integration
is distributed in Products.TinyMCE package [https://pypi.python.org/pypi/Products.TinyMCE].

Disabling HTML filtering and safe HTML transformation

By default Plone does HTML filtering to prevent cross-site scripting [http://en.wikipedia.org/wiki/Cross-site_scripting]
attacks. This will make Plone to strip away from HTML

	<script> tags

	Some other potentially unsafe tags and attributes

If you need to put <scrip> tag on your content text in TinyMCE you can disable this security feature.

Warning

If you don't trust all of your site editors, then this will open your site for an attack.

In the Zope Management Interface, at the top of a Plone site, go to portal_transforms and open the safe_html transform. Disable it by putting a "1" in the disable_transform field and saving.

A site restart might be required depending on Plone version.

More info

	http://stackoverflow.com/questions/5796643/make-plone-accept-any-html-input

Content linking

Plone offers many kind of support and enhancements in site internal content linking

	Delete protection: warning if you try to delete content which is being referred.

	Migrating of links when the content is being moved

The recommended method for linking the content is Linking by UID since Products.TinyMCE version 1.3.

	When the text is saved in TinyMCE all relative links are converted to UID links in the saved HTML payload

	When the text is displayed again, the HTML is run through output filter and UID links are converted back to human readable links

This solves issues with earlier Plone versions where the link targets become invalid when a HTML textfield with relative
links where shown on the other page as the original context.

Note

You might need to turn on Linking by UID setting on in the site setup if you are migrating from older Plone sites.

Editor preferences

Plone supports user text changeable editor. The active editor is stored in
the user preferences.

The user can fallback to hand-edited HTML by setting active editor to none.

The rich text widget can also support optional input formats besides
HTML: structured text and so on.

Text format selector

The format selector itself is rendered by wysiwyg_support.pt macros
which is Plone core

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/skins/plone_wysiwyg/wysiwyg_support.pt

Applying styles only edit view

You can use TinyMCE body selector make your CSS class have different styles in view and edit modes (inside TinyMCE)

/* Break columns in two column layout
 *
 * https://developer.mozilla.org/en/css3_columns
 *
 */

.column-breaker {
 column-break-before: always;
 display: block;
}

.mceContentBody .column-breaker {
 color: red;
 border: 1px dashed red;
 display: block;
}

Note

Firefox does not actually support column breaks, so this was useful headaching experience.

Customizing TinyMCE options

In your add-on code, all TinyMCE options in the control panel can be exported and imported
using GenericSetup, portal_setup and tinymce.xml.

Custom field-specific style list for TinyMCE

Dexterity

Oho.

Archetypes

For Archetypes see

	http://plone.org/products/tinymce/documentation/how-to/how-to-customize-tinymce-for-an-archetypes-richwidget

Rich text transformations

	Rich text, markup and transformations

	https://pypi.python.org/pypi/plone.app.textfield

Hacking TinyMCE Javascript

Plone ships with pre-compressed TinyMCE source code enabled by default.

If you want to toy around with TinyMCE source code itself, you might
want to first enable the usage of debug version of TinyMCE source.

In Products.TinyMCE.skins open tiny_mce_src.js and
copy-paste its content into tiny_mce.js.

Note

Replacing tiny_mce.js with tiny_mce_src.js in portal_javascripts
doesn't seem to work as it breaks TinyMCE plug-in loading.

TinyMCE plug-ins

TinyMCE consists of plug-ins. Existing plug-ins can be overlaid with your
custom version by loading Javascript after core TinyMCE load.

	Default TinyMCE plug-in Javascript files can be found under Products.TinyMCE/skins/tinymce/plugins

	Usually TinyMCE plug-ins dialogs load in <iframe> and HTML code loads separate CSS and JS
files from the main site

Adding a new plug-in

Here are instructions how to add new buttons to TinyMCE

Some rules

	Plug-in id goes to tinymce.xml

	Your plug-in must be in a file called editor_plugin.js in skins layer

	You must have a skins layer folder named after your plug-in id

	You don't register plug-in Javascript portal_javascripts

	TinyMCE button row is in the main document. However, the edit area itself is in <iframe>.
Also, many of TinyMCE dialogs are launched in <iframe> and they load a hardcoded
set of Javascript files (they don't use any kind of Plone master template or <head> section).

So in the end you'll have a file:

yourcompany.app./yourcompany/app/skins/tinymce_plugin_flowplayer/flowplayer/editor_plugin.js

Why all this? I don't know. And honestly, in this point, I don't care.

Register your specially named skin layer in skins.xml:

<?xml version="1.0"?>
<object name="portal_skins" meta_type="Plone Skins Tool">

 <object name="tinymce_plugin_flowplayer"
 meta_type="Filesystem Directory View"
 directory="your.app:skins/tinymce_plugin_flowplayer"/>

 <skin-path name="*">
 <layer name="tinymce_plugin_flowplayer"
 insert-after="custom"/>
 </skin-path>

</object>

Register your plugin in tinymce.xml GenericSetup install profile

<?xml version="1.0"?>
<object>

 <toolbar>
 <customtoolbarbuttons purge="False">
 <element value="flowplayer"/>
 </customtoolbarbuttons>
 </toolbar>

 <resourcetypes>

 <customplugins purge="False">
 <element value="flowplayer"/>
 </customplugins>

Then finally drop a editor_plugin.js to your plug-in folder

/**
 * a TinyMCE plug-in for opening a dialog asking a video link and creating Flowplayer code out of it
 *
 */

(function() {

 tinymce.create('tinymce.plugins.FlowplayerPlugin', {

 init : function (ed, url) {

 var t = this;
 t.url = url;
 t.editor = ed;
 t.docs = false;

 ed.addButton('flowplayer', {
 title : 'Video',
 cmd : 'flowplayer',
 image : url + '/img/flowplayer.gif'
 });

 ed.addCommand('flowplayer', function (val, page) {
 var url = prompt("Copy-paste URL to MP4 video file", "");
 // note: flowplayer link must not have text inside
 html = '';
 ed.execCommand('mceInsertContent', false, html);
 });

 //ed.onPostRender.add(t._setupTOC, t);
 },

 getInfo : function () {
 return {
 longname : 'collective.flowplayer video insert plug-in ',
 author : 'Mikko Ohtamaa',
 authorurl : 'http://webandmobile.mfabrik.com',
 infourl : 'http://webandmobile.mfabrik.com',
 version : "1.0"
 };
 }
 });

 tinymce.PluginManager.add('flowplayer', tinymce.plugins.FlowplayerPlugin);
})();

Media resources

TinyMCE exposes URL to your plug-in base folder, where editor_plugin.js is, as plug-in init() parameter.

You can construct relative URLs to set media resources in init().

ed.addButton('flowplayer', {
 title : 'Video',
 cmd : 'video',
 image : url + '/img/placegallery.gif'
});

Language resources

TinyMCE does not directly accept strings as labels, but uses its own internal translation mechanism which is not gettext.

	Create folder langs under plug-in base folder

	There create file en.js

Sample content

tinyMCE.addI18n('en.placegallery',{
 desc : 'Placegallery button'
});

More info

	https://svn.plone.org/svn/collective/medialog.tinymceplugins.helpmenu/trunk/medialog/tinymceplugins/helpmenu/skins/tinymce_plugin_helpmenu/editor_plugin.js

Customizing existing plug-in

The recommended way is to customize TinyMCE

	Re-register plug-in by simply including a plug-in JS code
in a separate Javascript file loaded after tinymce.js

	override existing individual TinyMCE files using
jbot.

Overriding plug-in

Create a duplicate of plug-in JS file (table.js),
register it as a custom Javascript from your add-on resource folder.

TinyMCE overrides previous plug-in registrations with new ones
and you can just re-register your own plug-in version to override the existing version.

	Refer it in portal_javascripts

<!-- TinyMCE customizations -->
<javascript
 id="++resource++your.app/tiny_mce_special.js"
 authenticated="True"
 cacheable="True" compression="safe" cookable="True" insert-after="tinymce.js"
 enabled="True" expression=""
 inline="False"
 />

Overriding plug-in resources

Yoiu can also override CSS, HTML (.htm.pt templates) with z3c.jbot
as instructed above.

Example:

jbot/Products.TinyMCE.skins.tinymce.plugins.table.js.table.js

Warning

Since there resources are loaded in <iframe> the normal browser refresh
does not trigger reload for them. Right click <iframe>, choose Refresh
from context menu.

Ploneboard and anonymous editor

Problems with TinyMCE and Ploneboard.

For more information, see

	http://www.llakomy.com/articles/enable-kupu-for-anonymous-in-ploneboard

TinyMCE shortcuts

Products.TinyMCE versions 1.3+ provide a shortcut view in
link and image dialogs. You can add your own site specific shortcuts here.

The most common use case is a shortcut link a folder which acts
as a site image bank. On multilingual sites this folder is

	Below natural language folders in the site root

	Language neutral

These make navigating to the folder using normal means very difficult.

New TinyMCE shortcuts can be registered as global utility via
Products.TinyMCE.interfaces.IShortcut interface [https://github.com/plone/Products.TinyMCE/blob/master/Products/TinyMCE/interfaces/shortcut.py].

[image: ../../../_images/tinymce_images.png]
We'll register our image bank as a shortcut into TinyMCE image dialog.

First make sure your add-on is grok'ed.

Then drop in the following file shortcut.py file into your add-on:

from five import grok

from Products.TinyMCE.interfaces.shortcut import ITinyMCEShortcut

class ImageBankShortcut(grok.GlobalUtility):
 """Provides shortcut to the language neutral image bank below language folders """

 grok.name("imagebank")
 grok.provides(ITinyMCEShortcut)

 # This time we don't bother with i18n and assume
 # the whole world understands Finnish
 title = u'Kuvapankki'

 # Portal root relative path
 link = "/kuvapankki"

 def render(self, context):

 # http://collective-docs.readthedocs.org/en/latest/misc/context.html
 portal_state = context.restrictedTraverse('@@plone_portal_state')

 return ["""

 %s
 """ % (portal_state.portal_url() + self.link, self.title)]

After this you still need to go to TinyMCE control panel
(http://localhost:8080/Plone/@@tinymce-controlpanel)
and enable the link button in the settings for Image Shortcuts.

Note

You might also want to disable TinyMCE inline image uploads through CSS
and disable image creation in arbitrary folders on your site. Currently
the only way is to override TinyMCE internal CSS files using z3c.bot.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Models, forms, fields and widgets »

PloneFormGen

Description

PloneFormGen allows you to build and maintain convenience forms through Plone edit interface.

Introduction

PloneFormGen is a Plone add-on Product that provides a generic Plone form generator using fields, widgets and validators from Archetypes. Use it to build simple, one-of-a-kind, web forms that save or mail form input.

To build a web form, create a form folder, then add form fields as contents. Individual fields can display and validate themselves for testing purposes. The form folder creates a form from all the contained field content objects.

Final disposition of form input is handled via plug-in action products. Action adapters included with this release include a mailer, a save-data adapter that saves input in tab-separated format for later download, and a custom-script adapter that makes it possible to script simple actions without recourse to the Zope Management Interface.

To make it easy to get started, newly created form folders are pre-populated to act as a simple e-mail response form.

	PloneFormGen product page [http://plone.org/products/ploneformgen]

	PloneFormGen documentation and tutorials

	Creating forms with PloneFormGen add-on without programming

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

ZODB, persistency and transactions

	ZODB Database
	Introduction

	Database files

	Object database features

	Browsing

	Packing database

	Visualizing object graphs

	Cache size

	Integrity checks

	Restart and cache warm-up

	Recovering old data

	ZODB tips and tricks

	Persistent objects
	Introduction

	Lists and dictionaries

	PersistentList vs. normal Python list

	Persistent, modifications, __setattr__ and transactions

	Up-to-date reads

	Accessing broken objects

	Fixing damaged objects

	Volatile references

	Measuring persistent object sizes

	Transactions
	Introduction

	Using transactions

	Failsafe crawling and committing in batches

	Transaction boundary events

	Viewing transaction content and debugging transactions

	Undoing transactions

	Object lifecycles

	Storage
	Introduction

	Pickling

	Binary trees

	Buckets

	Storing as attribute vs. storing in BTree

	BLOBs

	SQL values

	Transaction sizes

	Analysing Data.fs content offline

	Migrations

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

ZODB Database

Description

Plone uses the ZODB object database to store its data. The ZODB can act
independently in-process, clustered over network or over another database
engine, like SQL.

	Introduction

	Database files

	Object database features
	Query and searching

	Data model

	Transactions and committing

	Browsing

	Packing database
	Packing through-the-web

	Packing from command line

	Packing the database offline

	Visualizing object graphs

	Cache size

	Integrity checks

	Restart and cache warm-up

	Recovering old data

	ZODB tips and tricks

Introduction

Plone uses the ZODB database. The ZODB happily stores any Python object with
any attributes — there is no need to write database schema or table
descriptions as there is
with SQL-based systems. If data models are described somehow
the descriptions are written in Python, usually using
zope.schema package.

This chapter is about the basics of the ZODB, working with the ZODB database
directly, like tuning database settings.

More information about ZODB

	http://www.zodb.org/

	Documentation [http://zodb.readthedocs.org/]

	API documentation [http://zodb.readthedocs.org/en/latest/api.html]

Database files

Usually Plone's database is configured to file var/filestorage/Data.fs
and uploaded files can be found as BLOBs in var/blobstorage.

Object database features

The ZODB is an object database. It makes very easy to store different kinds of
contentish data in a graph, supporting subclassing (something which SQL often
does poorly).

Since the database stores objects, and the objects are defined in Python code,
you always need the corresponding Python source code to instantiate the objects
stored inside the ZODB. This might feel awkward at first, but you need to have
MySQL running to read what's inside MySQL files stored on your disk and so on ...

Warning

The ZODB database is not usable without the Python source code used to
create the data. The data is not readable using any SQL-based tools, and
there exist little tools to deal with the raw data. The way to access Plone
data is running Plone itself and performing queries through it.

Warning

Since correct source code is needed to read ZODB data, this poses a problem
for versioning. Even if you use the correct add-on product with proper
source code, if the source code version is wrong, it might not work. Data
model attributes might be added, modified or deleted between source code
revisions, making data operations on the existing database fail by raising
Python exceptions (AttributeError, KeyError).

To work around the ZODB interoperability problems, products like
ore.contentmirror exist to duplicate Plone content data to read-only SQL
database.

Query and searching

ZODB does not provide query services as is
i.e. there is no SELECT statement.

Plone provides cataloging
service for this purpose.

This gives some benefits

	You define yourself how data is indexed

	The backend to perform queries is flexible - you
can plug-in custom indexes

	portal_catalog default catalog is used to all content items
to provide basic CMS functionality easily

	You can have optimized catalogs for specialized data (e.g. reference look-ups
using reference_catalog)

Data model

There is no hardwired way for describe
data in ZODB database.

Subclasses of ZODB persistent.Persistent
class will have all their attributes and referred objects
written to the database using Python pickle mechanism.
Lists and dictionaries will be automatically
converted to persistent versions.

There are currently three primary ways to define data models in Plone

	Using zope.schema package (modern way) to describe Python object properties

	Using Archetypes content type subsystem (all Plone 3 content)

	Not defining the model, but relying on ad hoc object attributes

Read about zope.schema
how to define a model for the data to be stored
in ZODB database.

Transactions and committing

This in-depth SO answer [http://stackoverflow.com/questions/11254384/when-to-commit-data-in-zodb/]
explains how committing works in ZODB.

	Savepoints and optimism regarding them

	PersistentList and list differences when saving data

Browsing

You can explore ZODB with-in Plone using ZODBBrowser [http://plone.org/products/zodbbrowser].

Packing database

As ZODB is append-only database it remembers all its history unless packed. Packing will erase undo history.

	Why you need to regularly pack ZODB database to keep the performance up [http://www.sixfeetup.com/blog/optimize-your-plone-development-by-packing-the-zodb]

	Packing is similar to VACUUM in PostgreSQL [http://stackoverflow.com/questions/11254384/when-to-commit-data-in-zodb/]

Packing through-the-web

Manual packing can be executed through Zope Control Panel (not Plone control panel)
in Zope application server root (not Plone site root) in ZMI.

Packing from command line

plone.recipe.zeoserver [https://github.com/plone/plone.recipe.zeoserver/] buildout recipe provides command called bin/zeopack
inside buildout.
It allows you to trigger packing from the command line when Zope is clustered ZEO configuration.
zeopack command runs against an on-line site.

This command is useful to run in cron to keep your Data.fs file growing forever.
You can control the number of days of history to be kept, etc., using buildout recipe variables.

More info

	https://github.com/plone/plone.recipe.zeoserver

Packing the database offline

See this blog post [http://blog.twinapex.fi/2009/09/01/packing-and-copying-data-fs-from-production-server-for-local-development/].

Example how to pack a copy of Data.fs in offline using Python snippet:

import time
import ZODB.FileStorage
import ZODB.serialize

storage=ZODB.FileStorage.FileStorage('/tmp/Data.fs.copy')
storage.pack(time.time(),ZODB.serialize.referencesf)

As this depends on ZODB egg, the easiest way to run the snippet is to zopepy
script from your buildout/bin folder:

bin/zopepy pack.py

For more information, see command-line scripts.

Visualizing object graphs

	http://blog.hannosch.eu/2009/05/visualizing-persistent-structure-of.html

	http://david.wglick.org/2009/visualizing-the-zodb-with-graphviz/

Cache size

	Understanding ZODB cache size option [https://mail.zope.org/pipermail/zodb-dev/2010-March/013199.html]

Integrity checks

Especially when you back-up a Data.fs file, it is useful to run integrity checks for the transferred files.

ZODB provides scripts fstest and fsrefs to check if Data.fs data is intact
and there are no problems due to low level disk corruption or bit flip.

	http://wiki.zope.org/ZODB/FileStorageBackup

Note

It is recommended best practice to run integrity against your Data.fs regularly.
This is the only way to detect corruption which would otherwise go unnoticed
for a long time.

Restart and cache warm-up

Discussion why Plone is slow after restart

	https://mail.zope.org/pipermail/zodb-dev/2013-March/014935.html

Recovering old data

Instructions for undoing deleted data and fixing broken databases.

	http://www.zopatista.com/plone/2008/12/18/saving-the-day-recovering-lost-objects

ZODB tips and tricks

Please see

	http://plone.org/events/regional/nola05/collateral/Chris%20McDonough-ZODB%20Tips%20and%20Tricks.pdf

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

Persistent objects

Description

This document tells how to save objects to Plone/Zope database.
Persistent objects are automatically read and written from ZODB database in Plone
and they appear as normal Python objects in your code. This document clarifies
some of special properties, like with containers, when you deal with persistent
objects programmatically.

	Introduction

	Lists and dictionaries

	PersistentList vs. normal Python list

	Persistent, modifications, __setattr__ and transactions

	Up-to-date reads

	Accessing broken objects

	Fixing damaged objects

	Volatile references
	Correct use of volatile variables in functions

	Measuring persistent object sizes

Introduction

Q: How do I save() object in Plone

A: You don't

Plone does this automatically for you. You just assign the file data
as an attribute of some persistent object. When the HTTP request
completes, Zope transaction manager will automatically update all
changed persistent objects to the database. There is no "save" as such in Zope world -
it all is transparent to the developer. If the
transaction fails in any point, no data is being written and you do
not need to worry about the partial data being written to the
database.

	Changed objects will be automatically saved (if they are attached to the
traversing graph)

	Save will not occur if an exception is raised

If your data class inherits from higher level Plone base classes
(all go up to persistent.Persitent class). persistency is handled transparently for you.
Plone also handles
transaction automatically for each HTTP request. Unless you wish
to do manual transactions there is no need to call transaction.commit().

If you want to do your own persistent classes please read the following

	Writing a persistent class [http://www.zodb.org/documentation/guide/prog-zodb.html#writing-a-persistent-class]

	About persistent objects [http://www.zope.org/Documentation/Books/ZDG/current/Persistence.stx]

	Persistent interface description [http://apidoc.zope.org/++apidoc++/Interface/persistent.interfaces.IPersistent/index.html].

	ZODB tips and tricks [http://plone.org/events/regional/nola05/collateral/Chris%20McDonough-ZODB%20Tips%20and%20Tricks.pdf]

Lists and dictionaries

If you modify objects inside persistent lists and dictionaries, the change is not automatically
reflected to the parent container.

	Modifying mutable objects [http://zodb.readthedocs.org/en/latest/working.html#handling-changes-to-mutable-objects]

PersistentList vs. normal Python list

All items in normal Python list are stored as one write and loaded on one write.
PersistentList is slower, but allows individual objects picked from the list without loading the whole list.

For more information, see

	https://mail.zope.org/pipermail/zodb-dev/2009-December/013011.html

Persistent, modifications, __setattr__ and transactions

When Persitent object is modified, via attribute set or __setattr__() call,
the current transaction is converted to a write transaction.
Write transactions are usually undoable (visible on Zope's Undo tab).

If you are using Python property mutator and even if it does not write to the object it
still will trigger the object rewrite.

More info

	https://mail.zope.org/pipermail/zodb-dev/2009-December/013047.html

Up-to-date reads

Normally, ZODB only assures that objects read are consistent, but not necessarily up to date.
Checking whether an object is up to date is important when information read from one object
is used to update another.

The following will force the object to use the most up-to-date version in the transaction:

self._p_jar.readCurrent(ob)

A conflict error will be raised if the version of ob read by the transaction isn't
current when the transaction is committed.

Note

ZODB versions older than 3.10.0b5 do not support this feature.

More information

	https://pypi.python.org/pypi/ZODB3/3.10.0b5#b5-2010-09-02

Accessing broken objects

ZODB is object database.
By default, it cannot load object from the database if the code (Python class)
is not present.

You can still access data in the objects by creating Python code "stubs" which
fake the non-existing classes in the run-time environment.

More info

	http://mockit.blogspot.com/2010/11/getting-broken-objects-out-of-zodb.html

Fixing damaged objects

If your BTrees have been damaged, you can use dm.historical tool
to inspect the object history and rewind it to a working state.

	http://plone.293351.n2.nabble.com/Cleaning-up-damaged-BTree-can-t-delete-folder-tp5761780p5773269.html

	https://pypi.python.org/pypi/dm.historical/

See also

	Deleting broken objects

Volatile references

Volatile attributes are attributes on persistent objects which never get stored.
ZODB assumes variable is volatile if it has _v_ prefix.

Volatiles are useful when framework expects the object to conform certain interface,
like form frameworks. However, your persistent object edited by form cannot
have persistent attributes for all variables the form expects to see.

Example:

from persistent import Persistent
from zope.annotation import IAnnotations

class VolatileContext(object):
 """ Mix-in class to provide context variable to persistent classes which is not persistent.

 Some subsystems (e.g. forms) expect objects to have a reference to parent/site/whatever.
 However, it might not be a wise idea to have circular persistent references.

 This helper class creates a context property which is volatile (never persistent),
 but can be still set on the object after creation or after database load.
 """

 def _set_context(self, context):
 self._v_context = context

 def _get_context(self):
 return self._v_context

class MobileBehaviorStorage(VolatileContext, Persistent):
 """Set mobile specific field properties on the context object and return the context object itself.#

 This allows to use attribute storage with schema input validation.
 """

 mobileFolderListing = FieldPropertyDelegate(IMobileBehavior["mobileFolderListing"])

KEY = "mobile"

def manufacture_mobile_behavior(context):

 annotations = IAnnotations(context)
 if not KEY in annotations:
 annotations[KEY] = MobileBehaviorStorage()

 object = annotations[KEY]

 # Set volatile context
 object.context = context

 return object

Correct use of volatile variables in functions

WRONG:

if hasattr(self, '_v_image'):
 return self._v_image

RIGHT:

marker = []
value = getattr(self, "_v_image", marker)
if value is not marker:
 return value

RIGHT:

try:
 return self._v_image
except AttributeError:

WRONG:

self._v_image=expensive_calculation()
return self._v_image

RIGHT:

image=expensive_calculation()
self._v_image=image
return image

For more information, see

	https://mail.zope.org/pipermail/zodb-dev/2010-May/013437.html

Measuring persistent object sizes

Get the size of the pickled object in the database.

Something like:

pickle, serial = obj._p_jar._storage.load(obj._p_oid, obj._p_jar._version)

See also

	http://blog.hannosch.eu/2009/05/visualizing-persistent-structure-of.html

	http://plone.org/documentation/kb/debug-zodb-bloat

	treeanalyze.py will give you the total size of a traverse graph http://svn.erp5.org/erp5/trunk/utils/treenalyser.py?view=markup&pathrev=24405

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

Transactions

	Introduction

	Using transactions
	Subtransactions

	Failsafe crawling and committing in batches

	Transaction boundary events

	Viewing transaction content and debugging transactions

	Undoing transactions

Introduction

Plone uses the
ZODB database [http://en.wikipedia.org/wiki/Zope_Object_database] which
implements Multiversion concurrency control [http://en.wikipedia.org/wiki/Multiversion_concurrency_control].

Plone will complete either all database modifications that occur during a
request, or none of them. It will never write incomplete data to the
database.

Plone and the underlying Zope handles transactions transparently.

Note

Every transaction is a read transaction until any of the objects
participating in the transaction are mutated (object attribute set),
turning the transaction to a write transaction.

Note

Old examples might refer to the get_transaction() function. This has
been replaced by transaction.get() in the later Zope versions.

Please read this
Zope transaction tutorial [http://www.zope.org/Members/mcdonc/HowTos/transaction]
to get started how to use transactions with your code.

	https://bugs.launchpad.net/zope2/+bug/143584

Using transactions

Normally transactions are managed by Plone and the developer should not be
interested in them.

Special cases where one would want to manage transaction life-cycle may
include:

	Batch creation or editing of many items once.

Example code:

	transaction source code [http://svn.zope.org/transaction/trunk/transaction/?rev=104430].

	http://www.zope.org/Members/mcdonc/HowTos/transaction

	https://bugs.launchpad.net/zope3/+bug/98382

Subtransactions

Normally, a Zope transaction keeps a list of objects modified within the
transaction in a structure in RAM.

This list of objects can grow quite large when there is a lot of work done
across a lot of objects in the context of a transaction. Subtransactions
write portions of this object list out to disk, freeing the RAM required by
the transaction list. Using subtransactions can allow you to build
transactions involving objects whose combined size is larger than available
RAM.

Example:

import transaction
...

done = 0
for brain in all_images:
 done += 1
 ...
 # Since this is HUGE operation (think resizing 2 GB images)
 # it is not nice idea to buffer the transaction (all changed data)
 # in the memory (Zope default transaction behavior).
 # Using subtransactions we hint Zope when it would be a good time to
 # flush the changes to the disk.
 if done % 10 == 0:
 # Commit subtransaction for every 10th processed item
 transaction.get().commit(True)

Failsafe crawling and committing in batches

In the case you need to access many objects in coherent and efficient manner.

	https://bitbucket.org/gocept/gocept.linkchecker/src/80a127405ac06d2054e61dd62fcd643d864357a0/src/gocept/linkchecker/scripts/crawl-site.py?at=default

Transaction boundary events

It is possible to perform actions before and after transaction is written to
the database.

http://svn.zope.org/transaction/trunk/transaction/_transaction.py?rev=81646&view=auto

Viewing transaction content and debugging transactions

Please see Transaction troubleshooting

Undoing transactions

Everything that has happened on Plone site can be undoed through the Undo
tab in ZMI, in site root. By default you can undo latest 20 transactions.

If you need to raise this limit just replace all numbers of 20
with higher value in file App/Undo.py, restart site and now you can undo more transactions.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

Object lifecycles

Plone has different lifecycles for different objects

	Persistent objects: These objects are transparently persistent. They look like
normal Python objects, but they are serialized to the disk if the transaction
completes successfully. Persistent object inherit from Zope's
various persistent classes: persistent.Persistent, PersistentDict, PersistentList and
they have special attributes like _p_mtime when the object was last written to disk.
To make object persistent, it must be referred from Zope's App traversing
graph. Examples: content objects, user account objects.

	Request attached objects and thread-local objects: Each HTTP request is processed by
its own Python thread. These objects disappear when the request has been processed.
Examples: request object itself, getSite() thread-local way to access the site object,
request specific permission caches.

	In-process objects, or "static" objects are created when the server application is launched
and they are gone when the application quits. Usually these objects are set-up during Plone
initialization and they are read-only for served HTTP requests. Examples:
content type vocabulary lists.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

Storage

Description

What kind of different storages (storing backends) ZODB has and
how to use them.

	Introduction

	Pickling

	Binary trees

	Buckets

	Storing as attribute vs. storing in BTree

	BLOBs

	SQL values

	Transaction sizes

	Analysing Data.fs content offline

Introduction

This page explains details how ZODB stores data. The information here
is important to know to understand Plone database behavior and how to optimize your application.

Pickling

ZODB is object oriented database. All data in ZODB is pickled Python objects [http://docs.python.org/library/pickle.html].
Pickle is object serialization module for Python.

	Each time object is read and it is not cached, object is read from ZODB data storage and unpickled

	Each time object is written, it is pickled and transaction machinery appends it to ZODB data storage

Pickle format is series of bytes. Here is example what it does look like:

>>> import pickle
>>> data = { "key" : "value" }
>>> pickled = pickle.dumps(data)
>>> print pickled
(dp0
S'key'
p1
S'value'
p2
s.

It is not very human readable format.

Even if you use SQL based RelStorage [https://pypi.python.org/pypi/RelStorage/] ZODB backends, the objects
are still pickled to the database; SQL does not support varying table schema per row and Python objects
do not have fixed schema format.

Binary trees

Data is usually organized to binary trees or BTrees [http://wiki.zope.org/ZODB/guide/node6.html] .
More specifically, data is usually stored as Object Oriented Binary Tree
OOBtree [http://docs.zope.org/zope3/Code/BTrees/OOBTree/OOBTree/index.html]
which provides Python object as key and Python object value mappings. Key is the object id in the parent container as a string and value
is any pickleable Python object or primitive you store in your database.

ZODB data structure interfaces [http://svn.zope.org/ZODB/trunk/src/BTrees/Interfaces.py?rev=88776&view=markup].

Using BTrees example from Zope Docs [http://zodb.org/documentation/articles/ZODB2.html#using-btrees].

Buckets

BTree stores data in buckets (OOBucket [http://docs.zope.org/zope3/Code/BTrees/OOBTree/OOBucket/index.html]).

Bucket is the smallest unit of data
which is written to the database once. Buckets are loaded lazily: BTree only loads
buckets storing values of keys being accessed.

BTree tries to stick as much data into one bucket once as possible.
When one value in bucket is changed the whole bucket must be rewritten to the disk.

Default bucket size is 30 objects [http://svn.zope.org/ZODB/trunk/src/BTrees/_OOBTree.c?rev=25186&view=markup].

Storing as attribute vs. storing in BTree

Plone has two kinds of fundamental way to store data:

	Attribute storage (stores values directly in the pickled objects).

	Annotation storage (OOBTree based). Plone objects have attribute __annotations__ which is
OOBtree for storing objects in name-conflict free way.

When storing objects in annotation storage, reading object
values need at least one extra database look up to load the first bucket
of OOBTree.

If the value is going to be used frequently, and especially if it is read when viewing the content object,
storing it in an attribute is more efficient than storing it in an annotation.
This is because the __annotations__ BTree is a separate persistent object which has to be loaded into memory,
and may push something else out of the ZODB cache.

If the attribute stores a large value, it will increase memory usage,
as it will be loaded into memory each time the object is fetched from the ZODB.

BLOBs

BLOBs are large binary objects like files or images.

BLOBs are supported since ZODB 3.8.x. Plone 3.x still uses
ZODB 3.7.x by default. ZODB 3.8.x works but it is not officially
supported.

When you use BLOB interface to store and retrieve data, they are stored
physically as files on your file systems. File system, as the name says,
was designed to handle files and has far better performance on large binary
data as sticking the data into ZODB.

BLOBs are streamable which means that you can start serving the file from
the beginning of the file to HTTP wire without needing to buffer
the whole data to the memory first (slow).

SQL values

Plone's Archetypes subsystem supports storing individual Archetypes fields in SQL database.
This is mainly an integration feature [http://plone.293351.n2.nabble.com/Work-with-Contents-in-SQL-database-td5868800.html]. Read more about this in Archetypes manual [http://plone.org/products/archetypes/documentation/old/ArchetypesDeveloperGuide/index_html#advanced-storage-manual].

Transaction sizes

Discussion pointers

	http://www.mail-archive.com/zodb-dev@zope.org/msg03398.html

Analysing Data.fs content offline

	http://plone.org/documentation/kb/debug-zodb-bloat

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	ZODB, persistency and transactions »

Migrations

Database migrations are needed if your internal data storage format
changes between versions.

ZODB does not require you to set object format explicitly,
like in SQL you need to create table schema. However,
your code will naturally fail if the data format of the object
is unexpected.

	Changing instance attributes [http://www.zodb.org/documentation/guide/prog-zodb.html#changing-instance-attributes]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Functionality and features

Description

Explanations how specific user visible features
are programmed in Plone.

	Actions

	Expressions

	Portlets

	Site setup and configuration

	Dashboard

	RSS

	Collections

	Locked content

	Breadcrumbs (path bar)

	Sitemap protocol

	Discussion and comments

	Contact forms

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Actions

Description

Creating and using portal_actions mechanism

	Introduction

	Iterating through available actions

	Creating actions through-the-web
	Exporting and importing all portal_actions

	Creating actions.xml by hand
	Reordering actions in actions.xml

	Action URLs

	Default action

	Content-type specific actions

	Toggling action visibility programmatically

	Visibility expressions
	Condition examples

	Using actions in views and viewlets

	Tabs (sections)

	Custom action listings

	Different tabs per section/folder

	Copy, cut and paste

Introduction

Plone has concept of actions which refer the end user functionality associated with site
or content objects:

	View, edit, sharing etc. are actions

	Sitemap is action

	Contact form is action

	Cut, copy, paste are actions

	Logged in menu is populated by actions

Actions are managed by

	portal_actions for generic actions

	portal_types for view, edit etc. actions and object default action... all actions
which are tied to a particular content type and may vary by type

Iterating through available actions

Here is a page template example

 <tal:actions repeat="action python:context.portal_actions.listFilteredActionsFor(context)['portal_tabs']">

 <a tal:attributes="href action/url; title action/title;" tal:content="action/title">
 Action title

 </tal:actions>

Creating actions through-the-web

Visit portal_actions in ZMI.

Exporting and importing all portal_actions

You can transfer action configuration from a Plone site to another using GenericSetup export/import XML.
You can also do this to generate XML from which you can cut out snippets for creating
actions.xml by hand.

	Go to portal_setup

	Choose Export

	Choose actions

	Choose "Export selected steps" button at the end of the page

	...and so on

Creating actions.xml by hand

Usually all actions are rewritten by site policy product using portal_actions import/export.
Actions are in GenericSetup profile file default/profiles/actions.xml.

	actions.xml is exported from the development instance using portal_setup

	actions.xml is made part of the site policy product

Alternatively, if you are developing add-on product, you can add actions one-by-one by
manually creating entries in actions.xml.

Example how to add an action to object actions:

<?xml version="1.0"?>
<object name="portal_actions" meta_type="Plone Actions Tool"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <object name="document_actions" meta_type="CMF Action Category">
 <object name="sendto" meta_type="CMF Action" i18n:domain="plone">
 <property name="title" i18n:translate="">Send this</property>
 <property name="description" i18n:translate=""></property>
 <property name="url_expr">string:$object_url/sendto_form</property>
 <property name="icon_expr"></property>
 <property name="available_expr">object/@@shareable</property>
 <property name="permissions">
 <element value="Allow sendto"/>
 </property>
 <property name="visible">True</property>
 </object>
</object>

Example how to add actions to user menu, which is
visible in the top right corner for logged in users (Plone 4):

<?xml version="1.0"?>
<object name="portal_actions" meta_type="Plone Actions Tool"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <object name="user" meta_type="CMF Action Category">
 <object name="ora_sync" meta_type="CMF Action" i18n:domain="plone">
 <property name="title" i18n:translate="">ORA</property>
 <property name="description" i18n:translate="">ORA site synchronization status</property>
 <property name="url_expr">string:${portal_url}/@@syncall</property>
 <property name="icon_expr"></property>
 <property name="available_expr"></property>
 <property name="permissions">
 <element value="Manage portal"/>
 </property>
 <property name="visible">True</property>
 </object>
 </object>
</object>

Reordering actions in actions.xml

Try using these attributes

	insert-after

	insert-before

They accept * and action name parameters.

Example:

<object name="sendto" meta_type="CMF Action" i18n:domain="plone" insert-before="*">

Action URLs

Actions are applied to objects by adding action name to url.

E.g.:

http://localhost:8080/site/page/view

for view action and:

http://localhost:8080/site/page/edit

for edit action.

Action can be also not related to document, like:

http://localhost:8080/site/sitemap

Default action

Default action is executed when the content URL is opened without any
prefix.

Default action is defined in portal_types.

Default action can be dynamic - meaning that
site editor may set it from Display menu. For more information see
Dynamic Views.

Content-type specific actions

Content-type specific actions can be registered in portal_types.
Actions are viewable and editable in Zope Management Interface under portal_types.
After editing actions,
content type XML can be exported and placed to your content type add-on product.

GenericSetup example file for content type "ProductCard" which has a new tab added
next to view, edit, sharing, etc. File is located in profiles/default/types/ProductCard.xml.

<?xml version="1.0"?>
<object name="ProductCard"
 meta_type="Factory-based Type Information with dynamic views"
 i18n:domain="saariselka.app" xmlns:i18n="http://xml.zope.org/namespaces/i18n">
 <property name="title" i18n:translate="">Tuotekortti</property>

 <alias from="(Default)" to="(dynamic view)" />
 <alias from="edit" to="atct_edit" />
 <alias from="sharing" to="@@sharing" />
 <alias from="view" to="(selected layout)" />
 <action title="View" action_id="view" category="object" condition_expr=""
 url_expr="string:${object_url}/" visible="True">
 <permission value="View" />
 </action>
 <action title="Edit" action_id="edit" category="object" condition_expr=""
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content" />
 </action>

 <!-- Custom action code goes here. We add a new tab with title "Data" and
 uri @@productdata_view which is a registered BrowserView for the content type.
 -->

 <action title="Data" action_id="productdata_view" category="object" condition_expr=""
 url_expr="string:${object_url}/@@productdata_view" visible="True">
 <permission value="Modify portal content" />
 </action>

</object>

The corresponding BrowserView is registered as any other view in browser/configure.zcml:

<browser:page
 for="*"
 name="productdata_view"
 class=".productdataview.ProductDataView"
 template="productdataview.pt"
 allowed_attributes="renderData"
 permission="zope2.View"
 />

Toggling action visibility programmatically

Warning

This applies only for Plone 2.5. You should use actions.xml instead.

Example:

def disable_actions(portal):
 """ Remove unneeded Plone actions

 @param portal Plone instance
 """

 # getActionObject takes parameter category/action id
 # For ids and categories please refer to portal_actins in ZMI
 actionInformation = portal.portal_actions.getActionObject("document_actions/rss")

 # See ActionInformation.py / ActionInformation for available edits
 actionInformation.edit(visible=False)

Visibility expressions

In portal_actions expression is used to determine whether an action is visible
on a particular page.

Expression is "expression" field in actions.xml or "Expression" field in
portal_actions.

Note

This check is just a visibility check. Users can still
try to type the action by typing the URL manually. You need
to do the permission level security check on the view providing the action.

For more information see expressions.

Condition examples

See in expressions.

Using actions in views and viewlets

Example:

context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')

First argument is action category,
we have custom "mobile_actions"
self.actions = context_state.actions().get('mobile_actions', None)

Tabs (sections)

Tabs are special actions

	Some of tabs are automatically generated from root level content items

	Some of tabs are manually added to portal_actions.portal_tabs

By default, they are shown as the top vertical navigation of Plone site.

Example how to generate tabs list:

def getSections(self):
 """

 @return: tuple (selectedTabs, currentSelectedTab)
 """

 context_state = getMultiAdapter((self.context, self.request),
 name=u'plone_context_state')
 actions = context_state.actions()

 # Get CatalogNavigationTabs instance
 portal_tabs_view = getMultiAdapter((self.context, self.request),
 name='portal_tabs_view')

 # Action parameter is "portal_tabs" by default, but can be other
 portal_tabs = portal_tabs_view.topLevelTabs(actions=actions)

 selectedTabs = self.context.restrictedTraverse('selectedTabs')

 selected_tabs = selectedTabs('index_html',
 self.context,
 portal_tabs)

 selected_portal_tab = selected_tabs['portal']

 return (portal_tabs, selected_portal_tab)

Custom action listings

Example:

import Acquisition
from zope.component import getMultiAdapter

class Sections(base.Sections):
 """
 """

 def update(self):
 base.Sections.update(self)

 context = Acquisition.aq_inner(self.context)
 # IContextState view provides shortcut to get different action listings
 context_state = getMultiAdapter((context, self.request), name=u'plone_context_state')
 all_actions = context_state.keyed_actions() # id -> action mappings
 mobile_site_actions = all_actions["mobile_site_actions"].values()
 self.portal_tabs = mobile_site_actions

Different tabs per section/folder

You might want to have different actions for different site sections or folders.

	http://plone.293351.n2.nabble.com/Custom-portal-tabs-per-subsection-tp5747768p5747768.html

Copy, cut and paste

These action are based on OFS Zope 2 package SimpleItem mechanisms.
Plone specific event handlers are used to update Plone related stuff like portal_catalog
on move.

Plone internal clipboard relies on the presence of Zope 2 session (different from authentication session).
Paste action fails silenlty (is missing) if _ZopeId session cookie does not work correctly on your
web server.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Expressions

Description

Expressions are string templates or Python expressions
which are used in various places in Plone for templates,
action conditions
and URL generation.

	Introduction

	Expression types
	path expression (default)
	__call__() and nocall: behavior in TAL path traversing

	string: expressions

	python: expression

	Expression variables

	Using expressions in your own code

	Custom expression using a helper view

	Expression examples
	Get current language

	Check current language in TAL page template

	Check if object implements an interface

	Check if a certain hostname was used for HTTP request

	Check if the object is a certain content type

	Get portal description

	Doing <input CHECKED> and boolean like HTML attributes in TAL

	Through-the-web scripts
	Creating a TTW Python script in an add-on installer

	Dynamically hiding content menu items

Introduction

Expressions are part of TAL, the Template Attribute Language.
They are used in Zope Page Templates (ZPT) and
as part of workflow definitions, among other things.
You might want to use expressions in your own add-on product
to provide user-written conditions for viewlet visibility,
portlets, dynamic text, etc.

The authoritative reference is
Appendix C: Zope Page Templates Reference [http://docs.zope.org/zope2/zope2book/AppendixC.html]
of the Zope 2 Book [http://docs.zope.org/zope2/zope2book/index.html]

Expressions are used in:

	the tal:condition, tal:content, tal:replace,
tal:attribute, tal:define TAL directives;

	portal_css, portal_javascript and other resource managers, to
express when a resource should be included or not;

	portal_actions to define when content, site and user actions are
visible.

Expression types

There are three main categories of expressions.

Expression can contain an optional protocol: prefix
to determine the expression type.

path expression (default)

Unless you specify an expression type using python: or string:
notation,
a path expression [http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-path-expressions]
is assumed.

Path expressions use slashes for traversal
(traversing),
and will implicitly call callables.

Example: call the Title() method on the context object
(finding it by acquisition if necessary)
and return its value:

context/Title

Variables can be included using ?.
Example: access a folder using the id stored in the myItemId variable,
and return its title:

context/?myItemId/Title

Note

With this kind of usage, if the variable you're dereferencing isn't
sanitized, there could be security ramifications. Use
python:restrictedTraverse() instead if you need to use
variables in your path parts.

__call__() and nocall: behavior in TAL path traversing

The TAL path expression will call Python callable objects by default.

If you try to get a hold of a helper view like this:

tal:define="commentsView context/@@comments_view"

You might get this exception:

 Module zope.tales.expressions, line 217, in __call__
 Module Products.PageTemplates.Expressions, line 155, in _eval
 Module Products.PageTemplates.Expressions, line 117, in render
 Module Products.Five.browser.metaconfigure, line 476, in __call__
AttributeError: 'coments_view' object has no attribute 'index'

It basically means that your view does not have a template assigned
and the traversing logic tries to render that template.

This happens because

	`` context/@@comments_view`` creates a view instance

	then calls its __call__() method

	the default BrowserView.__call__() behavior to render a template by doing:

def __call__(self):
 return self.index()

	Because your view does not have a template assigned it also lacks self.index attribute

The workaround for cases like this is to use nocall:: traversing:

tal:define="commentsView nocall:context/@@comments_view"

string: expressions

Do string replace operation.

Example:

string:${context/portal_url}/@@my_view_name

python: expression

Evaluate as Python code.

Example:

python:object.myFunction() == False

Expression variables

Available expression variables are defined in CMFCore/Expressions.py:

data = {
 'object_url': object_url,
 'folder_url': folder.absolute_url(),
 'portal_url': portal.absolute_url(),
 'object': object,
 'folder': folder,
 'portal': portal,
 'nothing': None,
 'request': getattr(portal, 'REQUEST', None),
 'modules': SecureModuleImporter,
 'member': member,
 'here': object,
 }

You can also access helper views directly by name.

Using expressions in your own code

Expressions are persistent objects. You usually
want to attach them to something, but this is not necessary.

Example:

from Products.CMFCore.Expression import Expression, getExprContext

Create a sample expression - usually this is taken from
the user input
expression = Expression("python:context.Title() == 'foo')

expression_context = getExprContext(self.context)

Evaluate expression by calling
Expression.__call__(). This
will return whatever value expression evaluation gives
value = expression(expression_context)

if value.strip() == "":
 # Usually empty expression field means that
 # expression should be True
 value = True

if value:
 # Expression succeeded
 pass
else:
 pass

Custom expression using a helper view

If you need to add complex Python code to your expression conditions
it is best to put this code in a BrowserView
and expose it as a method.

Then you can call the method on a view from a TALES expression:

object/@@my_view_name/my_method

Your view code would look like:

class MyViewName(BrowserView):
 """ Exposes methods for expression conditions """

 def my_method(self):
 """ Funky condition

 self.context = object for which this view was traversed
 """
 if self.context.Title().startswith("a"):
 return True
 else:
 return False

Register the view as "my_view_name", using configure.zcml as usual.

You can use context interfaces like

	Products.CMFCore.interfaces.IContentish

	zope.interface.Interface (or *)

to make sure that this view is available on all content objects,
as TALES will be evaluated on every page,
depending on what kind of content the page will present.

Expression examples

Get current language

Use IPortalState context helper view.

Example how to generate a multilingual-aware RSS feed link:

string:${object/@@plone_portal_state/portal_url}/site-feed/RSS?set_language=${object/@@plone_portal_state/language}

... or you can use a Python expression for comparison:

python:object.restrictedTraverse('@@plone_portal_state').language() == 'fi'

Check current language in TAL page template

For example, in case you need to generate HTML such as links
conditionally, depending on the current language:

Example:

<a tal:define="language context/@@plone_portal_state/language" tal:condition="python: language == 'fi'"
 href="http://www.fi">Finnish link

Example to have different footers (or something similar)
for different languages:

<div tal:replace="structure context/footertext"
 tal:condition="python:context.restrictedTraverse('@@plone_portal_state').language() == 'no'" />
<div tal:replace="structure context/footertexteng"
 tal:condition="python:context.restrictedTraverse('@@plone_portal_state').language() == 'en'" />

Check if object implements an interface

Example:

python:context.restrictedTraverse('@@plone_interface_info').provides('Products.CMFCore.interfaces.IFolderish')

Returns True or False. Useful for actions.

Check if a certain hostname was used for HTTP request

Example:

python:"localhost" in request.environ.get("HTTP_HOST", "")

Check if the object is a certain content type

Example:

python:getattr(object, "portal_type", "") == "Custom GeoLocation"

Get portal description

Example:

tal:define="
 portal context/portal_url/getPortalObject;
 portal_description portal/Description"

Doing <input CHECKED> and boolean like HTML attributes in TAL

To have a value appear in TAL or not you can do:

<input type="checkbox" tal:attributes="checked python:'checked' if MYCONDITION else ''" />

We execute a Python snippet which

	We will dynamically create a checked attribute on <input> based on Python evaluation

	Return "checked" string if some condition we check in Python evaluates to True

	Otherwise we return an empty string and TAL won't output this attribute (TODO: has TAL some special support for
CHECKED and SELECTED attributes)

Note

Python 2.6, Plone 4+ syntax

Through-the-web scripts

Todo

Move TTW script info to its own chapter.

The Zope Management Interface allows one to create,
edit and execute
RestrictedPython sandboxed scripts
directly through the web management interface. This functionality
is generally discouraged nowadays in the favor of
view classes.

Creating a TTW Python script in an add-on installer

Here is an example of how one can pre-seed a Python script in
an add-on installer GenericSetup profile.

setuphandlers.py:

from Products.PythonScripts.PythonScript import manage_addPythonScript

DEFAULT_REDIRECT_PY_CONTENT = """
if port not in (80, 443):
 # Don't kick in HTTP/HTTPS redirects if the site
 # is directly being accessed from a Zope front-end port
 return None
"""

def runCustomInstallerCode(site):
 """ Run custom add-on product installation code to modify Plone site object and others

 Python scripts can be created by Products.PythonScripts.PythonScript.manage_addPythonScript

 http://svn.zope.org/Products.PythonScripts/trunk/src/Products/PythonScripts/PythonScript.py?rev=114513&view=auto

 @param site: Plone site
 """

 # Create the script in the site root
 id = "redirect_handler"

 # Don't override the existing installation
 if not id in site.objectIds():
 manage_addPythonScript(site, id)
 script = site[id]

 # Define the script parameters
 parameters = "url, port"

 script.ZPythonScript_edit(parameters, DEFAULT_REDIRECT_PY_CONTENT)

def setupVarious(context):
 """
 @param context: Products.GenericSetup.context.DirectoryImportContext instance
 """

 # We check from our GenericSetup context whether we are running
 # add-on installation for your product or any other proudct
 if context.readDataFile('collective.scriptedredirect.marker.txt') is None:
 # Not our add-on
 return

 portal = context.getSite()

 runCustomInstallerCode(portal)

See the full example [https://github.com/collective/collective.scriptedredirect/].

Dynamically hiding content menu items

	http://blog.affinitic.be/2013/03/04/filter-menu-using-a-grok-view/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Portlets

Description

Programmatical manipulation of portlets in Plone.

	Introduction

	Related add-ons and packages

	Creating a portlet

	Subclassing a portlet

	Using z3c.form in portlets

	Overriding portlet rendering

	update() and render()

	available property

	Iterate portlets assigned to the portal root

	Looking up a portlet by id

	Walking through every portlet on the site

	Checking if a certain context portlet is active on a page

	Rendering a portlet

	Hiding unwanted portlets

	Disabling right or left columns in a view or template

	Disabling right or left columns on a context

	Creating a new portlet manager

	Fixing relative links for static text portlets

	Other resources and examples

Introduction

Portlets are editable boxes in the left and right side bar of Plone user interface.
Add-ons allow portlets in other parts in of the user interface too, like
above and below the content.

This document is contains quick how-to information only.
Please visit Portlets reference manual
for in-depth information.

Related add-ons and packages

You might want to check these before starting to write your own portlet -
for ready solution, for examples, for inspiration.

	Create your own portlet managers with collective.panels [https://pypi.python.org/pypi/collective.panels]

	https://github.com/collective/collective.portletalias

	http://plone.org/products/contentwellportlets

	https://github.com/miohtama/imageportlet

	https://github.com/collective/collective.cover

Creating a portlet

	You need a paster-compatible product skeleton created using paster create -t plone or
paster create -t archetypes commands.

	Use project specific paster command paster addcontent portlet to create a code
skeleton for your new portlet.

Subclassing a portlet

You can subclass a portlet to create a new portlet type with your enhanced functionality.

	Subclassing new portlets

Using z3c.form in portlets

z3c.form is a modern form library for Plone. The out of the box Plone portlets
use older zope.formlib.

Discussion related to the matter

	http://stackoverflow.com/questions/5174905/can-i-use-z3c-form-on-plone-portlets-instead-of-zope-formlib

Overriding portlet rendering

Use <plone:portletRenderer> directive.
Specify 1) layer, 2) template and/or 3) class 4) portlet interface.

You need <include package=""> directive for the package
whose portlet you are going to override.

<configure
 xmlns:plone="http://namespaces.plone.org/plone"
 >

 <include package="plone.app.portlets" />

 <plone:portletRenderer
 portlet="plone.app.portlets.portlets.news.INewsPortlet"
 template="mytheme_news.pt"
 layer=".interfaces.IThemeSpecific"
 />

</configure>

More information

	http://plone.org/documentation/manual/theme-reference/elements/portlet/override-the-portlets-in-plone-3.0

update() and render()

These methods should honour zope.contentprovider.interfaces.IContentProvider call contract [http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto].

available property

The portlet renderer can define available property to hint the portlet manager when the portlet should be rendered.

Example

class Renderer(base.Renderer):

 @property
 def available(self):
 # Show this portlet for logged in users only
 return not self.anonymous

Iterate portlets assigned to the portal root

Below is an simple example how to print all portlets
which have been assigned to the portal root:

def check_root_portlets(self):
 """ Print all portlet assignments in the portal root """

 from zope.component import getUtility, getMultiAdapter
 from plone.portlets.interfaces import IPortletManager
 from plone.portlets.interfaces import IPortletAssignment
 from plone.portlets.interfaces import IPortletAssignmentMapping

 content = self.portal

 for manager_name in ["plone.leftcolumn", "plone.rightcolumn"]:

 print "Checking portlet column:" + manager_name

 manager = getUtility(IPortletManager, name=manager_name, context=content)

 mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 # id is portlet assignment id
 # and automatically generated
 for id, assignment in mapping.items():
 print "Found portlet assignment:" + id + " " + str(assignment)

Looking up a portlet by id

Here are some tips how to extract the portlet id data in the portlet
renderer to pass around to be consumed elsewhere.

portlets.py:

class Renderer(base.Renderer):

 def getImageURL(self, imageDesc):
 """
 :return: The URL where the image can be downloaded from.

 """
 context = self.context.aq_inner

 # [{'category': 'context', 'assignment': <imageportlet.portlets.Assignment object at 0x1138bb140>, 'name': u'bound-method-assignment-title-of-assignment-at-1', 'key': '/Plone/fi'},
 params = dict(
 portletName=self.__portlet_metadata__["name"],
 portletManager=self.__portlet_metadata__["manager"],
 image=imageDesc["id"],
 modified=self.data._p_mtime,
 portletKey=self.__portlet_metadata__["key"],
)

 imageURL = "%s/@@image-portlet-downloader?%s" % (context.absolute_url(), urllib.urlencode(params))

 return imageURL

Then we can re-look-up this portlet and its image field, based on the field name, in the downloader view:

Zope imports
from zExceptions import InternalError
from zope.interface import Interface
from zope.component import getUtility, getMultiAdapter
from five import grok

Plone imports
from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import IPortletRetriever
from plone.namedfile.utils import set_headers, stream_data

Local imports
from interfaces import IAddonSpecific

grok.templatedir("templates")
grok.layer(IAddonSpecific)

class ImagePortletHelper(grok.CodeView):
 """
 Expose stuff downloadable from the image portlet BLOBs.
 """
 grok.context(Interface)
 grok.baseclass()

class ImagePortletImageDownload(ImagePortletHelper):
 """
 Expose image fields as downloadable BLOBS from the image portlet.

 Allow set caching rules (content caching for this view)
 """
 grok.context(Interface)
 grok.name("image-portlet-downloader")

 def getPortletById(self, content, portletManager, key, name):
 """
 :param content: Context item where the look-up is performed

 :param portletManager: Portlet manager name as a string

 :param key: Assignment key... context path as string for content portlets

 :param name: Portlet name as a string

 :return: Portlet assignment instance
 """

 # Make sure we got input
 assert key, "Give a proper portlet assignment key"
 assert name, "Give a proper portlet assignment name"

 # Resolve portlet and its image field
 manager = getUtility(IPortletManager, name=portletManager, context=content)

 # Mappings can be directly used only when
 # portlet is directly assignment to the content.
 # If it is assigned to the parent we would fail here.
 # mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 retriever = getMultiAdapter((content, manager,), IPortletRetriever)

 for assignment in retriever.getPortlets():
 if assignment["key"] == key and assignment["name"] == name:
 return assignment["assignment"]

 return None

 def render(self):
 """

 """
 content = self.context.aq_inner

 # Read portlet assignment pointers from the GET query
 name = self.request.form.get("portletName")
 manager = self.request.form.get("portletManager")
 imageId = self.request.form.get("image")
 key = self.request.form.get("portletKey")

 portlet = self.getPortletById(content, manager, key, name)
 if not portlet:
 raise InternalError("Portlet not found: %s %s" % (key, name))

 image = getattr(portlet, imageId, None)
 if not image:
 # Ohops?
 raise InternalError("Image was empty: %s" % imageId)

See imageportlet add-on for the complete example.

Walking through every portlet on the site

The following code iterates through all portlets assigned
directly to content items. This excludes dashboard, group and content type based portlets.
Then it prints some info about them and renders them.

Example code:

from Products.Five.browser import BrowserView

from zope.component import getUtility, getMultiAdapter
from zope.app.component.hooks import setHooks, setSite, getSite

from plone.portlets.interfaces import IPortletType
from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import IPortletAssignment
from plone.portlets.interfaces import IPortletDataProvider
from plone.portlets.interfaces import IPortletRenderer
from plone.portlets.interfaces import IPortletAssignmentMapping
from plone.portlets.interfaces import ILocalPortletAssignable

from Products.CMFCore.interfaces import IContentish

class FixPortlets(BrowserView):
 """ Magical portlet debugging view """

 def __call__(self):
 """
 """

 request = self.request

 portal = getSite()

 # Not sure why this is needed...
 view = portal.restrictedTraverse('@@plone')

 # Query all content items on the site which can get portlets assigned
 # Note that this should excule special, hidden, items like tools which otherwise
 # might appearn in portal_catalog queries
 all_content = portal.portal_catalog(show_inactive=True, language="ALL", object_provides=ILocalPortletAssignable.__identifier__)

 # Load the real object instead of index stub
 all_content = [content.getObject() for content in all_content]

 # portal itself does not show up in the query above,
 # though it might contain portlet assignments
 all_content = list(all_content) + [portal]

 for content in all_content:

 for manager_name in ["plone.leftcolumn", "plone.rightcolumn"]:

 manager = getUtility(IPortletManager, name=manager_name, context=content)

 mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 # id is portlet assignment id
 # and automatically generated
 for id, assignment in mapping.items():
 print "Found portlet assignment:" + id + " " + str(assignment)

 renderer = getMultiAdapter((content, request, view, manager, assignment), IPortletRenderer)

 # Renderer acquisition chain must be set-up so that templates
 # et. al. can resolve permission inheritance
 renderer = renderer.__of__(content)

 # Seee http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto
 renderer.update()
 html = renderer.render()
 print "Got HTML output:" + html

 return "OK"

For more information about portlet assignments and managers, see

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/tests/test_mapping.py

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/tests/test_traversal.py

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/configure.zcml

	https://github.com/plone/plone.portlets/blob/master/plone/portlets/interfaces.py

	http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto (for portlet renderers)

Checking if a certain context portlet is active on a page

	Iterate through portlet managers by name

	Get portlet retriever for the manager

	Get portlets

	Check if the portlet assignment provides your particular portlet marker interface

Example:

import Acquisition
from zope.component import getUtility, getMultiAdapter

from plone.portlets.interfaces import IPortletRetriever, IPortletManager

for column in ["plone.leftcolumn", "plone.rightcolumn"]:

 manager = getUtility(IPortletManager, name=column)

 retriever = getMultiAdapter((self.context, manager), IPortletRetriever)

 portlets = retriever.getPortlets()

 for portlet in portlets:

 # portlet is {'category': 'context', 'assignment': <FacebookLikeBoxAssignment at facebook-like-box>, 'name': u'facebook-like-box', 'key': '/isleofback/sisalto/huvit-ja-harrasteet
 # Identify portlet by interface provided by assignment
 if IFacebookLikeBoxData.providedBy(portlet["assignment"]):
 return True

return False

Rendering a portlet

Below is an example how to render a portlet in Plone

	A portlet is assigned to some context in some portlet manager

	We can dig these assignments up by portlet id (not user visible) or portlet type (portlet assignment interface)

How to get your portlet HTML:

from zope.component import getUtility, getMultiAdapter, queryMultiAdapter
from plone.portlets.interfaces import IPortletRetriever, IPortletManager, IPortletRenderer
from plone.portlets.interfaces import IPortletManagerRenderer

from Products.Five import BrowserView

class FakeView(BrowserView):
 """
 Portlet manager code goes down well with cyanide.
 """

def get_portlet_manager(column):
 """ Return one of default Plone portlet managers.

 @param column: "plone.leftcolumn" or "plone.rightcolumn"

 @return: plone.portlets.interfaces.IPortletManagerRenderer instance
 """
 manager = getUtility(IPortletManager, name=column)
 return manager

def render_portlet(context, request, view, manager, assignmentId):
 """ Render a portlet defined in external location.

 .. note ::

 Portlets can be idenfied by id (not user visible)
 or interface (portlet class). This method supports look up
 by interface and will return the first matching portlet with this interface.

 @param context: Content item reference where portlet appear

 @param manager: IPortletManager instance through get_portlet_manager()

 @param view: Current view or None if not available

 @param interface: Marker interface class we use to identify the portlet. E.g. IFacebookPortlet

 @return: Rendered portlet HTML as a string, or empty string if portlet not found
 """

 if not view:
 # manager(context, request, view) does not accept None as multi-adapter lookup parameter
 view = FakeView(context, request)

 retriever = getMultiAdapter((context, manager), IPortletRetriever)

 portlets = retriever.getPortlets()

 assignment = None

 if len(portlets) == 0:
 raise RuntimeError("No portlets available for manager %s in the context %s" % (manager.__name__, context))

 for portlet in portlets:

 # portlet is {'category': 'context', 'assignment': <FacebookLikeBoxAssignment at facebook-like-box>, 'name': u'facebook-like-box', 'key': '/isleofback/sisalto/huvit-ja-harrasteet
 # Identify portlet by interface provided by assignment
 print portlet
 if portlet["name"] == assignmentId:
 assignment = portlet["assignment"]
 break

 if assignment is None:
 # Did not find a portlet
 raise RuntimeError("No portlet found with name: %s" % assignmentId)

 # Note: Below is tested only with column portlets

 # PortletManager provides convenience callable
 # which gives you the renderer. The view is mandatory.
 managerRenderer = manager(context, request, view)

 # PortletManagerRenderer convenience function
 renderer = managerRenderer._dataToPortlet(portlet["assignment"].data)

 if renderer is None:
 raise RuntimeError("Failed to get portlet renderer for %s in the context %s" % (assignment, context))

 renderer.update()
 # Does not check visibility here... force render always
 html = renderer.render()

 return html

How to use this code in your own view, please see collective.portletalias source [https://github.com/collective/collective.portletalias/blob/master/collective/portletalias/portlets/aliasportlet.py#L73]

More info

	http://blog.mfabrik.com/2011/03/10/how%C2%A0to-render-a-portlet-in-plone/

Hiding unwanted portlets

Example portlets.xml:

<!-- This leaves only News portlet -->

<portlet addview="portlets.Calendar" remove="true" />
<portlet addview="portlets.Classic" remove="true" />
<portlet addview="portlets.Login" remove="true" />
<portlet addview="portlets.Events" remove="true" />
<portlet addview="portlets.Recent" remove="true" />
<portlet addview="portlets.rss" remove="true" />
<portlet addview="portlets.Search" remove="true" />
<portlet addview="portlets.Language" remove="true" />
<portlet addview="plone.portlet.collection.Collection" remove="true" />
<portlet addview="plone.portlet.static.Static" remove="true" />

<!-- collective.flowplayer add-on -->
<portlet addview="collective.flowplayer.Player" remove="true" />

Portlet names can be found in plone.app.portlets/configure.zcml.

More info:

	http://stackoverflow.com/questions/5897656/disabling-portlet-types-site-wide-in-plone

Disabling right or left columns in a view or template

Sometimes, when you work with custom views and custom templates you need to
disable right or left column for portlets.

This is how you do from within a template:

<metal:override fill-slot="top_slot"
 tal:define="disable_column_one python:request.set('disable_plone.leftcolumn',1);
 disable_column_two python:request.set('disable_plone.rightcolumn',1);"/>

And this is how you do it from within a view:

import grok

class SomeView(grok.View):
 grok.context(IPloneSiteRoot)

 def update(self):
 super(SomeView, self).update()
 self.request.set('disable_plone.rightcolumn',1)
 self.request.set('disable_plone.leftcolumn',1)

Source: http://stackoverflow.com/questions/5872306/how-can-i-remove-portlets-in-edit-mode-with-plone-4

Disabling right or left columns on a context

Sometimes you just want to turn off the portlets in a certain context that doesn't have
a template or fancy view. To do this in code do this:

from zope.component import getMultiAdapter
from zope.component import getUtility

from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import ILocalPortletAssignmentManager
from plone.portlets.constants import CONTEXT_CATEGORY

Get the proper portlet manager
manager = getUtility(IPortletManager, name=u"plone.leftcolumn")

Get the current blacklist for the location
blacklist = getMultiAdapter((context, manager), ILocalPortletAssignmentManager)

Turn off the manager
blacklist.setBlacklistStatus(CONTEXT_CATEGORY, True)

Or just do it using GenericSetup like a sane person:

	http://plone.org/documentation/manual/developer-manual/generic-setup/reference/portlets

	http://plone.org/products/plone/roadmap/203

Creating a new portlet manager

If you need additional portlet slots at the site.
In this example we use Products.ContentWellCode to provide us some
facilities as a dependency.

	Create a viewlet which will handle portlet rendering in a normal page mode.
Have several portlet slots, a.k.a. wells, where you can drop in portlets.
Wells are rendered horizontally side-by-side and portlets going in
from top to bottom.

	Register this viewlet in a viewlet manager where you wish to show your portlets
on the main template

	Have a management view which allows you to shuffle portlets around. This
is borrowed from Products.ContentWellPortlets.

	Register portlet wells in portlets.xml - note that one
management view can handle several slots as in the example below

The code skeleton works against this Plone add-on template [https://github.com/miohtama/sane_plone_addon_template].

Example portlet manager viewlets.py:

"""

 For more information see

 * http://collective-docs.readthedocs.org/en/latest/views/viewlets.html

"""

import logging
from fractions import Fraction

Zope imports
from zope.interface import Interface
from zope.component import getMultiAdapter, getUtility, queryUtility
from five import grok

Plone imports
from plone.portlets.interfaces import IPortletManager
from plone.app.layout.viewlets.interfaces import IPortalFooter
from Products.CMFCore.utils import getToolByName

Local imports
from interfaces import IAddonSpecific, IThemeSpecific

grok.templatedir("templates")
grok.layer(IThemeSpecific)

By default, set context to zope.interface.Interface
which matches all the content items.
You can register viewlets to be content item type specific
by overriding grok.context() on class body level
grok.context(Interface)

logger = logging.getLogger("PortletManager")

class CustomPortletViewlet(grok.Viewlet):
 """ grok viewlet base class for a custom portlet renderer based on Products.ContentWellPortlets

 Orignal code from Products.ContentWellPortlets
 """
 grok.baseclass()

 # Id which we use to store portlets
 name = ""

 # Name of browser view which will render the management interface for portlets
 # in this manager
 manage_view = ""

 # We have 5 portlet slots in this viewlet
 portlet_count = 5

 def update(self):
 context_state = getMultiAdapter((self.context, self.request), name=u'plone_context_state')
 self.manageUrl = '%s/%s' % (context_state.view_url(), self.manage_view)

 ## This is the way it's done in plone.app.portlets.manager, so we'll do the same
 mt = getToolByName(self.context, 'portal_membership')
 self.canManagePortlets = mt.checkPermission('Portlets: Manage portlets', self.context)

 def showPortlets(self):
 return '@@manage-portlets' not in self.request.get('URL')

 def portletManagersToShow(self):
 visibleManagers = []

 for n in range(1,self.portlet_count):
 name = '%s%s' % (self.name, n)

 try:
 mgr = getUtility(IPortletManager, name=name, context=self.context)
 except:
 # In the case we have problems to load portlet manager, do something about it
 # This is graceful fallback in a situation where 1) add-on is already installed
 # 2) new portlet code drops in and re-run add-on installer is
 continue

 if mgr(self.context, self.request, self).visible:
 visibleManagers.append(name)

 managers = []
 numManagers = len(visibleManagers)
 for counter, name in enumerate(visibleManagers):
 pos = 'position-%s' % str(Fraction(counter, numManagers)).replace('/',':')
 width = 'width-%s' % (str(Fraction(1, numManagers)).replace('/',':') if numManagers >1 else 'full')
 managers.append((name, 'cell %s %s %s' % (name.split('.')[-1], width, pos)))
 return managers

class ColophonPortlets(CustomPortletViewlet):
 """
 Render a new series of portlets in colophon.
 """

 # This name is used to store portlets,
 # as referred in portlets.xml
 name = 'PortletsColophon'

 # This is custom management URL view for this,
 # registered thru ZCML to point to Products.ContentWellContent manager view class.
 manage_view = '@@manage-portlets-colophon'

 grok.viewletmanager(IPortalFooter)
 grok.template("portlets-colophon")

Define a portlet manager declaration
from Products.ContentWellPortlets.browser.interfaces import IContentWellPortletManager

class IColphonPortlets(IContentWellPortletManager):
 """
 This viewlet is a place holder to match portlets.xml and portlet management view together.

 * Manager is referred by name in manage page template

 * portlets.xml refers to this interface

 * provider:ColophonPortlets expression is also used in template to render the actual porlets
 """

Example ZCML bit

<!-- Register new portlet management view for our portlet manager -->

<include package ="plone.app.portlets" />

<!--

 The .pt file is customized for the portlet manager name (from portlets.xml)
 and management link.

 -->
<browser:page
 name="manage-portlets-colophon"
 for="plone.portlets.interfaces.ILocalPortletAssignable"
 class="plone.app.portlets.browser.manage.ManageContextualPortlets"
 template="templates/manage-portlets-colophon.pt"
 permission="plone.app.portlets.ManagePortlets"
/>

The page template for the manager manage-portlets-colophon.pt is the following

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master"
 >

 <head>
 <div metal:fill-slot="javascript_head_slot" tal:omit-tag="">
 <script type="text/javascript"
 tal:attributes="src string:${context/absolute_url}/++resource++manage-portlets.js">
 </div>
 </head>
 <body class="manage-portlet-well">

 <metal:block fill-slot="top_slot"
 tal:define="disable_column_one python:request.set('disable_plone.leftcolumn',1);
 disable_column_two python:request.set('disable_plone.rightcolumn',1);" />

 <div metal:fill-slot="main">

 <tal:warning tal:condition="plone_view/isDefaultPageInFolder">
 <dl class="portalMessage warning">
 <dt i18n:translate="message_warning_above_content_area_dt">Is this really where you want to add portlets above the content?</dt>
 <dd i18n:translate="message_warning_above_content_area_dd">If you add portlets here, they will only appear on this item. If instead you want portlets to appear on all items in this folder,
 <a href=""
 tal:attributes="href string:${plone_view/getCurrentFolderUrl}/@@manage-portlets-colophon"
 i18n:name="manage-portletsinheader_link">
 add them to the folder itself

 </dd>
 <dl>
 </tal:warning>

 <h1 class="documentFirstHeading"
 i18n:translate="manage_portlets_in_header">Manage portlets in colophon
 </h1>

 <p>
 <a href=""
 class="link-parent"
 tal:attributes="href string:${context/absolute_url}"
 i18n:translate="return_to_view">
 Return

 </p>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 1</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 2</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 3</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 4</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 5</h2>

 </div>

 </div>

 </body>
</html>

Then we have portlets-colophon.pt page template for the viewlet which renders
the portlets and related management link

<div id="portlets-colophon"
 class="row">

 <tal:block tal:condition="viewlet/showPortlets">
 <tal:portletmanagers tal:repeat="manager viewlet/portletManagersToShow">
 <div tal:attributes="class python:manager[1]"
 tal:define="mgr python:manager[0]"
 tal:content="structure provider:${mgr}" />

 </tal:portletmanagers>

 <div style="clear:both"><!-- --></div>

 <div class="manage-portlets-link"
 tal:condition="viewlet/canManagePortlets">
 <a href=""
 class="managePortletsFallback"
 tal:attributes="href viewlet/manageUrl">
 Add, edit or remove a portlet in <b tal:content="viewlet/name" />

 </div>

 </tal:block>

</div>

Finally there is portlets.xml which lists all the portlet managers
and associates them with the used interface

<?xml version="1.0"?>
<!-- Set up all the new portlet managers we need above and below the content well -->
<portlets>

 <portletmanager
 name="PortletsColophon1"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon2"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon3"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon4"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon5"
 type="youraddon.viewlets.IColphonPortlets"
 />

</portlets>

More info

	https://weblion.psu.edu/svn/weblion/weblion/Products.ContentWellPortlets/trunk/Products/ContentWellPortlets/

	http://stackoverflow.com/questions/9766744/dynamic-tal-provider-expressions

Fixing relative links for static text portlets

Note

This should be no longer issue with Plone 4.1 and TinyMCE 1.3+ when using UID
links.

Example how to convert links in all static text portlets:

from lxml import etree
from StringIO import StringIO
import urlparse
from lxml import html

def fix_links(content, absolute_prefix):
 """
 Rewrite relative links to be absolute links based on certain URL.

 @param html: HTML snippet as a string
 """

 parser = etree.HTMLParser()

 content = content.strip()

 tree = html.fragment_fromstring(content, create_parent=True)

 def join(base, url):
 """
 Join relative URL
 """
 if not (url.startswith("/") or "://" in url):
 return urlparse.urljoin(base, url)
 else:
 # Already absolute
 return url

 for node in tree.xpath('//*[@src]'):
 url = node.get('src')
 url = join(absolute_prefix, url)
 node.set('src', url)
 for node in tree.xpath('//*[@href]'):
 href = node.get('href')
 url = join(absolute_prefix, href)
 node.set('href', url)

 data = etree.tostring(tree, pretty_print=False, encoding="utf-8")

 return data

Other resources and examples

	Static text portlet [https://github.com/plone/plone.portlet.static/blob/master/plone/portlet/static/].

	Templated portlet [https://svn.plone.org/svn/collective/collective.easytemplate/trunk/collective/easytemplate/browser/portlets/templated.py]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Site setup and configuration

Description

How to create settings for your add-on product and how to
programmatically add new Plone control panel entries.

	Introduction

	plone.app.registry
	Minimal example using five.grok

	Control panel widget settings

	plone.app.registry imports --- backwards compatibility

	Configlets without plone.registry

	Content type choice setting

	Configuring Plone products from buildout

	Configuration using environment variables

Introduction

This documentation tells you how to create new "configlets" to
Plone site setup control panel.

Configlets can be created in two ways:

	Using the plone.app.registry configuration framework for Plone
(recommended);

	Using any view code.

plone.app.registry

plone.app.registry is the state of the art way to add settings for your
Plone 4.x+ add-ons.

For tutorial and more information please see the
PyPi page [https://pypi.python.org/pypi/plone.app.registry].

Example products:

	https://pypi.python.org/pypi/collective.gtags

	http://plone.org/products/collective.habla

	https://pypi.python.org/pypi/collective.xdv

Minimal example using five.grok

Below is a minimal example for creating a configlet using:

	grok

	plone.app.registry

It is based on the
youraddon template [https://github.com/miohtama/sane_plone_addon_template/blob/master].
The add-on package in this case is called
silvuple [https://github.com/miohtama/silvuple].

In buildout.cfg, make sure you have the extends line for
Dexterity (see the
Dexterity installation guide [http://plone.org/products/dexterity/documentation/how-to/install].

setup.py:

install_requires = [..."plone.app.dexterity", "plone.app.registry"],

settings.py:

"""

 Define add-on settings.

"""

from zope.interface import Interface
from zope import schema
from five import grok
from Products.CMFCore.interfaces import ISiteRoot

from plone.z3cform import layout
from plone.directives import form
from plone.app.registry.browser.controlpanel import RegistryEditForm
from plone.app.registry.browser.controlpanel import ControlPanelFormWrapper

class ISettings(form.Schema):
 """ Define settings data structure """

 adminLanguage = schema.TextLine(title=u"Admin language",
 description=u"Type two letter language code (admins always use this language)")

class SettingsEditForm(RegistryEditForm):
 """
 Define form logic
 """
 schema = ISettings
 label = u"Silvuple settings"

class SettingsView(grok.CodeView):
 """
 View which wrap the settings form using ControlPanelFormWrapper to a HTML boilerplate frame.
 """
 grok.name("silvuple-settings")
 grok.context(ISiteRoot)
 def render(self):
 view_factor = layout.wrap_form(SettingsEditForm, ControlPanelFormWrapper)
 view = view_factor(self.context, self.request)
 return view()

profiles/default/controlpanel.xml

<?xml version="1.0"?>
<object
 name="portal_controlpanel"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="silvuple">

 <configlet
 title="Silvuple Settings"
 action_id="silvuple.settings"
 appId="silvuple"
 category="Products"
 condition_expr=""
 url_expr="string:${portal_url}/@@silvuple-settings"
 icon_expr=""
 visible="True"
 i18n:attributes="title">
 <permission>Manage portal</permission>
 </configlet>

</object>

profiles/default/registry.xml

<registry>
 <records interface="silvuple.settings.ISettings" prefix="silvuple">
 <!-- Set default values -->

 <!-- Leave to empty string -->
 <value key="adminLanguage"></value>
 </records>
</registry>

Control panel widget settings

plone.app.registry provides the RegistryEditForm
class, which is a subclass of z3c.form.form.Form.

It has two places to override which widgets
will be used for which field:

	updateFields() may set widget factories, i.e. widget type, to be used;

	updateWidgets() may play with widget properties and widget values
shown to the user.

Example (collective.gtags project, controlpanel.py):

class TagSettingsEditForm(controlpanel.RegistryEditForm):

 schema = ITagSettings
 label = _(u"Tagging settings")
 description = _(u"Please enter details of available tags")

 def updateFields(self):
 super(TagSettingsEditForm, self).updateFields()
 self.fields['tags'].widgetFactory = TextLinesFieldWidget
 self.fields['unique_categories'].widgetFactory = TextLinesFieldWidget
 self.fields['required_categories'].widgetFactory = TextLinesFieldWidget

 def updateWidgets(self):
 super(TagSettingsEditForm, self).updateWidgets()
 self.widgets['tags'].rows = 8
 self.widgets['tags'].style = u'width: 30%;'

plone.app.registry imports --- backwards compatibility

You need this if you started using plone.app.registry before April 2010.

There is a change concerning the 1.0b1 codebase:

try:
 # plone.app.registry 1.0b1
 from plone.app.registry.browser.form import RegistryEditForm
 from plone.app.registry.browser.form import ControlPanelFormWrapper
except ImportError:
 # plone.app.registry 1.0b2+
 from plone.app.registry.browser.controlpanel import RegistryEditForm
 from plone.app.registry.browser.controlpanel import ControlPanelFormWrapper

Configlets without plone.registry

Just add controlpanel.xml pointing to your custom form.

Content type choice setting

Often you need to have a setting whether a certain functionality is enabled
on particular content types.

Here are the ingredients:

	A custom schema-defined interface for settings (registry.xml schemas
don't support multiple-choice widgets in plone.app.registry 1.0b2);

	a vocabulary factory to pull friendly type information out of portal_types .

settings.py:

"""

 Define add-on settings.

"""

from zope import schema
from five import grok
from Products.CMFCore.interfaces import ISiteRoot
from zope.schema.interfaces import IVocabularyFactory

from z3c.form.browser.checkbox import CheckBoxFieldWidget

from plone.z3cform import layout
from plone.directives import form
from plone.app.registry.browser.controlpanel import RegistryEditForm
from plone.app.registry.browser.controlpanel import ControlPanelFormWrapper

class ISettings(form.Schema):
 """ Define settings data structure """

 adminLanguage = schema.TextLine(title=u"Admin language", description=u"Type two letter language code and admins always use this language")

 form.widget(contentTypes=CheckBoxFieldWidget)
 contentTypes = schema.List(title=u"Enabled content types",
 description=u"Which content types appear on translation master page",
 required=False,
 value_type=schema.Choice(source="plone.app.vocabularies.ReallyUserFriendlyTypes"),
)

class SettingsEditForm(RegistryEditForm):
 """
 Define form logic
 """
 schema = ISettings
 label = u"Silvuple settings"

class SettingsView(grok.CodeView):
 """

 """
 grok.name("silvuple-settings")
 grok.context(ISiteRoot)
 def render(self):
 view_factor = layout.wrap_form(SettingsEditForm, ControlPanelFormWrapper)
 view = view_factor(self.context, self.request)
 return view()

profiles/default/registry.xml:

<registry>
 <records interface="silvuple.settings.ISettings" prefix="silvuple.settings.ISettings">
 <!-- Set default values -->

 <value key="contentTypes" purge="false">
 <element>Document</element>
 <element>News Item</element>
 <element>Folder</element>
 </value>
 </records>

</registry>

Configuring Plone products from buildout

See a section in the
Buildout chapter

Configuration using environment variables

If your add-on requires "setting file"
for few simple settings you can change for each
buildout you can use operating system environment variables.

For example, see:

	https://pypi.python.org/pypi/Products.LongRequestLogger

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Dashboard

	Introduction

	Tutorial

Introduction

Dashboard is a "block" in user preferences.

Tutorial

	http://plone.org/documentation/kb/setup-a-custom-dashboard

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

RSS

Description

Programming RSS feeds on Plone sites

local

	RSS
	Introduction

	Creating a global, language neutral, Plone site content aggregator
	Creating the collection

	Collecting content for the RSS feed

	Linking the RSS feed to site action links

	Publish and test

	Syndication Settings
	Plone <= 4.2

	Plone >= 4.3

	Publishing content through RSS in Plone 4

	RSS feed content

	Changing RSS feed template
	Enabling full body text in RSS feed

Introduction

Plone can generate RSS feeds from folderish content types (folder / collection).
If you want to aggregate content from all the site to RSS feed, you first create
a collection content item and then enable RSS feed on this collection content item.

Creating a global, language neutral, Plone site content aggregator

These instructions tell you how to create a RSS feed collection for your Plone site.
You can choose what content types ends up to the RSS stream. Also,
the aggregator is language aware so that it works correctly on multilingual sites.

Creating the collection

First we create a collection which will aggregate all the site content
for the RSS feed.

	Go to site root

	Add new collection

	Title "Your site name - RSS feed"

	On Category tab, set Language to neutral

	On Settings tab, choose Exclude from navigation

	Save

	Go to site root / Contents tab

	Check your RSS content collection

	Choose Rename button

	Change item id to site-feed

Collecting content for the RSS feed

	Go to your collection content item

	Go to criteria tab

	Set content types criteria

	Set sort by publishing date, reverse

	Save

	Now, choose content items you want to appear in the feed and Save again

You can now preview the content of RSS feed
on View tab.

Linking the RSS feed to site action links

Site actions is the top right link slot on the Plone site.
By default, Plone site wide RSS link will appear there if enabled.

	Go to portal_actions in ZMI

	Go to /portal_actions/site_actions/rss

	In URL expression type:

string:${object/@@plone_portal_state/portal_url}/site-feed/RSS?set_language=${object/@@plone_portal_state/language}

This expression will

	Get URL for site-feed object, using RSS template

	Will explicitly set HTTP GET query parameter set_language which can be used to manually
force Plone content language. We use the current language (from the user cookie) here,
to make sure that the user gets RSS feed in correct language on multilingual sites.

More about expressions.

Publish and test

Publish collection after the content seems to be right, using the workflow
menu on the collection content item.

Test RSS feed by copy-pasting RSS URL from the site action to your RSS Reader, like
Google Reader.

Syndication Settings

Plone <= 4.2

portal_syndication is a persistent utility managing RSS settings.
It provides settings to for formatting RSS feeds (frequency of updates, number of items).

	https://github.com/plone/Products.CMFPlone/blob/4.2.x/Products/CMFPlone/SyndicationTool.py

Plone >= 4.3

In Plone 4.3, the portal_syndication utility was replaced by a browser view and registry settings.

The view may be traversed to from any context with @@syndication-util.

for example, in Plone 4.2 you check for the ability to syndicate a context like so:

<p class="discreet"
 tal:condition="context/portal_syndication/isSiteSyndicationAllowed">
 <a href=""
 class="link-feed"
 i18n:translate="title_rss_feed"
 tal:define="here_url context/@@plone_context_state/object_url"
 tal:attributes="href string:$here_url/search_rss?${request/QUERY_STRING}">
 Subscribe to an always-updated feed of these search terms
</p>

In Plone 4.3, this is updated to look like this:

<p class="discreet"
 tal:condition="context/@@syndication-util/search_rss_enabled">
 <a href=""
 class="link-feed"
 i18n:translate="title_rss_feed"
 tal:define="here_url context/@@plone_context_state/object_url"
 tal:attributes="href string:$here_url/search_rss?${request/QUERY_STRING}">
 Subscribe to an always-updated feed of these search terms
</p>

The syndication-util view is found in Products.CMFPlone.browser.syndication.utils

	https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/syndication/utils.py

Publishing content through RSS in Plone 4

Access /content/synPropertiesForm and publish.

RSS feed content

RSS feed content is the content of the folder or special stream provided by
the content type.

portal_syndication uses the following logic to pull the content:

if hasattr(obj, 'synContentValues'):
 values = obj.synContentValues()
else:
 values = obj.getFolderContents()
return values

Changing RSS feed template

RSS feed is stored in template CMFPlone/skins/plone_templates/rss_template.

Enabling full body text in RSS feed

See this example [http://rudd-o.com/en/linux-and-free-software/a-hack-to-enable-full-text-feeds-in-plone].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Collections

Description

Collections are site editor enabled searches. They provide automatic, folder like view, for the content fetched from the Plone site by criteria defined by the site editor.

	Introduction

	Add new collection criteria (new style, plone.app.collection installed)

	Adding new collection criteria (old style, < 4.2 only)

	Sticky sorting

Introduction

Note

In Plone 4.2, old style collections have been replaced with new style collections, featuring a vastly improved user interface and a de-coupling from the ATTopic content type (i.e. they no longer use ATTopic).

They are useful to generate different listings.

Collections are internally called "topics" and the corresponding content type is "ATTopic" (< 4.2 only). Collections were renamed from topics in Plone 3.0.

Collection searches are driven by two factors:

	User visible "criteria" which is mapped to portal_catalog queries

	portal_catalog() indexes which you need to add yourself for custom content types. Read more about them in Searching and Indexing chapter

Add new collection criteria (new style, plone.app.collection installed)

How to add your own criteria to a collection
plone.app.collection and (or more precisely the underlying plone.app.querystring) uses plone.app.registry records to define possible search criteria for a collection.

If you want to add your own criteria, say to choose a value from a custom index, you have to create a plone.app.registry record for this index in your generic setup profile (e.g profiles/default/registry.xml):

<registry>
 <records interface="plone.app.querystring.interfaces.IQueryField"
 prefix="plone.app.querystring.field.department">
 <value key="title">Department</value>
 <value key="description">A custom department index</value>
 <value key="enabled">True</value>
 <value key="sortable">False</value>
 <value key="operations">
 <element>plone.app.querystring.operation.string.is</element>
 </value>
 <value key="group">Metadata</value>
 </records>
</registry>

The title-value refers to the custom index ("Department"), the operations-value is used to filter the items and the group-value defines under which group the entry shows up in the selection widget.

Note

For a full list of all existing QueryField declarations see https://github.com/plone/plone.app.querystring/blob/master/plone/app/querystring/profiles/default/registry.xml#L197

For a full list of all existing operations see https://github.com/plone/plone.app.querystring/blob/master/plone/app/querystring/profiles/default/registry.xml#L1

Adding new collection criteria (old style, < 4.2 only)

portal_catalog search indexes are not directly exposed to the collection
criteria management backend, since portal_catalog indices do not support
features like localization and user-friendly titles.

Note

In Plone 4.2, the Collection configlet is no longer listed in Site Setup. But you can still access it here: http://localhost:8080/Plone/portal_atct/atct_manageTopicIndex.

New criteria can be created through-the-web in Site setup -> Collection section. Click "All fields" to see unenabled portal_catalog criteria. Later the edited settings can be exported to GenericSetup XML profile using portal_setup tool (no need to create profile XMl files by hand).

portal_catalog indices can be added through-the-web on ZMI portal_catalog tool tabs.

If you still want to create XML files by hand, read more about it in Enable Collection Indices (fields for searching) for custom types HOW TO [http://plone.org/documentation/how-to/enable-collection-indices-fields-for-searching-for-custom-types].

Sticky sorting

See:

	http://stackoverflow.com/questions/8791132/how-to-create-sticky-news-items-in-plone-4

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Locked content

Since Plone 3.1 content edit locking has been supported. This feature
is to prevent simultaneous conflicting edits of the same content.

If the editor forgot to press Save or Cancel
explicit unlocking must be performed on locked objects if you want to modify them.
Unfortunately the side-effect is that if site has objects left to locked state
they usually interfere with your programming.

Since Plone 3.3 the feature can be disabled from the site settings.

Unlocking content

Unlocking can be performed from the object view or edit tab.

Unlocking from Zope control panel

	http://destefano.wordpress.com/2009/01/15/more-fun-with-plone-locks/

Scripts to unlock all site content

	http://m10880.kaivo.com/Plone/help-center/how-to/unlock-webdav-locks

	http://www.zopelabs.com/cookbook/1002703851

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Breadcrumbs (path bar)

Description

Breadcrumbs is visual element showing where the user is on the site.
This document shows some example code how to create breadcrumbs
programmatically.

	Navigation level sensitive breadcrumbs

	Back button

Navigation level sensitive breadcrumbs

Below is a breadcrumbs viewlet displayed only on 3rd navigation level
downwards. Drop this in your add-on template [https://github.com/miohtama/sane_plone_addon_template].
Tune the visible() function for further functionality.

Python code to be dropped in viewlets.py:

from plone.app.layout.viewlets.interfaces import IAboveContent

class Breadcrumbs(grok.Viewlet):
 """ Breadcrumbs override which are only displayed on 2nd level and forward (not on Home screen)
 """

 # Override standard Plone breadcrumbs
 grok.name("plone.path_bar")
 grok.viewletmanager(IAboveContent)

 def visible(self):
 """ Called by template condition. """

 # Note that "Home" does not count as a crumb
 return len(self.breadcrumbs) >= 1

 def update(self):
 context= self.context.aq_inner

 self.portal_state = getMultiAdapter((context, self.request), name="plone_portal_state")
 self.site_url = self.portal_state.portal_url()
 self.navigation_root_url = self.portal_state.navigation_root_url()

 breadcrumbs_view = getMultiAdapter((context, self.request), name='breadcrumbs_view')
 self.breadcrumbs = breadcrumbs_view.breadcrumbs()

 # right-to-left reading order
 self.is_rtl = self.portal_state.is_rtl()

Template code templates/breadcrumbs.pt:

<div id="portal-breadcrumbs"
 i18n:domain="plone"
 tal:condition="viewlet/visible"
 tal:define="breadcrumbs viewlet/breadcrumbs;
 is_rtl viewlet/is_rtl">

 <a i18n:translate="tabs_home"
 tal:attributes="href viewlet/navigation_root_url">Home

 <tal:ltr condition="not: is_rtl">|</tal:ltr>
 <tal:rtl condition="is_rtl">|</tal:rtl>

 <span tal:repeat="crumb breadcrumbs"
 tal:attributes="dir python:is_rtl and 'rtl' or 'ltr';
 id string:breadcrumbs-${repeat/crumb/number}">
 <tal:item tal:define="is_last repeat/crumb/end;
 url crumb/absolute_url;
 title crumb/Title">
 <a href="#"
 tal:omit-tag="not: url"
 tal:condition="python:not is_last"
 tal:attributes="href url"
 tal:content="title">
 crumb

 <tal:ltr condition="not: is_rtl">|</tal:ltr>
 <tal:rtl condition="is_rtl">|</tal:rtl>

 <span id="breadcrumbs-current"
 tal:condition="is_last"
 tal:content="title">crumb
 </tal:item>

</div>

Back button

Below is an example how we have extracted information like the parent
container and such from breadcrumbs.

Note

We need special dealing for "default view" of objects... that's
the canonical part.

class Back(grok.Viewlet):
 """ Back button
 """

 def update(self):
 context= aq_inner(self.context)

 context_helper = getMultiAdapter((context, self.request), name="plone_context_state")

 portal_helper = getMultiAdapter((context, self.request), name="plone_portal_state")

 canonical = context_helper.canonical_object()

 parent = aq_parent(canonical)

 breadcrumbs_view = getView(self.context, self.request, 'breadcrumbs_view')
 breadcrumbs = breadcrumbs_view.breadcrumbs()

 if (len(breadcrumbs)==1):
 self.backTitle = _(u"Home")
 else:
 if hasattr(parent, "Title"):
 self.backTitle = parent.Title()
 else:
 self.backTitle = _(u"Back")

 if hasattr(parent, "absolute_url"):
 self.backUrl = parent.absolute_url()
 else:
 self.backUrl = portal_helper.portal_url()

 self.isHome = len(breadcrumbs)==0

More info

	http://code.google.com/p/plonegomobile/source/browse/gomobiletheme.basic/trunk/gomobiletheme/basic/viewlets.py#281

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Sitemap protocol

	Introduction

	Plone sitemap

	Customized sitemap

	Enabling sitemap programmatically

Introduction

Sitemap is used to submit the site content to search engines.

	http://www.google.com/webmasters/

Plone sitemap

Plone supports basic sitemap out of the box.

	https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/sitemap/sitemap.py

Customized sitemap

Example

	https://plonegomobile.googlecode.com/svn/trunk/gomobile/gomobile.mobile/gomobile/mobile/browser/sitemap.py

Enabling sitemap programmatically

For unit tests:

Sitemap must be enabled from the settings to access the view
self.portal.portal_properties.site_properties.enable_sitemap = True

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Discussion and comments

Description

How to control commenting and discussion in Plone programmatically

	Introduction

	Content type support

	Getting total comment count

Introduction

plone.app.discussion provides basic in-site discussion support.

Disqus is a popular external <iframe> embed service used for commenting.

More info

	http://packages.python.org/plone.app.discussion/

	https://pypi.python.org/pypi/plone.app.discussion

Content type support

Enable discussion in portal_types for each content typ
It's the Allow Discussion checkbox.

Discussion shows up as plone.comments viewlet in plone.app.layout.viewlets.interfaces.IBelowContent
viewlet manager.

Getting total comment count

Example:

def getDiscussionCount(self):
 try:
 # plone.app.discussion.conversation object
 # fetched via IConversation adapter
 conversation = IConversation(self.targetContent)
 except:
 return 0

 return conversation.total_comments

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Functionality and features »

Contact forms

	Introduction

	Customizing site contact form
	Example

	Replacing the site contact form with a content object

Introduction

Plone ships with a

	site contact form which is form-to-mail to the site administration email

	document comment form

	email this to friend form

Default address /contact-info.

Customizing site contact form

Contact form files are

	Products/CMFPlone/skins/plone_templates/contact-info.cpt

	Products/CMFPlone/skins/plone_templates/contact-info.cpt.metadata

	Products/CMFPlone/skins/plone_templates/site_feedback_template.pt

	Products/CMFPlone/skins/plone_formscripts/validate_feedback.vpy

	Products/CMFPlone/skins/plone_formscripts/send_feedback.cpy

	Products/CMFPlone/skins/plone_formscripts/send_feedback.cpy.metadata

	Products/CMFPlone/skins/plone_formscripts/send_feedback_site.cpy

	Products/CMFPlone/skins/plone_formscripts/send_feedback_site.cpy.metadata

Inspect the files to known which you need to change.
Copy these files to skin layer folder (any folder under skins) in your add-on product.

Note

Different contact for is displayed for logged-in and anonymous users.
Logged in user email is not asked, but one stored in member properties is used.

Example

Below is an example how to add "phone number" field for all not logged in users
feedback form.

Add a new optional field to contact-info.cpt (language hardcoded):

<div class="field">

 <label for="phone_number">
 Puhelinnumero
 </label>

 <div class="formHelp">
 Puhelinnumero, mikäli haluatte teihin oltavan yhteydessä puhelimitse.
 </div>

 <input type="text"
 id="phone_number"
 name="phone_number"
 size="25"
 value=""
 tal:attributes="value request/phone_number|nothing"
 />
</div>

Refer this field in site_feedback_template.pt:

<div i18n:domain="plone"
 tal:omit-tag=""
 tal:define="utool nocall:here/portal_url;
 portal utool/getPortalObject;
 charset portal/email_charset|string:utf-8;
 dummy python:request.RESPONSE.setHeader('Content-Type', 'text/plain;;charset=%s' % charset);"
>

<div i18n:translate="site_feedback_mailtemplate_body" tal:omit-tag="">

You are receiving this mail because

is sending feedback about the site administered by you at .
The message sent was:

</div>
--

</div>

Puhelinnumero:

Note

As a crude hack we add new field to the very bottom of the email, as everything side <div i18n:translate>
is replaced from translation catalogs.

Replacing the site contact form with a content object

Sometimes you want to turn off the builtin form in favour of a piece
of content. For example you might want a PloneFormGen form that
content editors can alter. Naming your content item contact-info
works because Zope traversal will find your content item before the
page template. However Plone won't allow a new piece of content to be
named contact-info since that's a reserved identifier, so the
trick is to rename it in the ZMI from the Plone-generated
contact-info-1 back to contact-info.

This works for accessibility-info too.

If you have a PFG contact form at, say, about/contact-us and want
to turn off the builtin contact-info form, use the rename trick to
create a contact-info Link object at the site root that points to
your new form. Through acquisition, even URLS like
events/contact-info will successfully redirect to your custom
form.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Queries, search and indexing

In plone, database index and search facilities are provided by portal_catalog tool.
There are two distinct functions. Indexing: All searchable data is copied to the catalog
when the object is indexed, to make object searchable and listable. Querying:
Search keys are matched against the indexed catalog copies to return the indexed metadata of the object.

	Catalogs

	Indexes and metadata

	Querying

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Queries, search and indexing »

Catalogs

Description

A brief introduction to ZCatalogs, the Catalog Tool and what
they're used for.

	Why ZCatalogs?

	Quick start

	Other catalogs

	Manually indexing object to a catalog

	Manually uncatalog object to a catalog

	Rebuilding a catalog

	Retrieving unique values from a catalog

	Minimal code for creating a new catalog

	Register a new catalog via portal_setup
	archetype_tool catalog map

	Map an catalog for an new type

	Additional info

Why ZCatalogs?

Plone is built on the CMF, which uses the ZODB to store content in
a very free-form manner with arbitrary hierarchy and a lot of
flexibility in general. For some content use cases, however, it is
very useful to treat content as more ordered, or tabular. This is
where ZCatalog comes in.

Searching, for example, requires being able to query content on
structured data such as dates or workflow states. Additionally,
query results often need to be sorted based on structured data of
some sort. So when it comes to searching it is very valuable to
treat our free-form persistent ZODB objects as if they were more
tabular. ZCatalog indexes do exactly this.

Since the ZCatalog is in the business of treating content as
tabular when it isn't necessarily so, it is very tolerant of any
missing data or exceptions when indexing. For example, Plone
includes "start" and "end" indexes to support querying events on
their start and end dates. When a page is indexed, however, it
doesn't have start or end dates. Since the ZCatalog is tolerant,
it doesn't raise any exception when indexing the start or end dates
on a page. Instead it simply doesn't include pages in those
indexes. As such, it is appropriate to use indexes in the catalog
to support querying or sorting when not all content provides the
data indexed.

This manual is intended to be a brief start guide to ZCatalogs,
specially aimed to tasks specific to Plone, and will not treat
advanced ZCatalogs concepts in depth. If you want to learn more
about ZCatalogs in the context of Zope, please refer to
The Zope Book, Searching and Categorizing Content [http://docs.zope.org/zope2/zope2book/SearchingZCatalog.html]. If you want
to perform advanced searches, AdvancedQuery [http://www.dieter.handshake.de/pyprojects/zope/AdvancedQuery.html], which is included
with Plone since the 3.0 release, is what you're looking for. See
Boolean queries (AdvancedQuery) for a brief introduction.

Quick start

Every ZCatalog is composed of indexes and metadata. Indexes are
fields you can search by, and metadata are copies of the contents
of certain fields which can be accessed without waking up the
associated content object.

Most indexes are also metadata fields. For example, you can search
objects by Title and then display the Title of each object
found without fetching them, but note not all indexes need to be
part of metadata.

When you search inside the catalog, what you get as a result is a
list of elements known as brains. Brains have one attribute for
each metadata field defined in the catalog, in addition to some
methods to retrieve the underlying object and its location.
Metadata values for each brain are saved in the metadata table of
the catalog upon the (re)indexing of each object.

Brains are said to be lazy for two reasons; first, because they are
only created 'just in time' as your code requests each result, and
second, because retrieving a catalog brain doesn't wake up the
objects themselves, avoiding a huge performance hit.

To see the ZCatalogs in action, fire up your favourite browser and
open the ZMI. You'll see an object in the root of your Plone site
named portal_catalog. This is the Catalog Tool, a Plone tool
(like the Membership Tool or the Quickinstaller Tool) based on
ZCatalogs created by default in every Plone site which indexes all
the created content.

Open it and click the Catalog tab, at the top of the screen.
There you can see the full list of currently indexed objects,
filter them by path, and update and remove entries. If you click on
any entry, a new tab (or window) will open showing the metadata and
index values for the selected indexed object. Note that most fields
are "duplicated" in the Index Contents and Metadata Contents
tables, but its contents have different formats, because, as it was
said earlier, indexes are meant to search by them, and metadata to
retrieve certain attributes from the content object without waking
it up.

Back to the management view of the Catalog Tool, if you click the
Indexes or the Metadata tab you'll see the full list of
currently available indexes and metadata fields, respectively, its
types and more. There you can also add and remove indexes and
metadata fields. If you're working on a test environment, you can
use this manager view to play with the catalog, but beware indexes
and metadata are usually added through GenericSetup and not using
the ZMI.

Other catalogs

Besides, the main portal catalog, the site contains other catalogs.

	uid_catalog maintains object look up by Unique Identified (UID). UID is given to the object
when it is created and it does not change even if the object is moved around the site.

	reference_catalog maintains inter-object references by object unique identified (UID).
Archetypes's ReferenceField uses this catalog. The catalog contains indexes
UID, relationship, sourceUID, targetId and targetUID.

	Add-on products may install their own catalogs which are optimized for specific purposes.
For example, betahaus.emaillogin [https://pypi.python.org/pypi/betahaus.emaillogin]
creates email_catalog is which is used to speed-up login by email process.

Manually indexing object to a catalog

The default content object.reindexObject() is defined in
CMFCatalogAware [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/CMFCatalogAware.py?rev=102742&view=auto]
and will update the object data to portal_catalog.

If your code uses additional catalogs, you need to manually update cataloged values after the object has been modified.

Example:

Update email_catalog which mantains loggable email addresses
email_catalog = self.portal.email_catalog
email_catalog.reindexObject(myuserobject)

Manually uncatalog object to a catalog

Sometimes is useful to uncatalog object.

code

uncatalog object name id
>>> brains = catalog(getId=id)
>>> for brain in brains:
... catalog.uncatalog_object(brain.getPath())

Rebuilding a catalog

Catalog rebuild means walking through all the objects on Plone site and adding them to the catalog.
Rebuilding the catalog is very slow as the whole database must be read through.
Reasons for you to do this in code could be

	Creating catalog after setting up objects in the unit tests

	Rebuilding after massive content migration

How to trigger rebuild:

portal_catalog = self.portal.portal_catalog
portal_catalog.clearFindAndRebuild()

Retrieving unique values from a catalog

Catalogs have a uniqueValues method associated with each index.
There are times when you will need to get a list of all the values
currently stored on a particular index. For example if you wanted
the highest and lowest price you might first need to retrieve the
values currently indexed for price. This example demonstrates how
you can list all the unique values on an index named 'price'.

portal_catalog = self.portal.portal_catalog
portal_catalog.Indexes['price'].uniqueValues()

the result would be a listing of all the prices stored in the 'price' index:

(0, 100000, 120000, 200000, 220000, 13500000, 16000000, 25000000)

Minimal code for creating a new catalog

from zope.interface import Interface, implements
from zope.component import getUtility

from Acquisition import aq_inner
from Acquisition import aq_parent

from AccessControl import ClassSecurityInfo
from Globals import InitializeClass
from Products.CMFPlone.utils import base_hasattr
from Products.CMFPlone.utils import safe_callable
from Products.CMFCore.permissions import ManagePortal
from Products.CMFCore.utils import getToolByName
from Products.ZCatalog.ZCatalog import ZCatalog
from Products.CMFPlone.CatalogTool import CatalogTool

class IMyCatalog(Interface):
 """
 """

class MyCatalog(CatalogTool):
 """
 A specific launch catalog tool
 """

 implements(IMyCatalog)

 title = 'specific catalog'
 id = 'my_catalog'
 portal_type = meta_type = 'MyCatalog'
 plone_tool = 1

 security = ClassSecurityInfo()
 _properties=(
 {'id':'title', 'type': 'string', 'mode':'w'},)

 def __init__(self):
 ZCatalog.__init__(self, self.id)

 security.declarePublic('enumerateIndexes')
 def enumerateIndexes(self):
 """Returns indexes used by catalog"""
 return (
 ('id', 'FieldIndex', ()),
 ('portal_type', 'FieldIndex', ()),
 ('path', 'ExtendedPathIndex', ('getPhysicalPath')),
 ('getCanonicalPath', 'ExtendedPathIndex', ('getCanonicalPath')),
 ('isArchived', 'FieldIndex', ()),
 ('is_trashed', 'FieldIndex', ()),
 ('is_obsolete', 'FieldIndex', ()),
 ('Language', 'FieldIndex', ()),
 ('review_state', 'FieldIndex',()),
 ('allowedRolesAndUsers', 'DPLARAUIndex', ()),

)

 security.declarePublic('enumerateMetadata')
 def enumerateMetadata(self):
 """Returns metadata used by catalog"""
 return (
 'Title',
 'getId',
 'UID',
 'review_state',
 'created',
 'modified',
)

 security.declareProtected(ManagePortal, 'clearFindAndRebuild')
 def clearFindAndRebuild(self):
 """Empties catalog, then finds all contentish objects (i.e. objects
 with an indexObject method), and reindexes them.
 This may take a long time.
 """

 def indexObject(obj, path):
 self.reindexObject(obj)

 self.manage_catalogClear()

 portal = getToolByName(self, 'portal_url').getPortalObject()
 portal.ZopeFindAndApply(portal,
 #""" put your meta_type here """,

 obj_metatypes=(),

 search_sub=True, apply_func=indexObject)

InitializeClass(MyCatalog)

Register a new catalog via portal_setup

In toolset.xml add this lines

<?xml version="1.0"?>
<tool-setup>

 <required tool_id="my_catalog"
 class="catalog.MyCatalog"/>

</tool-setup>

archetype_tool catalog map

archetype_tool maintains map between content types and catalogs which are interested int them.
When object is modified through Archetypes mechanisms, Archetypes post change notification
to all catalogs enlisted.

See Catalogs tab on archetype_tool in Zope Management Interface.

Map an catalog for an new type

code

at = getToolByName(context,'archetype_tool')
at.setCatalogsByType('MetaType', ['portal_catalog','mycatalog',])

Additional info

	ZCatalog source code [http://svn.zope.org/Zope/trunk/src/Products/ZCatalog/ZCatalog.py?rev=96262&view=auto].

	http://wyden.com/plone/basics/searching-the-catalog

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Queries, search and indexing »

Indexes and metadata

Description

How to program your custom fields and data queriable
through portal_catalog.

	What does indexing mean?

	Viewing indexes and indexed data
	Indexed data

	Indexes and metadata columns

	Creating an index

	Creating an index through the web

	Adding index using add-on product installer

	Custom index methods
	Creating a metadata column

	When indexing happens and how to reindex manually

	Index types

	Default Plone indexes and metadata columns
	Custom sorting by title

	TextIndexNG3

	Full-text searching

	Other

What does indexing mean?

Indexing is the action to make object data searchable.
Plone stores available indexes in the database.
You can create them through-the-web and inspect existing indexes
in portal_catalog on Index tab.

The Catalog Tool can be configured through the ZMI or
programatically in Python but current best practice in the CMF
world is to use GenericSetup to configure it using the declarative
catalog.xml file. The GenericSetup profile for Plone, for
example, uses the CMFPlone/profiles/default/catalog.xml XML data
file to configure the Catalog Tool when a Plone site is created. It
is fairly readable so taking a quick look through it can be very
informative.

When using a GenericSetup extension profile to customize the
Catalog Tool** in your portal, you only need to include XML for the
pieces of the catalog you are changing. To add an index for the
Archetypes location field, as in the example above, a policy
package could include the following
profiles/default/catalog.xml:

<?xml version="1.0"?>
<object name="portal_catalog" meta_type="Plone Catalog Tool">
 <index name="location" meta_type="FieldIndex">
 <indexed_attr value="location"/>
 </index>
</object>

The GenericSetup import handler for the Catalog Tool also supports
removing indexes from the catalog if present using the "remove"
attribute of the <index> element. To remove the "start" and "end"
indexes used for events, for example, a policy package could
include the following profiles/default/catalog.xml:

<?xml version="1.0"?>
<object name="portal_catalog" meta_type="Plone Catalog Tool">
 <index name="start" remove="True" />
 <index name="end" remove="True" />
</object>

Warning

Care must be taken when setting up indexes with GenericSetup - if
the import step for a catalog.xml is run a second time (for example
when you reinstall the product), the indexes specified will be
destroyed, losing all currently indexed entries, and then re-created
fresh (and empty!). If you want to workaround this behaviour, you can
either update the catalog afterwards or add the indexes yourself in
Python code using a custom import handler.

For more info, see this setuphandler https://github.com/plone/plone.app.event/blob/master/plone/app/event/setuphandlers.py
in plone.app.event or these discussions on more about this problem:

	http://plone.293351.n2.nabble.com/How-to-import-catalog-xml-without-emptying-the-indexes-td2302709.html

	https://mail.zope.org/pipermail/zope-cmf/2007-March/025664.html

Viewing indexes and indexed data

Indexed data

You can do this through portal_catalog tool in ZMI.

	Click portal_catalog in the portal root

	Click Catalog tab

	Click any object

Indexes and metadata columns

Available indexes are stored in the database, not in Python code.
To see what indexes your site has

	Click portal_catalog in the portal root

	Click Indexes and Metadata tabs

Creating an index

To perform queries on custom data, you need to add the corresponding index to portal_catalog first.

E.g. If your Archetypes content type has a field:

 schema = [

 DateField("revisitDate",
 widget = atapi.DateWidget(
 label="Revisit date"),
 description="When you are alarmed this content should be revisited (one month beforehand this date)",
 schemata="revisit"
),
]

class MyContent(...):

 # This is automatically run-time generated function accessor method,
 # but could be any hand-written method as well
 # def getMyCustomValue(self):
 # pass

You can add a new index which will index the value of this field, so you can
make queries based on it later.

See more information about accessor methods.

Note

If you want to create an index for content type you do not
control yourself or if you want to do some custom logic in your indexer,
please see Custom index method below.

Creating an index through the web

This method is suitable during development time - you can create an index
to your Plone database locally.

	Go ZMI

	Click portal_catalog

	Click Indexes tab

	On top right corner, you have a drop down menu to add new indexes. Choose the index type you need to add.

	Type: FieldIndex

	Id: getMyCustomValue

	Indexed attributes: getMyCustomValue

You can use Archetypes accessors methods directly as an indexed attribute.
In example we use getMyCustomValue for AT field customValue.

The type of index you need depends on what kind queries you need to do on the data. E.g.
direct value matching, ranged date queries, free text search, etc. need different kind of indexes.

	After this you can query portal_catalog:

my_brains = contex.portal_catalog(getMyCustomValue=111)
for brain in my_brains:
 print brain["getMyCustomValue"]

Adding index using add-on product installer

You need to have your own add-on product which
registers new indexes when the add-on installer is run.
This is the recommended method for repeated installations.

You can create an index

	Using catalog.xml where XML is written by hand

	Create the index through the web and export catalog data from a development site
using portal_setup tool Export functionality. The index is created
through-the-web as above, XML is generated for you and you can fine tune the resulting XML
before dropping it in to your add-on product.

	Create indexes in Python code of add-on custom import step.

	As a prerequisitement, your add-on product must have
GenericSetup profile support.

This way is repeatable: index gets created every time an add-on product is installed.
It is more cumbersome, however.

Warning

There is a known issue of indexed data getting pruned
when an add-on product is reinstalled. If you want to avoid
this then you need to create new indexes in add-on
installer custom setup step (Python code).

The example below is not safe for data prune on reinstall.
This file is profiles/default/catalog.xml
It installs a new index called revisit_date
of DateIndex type.

<?xml version="1.0"?>
<object name="portal_catalog" meta_type="Plone Catalog Tool">
 <index name="revisit_date" meta_type="DateIndex">
 <property name="index_naive_time_as_local">True</property>
 </index>
</object>

For more information see

	http://maurits.vanrees.org/weblog/archive/2009/12/catalog

Custom index methods

The plone.indexer [https://pypi.python.org/pypi/plone.indexer] package provides method to create custom indexing functions.

Sometimes you want to index "virtual" attributes of an object
computed from existing ones, or just want to customize the way
certain attributes are indexed, for example, saving only the 10
first characters of a field instead of its whole content.

To do so in an elegant and flexible way, Plone>=3.3 includes a new
package, plone.indexer [https://pypi.python.org/pypi/plone.indexer],
which provides a series of primitives to delegate indexing operations
to adapters.

Let's say you have a content-type providing the interface
IMyType. To define an indexer for your type which takes the
first 10 characters from the body text, just type (assuming the
attribute's name is 'text'):

from plone.indexer.decorator import indexer

@indexer(IMyType)
def mytype_description(object, **kw):
 return object.text[:10]

Finally, register this factory function as a named adapter using
ZCML. Assuming you've put the code above into a file named
indexers.py:

<adapter name="description" factory=".indexers.mytype_description" />

And that's all! Easy, wasn't it?

Note you can omit the for attribute because you passed this to
the @indexer decorator, and you can omit the provides
attribute because the thing returned by the decorator is actually a
class providing the required IIndexer interface.

To learn more about the plone.indexer package, read
its doctest [http://dev.plone.org/plone/browser/plone.indexer/trunk/plone/indexer/README.txt].

For more info about how to create content-types, refer to the
Archetypes Developer Manual [http://plone.org/documentation/manual/developer-manual/archetypes].

Important note: If you want to adapt a out-of-the-box
Archetypes content-type like Event or News Item, take into account
you will have to feed the indexer decorator with the Zope 3
interfaces defined in Products.ATContentTypes.interface.*
files, not with the deprecated Zope 2 ones into the
Products.ATContentTypes.interfaces file.

Creating a metadata column

The same rules and methods apply for metadata columns as creating index above.
The difference with metadata is that

	It is not used for searching, only displaying the search result

	You store always a value copy as is

To create metadata colums in your catalog.xml add:

<?xml version="1.0"?>
<object name="portal_catalog" meta_type="Plone Catalog Tool">

 <!-- Add a new metadata column which will read from context.getSignificant() function -->
 <column value="getSignificant"/>

</object>

When indexing happens and how to reindex manually

Content item reindexing is run when

Plone calls reindexObject() if

	The object is modified by the user using the standard edit forms

	portal_catalog rebuild is run (from Advanced tab)

	If you add a new
index you need to run Rebuild catalog
to get the existing values from content objects to new index.

	You might also want to call reindexObject() method manually in some
cases. This method is defined in the ICatalogAware [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/interfaces/_content.py?rev=91414&view=auto] interface.

You must call reindexObject() if you

	Directly call object field mutators

	Otherwise directly change object data

Warning

Unit test warning: Usually Plone reindexes modified objects at the end of each request (each transaction).
If you modify the object yourself you are responsible to notify related catalogs about the new object data.

reindexObject() method takes the optional argument idxs which will list the changed indexes.
If idxs is not given, all related indexes are updated even though they were not changed.

Example:

object.setTitle("Foobar")

Object.reindexObject() method is called to reflect the changed data in portal_catalog.
In our example, we change the title. The new title is not updated in the navigation,
since the navigation tree and folder listing pulls object title from the catalog.

object.reindexObject(idxs=["Title"])

Also, if you modify security related parameters (permissions), you need to call reindexObjectSecurity().

Index types

Zope 2 product PluginIndexes defines various portal_catalog index types used by Plone.

	FieldIndex stores values as is

	DateIndex and DateRangeIndex store dates (Zope 2 DateTime objects) in searhable format. The latter
provides ranged searches.

	KeywordIndex allows keyword-style look-ups (query term is matched against the all values of a stored list)

	ZCTextIndex is used for full text indexing

	ExtendedPathIndex [https://github.com/plone/Products.ExtendedPathIndex/blob/master/README.txt] is used for indexing content object locations.

Default Plone indexes and metadata columns

Some interesting indexes

	start and end: Calendar event timestamps, used to make up calendar portlet

	sortable_title: Title provided for sorting

	portal_type: Content type as it appears in portal_types

	Type: Translated, human readable, type of the content

	path: Where the object is (getPhysicalPath accessor method).

	object_provides: What interfaces and marker interfaces object has. KeywordIndex of
interface full names.

	is_default_page: is_default_page is method in CMFPlone/CatalogTool.py handled by plone.indexer, so there is nothing
like object.is_default_page and this method calls ptool.isDefaultPage(obj)

Some interesting columns

	getRemoteURL: Where to go when the object is clicked

	getIcon: Which content type icon is used for this object in the navigation

	exclude_from_nav: If True the object won't appear in sitemap, navigation tree

Custom sorting by title

sortable_title is type of FieldIndex (raw value) and normal Title index is type of searchable text.

sortable_title is generated from Title in Products/CMFPlone/CatalogTool.py.

You can override sortable_title by providing an indexer adapter with a specific interface of your content type.

Example indexes.py:

from plone.indexer import indexer

from xxx.researcher.interfaces import IResearcher

@indexer(IResearcher)
def sortable_title(obj):
 """
 Provide custom sorting title.

 This is used by various folder functions of Plone.
 This can differ from actual Title.
 """

 # Remember to handle None value if the object has not been edited yet
 first_name = obj.getFirst_name() or ""
 last_name = obj.getLast_name() or ""

 return last_name + " " + first_name

Related configure.zcml

<adapter factory=".indexes.sortable_title" name="sortable_title" />

TextIndexNG3

TextIndexNG3 [http://www.zopyx.com/projects/TextIndexNG3] is advanced text indexing solution for Zope.

Please read TextIndexNG3 README.txt regarding how to add support for custom fields.
Besides installing TextIndexNG3 in GenericSetup XML you need to provide a custom
indexing adapter.

Add TextIndexNG3 in catalog.xml. Example:

<index name="getYourFieldName" meta_type="TextIndexNG3">

 <field value="getYourFieldName"/>

 <autoexpand value="off"/>
 <autoexpand_limit value="4"/>
 <dedicated_storage value="False"/>
 <default_encoding value="utf-8"/>
 <index_unknown_languages value="True"/>
 <language value="en"/>
 <lexicon value="txng.lexicons.default"/>
 <query_parser value="txng.parsers.en"/>
 <ranking value="True"/>
 <splitter value="txng.splitters.simple"/>
 <splitter_additional_chars value="_-"/>
 <splitter_casefolding value="True"/>
 <storage value="txng.storages.term_frequencies"/>
 <use_normalizer value="False"/>
 <use_stemmer value="False"/>
 <use_stopwords value="False"/>
</index>

Create adapter which will add TextIndexNG3 indexing support for your custom fields. Example:

import logging

from Products.TextIndexNG3.adapters.cmf_adapters import CMFContentAdapter
from zope.component import adapts

logger = logging.getLogger("Plone")

class TextIndexNG3SearchAdapter(CMFContentAdapter):
 """ Adapter which provides custom field specific index information for TextIndexNG3
 """

 # Your content marker interface here
 adapts(IDescriptionBase)

 def indexableContent(self, fields):
 """ Produce TextIndexNG3 indexing information for the object

 Traceback::

 ZCatalog.py(536)catalog_object()
 -> update_metadata=update_metadata)
 Catalog.py(360)catalogObject()
 -> blah = x.index_object(index, object, threshold)
 Products/TextIndexNG3/TextIndexNG3.py(91)index_object()
 -> result = self.index.index_object(obj, docid)
 Products/TextIndexNG3/src/textindexng/index.py(114)index_object()
 -> default_language=self.languages[0])
 Products/TextIndexNG3/src/textindexng/content.py(99)extract_content()
 -> icc = adapter.indexableContent(fields)
 > indexableContent()

 """
 logging.debug("Indexing" + str(self.context))

 # Use superclass to construct generic field adapters (id, title, description, SearchableText)
 icc = CMFContentAdapter.indexableContent(self, fields)

 # These fields have their own TextIndexNG3 indexes which
 # are queried separately from SearchableText
 accessors = ["getClassifications", "getOtherNames"]

 for accessor in accessors:

 try:
 method = getattr(self.context, accessor)
 except AttributeError:
 logger.warn("Declared indexing for unsuppoted accessor:" + accesor)
 continue

 value = method()

 # We might have a value which is not a real string,
 # but must be first stringified
 try:
 value = unicode(value)
 except UnicodeDecodeError, e:
 # Bad things happen here?
 logger.warn("Failed to index field:" + accessor)
 logger.exception(e)
 continue

 # Convert value to text format (utf-8) expected
 # by the indexer
 text = self._c(value)

 icc.addContent(accessor, text, self.language)

 return icc

Add adapter in your ZCML:

<adapter factory=".customcontent.TextIndexNG3SearchAdapter"/>

Full-text searching

Plone provides special index called SearchableText which is used on the site full-text search.
Your content types can override SearchableText index with custom method to populate this index
with the text they want to go into full-text searching.

Below is an example of having SearchableText on a custom Archetypes content class.
This class has some methods which are not part of AT schema and thus must be manually
added to SearchableText

def SearchableText(self):
 """
 Override searchable text logic based on the requirements.

 This method constructs a text blob which contains all full-text
 searchable text for this content item.

 This method is called by portal_catalog to populate its SearchableText index.
 """

 # Test this by enable pdb here and run catalog rebuild in ZMI
 # xxx

 # Speed up string concatenation ops by using a buffer
 entries = []

 # plain text fields we index from ourself,
 # a list of accessor methods of the class
 plain_text_fields = ("Title", "Description")

 # HTML fields we index from ourself
 # a list of accessor methods of the class
 html_fields = ("getSummary", "getBiography")

 def read(accessor):
 """
 Call a class accessor method to give a value for certain Archetypes field.
 """
 try:
 value = accessor()
 except:
 value = ""

 if value is None:
 value = ""

 return value

 # Concatenate plain text fields as is
 for f in plain_text_fields:
 accessor = getattr(self, f)
 value = read(accessor)
 entries.append(value)

 transforms = getToolByName(self, 'portal_transforms')

 # Run HTML valued fields through text/plain conversion
 for f in html_fields:
 accessor = getattr(self, f)
 value = read(accessor)

 if value != "":
 stream = transforms.convertTo('text/plain', value, mimetype='text/html')
 value = stream.getData()

 entries.append(value)

 # Plone accessor methods assume utf-8
 def convertToUTF8(text):
 if type(text) == unicode:
 return text.encode("utf-8")
 return text

 entries = [convertToUTF8(entry) for entry in entries]

 # Concatenate all strings to one text blob
 return " ".join(entries)

Other

	http://toutpt.wordpress.com/2008/12/14/archetype_tool-queuecatalog-becareful-with-indexing-with-plones-portal_catalog/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Queries, search and indexing »

Querying

Description

How to programmatically search and query content from a Plone site.

	Introduction

	Accesing the portal_catalog tool

	Querying portal_catalog
	Available indexes

	Brain result id

	Brain result path

	Brain object schema
	Getting the underlying object, its path, and its URL from a brain

	getObject() and unrestrictedSearchResults() permission checks

	Counting value of an specific index

	Sorting and limiting the number of results

	Text format

	Accessing indexed data

	Dumping portal catalog content

	Bypassing query security check

	Bypassing language check

	Bypassing Expired content check

	None as query parameter

	Query by path
	Searching for content within a folder

	Query multiple values

	Querying by interface
	Caveats

	Query by content type

	Query published items

	Getting a random item

	Querying FieldIndexes by Range

	Querying by date

	Query by language

	Boolean queries (AdvancedQuery)

	Setting Up A New Style Query

	Accessing metadata

	Fuzzy search

	Unique values

	Performance

	Batching

	Walking through all content

	Other notes

Introduction

Querying is the action to retrieve data from search indexes. In Plone's
case this usually means querying content items using the portal_catalog
tool. Plone uses the portal_catalog
tool to perform most content-related queries. Special catalogs, like
reference_catalog, exist, for specialized and optimized queries.

Accesing the portal_catalog tool

Plone queries are performed using portal_catalog persistent tool which
is available as an persistent object at the site root.

Example:

portal_catalog is defined in the site root
portal_catalog = site.portal_catalog

You can also use ITools tool to get access to
portal_catalog if you do not have Plone site object directly available:

context = aq_inner(self.context)
tools = getMultiAdapter((context, self.request), name=u'plone_tools')

portal_url = tools.catalog()

There is also a third way, using traversing. This is discouraged, as this
includes extra processing overhead:

Use magical Zope acquisition mechanism
portal_catalog = context.portal_catalog

... and the same in TAL template:

<div tal:define="portal_catalog context/portal_catalog" />

A safer method is to use the getToolByName helper function:

from Products.CMFCore.utils import getToolByName
catalog = getToolByName(context, 'portal_catalog')

Querying portal_catalog

To search for something and get the resulting brains, write:

results = catalog.searchResults(**kwargs)

Note

The catalog returns "brains". A brain is a lightweight proxy
for a found object, which has attributes corresponding to the metadata
defined for the catalog.

Where kwargs is a dictionary of index names and their associated query
values. Only the indexes that you care about need to be included. This is
really useful if you have variable searching criteria, for example, coming
from a form where the users can select different fields to search for. For
example:

results = catalog.searchResults({'portal_type': 'Event', 'review_state': 'pending'})

It is worth pointing out at this point that the indexes that you include are
treated as a logical AND, rather than OR. In other words, the query above
will find all the items that are both an Event, AND in the review state of
pending.

Additionally, you can call the catalog tool directly, which is
equivalent to calling catalog.searchResults():

results = catalog(portal_type='Event')

If you call portal_catalog() without arguments it will return all indexed content objects:

Print all content on the site
all_brains = catalog()
for brain in all_brains:
 print "Name:" + brain["Title"] + " URL:" + brain.getURL()

The catalog tool queries return an iterable of catalog brain objects.

As mentioned previously, brains contain a subset of the actual content
object information. The available subset is defined by the metadata
columns in portal_catalog. You can see available metadata columns on
the portal_catalog "Metadata" tab in ZMI. For more information, see indexing.

Available indexes

To see the full list of available indexes in your catalog, open the
ZMI (what usually means navigating to http://yoursiteURL/manage)
look for the portal_catalog object tool into the root of your
Plone site and check the Indexes tab. Note that there are
different types of indexes, and each one admits different types of
search parameters, and behave differently. For example,
FieldIndex and KeywordIndex support sorting, but ZCTextIndex
doesn't. To learn more about indexes, see
The Zope Book, Searching and Categorizing Content [http://docs.zope.org/zope2/zope2book/SearchingZCatalog.html].

Some of the most commonly used ones are:

	Title

	The title of the content object.

	Description

	The description field of the content.

	Subject

	The keywords used to categorize the content. Example:

catalog.searchResults(Subject=('cats', 'dogs'))

	portal_type

	As its name suggest, search for content whose portal type is
indicated. For example:

catalog.searchResults(portal_type='News Item')

You can also specify several types using a list or tuple format:

catalog.searchResults(portal_type=('News Item', 'Event'))

	review_state

	The current workflow review state of the content. For example:

catalog.searchResults(review_state='pending')

	object_provides

	From Plone 3, you can search by the interface provided by the
content. Example:

from Products.MyProduct.path.to import IIsCauseForCelebration
catalog(object_provides=IIsCauseForCelebration.__identifier__)

Searching for interfaces can have some benefits. Suppose you have
several types, for example, event types like Birthday, Wedding
and Graduation, in your portal which implement the same interface
(for example, IIsCauseForCelebration). Suppose you want to get
items of these types from the catalog by their interface. This is
more exact than naming the types explicitly (like
portal_type=['Birthday','Wedding','Graduation']), because you
don't really care what the types' names really are: all you really
care for is the interface.
This has the additional advantage that if products added or
modified later add types which implement the interface, these new
types will also show up in your query.

Brain result id

Result ID (RID) is given with the brain object and you can use this ID to query
further info about the object from the catalog.

Example:

(Pdb) brain.getRID()
872272330

Brain result path

Brain result path can be extraced as string using getPath() method:

print r.getPath()
/site/sisalto/ajankohtaista

Brain object schema

To see what metadata columns a brain object contain, you can access
this information from __record_schema__ attribute which is a dict.

Example:

for i in brain.__record_schema__.items(): print i

('startDate', 32)
('endDate', 33)
('Title', 8)
('color', 31)
('data_record_score_', 35)
('exclude_from_nav', 13)
('Type', 9)
('id', 19)
('cmf_uid', 29)

Todo

What do those numbers represent?

Getting the underlying object, its path, and its URL from a brain

As it was said earlier, searching inside the catalog returns
catalog brains, not the object themselves. If you want to get the
object associated with a brain, do:

brain.getObject()

To get the path of the object without fetching it:

brain.getPath()

which returns the path as an string, corresponding to obj.getPhysicalPath()

And finally, to get the URL of the underlying object, usually to
provide a link to it:

brain.getURL()

which is equivalent to obj.absolute_url().

Note

Calling getObject() has performance implications. Waking up
each object needs a separate query to the database.

getObject() and unrestrictedSearchResults() permission checks

You cannot call getObject() for a restricted result, even in trusted code.

Instead, you need to use:

unrestrictedTraverse(brain.getPath())

Todo

How to call unrestrictedTraverse

For more information, see

	http://www.mail-archive.com/zope-dev@zope.org/msg17514.html

Counting value of an specific index

The efficient way of counting the number value of an index is to work directly in this index. For example we want to count the number of each portal_type. Quering via search results is a performance bootleneck for that. Iterating on all brains put those in zodb cache. This method is also a memory bottleneck.
So the good way for do that

count portal_type index
stats = {}
x = getToolByName(context, 'portal_catalog')
index = x._catalog.indexes['portal_type']
for key in index.uniqueValues():
 t = index._index.get(key)
 if type(t) is not int:
 stats[str(key)] = len(t)
 else:
 stats[str(key)] = 1

Sorting and limiting the number of results

To sort the results, use the sort_on and sort_order arguments.
The sort_on argument accepts any available index, even if you're
not searching by it. The sort_order can be either 'ascending' or
'descending', where 'ascending' means from A to Z for a text field.
'reverse' is an alias equivalent to 'descending'. For example:

results = catalog_searchResults(Description='Plone documentation',
 sort_on='sortable_title', sort_order='ascending')

The catalog.searchResults() returns a list-like object, so to limit
the number of results you can just use Python's slicing. For
example, to get only the first 3 items:

results = catalog.searchResults(Description='Plone documentation')[:3]

In addition, ZCatalogs allow a sort_limit argument. The
sort_limit is only a hint for the search algorithms and can
potentially return a few more items, so it's preferable to use both
sort_limit and slicing simultaneously:

limit = 50
results = catalog.searchResults(Description='Plone documentation',
 sort_limit=limit)[:limit]

portal_catalog query takes sort_on argument which tells the index used for sorting.
sort_order defines sort direction. It can be string "reverse".

Sorting is supported only on FieldIndexes.
Due to nature of searchable text indexes (they index split text, not strings) they
cannot be used for sorting. For example, to do sorting by title, an index
called sortable_tite should be used.

Example how to sort by id:

results = context.portal_catalog.searchResults(sort_on="id",
 portal_type="Document",
 sort_order="reverse")

Text format

Since most indexes use Archetypes accessors to index the field value,
the returned text is UTF-8 encoded. This is a limitation
inherited from the early ages of Plone.

To get unicode value for e.g. title you need to do the following:

title = brain["Title"]
title = title.decode("utf-8")

if title[0] == u"å":
 # Unicode text matching etc. functions work correctly now
 pass

Accessing indexed data

Normally you don't get copy of indexed data with brains, only metadata.
You can still access the raw indexed data if you know what you are doing
by using RID of the brain object.

Example:

(Pdb) data = self.context.portal_catalog.getIndexDataForRID(872272330)
(Pdb) for i in data.items(): print i
('Title', ['ulkomuseon', 'tarinaopastukset'])
('effectiveRange', (21305115, 278752140))
('object_provides', ['Products.CMFCore.interfaces._content.IDublinCore', 'Products.ATContentTypes.interface.interfaces.IHistoryAware', 'AccessControl.interfaces.IOwned', 'OFS.interfaces.ITraversable', 'plone.portlets.interfaces.ILocalPortletAssignable', 'Products.Archetypes.interfaces._base.IBaseObject', 'zope.annotation.interfaces.IAttributeAnnotatable', 'vs.event.interfaces.IVSEvent', 'Products.CMFCore.interfaces._content.IMutableMinimalDublinCore', 'OFS.interfaces.IPropertyManager', 'OFS.interfaces.IZopeObject', 'AccessControl.interfaces.IRoleManager', 'zope.annotation.interfaces.IAnnotatable', 'Acquisition.interfaces.IAcquirer', 'Products.ATContentTypes.interface.event.IATEvent', 'OFS.interfaces.ICopySource', 'Products.LinguaPlone.interfaces.ITranslatable', 'Products.ATContentTypes.interface.interfaces.ICalendarSupport', 'Products.ATContentTypes.interface.interfaces.IATContentType', 'plone.app.iterate.interfaces.IIterateAware', 'Products.Archetypes.interfaces._base.IBaseContent', 'Products.CMFCore.interfaces._content.ICatalogableDublinCore', 'Products.CMFDynamicViewFTI.interface._base.IBrowserDefault', 'Products.Archetypes.interfaces._referenceable.IReferenceable', 'plone.locking.interfaces.ITTWLockable', 'plone.app.imaging.interfaces.IBaseObject', 'persistent.interfaces.IPersistent', 'webdav.interfaces.IDAVResource', 'AccessControl.interfaces.IPermissionMappingSupport', 'OFS.interfaces.ISimpleItem', 'plone.app.kss.interfaces.IPortalObject', 'plone.app.kss.interfaces.IContentish', 'archetypes.schemaextender.interfaces.IExtensible', 'App.interfaces.IUndoSupport', 'OFS.interfaces.IManageable', 'App.interfaces.IPersistentExtra', 'Products.CMFCore.interfaces._content.IMutableDublinCore', 'Products.Archetypes.interfaces._athistoryaware.IATHistoryAware', 'dateable.kalends.IRecurringEvent', 'OFS.interfaces.IItem', 'zope.interface.Interface', 'OFS.interfaces.IFTPAccess', 'Products.CMFDynamicViewFTI.interface._base.ISelectableBrowserDefault', 'webdav.interfaces.IWriteLock', 'Products.CMFCore.interfaces._content.IMinimalDublinCore', 'Products.CMFCore.interfaces._content.IDynamicType', 'Products.CMFCore.interfaces._content.IContentish'])
('Type', u'VSEvent')
('id', 'ulkomuseon-tarinaopastukset')
('cmf_uid', 2)
('recurrence_days', [733960, 733981, 733974, 733967])
('end', 1077028380)
('Description', ['saamelaismuseon', 'ulkomuseossa', ...
('is_folderish', False)
('getId', 'ulkomuseon-tarinaopastukset')
('start', 1077028380)
('is_default_page', False)
('Date', 1077036795)
('review_state', 'published')
('Language', <LanguageIndex.IndexEntry id 872272330 language fi, cid 8b9a08c216b8e086f3446775ad71a748>)
('portal_type', 'VSEvent')
('expires', 1339244460)
('allowedRolesAndUsers', ['Anonymous'])
('getObjPositionInParent', 10)
('path', '/siida/sisalto/8-vuodenaikaa/ulkomuseon-tarinaopastukset')
('in_reply_to', '')
('UID', '8b9a08c216b8e086f3446775ad71a748')
('Creator', 'admin')
('effective', 1077036795)
('getRawRelatedItems', [])
('getEventType', [])
('created', 1077036792)
('modified', 1077048720)
('SearchableText', ['ulkomuseon', 'tarinaopastukset', ...
('sortable_title', 'ulkomuseon tarinaopastukset')
('meta_type', 'VSEvent')
('Subject', [])

You can also directly access a single index:

Get event brain result id
rid = event.getRID()
Get list of recurrence_days indexed value.
ZCatalog holds internal Catalog object which we can directly poke in evil way
This call goes to Products.PluginIndexes.UnIndex.Unindex class and we
read the persistent value from there what it has stored in our index
recurrence_days
indexed_days = portal_catalog._catalog.getIndex("recurrence_days").getEntryForObject(rid, default=[])

Dumping portal catalog content

Following is useful in unit test debugging:

Print all objects visible to the currently logged in user
for i in portal_catalog(): print i.getURL()

Bypassing query security check

Note

Security: All portal_catalog queries are limited to the current user permissions by default.

If you want to bypass this restrictions, use the
unrestrictedSearchResults() method.

Example:

Print absolute content of portal_catalog
for i in portal_catalog.unrestrictedSearchResults(): print i.getURL()

With unrestrictedSearchResults() you need also a special way to get access to
the objects without triggering a security exception:

obj = brain._unrestrictedGetObject()

Bypassing language check

Note

All portal_catalog() queries are limited to the selected language of
current user. You need to explicitly bypass the language check if you
want to do multilingual queries.

Example of how to bypass language check:

all_content_brains = portal_catalog(Language="")

Some older LinguaPlone versions, which are still using LanguageIndex to
keep language information in portal_catalog() may require:

all_content_brains = portal_catalog(Language="all")

More information

	http://plone.293351.n2.nabble.com/Products-LinguaPlone-LanguageIndex-vs-FieldIndex-td5554729.html#a5747819

Bypassing Expired content check

Plone and portal_catalog have a mechanism to list only
active (non-expired) content by default.

Below is an example of how the expired content check is made:

mtool = context.portal_membership
show_inactive = mtool.checkPermission('Access inactive portal content', context)

contents = context.portal_catalog.queryCatalog(show_inactive=show_inactive)

See also:

* :doc:`Listing </content/listing>`

None as query parameter

Warning

Usually if you pass in None as the query value, it will match all the objects instead of zero objects.

Note

Querying for None values is possible with AdvancedQuery [http://www.dieter.handshake.de/pyprojects/zope/AdvancedQuery.html] (see below).

Query by path

ExtendedPathIndex [https://github.com/plone/Products.ExtendedPathIndex/blob/master/README.txt] is the index used for content object paths.
The path index stores the physical path of the objects.

	** Warning: ** If you ever rename your Plone site instance, the path

	index needs to be completely rebuilt.

Example:

portal_catalog(path={ "query": "/myploneinstance/myfolder" }) # return myfolder and all child content

Searching for content within a folder

Use the 'path' argument to specify the physical path to the folder
you want to search into.

By default, this will match objects into the specified folder and
all existing sub-folders. To change this behaviour, pass a
dictionary with the keys 'query' and 'depth' to the 'path'
argument, where

	'query' is the physical path, and

	'depth' can be either 0, which will return only the brain for
the path queried against, or some number greater, which will query
all items down to that depth (eg, 1 means searching just inside the
specified folder, or 2, which means searching inside the folder,
and inside all child folders, etc).

The most common use case is listing the contents of an existing
folder, which we'll assume to be the context object in this
example:

folder_path = '/'.join(context.getPhysicalPath())
results = catalog(path={'query': folder_path, 'depth': 1})

Query multiple values

KeywordIndex index type indexes list of values.
It is used e.g. by Plone's categories (subject) feature
and object_provides provided interfaces index.

You can either query

	a single value in the list

	many values in the list (all must present)

	any value in the list

The index of the catalog to query is either the name of the
keyword argument, a key in a mapping, or an attribute of a record
object.

Attributes of record objects

	query -- either a sequence of objects or a single value to be
passed as query to the index (mandatory)

	operator -- specifies the combination of search results when
query is a sequence of values. (optional, default: 'or'). Allowed values:
'and', 'or'

Below is an example of matching any of multiple values gives as a Python list in KeywordIndex.
It queries all event types and recurrence_days KeywordIndex must match
any of given dates:

Query all events on the site
Note that there is no separate list for recurrent events
so if you want to speed up you can hardcode
recurrent event type list here.
matched_recurrence_events = self.context.portal_catalog(
 portal_type=supported_event_types,
 recurrence_days={
 "query":recurrence_days_in_this_month,
 "operator" : "or"
 })

Querying by interface

Suppose you have several content types (for example, event types like
'Birthday','Wedding','Graduation') in your portal which implement the same
interface (for example, IIsCauseForCelebration). Suppose you want to get
items of these types from the catalog by their interface. This is more exact
than naming the types explicitly (like portal_type=['Birthday', 'Wedding',
'Graduation']), because you don't really care what the types' names really
are: all you really care for is the interface.

This has the additional advantage that if products added or modified later add
types which implement the interface, these new types will also show up in your
query.

Import the interface:

from Products.MyProduct.interfaces import IIsCauseForCelebration
catalog(object_provides=IIsCauseForCelebration.__identifier__)

In a script, where you can't import the interface due to restricted Python,
you might do this:

object_provides='Products.MyProduct.interfaces.IIsCauseForCelebration'

The advantage of using .__identifier__ instead instead of a dotted
name-string is that you will get errors at startup time if the interface cannot
be found. This will catch typos and missing imports.

Caveats

	object_provides is a KeywordIndex which indexes absolute
Python class names. A string matching is performed for the dotted name. Thus,
you will have zero results for this:

catalog(object_provides="Products.ATContentTypes.interface.IATDocument")

, because Products.ATContentTypes.interface imports everything from
document.py. But this will work:

catalog(object_provides="Products.ATContentTypes.interface.document.IATDocument")
products.atcontenttypes.document.iatdocument declares the interfacea

	As with all catalog queries, if you pass an empty value for search parameter,
it will return all results. so if the interface you defined would yield a none
type object, the search would return all values of object_provides.

(Originally from this tutorial [http://plone.org/documentation/how-to/query-portal_catalog-for-interfaces].)

Note

Looks like query by Products.CMFCore.interfaces._content.IFolderish does not seem to work in Plone 4.1
as this implementation information is not populated in portal_catalog.

Query by content type

To get all catalog brains of certain content type on the whole site:

campaign_brains = self.context.portal_catalog(portal_type="News Item")

To see available type names, visit in portal_types tool in ZMI.

Query published items

By default, the portal_catalog query does not care about the workflow state.
You might want to limit the query to published items.

Example:

campaign_brains = self.context.portal_catalog(portal_type="News Item", review_state="published")

review_state is a portal_catalog index which reads portal_workflow variable "review_state".
For more information, see what portal_workflow tool Content tab in ZMI contains.

Getting a random item

The following view snippet allows you to get one random item on the site:

import random

def getRandomCampaign(self):
 """
 """

 campaign_brains = self.context.portal_catalog(portal_type="CampaignPage", review_state="published")

 # Filter out the current item which we have

 bad_ids = ["you", "might", "want to black list some ids here"]

 items = [brain for brain in campaign_brains if brain["getId"] not in bad_ids]

 # Check that we have items left after filtering

 items = list(items)

 if len(items) >= 1:
 # Pick one
 chosen = random.choice(items)
 return chosen.getObject()
 else:
 # Fallback to the current content item if no random options available
 return self.context

Querying FieldIndexes by Range

The following examples demonstrate how to do range based queries.
This is useful if you want to find the "minimum" or "maximum" values
of something, the example assumes that there is an index called 'getPrice'.

Get a value that is greater than or equal to 2:

items = portal_catalog({'getPrice':{'query':2,'range':'min'}})

Get a value that is less than or equal to 40:

items = portal_catalog({'getPrice':{'query':40,'range':'max'}})

Get a value that falls between 2 and 1000:

items = portal_catalog({'getPrice':{'query':[2,1000],'range':'min:max'}})

Querying by date

See DateIndex [http://svn.zope.org/Zope/trunk/src/Products/PluginIndexes/DateIndex/tests/test_DateIndex.py?rev=102443&view=auto].

Example:

items = portal_catalog(effective_date = {'query':(DateTime('2002-05-08 15:16:17'),
 DateTime('2062-05-08 15:16:17')),
 'range': 'min:max'})

Note that effectiveRange may be a lot more efficient. This will return only
objects whose effective_date is in the past, ie. objects that are not
unpublished:

items = portal_catalog(effectiveRange=DateTime())

Example 2 - how to get items one day old of FeedFeederItem content type:

DateTime deltas are days as floating points
end = DateTime.DateTime() + 0.1 # If we have some clock skew peek a little to the future
start = DateTime.DateTime() - 1

date_range_query = { 'query':(start,end), 'range': 'min:max'}

items = portal_catalog.queryCatalog({"portal_type":"FeedFeederItem",
 "created" : date_range_query,
 "sort_on":"positive_ratings",
 "sort_order":"reverse",
 "sort_limit":count,
 "review_state":"published"})

Example 3: how to get news items for a particular year in the template code

<div metal:fill-slot="main" id="content-news"
 tal:define="boundLanguages here/portal_languages/getLanguageBindings;
 prefLang python:boundLanguages[0];
 DateTime python:modules['DateTime'].DateTime;
 start_year request/year| python: 2004;
 end_year request/year| python: 2099;
 start_year python: int(start_year);
 end_year python: int(end_year);
 results python:container.portal_catalog(
 portal_type='News Item',
 sort_on='Date',
 sort_order='reverse',
 review_state='published',
 id=prefLang,
 created={ 'query' : [DateTime(start_year,1,1), DateTime(end_year,12,31)], 'range':'minmax'}
);
 results python:[r for r in results if r.getObject()];
 Batch python:modules['Products.CMFPlone'].Batch;
 b_start python:request.get('b_start',0);
 portal_discussion nocall:here/portal_discussion;
 isDiscussionAllowedFor nocall:portal_discussion/isDiscussionAllowedFor;
 getDiscussionFor nocall:portal_discussion/getDiscussionFor;
 home_url python: mtool.getHomeUrl;
 localized_time python: modules['Products.CMFPlone.PloneUtilities'].localized_time;">
 ...
</div>

Example 4 - how to get upcoming events of next two months:

def formatDate(self, event):
 """
 """
 dt = event["start"]
 return dt.strftime("%d.%m.%Y")

def update(self):
 portal_catalog = self.context.portal_catalog

 start = DateTime.DateTime() - 1 # yesterday
 end = DateTime.DateTime() + 60 # Two months future
 date_range_query = {'query': (start, end), 'range': 'min:max'}

 count = 5

 self.events = portal_catalog.queryCatalog({"portal_type": "Event",
 "start": date_range_query,
 "sort_on": "start",
 "sort_order": "reverse",
 "sort_limit": count,
 "review_state": "published"})

More info

	http://www.ifpeople.net/fairsource/courses/material/apiPlone_en

Query by language

You can query by language:

portal_catalog({"Language":"en"})

Note

Products.LinguaPlone must be installed.

Boolean queries (AdvancedQuery)

AdvancedQuery is an add-on product for Zope's ZCatalog providing queries
using boolean logic. AdvancedQuery is developer level product,
providing Python interface for constructing boolean queries.

AdvancedQuery monkey-patches portal_catalog to provide
new method portal_catalog.evalAdvancedQuery().

Example:

from Products import AdvancedQuery

portal_catalog = self.portal_catalog # Acquire portal_catalog from higher hierarchy level

path = self.getPhysicalPath() # Limit the search to the current folder and its children

object.getPhysicalPath() returns the path as tuples of path parts
Convert path to string
path = "/".join(path)

Limit search to path in the current contex object and
match all children implementing either of two interfaces
AdvancedQuery operations can be combined using Python expressions & | and ~
or AdvancedQuery objects
query = AdvancedQuery.Eq("path", path) & (AdvancedQuery.Eq("getMyIndexGetter1", "foo") | AdvancedQuery.Eq("getMyIndexGetter2", "bar"))

The following result variable contains iterable of CatalogBrain objects
results = portal_catalog.evalAdvancedQuery(query)

Convert the catalog brains to a Python list containing tuples of object unique ID and Title
pairs = []
for nc in results:
 pairs.append((nc["UID"], nc["Title"]))

query = Eq("path", diagnose_path) & Eq("SearchableText", text_query_target)

query = Eq("path", diagnose_path) & Eq("SearchableText", text_query_target)

return self.context.portal_catalog.evalAdvancedQuery(query)

Note

Plone 3 ships with AdvancedQuery but it is not part of Plone. Always declare
AdvancedQuery dependency in your egg's setup.py install_requires.

Warning

AdvancedQuery does not necessarily apply the same automatic limitations which normal
portal_catalog() queries do, like language and expiration date.
Always check your query code against these limitations.

More information

	See AdvancedQuery [http://www.dieter.handshake.de/pyprojects/zope/AdvancedQuery.html].

	http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-3-x-to-4.0/updating-add-on-products-for-plone-4.0/removed-advanced-query

Setting Up A New Style Query

With Plone 4.2, collections use so-called new-style queries by
default. These are, technically speaking, canned queries, and they
appear to have the following advantages over old-style collection's
criteria:

	They are not complicated sub-objects of collections, but comparably
simple subobjects that can be set using simple Python expressions.

	These queries are apparently much faster to execute, as well as

	much easier to understand, and

	content-type agnostic in the sense that they are no longer tied to
ArcheTypes.

The easiest way to get into these queries is to grab a debug shell
alongside an instance, then fire up a browser pointing to that
instance, then manipulate the queries and watch the changes on the
debug shell, if you want to experiment. I've constructed a dummy
collection for demonstration purposes, named testquery. I've
formatted the output a little, for readability.

Discovering the query:

>>> site.invokeFactory('Collection', id='testquery') # actually with my browser
>>> tq = site['testquery']
>>> tq.getRawQuery()
[
 {'i': 'created', 'o': 'plone.app.querystring.operation.date.today'},
 {'i': 'Description', 'o': 'plone.app.querystring.operation.string.contains', 'v': 'my querystring'},
 {'i': 'portal_type', 'o': 'plone.app.querystring.operation.selection.is', 'v': ['Document']},
 {'i': 'Subject', 'o': 'plone.app.querystring.operation.selection.is', 'v': ['some_tag']}
]
>>> tq.getSort_on()
'effective'
>>> tq.getSort_reversed()
True
>>> tq.getLimit()
1000
>>> tq.selectedViewFields()
[
 ('Title', u'Title'),
 ('Creator', 'Creator'),
 ('Type', u'Item Type'),
 ('ModificationDate', u'Modification Date'),
 ('ExpirationDate', u'Expiration Date'),
 ('getId', u'Short Name'),
 ('getObjSize', u'Size')
]

This output should be pretty self-explaining: This query finds objects
that were created today, which have "my querystring" in their
description, are of type "Document" (ie, "Page"), and have "some_tag"
in their tag set (you'll find that under "Classification"). Also,
the results are being sorted in reverse order of the Effective Date
(ie, the publishing date). We're getting at most 1000 results, which
is the default cut-off.

You can set the query expression (individual parts are evaluated as logical AND) using

>>> tq.setQuery(your query expression, see above)

The three parts of an individual query term are

	'i': which index to query

	'o': which operator to use (see plone.app.querystring for a list)

	'v': the possible value of an argument to said operator - eg. the query string.

Other parameters can be manipulated the same way:

>>> tq.setSort_reversed(True)

Accessing metadata

Metadata is collected from the object during cataloging and is copied to brain object
for faster access (no need to wake up the actual object from the database).

ZCatalog brain objects use Python dictionary-like API to access metadata.
Below is a fail-safe example for a metadata access:

def getImageTag(self, brain):
 """
 Get lead image for ZCatalog brain in folder listing.

 (Based on collective.contentleadimage add-on product)

 @param brain: Products.ZCatalog.Catalog.mybrains object

 @return: HTML source code for content lead
 """

 # First check if the index exist
 if not brain.has_key("hasContentLeadImage"):
 return None

 # Index can have indexed value None or
 # custom value Missing.Value if the indexer
 # for brain's object failed to run or returned Missing.
 # Both of these values evaluate to False in Python
 has_image = brain["hasContentLeadImage"]

 # The value was missing, None or False
 if not has_image:
 return None

 context = brain.getObject()

 # AT inspection API
 field = context.getField(IMAGE_FIELD_NAME)
 if not field:
 return None

 # ImageField.tag() API
 if field.get_size(context) != 0:
 scale = "tile" # 64x64
 return field.tag(context, scale=scale)

Note

This is for example purposes only - the code above is working, but not optimal,
and can be written up without waking up the object.

Fuzzy search

	https://pypi.python.org/pypi/c2.search.fuzzy/

Unique values

ZCatalog has uniqueValuesFor() method to retrieve all unique values for a certain index.
It is intended to work on FieldIndexes only.

Example:

getArea() is Archetype accessor for area field
which is a string and tells the content area.
Custom getArea FieldIndex indexes these values
to portal catalog.
The following line gives all area values
inputted on the site.
areas = portal_catalog.uniqueValuesFor("getArea")

Performance

The following community mailing list blog posts is very insightful about the performance characteristics
of Plone search and indexing:

	http://plone.293351.n2.nabble.com/Advice-for-site-with-very-large-number-of-objects-millions-tp5513207p5529103.html

Batching

Todo

Complete writeup

Example:

results = Batch(contents, self.b_size, self.b_start, orphan=0)

	orphan - the next page will be combined with the current page if it does not contain more than orphan elements

Walking through all content

portal_catalog() call without search parameters will return all indexed
site objects.

Here is an example how to crawl through Plone content to search HTML
snippets. This can be done by rendering every content object and check
whether certain substrings exists the output HTML This snippet can be
executed through-the-web in Zope Management Interface.

This kind of scripting is especially useful if you need to find old links or
migrate some text / HTML snippets in the content itself. There might be
artifacts which only appear on the resulting pages (portlets, footer texts,
etc.) and thus they are invisible to the normal full text search.

Example:

Find arbitrary HTML snippets on Plone content pages

Collect script output as text/html, so that you can
call this script conveniently by just typing its URL to a web browser
buffer = ""

We need to walk through all the content, as the
links might not be indexed in any search catalog
for brain in context.portal_catalog(): # This queries cataloged brain of every content object
 try:
 obj = brain.getObject()
 # Call to the content object will render its default view and return it as text
 # Note: this will be slow - it equals to load every page from your Plone site
 rendered = obj()
 if "yourtextmatch" in rendered:
 # found old link in the rendered output
 buffer += "Found old links on %s
\n" % (obj.absolute_url(), obj.Title())
 except:
 pass # Something may fail here if the content object is broken

return buffer

More info:

	http://blog.mfabrik.com/2011/02/17/finding-arbitary-html-snippets-on-plone-content-pages/

Other notes

	Indexing tutorial [http://plone.org/documentation/tutorial/using-portal_catalog/tutorial-all-pages] on plone.org

	Manual sorting example [http://www.universalwebservices.net/web-programming-resources/zope-plone/advanced-sorting-of-plone-search-results/]

	Getting all unique keywords [http://stackoverflow.com/questions/10497342/python-plone-getting-all-unique-keywords-subject]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Internationalization (i18n)

There are several layers involved in the processes that provide
internationalization capabilities to Plone. Basically they are divided in the
ones responsible to translate the user interface and the display of the
localization particularities (dates, etc):

	Translating user interface text strings by using term:gettext, like the
zope.i18n [https://pypi.python.org/pypi/zope.i18n] and zope.i18nmessageid [https://pypi.python.org/pypi/zope.i18nmessageid] packages.

	Adapting locale-specific settings (such as the time format) for the site,
like the plone.i18n [https://pypi.python.org/pypi/plone.i18n] package.

And the ones responsible for translating the user generated content. There are
several add-on products that provides multilingual support to Plone:

	Products.LinguaPlone [https://pypi.python.org/pypi/Products.LinguaPlone] (Archetypes content types based only)

	plone.app.multilingual [https://pypi.python.org/pypi/plone.app.multilingual] (Archetypes and Dexterity content types, requires
at least Plone 4.1)

Contents

	Translating text strings

	Language functions

	Translated content

	How to contribute to Plone core translations

	Internationalization and cache

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Internationalization (i18n) »

Translating text strings

Description

Translating Python and TAL template source code text strings using
the term:gettext framework and other Plone/Zope term:i18n facilities.

	Introduction

	zope.i18n
	Generating a .pot template file for your package(s)

	Marking translatable strings in Python

	Marking translatable strings in TAL page templates

	Automatically translated message ids

	Manually translated message ids

	Non-python message ids

	Translating browser view names

	Translating other ZCML

	Testing translations
	Plone 4

	Plone 3

	Translation string substitution

	PlacelessTranslationService

	i18ndude
	Installing i18ndude

	Setting up folder structure for Finnish and English

	Creating .pot base file

	Manual .po entries

	Managing .po files

	Distributing compiled translations

	Dynamic content

	Overriding translations

	Other

Introduction

Internationalization is a process to make your code locale- and
language-aware. Usually this means supplying translation files for text
strings used in the code.

Plone internally uses the UNIX standard term:gettext tool to perform
term:i18n.

There are two separate gettext systems. Both use the .po file format
to describe translations.

Note that this chapter concerns only code-level translations. Content
translations are managed by the Products.LinguaPlone [https://pypi.python.org/pypi/Products.LinguaPlone] add-on product.

zope.i18n [https://pypi.python.org/pypi/zope.i18n]

	Follows term:gettext best practices

	Translations are stored in the locales folder of your application.
Example: locales/fi/LC_MESSAGES/your.app.po

	Has zope.i18nmessageid [https://pypi.python.org/pypi/zope.i18nmessageid] package, which provides a string-like class
which allows storing the translation domain with translatable text strings
easily.

	.po files must usually be manually converted to .mo binary files
every time the translations are updated. See i18ndude. (It is
also possible to set an environment variable to trigger recompilation of
.mo files; see below.)

Plone (at least 3.3) uses only filename and path to search for the
translation files.
Information in the .po file headers is ignored.

Generating a .pot template file for your package(s)

infrae.i18nextract [https://pypi.python.org/pypi/infrae.i18nextract] can be used in your buildout to create a script which
searches particular packages for translation strings. This can be
particularly useful for creating a single translations package which
contains the translations for the set of packages which make up your
application.

Add the following to your buildout.cfg:

[translation]
recipe = infrae.i18nextract
packages =
 myapplication.policy
 myapplication .theme
output = ${buildout:directory}/src/myapplication.translation/myapplication/translation/locales
output-package = myapplication.translations
domain = mypackage

Running the ./bin/translation-extract script will produce a .pot
file in the specified output directory which can then be used to create the
.po files for each translation:

msginit --locale=fr --input=locales/mypackage.pot --output=locales/fr/LC_MESSAGES/mypackage.po

The locales directory should contain a directory for each language, and
a directory called LC_MESSAGES within each of these, followed by the
corresponding .po files containing the translation strings:

./locales/en/LC_MESSAGES/mypackage.po
./locales/fi/LC_MESSAGES/mypackage.po
./locales/ga/LC_MESSAGES/mypackage.po

Marking translatable strings in Python

Each module declares its own MessageFactory which is a callable and
marks strings with translation domain. MessageFactory is declared in
the main __init__.py file of your package.

from zope.i18nmessageid import MessageFactory

your.app.package must match domain declaration in .po files
MessageFactory = MessageFactory('youpackage.name')

You also need to have the following ZCML entry:

<configure xmlns:i18n="http://namespaces.zope.org/i18n">
 <i18n:registerTranslations directory="locales" />
</configure>

After the setup above you can use message factory to mark strings with
translation domains. i18ndude translation utilities use underscore
_ to mark translatable strings (term:gettext message ids).
Message ids must be unicode strings.

from your.app.package import yourAppMessageFactory as _
my_translatable_text = _(u"My text")

The object will still look like a string:

>>> my_translatable_text
u'My text'

But in reality it is a zope.i18nmessageid.message.Message object:

>>> my_translatable_text.__class__
<type 'zope.i18nmessageid.message.Message'>

>>> my_translatable_text.domain
'your.app.package'

To see the translation:

>>> from zope.i18n import translate
>>> translate(my_translatable_text)
u"The text of the translation." # This is the corresponding msgstr from the .po file

Marking translatable strings in TAL page templates

Declare XML namespace i18n and translation domain at the beginning of your template, at the first element

<div id="mobile-header" xmlns:i18n="http://xml.zope.org/namespaces/i18n" i18n:domain="plomobile">

Translate element content text using i18n:translate="". It will use the text content of the
element as msgid.

<li class="heading" i18n:translate="">
 Sections

	Use attributes i18n:translate, i18n:attributes and so on

For examples look any core Plone .pt files

Automatically translated message ids

Plone will automatically perform translation for message ids which are
output in page templates.

The following code would translate my_translateable_text to the native
language activated for the current page.

Note

Since my_translateable_text is a
zope.i18nmessageid.message.Message instance containing its own
gettext domain information, the i18n:domain attribute in page
templates does not affect message ids declared through message
factories.

Manually translated message ids

If you need to manipulate translated text outside page templates, you need
to perform the final translation manually.

Translation always needs context (i.e. under which site the translation
happens), as the active language and other preferences are read from the
HTTP request object and site object settings.

Translation can be performed using the context.translate() method:

Translate some text
msgid = _(u"My text") # my_text is zope.

Use inherited translate() function to get the final text string
translated = self.context.translate(msgid)

translated is now u"Käännetty teksti" (in Finnish)

context.translate() uses the translate.py Python script from
LanguageTool.

It has the signature:

def translate(self, domain, msgid, mapping=None, context=None,
 target_language=None, default=None):

and does the trick:

from Products.CMFCore.utils import getToolByName

get tool
tool = getToolByName(context, 'translation_service')

this returns type unicode
value = tool.translate(msgid,
 domain,
 mapping,
 context=context,
 target_language=target_language,
 default=default)

Note

Translation needs HTTP request object and thus may not work correctly
from command-line scripts.

Non-python message ids

There are also other message id markers in code outside the Python domain,
that have their own mechanisms:

	ZCML entries

	GenericSetup XML

	TAL page templates

Translating browser view names

Often you might want to translate browser view names, so that the "Display"
contentmenu shows something more human readable than, for example,
"my_awesome_view".

These are the steps needed to get it translated:

	Use the "plone" domain for your browser view name translations. Wether put
the whole ZCML in the plone domain of just the view definitions with
i18n:domain="plone".

	The msgids for the views are their names. Translate them in a plone.po
override file in your locales folder.

Please note, i18ndude does not parse the zcml files for translation strings
(see below "Translating other ZCML").

Translating other ZCML

http://stackoverflow.com/questions/6899708/do-zcml-files-get-parsed-i18n-wise

Testing translations

Here is a simple way to check if your gettext domains are correctly loaded.

Plone 4

You can start the Plone debug shell and manually check if translations can
be performed.

First start Plone in debug shell:

bin/instance debug

and then call translation service, in your site, manually:

>>> site = app.yoursiteid
>>> translation_service = site.translation_service
>>> translation_service.translate("Add Events Portlet", domain="plone", target_language="fi")
u'Lis\xe4\xe4 Tapahtumasovelma'

Plone 3

You can find PlacelessTranslationService in the ZMI root/control
panel (not site root).

Translation string substitution

Translation string substitutions must be used when the final translated
message contains variable strings.

Plone content classes inherit the translate() function which can be used
to get the final translated string. It will use the currently activate
language. Translation domain will be taken from the msgid object itself,
which is a string-like zope.i18nmessageid instance.

Message ids are immutable (read-only) objects so you need to always create a
new message id if you use different variable substitution mappings.

Python code:

from saariselka.app import appMessageFactory as _

class SomeView(BrowserView):

 def do_stuff(self):

 msgid = _(u"search_results_found_msg", default=u"Found ${results} results", mapping={ u"results" : len(self.contents)})

 # Use inherited translate() function to get the final text string
 translated = self.context.translate(msgid)

 # Show the final result count to the user as a portal status message
 messages = IStatusMessage(self.request)
 messages.addStatusMessage(translated, type="info")

Corresponding .po file entry:

#. Default: "Found ${results} results"
#: ./browser/accommondationsummaryview.py:429
msgid "search_results_found_msg"
msgstr "Löytyi ${results} majoituskohdetta"

For more information, see

	http://wiki.zope.org/zope3/TurningMessageIDsIntoRocks

PlacelessTranslationService

	Historic, being phased out.

	Stores .po files in i18n folder of your add-on product.

	Used for main "plone" translation catalog (until Plone 3.3.x)

	Translation files are processed when Plone is restarted. Example:
i18n/yourapp-fi.po.

i18ndude

i18ndude is a developer-oriented command-line utility to manage
.po and .mo files.

Usually you build our own shell script wrapper around i18ndude to
automate generation of .mo files of your product .po files.

Note

Plone 3.3 and onwards do not need manual .po -> .mo
compilation. It is done on start up. Plone 4 has a special switch
for this: in your buildout.cfg in the part using
plone.recipe.zope2instance you can set an environment variable
for this:

environment-vars =
 zope_i18n_compile_mo_files true

Note that the value does not matter: the code in zope.i18n
simply looks for the existence of the variable and does not
care what its value is.

Note

If you use i18ndude make sure to use _ as an alias for
your MessageFactory else i18ndude won't find your message strings
in python code and report that "no entries for domain" were found.

See:

	http://vincentfretin.ecreall.com/articles/my-translation-doesnt-show-up-in-plone-4

Examples:

	i18ndude Python package [https://pypi.python.org/pypi/i18ndude]

	i18ndude example for Plone 3.0 and later [http://maurits.vanrees.org/weblog/archive/2007/09/i18n-locales-and-plone-3.0]

	i18ndude example for Plone 2.5 [http://blogs.ingeniweb.com/blogs/user/7/tag/i18ndude/]

Installing i18ndude

The recommended method is to have term:i18ndude installed via your
buildout [http://www.buildout.org/docs/index.html].

Add the following to your buildout.cfg:

parts =
 ...
 i18ndude

[i18ndude]
unzip = true
recipe = zc.recipe.egg
eggs = i18ndude

After this i18ndude is available in your buildout/bin folder

For Plone 3 you might need to add:

[versions]
i18ndude pindowns for Plone 3.3
zope.i18nmessageid = 3.6.1
zope.interface = 3.8.0

bin/i18ndude -h
Usage: i18ndude command [options] [path | file1 file2 ...]]

You can also call it relative to your current package source folder

server:home moo$ cd src/mfabrik.plonezohointegration/
server:mfabrik.plonezohointegration moo$../../bin/i18ndude

Warning

Do not easy_install i18ndude. i18ndude depends on various Zope
packages and pulling them to your system-wide Python configuration could
be dangerous, due to potential conflicts with corresponding, but
different versions, of the same packages used with Plone.

More information

	http://markmail.org/message/gru5oaxdl452ekh6#query:+page:1+mid:m22a2ap4xwtwogs5+state:results

Setting up folder structure for Finnish and English

Example:

mkdir locales
mkdir locales/fi
mkdir locales/en
mkdir locales/fi/LC_MESSAGES
mkdir locales/en/LC_MESSAGES

Creating .pot base file

Example:

i18ndude rebuild-pot --pot locales/mydomain.pot --create your.app.package .

Manual .po entries

i18ndude scans source .py and .pt files for translatable text
strings. On some occasions this is not enough - for example if you
dynamically generate message ids in your code. Entries which cannot be
detected by automatic code scan are called manual po entries. They are
managed in locales/manual.pot which is merged to generated
locales/yournamespace.app.pot file.

Here is a sample manual.pot file:

msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0\n"
"Preferred-Encodings: utf-8 latin1\n"
"Domain: mfabrik.app\n"

This entry is used in gomobiletheme.mfabrik templates for the campaign page header
It is not automatically picked, since it is referred from external package
#. Default: "Watch video"
msgid "watch_video"
msgstr ""

Managing .po files

Example shell script to manage i18n files. Change CATALOGNAME to reflect
the actual package of your product:

The script will:

	pick up all changes to i18n strings in code and reflect them back to the
translation catalog of each language;

	pick up changes in manual.pot file and reflect them back to the
translation catalog of each language.

#!/bin/sh
#
Shell script to manage .po files.
#
Run this file in the folder main __init__.py of product
#
E.g. if your product is yourproduct.name
you run this file in yourproduct.name/yourproduct/name
#
#
Copyright 2010 mFabrik http://mfabrik.com
#
http://plone.org/documentation/manual/plone-community-developer-documentation/i18n/localization
#

Assume the product name is the current folder name
CURRENT_PATH=`pwd`
CATALOGNAME="yourproduct.app"

List of languages
LANGUAGES="en fi de"

Create locales folder structure for languages
install -d locales
for lang in $LANGUAGES; do
 install -d locales/$lang/LC_MESSAGES
done

Assume i18ndude is installed with buildout
and this script is run under src/ folder with two nested namespaces in the package name (like mfabrik.plonezohointegration)
I18NDUDE=../../../../bin/i18ndude

if test ! -e $I18NDUDE; then
 echo "You must install i18ndude with buildout"
 echo "See https://github.com/collective/collective.developermanual/blob/master/source/i18n/localization.txt"
 exit
fi

#
Do we need to merge manual PO entries from a file called manual.pot.
this option is later passed to i18ndude
#
if test -e locales/manual.pot; then
 echo "Manual PO entries detected"
 MERGE="--merge locales/manual.pot"
else
 echo "No manual PO entries detected"
 MERGE=""
fi

Rebuild .pot
$I18NDUDE rebuild-pot --pot locales/$CATALOGNAME.pot $MERGE --create $CATALOGNAME .

Compile po files
for lang in $(find locales -mindepth 1 -maxdepth 1 -type d); do

 if test -d $lang/LC_MESSAGES; then

 PO=$lang/LC_MESSAGES/${CATALOGNAME}.po

 # Create po file if not exists
 touch $PO

 # Sync po file
 echo "Syncing $PO"
 $I18NDUDE sync --pot locales/$CATALOGNAME.pot $PO

 # Plone 3.3 and onwards do not need manual .po -> .mo compilation,
 # but it will happen on start up if you have
 # registered the locales directory in ZCML
 # For more info see http://vincentfretin.ecreall.com/articles/my-translation-doesnt-show-up-in-plone-4

 # Compile .po to .mo
 # MO=$lang/LC_MESSAGES/${CATALOGNAME}.mo
 # echo "Compiling $MO"
 # msgfmt -o $MO $lang/LC_MESSAGES/${CATALOGNAME}.po
 fi
done

Note

Remember to register the locales directory in configure.zcml
for automatic .mo compilation as instructed above.

More information

	http://plataforma.cenditel.gob.ve/browser/proyectosInstitucionales/eGov/ppm/trunk/rebuild_i18n

	http://encolpe.wordpress.com/2008/04/28/manage-your-internationalization-with-i18ndude/

Distributing compiled translations

The rule for compiled .mo files is that

	Source code repositories (SVN, Git) must not contain compiled .mo files

	Released eggs on PyPi, however, must contain compiled .mo files

The easiest way to manage this is to use zest.releaser [https://pypi.python.org/pypi/zest.releaser]
tool together with zest.pocompile package [https://pypi.python.org/pypi/zest.pocompile]
to release your eggs.

Dynamic content

If your HTML template contains dynamic content such as

<h1 i18n:translate="search_form_heading">Search from </h1>

it will produce .po entry:

msgstr "Hae sivustolta ${DYNAMIC_CONTENT}"

You need to give the name to the dynamic part

<h1 i18n:translate="search_form_heading">
Search from
<span i18n:name="site_title"
 tal:content="context/@@plone_portal_state/portal_title" /></h1>

... and then you can refer the dynamic part by a name:

#. Default: "Search from ${site_title}"
#: ./skins/gomobiletheme_basic/search.pt:46
#: ./skins/gomobiletheme_plone3/search.pt:46
msgid "search_form_heading"
msgstr "Hae sivustolta ${site_title}

More info

	http://dev.plone.org/plone/changeset/35219

	http://permalink.gmane.org/gmane.comp.web.zope.plone.collective.cvs/111531

Overriding translations

If you need to change a translation from a .po file, you could
create a new python package and register your own .po files.

To do this, create the package and add a locales directory in there,
along the lines of what plone.app.locales [https://pypi.python.org/pypi/plone.app.locales] does.
Then you can add your own translations in the language that you need;
for example locales/fr/LC_MESSAGES/plone.po to override French messages
in the plone domain.

Reference the translation in configure.zcml of your package:

<configure xmlns:i18n="http://namespaces.zope.org/i18n"
 i18n_domain="my.package">
 <i18n:registerTranslations directory="locales" />
</configure>

Your ZCML needs to be included before the one from plone.app.locales [https://pypi.python.org/pypi/plone.app.locales]:
the first translation of a msgid wins.
To manage this, you can include the ZCML in the buildout:

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin
http-address = 8280
eggs =
 Plone
 my.package
 ${buildout:eggs}
environment-vars =
 zope_i18n_compile_mo_files true
my.package is needed here so its configure.zcml
is loaded before plone.app.locales
zcml = my.package

See the Overriding Translations section of Maurits van Rees's
blog entry on Plone i18n [http://maurits.vanrees.org/weblog/archive/2010/10/i18n-plone-4],
and Vincent Fretin's posting [http://article.gmane.org/gmane.comp.web.zope.plone.user/109580] on the
Plone-Users mailing list.

Other

	http://grok.zope.org/documentation/how-to/how-to-internationalize-your-application

	http://reinout.vanrees.org/weblog/2007/12/14/translating-schemata-names.html

	http://plone.org/products/archgenxml/documentation/how-to/handling-i18n-translation-files-with-archgenxml-and-i18ndude/view?searchterm=

	http://vincentfretin.ecreall.com/articles/my-translation-doesnt-show-up-in-plone-4

	http://dev.plone.org/plone/ticket/9089

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Internationalization (i18n) »

Language functions

Description

Accessing and changing the language state of Plone programmatically.

	Introduction

	Getting the current language

	Getting language of content item

	Getting available site languages

	Simple language conditions in page templates

	Set site language settings

	Customizing language selector
	Making language flags point to different top level domains

	Custom language negotiator

	Login-aware language negotiation

	Other

Introduction

Each page view has a language associated with it.

The active language is negotiated by the plone.i18n.negotiator module.
Several factors may be involved in determining what the language should be:

	Cookies (setting from the language selector)

	The top-level domain name (e.g. .fi for Finnish, .se for Swedish)

	Context (current content) language

	Browser language headers

Language is negotiated at the beginning of the page view.

Languages are managed by portal_languagetool [https://github.com/plone/Products.PloneLanguageTool/blob/master/Products/PloneLanguageTool/LanguageTool.py].

Getting the current language

Example view/viewlet method of getting the current language.

from Products.Five.browser import BrowserView
from zope.component import getMultiAdapter

class MyView(BrowserView):

 ...

 def language(self):
 """
 @return: Two-letter string, the active language code
 """
 context = self.context.aq_inner
 portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state')
 current_language = portal_state.language()
 return current_language

Getting language of content item

All content objects don't necessarily support the Language() look-up
defined by the IDublinCore interface. Below is the safe way to extract
the served language on the content.

Example BrowserView method:

from Acquisition import aq_inner

def language(self):
 """ Get the language of the context.

 Useful in producing <html> tag.
 You need to output language for every HTML page, see http://www.w3.org/TR/xhtml1/#strict

 @return: The two letter language code of the current content.
 """
 portal_state = self.context.unrestrictedTraverse("@@plone_portal_state")

 return aq_inner(self.context).Language() or portal_state.default_language()

Getting available site languages

Example below:

Python 2.6 compatible ordered dict
NOTE: API is not 1:1, but for normal dict access of
set member, iterate keys and values this is enough
try:
 from collections import OrderedDict
except ImportError:
 from odict import odict as OrderedDict

def getLanguages(self):
 """
 Return list of active langauges as ordered dictionary, the preferred first language as the first.

 Example output::

 {
 u'fi': {u'id' : u'fi', u'flag': u'/++resource++country-flags/fi.gif', u'name': u'Finnish', u'native': u'Suomi'},
 u'de': {u'id' : u'de', u'flag': u'/++resource++country-flags/de.gif', u'name': u'German', u'native': u'Deutsch'},
 u'en': {u'id' : u'en', u'flag': u'/++resource++country-flags/gb.gif', u'name': u'English', u'native': u'English'},
 u'ru': {u'id' : u'ru', u'flag': u'/++resource++country-flags/ru.gif', u'name': u'Russian', u'native': u'\u0420\u0443\u0441\u0441\u043a\u0438\u0439'}
 }
 """
 result = OrderedDict()

 portal_languages = self.context.portal_languages

 # Get barebone language listing from portal_languages tool
 langs = portal_languages.getAvailableLanguages()

 preferred = portal_languages.getPreferredLanguage()

 # Preferred first
 for lang, data in langs.items():
 if lang == preferred:
 result[lang] = data

 # Then other languages
 for lang, data in langs.items():
 if lang != preferred:
 result[lang] = data

 # For convenience, include the language ISO code in the export,
 # so it is easier to iterate data in the templates
 for lang, data in result.items():
 data["id"] = lang

 return result

Simple language conditions in page templates

You can do this if full translation strings are not worth the trouble:

<div class="main-text">
 <a tal:condition="python:context.restrictedTraverse('@@plone_portal_state').language() == 'fi'" href="http://www.saariselka.fi/sisalto?force-web">Siirry täydelle web-sivustolle
 <a tal:condition="python:context.restrictedTraverse('@@plone_portal_state').language() != 'fi'" href="http://www.saariselka.fi/sisalto?force-web">Go to full website
</div>

Set site language settings

Manually:

Setup site language settings
portal = context.getSite()
ltool = portal.portal_languages
defaultLanguage = 'en'
supportedLanguages = ['en','es']
ltool.manage_setLanguageSettings(defaultLanguage, supportedLanguages,
 setUseCombinedLanguageCodes=False)

For unit testing, you need to run this in afterSetUp() after setting up
the languages:

THIS IS FOR UNIT TESTING ONLY
Normally called by pretraverse hook,
but must be called manually for the unit tests
Goes only for the current request
ltool.setLanguageBindings()

Using GenericSetup and propertiestool.xml

<object name="portal_properties" meta_type="Plone Properties Tool">
 <object name="site_properties" meta_type="Plone Property Sheet">
 <property name="default_language" type="string">en</property>
 </object>
</object>

On LinguaPlone-enabled sites, using GenericSetup XML
portal_languages.xml

<?xml version="1.0"?>
<object>
 <default_language value="fi"/>
 <use_path_negotiation value="False"/>
 <use_cookie_negotiation value="True"/>
 <use_request_negotiation value="False"/>
 <use_cctld_negotiation value="False"/>
 <use_combined_language_codes value="False"/>
 <display_flags value="True"/>
 <start_neutral value="False"/>
 <supported_langs>
 <element value="en"/>
 <element value="fi"/>
 </supported_langs>
</object>

Customizing language selector

Multilingual Plone has two kinds of language selector viewlets:

	Plone vanilla

	LinguaPlone - LinguaPlone has its own language selector which replaces
the default Plone selector if the add on product is installed.

More information

	https://github.com/plone/plone.app.i18n/blob/master/plone/app/i18n/locales/browser/selector.py

	https://github.com/plone/plone.app.i18n/blob/master/plone/app/i18n/locales/browser/languageselector.pt

	https://github.com/plone/Products.LinguaPlone/blob/master/Products/LinguaPlone/browser/selector.py

Making language flags point to different top level domains

If you use multiple domain names for different languages it is often
desirable to make the language selector point to a different domain. Search
engines do not really like the dynamic language switchers and will index
switching links, messing up your site search results.

Example

<tal:language
 tal:define="available view/available;
 languages view/languages;
 showFlags view/showFlags;">

 <ul id="portal-languageselector"
 tal:condition="python:available and len(languages)>=2">
 <tal:language repeat="lang languages">
 <li tal:define="code lang/code;
 selected lang/selected"
 tal:attributes="class python: selected and 'currentLanguage' or '';">

 <a href=""
 tal:condition="python:code =='fi'"
 tal:define="flag lang/flag|nothing;
 name lang/name"
 tal:attributes="href string:http://www.twinapex.fi;
 title name">
 <tal:flag condition="python:showFlags and flag">
 <img
 width="14"
 height="11"
 alt=""
 tal:attributes="src string:${view/portal_url}${flag};
 title python: name;
 class python: selected and 'currentItem' or '';" />
 </tal:flag>
 <tal:nonflag condition="python:not showFlags or not flag"
 replace="name">language name</tal:nonflag>

 <a href=""
 tal:condition="python:code =='en'"
 tal:define="flag lang/flag|nothing;
 name lang/name"
 tal:attributes="href string:http://www.twinapex.com;
 title name">
 <tal:flag condition="python:showFlags and flag">
 <img
 width="14"
 height="11"
 alt=""
 tal:attributes="src string:${view/portal_url}${flag};
 title python: name;
 class python: selected and 'currentItem' or '';" />
 </tal:flag>
 <tal:nonflag condition="python:not showFlags or not flag"
 replace="name">language name</tal:nonflag>

 </tal:language>

</tal:language>

Custom language negotiator

Below some example code.

languages.py:

""" Custom language negotiator based on hostname.
"""

from Products.PloneLanguageTool import LanguageTool

These are default languages available when hostname cannot be solved
all_languages = ["fi", "en"]

def get_host_name(request):
 """ Extract host name in virtual host safe manner

 @param request: HTTPRequest object, assumed contains environ dictionary

 @return: Host DNS name, as requested by client. Lowercased, no port part.
 """

 if "HTTP_X_FORWARDED_HOST" in request.environ:
 # Virtual host
 host = request.environ["HTTP_X_FORWARDED_HOST"]
 elif "HTTP_HOST" in request.environ:
 # Direct client request
 host = request.environ["HTTP_HOST"]
 else:
 host = None
 return host

 # separate to domain name and port sections
 host=host.split(":")[0].lower()

 return host

def get_language(domain_name):
 """
 @param domain_name: Full qualified domain name of HTTP request
 """

 if domain_name.endswith(".mobi") or domain_name.endswith(".com"):
 return "en"
 elif domain_name.endswith(".fi"):
 return "fi"
 else:
 return "en"

def getCcTLDLanguages(self):
 """
 Monkey-patched top level domain language negotiator.

 This will be installed by collective.monkeypatcher.
 """

 if not hasattr(self, 'REQUEST'):
 return None

 request = self.REQUEST

 # Could not extract hostname
 hostname = get_host_name(request)

 if not hostname:
 return all_languages

 # Limit available languages based on hostname
 langs = [get_language(hostname)]

 return langs

Also we need to fix a bug present in Plone 3.3.5
#
@memoize
def language(self):
TODO Looking for lower-case language is wrong, the negotiator
machinery uses uppercase LANGUAGE. We cannot change this as long
as we don't ship with a newer PloneLanguageTool which respects
the content language, though.
return self.request.get('language', None) or \
aq_inner(self.context).Language() or self.default_language()

from plone.memoize.view import memoize, memoize_contextless

def working_portal_state_language(self):
 return self.request.get('LANGUAGE', None) or \
 self.request.get('language', None) or \
 aq_inner(self.context).Language() or \
 self.default_language()

working_portal_state_language = memoize(working_portal_state_language)

configure.zcml

<!-- Use collective.monkeypatcher to introduce our custom language negotiation phase -->
<monkey:patch
 description="Add custom TLD language resolution"
 class="Products.PloneLanguageTool.LanguageTool"
 original="getCcTLDLanguages"
 replacement=".languages.getCcTLDLanguages"
 />

<monkey:patch
 description="Fix Plone 3.3.5 bug"
 class="plone.app.layout.globals.portal.PortalState"
 original="language"
 replacement=".languages.working_portal_state_language"
 />

Login-aware language negotiation

By default, language negotiation happens before authentication.
Therefore, if you wish to use authenticated credentials in the negotiation,
you can do the following.

Hook the after-traversal event.

Example event registration

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:zcml="http://namespaces.zope.org/zcml"
 >
 <subscriber handler=".language_negotiation.Negotiator"/>
</configure>

Corresponding event handler:

from zope.interface import Interface
from zope.component import adapter
from ZPublisher.interfaces import IPubEvent,IPubAfterTraversal
from Products.CMFCore.utils import getToolByName
from AccessControl import getSecurityManager
from zope.app.component.hooks import getSite

@adapter(IPubAfterTraversal)
def Negotiator(event):

 # Keep the current request language (negotiated on portal_languages)
 # untouched

 site = getSite()
 ms = getToolByName(site, 'portal_membership')
 member = ms.getAuthenticatedMember()
 if member.getUserName() == 'Anonymous User':
 return

 language = member.language
 if language:
 # Fake new language for all authenticated users
 event.request['LANGUAGE'] = language
 event.request.LANGUAGE_TOOL.LANGUAGE = language
 else:
 lt = getToolByName(site, 'portal_languages')
 event.request['LANGUAGE'] = lt.getDefaultLanguage()
 event.request.LANGUAGE_TOOL.LANGUAGE = lt.getDefaultLanguage()

Other

	http://reinout.vanrees.org/weblog/2007/12/14/translating-schemata-names.html

	http://maurits.vanrees.org/weblog/archive/2007/09/i18n-locales-and-plone-3.0

	http://blogs.ingeniweb.com/blogs/user/7/tag/i18ndude/

	http://plone.org/products/archgenxml/documentation/how-to/handling-i18n-translation-files-with-archgenxml-and-i18ndude/view?searchterm=

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Internationalization (i18n) »

Translated content

Description

Translating content items in Plone, creating translations
programmatically and working with translators.

	Introduction

	LinguaPlone
	Translation-aware content types

	Getting content items in another language

	Translating content

	Language neutral links

	Serving translated content from a correct domain name

	Translated navigation tabs

	plone.app.multilingual
	Installation

	Setup

	Marking objects as translatables
	Archetypes

	Dexterity

	Marking fields as language independent
	Archetypes

	Dexterity
	Grok directive

	Supermodel

	Native

	Through the web

	Language get/set via an unified adapter

	ITranslationManager adapter
	Add a translation

	Register a translation for an already existing content

	Get translations for an object

	Check if an object has translations

	raptus.multilanguageplone
	Installation

	Switching from Linguaplone

Introduction

Plone doesn't ships (yet) out of the box with a multilingual solution for
translating user generated content. There are several add-on products that add
multilingual support to Plone. Each of them has its own features and drawbacks,
so be careful when you choose one for your project and be sure that it fulfills
your needs.

LinguaPlone

LinguaPlone add-on product [http://plone.org/products/linguaplone] has been
the defacto standard multilingual product for Plone for almost a decade. It's
well stablished, proven, tested and reliable solution. However, it has no
support for Dexterity based content types and nowadays it's on legacy mode (only
bugfixes).

For an example of a content type using LinguaPlone, see the LinguaItem
example type [https://github.com/plone/Products.LinguaPlone/blob/07c754012e942fe5e12834b51af06246932ce420/Products/LinguaPlone/examples/LinguaItem.py].

Translation-aware content types

LinguaPlone makes it possible to mark fields language independent or
language dependent.

Note

To have language-aware behavior, you need to use the
Products.LinguaPlone.public.* API, instead of
Products.Archetypes.atapi.*.

Example:

try:
 from Products.LinguaPlone import public as atapi
except ImportError:
 # No multilingual support
 from Products.Archetypes import atapi

class MyContent(atapi.ATContent):
 pass

atapi.registerType(MyContent, ...)

For more information, see:

	https://pypi.python.org/pypi/Products.LinguaPlone/3.1a2#language-independent-fields

	http://n2.nabble.com/languageIndependent-fields-not-updated-td2430489.html

Getting content items in another language

Possible use cases:

	Getting translated content items by known path. E.g. you could have a
content item called portal/footer, which dynamically shows translated
text for different languages.

	Displaying content in many languages simultaneously.

To show some content translated into the chosen language of the current
user, you can use ITranslatable.getTranslation(language='language'):
Return the object corresponding to a translated version or None.
If called without arguments it returns the translation in the currently
selected language, or self.

Example:

from zope.component.hooks import getSite

from Products.LinguaPlone.interfaces import ITranslatable

def get_root_relative_item_in_current_language(path):
 """
 Traverses to a site item from the portal root
 and then returns a translated copy of it in the current language.

 Returns None if the item does not exist.

 Example::

 get_root_relative_item_in_current_language(self.context, "subfolder/item")

 """

 site = getSite()

 try:
 obj = site.restrictedTraverse("path")
 except:
 return None

 if ITranslatable.providedBy(obj):
 translated = obj.getTranslation()
 if translated:
 return translated

 return obj

Translating content

LinguaPlone contains some unit test code which shows how to create
translations. You can use the context.addTranslation(language_code) and
context.getTranslation(language_code) methods.

Example:

from Products.LinguaPlone.I18NBaseObject import AlreadyTranslated

try:
 object.addTranslation(lang)
except AlreadyTranslated:
 # Note: AlreadyTranslated is always raised if Products.Linguaplone is not installed
 pass

translated = object.getTranslation(lang)

See https://github.com/plone/Products.LinguaPlone/blob/07c754012e942fe5e12834b51af06246932ce420/Products/LinguaPlone/tests/translate_edit.txt

Todo

Why link to a particular (ancient) tag?

Language neutral links

In many cases you want to create links to a different language content.
For example, fallback to English content when the native version of content is not available.

Plone's reference and link widgets often fail to create links between language barriers.

Here is a workaround

	Create a folder in the site root

	Set the folder language neutral on Edit > Metadata tab

	In this folder, create Link content items where the Link target is the
English content. Also, on the link item Metadata set its Language to neutral.

	These links are searcable regardless of the edited content language and can be
used in references in the widgets

	When the end user, not editor, clicks link the Link content type takes
him/her to the actual English content

You may also find redturtle.smartlink [https://pypi.python.org/pypi/redturtle.smartlink/]
as useful add-on.

Serving translated content from a correct domain name

The following applies if:

	You use one Plone instance to host a site translated into several
languages;

	the Plone instance is mapped to different domain names;

	the language is resolved based on the top-level domain name or the
subdomain.

For SEO and usability reasons, you might want to force certain content to
show up at a certain domain. Plone does not prevent you from accessing a
path such as /news on the Finnish domain, or /uutiset on English
domain. If these URLs leak to search engines, they cause confusion.

Below is a complex post-publication hook which redirects users to the
proper domain for the language being served:

""" Domain-aware language redirects.

 Redirect the user to the domain where the language should be
 served from, if they have been mixing and matching different domain
 names and language versions.

 http://mfabrik.com
"""

import urlparse

from zope.interface import Interface
from zope.component import adapter, getUtility, getMultiAdapter
from plone.postpublicationhook.interfaces import IAfterPublicationEvent

from gomobile.mobile.utilities import get_host_domain_name
from gomobile.mobile.interfaces import IMobileRequestDiscriminator, MobileRequestType

from Products.CMFCore.interfaces import IContentish

def get_contentish(object):
 """ Traverse acquisition upwards until we get a contentish object used for the HTTP response.
 """

 contentish = object

 while not IContentish.providedBy(contentish):
 if not hasattr(contentish, "aq_parent"):
 break
 contentish = contentish.aq_parent

 return contentish

def redirect_domain(request, response, new_domain):
 """ Redirect user to a new domain, with the URI intact.

 It also keeps the port.

 @param new_domain: New domain name to redirect, without port.
 """

 url = request["ACTUAL_URL"]
 parts = urlparse.urlparse(url)

 # Replace domain name
 parts = list(parts)
 netloc = parts[1]

 # TODO: Handle @ and HTTP Basic auth here
 if ":" in netloc:
 domain, port = netloc.split(":")
 netloc = new_domain + ":" + port
 else:
 netloc = new_domain

 parts[1] = netloc
 new_url = urlparse.urlunparse(parts)

 # Make 301 Permanent Redirect response
 response.redirect(new_url, status=301)
 response.body = ""
 response.setHeader("Content-length", 0)

def ensure_in_domain(request, response, language_now, wanted_language, wanted_domain):
 """ Make sure that a certain language gets served from the correct domain.

 If the user tries to access URI of page, and the page language
 does not match the domain we expect, redirect the user to the
 correct domain.
 """

 domain_now = get_host_domain_name(request)

 if language_now == wanted_language:
 if domain_now != wanted_domain:
 # print "Fixing language " + language_now + " to go to " + wanted_domain + " from " + domain_now
 redirect_domain(request, response, wanted_domain)

@adapter(Interface, IAfterPublicationEvent)
def language_fixer(object, event):
 """ Redirect mobile users to mobile site using gomobile.mobile.interfaces.IRedirector.

 Note: Plone does not provide a good hook for doing this before
 traversing, so we must do it in post-publication. This adds extra
 latency, but is doable.
 """

 # print "language_fixer"

 request = event.request
 response = request.response
 context = get_contentish(object)

 if hasattr(context, "Language"):
 # Check whether the context has a Language() accessor, to get
 # the original language:
 language_now = context.Language()

 #print "Resolving mobility"
 discriminator = getUtility(IMobileRequestDiscriminator)
 flags = discriminator.discriminate(context, request)

 if MobileRequestType.MOBILE in flags:
 # Do mobile
 ensure_in_domain(request, response, language_now, "fi", "m.mfabrik.fi")
 ensure_in_domain(request, response, language_now, "en", "mfabrik.mobi")
 else:
 # Do web
 ensure_in_domain(request, response, language_now, "fi", "mfabrik.fi")
 ensure_in_domain(request, response, language_now, "en", "mfabrik.com")

 # print "Done"

Translated navigation tabs

Below is an example code which allows you to translate
portal_tabs to the current language.

	All translatable navigation tabs must be explicitly declared in portal_actions / portal_tabs
using site root relative paths

	You must set disable_folder_sections to False in navtree_properties

	Source is modified from The default sections viewlet [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/viewlets/common.py#L151]

	The viewlet is created using Grok framework

Viewlet code:

"""

 For more information see

 * http://collective-docs.readthedocs.org/en/latest/views/viewlets.html

"""

import logging

Zope imports
from zope.component import getMultiAdapter, getUtility, queryMultiAdapter
from five import grok
from AccessControl import getSecurityManager
from AccessControl import Unauthorized

Plone imports
from plone.app.layout.viewlets.interfaces import IPortalHeader

Add-ons
from Products.LinguaPlone.interfaces import ITranslatable

grok.templatedir("templates")
grok.layer(IThemeSpecific)

By default, set context to zope.interface.Interface
which matches all the content items.
You can register viewlets to be content item type specific
by overriding grok.context() on class body level
grok.context(Interface)

logger = logging.getLogger("Sections")

class Sections(grok.Viewlet):
 """
 Override tabs navigation to support multilingual items.

 - All items in portal_actions / portal_tabs are mapped to their native langauge version
 thru LinguaPlone translation linking

 - To skip the generatd default top level navigation content (automatically generated from the site root)
 set disable_folder_sections to False in navtree_properties

 """

 # Override existing plone.global_sections
 grok.name("plone.global_sections")
 grok.viewletmanager(IPortalHeader)

 def translateTabs(self, tabs):
 """
 Check with LinguaPlone to get the tab item in the target language
 """

 portal_state = getMultiAdapter((self.context, self.request), name="plone_portal_state")

 portal = portal_state.portal()

 new_tabs = []

 for action in tabs:
 url = action["url"]

 if url.startswith("/"):
 # Assume site root relative link
 url = url[1:]
 try:
 context = portal.restrictedTraverse(url)
 except Unauthorized:
 # No permission - filter out
 logger.warn("Unauthorized item:" + url)
 pass
 except AttributeError:
 # Item does not exist
 logger.warn("Navigation item does not exist:" + url)
 continue

 translatable = ITranslatable(context)

 # Get item in the current language
 translation = translatable.getTranslation()
 if translation:
 # Override menu item with translatd version URL
 action["url"] = translation.absolute_url()
 # Get the translated title directly from the content
 action["title"] = translation.Title()
 else:
 # No translation - filter out
 continue

 new_tabs.append(action)

 return new_tabs

 def update(self):
 context = self.context.aq_inner
 portal_tabs_view = getMultiAdapter((context, self.request),
 name='portal_tabs_view')
 self.portal_tabs = portal_tabs_view.topLevelTabs()

 self.portal_tabs = self.translateTabs(self.portal_tabs)

 self.selected_tabs = self.selectedTabs(portal_tabs=self.portal_tabs)
 self.selected_portal_tab = self.selected_tabs['portal']

 def selectedTabs(self, default_tab='index_html', portal_tabs=()):
 """
 """

 portal_state = getMultiAdapter((self.context, self.request), name="plone_portal_state")

 plone_url = portal_state.portal_url()
 plone_url_len = len(plone_url)
 request = self.request
 valid_actions = []

 url = request['URL']
 path = url[plone_url_len:]

 for action in portal_tabs:
 if not action['url'].startswith(plone_url):
 # In this case the action url is an external link. Then, we
 # avoid issues (bad portal_tab selection) continuing with next
 # action.
 continue
 action_path = action['url'][plone_url_len:]
 if not action_path.startswith('/'):
 action_path = '/' + action_path
 if path.startswith(action_path + '/'):
 # Make a list of the action ids, along with the path length
 # for choosing the longest (most relevant) path.
 valid_actions.append((len(action_path), action['id']))

 # Sort by path length, the longest matching path wins
 valid_actions.sort()
 if valid_actions:
 return {'portal': valid_actions[-1][1]}

 return {'portal': default_tab}

Page template code

<tal:sections tal:define="portal_tabs viewlet/portal_tabs"
 tal:condition="portal_tabs"
 i18n:domain="plone">
 <h5 class="hiddenStructure" i18n:translate="heading_sections">Sections</h5>

 <ul id="portal-globalnav"
 tal:define="selected_tab python:viewlet.selected_portal_tab"
 ><tal:tabs tal:repeat="tab portal_tabs"
 ><li tal:define="tid tab/id"
 tal:attributes="id string:portaltab-${tid};
 class python:selected_tab==tid and 'selected' or 'plain'"
 ><a href=""
 tal:content="tab/name"
 tal:attributes="href tab/url;
 title tab/description|nothing;">
 Tab Name
 </tal:tabs>
</tal:sections>

plone.app.multilingual

plone.app.multilingual was designed originally to provide Plone a whole
multilingual story. Using ZCA technologies, enables translations to Dexterity
and Archetypes content types as well managed via an unified UI.

This module provides the user interface for managing content translations. It's
the app package of the next generation Plone multilingual engine. It's designed
to work with Dexterity content types and the old fashioned Archetypes based
content types as well. It only works with Plone 4.1 and above due to the use of
UUIDs for referencing the translations.

For more information see plone.app.multilingual

Installation

To use this package with both Dexterity and Archetypes based content types you
should add the following line to your eggs buildout section:

eggs =
 plone.app.multilingual[archetypes, dexterity]

If you need to use this package only with Archetypes based content types you
only need the following line:

eggs =
 plone.app.multilingual[archetypes]

While archetypes is default in Plone for now, you can strip [archetypes].
This may change in future so we recommend adding an appendix as shown above.

Setup

After re-running your buildout and installing the newly available add-ons, you
should go to the Languages section of your site's control panel and select
at least two or more languages for your site. You will now be able to create
translations of Plone's default content types, or to link existing content as
translations.

Marking objects as translatables

Archetypes

By default, if PAM is installed, Archetypes-based content types are marked as
translatables

Dexterity

Users should mark a dexterity content type as translatable by assigning a the
multilingual behavior to the definition of the content type either via file
system, supermodel or through the web.

Marking fields as language independent

Archetypes

The language independent fields on Archetype-based content are marked the same
way as in LinguaPlone:

atapi.StringField(
 'myField',
 widget=atapi.StringWidget(

),
 languageIndependent=True
),

Dexterity

There are four ways of achieve it.

Grok directive

In your content type class declaration:

from plone.multilingualbehavior import directives
directives.languageindependent('field')

Supermodel

In your content type XML file declaration:

<field name="myField" type="zope.schema.TextLine" lingua:independent="true">
 <description />
 <title>myField</title>
</field>

Native

In your code:

from plone.multilingualbehavior.interfaces import ILanguageIndependentField
alsoProvides(ISchema['myField'], ILanguageIndependentField)

Through the web

Via the content type definition in the Dexterity Content Types control panel.

Language get/set via an unified adapter

In order to access and modify the language of a content type regardless the
type (Archetypes/Dexterity) there is a interface/adapter:

plone.multilingual.interfaces.ILanguage

You can use:

from plone.multilingual.interfaces import ILanguage
language = ILanguage(context).get_language()

or in case you want to set the language of a content:

language = ILanguage(context).set_language('ca')

ITranslationManager adapter

The most interesting adapter that p.a.m. provides is:
plone.multilingual.interfaces.ITranslationManager.

It adapts any ITranslatable object to provide convenience methods to manage
the translations for that object.

Add a translation

Given an object obj and we want to translate it to Catalan language ('ca'):

from plone.multilingual.interfaces import ITranslationManager
ITranslationManager(obj).add_translation('ca')

Register a translation for an already existing content

Given an object obj and we want to add obj2 as a translation for Catalan language ('ca'):

ITranslationManager(obj).register_translation('ca', obj2)

Get translations for an object

Given an object obj:

ITranslationManager(obj).get_translations()

and if we want a concrete translation:

ITranslationManager(obj).get_translation('ca')

Check if an object has translations

Given an object obj:

ITranslationManager(obj).get_translated_languages()

or:

ITranslationManager(obj).has_translation('ca')

For more information see: https://github.com/plone/plone.multilingual/blob/master/src/plone/multilingual/interfaces.py#L66

raptus.multilanguageplone

Another extension for multilingual content in Plone is
raptus.multilanguageplone. This is not meant to be a fully-fledged tool
for content translaton, unlike LinguaPlone. Translation is done directly in
the edit view of a content type, and provides a widget to use google's
translation API to translate the different fields.

Unlike LinguaPlone, raptus.multilanguageplone doesn't create an object
for each translation. Instead, it stores the translation on the object
itself and therefor doesn't support translation workflows and language-aware
object paths.

If you have non-default content types, you have to provide your own
multilanguagefields adapter.

See https://svn.plone.org/svn/collective/raptus.multilanguagefields/trunk/raptus/multilanguagefields/samples/

Installation

Installation of raptus.multilanguageplone is straight-forward with
buildout. If the site already contains articles then you have to migrate
them.

See https://pypi.python.org/pypi/raptus.multilanguagefields

Switching from Linguaplone

If you want to switch from Linguaplone to raptus.multilanguageplone be
aware that you will lose already translated content.

	Uninstall Products.Linguaplone.

	Unfortunately Linguaplone does not uninstall cleanly. Two utilities
remain in your database. You can remove them in an interactive session
from your site (in this example, the site has the id plone):

(Pdb) site = plone.getSiteManager()
(Pdb) from plone.i18n.locales.interfaces import IContentLanguageAvailability
(Pdb) utils = site.getAllUtilitiesRegisteredFor(IContentLanguageAvailability)
(Pdb) utils
[<plone.i18n.locales.languages.ContentLanguageAvailability object at 0xb63c4cc>,
<ContentLanguages at /plone/plone_app_content_languages>,
<Products.LinguaPlone.vocabulary.SyncedLanguages object at 0xfa32e8c>,
<Products.LinguaPlone.vocabulary.SyncedLanguages object at 0xfa32eac>]
(Pdb) utils = utils[:-2]
(Pdb) del site.utilities._subscribers[0][IContentLanguageAvailability]

Repeat the procedure for IMetadataLanguageAvailability and commit the
transaction:

(Pdb) import transaction
(Pdb) site._p_changed = True
(Pdb) site.utilities._p_changed = True
(Pdb) transaction.commit()
(Pdb) app._p_jar.sync() # if zeo setup

	Run buildout without Linguaplone and restart.

	Run the import step of the Plone Language Tool. Otherwise language
switching will not work.

	Install raptus.multilanguageplone using buildout and
portal_quickinstaller.

	Migrate the content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Internationalization (i18n) »

How to contribute to Plone core translations

Description

How to contribute to the Plone translations.

	Introduction

	Updating translations for Plone 4.2

	Updating translations for Plone 4.3
	Committing directly (commit access)

	Creating a pull request (no commit access)

	Support

	Statistics for Plone 4

Introduction

You need to have write access to
https://github.com/collective/plone.app.locales to be able to commit
your translation directly.
You can also update a po file online and make a pull request.

Updating translations for Plone 4.2

To do.

Updating translations for Plone 4.3

If you want to test your latest translation with unreleased packages
containing i18n fixes for Plone 4, get the buildout like this:

git clone -b 4.2 git://github.com/plone/buildout.coredev.git
cd buildout.coredev
python2.7 bootstrap.py
bin/buildout -c experimental/i18n.cfg
rm .mr.developer.cfg
ln -s experimental/.mr.developer.cfg
bin/instance fg

To update the buildout later:

git pull
bin/develop up -f

To update your translation, you can go there:

cd src/plone.app.locales/plone/app/locales/

Here you have the following directories:

	locales used for core Plone translations.

	locales-addons used for some addons packages.

	locales-future used for Plone 5 packages. The po files can change
really often. The translations will normally be merged to the locales
directory when Plone 5 will be released. This directory is not included in
plone.app.locales 4.x releases. For developers: if you want to add a
Plone 5 package to this directory, you can add it to the plone5
variable in experimental/i18n.cfg, don't forget to add a line in
[sources] if it's missing.

Open the po file with poedit, kbabel or any other i18n tool. For example for
French:

poedit locales/fr/LC_MESSAGES/plone.po

Please do a git pull before editing a po file to be sure you have the latest
version.

Committing directly (commit access)

You can commit your translation from this locales directory:

git commit -a -m "Updated French translation"
git push

Creating a pull request (no commit access)

If you do not have commit access on Github collective group [https://github.com/collective].
you can do the following:

Login to Github. Go to Github plone.app.locales [https://github.com/collective/plone.app.locales]

Press Fork. Now Github creates a copy of plone.app.locales package for you.

Then on your computer in plone.app.locales do a special git push to your own repository:

git push git@github.com:YOURUSERNAMEHERE/plone.app.locales.git

Go to Github https://github.com/YOURUSERNAME/plone.app.locales

Press button Create Pull request. Fill it in.

The request will appear for plone.app.locales authors.
If it does not get merged in timely manner, poke people on the #plone IRC channel
or the mailing list below (sometimes requests go unnoticed).

Support

Please ask questions on the plone-i18n mailing-list [http://plone.org/support/forums/i18n].

Statistics for Plone 4

http://www.transifex.net/projects/p/Plone/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Internationalization (i18n) »

Internationalization and cache

Description

Using Plone translation facilities in the presence of caching.

	Introduction

Introduction

You need to have the following monkey-patch in place if you intend to use
LinguaPlone (translated content) with front-end caching servers. Otherwise
CSS, JS and media files will have a language cookie set on them, preventing
cache from working.

Note

This is a well-known Plone issue.

Example:

from ZPublisher.HTTPRequest import HTTPRequest

LanguageTool._old___call__ = LanguageTool.__call__

def LanguageTool__call__(self, container, req):
 """The __before_publishing_traverse__ hook.

 Patched to *not* set the language cookie, as this breaks the site model.

 """
 self._old___call__(container, req)
 if not isinstance(req, HTTPRequest):
 return None
 response = req.response
 if 'I18N_LANGUAGE' in response.cookies:
 if 'set_language' in req.form:
 return None
 del response.cookies['I18N_LANGUAGE']

LanguageTool.__call__ = LanguageTool__call__

More info

	http://stackoverflow.com/questions/5715216/why-plone-3-sets-language-cookie-to-css-js-registry-files-and-how-to-get-rid-of

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Users and members

	Member manipulation
	Introduction

	Getting the logged-in member

	Getting any member

	Getting member information

	Iterating all site users

	Getting all Members for a given Role

	Groups

	Checking whether a user exists

	Creating users

	Email login

	Custom member creation form: complex example

	Member profiles
	Introduction

	Getting member profile properties

	Setting member profile properties

	Password reset requests

	Members as content
	Introduction

	Basics

	Getting member by username

	Getting Plone member from MembraneUser or owner record

	Creating a member

	Populating member fields automatically

	Checking member validity

	Setting user password

	Moving members

	Configuring default roles with Dexterity

	Sharing
	Introduction

	Setting sharing rights programmatically

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Users and members »

Member manipulation

Description

How to programmatically create, read, edit and delete site members.

	Introduction

	Getting the logged-in member

	Getting any member

	Getting member information
	Reseting user password without emailing them

	Exporting and importing member passwords

	Iterating all site users

	Getting all Members for a given Role

	Groups
	Creating a group

	Add local roles to a group

	Update properties for a group

	Getting available groups

	List users within all groups

	Adding a user to a group

	Removing a user from a group

	Getting groups for a certain user

	Checking whether a user exists

	Creating users
	Batch member creation

	Email login

	Custom member creation form: complex example

Introduction

In Plone, there are two loosely-coupled subsystems relating to members:

	Authentication and permission information

	(acl_users under site root), managed by the PAS.
In a default installation, this corresponds to Zope user objects.
PAS is pluggable, though, so it may also be authenticating against
an LDAP server, Plone content objects, or other sources.

	Member profile information

	accessible through the portal_membership tool.
These represent Plone members. PAS authenticates,
and the Plone member object provides metadata about the member.

Getting the logged-in member

Anonymous and logged-in members are exposed via the
IPortalState context helper.

Example (browserview: use self.context since self is not
acquisition-wrapped):

from zope.component import getMultiAdapter

portal_state = getMultiAdapter(
 (self.context, self.request), name="plone_portal_state")
if portal_state.anonymous():
 # Return target URL for the site anonymous visitors
 return self.product.getHomepageLink()
else:
 # Return edit URL for the site members
 return product.absolute_url()

or from a template:

<div tal:define="username context/portal_membership/getAuthenticatedMember/getUserName">
 ...
</div>

Getting any member

To get a member by username (you must have Manager role):

mt = getToolByName(self.context, 'portal_membership')
member = mt.getMemberById(username)

To get all usernames:

mt = getToolByName(self.context, 'portal_membership')
memberIds = mt.listMemberIds()

Getting member information

Once you have access to the member object,
you can grab basic information about it.

Get the user's name:

member.getName()

Reseting user password without emailing them

	https://plone.org/documentation/kb/reset-a-password-without-having-to-email-one-to-the-user

Exporting and importing member passwords

You can also get at the hash of the user's password
(only the hash is available, and only for standard Plone user objects)
(in this example we're in Plone add-on context, since self is
acquisition-wrapped):

uf = getToolByName(self, 'acl_users')
passwordhash_map = uf.source_users._user_passwords
userpasswordhash = passwordhash_map.get(member.id, '')

Note that this is a private data structure.
Depending on the Plone version and add-ons in use, it may not be available.

You can use this hash directly when importing your user data,
for example as follows (can be executed from a
debug prompt.):

The file 'exported.txt' contains lines with: "memberid hash"
lines = open('exported.txt').readlines()
changes = []
c = 0
members = mt.listMembers()
for l in lines:
 memberid, passwordhash_exported = l.split(' ')
 passwordhash_exported = passwordhash_exported.strip()
 member = mt.getMemberById(memberid)
 if not member:
 print 'missing', memberid
 continue
 passwordhash = passwordhash_map.get(memberid)
 if passwordhash != passwordhash_exported:
 print 'changed', memberid, passwordhash, passwordhash_exported
 c += 1
 changes.append((memberid, passwordhash_exported))

uf.source_users._user_passwords.update(changes)

Also, take a look at a script for exporting Plone 3.0's memberdata and
passwords:

	http://blog.kagesenshi.org/2008/05/exporting-plone30-memberdata-and.html

Iterating all site users

Example:

buffer = ""

Returns list of site usernames
mt = getToolByName(self, 'portal_membership')
users = mt.listMemberIds()
alternative: get member objects
members = mt.listMembers()

for user in users:
 print "Got username:" + user

Note

Zope users, such as admin, are not included in this list.

Getting all Members for a given Role

In this example we use the portal_membership tool.
We assume that a role called Agent exists and that we already
have the context:

from Products.CMFCore.utils import getToolByName

membership_tool = getToolByName(self, 'portal_membership')
agents = [member for member in membership_tool.listMembers()
 if member.has_role('Agent')]

Groups

Groups are stored as PloneGroup objects. PloneGroup is a subclass of
PloneUser. Groups are managed by the portal_groups tool.

	https://github.com/plone/Products.PlonePAS/blob/master/Products/PlonePAS/plugins/ufactory.py

	https://github.com/plone/Products.PlonePAS/blob/master/Products/PlonePAS/plugins/group.py

Creating a group

Example:

groups_tool = getToolByName(context, 'portal_groups')

group_id = "companies"
if not group_id in groups_tool.getGroupIds():
 groups_tool.addGroup(group_id)

For more information, see:

	https://github.com/plone/Products.PlonePAS/blob/master/Products/PlonePAS/tests/test_groupstool.py

	https://github.com/plone/Products.PlonePAS/blob/master/Products/PlonePAS/plugins/group.py

Add local roles to a group

Example:

from AccessControl.interfaces import IRoleManager
if IRoleManager.providedBy(context):
 context.manage_addLocalRoles(groupid, ['Manager',])

Note

This is an example of code in a view, where context is
available.

Update properties for a group

The editGroup method modifies the title and description in the
source_groups plugin, and subsequently calls setGroupProperties(kw)
which sets the properties on the mutable_properties plugin.

Example:

portal_groups.editGroup(groupid, **properties)
portal_groups.editGroup(groupid, roles = ['Manager',])
portal_groups.editGroup(groupid, title = u'my group title')

Getting available groups

Getting all groups on the site is possible through acl_users and the
source_groups plugin, which provides the functionality to manipulate
Plone groups.

Example to get only ids:

acl_users = getToolByName(self, 'acl_users')
Iterable returning id strings:
groups = acl_users.source_groups.getGroupIds()

Example to get full group information:

acl_users = getToolByName(self, 'acl_users')
group_list = acl_users.source_groups.getGroups()

for group in group_list:
 # group is PloneGroup object
 yield (group.getName(), group.title)

List users within all groups

Example to get the email addresses of all users on a site, by group:

acl_users = getToolByName(context, 'acl_users')
groups_tool = getToolByName(context, 'portal_groups')
groups = acl_users.source_groups.getGroupIds()
for group_id in groups:
 group = groups_tool.getGroupById(group_id)
 if group is None:
 continue
 members = group.getGroupMembers()
 member_emails = [m.getProperty('email') for m in members]
 ...

Adding a user to a group

Example:

Add user to group "companies"
portal_groups = getToolByName(self, 'portal_groups')
portal_groups.addPrincipalToGroup(member.getUserName(), "companies")

Removing a user from a group

Example:

portal_groups.removePrincipalFromGroup(member.getUserName(), "companies")

Getting groups for a certain user

Below is an example of getting groups for the logged-in user (Plone 3 and
earlier):

mt = getToolByName(self.context, 'portal_membership')
mt.getAuthenticatedMember().getGroups()

In Plone 4 you have to use:

groups_tool = getToolByName(self, 'portal_groups')
groups_tool.getGroupsByUserId('admin')

Checking whether a user exists

Example:

mt = getToolByName(self, 'portal_membership')
return mt.getMemberById(id) is None

See also:

	http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/RegistrationTool.py?rev=110418&view=auto

Creating users

Use the portal_registration tool. Example (browserview):

def createCompany(request, site, username, title, email, passwd=None):
 """
 Utility function which performs the actual creation, role and permission magic.

 @param username: Unicode string

 @param title: Fullname of user, unicode string

 @return: Created company content item or None if the creation fails
 """

 # If we use custom member properties they must be initialized
 # before regtool is called
 prepareMemberProperties(site)

 # portal_registration manages new user creation
 regtool = getToolByName(site, 'portal_registration')

 # Default password to the username
 # ... don't do this on the production server!
 if passwd == None:
 passwd = username

 # We allow only lowercase
 username = username.lower()

 # Username must be ASCII string
 # or Plone will choke when the user tries to log in
 try:
 username = str(username)
 except UnicodeEncodeError:
 IStatusMessage(request).addStatusMessage(_(u"Username must contain only characters a-z"), "error")
 return None

 # This is the minimum required information
 # to create a working member
 properties = {
 'username': username,
 # Full name must always be utf-8 encoded
 'fullname': title.encode("utf-8"),
 'email': email
 }

 try:
 # addMember() returns MemberData object
 member = regtool.addMember(username, passwd, properties=properties)
 except ValueError, e:
 # Give user visual feedback what went wrong
 IStatusMessage(request).addStatusMessage(_(u"Could not create the user:") + unicode(e), "error")
 return None

Batch member creation

	An example script can be run with bin/plonectl, tested on Plone 4.3.3; see http://gist.github.com/l34marr/02a9ef12a1e51c474bee

	An example script tested on Plone 2.5.x; see http://plone.org/documentation/kb/batch-adding-users

Email login

	
	Plone 3 does not allow a dot in the username.

	
	This is available as an add-on; see http://plone.org/products/betahaus.emaillogin

	In Plone 4, it is a default feature.

Custom member creation form: complex example

Below is an example of a Grok form which the administrator can use to create
new users. New users will receive special properties and a folder for which
they have ownership access. The password is set to be the same as the
username. The user is added to a group named "companies".

Example company.py:

""" Add companies.

 Create user account + associated "home folder" content type
 for a company user.
 User accounts have a special role.

 Note: As of this writing, in 2010-04, we need the
 plone.app.directives trunk version which
 contains an unreleased validation decorator.
"""

Core Zope 2 + Zope 3 + Plone
from zope.interface import Interface
from zope import schema
from five import grok
from Products.CMFCore.interfaces import ISiteRoot
from Products.CMFCore.utils import getToolByName
from Products.CMFCore import permissions
from Products.statusmessages.interfaces import IStatusMessage

Form and validation
from z3c.form import field
import z3c.form.button
from plone.directives import form
from collective.z3cform.grok.grok import PloneFormWrapper
import plone.autoform.form

Products.validation uses some ugly ZService magic which I can't quite comprehend
from Products.validation import validation

Our translation catalog
from zope.i18nmessageid import MessageFactory
OurMessageFactory = MessageFactory('OurProduct')
OurMessageFactory = _

If we're building an addon, we may already have one, for example:
from isleofback.app import appMessageFactory as _

grok.templatedir("templates")

class ICompanyCreationFormSchema(form.Schema):
 """ Define fields used on the form """

 username = schema.TextLine(title=u"Username")

 company_name = schema.TextLine(title=u"Company name")

 email = schema.TextLine(title=u"Email")

class CompanyCreationForm(plone.autoform.form.AutoExtensibleForm, form.Form):
 """ Form action controller.

 form.DisplayForm will automatically expose the form
 as a view, no wrapping view creation needed.
 """

 # Form label
 name = _(u"Create Company")

 # Which schema is used by AutoExtensibleForm
 schema = ICompanyCreationFormSchema

 # The form does not care about the context object
 # and should not try to extract field value
 # defaults out of it
 ignoreContext = True

 # This form is available at the site root only
 grok.context(ISiteRoot)

 # z3c.form has a function decorator
 # which turns the function to a form button action handler

 @z3c.form.button.buttonAndHandler(_('Create Company'), name='create')
 def createCompanyAction(self, action):
 """ Button action handler to create company.
 """

 data, errors = self.extractData()
 if errors:
 self.status = self.formErrorsMessage
 return

 obj = createCompany(self.request, self.context, data["username"], data["company_name"], data["email"])
 if obj is not None:
 # mark as finished only if we get the new object
 IStatusMessage(self.request).addStatusMessage(_(u"Company created"), "info")

class CompanyCreationView(PloneFormWrapper):
 """ View which exposes form as URL """

 form = CompanyCreationForm

 # Set up security barrier -
 # non-priviledged users can't access this form
 grok.require("cmf.ManagePortal")

 # Use http://yourhost/@@create_company URL to access this form
 grok.name("create_company")

 # This view is available at the site root only
 grok.context(ISiteRoot)

 # Which template is used to decorate the form
 # -> forms.pt in template directory
 grok.template("form")

@form.validator(field=ICompanyCreationFormSchema['email'])
def validateEmail(value):
 """ Use old Products.validation validators to perform the validation.
 """
 validator_function = validation.validatorFor('isEmail')
 if not validator_function(value):
 raise schema.ValidationError(u"Entered email address is not good:" + value)

def prepareMemberProperties(site):
 """ Adjust site for custom member properties """

 # Need to use ancient Z2 property sheet API here...
 portal_memberdata = getToolByName(site, "portal_memberdata")

 # When new member is created, its MemberData
 # is populated with the values from portal_memberdata property sheet,
 # so value="" will be the default value for users' home_folder_uid
 # member property
 if not portal_memberdata.hasProperty("home_folder_uid"):
 portal_memberdata.manage_addProperty(id="home_folder_uid", value="", type="string")

 # Create a group "companies" where newly created members will be added
 acl_users = getToolByName(site, 'acl_users')
 gt = getToolByName(site, 'portal_groups')

 group_id = "companies"
 if not group_id in gt.getGroupIds():
 gt.addGroup(group_id, [], [], {'title': 'Companies'})

def createCompany(request, site, username, title, email, passwd=None):
 """
 Utility function which performs the actual creation, role and permission magic.

 @param username: Unicode string

 @param title: Fullname of user, unicode string

 @return: Created company content item or None if the creation fails
 """

 # If we use custom member properties
 # they must be intiialized before regtool is called
 prepareMemberProperties(site)

 # portal_registrations manages new user creation
 regtool = getToolByName(site, 'portal_registration')

 # Default password to the username
 # ... don't do this on the production server!
 if passwd == None:
 passwd = username

 # Only lowercase allowed
 username = username.lower()

 # Username must be ASCII string
 # or Plone will choke when the user tries to log in
 try:
 username = str(username)
 except UnicodeEncodeError:
 IStatusMessage(request).addStatusMessage(_(u"Username must contain only characters a-z"), "error")
 return None

 # This is minimum required information set
 # to create a working member
 properties = {
 'username': username,
 # Full name must be always as utf-8 encoded
 'fullname': title.encode("utf-8"),
 'email': email
 }

 try:
 # addMember() returns MemberData object
 member = regtool.addMember(username, passwd, properties=properties)
 except ValueError, e:
 # Give user visual feedback what went wrong
 IStatusMessage(request).addStatusMessage(_(u"Could not create the user:") + unicode(e), "error")
 return None

 # Add user to group "companies"
 gt = getToolByName(site, 'portal_groups')
 gt.addPrincipalToGroup(member.getUserName(), "companies")

 return createMatchingHomeFolder(request, site, member)

def createMatchingHomeFolder(request, site, member, target_folder="yritykset", target_type="IsleofbackCompany", language="fi"):
 """ Creates a folder, sets its ownership for the member and stores the folder UID in the member data.

 @param member: MemberData object

 @param target_folder: Under which folder a new content item is created

 @param language: Initial two language code of the item
 """

 parent_folder = site.restrictedTraverse(target_folder)

 # Cannot add custom memberdata properties unless explicitly declared

 id = member.getUserName()

 parent_folder.invokeFactory(target_type, id)

 home_folder = parent_folder[id]
 name = member.getProperty("fullname")

 home_folder.setTitle(name)
 home_folder.setLanguage(language)

 email = member.getProperty("email")
 home_folder.setEmail(email)

 # Unset the Archetypes object creation flag
 home_folder.processForm()

 # Store UID of the created folder in memberdata so we can
 # look it up later to e.g. generate the link to the member folder
 member.setMemberProperties({"home_folder_uid": home_folder.UID()})

 # Get the user handle from member data object
 user = member.getUser()
 username = user.getUserName()

 home_folder.manage_setLocalRoles(username, ["Owner",])
 home_folder.reindexObjectSecurity()

 return home_folder

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Users and members »

Member profiles

	Introduction

	Getting member profile properties
	Accessing member data

	Further reading

	Getting member fullname

	Setting member profile properties
	Setting password

	Increase minimum password size

	Default password length - password reset form

	Setting visual editor for all users

	Password reset requests

Description

How to manage Plone member properties programmatically

Introduction

Member profile fields are the fields which the logged-in member
can edit himself on his user account page.

For more info, see:

	MemberDataTool

	http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/MemberDataTool.py?rev=110418&view=auto

	MemberData class

	http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/MemberDataTool.py?rev=110418&view=auto

PlonePAS subclasses and extends MemberData and MemberDataTool.

	See PlonePAS MemberDataTool [http://dev.plone.org/collective/browser/Products.PlonePAS/trunk/Products/PlonePAS/tools/memberdata.py?rev=122125#L27].

	See PlonePAS MemberData class [http://dev.plone.org/collective/browser/Products.PlonePAS/trunk/Products/PlonePAS/tools/memberdata.py?rev=122125#L220].

Getting member profile properties

Note

The following applies to vanilla Plone.
If you have customized membership behavior it won't necessarily work.

Member profile properties (title, address, biography, etc.)
are stored in portal_membership tool.

Available fields can be found in the
ZMI -> portal_membership -> Properties tab.

The script below is a simple example showing how to list all member
email addresses:

from Products.CMFCore.utils import getToolByName
memberinfo = []
membership = getToolByName(self.context, 'portal_membership')
for member in membership.listMembers():
 memberinfo.append(member.getProperty('email'))
return memberinfo

Accessing member data

Todo

Get member data by username

Further reading

	
	ToolbarViewlet has some sample code [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/viewlets/common.py]

	how to retrieve these properties.

Getting member fullname

In Python code you can access properties on the MemberData object:

fullname = member_data.getProperty("fullname")

In a template you can do something along the same lines:

<tal:with-fullname define="membership context/portal_membership;info python:membership.getMemberInfo(user.getId()); fullname info/fullname">
 You are are
</tal:with-fullname>

Note that this code won't work for anonymous users.

Setting member profile properties

Use setMemberProperties(mapping={...}) to batch update properties.
Old properties are not removed.

Example:

member = portal_membership.getMemberById(user_id)
member.setMemberProperties(mapping={"email":"aaa@aaa.com"})

New properties must be explicitly declared in portal_memberdata,
before creation of the member,
or setMemberProperties() will silently fail.

Todo

How to retrofit existing members with new properties?

Example:

def prepareMemberProperties(site):
 """ Adjust site for custom member properties """

 # Need to use ancient Z2 property sheet API here...
 portal_memberdata = getToolByName(site, "portal_memberdata")

 # When new member is created, it's MemberData
 # is populated with the values from portal_memberdata property sheet,
 # so value="" will be the default value for users' home_folder_uid
 # member property
 if not portal_memberdata.hasProperty("home_folder_uid"):
 portal_memberdata.manage_addProperty(id="home_folder_uid", value="", type="string")

def createMatchingHomeFolder(member):
 """ """

 email = member.getProperty("email")
 home_folder.setEmail(email)

 # Store UID of the created folder in memberdata so we can
 # look it up later to e.g. generate the link to the member folder
 member.setMemberProperties(mapping={"home_folder_uid": home_folder.UID()})

 return home_folder

Setting password

Password is a special case.

Example how to set the user password:

Password is set in a special way
passwd is password as plain text
member.setSecurityProfile(password=passwd)

Increase minimum password size

To increase the minimum password size, copy validate_pwreset_password
to your custom folder and insert the following lines:

if len(password) < 8:
 state.setError('password', 'ERROR')

This will increase the minimum password size for the password reset form
to 8 characters. (This does not effect new user registration, that limit
will still be 5.)

Don't forget to update your form templates to reflect your changes!

Default password length - password reset form

The password reset form's minimum password length is 5 characters.
To increase this:

Copy validate_pwreset_password into your custom folder
and add the following lines:

if len(password) < 8:
 state.setError('password','ERROR')

before the if state.getErrors(): method.

This would increase the minimum password size to 8 characters.
Remember to update your form templates accordingly.

Setting visual editor for all users

The visual editor property is set on the member upon creation.

If you want to change all site members to use TinyMCE instead of Kupu.
you have to do it using the command-line ---
Plone provides no through-the-web way to change
the properties of other members.
Here is a script which does the job:

migrate.py:

import transaction

Traverse to your Plone site from Zope application root
context = app.yoursiteid.sitsngta # site id is yoursiteid

usernames = context.acl_users.getUserNames()
portal_membership = context.portal_membership
txn = transaction.get()

i = 0
for userid in usernames:
 member = portal_membership.getMemberById(userid)
 value = member.wysiwyg_editor

 # Show the existing editor choice before upgrading
 print str(userid) + ": " + str(value)

 # Set WYSIWYG editor for the member
 member.wysiwyg_editor = "TinyMCE"

 # Make sure transaction buffer does not grow too large
 i += 1
 if i % 25 == 0:
 txn.savepoint(optimistic=True)

Once done, commit all the changes
txn.commit()

Run it:

bin/instance run migrate.py

Note

The script does not work through the ZMI
as member properties do not have proper security declarations,
so no changes are permitted.

Password reset requests

Directly manipulating password reset requests is useful e.g. for testing.

Poking requests:

Poke password reset information
reset_requests = self.portal.portal_password_reset._requests.values()
self.assertEqual(1, len(reset_requests))
reset requests are keyed by their random magic string
key = self.portal.portal_password_reset._requests.keys()[0]
reset_link = self.portal.pwreset_constructURL(key)

Clearing all requests:

Reset all password reset requests
self.portal.portal_password_reset._requests = {}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Users and members »

Members as content

Description

The Products.membrane and Products.remember add-ons provide
member management where members are represented by Plone content items.
The member-as-content paradigm makes member management radically
flexible: members can be in different folders, have different workflows
and states and different profile fields.

It is also possible to use this approach with dexterity; for that,
use the dexterity.membrane add-on.

	Introduction

	Basics

	Getting member by username

	Getting Plone member from MembraneUser or owner record

	Creating a member

	Populating member fields automatically

	Checking member validity

	Setting user password
	Accessing hashed password

	Moving members

	Configuring default roles with Dexterity

Introduction

remember (small r) and membrane are framework add-on products for Plone
which allows you to manipulate site members as normal content
objects. The product also allows distributed user management and different
user classes.

	Products.membrane provides a framework for integrating acl_users,
which manages access rights, with content-like members and tasks like
login.

	Products.remember is a basic implementation of this with two different
user workflows and a normal user schema.

	dexterity.membrane is a port of Products.membrane to the dexterity
framework.

Basics

	Read the membrane tutorial [http://plone.org/documentation/tutorial/borg/membrane].

	See the example code Products.membrane.example.

	Read the documents at Products.remember/docs/tutorial.

	See the Weblion FacultyStaffDirectory product [https://weblion.psu.edu/trac/weblion/wiki/FacultyStaffDirectory], which
is a sophisticated implementation of the framework.

	It is recommended to enable debug-level logging output for membrane
related unit tests, as PlonePAS code swallows several exceptions and
does not output them unless debug level is activated.

Getting member by username

Example:

from Products.CMFCore.utils import getToolByName

membrane = getToolByName(context, "membrane_tool")

getUserAuthProvider returns None if there is no membrane-based user
match for username
e.g. this will return None for Zope admin user
sits_user = membrane.getUserAuthProvider(username)
return sits_user

Getting Plone member from MembraneUser or owner record

Below is an example of how to resolve member content object from
MembraneUser record "owner" who is user "local_user":

(Pdb) mbtool = self.portal.membrane_tool
(Pdb) owner
<MembraneUser 'local_user'>
(Pdb) mbtool.getUserAuthProvider(owner.getId())
<SitsLocalUser at /plone/country/hospital/local_users/local_user

Creating a member

The following snippet works in unit tests:

mem_password = 'secret'

def_mem_data = {
 'email': 'noreply@xxxxxxxxyyyyyy.com',
 'password': mem_password,
 'confirm_password': mem_password,
 }

mem_data = {
 'portal_member':
 {
 'fullname': 'Portal Member',
 'mail_me': True,
 },
 'admin_member':
 {
 'roles': ['Manager', 'Member']
 },
 'blank_member':
 {},
 }

mdata = getToolByName(self.portal, 'portal_memberdata')

mdata.invokeFactory("MyUserPortalType", name)
member = getattr(mdata, name) #

Populating member fields automatically

Use the following unit test snippet:

def populateUser(self, member):
 """ Auto-populate member object required fields based on Archetypes schema.

 @param member: Membrane member content object
 """

 from Products.SitsHospital.content.SitsUser import SitsUser

 schema = SitsUser.schema

 data = {}

 for f in schema._fields.values():

 if not f.required:
 continue

 if f.__name__ in ["password", "id"]:
 # Do not set password or member id
 continue

 # Autofill member field values
 if f.vocabulary:
 value = f.vocabulary[0][0]
 elif f.__name__ in ["email"]:
 value = "test@xyz.com"
 else:
 value = "foo"

 # print "filling in field:" + str(f)

 data[f.__name__] = value

 member.update(**data)

Checking member validity

The following snippet is useful for unit testing:

def assertValidMember(self, member):
 """ Emulate Products.remember.content.member validation behavior with verbose output.

 """
 errors = {}
 # make sure object has required data and metadata
 member.Schema().validate(member, None, errors, 1, 1)
 if errors:
 raise AssertionError("Member contained errors:" + str(errors))

Setting user password

Passwords are stored hashed and can be set using the
BaseMember._setPassword() method.

_setPassword() takes the password as a plain-text argument and hashes it
before storing:

user_object._setPassword("secret")

You may also use the portal_registrations tool. This method is
security-checked and may be used from ZMI scripts:

rtool = context.portal_registration
rtool.editMember(id, properties={}, password="secret")

Use getToolByName rather than acquiring the tool from context
if you're doing this in a browser view.

Accessing hashed password

Use the password attribute directly:

hashed = user_object.password

The password hash should be a unicode string.

Note

By default, Products.remember uses the HMACHash hasher. As a
salt, the str(context) string is used. This means that it is not
possible to move hashed password from one context item to another. For
more information, see the Products.remember.content.password_hashers
module.

Moving members

Moving members is not straightforward, as by default member password is
hashed with the member location.

	Members need to reregister their password after being moved from one
folder to another.

Here is a complex function to perform moving by recreating the user and
deleting the old object:

import logging

from Products.CMFCore.utils import getToolByName
from Products.Archetypes import public as atapi

from Products.SitsHospital.interfaces import ISitsUser, ISitsLocalUser, ISitsLocalCoordinatorUser

logger = logging.getLogger("RememberUserCopy")

def createUser(sourceUser, username, targetFolder):
 """ Default example user createor """
 targetFolder.invokeFactory("Member", username)
 return targetFolder[username]

def postProcess(sourceUser, targetUser):
 """ Hook to set-up additional fields which do not have 1:1 mapping in the new and old user objects """
 pass

def copyRememberUser(sourceUser, targetFolder, user_constructor=createUser, post_process=postProcess, expected_creation_state="new_private", expected_initialization_state="private"):
 """
 Copies Product.remember based user from one location to another.

 This is useful if you have locally stored members on your site
 (for example one folder per country)
 and you need to move the person from one country to another.

 Member password is hashed against the member object location.
 Thus, the password will be invalid if the physical path of the member object changes.
 All moved members are asked to re-enter their passwords.

 If betahaus.emaillogin is installed we also update its catalog so that
 the email login works after the member has been moved.

 When all the fields in the user schema validate successfully,
 the re-registration email for the new user is automatically send
 (TODO: Not sure whether this is general condition for Products.Remember)

 @param sourceUser: from Products.remember.content.member.Member instance

 @param targetFolder: Any folderish object which can contain Member instances

 @param user_constructor: function(sourceUser, targetFolder) if special user creation is needed

 @param post_process: function(sourceUser, targetUser) for setting up custom fields if there is no 1:1 mapping between fields of the new and old user object. Also you can do workflow mangling here.

 @param expected_creation_state: The workflow state where the new member should be after it has been correctly initialized. In this point update() is not yet called, so Remember automatic registration mechanism should have not been triggered.

 @param expected_initialization_state: The workflow state where the new member should be after it has been correctly initialized. In this point update() is not yet called, so Remember automatic registration mechanism should have not been triggered.

 @return: The newly created national coordinator object.
 """

 # shortcut to the source user
 lc = sourceUser

 # Validate LC user
 errors = {}
 lc.Schema().validate(lc, None, errors, True, True)
 if errors:
 assert not errors, "The source user must be valid before moving. Errors:" + str(errors)

 username = lc.getUserName()

 logger.debug("Copying user:" + username)

 # Make sure that LC username is free
 id = lc.getId()
 parent = lc.aq_parent

 assert lc.cb_userHasCopyOrMovePermission(), "No permission"
 assert lc.cb_isMoveable(), "Object problem"

 # We temporarily rename the old object for the duration
 # of the moving so that the id of the member
 # object won't conflict with the newly created target user
 new_id = id + "-old"
 assert type(new_id) != unicode

 parent.manage_renameObject(id, new_id)

 # We need to re-fetch the object handle as it has changed in rename
 lc = parent[new_id]

 # nc = newly crated user
 nc = user_constructor(sourceUser, username, targetFolder)

 # List of field names which we cannot copy
 do_not_copy = ["id"]

 # Duplicate field data from old user object to new one by inspecting the user object schema
 for field in lc.Schema().fields():
 name = field.getName()

 # ComputedFields are handled specially,
 # and UID also
 if not isinstance(field, atapi.ComputedField) and name not in do_not_copy:

 if not field.writeable(nc):
 raise RuntimeError("No permission to copy field value:" + name)

 if name == "password":
 # Note: moving password from one user to another
 # is not possible because password is hashed with
 # the user location in Products.remember.content.password_hashers
 # Insert dummy password which must be reseted
 nc.password = "dummy"
 else:
 value = field.getRaw(lc)

 # The schema of new object
 schema = nc.Schema()

 # Check that the old field exists in the new schema
 if name in schema:
 newfield = schema[name]
 logger.debug("Copying field " + name + " " + str(value))
 newfield.set(nc, value)
 else:
 # The old field does not exist on the new object
 logger.warning("Target does not have field " + name)

 # Do custom setup for newly created user
 post_process(lc, nc)

 # Validate NC user
 errors = {}
 nc.Schema().validate(nc, None, errors, True, True)
 if errors:
 assert not errors, "Newly created user did not validate:" + str(errors)

 # Assert that the user is not yet log in-able
 workflow = getToolByName(lc, "portal_workflow")
 review_state = workflow.getInfoFor(nc, 'review_state')
 assert review_state == expected_creation_state, "Got review state:" + review_state

 # Remove the old user object
 parent = lc.aq_parent

 ##fore email-catalog removal and without the -old added
 lc_path='/'.join(lc.getPhysicalPath()).replace('-old','')
 parent.manage_delObjects([lc.getId()])

 # Trigger workflow state transition to register
 # Mark creation flag to be set

 nc.markCreationFlag()

 assert nc.isValid(), "The new NC was not valid after the creation flag was set"

 # This will trigger automatic workflow transition
 # to the registered state
 nc.update()

 # Validate NC user once again, just in case markCreationFlag and update did something bad
 errors = {}
 nc.Schema().validate(nc, None, errors, True, True)
 if errors:
 assert not errors, "Got errors:" + str(errors)
 nc.reindexObject()

 # Check if we have betahaus.emailcatalog extension installed for Plone 3.x
 email_catalog = getToolByName(nc, "email_catalog", default=None)

 if email_catalog is not None:
 # This ensures the member log-in will work in the future
 # as email_catalog does not automatically reflect member changes
 email_catalog.uncatalog_object(lc_path)
 email_catalog.reindexObject(nc)

 # Not needed - this email is automatically triggered by
 # workflow state change when the all user fields are
 # validated successfully in Schema()
 #nc.resetPassword()

 # Check that we are in active user state - the registeration email should have been send
 review_state = workflow.getInfoFor(nc, 'review_state')
 assert review_state == expected_initialization_state, "Newly created user was not auto-activated for some reason, state:" + review_state

 return nc

Configuring default roles with Dexterity

To configure default roles for Dexterity-based members, you need a class
providing the IMembraneUserRoles interface, and to register it as adapter.

Define the class (here, in a file named roles.py):

from Products.membrane.interfaces import IMembraneUserRoles
from dexterity.membrane.behavior.membraneuser import DxUserObject
from dexterity.membrane.behavior.membraneuser import IMembraneUser
from zope.component import adapter
from zope.interface import implementer

DEFAULT_ROLES = ['Member']

@implementer(IMembraneUserRoles)
@adapter(IMembraneUser)
class MyDefaultRoles(DxUserObject):

 def getRolesForPrincipal(self, principal, request=None):
 return DEFAULT_ROLES

And register this class in configure.zcml:

<adapter
 factory=".roles.MyDefaultRoles"
 provides="Products.membrane.interfaces.IMembraneUserRoles"
/>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Users and members »

Sharing

TODO: remove this file, eventually move code example to a "cookbook" section.

Warning

Out of date

This page is out of date. Please visit: Local Roles.

Description

Customizing the sharing feature of Plone

	Introduction

	Setting sharing rights programmatically
	Complex example: Create one folder per group and add sharing rights

	General methods to manipulate local roles (sharing)

Introduction

	Sharing tab source code [https://github.com/plone/plone.app.workflow/blob/master/plone/app/workflow/browser/sharing.py]

	Default sharing tab role translations [https://github.com/plone/plone.app.workflow/blob/master/plone/app/workflow/configure.zcml]

	https://pypi.python.org/pypi/collective.sharingroles

	http://encolpe.wordpress.com/2010/02/08/add-a-new-role-in-the-sharing-tab-for-plone-3/

Setting sharing rights programmatically

Complex example: Create one folder per group and add sharing rights

The sample code

	Creates one folder per group, with some groups excluded. The folder is not created if it exists.

	Blocks role inheritance for the group

	Gives edit access to the group through sharing

	Gives view access to the logged in users through sharing

Example is provided as Zope External Method. Create External Method
in the target parent folder through ZMI. Then run "Test"
for this external method in ZMI.

import traceback
from StringIO import StringIO
from zope.component import getUtility
from plone.i18n.normalizer.interfaces import IURLNormalizer

block_groups = ["Administrators","opettajat","kouluttajat","yhteyshenkilot"]

def set_sharing(self):

 try:
 buffer = StringIO()
 context = self
 normalizer = getUtility(IURLNormalizer)

 site = context.portal_url.getPortalObject()
 acl = site.acl_users
 groups = acl.source_groups.getGroupIds()

 existing_folders = context.objectIds()

 # Create a folder per each group
 for g in groups:

 if g in block_groups:
 continue

 print >> buffer, "Doing group:" + g

 g = g.decode("utf-8")

 id = normalizer.normalize(g)
 if not id in existing_folders:
 context.invokeFactory("Folder", id)

 folder = context[id]

 # Set sharing rights
 # - No inheritance
 folder.__ac_local_roles_block__ = True

 # - Group has edit access

 # - Logged in users have view access

 except Exception, e:
 traceback.print_exc(buffer)

 return buffer.getvalue()

General methods to manipulate local roles (sharing)

folder.manage_setLocalRoles(userid, ['Reader'])

would grant the role "Reader" (Can View on the Sharing Tab) to userid.

Beware that this will set the local roles for the user to only ['Reader']. If the user already has other local roles, this will (untested) clear those.

It will not affect inherited roles.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Security

Zope provides various built-in security facilities

	User - role - permission three layer security model

	Security declarations in ZCML for views, adapters, etc.

	RestrictedPython to evaluate sandboxed code

	Permissions

	Available permissions in Plone

	Standard permissions and roles

	Custom permissions

	Cross-Site Request Forgery (CSRF)

	Local roles

	Dynamic roles

	Sandboxing and RestrictedPython

	Using SELinux with Plone

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Permissions

Description

How to deal with permissions making your code permission-aware in Plone

	Introduction

	Debugging permission errors: Verbose Security

	Checking if the logged-in user has a permission

	Checking whether a specific role has a permission

	Permission Access

	Bypassing permission checks

	Catching Unauthorized

	Creating permissions
	Define Zope 2 permissions in Python code (old style)

	Assigning permissions to users (roles)

	Manually fix permission problems

Introduction

Permissions control whether logged-in or anonymous users can execute code
and access content.

Permissions in Plone are managed by
Zope's AccessControl module [https://github.com/zopefoundation/AccessControl].
Persistent permission setting and getting by role heavy lifting is done by
AccessControl.rolemanager.RoleManager [https://github.com/zopefoundation/AccessControl/blob/master/src/AccessControl/rolemanager.py].

Permission checks are done for:

	every view/method which is hit by incoming HTTP request
(Plone automatically publishes traversable methods over HTTP);

	every called method for
RestrictedPython scripts.

The basic way of dealing with permissions is setting the permission
attribute of view declaration. For more information see views.

Debugging permission errors: Verbose Security

You can turn on verbose-security option in buildout to get better traceback info when
you encounter a permission problem on the site (you are presented a login dialog).

For the security reasons, this option is disabled by default.

	Set verbose-security = on in your buildout.cfg instance or related section.

	Rerun buildout

	Restart Plone properly after buildout bin/plonectl stop && bin/plonectl start

	remove the Unauthorized exception from the list of ignored exceptions inside
the error_log object within the Plone root folder through the ZMI

More info

	https://pypi.python.org/pypi/plone.recipe.zope2instance

Checking if the logged-in user has a permission

The following code checks whether the logged in user
has a certain permission for some object.

from AccessControl import getSecurityManager
from AccessControl import Unauthorized

Import permission names as pseudo-constant strings from somewhere...
see security doc for more info
from Products.CMFCore.permissions import ModifyPortalContent

def some_function(self, obj):
 sm = getSecurityManager()
 if not sm.checkPermission(ModifyPortalContent, obj):
 raise Unauthorized("You need ModifyPortalContent permission to execute some_function")

 # ...
 # we have security clearance here
 #

Checking whether a specific role has a permission

The following example uses the rolesOfPermission() method to check
whether the Authenticated role has a permission on a certain folder on the
site. The weirdness of the method interface is explained by the fact that
it was written for use in a ZMI template:

def checkDBPermission(self):
 from zope.app.component.hooks import getSite
 site = getSite()
 obj = site.intranet
 perms = obj.rolesOfPermission("View")
 found = False

 for perm in perms:
 if perm["name"] == "Authenticated":
 if perm["selected"] != "": # will be SELECTED if the permission is granted
 found = True
 break

 if not found:
 from Products.statusmessages.interfaces import IStatusMessage
 messages = IStatusMessage(self.request)
 messages.addStatusMessage(u"Possibe permission access problem with the intranet. Errors on creation form may happen.", type="info")

Permission Access

Objects that are manageable TTW inherit from
RoleManager [http://api.plone.org/CMF/1.5.4/private/AccessControl.Role.RoleManager-class.html].
The API provided by this class permits you to manage permissions.

Example: see all possible permissions:

>>> obj.possible_permissions()
['ATContentTypes Topic: Add ATBooleanCriterion',
 'ATContentTypes Topic: Add ATCurrentAuthorCriterion',
 ...
]

Show the security matrix of permission:

>>> self.portal.rolesOfPermission('Modify portal content')
[{'selected': '', 'name': 'Anonymous'},
 {'selected': '', 'name': 'Authenticated'},
 {'selected': '', 'name': 'Contributor'},
 {'selected': '', 'name': 'Editor'},
 {'selected': 'SELECTED', 'name': 'GroupAdmin'},
 {'selected': '', 'name': 'GroupContributor'},
 {'selected': '', 'name': 'GroupEditor'},
 {'selected': '', 'name': 'GroupLeader'},
 {'selected': '', 'name': 'GroupMember'},
 {'selected': '', 'name': 'GroupReader'},
 {'selected': '', 'name': 'GroupVisitor'},
 {'selected': 'SELECTED', 'name': 'Manager'},
 {'selected': '', 'name': 'Member'},
 {'selected': 'SELECTED', 'name': 'Owner'},
 {'selected': '', 'name': 'Reader'},
 {'selected': '', 'name': 'Reviewer'},
 {'selected': '', 'name': 'SubscriptionViewer'}]

Bypassing permission checks

The current user is defined by active security manager.
During both restricted and unrestricted execution certain
functions may do their own security checks
(invokeFactory, workflow, search)
to filter out results.

If a function does its own security checks,
there is usually a code path that will execute without security check.
For example the methods below have security-aware and raw versions:

	context.restrictedTraverse() vs. context.unrestrictedTraverse()

	portal_catalog.searchResults() vs. portal_catalog.unrestrictedSearchResults()

However, in certain situations you have only a security-aware code path
which is blocked for the current user. You still want to execute
this code path and you are sure that it does not violate your site
security principles.

Below is an example how you can call any Python function and
work around the security checks by establishing a temporary
AccessControl.SecurityManager with a special role.

Example:

from AccessControl import ClassSecurityInfo, getSecurityManager
from AccessControl.SecurityManagement import newSecurityManager, setSecurityManager
from AccessControl.User import nobody
from AccessControl.User import UnrestrictedUser as BaseUnrestrictedUser

class UnrestrictedUser(BaseUnrestrictedUser):
 """Unrestricted user that still has an id.
 """
 def getId(self):
 """Return the ID of the user.
 """
 return self.getUserName()

def execute_under_special_role(portal, role, function, *args, **kwargs):
 """ Execute code under special role privileges.

 Example how to call::

 execute_under_special_role(portal, "Manager",
 doSomeNormallyNotAllowedStuff,
 source_folder, target_folder)

 @param portal: Reference to ISiteRoot object whose access controls we are using

 @param function: Method to be called with special privileges

 @param role: User role for the security context when calling the privileged code; e.g. "Manager".

 @param args: Passed to the function

 @param kwargs: Passed to the function
 """

 sm = getSecurityManager()

 try:
 try:
 # Clone the current user and assign a new role.
 # Note that the username (getId()) is left in exception
 # tracebacks in the error_log,
 # so it is an important thing to store.
 tmp_user = UnrestrictedUser(
 sm.getUser().getId(), '', [role], ''
)

 # Wrap the user in the acquisition context of the portal
 tmp_user = tmp_user.__of__(portal.acl_users)
 newSecurityManager(None, tmp_user)

 # Call the function
 return function(*args, **kwargs)

 except:
 # If special exception handlers are needed, run them here
 raise
 finally:
 # Restore the old security manager
 setSecurityManager(sm)

For a more complete implementation of this technique, see:

	http://github.com/ned14/Easyshop/blob/master/src/easyshop.order/easyshop/order/adapters/order_management.py

Catching Unauthorized

Gracefully failing when the user does not have a permission. Example:

from AccessControl import Unauthorized

try:
 portal_state = context.restrictedTraverse("@@plone_portal_state")
except Unauthorized:
 # portal_state may be limited to admin users only
 portal_state = None

Creating permissions

Permissions are created declaratively in ZCML. Before Zope 2.12
(that is, before Plone 4), the collective.autopermission [https://pypi.python.org/pypi/collective.autopermission/1.0b1] package
was required to enable this, but now it is standard behaviour.

	http://n2.nabble.com/creating-and-using-your-own-permissions-in-Plone-3-tp339972p1498626.html

	http://blog.fourdigits.nl/adding-zope-2-permissions-using-just-zcml-and-a-generic-setup-profile

Example:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 <include package="collective.autopermission" />

 <permission
 id="myproduct.mypermission"
 title="MyProduct: MyPermission"
 />

 <browser:page
 for="*"
 name="myexampleview"
 class="browser.MyExampleView"
 permission="myproduct.mypermission"
 />

</configure>

Now you can use the permission both as a Zope 2-style permission
(MyProduct: MyPermission) or a Zope 3-style permission
(myproduct.mypermission).
The only disadvantage is that you can't import the permission string as a
variable from a permissions.py file,
as you can with permissions defined programmatically.

By convention, the permission id is prefixed with the name of the
package it's defined in, and uses lowercase only. You have to take care
that the title matches the permission string you used in
permissions.py exactly --- otherwise a different, Zope 3 only,
permission is registered.

Zope 3 style permissions are necessary when using Zope 3 technologies
such as BrowserViews/formlib/z3c.form. For example, from
configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 <permission
 id="myproduct.mypermission"
 title="MyProduct: MyPermission" />

 <browser:page
 for="*"
 name="myexampleview"
 class="browser.MyExampleView"
 permission="myproduct.mypermission"
 />

</configure>

Define Zope 2 permissions in Python code (old style)

If you want to protect certain actions in your product by a special
permission, you most likely will want to assign this permission to a role
when the product is installed.
You will want to use Generic Setup's rolemap.xml to assign these
permissions. A new permission will be added to
the Zope instance by calling setDefaultRoles on it.

However, at the time when Generic Setup is run, almost none of your code has
actually been run, so the permission doesn't exist yet. That's why we define
the permissions in permissions.py, and call this from __init__.py:

__init__.py:

import permissions

permissions.py:

from Products.CMFCore import permissions as CMFCorePermissions
from AccessControl.SecurityInfo import ModuleSecurityInfo
from Products.CMFCore.permissions import setDefaultRoles

security = ModuleSecurityInfo('MyProduct')
security.declarePublic('MyPermission')
MyPermission = 'MyProduct: MyPermission'
setDefaultRoles(MyPermission, ())

When working with permissions, always use the variable name instead of the
string value. This ensures that you can't make typos with the string value,
which are hard to debug. If you do make a typo in the variable name, you'll
get an ImportError or NameError.

Assigning permissions to users (roles)

Permissions are usually assigned to roles,
which are assigned to users through the web.

To assign a permission to a role, use profiles/default/rolemap.xml:

<?xml version="1.0"?>
 <rolemap>
 <permissions>
 <permission name="MyProduct: MyPermission" acquire="False">
 <role name="Member"/>
 </permission>
 </permissions>
 </rolemap>

Manually fix permission problems

In the case you fiddle with permission and manage to lock out even the admin
user you can still fix the problem from the
debug prompt.

Example debug session, restoring Access Contents Information for all
users:

>>> c = app.yoursiteid.yourfolderid.problematiccontent
>>> import AccessControl
>>> from Products.CMFCore.permissions import AccessContentsInformation
>>> sm = AccessControl.getSecurityManager()
>>> import transaction
>>> anon = sm.getUser()
>>> c.manage_permission(AccessContentsInformation, roles=anon.getRoles())
>>> transaction.commit()

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Available permissions in Plone

Description

What Zope security permissions you have available for your Plone coding

local

	Available permissions in Plone
	Listing different available permissions

	Useful permissions

Listing different available permissions

Each permission name is a string.

To see available permissions, click Security tab at your site root in Zope Management Interface.

In programming, use pseudoconstants instead of permission string values:

	See CMFCore.permissions [http://svn.zope.org/Products.CMFCore/trunk/Products/CMFCore/permissions.py?rev=94487&view=markup]

	See AccessControl.Permissions [http://svn.zope.org/Zope/trunk/src/AccessControl/Permissions.py?rev=96262&view=markup]

For available ZCML permission mappings see:

	Products/Five/permissions.zcml [http://svn.zope.org/Zope/trunk/src/Products/Five/permissions.zcml?rev=99146&view=markup]

	Permissions such as cmf.ModifyPortalContent, zope2.View

	zope/security/permissions.zcml [http://svn.zope.org/zope.security/trunk/src/zope/security/permissions.zcml?rev=97988&view=markup]

	zope.Public

or search for the string <permission in *.zcml files in the eggs
folder of your Plone development deployment.

Example using UNIX grep tool:

grep -C 3 -Ri --include=*.zcml "<permission" *

Useful permissions

Permissions are shown by their verbose name in the ZMI.

	View

	This governs whether you are allowed to view some content.

	Access Contents Information

	This permission allows access to an object, without necessarily viewing
the object. For example, a user may want to see the object's title in a
list of results, even though the user can't view the contents of that
file.

	List folder contents

	This governs whether you can get a listing of the contents of a folder;
it doesn't check whether you have the right to view the objects listed.

	Modify Portal Content

	This governs whether you are allowed to modify some content.

	Manage Portal

	This permission allows you to manage the portal.
A number of views in the plone control panel are protected with this view.
If you plan to write a reusable product, be very hesitant to use this permission, check whether a custom permission might make more sense.

There is no single permission for adding content. Every content type has its own permission.
If you create your own content type, create a custom add permission for it.

Permissions

	Permission name
	Permission name for ZCML

	View
	zope2.View

	Access contents information
	zope2.AccessContentsInformation

	List folder contents
	cmf.ListFolderContents

	Modify portal content
	cmf.ModifyPortalContent

	Manage portal
	cmf.ManagePortal

To reference a permission in code, you need the name as a string.
Using strings is a bad convention, all common permissions have a constant in Products.CMFCore.permissions.
So to perform a permission check propery, you do something like this:

from AccessControl import getSecurityManager
from AccessControl import Unauthorized
from Products.CMFCore import permissions

if not getSecurityManager().checkPermission(permissions.ModifyPortalContent, object):
 raise Unauthorized("You may not modify this object")

All standard permissions from above can be referenced by their Permission name without spaces.

More info:

	http://markmail.org/thread/3izsoh2ligthfcou

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Standard permissions and roles

Description

Technical overview of Plones standard permissions and roles.

	Standard permissions

	Standard roles

Standard permissions

The standard permissions can be found in AccessControl``s and ``Product.CMFCore’s permissions.zcml.
Here, you will find a short id (also known as the Zope 3 permission id) and a longer title (also known as the Zope 2 permission title).
For historical reasons, some areas in Plone use the id, whilst others use the title.
As a rule of thumb:

	Browser views defined in ZCML directive use the Zope 3 permission id;

	Security checks using zope.security.checkPermission() use the Zope 3 permission id;

	Dexterity’s add_permission FTI variable uses the Zope 3 permission id;

	The rolemap.xml GenericSetup handler and workflows use the Zope 2 permission title;

	Security checks using AccessControl’s getSecurityManager().checkPermission(),
including the methods on the portal_membership tool,
use the Zope 2 permission title.

The most commonly used permission are shown below.
The Zope 2 permission title is shown in parentheses.

	zope2.View (View)

	used to control access to the standard view of a content item;

	zope2.DeleteObjects (Delete objects)

	used to control the ability to delete child objects in a container;

	cmf.ModifyPortalContent (Modify portal content)

	used to control write access to content items;

	cmf.ManagePortal (Manage portal)

	used to control access to management screens;

	cmf.AddPortalContent (Add portal content)

	the standard add permission required to add content to a folder;

	cmf.SetOwnProperties (Set own properties)

	used to allow users to set their own member properties'

	cmf.RequestReview (Request review)

	typically used as a workflow transition guard to allow users to submit content for review;

	cmf.ReviewPortalContent (Review portal content)

	usually granted to the Reviewer role,
controlling the ability to publish or reject content.

Standard roles

As with permissions, it is easy to create custom roles
(use the rolemap.xml GenericSetup import step – see CMFPlone’s version of this file for an example), although you should use the standard roles where possible.

The standard roles in Plone are:

	Anonymous

	a pseudo-role that represents non-logged in users.

Note

if a permission is granted to Anonymous,
it is effectively granted to everyone.
It is not possible to grant permissions to non-logged in users without also granting them to logged in ones.

	Authenticated

	a pseudo-role that represents logged-in users.

	Owner

	automatically granted to the creator of an object.

	Manager

	which represents super-users/administrators.
Almost all permissions that are not granted to Anonymous
are granted to Manager.

	Site Manager

	which represents site/administrators.
Has permissions needed to fully manage a single Plone site.

	Reviewer

	which represents content reviewers separately from site administrators.
It is possible to grant the Reviewer role locally on the Sharing` tab,
where it is shown as Can review.

	Member

	representing “standard” Plone users.

In addition, there are three roles that are intended to be used as local roles only.
These are granted to specific users or groups via the Sharing tab,
where they appear under more user friendly pseudonyms.

	Reader, aka Can view,

	confers the right to view content.
As a role of thumb,
the Reader role should have the View and Access contents information permissions if the Owner roles does.

	Editor, aka Can edit,

	confers the right to edit content.
As a role of thumb,
the Editor role should have the Modify portal content permission if the Owner roles does.

	Contributor, aka Can add,

	confers the right to add new content.
As a role of thumb,
the:guilabel: Contributor role should have the Add:guilabel: portal content permission
and any type-specific add permissions globally
(i.e. granted in rolemap.xml),
although these permissions are sometimes managed in workflow as well.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Custom permissions

Description

Creating special permissions for your product

If you want to protect certain actions in your product by a special permission,
you most likely will want to assign this permission to a role when the product is installed.

First the permission is defined in zcml.
It includes an example how to use the permission in a browser page

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser">

 <permission
 id="myproduct.mypermission"
 title="MyProduct: MyPermission"
/>

 <browser:page
 for="*"
 name="myexampleview"
 class="browser.MyExampleView"
 permission="myproduct.mypermission"
/>

</configure>

Now you can use the permission both as a Zope 2 permission ('MyProduct: MyPermission') or a Zope 3 permission ('myproduct.mypermission').
The only disadvantage is that you can't import the permissionstring as a variable from a permissions.py like from Products.CMFCore.permissions.

Use Generic Setup's rolemap.xml to assign the new permission to roles.
This defines the defaults.
With the use of (custom) workflows this mapping may change.

<?xml version="1.0"?>
<rolemap>
 <permissions>
 <permission name="MyProduct: MyPermission"
 acquire="True">
 <role name="Manager"/>
 <role name="Site Administrator"/>
 <role name="Owner"/>
 <role name="Contributor"/>
 </permission>
 </permission>
</rolemap>

A new permission will be added to the whole Zope instance by calling setDefaultRoles on it.
This step is only rarely needed,
i.e. if the permission must be available outside of Plone Site.

Define the following code in your __init__.py:

from Products.CMFCore.permissions import setDefaultRoles

setDefaultRoles('MyProduct: MyPermission', ('Manager', 'Owner',))

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Cross-Site Request Forgery (CSRF)

Plain usage

Documentation: https://github.com/plone/plone.protect/

z3c.form

z3c.form does not incude csrf protection yet: https://bugs.launchpad.net/z3c.form/+bug/805794

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Local roles

Description

Creating and setting local roles of Plone members programmatically.

	Introduction

	Creating a new role

	Adding a role to the Sharing Tab

	Setting local role

	Getting local roles

	Deleting local roles

	Local role caching

	Debugging
	Other

Introduction

Local roles allows user accounts to have special privileges
for a folder and its children.

By default Plone has roles like Contributor, Reader, Editor, etc.
and you can view these on the Sharing tab
and in ZMI Security tab.

Good introduction to roles:
Basic Roles and Permissions in Plone [http://www.sixfeetup.com/blog/basic-roles-and-permissions-in-plone]

Creating a new role

New Plone roles can be created through the
GenericSetup rolemap.xml file.

Example profiles/default/rolemap.xml

<?xml version="1.0"?>
<rolemap>
 <roles>
 <role name="National Coordinator"/>
 <role name="Sits Manager"/>
 </roles>
 <permissions>
 </permissions>
</rolemap>

Adding a role to the Sharing Tab

To let the newly created role appear in the @@sharing tab, create a
GenericSetup sharing.xml file.

Example profiles/default/sharing.xml

<sharing xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">
 <role
 id="Sits Coordinator"
 title="Is a sits coordinator"
 permission="Manage portal"
 i18n:attributes="title"
 />
</sharing>

The title is the name to be shown on the sharing page. The required_permission
is optional. If given, the user must have this permission to be allowed to
manage the particular role.

Note

For Plone 3, there is the collective.sharingroles [https://pypi.python.org/pypi/collective.sharingroles] addon.
Since Plone 4, this is merged into plone.app.workflow [https://github.com/plone/plone.app.workflow/commit/f9991ca0cc3dd2b8a2c392c145f44c21996eac67].

Setting local role

manage_setLocalRoles is defined in AccessControl.Role.RoleManager [http://svn.zope.org/Zope/trunk/src/AccessControl/Role.py?rev=96262&view=markup].

Example:

context.manage_setLocalRoles(userid, ["Local roles as a list"])

Getting local roles

The get_local_roles() method returns currently-set local roles.
This does not return all the effective roles
(which may include roles acquired from the parent hierarchy).
get_local_roles_for_userid() returns roles for a particular user as a tuple.

Example:

get_local_roles() return sequence like (("userid1", ("rolename1", "rolename2")), ("userid2", ("rolename1"))
roles = context.get_local_roles()

Deleting local roles

manage_delLocalRoles(userids) takes a list of usernames as argument.
All local roles for these users will be cleared.

The following example (membrane-specific)
will reset local roles based on external input

def _updateLocalRoles(self):
 """ Resets Local Coordinator roles for associated users.

 Reads Archetypes field which is a ReferenceField to membrane users.
 Based on this field values users are granted local roles on this object.
 """

 # Build list of associated usernames
 usernames = []

 # Set roles for newly given users
 for member in self.getExtraLocalCoordinators():

 # We are only interested in this particular custom membrane user type
 if member.getUserType() == "local_coordinator":

 username = member.getUserName()

 usernames.append(username)

 self.manage_setLocalRoles(username, ["Local Coordinator"])

 membrane = getToolByName(self, "membrane_tool")

 # Make sure that users which do not appear in extraLocalCoordinators
 # will have their roles cleared
 for username, roles in self.get_local_roles():

 sits_user = membrane.getUserAuthProvider(username)

 if not username in usernames:
 print "Clearing:" + username
 self.manage_delLocalRoles([username])

Local role caching

Resolving effective local roles is a cumbersome operation, so the result is cached.

Warning

Unit testers: Local roles are cached per request.
You need to clear this cache after modifying an object's local roles
or switching user if you want to get proper readings.

Unit test example method:

def clearLocalRolesCache(self):
 """ Clear borg.localroles cache.

 borg.localroles check role implementation caches user/request combinations.
 If we edit the roles for a user we need to clear this cache,
 """
 from zope.annotation.interfaces import IAnnotations
 ann = IAnnotations(self.app.REQUEST)
 for key in list(ann.keys()): # Little destructive here, deletes *all* annotations
 del ann[key]

Debugging

Set your breakpoint in Products.PlonePAS.plugins.local_role.LocalRolesManager.getRolesInContext()
and Products.PlonePAS.plugins.role.GroupAwareRoleManager.getRolesForPrincipal().
There you see how roles for a given context are being resolved.

Check the acl_users.portal_role_manager tool via the ZMI.

Please see the zopyx.plone.cassandra [https://pypi.python.org/pypi/zopyx.plone.cassandra] add-on product.

Other

	http://toutpt.wordpress.com/2009/03/14/plone-and-local-roles-too-quiet/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Dynamic roles

	Introduction

	Creating a dynamic role

Introduction

Plone core's borg.localrole package allows you to hook into role-resolving code
and add roles dynamically. I.e. the role on the user depends on HTTP request / environment
conditions and is not something set in the site database.

Creating a dynamic role

First create an Ploneadd-on for your coding needs.

getRoles() function is called several times per request so
you might want to cache the result.

There is a complex example below.

	getAllRoles() is overridden to return a custom role which is not available
through normal security machinery. This is required because Plone/Zope
builds look-up tables based on the result of getAllRoles() and
all possible roles must appear there

	getRoles() is overridden to call custom getDummyRolesOnContext()
which has the actual logic to resolve the roles

	An example code checks whether the context object implements
a marker interface and gives the user a role based on that

Example localroles.py:

from zope.interface import Interface, implements
from zope.component import adapts
from zope.component.interfaces import ISiteManager
from borg.localrole.interfaces import ILocalRoleProvider

from plone.memoize import forever
from Products.CMFCore.utils import getToolByName
from Products.DummyHospital.interfaces import IDummyHospital, IDummyCountry

class DummyLocalRoleAdapter(object):
 """ Give additional Member roles based on context and DummyUser type.

 This enables giving View permission on items higher in the
 traversign path than the user folder itself.
 """
 implements(ILocalRoleProvider)
 adapts(Interface)

 def __init__(self, context):
 self.context = context

 def getDummyRolesOnContext(self, context, principal_id):
 """ Calculate magical Dummy roles based on the user object.

 Note: This function is *heavy* since it wakes lots of objects along the acquisition chain.
 """

 # Filter out bogus look-ups - Plone calls this function
 # for every possible role look up out there, but
 # we are interested only these two cases
 if IDummyMarkerInterface.providedBy(context):
 return ["Dummy Member"]

 # No match
 return []

 def getRoles(self, principal_id):
 """Returns the roles for the given principal in context.

 This function is additional besides other ILocalRoleProvider plug-ins.

 @param context: Any Plone object
 @param principal_id: User login id
 """
 return self.getDummyRolesOnContext(self.context, principal_id)

 def getAllRoles(self):
 """Returns all the local roles assigned in this context:
 (principal_id, [role1, role2])"""
 return [("dummy_id", ["Dummy Member"])]

Custom local role implementation is made effective using ZCML adapter directive in your add-ons configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:zcml="http://namespaces.zope.org/zcml">

 <include package="borg.localrole" />

 <adapter
 factory=".localroles.DummyLocalRoleAdapter"
 name="dummy_local_role"
 />

</configure>

If your dynamic role is not any of Plone's existing roles you need to
declare it with rolemap.xml.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Sandboxing and RestrictedPython

Description

Legacy Plone code uses RestrictedPython sandboxing to secure
each module and class functions. This documentation
tells how it happens.

local

	Sandboxing and RestrictedPython
	Introduction

	Whitelisting modules for RestrictedPython import

	Traversing special cases

	Unit testing RestrictedPython code

	Other references

Introduction

Plone has two sandboxing modes

	Unrestricted: Python code is executed normally and the code can access the full
Zope application server environment. This includes other site instances too.
This is generally what happens when you write your own add-on and
add views for it.

	Restricted (RestrictedPython): scripts and evalutions are specially compiled, have limited Python
language functionality and every function call is checked against the security manager.
This is what happens when you try to add Python code or customize
page templates through Zope Management Interface.

Restricted execution is enabled only for through-the-web scripts and legacy code:

	Old style TAL page templates: everything you put inside page template
tal:content, tal:condition, etc. These templates are .pt templates
without accomppaning BrowserView

	Script (Python) code is executed (plone_skins layer Python scripts and old style form management)

Note

RestrictedPython was bad idea and mostly causes headache. Avoid through-the-web
Zope scripts if possible.

For further information, read

	http://plone.293351.n2.nabble.com/Update-was-Plone-4-Chameleon-compatibility-tp5612838p5614466.html

Whitelisting modules for RestrictedPython import

	http://plone.org/documentation/kb/using-unauthorized-modules-in-scripts

Traversing special cases

Old style Zope object traversing mechanism does not expose

	Functions without docstring (the """ comment at the beginning of the function)

	Functions whose name begins with underscore ("_"-character)

Unit testing RestrictedPython code

RestrictedPython [https://pypi.python.org/pypi/RestrictedPython] code is problematic, because RestrictedPython hardening is done on Abstract Syntax Tree level and
effectively means all evaluated code must be available in the source code form. This makes testing RestrictedPython
code little difficult.

Below are few useful unit test functions:

Zope security imports
from AccessControl import getSecurityManager
from AccessControl.SecurityManagement import newSecurityManager
from AccessControl.SecurityManagement import noSecurityManager
from AccessControl.SecurityManager import setSecurityPolicy
from AccessControl import ZopeGuards
from AccessControl.ZopeGuards import guarded_getattr, get_safe_globals, safe_builtins
from AccessControl.ImplPython import ZopeSecurityPolicy
from AccessControl import Unauthorized

Restricted Python imports
from RestrictedPython import compile_restricted
from RestrictedPython.SafeMapping import SafeMapping

def _execUntrusted(self, debug, function_body, **kwargs):
 """ Sets up a sandboxed Python environment with Zope security in place.

 Calls func() in an sandboxed environment. The security mechanism
 should catch all unauthorized function calls (declared
 with a class SecurityManager).

 Security is effective only inside the function itself -
 The function security declarations themselves are ignored.

 @param func: Function object
 @param args: Parameters delivered to func
 @param kwargs: Parameters delivered to func
 @param debug: If True, break into pdb debugger just before evaluation
 @return: Function return value
 """

 # Create global variable environment for the sandbox
 globals = get_safe_globals()
 globals['__builtins__'] = safe_builtins

 # Zope seems to have some hacks with guaded_getattr.
 # guarded_getattr is used to check the permission when the
 # object is being traversed in the restricted code.
 # E.g. this controls function call permissions.
 from AccessControl.ImplPython import guarded_getattr as guarded_getattr_safe
 globals['_getattr_'] = guarded_getattr_safe
 #globals['getattr'] = guarded_getattr_safe
 #globals['guarded_getattr'] = guarded_getattr_safe

 globals.update(kwargs)

 # Our magic code

 # The following will compile the parsed Python code
 # and applies a special AST mutator
 # which will proxy __getattr__ and function calls
 # through guarded_getattr
 code = compile_restricted(function_body, "<string>", "eval")

 # Here is a good place to break in
 # if you need to do some ugly permission debugging
 if debug:
 pass # go pdb here

 return eval(code, globals)

def execUntrusted(self, func, **kwargs):
 """ Sets up a sandboxed Python environment with Zope security in place. """
 return self._execUntrusted(False, func, **kwargs)

def execUntrustedDebug(self, func, **kwargs):
 """ Sets up a sandboxed Python debug environment with Zope security in place. """
 return self._execUntrusted(True, func, **kwargs)

def assertUnauthorized(self, func, **kwargs):
 """ Check that calling func with currently effective roles will raise Unauthroized error. """
 try:
 self.execUntrusted(func, **kwargs)
 except Unauthorized, e:
 return

 raise AssertionError, 'Unauthorized exception was expected'

def test_xxx(self):
 # Run RestrictedPython in unit test code
 # myCustomUserCreationFunction() is view/Python script/method you must call in the restricted mode
 self.execUntrusted('portal.myCustomUserCreationFunction(username="national_coordinator", email="nationalcoordinator@redinnovation.com")', portal=self.portal)

Other references

	zope.security [https://pypi.python.org/pypi/zope.security]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Security »

Using SELinux with Plone

Description

Tutorial on using SELinux with Plone, using Plone 4.3 and RedHat Linux 6.3.

	Introduction

	About SELinux

	Creating new SELinux policy
	Prerequisities

	Creating new policy

	Labeling files

	Development process
	Permissive rules

	Using audit2allow

	Example type enforcement rules

	Caveats

	Policies for Plone
	Relabeling rights

	Transition to context

	Common process requirements

	Zope/PLONE

	ZEO

	Maintenance utilities

	Testing the policy

	Deploying the policy

	External resources

Introduction

This document is a tutorial on using SELinux with Plone, using RedHat Linux 6.3 and Plone 4.3. It is applicable to any Linux distribution with small changes.

About SELinux

SELinux is a mandatory access control system, meaning that SELinux assigns security contexts (presented by labels) to system resources, and allows access only to the processes that have defined required levels of authorization to the contexts. In other words, SELinux maintains that certain target executables (having security contexts) can access (level of access being defined explicitly) only certain files (having again security context labels). In essence the contexts are roles, which makes SELinux a Role Based Access Control system. It should be noted that even root is usually just an ordinary user for RBAC systems, and will be contained like any other user.

The concept of contexts and labels can be slightly confusing at first. It stems from the idea of chain of trust. A system that upholds that proper authorization checks are being done is worthless if the system allows moving the protected data to a place that does not have similar authorization checks. Context labels are file system attributes, and when the file is moved around the label (representing context) moves with the file. The system is supposed to limit where the information can be moved, and the contexts can be extended beyond file system (ie. labels on rows in database systems), building complete information systems that will never hand over data to a party that is unable (or unwilling) to take care of it.

Most SELinux policies target an executable, and define the contexts (usually applied with labels to files) it can access by using type enforcement rules. However there are also capabilities that control more advanced features such as the ability to execute heap or stack, setuid, fork process, bind into ports, or open TCP sockets. Most of the capabilities and macros come from reference policy, which offers policy developers ready solutions to most common problems. The reference policy shipped by Linux distributions contains ready rules for some 350 targets, including applications like most common daemons (sshd), and system services (init/systemd).

The value of SELinux is in giving administrators fine granularity of access control far beyond the usual capabilities of *NIX systems. This is useful especially in mitigating the impact of security vulnerabilities. The most apparent downside to SELinux is the high skill requirements. To understand most of SELinux - and to be able to maintain it effectively with 3rd party applications - requires good abstraction skills, and especially the official documentation is somewhat hard to digest. SELinux was never engineered to be easy for administrators. It was engineered to be able to implement complex security models like Bell-LaPadula and MLS.

There have been several myths about SELinux being heavy (in reality it comes with ~3% overhead), or that it breaks all applications. There used to be time (years ago) when SELinux applied itself by default on everything, and if the application was not included in the shipped policies it probably failed miserably. Most of the application developers and companies got frustrated to the situation, and started recommending that SELinux should always be disabled. Things have luckily changed drastically since then. Today most SELinux implementations use what is called targeted policy, which means that SELinux affects only applications that have explicit policies. As a result SELinux does generally nothing to your 3rd party applications - good or bad - until you enable it. This tutorial is meant to give readers pointers on how to accomplish exactly that.

Creating new SELinux policy

Prerequisities

	root access

	Working SELinux (sudo sestatus reports ENABLED, and enforcing)

	Preferably a system that uses targeted policy (see the output of previous command)

	SELinux policy utilities installed (policycoreutils-python policycoreutils-gui)

	The application (in this case Plone) already installed

Creating new policy

Development starts usually by generating a policy skeleton with the sepolgen (or sepolicy-generate) utility. It can generate several types of templates, which come with a set of basic access rights. There are several sepolgen versions out there, depending on the Linux distribution. The most important differences between them are in the included templates. Creating new policy is done with the following command:

sepolgen -n plone -t 3 /usr/local/Plone/zinstance/bin/plonectl

Where the parameters are:

	-n plone gives the new policy name. Default is to use the name of the executable, but we want to give a more generic name in this case.

	-t 3 elects a template ("normal application") that gives some commonly required access rights as a starting point

	/usr/local/Plone/zinstance/bin/plonectl is the application that will get a new context (plonectl_exec_t), which will get most of the type enforcement rules.

The outcoming result will be four files:

	plone.te Type enforcement file defining the access rules. This file contains most of the policy, and most of the rules go there.

	plone.if Interface file defining what other policies can import from your policy.

	plone.fc File contexts file defining what context labels will be applied to files and directories.

	plone.sh Setup script that will compile and install the policy to the system configuration (both running and persistent).

Labeling files

Before the actual development will start file context labeling rules should be defined in plone.fc. You probably need some context (plone_t) for all files related to Plone, context (plone_rw_t) with write rights to var and the plonectl will need a context (plonectl_exec_t) that comes with special rights.

/usr/local/Plone(.*) gen_context(system_u:object_r:plone_t,s0)
/usr/local/Plone/zinstance/var(.*) gen_context(system_u:object_r:plone_rw_t,s0)
/usr/local/Plone/zinstance/bin/plonectl gen_context(system_u:object_r:plonectl_exec_t,s0)

The generated plone.te already tells SELinux what plone_t and plone_exec_t are - valid file context types. The tools labeling files will know what to do about them. However the plone_rw_t is must be introduced before continuing, and the plone_t should be renamed to plonectl_t (to describe the target better - important for managing more complex rules):

type plonectl_exec_t;
application_domain(plone_t, plonectl_exec_t)
type plone_rw_t;
files_type(plone_rw_t)

It is also a good idea to edit the restorecon commands at the end of plone.sh to point to /usr/local/Plone and relabel all the files when the policy is recompiled and installed:

/sbin/restorecon -F -R -v /usr/local/Plone

Development process

The basic policy development process for SELinux policies follows the following pattern:

	Add permissive rules

	Compile & install your policy

	Clear the audit logs

	Run the application until it fails

	Run audit2allow

	Study the output of audit2allow, and add more access rules to satisfy the application

	Repeat from step 2 until everything works

	Remove permissive rules

Permissive rules

Most applications require largish amount of rules just to start properly. To reach a working set of rules faster you can switch your contexts to permissive mode by editing the PlonePython.te:

require {
 type unconfined_t;
}

permissive plone_t;
permissive plonectl_exec_t;
permissive plone_rw_t;

Permissive in SELinux means that all actions by mentioned contexts will be allowed to process, and the incidents (access vector denials) will be only logged. This will allows to gather rules faster than going through the complete development cycle.

Warning

Please note that permissive rules have to be removed at some point, or the policy will not protect the application as expected.

Using audit2allow

Audit2allow can search both dmesg and the system audit logs for access vector cache denials, and build suggestions based on them. Because the output will be more understandable without extra noise, it is recommendable to clear audit log between development cycles. Since it is probably not a good idea to clear dmesg, it is suggested that you clear the system audit logs, and instruct audit2allow to use them as source, for example:

cat /dev/null > /var/log/audit.log
Break the application
audit2allow -r -R -i /var/log/audit/audit.log

There are couple useful parameters for running audit2allow:

	-r adds requires ("imports" from other policies) to the output

	-R makes audit2allow suggest compatible macros from other available policies. Macros contain often more lenient access rules, but they also reduce the amount of required rules. Using them will make the policy slightly more platform dependent, but easier to maintain.

	-i /var/log/audit/audit.log makes only to audit logs to be evaluated for rules

Tip

Always when in trouble, and you suspect access vector cache denial, use audit2allow. If you can't figure out what is going on, also check out the output of audit2why, similar tool that produces more human readable reasons why access was denied. Beware though, audit2why is somewhat heavy.

Example type enforcement rules

SELinux rules are actually quite simple. For instance the following rule tells to allow the process that has context plonectl_exec_t access to most common temporary files (tmp_t, defined in the reference policy), and the level of access will allow it most of the things that are usually done to files (but not all, for instance setattr is missing):

allow plonectl_exec_t tmp_t:file { write execute read create unlink open getattr };

For the previous to be usable the tmp_t and file have to be introduced to the compiler, that will search for them from the other available policies. Type is a grouping item that will usually point to a security context (labeled files), while classes define what access types (ie. getattr) can are available for the type. The term type enforcement rule comes from the fact that SELinux rules define who can do what to the objects that are linked to types.

requires {
 type tmp_t { write execute read create unlink open getattr };
 class file;
}

There are also macros that will help in accomplishing more complex tasks. The following macro will give the executable right to bind to 8080/TCP:

corenet_tcp_bind_transproxy_port(plonectl_exec_t)

To get an idea about what items are available the Reference policy API documentation [http://oss.tresys.com/docs/refpolicy/api/] is the place go to.

Caveats

First of all, audit2allow is not a silver bullet. There are cases where your application accesses something that it does not really require for operation, for instance to scan your system for automatic configuration of services. There are also cases where it prints nothing yet the application clearly is denied access to something. That can be caused by dontaudit rules, which silence logging of events that could generate too much noise. In any case a healthy amount of criticism should be applied to everything audit2allow output, especially when the suggested rules would give access rights to outside application directories.

Misconfiguration can cause either file labeling to fail, or the application process not to get transitioned to proper executing context. If it seems that the policy is doing nothing, check that the files are labeled correctly (ls -lFZ), and the process is running in the correct context (ps -efZ).

Evaluating the file context rules (fules and their labels) is managed by a heurestic algorithm, which gives precedence to more specific rules by evaluating the length and precision of the path patterns. The patterns are easy for beginner to misconfigure. When suspecting that the file context rules are not getting applied correctly, always investigate semanage fcontext -l to see what rules match your files.

Policies for Plone

The following contains results of ordinary "install, test & break, add rules, repeat from beginning" development cycle for a basic Plone SELinux policy.

Relabeling rights

By default you might not have the right to give any of new security labels to files, and restorecon may throw permission denied errors. To give the SELinux utilities (using the context setfiles_t) the right to change the security context based on the new types add the following rules:

require {
 type setfiles_t;
 type fs_t;
 class lnk_file relabelto;
 class dir relabelto;
 class lnk_file relabelto;
}

allow plone_t fs_t:filesystem associate;
allow setfiles_t plone_t:dir relabelto;
allow setfiles_t plone_t:file relabelto;
allow setfiles_t plone_t:lnk_file relabelto;
allow setfiles_t plonectl_exec_t:dir relabelto;
allow setfiles_t plonectl_exec_t:file relabelto;
allow setfiles_t plonectl_exec_t:lnk_file relabelto;
allow setfiles_t plone_rw_t:dir relabelto;
allow setfiles_t plone_rw_t:file relabelto;
allow setfiles_t plone_rw_t:lnk_file relabelto;
Python interpreter creates pyc files, this is required to relabel them correctly in some cases
allow setfiles_t plone_t:file relabelfrom;

If the transition is not done, the application will keep running in the starting user's original context. Most likely that will be unconfined_t, which means no SELinux restrictions will be applied to the process.

Transition to context

When you first run Plone (ie. "plonectl fg"), you will notice that it doesn't run, complaining about bad interpreter. Audit2allow will instruct to give rights to your uncontained_t context to run the python interpreter. This is however wrong. You wish to first instruct SELinux to change the process always to the new context (plonectl_exec_t) when the application is run. You also wish to have the necessary rights to execute the application so that the context transition can start:

require {
 type unconfined_t;
 class process { transition siginh noatsecure rlimitinh };
}
unconfined_r user roles have access to plonectl_exec_t
role unconfined_r types plonectl_exec_t;
unconfined process contexts should also have execution rights to the python executable etc
allow unconfined_t plone_t:file execute;

When unconfined_t runs something that has plonectl_exec_t transition the execution context to it
type_transition unconfined_t plonectl_exec_t:process plonectl_exec_t;
Allow the previous, and some basic process control
allow unconfined_t plonectl_exec_t:process { siginh rlimitinh noatsecure transition };
The new process probably should have rights to itself
allow plonectl_exec_t self:file entrypoint;

Later when enough rules are in place for the application to run take a look at the process context to see that the transitioning to plonectl_exec_t works:

ps -efZ|grep python
unconfined_u:unconfined_r:plonectl_exec_t:s0-s0:c0.c1023 root 1782 1 0 16:32 ? 00:00:00 /usr/local/Plone/Python-2.7/bin/python ...
unconfined_u:unconfined_r:plonectl_exec_t:s0-s0:c0.c1023 500 1784 1782 8 16:32 ? 00:00:07 /usr/local/Plone/Python-2.7/bin/python ...

Common process requirements

In order for any *NIX process to work some basic requirements must be met. Applications require for instance access to /dev/null, and PTYs:

dev_rw_null(plonectl_exec_t)
domain_type(plonectl_exec_t)
files_list_root(plonectl_exec_t)
unconfined_sigchld(plonectl_exec_t)
dev_read_urand(plonectl_exec_t)
userdom_use_inherited_user_ptys(plonectl_exec_t)
miscfiles_read_localization(plonectl_exec_t)

Zope/PLONE

After running the plonectl commands (fg, start, stop) several times, and adding the required rules you should end up with something like following. First you will have a large amount of require stanzas for the rule compiler, and then an intermediate amount of rules:

require {
 class dir { search read create write getattr rmdir remove_name open add_name };
 class file { rename setattr read lock create write getattr open append };
 type tmp_t;
}

Read access to common Plone files
allow plonectl_exec_t plone_t:dir { search read open getattr add_name };
allow plonectl_exec_t plone_t:file { execute read create getattr execute_no_trans ioctl open };
allow plonectl_exec_t plone_t:lnk_file { read getattr };

Read/write access rights to var and temporary files
allow plonectl_exec_t plone_rw_t:dir { search unlink read create write getattr rmdir remove_name open add_name };
allow plonectl_exec_t plone_rw_t:file { unlink rename setattr read lock create write getattr open append };
allow plonectl_exec_t tmp_t:file { unlink rename execute setattr read create write getattr unlink open };
allow plonectl_exec_t tmp_t:dir add_name;
fs_search_tmpfs(plonectl_exec_t)
fs_manage_tmpfs_dirs(plonectl_exec_t)
fs_manage_tmpfs_files(plonectl_exec_t)
allow plonectl_exec_t tmpfs_t:file execute;
files_delete_tmp_dir_entry(plonectl_exec_t)

Networking capabilities
allow plonectl_exec_t self:netlink_route_socket { write getattr read bind create nlmsg_read };
allow plonectl_exec_t self:tcp_socket { setopt read bind create accept write getattr getopt listen };
allow plonectl_exec_t self:udp_socket { write read create ioctl connect };
allow plonectl_exec_t self:unix_stream_socket { create connect };
corenet_tcp_bind_generic_node(plonectl_exec_t)
corenet_tcp_bind_http_cache_port(plonectl_exec_t)

Ability to fork to background, and to communicate with child processes via socket
allow plonectl_exec_t self:process { fork sigchld };
allow plonectl_exec_t plone_rw_t:sock_file { create link write read unlink setattr };
allow plonectl_exec_t self:unix_stream_socket connectto;
allow plonectl_exec_t self:capability { setuid setgid };

Rights to managing own process
allow plonectl_exec_t self:capability { kill dac_read_search dac_override };
allow plonectl_exec_t self:process { signal sigkill };

Gathering the previous audit2allow failed completely to report tcp_socket read and write. Some system policy had probably introduced a dontaudit rule, which quiesced the logging for that access vector denial. Luckily Plone threw out very distinct Exception, which made resolving the issue easy.

ZEO

There are couple differences between standalone and ZEO installations. To support both a boolean is probably good way to go. Booleans can be managed like:

getsebool ploneZEO
ploneZEO --> off
setsebool ploneZEO=true
setsebool ploneZEO=false

Installing Plone in ZEO mode will change the directory zinstance to zeocluster. It is alright to either have both defined in plone.fc, or to use regexp:

/usr/local/Plone/zeocluster/var.* gen_context(system_u:object_r:plone_rw_t,s0)
or
/usr/local/Plone/(zinstance|zeocluster)/var.* gen_context(system_u:object_r:plone_rw_t,s0)

The differences to type enforcement policy consist mostly of more networking abilities (which one probably should not allow unless really required), and the ability to run shells (ie. bash):

require {
 type bin_t;
 type shell_exec_t;
}

ZEO
bool ploneZEO false;
if (ploneZEO) {
allow plonectl_exec_t plone_t:file execute_no_trans;
allow plonectl_exec_t self:tcp_socket connect;
corenet_tcp_bind_transproxy_port(plonectl_exec_t)
nis_use_ypbind_uncond(plonectl_exec_t)
Starting ZEO requires running shells
kernel_read_system_state(plonectl_exec_t)
allow plonectl_exec_t shell_exec_t:file { read open execute };
}

Maintenance utilities

The procedure for allowing maintenance utilities like buildout to work is quite straight forward. First introduce a new context:

type plone_maint_exec_t;
files_type(plone_maint_exec_t)

Then label the maintenance utilities using the context:

/usr/local/Plone/zinstance/bin/buildout gen_context(system_u:object_r:plone_maint_exec_t,s0)

Last, provide the necessary rules for relabeling, context transition, and for the process to run without any restrictions:

role unconfined_r types plone_maint_exec_t;
allow unconfined_t plone_maint_exec_t:file execute;
type_transition unconfined_t plone_maint_exec_t:process plone_maint_exec_t;
allow unconfined_t plone_maint_exec_t:process { siginh rlimitinh noatsecure transition };
allow plone_maint_exec_t self:file entrypoint;

Allow anything labeled plone_mait_exec_t to do basically anything
permissive plone_maint_exec_t;

After running maintenance tasks you should make sure the files have still correct labels by running something like:

/sbin/restorecon -F -R /usr/local/Plone

Tip

See also "setenforce Permissive", which will disable enforcing SELinux rules temporarily system wide.

Testing the policy

Easiest way to test the policy is to label for instance the Python executable as plone_exec_t by using chcon, and to test the policy using Python scripts. For example:

cd /usr/local/Plone/Python2.7/bin
setenforce Permissive
chcon system_u:object_r:plonectl_exec_t:s0 python2.7
setenforce Enforcing
./python2.7
Python 2.7.3 (default, Apr 28 2013, 22:22:46)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.listdir('/root')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OSError: [Errno 13] Permission denied: '/root'
>>> # That should have worked, running python interpreter as root and all
>>> exit()
setenforce Permissive
chcon system_u:object_r:plonectl_t:s0 python2.7
setenforce Enforcing

This can easily be refined into automated testing. Other forms such as Portlet inside running Plone process can also be used for testing.

Deploying the policy

SELinux policies can be installed simply by running semodule -n -i <compiled_policy.pp>. In case packaging is required (for rolling out Plone instances automatically, or for use with centralized management tools like Satellite) it is easy to accomplish with rpm. In order to do that first install the rpm building tools:

yum install rpm-build

Then modify the following RPM spec file to suit your needs:

%define relabel_files() \
restorecon -R /usr/local/Plone; \

%define selinux_policyver 3.7.19-195

Name: plone_selinux
Version: 1.0
Release: 1%{?dist}
Summary: SELinux policy module for plone

Group: System Environment/Base
License: GPLv2+
This is an example. You will need to change it.
URL: http://setest
Source0: plone.pp
Source1: plone.if

Requires: policycoreutils, libselinux-utils
Requires(post): selinux-policy >= %{selinux_policyver}, policycoreutils
Requires(postun): policycoreutils
Requires(post): python
BuildArch: noarch

%description
This package installs and sets up the SELinux policy security module for plone.

%install
install -d %{buildroot}%{_datadir}/selinux/packages
install -m 644 %{SOURCE0} %{buildroot}%{_datadir}/selinux/packages
install -d %{buildroot}%{_datadir}/selinux/devel/include/contrib
install -m 644 %{SOURCE1} %{buildroot}%{_datadir}/selinux/devel/include/contrib/

%post
semodule -n -i %{_datadir}/selinux/packages/plone.pp
if /usr/sbin/selinuxenabled ; then
 /usr/sbin/load_policy
 %relabel_files
fi;
exit 0

%postun
if [$1 -eq 0]; then
 semodule -n -r plone
 if /usr/sbin/selinuxenabled ; then
 /usr/sbin/load_policy
 %relabel_files
 fi;
fi;
exit 0

%files
%attr(0600,root,root) %{_datadir}/selinux/packages/plone.pp
%{_datadir}/selinux/devel/include/contrib/plone.if

%changelog
* Wed May 1 2013 YOUR NAME <YOUR@EMAILADDRESS> 1.0-1
- Initial version

The rpm packages will be built by running the rpmbuild:

rpmbuild -ba plone.spec
ls -lF /root/rpmbuild/RPMS/noarch/
-rw-r--r--. 1 root root 17240 1.5. 19:24 plone_selinux-1.0-1.el6.noarch.rpm

External resources

The following external resources are sorted by probable usefulness to someone who is beginning working with SELinux:

	Fedora SELinux FAQ [https://docs.fedoraproject.org/en-US/Fedora/13/html/SELinux_FAQ/index.html]

	Reference policy API [http://oss.tresys.com/docs/refpolicy/api/]

	NSA - SELinux FAQ [http://www.nsa.gov/research/selinux/faqs.shtml]

	NSA - SELinux main website [http://www.nsa.gov/research/selinux/index.shtml]

	Official SELinux project wiki [http://selinuxproject.org/]

	Red Hat Enterprise SELinux Policy Administration (RHS429) classroom course [https://www.redhat.com/training/courses/rhs429/]

	Tresys Open Source projects [http://www.tresys.com/open-source.php] (IDE, documentation about the reference policy, and several management tools)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Sessions and cookies

	Sessions
	Introduction

	Setting a session parameter

	Getting a session

	Getting session id

	Initial construction of session data

	Deleting session data

	Session data and unit testing

	Using Plone authentication cookie in other systems

	Exploring Plone session configuration

	Cookies
	Introduction

	Reading cookies

	Setting cookies

	Modifying HTTP response cookies

	Default Plone cookies

	Session cookie lifetime

	Sanitizing cookies for the cache

	Signing cookies

	Status messages
	Setting a status message

	Rendering status message style by hand-crafted HTML

	Login and logout
	Introduction

	Login entry points

	Extracting credentials

	Authenticating the user

	Post-login actions

	Post-logout actions

	Entry points to logged in member handling

	Login as another user ("sudo")

	Getting logged in users

	Locking user account after too many retries

	Hyperlinks to authenticated Plone content in Microsoft Office

	Single Sign-On and Active Directory

	Preventing duplicate logins from different browsers

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Sessions and cookies »

Sessions

Description

How Plone handles anonymous and logged-in user sessions.
How to store and retrieve session data variables programmatically.

	Introduction

	Setting a session parameter

	Getting a session

	Getting session id

	Initial construction of session data

	Deleting session data

	Session data and unit testing

	Using Plone authentication cookie in other systems

	Exploring Plone session configuration

Introduction

Sessions are visitor sessions at the site.

Sessions have features like:

	Login and logout, but also identified by a cookie

	Timeout

	Hold arbitrary per-user data on server side

	Identified by cookies

In Plone, sessions are managed by Zope's session_data_manager tool.
The source code is in Products.Sessions [https://github.com/zopefoundation/Zope/blob/master/src/Products/Sessions/].

Setting a session parameter

Plone has a tool called session_data_manager.

Example:

sdm = self.context.session_data_manager
session = sdm.getSessionData(create=True)
session.set("my_option", any_python_object_supporting_pickling)

Getting a session

Plone has a convenience method to get the session of the current user:

session = sdm.getSessionData(create=True)

Getting session id

Each session has a unique id associated with it, for both both anonymous and
logged-in users.

Session data is stored in browser cookies, so sessions are browser-specific.
If the same user has multiple browsers open on your site, each browser will
have its own session.

If you need to refer to the session id, you can query for it:

sdm = self.context.session_data_manager
session_id = sdm.getBrowserIdManager().getBrowserId(create=False)
Session id will be None if the session has not been created yet

Initial construction of session data

The example below creates a session data variable when it is accessed for
the first time. For the subsequent accesses, the same object is returned.
The object changes are automatically persisted if it inherits from the
persistent.Persistent class.

Note

Session data stored this way does not survive Plone restart.

Example:

def getOrCreateCheckoutSession(context, create=False, browser_id=None):
 """ Get the named session object for storing session data.

 Each add-on product can have their own session data slot(s)
 identified by a string name.

 @param context: Any Plone content item with acquisition support

 @param create: Force new data creation, otherwise return None if not exist

 @param browser_id: Cookie id in the user browsers. We can set this
 explicitly if we want to

 @return: ICheckoutData instance
 """

 session_manager = context.session_data_manager
 if browser_id is None:
 if not session_manager.hasSessionData() and not create:
 return
 session = session_manager.getSessionData()
 else:
 session = session_manager.getSessionDataByKey(browser_id)
 if session is None:
 return
 if not session.has_key(CHECKOUT_DATA_SESSION_KEY):
 if create:
 session[CHECKOUT_DATA_SESSION_KEY] = CheckoutData()
 else:
 return None

Deleting session data

Example:

def _destroyCartForSession(self, context, browser_id=None):
 session_manager = getToolByName(context, 'session_data_manager')
 if browser_id is None:
 if not session_manager.hasSessionData(): #nothing to destroy
 return None
 session = session_manager.getSessionData()
 else:
 session = session_manager.getSessionDataByKey(browser_id)
 if session is None:
 return
 if not session.has_key('getpaid.cart'):
 return
 del session['getpaid.cart']

Session data and unit testing

	Please see http://article.gmane.org/gmane.comp.web.zope.plone.user/104243

Using Plone authentication cookie in other systems

	http://stackoverflow.com/questions/12167202/how-to-wrap-plone-authentication-around-a-third-party-servlet/12171528#comment16307483_12171528

Exploring Plone session configuration

	http://stackoverflow.com/questions/12211682/how-to-export-plone-session-configuration

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Sessions and cookies »

Cookies

Description

Handling session and other cookies in Plone

	Introduction

	Reading cookies

	Setting cookies

	Modifying HTTP response cookies

	Default Plone cookies
	Zope session cookie

	Language cookie

	Session cookie lifetime

	Sanitizing cookies for the cache

	Signing cookies

Introduction

Setting and getting cookies

	http://www.dieter.handshake.de/pyprojects/zope/book/chap3.html

	http://stackoverflow.com/questions/1034252/how-do-you-get-and-set-cookies-in-zope-and-plone

Reading cookies

Usually you want to read incoming cookies sent by the browser.

Example:

self.request.cookies.get("cookie_name", "default_value_if_cookie_not_set")

Setting cookies

See HTTPResponse.setCookie() [https://github.com/zopefoundation/Zope/blob/master/src/ZPublisher/HTTPResponse.py#L241].

Modifying HTTP response cookies

You might want to tune up or clean cookies after some other part of Plone code has set them.
You can do this in post-publication event handler.

Example cleancookies.py (needs ZCML subscriber registration too):

"""

 Clean I18N cookies from non-HTML responses so that e.g. Image
 content, which has language set, and is cross-linked across page,
 don't inadvertiately change the langauge.

"""

from zope.interface import Interface
from zope.component import adapter
from plone.postpublicationhook.interfaces import IAfterPublicationEvent

@adapter(Interface, IAfterPublicationEvent)
def clean_language(object, event):
 """ Clean up cookies after HTTPResponse object has been constructed completely.

 Post-publication handler.
 """
 request = event.request

 #print "%s %s" % (request["URL"], request.response.cookies)

 # All non-HTML payloads
 if not request.response.headers["content-type"].startswith("text/html"):
 # Rip-off I18N_language cookie
 if "I18N_LANGUAGE" in request.response.cookies:
 print "Cleaned up cookie for %s" % request["URL"]
 del request.response.cookies["I18N_LANGUAGE"]

Default Plone cookies

Typical Plone cookies:

Logged in cookie
__ac="NjE2NDZkNjk2ZTMyOjcyNzQ3NjQxNjQ2ZDY5NmUzNjM2MzczNw%253D%253D";

Language chooser
I18N_LANGUAGE="fi";

Status message
statusmessages="BURUZXJ2ZXR1bG9hISBPbGV0IG55dCBraXJqYXV0dW51dCBzaXPDpMOkbi5pbmZv"

Google Analytics tracking
__utma=39444192.1440286234.1270737994.1321356818.1321432528.21;
__utmz=39444192.1306272121.6.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none);
__utmb=39444192.3.10.1321432528;
__utmc=39444192;

Plone copy-paste clipboard
__cp="x%25DA%2515%258AA%250A%25800%250C%2504%25A3%25A0%25E0E%257CF%25FF%25E4%2529%2587%25801%25D5B%25B3-%25F8%257B%25D3%25C3%250E%25CC%25B0i%2526%2522%258D%25D19%2505%25D2%2512%25C0P%25DF%2502%259D%25AB%253E%250C%2514_%25C3%25CAu%258B%25C0%258Fq%2511s%25E8k%25EC%250AH%25FE%257C%258Fh%25AD%25B3qm.9%252B%257E%25FD%25D1%2516%25B3"; Path=/

Zope session cookie

This cookie looks like:

_ZopeId="25982744A40dimYreFU"

It is set first time when session data is written.

Language cookie

I18N_LANGUAGE is set by portal_languages tool.
Disable it by Use cookie for manual override setting in
portal_languages.

Also, language cookie has a special lifecycle when LinguaPlone is installed.
This may affect your front-end web server caching. If configured improperly,
the language cookie gets set on images and static assets like CSS HTTP responses.

	http://stackoverflow.com/questions/5715216/why-plone-3-sets-language-cookie-to-css-js-registry-files-and-how-to-get-rid-o

Session cookie lifetime

Setting session cookie lifetime

	http://plone.org/documentation/kb/cookie-duration

Sanitizing cookies for the cache

You don't want to store HTTP responses with cookies in a front end cache
server, because this would be a leak of other users' information.

Don't cache pages with cookies set. Also with multilingual sites it makes
sense to have unique URLs for different translations as this greatly
simplifies caching (you can ignore language cookie).

Note that cookies can be set:

	by the server (Plone itself)

	on the client side, by Javascript (Google Analytics)

... so you might need to clean cookies for both incoming HTTP requests and
HTTP responses.

More info in Varnish section of this manual.

Signing cookies

Kind of... crude example

	https://gist.github.com/3951630

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Sessions and cookies »

Status messages

Status messages are session-bound information which allow the user
to see notifications when the page is rendered next time.

Status messages are stored session in safely manner which prevents
Cross-Site Scripting attacks which might occur due to delivering
message information as HTTP GET query parameters.

	Setting a status message

	Rendering status message style by hand-crafted HTML

Setting a status message

Status messages have text (unicode) and type (str). All pending status messages
are shown to the user when the next page is rendered.

Example:

from Products.statusmessages.interfaces import IStatusMessage

messages = IStatusMessage(self.request)

messages.add(u"Item deleted", type=u"info")

Example which you can use in Python scripts:

This message is in Plone i18n domain
context.plone_utils.addPortalMessage(_(u'You are now logged in. Welcome to supa-dupa-system.'), 'info')

Rendering status message style by hand-crafted HTML

If you want to insert elements looking status messages on your page
use the following mark-up

<dl class="portalMessage error">
 <dt>Error</dt>
 <dd>Login failed. Both login name and password are case sensitive, check that caps lock is not enabled.</dd>
</dl>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Sessions and cookies »

Login and logout

Description

Login and logout related programming activities in Plone

	Introduction

	Login entry points

	Extracting credentials

	Authenticating the user
	Using username and password

	Using username only

	Post-login actions

	Post-logout actions

	Entry points to logged in member handling
	PAS cache settings

	Login as another user ("sudo")

	Getting logged in users

	Locking user account after too many retries

	Hyperlinks to authenticated Plone content in Microsoft Office

	Single Sign-On and Active Directory

	Preventing duplicate logins from different browsers

Introduction

This chapter contains login and logout related code snippets.

Login entry points

There are two login points in Plone

/login view (appended to any content URL) directs you to the page where you came from after the login.

/login_form view does login without the redirect back to the original page.

In addition, the /logout action logs the user out.

The logic that drives the login process is implemented using the CMF form controller framework (legacy). To customize it, you need to override one or more of the login_* scripts. This can be accomplished in two ways: register your own skin directory or use z3c.jbot [https://pypi.python.org/pypi/z3c.jbot]. Note that in both cases, you need to copy the .metadata file as well.

Extracting credentials

Extracting credentials try to extract log-in (username, password) from HTTP request.

Below is an example how to extract and authenticate the user manually.
It is mostly suitable for unit testing.
Note that given login field isn't necessarily the username. For example,
betahaus.emaillogin [https://pypi.python.org/pypi/betahaus.emaillogin] add-on authenticates users by their email addresses.

Credential extraction will go through all plug-ins registered for
PlonePAS [https://github.com/plone/Products.PlonePAS/blob/master/README.txt] system.

The first found login/password pair attempt will be used for user authentication.

Unit test example:

def extract_credentials(self, login, password):
 """ Spoof HTTP login attempt.

 Functional test using zope.testbrowser would be
 more appropriate way to test this.
 """

 request = self.portal.REQUEST

 # Assume publishing process has succeeded and object has been found by traversing
 # (this is usually set by ZPublisher)
 request['PUBLISHED'] = self.portal

 # More ugly ZPublisher stubs
 request['PARENTS'] = [self.portal]
 request.steps = [self.portal]

 # Spoof HTTP request login fields
 request["__ac_name"] = login
 request["__ac_password"] = password

 # Call PluggableAuthService._extractUserIds()
 # which will return a list of user ids extracted from the request
 plugins = self.portal.acl_users.plugins

 users = self.portal.acl_users._extractUserIds(request, plugins)

 if len(users) == 0:
 return None

 self.assertEqual(len(users), 1)

 # User will be none if the authentication fails
 # or anonymous if there were no credential fields in HTTP request
 return users[0]

Authenticating the user

Using username and password

Authenticating the user will check that username and password are correct.

Pluggable Authentication Service (acl_users under site root)
will go through all authentication plug-ins and return the first successful
authenticated users.

Read more in
PlonePAS [https://github.com/plone/Products.PlonePAS/blob/master/README.txt].

Unit test example:

def authenticate_using_credentials(self, login, password):

 request = self.portal.REQUEST

 # Will return valid user object
 user = self.portal.acl_users.authenticate(login, password, request)
 self.assertNotEqual(user, None)

Using username only

Useful for sudo style logins.

def loginUser(self, username):
 """
 Login Plone user (without password)
 """
 self.context.acl_users.session._setupSession(username, self.context.REQUEST.RESPONSE)
 self.request.RESPONSE.redirect(self.portal_state.portal_url())

See also

	http://svn.plone.org/svn/collective/niteoweb.loginas/trunk/niteoweb/loginas/browser/login_as.py

Post-login actions

Post-login actions are executed after a successful login. Post-login actions which you could want to change are

	Where to redirect the user after login

	Setting the status message after login

Post-login code can be executd with events defined in
PluggableAuthService service.

	IUserLoggedInEvent

	IUserInitialLoginInEvent (logs for the first time)

	IUserLoggedOutEvent

Here is an Grok based example how to redirect a user to
a custom folder after he/she logs in (overrides standard Plone login behavior)

postlogin.py:

Python imports
import logging

ZODB imports
from ZODB.POSException import ConflictError

Zope imports
from AccessControl import getSecurityManager
from zope.interface import Interface
from zope.component import getUtility
from zope.app.component.hooks import getSite

CMFCore imports
from Products.CMFCore import permissions
from Products.PluggableAuthService.interfaces.events import IUserLoggedInEvent

Caveman imports
from five import grok

Plone imports
from Products.CMFPlone.interfaces.siteroot import IPloneSiteRoot

Logger output for this module
logger = logging.getLogger(__name__)

#: Site root relative path where we look for the folder with an edit access
CUSTOM_USER_FOLDERS = "fi/yritykset"

def redirect_to_edit_access_folder(user):
 """
 Redirects the user to a folder he/she has editor access.

 This is for use cases where you have a owned content
 (e.g. company/product data) on a shared site.

 You want to make it simple for the users with limited knowledge to edit their own data
 by redirecting to the edit view right after the login.

 :return: True or False depending if we found a redirect target to the user or not
 """

 # Get acce s to the site within we are currently processing
 # the HTTP request
 portal = getSite()

 # We need to access the HTTP requesrt object via
 # acquisition as it is not exposed by the event
 request = getattr(portal, "REQUEST", None)
 if not request:
 # HTTP request is not present e.g.
 # when doing unit testing / calling scripts from command line
 return False

 # Look for portal relative paths where the items are
 try:
 target = portal.unrestrictedTraverse(CUSTOM_USER_FOLDERS)
 except ConflictError:
 # Transaction retries must be
 # always handled specially in exception handlers
 raise
 except Exception, e:
 # Let the login proceed even if the folder has been deleted
 # don't make it impossible to login to the site
 logger.exception(e)
 return False

 # Check if the current user has Editor access
 # in the any items of the folder
 sm = getSecurityManager()

 for obj in target.listFolderContents():
 if sm.checkPermission(permissions.ModifyPortalContent, obj):
 logger.info("Redirecting user %s to %s" % (user, obj))
 request.response.redirect(obj.absolute_url() + "/edit")
 return True

 logger.warn("User %s did not have his/her own content item in %s" % (user, target))

 # Let the normal login proceed to the page "You are now logged in" etc.
 return False

@grok.subscribe(IUserLoggedInEvent)
def logged_in_handler(event):
 """
 Listen to the event and perform the action accordingly.
 """

 user = event.object

 redirect_to_edit_access_folder(user)

Post-logout actions

Products.PlonePAS.tools.membership fires Products.PlonePAS.events.UserLoggedOutEvent
when the user logs out via Log out menu item.

Note

You cannot catch session timeout events this way... only explicit logout
action.

Example ZCML

<subscriber for="Products.PlonePAS.events.UserLoggedOutEvent"
 handler=".smartcard.clear_extra_cookies_on_logout" />

Example Python:

def clear_extra_cookies_on_logout(event):
 """
 Logout event handler.

 When user explicitly logs out from the Logout menu, clear our privileges smartcard cookie.
 """

 # Which cookie we want to clear
 cookie_name = SmartcardHelper.PRIVILEDGED_COOKIE_NAME

 request = event.object.REQUEST
 # YES CAPS LOCK WAS MUST WHEN ZOPE 2 WAS INVENTED
 # SOMEWHERE AROUND NINETIES. THEN IT WAS THE CRUISE
 # CONTROL FOR COOLNESS AND ZOPE IS SOO COOOOOL.
 response = request.RESPONSE
 # Voiding our special cookie on logout
 response.expireCookie(cookie_name)

More info

	https://github.com/plone/Products.PlonePAS/blob/master/Products/PlonePAS/tools/membership.py#L645

Entry points to logged in member handling

See Products.PluggableAuthService.PluggableAuthService._extractUserIds().
It will try to extract credentials from incoming HTTP request, using
different "extract" plug-ins of PAS framework.

PluggableAuthService is also known as acl_users persistent
object in the site root.

For each set of extracted credentials, try to authenticate
a user; accumulate a list of the IDs of such users over all
our authentication and extraction plugins.

PluggableAuthService may use ZCacheable
pattern to see if the user data exists already in the cache, based on
any extracted credentials, instead of actually checking whether
the credentials are valid or not. PluggableAuthService must
be set to have cache end. By default it is not set,
but installing LDAP sets it to RAM cache.

More info

	https://github.com/plone/plone.app.ldap/blob/master/plone/app/ldap/ploneldap/util.py

PAS cache settings

Here is a short view snippet to set PAS cache state:

from Products.Five.browser import BrowserView
from zope.app.component.hooks import getSite

from Products.CMFCore.utils import getToolByName

class PASCacheController(BrowserView):
 """
 Set PAS caching parameters from browser address bar.
 """

 def getPAS(self):
 site=getSite()
 return getToolByName(site, "acl_users")

 def setPASCache(self, value):
 """
 Enables or disables pluggable authentication service caching.

 The setting is stored persistently in PAS

 This caches credentials for authenticated users after the first login.

 This will make authentication and permission operations little bit faster.
 The downside is that the cache must be purged if you want to remove old values from there.
 (user has been deleted, etc.)

 More info

 * https://github.com/plone/plone.app.ldap/blob/master/plone/app/ldap/ploneldap/util.py

 """

 pas = self.getPAS()

 if value:

 # Enable

 if pas.ZCacheable_getManager() is None:
 pas.ZCacheable_setManagerId(manager_id="RAMCache")

 pas.ZCacheable_setEnabled(True)

 else:
 # Disable
 pas.ZCacheable_setManagerId(None)
 pas.ZCacheable_setEnabled(False)

 def __call__(self):
 """ Serve HTTP GET queries.
 """

 cache_value = self.request.form.get("cache", None)

 if cache_value is None:
 # Output help text
 return "Use: http://localhost/@@pas-cache-controller?cache=true"

 value = (cache_value == "true")

 self.setPASCache(value)

 return "Set value to:" + str(value)

... and related ZCML

<browser:page
 for="Products.CMFCore.interfaces.ISiteRoot"
 name="pas-cache-controller"
 class=".pascache.PASCacheController"
 permission="cmf.ManagePortal"
/>

Login as another user ("sudo")

If you need to login to production system another user and you do not know the password,
there is an add-on product for it

	https://pypi.python.org/pypi/niteoweb.loginas

Another option

	https://pypi.python.org/pypi/Products.OneTimeTokenPAS

Getting logged in users

Todo

Was somewhere, but can't find where.

Locking user account after too many retries

For security reasons, you might want to locking users after too many tries of logins.
This protects user accounts against brute force attacks.

	https://svn.plone.org/svn/collective/PASPlugins/Products.LoginLockout/branches/ajung-login-logging/

Hyperlinks to authenticated Plone content in Microsoft Office

Microsoft Office applications (in the first instance Word and Excel), have
been observed to attempt to resolve hyperlinks once clicked, prior to sending
the hyperlink to the user's browser. So, if such a link points to some
Plone content that requires authentication, the Office application will
request the URL first, and receive a 302 Redirect to the require_login
Python script on the relevant Plone instance. So, if your original hyperlink
was like so:

http://example.com/myfolder/mycontent

and this URL requires authentication, then the Office application will send
your browser to this URL:

http://example.com/acl_users/credentials_cookie_auth/require_login?came_from=http%3A//example.com/myfolder/mycontent

Normally, this isn't a problem if a user is logged out at the time. They will
be presented with the relevant login form and upon login, they will be
redirected accordingly to the came_from= URL.

However, if the user is already logged in on the site, visiting this URL
will result in an Insufficient Privileges page being displayed. This is
to be expected of Plone (as this URL is normally only reached if the given
user has no access), but because of Microsoft Office's mangling of the URL,
may not necessarily be correct as the user may indeed have access.

The following drop-in replacement for the require_login script has been
tested in Plone 4.1.3 (YMMV). Upon a request coming into this script,
it attempts (a hack) to traverse to the given path. If permission is actually
allowed, Plone redirects the user back to the content. Otherwise, things
proceed normally and the user has no access (and is shown the appropriate
message):

Script (Python) "require_login"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=
##title=Login
##

login = 'login'

portal = context.portal_url.getPortalObject()
if cookie crumbler did a traverse instead of a redirect,
this would be the way to get the value of came_from
#url = portal.getCurrentUrl()
#context.REQUEST.set('came_from', url)

if context.portal_membership.isAnonymousUser():
 return portal.restrictedTraverse(login)()
else:
 expected_location = context.REQUEST.get('came_from')
 try:
 #XXX Attempt a traverse to the given path
 portal.restrictedTraverse(expected_location.replace(portal.absolute_url()+'/',''))
 container.REQUEST.RESPONSE.redirect(expected_location)
 except:
 return portal.restrictedTraverse('insufficient_privileges')()

For further reading see:

	http://plone.293351.n2.nabble.com/Linking-to-private-page-from-MS-Word-redirect-to-login-form-td5495131.html

	http://plone.293351.n2.nabble.com/Problem-with-links-to-files-stored-in-Plone-td3055014.html

	http://bytes.com/topic/asp-classic/answers/596062-hyperlinks-microsoft-applications-access-word-excel-etc

	https://community.jivesoftware.com/docs/DOC-32157

Single Sign-On and Active Directory

Plone can be used in a Microsoft Active Directory environment (or standard Kerberos environment) such that users are automatically
and transparently authenticated to Plone without requesting credentials from the user.

This is quite an advanced topic and requires some set up on the server, but can be achieved with Plone running on either Unix/Linux
or Windows environments.

More details can be found in this presentation from Plone Open Garden 2013:

	http://www.slideshare.net/hammertoe/plone-and-singlesign-on-active-directory-and-the-holy-grail

	http://www.youtube.com/watch?v=-FLQxeD5_1M

Preventing duplicate logins from different browsers

	http://stackoverflow.com/questions/2562385/limit-concurrent-user-logins-in-plone-zope

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Images

Image manipulation related documentation.

	Image-like content
	Introduction

	Custom image content type

	Image scales (Plone 4)

	Image scales (Plone 3)

	Accessing images

	portal_catalog and images

	Custom image scales and recreating scale data

	Images in page templates
	Putting a static image into a page template

	Registering static media folders in your add-on product

	Rendering Image content items

	Rendering ImageField

	tag() method

	Lightbox style image pop-ups

	Python Imaging Library (PIL)
	Installing PIL

	Pillow

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Images »

Image-like content

Description

How to programmatically manipulate images on your Plone site.

	Introduction

	Custom image content type

	Image scales (Plone 4)

	Image scales (Plone 3)
	getScale()

	Accessing images
	Scaled versions for Image content (ATImage)

	portal_catalog and images

	Custom image scales and recreating scale data
	For Plone 4

	For Plone 3

	Automatic image scales on ReferenceFields

Introduction

Plone supports image content in two forms:

	As stand-alone content type, images will be visible in the sitemap. This is
the case for the default Image content type, but you can create custom
content types with similar properties.

	As a field, the image is directly associated with one content object. Use
Archetypes.fields.ImageField.

Custom image content type

If you want to have your custom content type behave like the stock Plone Image
content type:

	Inherit from the content class Products.ATContentType.content.image.ATImage
and use the schema from that class.

	When writing the GenericSetup XML of your type, follow the example of Image.xml [https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/profiles/default/types/Image.xml].

	Do not set workflow for your type in profiles/default/workflows.xml

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">

 <bindings>
 <type type_id="YourImageType"/>
 </bindings>
</object>

Image scales (Plone 4)

Archetypes based content image scales is handled by plone.namedfile [https://pypi.python.org/pypi/plone.namedfile].

Dexterity based content image scales are handled by plone.namedfile [https://pypi.python.org/pypi/plone.namedfile].

Archetypes based content image scales is handled by plone.app.imaging [http://plone.org/products/plone.app.imaging].

Both packages offer the same traverseable @@images view which can be used from page templates and Python code
to provide different image scales for image fields on content.

Image scales (Plone 3)

When the image is uploaded, both field or content, Plone creates scaled-down
versions from it by default.

These are configured using the ImageField ``sizes`` parameter. See the
ImageField class notes here:

	https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/Field.py

The default image scales for Image content are configured in:

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/image.py

Configuration:

sizes= {'large': (768, 768),
 'preview': (400, 400),
 'mini': (200, 200),
 'thumb': (128, 128),
 'tile': (64, 64),
 'icon': (32, 32),
 'listing': (16, 16),
 },

More info:

	http://plone.293351.n2.nabble.com/Register-browser-view-for-image-scales-tp5626267p5626267.html

getScale()

ImageField provides a getScale() method to get the scaled version of
the image based on the sizes configuration key.

See example in __bobo_traverse__:

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/image.py

Accessing images

ImageField is mapped to a traversable attribute of your content type.
E.g. if your content object has a field imageOne and is found at this URL:

http://yoursite/content

the image can be directly downloaded from:

http://yoursite/content/imageOne

Scaled versions for Image content (ATImage)

If you want different scales you can add image_XXX prefix where XXX is
the corresponding scale name:

http://yoursite/content/imageOne/image_preview

In Plone 4 this behavior comes from the monkey-patch applied by the
plone.app.imaging [http://plone.org/products/plone.app.imaging] package.

In Plone 3 this hook is defined in __bobo_traverse__ in ATImage class:
* https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/image.py

portal_catalog and images

Do not index image objects themselves, as adding image data to the
portal_catalog brain objects would greatly increase their site and make
brain look-up slow.

Instead, index only image paths using getPhysicalPath().
When you need to display image using metadata columns, you can generate the image
URL manually. Then, the image object will be woken up when the browser makes a
HTTP request for the image.

Custom image scales and recreating scale data

For Plone 4

plone.app.imaging [http://plone.org/products/plone.app.imaging] allows
you to configure available image scales in portal_properties ->
imaging_properties.

You can update these through-the-web or using GenericSetup profile.

propertiestool.xml

<?xml version="1.0"?>
<object name="portal_properties" meta_type="Plone Properties Tool">
 <object name="imaging_properties" meta_type="Plone Property Sheet">
 <property name="title">Image handling properties</property>
 <property name="allowed_sizes" type="lines">
 <element value="large 768:768"/>
 <element value="preview 400:400"/>
 <element value="mini 200:200"/>
 <element value="thumb 128:128"/>
 <element value="tile 64:64"/>
 <element value="icon 32:32"/>
 <element value="listing 16:16"/>

 <!-- Include our custom sizes here -->
 <element value="custom1 290:290"/>
 <element value="custom2 210:210"/>
 <element value="custom_210_189 210:189"/>
 <element value="custom_290_258 290:256"/>

 </property>
 </object>
</object>

Note

For Plone 4, after adding new scales no batch processing of existing images
are needed and new scales are created on-demand when the images are viewed
for the first time.

For Plone 3

Below is an example showing how to make custom image scales available in your
Plone site.

	Monkey-patch ATImages to have new scale versions available.

	Have migration code which will run all through all ATImage content on the
site and recreate their scale versions, thus populating image scale data for
new scale versions also.

	The new sizes are automatically effected to rich text editor image sizes
options (active WYSIWYG editor on Plone site)

images.py:

""" Add alternative image sizes to default ATImage scales.
 NOTE: This does not effect available user interface options in the visual editor etc.
"""

import transaction
from zope.app.component.hooks import setHooks, setSite, getSite

from Products.Five.browser import BrowserView

from Products.ATContentTypes.content.image import ATImage
from Products.ATContentTypes.interface.image import IATImage

Monkeypatch our new image sizes to be available in ATImage default scales.
This will also affect the "image sizes" option in the WYSIWYG text editor.
ATImage.schema["image"].sizes.update({
 "custom1": (290, 290),
 "custom2": (210, 210),
 "custom_210_189": (210, 189),
 "custom_290_258": (290, 258),
})

class RescaleImages(BrowserView):
 """ Migration view to recreate all image scale versions on all Image content types on the site.

 To trigger this migration code, enter the view URL manually in the browser address bar::

 http://yourhost/site/@@rescale_images

 We assume that you are running Zope in the foreground, monitoring the console for messages.

 This code is designed to work with sites with plenty of images.
 Tested with > 5000 images.

 Note that you need to run this rescale code only once to migrate the existing image content.
 New images will have custom scale versions available when the images are created.
 """

 def __call__(self):
 """ View processing entry point.
 """

 portal = getSite()

 # Iterate through all Image content items on the site
 all_images = portal.portal_catalog(show_inactive=True, language="ALL", object_provides=IATImage.__identifier__)

 done = 0

 for brain in all_images:
 content = brain.getObject()

 # Access schema in Plone 4 / archetypes.schemaextender compatible way
 schema = content.Schema()

 # This will trigger ImageField scale rebuild
 if "image" in schema:
 schema["image"].createScales(content)
 else:
 print "Has bad ATImage schema:" + content.absolute_url()

 # Since this is a HUGE operation (think of resizing 2 GB images)
 # it is not a good idea to buffer the transaction in memory
 # (Zope default behavior).
 # Using subtransactions we hint Zope when it would be a good
 # time to buffer the changes on disk.
 # http://www.zodb.org/documentation/guide/transactions.html
 if done % 10 == 0:
 # Commit subtransaction for every 10th processed item
 transaction.commit(True)

 done += 1
 print "(%d / %d) created scales for image: %s" % (done, len(all_images), "/".join(content.getPhysicalPath()))

 # Final commit
 transaction.commit()

 # Note that when entire transaction is committed, there will be a
 # huuuge delay before the message below is returned to the browser.
 # This is because Zope is busy updating the ZODB storage.

 # Make simple HTTP 200 answer
 return "Recreated image scales for %d images" % len(all_images)

configure.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 >
 <browser:page
 for="*"
 name="rescale_images"
 permission="cmf.ManagePortal"
 class=".images.RescaleImages"
 />
</configure>

Automatic image scales on ReferenceFields

Python code:

 from zope.component import adapts
 from zope.interface import implements, Interface
 from plone.app.imaging.interfaces import IImageScaleHandler

 def dereference(func_name):
 def new_func(self, instance, *args, **kw):
 if self.context is None:
 instance = self.reference_field.get(instance)
 self.context = instance.getPrimaryField()
 handler = IImageScaleHandler(self.context)
 func = getattr(handler, func_name)
 return func(instance, *args, **kw)
 return new_func

 class IReferenceField(Interface):
 """ marker """

 class ReferencedImageScaleHandler(object):
 """ proxy the standard image scale handler so that it operates on a referenced image """
 implements(IImageScaleHandler)
 adapts(IReferenceField)

 def __init__(self, context):
 self.reference_field = context
 self.context = None

 getScale = dereference('getScale')
 createScale = dereference('createScale')
 retrieveScale = dereference('retrieveScale')
storeScale = dereference('storeScale')

in configure.zcml:

<class class="Products.Archetypes.Field.ReferenceField">
 <implements interface=".IReferenceField"/>
</class>

<adapter
 factory=".ReferencedImageScaleHandler" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Images »

Images in page templates

Description

How to link to images in page templates in Plone.

	Putting a static image into a page template
	Relative image look-ups

	Registering static media folders in your add-on product
	Zope 3 resource directory

	Rendering Image content items

	Rendering ImageField

	tag() method
	Scaling images

	Lightbox style image pop-ups
	Rotating banners

Putting a static image into a page template

Here is an example how to create an tag in a .pt file:

Let's break this down:

	Obviously we are rendering an tag.

	The src attribute is dynamically generated using a TALES
expression.

	We use string comprehension to create the src attribute.
Alternatively we could use e.g. the python: TALES expression
type and embed one line python of code to generate the attribute value.

	We look up a helper view called plone_portal_state.
This is a BrowserView shipped with Plone. Its purpose is to expose
different helper methods to page templates and Python code.

	We call plone_portal_state's portal_url() method. This will return
the root URL of our site.
Note that this is not necessary the domain's top-level URL,
as Plone sites can be nested in folders, or served on a path among
unrelated web properties.

	We append our Zope 3 resource path to our site root URL (see below). This
maps to some static media folder in our add-on files on the disk.

	There we point to close-icon.png image file.

	We also add the alt attribute of the tag normally.
It is not dynamically generated.

When the page template is generated, the following snippet could look like,
for example:

... or:

... depending on the site virtual hosting configuration.

Relative image look-ups

Warning

Never create relative image look-ups without prefixing the image source
URL with the site root.

Hardcoded relative image path might seem to work:

... but this causes a different image base URL to be used on every page.
The image URLs, from the browser point of view, would be:

... and then in another folder:

... which prevents the browser from caching the image.

Registering static media folders in your add-on product

Zope 3 resource directory

The right way to put in a static image is to use a Zope 3 resource
directory.

	Create folder yourcompany.product/yourcompany/product/browser/static.

	Add the following ZCML to
yourcompany.product/yourcompany/product/browser/configure.zcml.

<browser:resourceDirectory
 name="yourcompany.product"
 directory="static"
 layer=".interfaces.IThemeSpecific"
 />

This will be picked up at the ++resource++yourcompany.product/ static
media path.

Layer is optional: the static media path is available only
when your add-on product is installed if the
layer is specified.

Also see Resource folders

Rendering Image content items

You can refer to ATImage object's content data download by adding
/image to the URL:

The magic is done in the __bobo_traverse__ method of ATImage by
providing traversable hooks to access image download:

	https://github.com/plone/Products.ATContentTypes/blob/master/Products/ATContentTypes/content/image.py

Rendering ImageField

Archetypes's ImageField maps its data to the content object at attribute
which is the field's name.
If you have a field campaignVideoThumbnail you can generate an image tag
as follows:

If you need more complex output,
create a helper function in your BrowserView and use Python code
to perform the ImageField manipulation.

See ImageField for more information:

	https://github.com/plone/Products.Archetypes/blob/master/Products/Archetypes/Field.py

tag() method

Note

Using tag() is discouraged. Create your image tags manually.

Some content provides a handy tag() method to generate
 tags
with different image sizes.

tag() is available on

	Archetypes ImageField

	ATNewsItem

	ATImage

	FSImage (Zope 2 image object on the file-system)

tag() is defined in OFS.Image [http://svn.zope.org/Zope/trunk/src/OFS/Image.py?rev=96262&view=auto].

Scaling images

tag() supports scaling. Scale sizes are predefined.
When an ATImage is uploaded,
various scaled versions of it are stored in the database.

Displaying a version of the image using the "preview" scale:

image.tag(scale="preview", alt="foobar text")

This will generate:

Note

If you are not using the alt attribute, you should set it to an
empty string: alt="". Otherwise screen readers will read
the src attribute of the tag aloud.

In order to simplify accessing these image scales, use
archetypes.fieldtraverser [https://pypi.python.org/pypi/archetypes.fieldtraverser].
This package allows you to traverse to the stored image scales while still
using AnnotationStorage and is a lot simpler to get going (in the
author's humble opinion :).

Default scale names and sizes are defined in ImageField declaration for
custom ImageFields.
For ATImage, those are in
Products.ATContentTypes.content.image [http://svn.plone.org/svn/collective/Products.ATContentTypes/trunk/Products/ATContentTypes/content/image.py].

Lightbox style image pop-ups

Plone comes with plone.app.jquerytools [https://pypi.python.org/pypi/plone.app.jquerytools] which offers easy integration
for lightbox style image pop-ups.

You can use Plone standard image content type, defining scales using plone.app.imaging [https://github.com/plone/plone.app.imaging/]
or you can define image fields in your schema.

In the example below we define custom image fields in Archetypes schema.

contenttype.py:

atapi.ImageField(
 'imageTwo',
 widget=atapi.ImageWidget(
 label=_(u"Kuva #2"),
),
 validators=('isNonEmptyFile'),
 languageIndependent=True,
 sizes={
 'thumb': (90, 90),
 'large': (768, 768),
 },
),

atapi.ImageField(
 'imageThree',
 widget=atapi.ImageWidget(
 label=_(u"Kuva #3"),
),
 validators=('isNonEmptyFile'),
 languageIndependent=True,
 sizes={
 'thumb': (90, 90),
 'large': (768, 768),
 },
),

Related view page template file

<div class="product-all-images">

</div>

And then we activate all this in a Javascript using prepOverlay() from plone.app.jquerytools

 /*global window,document*/

(function($) {

 "use strict";

 /**
 * Make images clickable and open a bigger version of the image when clicked
 */
 function prepareProductImagePreviews() {

 // https://pypi.python.org/pypi/plone.app.jquerytools/1.4#examples
 $('.product-image-preview')
 .prepOverlay({
 subtype: 'image',
 urlmatch: 'thumb',
 urlreplace: 'large'
 });
 }

 $(document).ready(function() {
 prepareProductImagePreviews();
 });

})(jQuery);

Rotating banners

Simple rotating banneres can be done with jQuery Cycle plug-in (lite) [http://jquery.malsup.com/cycle/].

Example TAL code... render list of content items and extract one image from each of them

<dd class="cycle">

 <tal:hl repeat="obj view/obj">
 <a tal:attributes="href python:view.getLink(obj); title python:view.getAltText(obj)" class="outer-wrapper">

 </tal:hl>

</dd>

Then use the the following Javascript to boostrap the cycling

(function($) {

 "use strict";

 function rotateBanners() {
 $(".cycle").cycle();
 }

 $(document).ready(function() {
 rotateBanners();
 });

})(jQuery);

You need to have this snippet and jquery.cycle.light.js in your portal_javascripts registry.

You also may need to set pixel height for cycle elements, as they use absolute
positioning making the element take otherwise 0 pixel of height.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Images »

Python Imaging Library (PIL)

Plone uses internally Python Imaging Library (PIL)
for low level image manipulation and decoding.

Installing PIL

This concerns only UNIXes as Windows installer comes with
PIL binaries.

	http://www.koansys.com/tech/install-plone-with-zopeskel-buildout-needs-pil

	http://blog.twinapex.fi/2009/11/19/installing-python-imaging-library-pil-under-virtualenv-or-buildout/

	http://destefano.wordpress.com/2008/03/18/zope-buildouts-for-plone-on-os-x-heaven-or-hell/

	PIL has libjpeg as a dependency and you need to install it using
your operating system package manager. On OSX
you can use macports [http://www.macports.org/].

	Make sure that you don't have PIL without libjpeg
support in your system-wide Python setup

Installing libjpeg on OS X

Get http://www.ijg.org/files/jpegsrc.v7.tar.gz, and then:

tar zxvf jpegsrc.v7.tar.gz
cd jpeg-7
cp /usr/share/libtool/config.sub .
cp /usr/share/libtool/config.guess .
./configure --enable-shared --enable-static
sudo make

Then you can install PIL with JPEG support.

Pillow

In late 2010, a packaging fork called Pillow [https://pypi.python.org/pypi/Pillow] was created to offer better multi-OS installation support. Specifically it offers:

	Setuptools compatibility

	Hosting (and mirroring) by PyPI (vs. off site)

	Windows eggs

	Bug fixes (many of which simply add vendor-specific library directories to the compiler's search path.)

As a result, PIL can now be installed on many more systems simply by using the "Pillow" package name. E.g.:

$ easy_install Pillow

Or:

$ pip install Pillow

Or add to the list of eggs in your Buildout.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Syndication

	Introduction

	Customize how a content type is syndicated
	Create adapter

	Register Adapter

	Dexterity type

	Register your Folderish type as syndicatable

	Create your own feed type
	Creating a json feed type

	Available FeedItem properties to override

	Available feed properties to override

Introduction

In Plone 4.3, there is a new syndication framework that allows you to customize
how content in your site is syndicated.

Customize how a content type is syndicated

In this example, we'll show how to customize how News items are syndicated on
your site.

Create adapter

We'll create an adapter that overrides the body text:

from Products.CMFPlone.browser.syndication.adapters import BaseItem
from Products.CMFPlone.interfaces.syndication import IFeed
from Products.ATContentTypes.interfaces import IATNewsItem
from zope.component import adapts

class NewsFeedItem(BaseItem):
 adapts(IATNewsItem, IFeed)

 @property
 def body(self):
 return 'Cooked:' + self.context.CookedBody()

Register Adapter

Example:

<adapter
 factory=".NewsFeedItem"
 for="Products.ATContentTypes.interfaces.IATNewsItem
 Products.CMFPlone.interfaces.syndication.IFeed"
 provides="Products.CMFPlone.interfaces.syndication.IFeedItem" />

Dexterity type

If the type you're customizing is a dexterity type then Plone will use the
Products.CMFPlone.browser.syndication.DexterityItem adapter by default for adopting
Dexterity content to syndication.IFeedItem. You can override the default adapter by
registering your own adapter this way:

from zope.component import adapts
from Products.CMFPlone.interfaces.syndication import IFeed
from plone.dexterity.interfaces import IDexterityContent
from Products.CMFPlone.browser.syndication.adapters import DexterityItem

class MyAdapter(DexterityItem):
 adapts(IMyType, IFeed)

 @property
 def link(self):
 return '...some custom url'

 guid = link

<adapter
 factory=".adapters.MyAdapter"
 for="my.package.mytype.IMyType
 Products.CMFPlone.interfaces.syndication.IFeed"
 provides="Products.CMFPlone.interfaces.syndication.IFeedItem" />

Register your Folderish type as syndicatable

Just make sure it implements the ISyndicatable interface:

from Products.CMFPlone.interfaces.syndication import ISyndicatable

...
class MyFolderishType(object):
 implements(ISyndicatable)
...

Create your own feed type

Example of creating your own simple feed type and registering it.

Create your feed template:

<?xml version="1.0" ?>
<feed xml:base=""
 xml:lang="en"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 tal:define="feed view/feed;
 url feed/link;"
 tal:attributes="xml:base url; xml:lang feed/language"
 i18n:domain="Products.CMFPlone">
<link rel="self"
 href=""
 tal:attributes="href request/ACTUAL_URL" />
<title type="html" tal:content="feed/title" />
<subtitle tal:content="feed/description" />
<updated tal:content="python:feed.modified.ISO8601()" />
<link tal:attributes="href url" rel="alternate" type="text/html" />
<id tal:content="string:urn:syndication:${feed/uid}" />
<tal:repeat repeat="item feed/items">
 <entry tal:define="published item/published;
 modified item/modified;">
 <title tal:content="item/title"></title>
 <link rel="alternate" type="text/html" href="" tal:attributes="href item/link" />
 </entry>
</tal:repeat>
</feed>

Register the view in ZCML:

<browser:page
 for="Products.CMFPlone.interfaces.syndication.ISyndicatable"
 class="Products.CMFPlone.browser.syndication.views.FeedView"
 name="myfeed.xml"
 permission="zope2.View"
 template="myfeed.xml.pt"
 />

Finally, register the feed view in the control panel syndication-settings
in the Allowed Feed Types setting. You should be able to append a new feed
type like this:

myfeed.xml|My Feed Type

Now, if the My Feed Type is enabled on a syndicatable item(you'll probably
also need to allow editing syndication settings), you'll be able to append
myfeed.xml onto the url to use the new syndication.

Creating a json feed type

First, we'll create the json feed view class:

from Products.CMFPlone.browser.syndication.views import FeedView
import json

class JSONFeed(FeedView):

 def index(self):
 data = []
 feed = self.feed()
 for item in feed.items:
 data.append({
 'link': item.link,
 'title': item.title,
 'description': item.description
 })
 return json.dumps(data)

Then register the adapter with ZCML:

<browser:page
 for="Products.CMFPlone.interfaces.syndication.ISyndicatable"
 class=".JSONFeed"
 name="json"
 permission="zope2.View"
 />

Finally, register the feed view in the control panel syndication-settings
in the Allowed Feed Types setting. You should be able to append a new feed
type like this:

json|JSON

Now, if the JSON is enabled on a syndicatable item(you'll probably
also need to allow editing syndication settings), you'll be able to append
json onto the url to use the new syndication.

Available FeedItem properties to override

If you're inheriting Products.CMFPlone.browser.syndication.adapters.BaseItem
or Products.CMFPlone.browser.syndication.adapters.DexterityItem in an attempt
to override the default feed item behavior, these are the properties available
to you to override:

	link

	title

	description

	categories

	published

	modified

	uid

	rights

	publisher

	author

	author_name

	author_email

	body

	guid

	has_enclosure

	file

	file_url

	file_length

	file_type

Available feed properties to override

If you're inheriting from Products.CMFPlone.browser.syndiction.adapters.FolderFeed
in an attempt to override the functionality of a feed folder or collection,
these are the available properties to override:

	link

	title

	description

	categories

	published

	modified

	uid

	rights

	publisher

	logo

	icon

	items

	limit

	language

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

Miscellaneous information

This section describes functions and APIs which are not directly related to any bigger subsystems.
Also some other information that does not fit in any specific category

Managing member profile (portal_membership under site root)

	Helper views and tools

	Zope DateTime

	Sending email

	Annotations

	Normalizing ids

	Monkey-patching

	Command-line interaction and scripting

	Clock and asyncronous tasks

	Flowplayer

	Navigation trees

	Search engine optimization (seo)

	Creating your own Paster templates

	Facebook integration

	Slidehows and carousels

	Upgrade tips

	HTML manipulation and transformations

	SQL

	Changing Portal Transforms Settings via Python

	Running plone.org site locally

	Looking ahead towards Plone 5

	Things We Don’t Like About Having to Rely Only on Browser Views

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Helper views and tools

	Introduction

	IPortalState and IContextState

	Use in templates and expressions

	Tools
	ITools interface

	IPlone

	getToolByName

Introduction

This document explains how to access view and context utilities in Plone.

IPortalState and IContextState

IPortalState defines IContextState view-like interfaces
to access miscellaneous information useful for the
rendering of the current page. The views are cached properly,
so they should access the information quite effectively.

	IPortalState is mapped as the plone_portal_state name view.

	IContextState is mapped as the plone_context_state named view.

	ITools is mapped as the plone_tools named view.

To see what's available through the interface,
read the documentation in the
plone.app.layout.globals.interfaces [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/globals/interfaces.py]
module.

Example showing how to get the portal root URL:

from zope.component import getMultiAdapter
...

class MyView(BrowserView):

 ...

 def __call__(self):
 # aq_inner is needed in some cases like in the portlet renderers
 # where the context itself is a portlet renderer and it's not on the
 # acquisition chain leading to the portal root.
 # If you are unsure what this means always use context.aq_inner
 context = self.context.aq_inner
 portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state')

 self.some_url = portal_state.portal_url() + "/my_foo_bar"

Example showing how to get the current language:

from zope.component import getMultiAdapter

...

portal_state = getMultiAdapter((self.context, self.request), name=u'plone_portal_state')
current_language = portal_state.language()

Example showing how to expose portal_state helper to a template:

	ZCML includes portal_state in allowed_attributes

<browser:page
 for="*"
 name="test"
 permission="zope2.Public"
 class=".views.MyView"
 allowed_attributes="portal_state"
 />

A Python class exposes the variable:

from Acquisition import aq_inner
from zope.component import getMultiAdapter

class MyView(BrowserView):

 def portal_state(self):
 context = aq_inner(self.context)
 portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state')
 return portal_state

Templates can use it as follows:

<div>
 The language is
</div>

You can directly look up portal_state in templates using acquisition
and view traversal, without need of ZCML code
or Python view code changes. This is useful e.g. in overridden
viewlet templates:

<!--

 During traversal, ``@@`` signals that the traversing
 machinery should look up a view by that name.

 First we look up the view and then use
 it to access the variables defined in
 ``IPortalState`` interface.

-->

<div tal:define="portal_state context/@@plone_portal_state" >
 The language is
</div>

Use in templates and expressions

You can use IContextState and IPortalState in TALES
expressions, e.g. portal_actions, as well.

Example portal_actions conditional expression:

python:object.restrictedTraverse('@@plone_portal_state').language() == 'fi'

Tools

Tools are persistent utility classes available in the site root.
They are visible in the ZMI, and sometimes expose useful
information or configuration here. Tools include e.g.:

	portal_catalog

	Search and indexing facilities for content

	portal_workflow

	Look up workflow status, and do workflow-related actions.

	portal_membership

	User registration information.

ITools interface

plone.app.layout.globals.interfaces.ITools interface [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/globals/interfaces.py]
and Tools BrowserView provide cached access for the most commonly
needed tools.

ITools is mapped as the plone_tools view for traversing.

Example:

from Acquisition import aq_inner
from zope.component import getMultiAdapter

context = aq_inner(self.context)
tools = getMultiAdapter((context, self.request), name=u'plone_tools')

portal_url = tools.url()

The root URL of the site is got by using portal_url.__call__()
method

the_current_root_url_of_the_site = portal_url()

IPlone

Products.CMFPlone.browser.interfaces.IPlone [https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/interfaces.py#L183]
provides some helper methods for Plone specific functionality and user interface.

	IPlone helper views is registered under the name plone

getToolByName

getToolByName is the old-fashioned way of getting tools,
using the context object as a starting point.
It also works for tools which do not implement the ITools interface.

getToolByName gets any Plone portal root item using acquisition.

Example:

from Products.CMFCore.WorkflowCore import WorkflowException

Do the workflow transition "submit" for the current context
workflowTool = getToolByName(self.context, "portal_workflow")
workflowTool.doActionFor(self.context, "submit")

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Zope DateTime

Description

Using Zope DateTime class in Plone programming

	Introduction

	Default formatting
	Formatting examples

	DateTime API

	Converting between DateTime and datetime

	DateTime problems and pitfalls

	Parsing both US and European dates

	Friendly date/time formatting

	Friendly date/time from TAL

Introduction

Some Plone dates are stored as Zope DateTime objects.
This is different from standard Python datetime (notice the letter casing).
Zope DateTime predates Python datetime which was added in Python 2.4.
Zope DateTime is old code, so do rites necessary
for your religion before programming with it.

	Zope DateTime HTML API documentation [https://pypi.python.org/pypi/DateTime/]

	Python datetime documentation [http://docs.python.org/library/datetime.html]

Note

Using Python datetime is recommended if possible.
Zope DateTime should be dealt in legacy systems only
as Python datetime is much more documented and widely used.

Default formatting

Since Plone 4

	A per-language format string from a translations is preferred

	If such string is not available the default is taken from portal_properties / site_properties

Formatting examples

US example:

localTimeFormat: %b %d, %Y
localLongTimeFormat: %b %d, %Y %I:%M %p

European style format:

localTimeFormat: %d.%m.%Y (like 1.12.2010)
localLongTimeFormat: %H:%M %d.%m.%Y (like 12:59 1.12.2010)

More info

	https://dev.plone.org/wiki/DateTimeFormatting

	http://docs.python.org/library/time.html#time.strftime

DateTime API

Zope DateTime HTML API documentation [https://pypi.python.org/pypi/DateTime/]

You may find the following links useful

	Source code [http://svn.zope.org/DateTime/trunk/src/DateTime/DateTime.py?rev=96241&view=auto]

	README [http://svn.zope.org/DateTime/trunk/src/DateTime/DateTime.txt?rev=96241&view=auto]

	Interface description [http://svn.zope.org/DateTime/trunk/src/DateTime/interfaces.py?rev=96241&view=auto]

Converting between DateTime and datetime

Since two different datetime object types are used, you need to often convert between them.

You can convert Zope DateTime objects to datetime objects like so:

from DateTime import DateTime
zope_DT = DateTime() # this is now.
python_dt = zope_DT.asdatetime()

Vice versa, to convert from a Python datetime object to a Zope DateTime one:

zope_DT = DateTime(python_dt)

Note, if you use timezone information in python datetime objects, you might
loose some information when converting. Zope DateTime handles all timezone
information as offsets from GMT.

DateTime problems and pitfalls

This will fail silenty and you get a wrong date:

dt = DateTime("02.07.2010") # Parses like US date 02/07/2010

Please see

	http://pyyou.wordpress.com/2010/01/11/datetime-against-mx-datetime/

Parsing both US and European dates

Example:

Lazy-ass way to parse both formats
2010/12/31
31.12.2010
try:
 if "." in rendDate:
 # European
 end = DateTime(rendDate, datefmt='international')
 else:
 # US
 end = DateTime(rendDate)

Friendly date/time formatting

Format datetime relative to the current time,
human-readable:

def format_datetime_friendly_ago(date):
 """ Format date & time using site specific settings.

 @param date: datetime object
 """

 if date == None:
 return ""

 date = DT2dt(date) # zope DateTime -> python datetime

 # How long ago the timestamp is
 # See timedelta doc http://docs.python.org/lib/datetime-timedelta.html
 #since = datetime.datetime.utcnow() - date

 now = datetime.datetime.utcnow()
 now = now.replace(tzinfo=pytz.utc)

 since = now - date

 seconds = since.seconds + since.microseconds / 1E6 + since.days * 86400

 days = math.floor(seconds / (3600*24))

 if days <= 0 and seconds <= 0:
 # Timezone confusion, is in future
 return "moment ago"

 if days > 7:
 # Full date
 return date.strftime("%d.%m.%Y %H:%M")
 elif days >= 1:
 # Week day format
 return date.strftime("%A %H:%M")
 else:
 hours = math.floor(seconds/3600.0)
 minutes = math.floor((seconds % 3600) /60)
 if hours > 0:
 return "%d hours %d minutes ago" % (hours, minutes)
 else:
 if minutes > 0:
 return "%d minutes ago" % minutes
 else:
 return "few seconds ago"

Friendly date/time from TAL

From within your TAL templates, you can call toLocalizedTime() like:

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Sending email

Description

How to programmatically send email in Plone

	Introduction

	Configuring MailHost for a mail queue

	Manually calling MailHost
	Preparing mail text

	Graceful failing

Introduction

This document tells how to send email from Plone.

Email can be sent:

	manually, by calling MailHost;

	using a Content Rule (content rules have an email-out action by default)
which can be activated by a workflow transition, for example;

	triggering email-based password reset.

Configuring MailHost for a mail queue

Products.MailHost supports asynchronous sending in a separate thread via a mail
queue.

Note

Using a mail queue is recommended for production sites.

To enable the queue, go to the ZMI and the MailHost tool. Here, check the "Use
mail queue" setting and set the "Queue directory". The queue directory is given
as an absolute path on your server, must have a maildir layout (it needs the
directories 'cur', new' and 'tmp' in it) and must be writeable by the system
user, under which the Zope thread runs.

Manually calling MailHost

After your mail_text is prepared, sending it is as simple as:

try:
 host = getToolByName(self, 'MailHost')
 # The ``immediate`` parameter causes an email to be sent immediately
 # (if any error is raised) rather than sent at the transaction
 # boundary or queued for later delivery.
 return host.send(mail_text, immediate=True)
except SMTPRecipientsRefused:
 # Don't disclose email address on failure
 raise SMTPRecipientsRefused('Recipient address rejected by server')

Preparing mail text

mail_text can be generated by calling a page template (.pt) with
keyword arguments. The values are accessed in the template as
option/keyword. For example, take a sample template:

<tal:root define="lt string:<;
 gt string:>;
 dummy python:request.RESPONSE.setHeader('Content-Type', 'text/plain;; charset=%s' % options['charset']);
 member python:options['member'];"
>From: ""
To:
Subject: Subject Line
Content-Type: text/plain; charset=
Dear :
You can now log in as at
Cheers!
The website team
</tal:root>

This can be called with a member object and the portal_url:

mail_template = portal.mail_template_id
mail_text = mail_template(member=member,
 portal_url=portal.absolute_url(),
 charset=email_charset,
 request=REQUEST)

For more complete examples (with i18n support, etc.) see the password reset
modules (particularly Products.remember.tools.registration).

Note

If you don't need to have third parties to override your email templates
it might be cleaned to use Python string templates, as XML based TAL
templates are not designed for plain text templating.

Graceful failing

In the case SMTP server rejects the connection. etc. don't abort the current transaction (which is
the default behavior)

	http://stackoverflow.com/questions/9013009/ploneformgen-and-fail-safe-email-send

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Annotations

Description

How to use annotation design pattern to store arbitrary values on Python
objects (Plone site, HTTP request) for storage and caching purposes.

	Introduction

	HTTP request example

	Content annotations
	Overview and basic usage

	Advanced content annotation

	Wrapping your annotation with an adapter

	Cleaning up content annotations

	Make your code persistence free

	Other resources

Introduction

Annotations is conflict-free way to stick attributes on arbitrary Python objects.

Plone uses annotations for:

	Storing field data in Archetypes (Annotation storage).

	Caching values on HTTP request object (plone.memoize cache decorators).

	Storing settings information in portal or content object (various add-on
products).

See zope.annotation package [https://pypi.python.org/pypi/zope.annotation/3.4.1].

HTTP request example

Store cached values on HTTP request during the life cycle of one request
processing. This allows you to cache computed values if the computation
function is called from the different, unrelated, code paths.

from zope.annotation.interfaces import IAnnotations

Non-conflicting key
KEY = "mypackage.something"

annotations = IAnnotations(request)

value = annotations.get(KEY, None)
if value is None:
 # Compute value and store it on request object for further look-ups
 value = annotations[KEY] = something()

Content annotations

Overview and basic usage

If you want to extend any Plone content to contain "custom" settings annotations
is the recommended way to do it.

	Your add-on can store its settings in Plone site root object using local
utilities or annotations.

	You can store custom settings on content objects using annotations.

By default, in content annotations are stored:

	Assigned portlets and their settings.

	Archetypes content type fields using AnnotationStorage (like text
field on Document).

	Behavior data from plone.behavior package.

Example:

Assume context variable refers to some content item

Non-conflicting key
KEY = "yourcompany.packagename.magicalcontentnavigationsetting"

annotations = IAnnotations(context)

Store some setting on the content item
annotations[KEY] = True

Advanced content annotation

The above example is enough for storing simple values as annotations. You may
provide more complex annotation objects depending on your application logic on
various content types. This example shows how to add a simple "Like / Dislike"
counter on a content object.

class LikeDislike(object):
 def __init__(self):
 self.reset()

 def reset(self):
 self._likes = set()
 self._dislikes = set()

 def likedBy(self, user_id):
 self._dislikes.discard(user_id)
 self._likes.add(user_id)

 def dislikedBy(self, user_id):
 self._likes.discard(user_id)
 self._dislikes.add(user_id)

 def status(self):
 return len(self._likes), len(self._dislikes)

At this step it is essential to check that your custom annotation class can be
pickled [http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled]. In
the Zope world, this means that you cannot hold in your annotation object any
reference to a content too.

Tip

Use the UID of a content object if you need to keep the reference of that
content object in an annotation.

The most pythonic recipe to get (and set if not existing) your annotation for a
given key is:

from zope.annotation import IAttributeAnnotatable, IAnnotations

KEY = 'content.like.dislike' # It's best place is config.py in a real app

def getLikesDislikeFor(item):
 """Factory for LikeDislike as annotation of a contentish
 @param item: any annotatable object, thus any Plone content
 """
 # Ensure the item is annotatable
 assert IAttributeAnnotatable.providedBy(item) # Won't work otherwise
 annotations = IAnnotations(item)
 return annotations.setdefault(KEY, LikeDislike())

This way, you're sure that :

	You won't create annotations on an object that can't support them.

	You will create a new fresh annotation mastered with your LikeDislike
for your context object if it does not already exist.

	You can play with your LikeDislike annotation object as with any
Python object, all attributes changes will be stored automatically in the
annotations of the associated content object.

Wrapping your annotation with an adapter

zope.annotation comes with the factory() function that transforms
the annotation class into an adapter (possibly named as the annotation key).

In addition the annotation created this way have location awareness, having
__parent__ and __name__ attributes.

Let's go back to the above sample and use the zope.annotation.factory()
function.

import zope.interface
import zope.component
import zope.annotation

from zope.interface import implements
from zope.annotation import factory

from some.contenttype.interfaces import ISomeContent

KEY = 'content.like.dislike' # It's best place is config.py in a real app

class ILikeDislike(zope.interface.Interface):
 """Model for like/dislike annotation
 """
 def reset():
 """Reinitialize everything
 """

 def likedBy(user_id):
 """User liked the associated content
 """

 def dislikedBy(user_id):
 """User disliked the associated content
 """

class LikeDislike(object):
 implements(ILikeDislike)
 zope.component.adapts(ISomeContent)

 def __init__(self):
 # Does not expect argument as usual adapters
 # You can access annotated object through ``self.__parent__``
 self.reset()

 def reset(self):
 self._likes = set()
 self._dislikes = set()

 def likedBy(self, user_id):
 self._dislikes.discard(user_id)
 self._likes.add(user_id)

 def dislikedBy(self, user_id):
 self._likes.discard(user_id)
 self._dislikes.add(user_id)

 def status(self):
 return len(self._likes), len(self._dislikes)

Register as adapter (you may do this in ZCML too)
zope.component.provideAdapter(factory(LikeDislike, key=KEY))

Lets play with some content
item = getSomeContentImplementingISomeContent() # Guess what :)

Let's have its annotation
like_dislike = ILikeDislike(item)

Play with this annotation
like_dislike.likedBy('joe')
like_dislike.dislikedBy('jane')

assert like_dislike.status() == (1, 1)
assert like_dislike.__parent__ is item
assert like_dislike.__name__ == KEY

Tip

Read a full doc / test / demo of the zope.annotation.factory() in the
README.txt file in the root of zope.annotation package for
more advanced usages.

Cleaning up content annotations

Warning

If you store full Python objects in annotations you need to clean them up
during your add-on uninstallation. Otherwise if Python code is not present
you cannot no longer import or export Plone site (annotations are pickled
objects in the database and pickles do no longer work if the code is not
present).

How to clean up annotations on content objects:

def clean_up_content_annotations(portal, names):
 """
 Remove objects from content annotations in Plone site,

 This is mostly to remove objects which might make the site un-exportable
 when eggs / Python code has been removed.

 @param portal: Plone site object

 @param names: Names of the annotation entries to remove
 """

 output = StringIO()

 def recurse(context):
 """ Recurse through all content on Plone site """

 annotations = IAnnotations(context)

 #print >> output, "Recusring to item:" + str(context)
 print annotations

 for name in names:
 if name in annotations:
 print >> output, "Cleaning up annotation %s on item %s" % (name, context.absolute_url())
 del annotations[name]

 # Make sure that we recurse to real folders only,
 # otherwise contentItems() might be acquired from higher level
 if IFolderish.providedBy(context):
 for id, item in context.contentItems():
 recurse(item)

 recurse(portal)

 return output

Make your code persistence free

There is one issue with the above methods: you are creating new persistent
classes so your data need your source code.
That makes your code hard to uninstall (have to keep the code BBB + cleaning
up the DB by walking throw all objects)

So here is an other pattern to store data in annotations: Use already existing
persistent base code instead of creating your own.

Please use one of theses:

	BTrees

	PersistentList

	PersistentDict

This pattern is used by cioppino.twothumbs and collective.favoriting addons.

How to achieve this: https://gist.github.com/toutpt/7680498

Other resources

	http://plone.org/documentation/tutorial/embrace-and-extend-the-zope-3-way/annotations

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Normalizing ids

Description

How to convert arbitrary text input to URL/CSS/file/programming safe ids.

	Introduction
	Examples

	Creating ids programmatically

	Other

Introduction

Normalizers turns arbitrary string (with unicode letters) to machine friendly ASCII ids.
Plone provides different id normalizers.

E.g:

åland -> aland

Plone has conversion utilities for

	For URIs and URLs (plone.i18n.normalizer.interfaces.IURLNormalizer)

	For filenames

	For HTML ids and CSS

Normalization depends on the locale. E.g. in English "æ" will be normalized as "ae" but in Finnish it will
be normalized "å" -> "a".

See plone.i18n.normalizers package [https://github.com/plone/plone.i18n/blob/master/plone/i18n/normalizer/__init__.py].

Examples

Simple example for CSS id:

from zope.component import getUtility
from plone.i18n.normalizer.interfaces import IIDNormalizer

normalizer = getUtility(IIDNormalizer)
id = "portlet-static-%s" % normalizer.normalize(header)

Hard-coded id localizer which directly uses class instance and does not allow override by utility configuration.
You can use normalizers this way also when getUtility() is not available (e.g. start up code):

from plone.i18n.normalizer import idnormalizer

id = idnormalizer.normalize(u"ÅÄÖrjy")

Language specific example for URL:

from zope.component import queryUtility
from plone.i18n.normalizer.interfaces import IURLNormalizer

 # Get URL normalizer for language english
util = queryUtility(IURLNormalizer, name="en")

To see available language specific localizers, see the source code of plone.i18n.normalizers package.

More examples:

	Static text portlets normalizes portlet title for CSS class [https://github.com/plone/plone.portlet.static/blob/master/plone/portlet/static/static.py].

Creating ids programmatically

If you are creating content programmatically using invokeFactory() or by
calling the class constructor you need to provide the id yourself.

Below is an example how to generate id from a title. container is the
folderish object that will contain our new object.:

import time
import transaction
from zope.container.interfaces import INameChooser

For the NameChooser to work, it needs our object to already exist.
So we create our object with a temporary but unique id. Seconds since
epoch will do.
oid = container.invokeFactory(portal_type, id=time.time())

It's necessary to save the object creation before we can rename it
transaction.savepoint(optimistic=True)
new_obj = container._getOb(oid)

Now we create and set a new user-friendly id from the object title
title = "My Little Pony"
oid = INameChooser(container).chooseName(title, new_obj)
new_obj.setId(oid)
new_obj.reindexObject()

Other

Enforcing normalization for old migrated context [http://plone.org/documentation/how-to/how-to-force-all-your-old-content-into-the-new-normalized-id-format].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Monkey-patching

A monkey patch (also spelled monkey-patch, MonkeyPatch) is a way to
extend or modify the runtime code of dynamic languages (e.g. Smalltalk,
JavaScript, Objective-C, Ruby, Perl, Python, Groovy, etc.) without
altering the original source code.

Plone community promotes conflict free way to do monkey patching
using collective.monkeypatcher package [https://pypi.python.org/pypi/collective.monkeypatcher].

Patching constants

Some modules (typically config.py files) include constant
definitions used throughout the package. Given that
collective.monkeypatcher is intended to patch methods
you'll not be able to patch a constant straightforward. Instead you'll
have to make use of the handler option:

<monkey:patch
 description="Add new terabyte constant"
 class="Products.CMFPlone.CatalogTool.CatalogTool"
 original="SIZE_CONST"
 replacement=".patches.patched_size_const"
 handler=".patches.apply_patched_const"
 />

And your patches.py module should include this:

NEW_SIZE_CONST = {'kB': 1024, 'MB': 1024*1024, 'GB': 1024*1024*1024, 'TB': 1024*1024*1024*1024}

patched_size_const = lambda : NEW_SIZE_CONST # Now we have a callable method!

def apply_patched_const(scope, original, replacement):
 setattr(scope, original, replacement())
 return

This way the original SIZE_CONST constant would be replaced by
the result of the lambda function, which is our new constant.

Patching @property methods

If you are to patch a @property decorated method you can use the
handler configuration option:

<monkey:patch
 description="Performance boost in foldercontents"
 class="plone.app.content.browser.foldercontents.FolderContentsTable"
 original="items"
 replacement=".patches.patched_items"
 handler=".patches.apply_patched_property"
 />

And your patches.py module should include this:

def items(self):
 ... # The body of your patched method

def apply_patched_property(scope, original, replacement):
 # This is actually the same as apply_patched_const above
 setattr(scope, original, replacement())
 return

patched_items = lambda : property(items) # We get a @property decorated method!

This way the original items method would be replaced by the
result of the lambda function, which is a @property decorated
method written in a different way.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Command-line interaction and scripting

Description

How to run command-line Python scripts, timed jobs (cron)
and batch jobs against Plone sites and Zope application server.

	Introduction

	Starting interactive interpreter

	Running scripts

	Cron and timed jobs

	Scripting context

	Committing transactions

	zopepy

	Setting up ZEO for command line-processing

	Posing as user

	Spoofing HTTP request

	Creating Plone site in buildout

	screen
	Start new screen

	Attach to an existing screen

Introduction

Warning

Plone code is somewhat ugly and expects you to have real HTTP request lifecycle
to do many things. For command line scripts, you need to mock up this and mocking
up ofter fails. Instead of trying to create a pure command-line script,
just create a browser view and call that browser view usings wget or
lynx or similar command line HTTP tool.

Zope provides facilities to run command-line scripts.
or maintenance work, like migration script.

	The output to terminal is instance (Plone buffers HTML output)

	You can stop processing using CTRL+C

	You can integrate scripts with standard UNIX tools, like cron

Note

If the site runs in a single process Zope mode (no ZEO),
the actual site instance must be stopped to run a command line
script as the one process locks the database (Data.fs).

Command line scripts are also useful for long-running transaction processing

	A web site runs in multi-client ZEO mode. One client is always offline,
reserved for running command-line scripts.

	Asynchronous long-running transactions are run from this ZEO client,
without disturbing the normal site functionality

See also

	lovely.remotetask package [https://pypi.python.org/pypi/lovely.remotetask]
for more fine-graned control and Zope-based cron jobs

Starting interactive interpreter

The bin/instance debug command starts an interactive interpreter with the Zope application server and
database loaded. To have persistent utilities loaded, you should also provide the id of your Plone site.
The following example assumes you have a plone site named "Plone"

Example:

bin/instance -OPlone debug

Note

The instance must be stopped in order to run this.

Running scripts

Use bin/instance run command to run scripts which can interact
with the opened database.

Example:

bin/instance run src/namespace.mypackage/namespace/mypackage/bin/script.py

The script will have global app variable assigned to the Zope application server root.
You can use this as a starting point and traverse into your Plone site(s).

Script could look like:

"""

 Instance script for testing a researcher creation

 Execution::

 bin/instance run src/x.y/x/y/testscript.py

"""

from ora.objects.content.oraresearcher import createResearcherById

def main(app):
 folder = app.unrestrictedTraverse("x/y/z/cancer")

 # Create a researcher
 createResearcherById(folder, "http://localhost/people/9947603276956765")

 # This script does not commit

If this script lives in your source tree, then we need to use this trick so that
five.grok, which scans all modules, does not try to execute the script while
modules are being loaded on the start-up
if "app" in locals():
 main(app)

You probably need to spoof your security credentials.

Note

Instance must be stopped in order to run this.

Cron and timed jobs

Cron is UNIX clock daemon for timed tasks.

If you have a ZEO cluster you can have one ZEO client reserved for command line
processing. Cron job will run scripts through this ZEO client.

Alternatively, you can use

	cron to call localhost URL using curl or wget UNIX commands

	Use Zope clock daemon

Note

For long running batch processes it is must that you run your
site in ZEO mode. Otherwise the batch job will block the site
access for the duration of the batch job transaction.
If the batch job takes long to process the site might
be unavailable for the visitors for a long period.

Scripting context

The command line interpreter and scripts gets following global context variables

	app global variable which holds the root of Zope application server.

	sys.argv contains command-line parameters after python script name

	argv[0] = script name

	arvg[1] = first command line argument

To access your site object, you can traverse down from app:

app.yoursiteid # This is your Plone site object

Perform some stuff here...
for brain in app.yoursiteid.portal_catalog(portal_type="Document"): print brain["Title"]

Committing transactions

You need to manually commit transactions if you change ZODB data from the command line.

Example how to commit:

Commit transaction
import transaction; transaction.commit()
Perform ZEO client synchronization (if running in clustered mode)
app._p_jar.sync()

More info

	http://www.enfoldsystems.com/software/server/docs/4.0/enfolddebuggingtools.html

zopepy

zopepy buildout recipe creating bin/zopepy command which you can use to run Python scripts in Zope environment set-up
(PYTHONPATH, database connection, etc.)

	https://pypi.python.org/pypi/zc.recipe.egg

buildout.cfg example:

[zopepy]
For more information on this step and configuration options see:
#
recipe = zc.recipe.egg
eggs = ${client1:eggs}
interpreter = zopepy
extra-paths = ${zope2:location}/lib/python
scripts = zopepy

Then running:

bin/zopepy path/to/myscript.py

...or if you want to run a script outside buildout folder:

cd /tmp
/srv/plone/site/bin/zopepy pack2.py

Setting up ZEO for command line-processing

Plone site HTTP requests are processed by one process per requests.
One process cannot handle more than one request once. If you need
to have long-running transactions you need to at least two
front end processes, ZEO clients, so that long-running
transactions won't block your site.

	Converting instance to ZEO based configuration

Your code might want to call transaction.commit() now and then to commit the
current transaction.

Posing as user

Zope functionality often assumes you have logged in as certain
user or you are anonymous user. Command-line scripts
do not have user information set by default.

How to set the effective Zope user to admin:

from AccessControl.SecurityManagement import newSecurityManager

Use Zope application server user database (not plone site)
admin=app.acl_users.getUserById("admin")
newSecurityManager(None, admin)

Spoofing HTTP request

When running from command-line, HTTP request object is not available.
Some Zope code might expect this and you need to spoof the request.

Below is an example command line script which set-ups faux HTTP request
and portal_skins skin layers:

"""

 Command-line script to be run from a ZEO client:

 bin/command-line-client src/yourcode/mirror.py

"""

import os
from os import environ
from StringIO import StringIO
import logging

from AccessControl.SecurityManagement import newSecurityManager
from AccessControl.SecurityManager import setSecurityPolicy
from Testing.makerequest import makerequest
from Products.CMFCore.tests.base.security import PermissiveSecurityPolicy, OmnipotentUser

Force application logging level to DEBUG and log output to stdout for all loggers
import sys, logging

root_logger = logging.getLogger()
root_logger.setLevel(logging.DEBUG)

handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
root_logger.addHandler(handler)

def spoofRequest(app):
 """
 Make REQUEST variable to be available on the Zope application server.

 This allows acquisition to work properly
 """
 _policy=PermissiveSecurityPolicy()
 _oldpolicy=setSecurityPolicy(_policy)
 newSecurityManager(None, OmnipotentUser().__of__(app.acl_users))
 return makerequest(app)

Enable Faux HTTP request object
app = spoofRequest(app)

Get Plone site object from Zope application server root
site = app.unrestrictedTraverse("yoursiteid")
site.setupCurrentSkin(app.REQUEST)

Call External Method defined in the skins layers
Note that native python __getattr__ traversing does not work... you must access things using unrestrictedTraverse()
You could also use @@viewname for browserviews
script = site.unrestrictedTraverse("someScriptName")
script()

More info

	http://wiki.zope.org/zope2/HowToFakeREQUESTInDebugger

Creating Plone site in buildout

You can pre-generate the site from the buildout run.

	https://pypi.python.org/pypi/collective.recipe.plonesite#example

screen

screen is an UNIX command to start a virtual terminal. Screen lets processes
run even if your physical terminal becomes disconnected. This effectively
allows you to run long-running command line jobs over a crappy Internet
connection.

Start new screen

Type command:

screen

If you have sudo'ed to another user you first need to run:

script /dev/null

	http://dbadump.blogspot.com/2009/04/start-screen-after-sudo-su-to-another.html

Attach to an existing screen

Type command:

screen -x

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Clock and asyncronous tasks

Description

How to run background tasks or cron jobs with Zope

	Cron jobs

	Clock server
	Creating a separate ZEO instance for long running tasks

	Asynchronous
	lovely.remotetask

Cron jobs

You can use simple UNIX cron + wget combo to make timed jobs in Plone.

If you need to authenticate, e.g. as an admin, Zope users (not Plone users)
can be authenticated using HTTP Basic Auth.

	Create user in Zope root (not Plone site root) in acl_users folder

	Call it via HTTP Basic Auth

http://username:password@localhost:8080/yoursideid/@@clock_view_name

	The --auth-no-challenge option to the wget command will authenticate even
if the server doesn't ask you to authenticate. It might come in handy, as
Plone does not ask for HTTP authentication, and will just serve Unauthorized
if permissions aren't sufficient.

Clock server

You can make Zope to make regular calls to your views.

Add in buildout.cfg:

zope-conf-additional =
 <clock-server>
 method /xxx/feed-mega-update
 period 3600
 user zopeuser
 password 123123
 host xxx.com
 </clock-server>

 <clock-server>
 method /yyy/feed-mega-update
 period 3600
 user zopeuser
 password 123123
 host yyy.com
 </clock-server>

Create a corresponding user in ZMI.

In detail:

	method - Path from root to an executable Zope method (Python script, external method, etc.) The method must receive no arguments.

	period - Seconds between each call to the method. Typically, at least 30 specified.

	user - a Zope Username

	password - The password of this user Zope

	host - The name of the host that is in the header of a request as host: is specified.

To check whether the server clock is running, restart the instance or the ZEO
client in the foreground and see if a message similar to the following is
displayed:

2009-03-03 19:57:38 INFO ZServer Clock server for "/ mysite / do_stuff" started (user: admin, period: 60)

If you are using a public source control repository for your buildout.cfg you
might want to put zope-conf-additional= to secret.cfg which lies only on the
production server and is never committed to the version control:

Change the number here to change the version of Plone being used
extends =
 http://dist.plone.org/release/4.1rc3/versions.cfg
 http://good-py.appspot.com/release/dexterity/1.0?plone=4.1rc3
 http://plonegomobile.googlecode.com/svn/gomobile.buildout/gomobile.plone-4.trunk.commit-access.cfg
 secret.cfg

Creating a separate ZEO instance for long running tasks

Below is an example how to extend a single process Plone instance buildout to
contain two ZEO front end processes, client1 and client2 and dedicate client2
for long running tasks. In this example, Products.feedfeeder RSS zopeuser is set to run on
client2.

	Client1 keeps acting like standalone instance, in the same port as instance used to be

	Clocked tasks are run on client2 - it does not serve other HTTP requests.
Clocked tasks are done using Zope clock server.

The purpose of this is that client2 does heavy writes to the database, potentially
blocking the normal site operation of the site if we don't have a separate client for it.

We create additional production.cfg file which extends the default buildout.cfg file.
You still can use buildout.cfg as is for the development, but on the productoin server
your buildout command must be run for the ZEO server enabled file.

Actual clock server jobs, with usernames and passwords, are stored in a separate secret.cfg
file which is only available on the production server and is not stored in the version control system.
The user credentials for a specially created a Zope user, not Plone user.
This user can be created through acl_users in Zope root in ZMI.

We also include plonectl command for easy management of ZEO server, client1 and client2.

production.cfg (note - you need to run this with bin/buildout -c production.cfg):

[buildout]

extends =
 buildout.cfg
 secret.cfg

Add new stuff to be build out when run bin/buildout -c production.cfg

parts +=
 client1
 client2
 zeoserver
 plonectl
 crontab_zeopack

Run our database and stuff
[zeoserver]
recipe = plone.recipe.zeoserver
zeo-address = 9998

In ZEO server mode, client1 is clone of standalone
[instance] running in ZEO mode, different port
[client1]
<= instance
recipe = plone.recipe.zope2instance
zeo-client = on
shared-blob = on
http-address = 9999

Client2 is like client1, just different port.
This client is reserved for running clocked tasks (feedfeeder update)
[client2]
<= client1
http-address = 9996

Tune down cache-size as we don't operate normally,
so we have smaller memory consumption (default: 10000)
zodb-cache-size = 3000

[plonectl]
recipe = plone.recipe.unifiedinstaller
clients =
 client1
 client2
user = admin:admin

pack your ZODB each Sunday morning and hence make it smaller and faster
[crontab_zeopack]
recipe = z3c.recipe.usercrontab
times = 0 1 * * 6
command = ${buildout:directory}/bin/zeopack

secret.cfg contains actual clocked jobs. This file contains passwords so it is not
recommended to put it under the version control:

[client2]
zope-conf-additional =
 <clock-server>
 method /plonecommunity/feed-mega-update
 period 3600
 user zopeuser
 password secret
 host plonecommunity.mobi
 </clock-server>

 <clock-server>
 method /plonecommunity/@@feed-mega-cleanup?days=14
 period 85000
 user zopeuser
 password secret
 host plonecommunity.mobi
 </clock-server>

 <clock-server>
 method /mobipublic/feed-mega-update
 period 3600
 user zopeuser
 password secret
 host mobipublic.com
 </clock-server>

 <clock-server>
 method /mobipublic/@@feed-mega-cleanup?days=14
 period 84000
 user zopeuser
 password secret
 host mobipublic.com
 </clock-server>

 <clock-server>
 method /mobipublic/find-it/events/@@event-cleanup?days=1
 period 84000
 user zopeuser
 password secret
 host mobipublic.com
 </clock-server>

Asynchronous

Asyncronous tasks are long-running tasks which are run on their own thread.

lovely.remotetask

lovely.remotetask is worked based long-running task manager for Zope 3.

Todo

NO WORKING EXAMPLES HOW TO USE THIS

	lovely.remotetask package [https://pypi.python.org/pypi/lovely.remotetask] package page

	http://tarekziade.wordpress.com/2007/09/28/a-co-server-for-zope/

	http://swik.net/Zope/Planet+Zope/Trying+lovely.remotetask+for+cron+jobs/c1kfs

	http://archives.free.net.ph/message/20081015.201535.2d147fec.fr.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Flowplayer

Description

Using Flowplayer video player in your Plone add-ons.

	Introduction

	Creating a custom Flowplayer

	Non-buffered MP4 playback fix

Introduction

Flowplayer is a GPL'ed Flash-based video player.

Plone integration exists as an add-on product:

	http://plone.org/products/collective-flowplayer

Creating a custom Flowplayer

Here is a walkthrough how to create a custom content-type with a video field
which plays the uploaded video using Flowplayer in a page template with
parameters you define.

Dexterity model definition:

from plone.namedfile.field import NamedFile, NamedImage

class IPortletSource(form.Schema):
 """ Portlet source content
 """

 videoFile = NamedFile(
 title=u"Video file",
 description=u"Upload video file from local computer to show mini-video-player in the portlet",
 required=False
)

Helper view Python code:

class MiniVideo(grok.View):
 """ Render a mini Flowplayer (inside portlet)
 """

 grok.context(IPortletSource)

 def hasVideo(self):
 """ Check if plone.namedfile field exist and has a video file uploaded on the context item.
 """

 return self.context.videoFile != None

Helper view template:

<div class="video" tal:condition="view/hasVideo">

 <!-- The href references the FLV file. It is not safe to use XHTML
 style self-closing tags here. -->
 <tal:video define="video nocall:context/videoFile"
 tal:condition="nocall:video">

 </tal:video>

 <!-- Helper for Javascript which is used to determine location of
 Flowplayer resource files -->

</div>

Using the view:

<div class="portletSimulator">

 <div tal:attributes="class string:ls-portlet ${context/extraCSS}">

 <h3 tal:condition="view/has_title"
 tal:attributes="class string:portletHeader ls-portlet-header">
 <a class="header"
 tal:omit-tag=""
 tal:content="context/title" />
 </h3>

 <div tal:define="videoView nocall:context/@@minivideo"
 tal:replace="structure videoView" />

 </div>

</div>

Javascript, registered in portal_javascripts, doing the magic:

/**
 * Bootstrap flow player.
 *
 * Call this when DOM is ready (jq(document).ready()).
 */
function setupPortletVideo() {

 // Site base URL must be available in some hidden variable
 // so that we can build references to our media resources
 var urlBase = jq(".flowplayer-site-url").text();

 console.log("Video set-up:" + urlBase);

 // Iterate through all links which are tagged as video on the page
 // Use a special marker class for videos which we want to configure ourselves
 jq('a.flow-player').each(function() {

 console.log("Found flowplayer");

 var self = jq(this);

 // Config help
 // http://flowplayer.org/documentation/configuration/index.html
 // http://flowplayer.org/documentation/configuration/clips.html#properties
 // Styling properties http://flowplayer.org/documentation/configuration/plugins.html
 var config = {
 "clip": {
 "scaling": "orignal",
 "autoBuffering": true,
 "autoPlay": false,
 },

 "plugins": {
 // Note that + must be escaped as %2B
 "audio": {
 "url": urlBase + "/%2B%2Bresource%2B%2Bcollective.flowplayer/flowplayer.audio.swf" },
 // Disable control plug-in
 // On mouse over Play button still appears
 "controls" : {
 "url": urlBase + "/%2B%2Bresource%2B%2Bcollective.flowplayer/flowplayer.controls.swf",
 playlist:false,
 fullscreen:false,
 mute:false,
 time:false,
 }
 },

 // http://flowplayer.org/documentation/configuration/player.html
 // debug : true,

 log: {
 // Enable debug output (lots of it)
 // level : 'debug'
 },

 }

 config.clip.url = self.attr('href');

 // Create Flowplayer by calling its own JS API
 var player = flowplayer(this,
 {"src": urlBase + "/++resource++collective.flowplayer/flowplayer.swf"
 }, config);
 });
}

jq(document).ready(setupPortletVideo);

Needed CSS:

/* Videos */

a.flow-player {
 display: block;
 width: 235px;
 height: 180px;
}

Note

if your player is not displayed on the page load, but is displayed
after you click somewhere to the player container area, be sure
there is no HTML code nor text inside the player container HTML tag.
Such code/text is considered as player splash screen and player is
waiting for click to the splash.

Non-buffered MP4 playback fix

MPEG4 files must be specially prepared (quick play fix),
so that the playback starts instantly and the player does
not try to buffer the whole file first

	https://twitter.com/moo9000/status/253947688276594688

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Navigation trees

	Introduction

	Creating a custom navigation tree

	Excluding items in the navigation tree

	Querying items in natural sort order

Description

How navigation trees are generate in Plone and how to generate
custom navigation trees.

Introduction

Plone exposes methods to build navigation trees.

	Products.CMFPlone.browser.navtree [https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/navtree.py]

	plone.app.layout.navigation.navtree.buildFolderTree [https://github.com/plone/plone.app.layout/blob/master/plone/app/layout/navigation/navtree.py]

These are internally used by navigation portlet and sitemap.

Creating a custom navigation tree

See Products.PloneHelpCenter [https://github.com/collective/Products.PloneHelpCenter/blob/0f2fac5a7216eb8c0d83736dbcbd6a4385f9b4f4/Products/PloneHelpCenter/content/ReferenceManual.py] for full code.

The following example builds Table of Contents for Reference Manual content type:

class Strategy(NavtreeStrategyBase):

 rootPath = '/'.join(root.getPhysicalPath())
 showAllParents = False

strategy = Strategy()
query= {'path' : '/'.join(root.getPhysicalPath()),
 'object_provides' : 'Products.PloneHelpCenter.interfaces.IHelpCenterMultiPage',
 'sort_on' : 'getObjPositionInParent'}

toc = buildFolderTree(self, current, query, strategy)['children']

Excluding items in the navigation tree

Your navigation tree strategy must define method nodeFilter()
which can check for portal_catalog metadata column exclude_from_nav.

Example (from Products.CMFPlone.broser.navtree):

class SitemapNavtreeStrategy(NavtreeStrategyBase):

 def nodeFilter(self, node):
 item = node['item']
 if getattr(item, 'exclude_from_nav', False):
 return False
 else:
 return True

Querying items in natural sort order

Sometimes you want to display content items as they appear in Plone navigation.
Below is an example which builds a flat vobulary for a form checbox list
based on a custom portal_catalog query and root folder.

query_items_in_natural_sort_order:

from plone.app.layout.navigation.navtree import buildFolderTree
from plone.app.layout.navigation.navtree import NavtreeStrategyBase
https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/browser/navtree.py
from Products.CMFPlone.browser.navtree import SitemapNavtreeStrategy, DefaultNavtreeStrategy

def query_items_in_natural_sort_order(root, query):
 """
 Create a flattened out list of portal_catalog queried items in their natural depth first navigation order.

 @param root: Content item which acts as a navigation root

 @param query: Dictionary of portal_catalog query parameters

 @return: List of catalog brains
 """

 # Navigation tree base portal_catalog query parameters
 applied_query= {
 'path' : '/'.join(root.getPhysicalPath()),
 'sort_on' : 'getObjPositionInParent'
 }

 # Apply caller's filters
 applied_query.update(query)

 # Set the navigation tree build strategy
 # - use navigation portlet strategy as base
 strategy = DefaultNavtreeStrategy(root)
 strategy.rootPath = '/'.join(root.getPhysicalPath())
 strategy.showAllParents = False
 strategy.bottomLevel = 999
 # This will yield out tree of nested dicts of
 # item brains with retrofitted navigational data
 tree = buildFolderTree(root, root, query, strategy=strategy)

 items = []

 def flatten(children):
 """ Recursively flatten the tree """
 for c in children:
 # Copy catalog brain object into the result
 items.append(c["item"])
 children = c.get("children", None)
 if children:
 flatten(children)

 flatten(tree["children"])

 return items

How to use:

def make_terms(items):
 """ Create zope.schema terms for vocab from tuples """
 terms = [SimpleTerm(value=pair[0], token=pair[0], title=pair[1]) for pair in items]
 return terms

@grok.provider(IContextSourceBinder)
def course_source(context):
 """
 Populate vocabulary with values from portal_catalog.

 @param context: z3c.form.Form context object (in our case site root)

 @return: SimpleVocabulary containg all areas as terms.
 """

 # Get site root from any content item using portal_url tool thru acquisition
 root = context.portal_url.getPortalObject()

 context = root.unrestrictedTraverse("courses")

 # We need to include "Folder" in the query even if it's not any of the results -
 # this is because the query criteria must match the root content item too
 brains = query_items_in_natural_sort_order(context, query = { "portal_type" : ["xxx2011.app.courseinfo", "xxx2011.app.subjectgroup", "xxx2011.app.coursecategory", "Folder"] })

 def filter(brain):
 # Remove some unwanted items from the list
 # XXX: Not needed anymore after new content types - remove
 x = brain["Title"]

 if "Carousel" in x:
 return False

 return True

 # Create a list of tuples (UID, Title) of results
 result = [(brain["UID"], brain["Title"]) for brain in brains if filter(brain) == True]

 # Convert tuples to SimpleTerm objects
 terms = make_terms(result)

 return SimpleVocabulary(terms)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Search engine optimization (seo)

Description

How to make Plone more search engine aware

	Introduction

	robots.txt

	Procedural robots.txt

Introduction

Plone is very search-engine friendly out of the box.

You can further fine-tune your search engine optimizations with PloneSEO add-on

	http://plone.org/products/plone-seo/

robots.txt

You probably want to exclude following from the search engine listing

	Your image bank

	All search listings

	Login form

	Send to form

	... generally all forms

See

	http://opensourcehacker.com/2009/08/07/seo-tips-query-strings-multiple-languages-forms-and-other-content-management-system-issues/

Procedural robots.txt

Below is an example how to generate robots.txt in ZMI Python script.
It prevents accidental indexing of the site from non HTTP 80 ports if you need
to leave Zope direct port open for the world for some reason.

Create new Script (Python) in your site root in ZMI:

url = context.absolute_url()

This is our direct Zope port
if ":9980" in url:
 return "Disallow: *\n"

robots="""
Normal robots.txt body is purely substring match only
We exclude lots of general purpose forms which are available in various mount points of the site
and internal image bank which is hidden in the navigation tree in any case
User-agent: *
Disallow: set_language
Disallow: login_form
Disallow: sendto_form
Disallow: /images

Googlebot allows regex in its syntax
Block all URLs including query strings (? pattern) - contentish objects expose query string only for actions or status reports which
might confuse search results.
This will also block ?set_language
User-Agent: Googlebot
Disallow: /*?*
Disallow: /*folder_factories$

Allow Adsense bot on entire site
User-agent: Mediapartners-Google*
Disallow:
Allow: /*
"""

return robots

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Creating your own Paster templates

Description

How to create Paster code skeleton templates to easily add your
own add-on product types or code inside your add-on porduct.

Introduction

Plone CMS and Python extensively use paster code templating system
to aid add-on product development.

Paster allows you to create code from code skeleton templates,
automatically filling in your company name etc.

Default Plone templates are in ZopeSkel [http://plone.org/products/zopeskel] package.

	This document tells how to create your own paster templates

	For information how to use paster please refer to paster section in tutorials

More information

	http://wiki.pylonshq.com/display/pylonscookbook/Creating+Templates+For+The+paster+create+Command

	http://plone.org/products/zopeskel

	http://svn.plone.org/svn/collective/collective.dexteritypaste/trunk

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/

Extending ZopeSkel

First you need to create a Python egg where your templates will be contained.
We use ZopeSkel's plone template, but generic Python template should do as well.

paster create -t plone gomobile.templates

Note

You do not need tests.py or configure.zcml files in the template package itself.

setup.py entries

Then we edit setup.py and add paster template entry points:

install_requires=[
 'setuptools',
 'PasteScript',
 'ZopeSkel',
 # -*- Extra requirements: -*-
],

entry_points="""
 # These will declare what templates paster create command can find
 # -*- Entry points: -*-
 [paste.paster_create_template]
 dexterity = gomobile.templates.theme:Theme
 """,

You could also have "subtemplates" with local paster commands which add more code
into existing code skeletons:

[zopeskel.zopeskel_sub_template]
dexterity_content = collective.dexteritypaste.localcommands.dexterity:DexterityContent
dexterity_behavior = collective.dexteritypaste.localcommands.dexterity:DexterityBehavior
dexterity_view = collective.dexteritypaste.localcommands.dexterity:DexterityView

Entry points

Entrypoints allow different plug-in systems through using the standard Python eggs and setup.py file.
Plone 3.3+ picks Plone add-ons through this way and paster command pick available templates
from all available eggs this way.

More information

	http://wiki.pylonshq.com/display/pylonscookbook/Using+Entry+Points+to+Write+Plugins

Template class

Paster template is defined with a class referred from the entry point.
Here is an example how we extend the existing Plone template class

Variables and asking for the user input

ZopeSkel contains facilities how to ask template input from the user who is running Paster.
It provides some sane way to give defaults and validate the input.

Examples

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/abstract_buildout.py

Note

ZopeSkel input definitions should work both on command line and on the web based generator.

Pre- and postcondition triggers

If you want to run special code before the templates are run and after they have successfully
complete, ZopeSkel provides some logic for this.

More information

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/hosting.py

	http://pythonpaste.org/script/paste/script/templates.py.html?f=11&l=143#11

Template folder structure

All templates should go to templates folder in your ZopeSkel extension namespace.

Filenames and folder names can contain variable substitues as:

templates/yourtemplatename/+namespace_package+/

will be mapped to:

yourcompany.package/yourcompany/

Template files

Files having special _tmpl extension will have string substitution performed on then.
Paster supports Cheetah templates [http://packages.python.org/Cheetah/users_guide/index.html]
(default) and
Python string templates [http://docs.python.org/release/2.5.2/lib/node40.html]

Example:

	http://svn.plone.org/svn/collective/collective.dexteritypaste/trunk/collective/dexteritypaste/templates/dexterity/setup.py_tmpl

The best way to get the initial template files and folders for your add-on template is to
checkout some existing ZopeSkel package, like collective.dexteritypaste and export its
templates folder to your own add-on template.

Note

As writing of this I am not aware of any meta-template to create paster templates.
But should thing would be greatly beneficial.

Variable substitution

Simple string variable substitution is like:

from ${dotted_name} import ${portlet_filename}
from ${dotted_name}.tests.base_${portlet_filename} import TestCase

More information

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/localcommands/templates/plone/portlet/tests/test_+portlet_filename+.py_tmpl

Default variables

Defaulte template variables are inherited from various base classes of ZopeSkel templates.
One good place to look them is basic_namespace.py template declaration.

Useful snippets:

${namespace_package}.${package}

More information

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/basic_namespace.py

Variable preparation

You can also prepare template variables in Python code
in your Paster template class's pre() method:

class Portlet(PloneSubTemplate):
 """
 A plone 3 portlet skeleton
 """
 _template_dir = 'templates/plone/portlet'
 summary = "A Plone 3 portlet"

 vars = [
 var('portlet_name', 'Portlet name (human readable)', default="Example portlet"),
 var('portlet_type_name', 'Portlet type name (should not contain spaces)', default="ExamplePortlet"),
 var('description', 'Portlet description', default=""),
]

 def pre(self, command, output_dir, vars):
 """
 you can use package_namespace, package_namespace2, package
 and package_dotted_name of the parent package here. you get them
 for free in the vars argument
 """
 vars['portlet_filename'] = vars['portlet_type_name'].lower()

More information

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/localcommands/plone.py

Escaping strings

If you have any page template (*.pt) files you need to templatetize you will
encounter problem that both Cheetah and Zope Page Templates use the similar
string expansion syntax causing a conflict.

You can use (backslash) before dollar sign to escape it.

Example:

<script tal:attributes="src string:\${viewlet/portal_url}/++resource++${namespace_package}.${package}/theme.js" type="text/javascript"></script>

Conditions and branching

If you need to have if, for and buddies in the templates see Cheetah manual.

Example

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/templates/plone/+namespace_package+/+package+/configure.zcml_tmpl

Local commands

Local commands define insert snippets which will be injected to the existing files.

The marker for snippet injects is:

-*- extra stuff goes here -*-

You need to put it to the comment format of the file type. Example for XML would be (configure.zcml_tmpl):

<!-- -*- extra stuff goes here -*- -->

Local command injection templates have _insert in their filename extension.
Then the local command injection snippet configure.zcml_insert look like:

<plone:behavior
 title="${behavior_name}"
 description="${behavior_description}"
 provides="${behavior_short_dottedinterface}"
 factory="${behavior_short_dottedadapter}"
 for="plone.dexterity.interfaces.IDexterityContent"
 />

More information

	http://pythonpaste.org/script/developer.html#what-do-commands-look-like

Some examples

	http://svn.plone.org/svn/collective/collective.dexteritypaste/trunk/collective/dexteritypaste/templates/dexterity/+namespace_package+/+package+/configure.zcml_tmpl

	http://svn.plone.org/svn/collective/collective.dexteritypaste/trunk/collective/dexteritypaste/localcommands/templates/dexterity/behavior/behavior/configure.zcml_insert

Testing the templates

ZopeSkel provides some doctest based testing facilities to hook your templates
to automatic testing facilities, mainly for the regression testing.

Examples

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/docs/plone3_buildout.txt

	http://svn.plone.org/svn/collective/ZopeSkel/trunk/zopeskel/docs/localcommands.txt

Developing template egg with paster and buildout.cfg

The preferred method to run paster with Plone is to have it
automatically pulled in and configured for you by buildout.

develop-eggs

You need to specially mention to buildout which Python eggs are
in source code form.

	You can use develop-eggs directive

	You can use buildout extensions designed for source code and version
control management, like mr.developer [https://pypi.python.org/pypi/mr.developer].

Then you need to declare [paster] part and section in buildout.cfg:

parts =
 ...
 paster

develop-eggs =
 src/yourcompany.templates

[paster]
recipe = zc.recipe.egg
Include your own template egg here.
Note that ${instance} section name should be the section name
for plone.recipe.zope2instance from your buildout.cfg
eggs =
 PasteScript
 ZopeSkel
 yourcompany.templates
 ${instance:eggs}

Rerun buildout.

Now when you run paster command it should show your custom template:

bin/paster create --list-templates
...
Available templates:
 archetype: A Plone project that uses Archetypes content types
 basic_namespace: A basic Python project with a namespace package
 basic_package: A basic setuptools-enabled package
 basic_zope: A Zope project
 gomobile_theme: A theme for Go Mobile for Plone <---- you should see yours somewhere here
 kss_plugin: A project for a KSS plugin

Testing the generated product

This checks that your template generates viable code.
We use package called gomobiletheme.yourcompany in this examples.

Steps

Generate a product skeleton using paster in non-interactive mode

rm -rf src/gomobiletheme.yourcompany ; bin/paster create --no-interactive -v -f -o src -t gomobile_theme gomobiletheme.yourcompany

Note

Use -f switch or you might encounter problems with template inheritance.

See paster bug regarding template inheritance and -f switch [http://trac.pythonpaste.org/pythonpaste/ticket/445].

Put the newly created add-on skeleton to buildout.cfg in develop eggs and eggs:

eggs =
 gomobiletheme.yourcompany

develop-eggs =
 src/gomobiletheme.yourcompany

Run buildout

bin/buildout

Run testrunner for the created add-on

bin/test -s gomobiletheme.yourcompany

See bin/paste create --help for other useful debug switches.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Facebook integration

Description

How to integrate Facebook to Plone site

	Introduction

	Like button

	OpenGraph metadata

Introduction

See the add-on

	http://plone.org/products/facebook-like-button

for non-programming integration.

Like button

Here is an example which creates a Like button pointing to the current page.

Page template code:

<iframe tal:attributes="src string:${view/getFBURL}" scrolling="no" frameborder="0" style="border:none; overflow:hidden; width:227px; height:50px;" allowTransparency="true"></iframe>

View code

import urllib

...

class YourView(BrowserView):

 ...

 def getQuotedURL(self):
 url = self.context.absolute_url()
 url = urllib.quote(url)
 return url

 def getFBURL(self):
 base = "http://www.facebook.com/plugins/like.php?href=%(url)s&layout=standardt&show_faces=false&width=227&action=like&colorscheme=light&height=50"
 url = base % {"url" : self.getQuotedURL() }
 return url

Note

If you are using Like button you should also add OpenGraph metadata to your pages
as described below.

More info

	http://developers.facebook.com/docs/reference/plugins/like/

OpenGraph metadata

OpenGraph is Facebook page metadata protocol. You'll insert extra
<meta> tags on the page which will give additional information about the page
to be displayed with Facebook links.

	http://developers.facebook.com/docs/opengraph/

Below is an example of filling in Facebook metadata

	Using content description in Facebook

	Having main image

	Having location

	Having contact info

Note

You need to include your Facebook app or your Facebook user id as the admin for the site
in the metadata.
Otherwise Facebook will report an error for the page.

You can see Facebook id your yourself and your friends here

	http://apps.facebook.com/whatismyid

Simple example. Add this to your main_template.pt.
Supports Plone default content types and news item image

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en"
 lang="en"
 tal:define="lang language"
 tal:attributes="lang lang;
 xml:lang lang">

 <head>

 ...

 <!-- Facebook integration -->

 <meta property="og:description" tal:attributes="content context/Description|nothing"/>

 <tal:has-image omit-tag="" condition="context/image|nothing">
 <tal:comment replace="nothing"><!-- News item image support --></tal:comment>
 <meta property="og:image" tal:attributes="content string:${context/absolute_url}/image"/>
 </tal:has-image>

 <meta property="fb:admins" content="123123" />

 <meta property="og:type" content="website"/>

 </head>

Complex example for custom content type

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="saariselka.app"
 >

 <tal:comment replace="nothing">
 <!--

 We will insert this HTML to <head> section,
 "head_slot", defined by Plone's main_template.pt

 -->
 </tal:comment>

 <tal:facebook-opengraph metal:fill-slot="head_slot" >

 <meta property="og:description" tal:attributes="content context/Description|nothing"/>
 <meta property="og:type" content="hotel"/>

 <tal:comment replace="nothing">
 <!--

 Fill in geo info if available.
 -->
 </tal:comment>
 <tal:has-location omit-tag="" tal:define="lat view/data/Latitude|nothing; long view/data/Longitude|nothing;" tal:condition="lat">
 <meta property="og:latitude" tal:attributes="content lat"/>
 <meta property="og:longitude" tal:attributes="content long"/>
 </tal:has-location>

 <tal:comment replace="nothing">
 <!--

 Fill in contact info.
 -->
 </tal:comment>
 <meta property="og:email" content="xxx@yoursite.com"/>
 <meta property="og:phone_number" content="+ 358 123 1234"/>

 <tal:comment replace="nothing">
 <!--

 URL to 70 px wide image used by Facebook as the news item splash image.

 Note: Facebook resized the image automatically.

 -->
 </tal:comment>
 <tal:has-image omit-tag="" condition="view/main_image">
 <meta property="og:image" tal:attributes="content view/main_image"/>
 </tal:has-image>

 <tal:comment replace="nothing">
 <!-- Facebook admins is a compulsory field. Put here the side admin Facebook id(s), comma separated

 http://apps.facebook.com/whatismyid
 -->
 </tal:comment>
 <meta property="fb:admins" content="123123" />

 </tal:facebook-opengraph>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Slidehows and carousels

Description

How to use annotation design pattern to store
arbitrary values on Python objects (Plone site,
HTTP request) for storage and caching purposes.

	Introduction

	Migrate Products.Slideshow to Products.Carousel

	Setting every carousel widths on the site
	AJAX full-size image loading for album views

Introduction

Header slideshows

	Products.Carousel [http://plone.org/products/carousel/]

AJAX'y image pop-ups

	http://plone.org/products/pipbox

Migrate Products.Slideshow to Products.Carousel

Here is a sample migration code to transform your site
from one add-on to another.

We create a migration view which you can call by typing in view name
manually to web browser.

This code will

	Scan site for folders which have Slideshow add-on enabled. In this example we check against a predefined list (scanned earlier),
but the code contains example how to detect slideshow folders

	Create Carousel for those folders

	Create corresponds Carousel Banners for all Slideshow Image content items

	Set some Carousel settings

	Make sure that we invalidate cache for content items going through migration

	Set a new default view for folders which were using slideshow

Also

	After inspecting the process was ok you can delete migrated images

carousel.py:

"""

 Migrate slideshow to carousel.

 Usage:

 http://yoursite/@@migrate_carousel - the process can be repeated with adjusted settings. It's non-destructive.

 http://yoursite/@@delete_migrated_slideshow_images

"""

import logging
from StringIO import StringIO
from Products.Five.browser import BrowserView

from zope.component import getUtility, getMultiAdapter
from zope.app.component.hooks import setHooks, setSite, getSite

from zope.interface import alsoProvides
from Products.Five import BrowserView
from Products.CMFCore.utils import getToolByName
from Products.Carousel.interfaces import ICarouselFolder
from Products.Carousel.utils import addPermissionsForRole
from Products.Carousel.config import CAROUSEL_ID
from Products.Carousel.interfaces import ICarousel, ICarouselSettings

from Products.slideshowfolder.interfaces import ISlideShowSettings, ISlideShowView, IFolderSlideShowView, ISlideShowFolder, ISlideshowImage

logger = logging.getLogger("Slideshow Migrator")

FOLDER_PATHS_TO_MIGRATE="""
('', 'site', 'folder1')
('', 'site', 'folder2')
('', 'site', 'folder2', 'subfolder')
"""

class MigrateSlideshowToCarousel(BrowserView):
 """
 Migrate collective.slideshow to Products.Carousel
 """

 def startCapture(self, newLogLevel = None):
 """ Start capturing log output to a string buffer.

 http://docs.python.org/release/2.6/library/logging.html

 @param newLogLevel: Optionally change the global logging level, e.g. logging.DEBUG
 """
 self.buffer = StringIO()

 print >> self.buffer, "Log output"

 rootLogger = logging.getLogger()

 if newLogLevel:
 self.oldLogLevel = rootLogger.getEffectiveLevel()
 rootLogger.setLevel(newLogLevel)
 else:
 self.oldLogLevel = None

 self.logHandler = logging.StreamHandler(self.buffer)
 formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
 self.logHandler.setFormatter(formatter)
 rootLogger.addHandler(self.logHandler)

 def stopCapture(self):
 """ Stop capturing log output.

 @return: Collected log output as string
 """

 # Remove our handler
 rootLogger = logging.getLogger()

 # Restore logging level (if any)
 if self.oldLogLevel:
 rootLogger.setLevel(self.oldLogLevel)

 rootLogger.removeHandler(self.logHandler)

 self.logHandler.flush()
 self.buffer.flush()

 return self.buffer.getvalue()

 def getImages(self, folder):
 """ Get all ATImages in a folder """
 for obj in folder.objectValues():
 if obj.portal_type == "Image":
 yield obj

 def getOrCreateCarousel(self, folder):
 """ Copied from Products.Carousel manager.py """

 if hasattr(folder.aq_base, CAROUSEL_ID):
 logger.info("Using existing carousel in " + str(folder))
 carousel = getattr(folder, CAROUSEL_ID)
 else:
 logger.info("Creating carousel in " + str(folder))
 pt = getToolByName(folder, 'portal_types')
 newid = pt.constructContent('Folder', folder, 'carousel', title='Carousel Banners', excludeFromNav=True)
 carousel = getattr(folder, newid)

 # mark the new folder as a Carousel folder
 alsoProvides(carousel, ICarouselFolder)

 # make sure Carousel banners are addable within the new folder
 addPermissionsForRole(carousel, 'Manager', ('Carousel: Add Carousel Banner',))

 # make sure *only* Carousel banners are addable
 carousel.setConstrainTypesMode(1)
 carousel.setLocallyAllowedTypes(['Carousel Banner'])
 carousel.setImmediatelyAddableTypes(['Carousel Banner'])

 return carousel

 def imageToCarouselBanner(self, image, carousel):
 """
 Convert ATImage to Carousel Banner content item.
 """

 logger.info("Migrating slideshow image:" + str(image.getId()))

 id = image.getId()

 if not id in carousel.objectIds():
 carousel.invokeFactory("Carousel Banner", id, title=image.Title())
 else:
 logger.info("Carousel image already existed " + str(image))

 banner = carousel[id]

 # Copy over image field from ATImage content type
 banner.setImage(image.getImage())

 # Set a hidden flag which allows us later to delete images
 image._migrated_to_carousel = True

 from Products.CMFCore.WorkflowCore import WorkflowException

 workflowTool = getToolByName(banner, "portal_workflow")
 try:
 workflowTool.doActionFor(banner, "publish")
 logger.info("Published " + banner.getId())
 except WorkflowException:
 # a workflow exception is risen if the state transition is not available
 # (the sampleProperty content is in a workflow state which
 # does not have a "submit" transition)
 logger.info("Could not publish:" + str(banner.getId()) + " already published?")
 pass

 def setupCarousel(self, carousel_folder):
 """
 Set-up custom carousel settings for all carousels.
 """

 logger.info("Setting carousel settings for:" + carousel_folder.absolute_url())

 settings = ICarouselSettings(carousel_folder)

 settings.width = 640
 settings.height = 450
 settings.pager_template = u'@@pager-none'
 settings.default_page_only = False
 settings.element_id = "karuselli"
 settings.transition_delay = 5.0
 settings.banner_elements = [u"image"]

 def migrateFolder(self, folder):
 """ Migrate one folder from Slideshow to Products.Carousel
 """
 logger.info("Migrating folder:" + str(folder))

 carousel = self.getOrCreateCarousel(folder)

 self.setupCarousel(carousel)

 images = self.getImages(folder)
 for image in images:
 self.imageToCarouselBanner(image, carousel)

 # This will toggle cache refresh for the object
 # if Products.CacheSetup is used -> should invalidate template cache.
 # Not necessary if Products.CacheSetup is not installed.
 folder.setTitle(folder.Title())
 folder.reindexObject()

 # Toggle folder away from slideshow view
 # empty_view is our custom view which does not list folder contents
 folder.setLayout("empty_view")

 # Set a marker flag in the case we need to play around with these
 # folders programmatically in the future
 folder._migrated_to_carousel = True

 def migrate(self):
 """
 Run the migration process for one Plone site.
 """

 brains = self.context.portal_catalog(portal_type="Folder")

 # Use predefined report of slideshow folder on old site
 # Alternative: detect slideshow folders as shown below
 carousel_folders = FOLDER_PATHS_TO_MIGRATE.split("\n")

 for b in brains:

 obj = b.getObject()

 path = str(obj.getPhysicalPath())

 # Alternative: if you don't have fixed list check here if getattr(obj, "default_view", "") == "slideshow_view"
 if path in carousel_folders:
 self.migrateFolder(obj)

 def __call__(self):
 """ Process the form.

 Process the form, log the output and show the output to the user.
 """

 self.logs = None

 try:
 self.startCapture(logging.DEBUG)

 logger.info("Starting full site migration")

 # Do the long running,
 # lots of logging stuff
 self.migrate()

 logger.info("Successfully done")

 except Exception, e:
 # Show friendly error message
 logger.exception(e)

 # Put log output for the page template access
 self.logs = self.stopCapture()

 return self.logs

class DeleteMigratedImages(BrowserView):
 """
 Delete all slideshow image files which have been migrated to carousel banners.

 By doing migration in two phases allows us to adjust the process in the case it goes wrong.
 """

 def __call__(self):
 """

 """

 self.buffer = StringIO()

 print >> self.buffer, "Log output"

 brains = self.context.portal_catalog(portal_type="Image")
 for b in brains:
 obj = b.getObject()
 if getattr(obj, "_migrated_to_carousel", False) == True:
 print >> self.buffer, "Deleting migrated Image " + obj.getId()
 id = obj.getId()
 parent = obj.aq_parent
 parent.manage_delObjects([id])

 print >> self.buffer, "All migrated images deleted"

 return self.buffer.getvalue()

ZCML bits:

<browser:page
 for="*"
 name="migrate_carousel"
 permission="cmf.ManagePortal"
 class=".carousel.MigrateSlideshowToCarousel"
 />

<browser:page
 for="*"
 name="delete_migrated_slideshow_images"
 permission="cmf.ManagePortal"
 class=".carousel.DeleteMigratedImages"
 />

Setting every carousel widths on the site

Another example to manipulate Products.Carousel.
This script will update all carousel settings
on the site to have new image width.

class SetCarouselWidths(BrowserView):
 """
 Set width to all carousels on the site.
 """

 def __call__(self):
 """

 """

 self.buffer = StringIO()

 print >> self.buffer, "Log output"

 brains = self.context.portal_catalog(portal_type="Folder")
 for b in brains:
 obj = b.getObject()
 if "carousel" in obj.objectIds():
 carousel = obj["carousel"]
 # Carousel installed on this folder
 settings = ICarouselSettings(carousel)
 print >> self.buffer, "Setting width for " + carousel.absolute_url()
 settings.width = 680

 print >> self.buffer, "All carousels updated"

 return self.buffer.getvalue()

ZCML

<browser:page
 for="*"
 name="set_carousel_widths"
 permission="cmf.ManagePortal"
 class=".carousel.SetCarouselWidths"
 />

AJAX full-size image loading for album views

Plone album views can be easily converted to pop-up image viewing with PipBox.

Put the following to portal_properties / pipbox_properties

Album view <a> click handler:

{type:'overlay', subtype:'image', selector:'.photoAlbumEntry a', urlmatch:'/view$', urlreplace:'/image_large'}

Note

portal_javascript must be in debug mode while testing different Products.PipBox handlers.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Upgrade tips

Description

Advanced tips for upgrading Plone.

General Tips

This guide contains some tips for Plone upgrades. For more Information, see
also the Official Plone upgrade guide [http://plone.org/documentation/manual/upgrade-guide]

Recommended set-up

	Test upgrade on your local development computer first.

	Create two buildouts. One for the old Plone version (your existing buildout)
and one for new version.

	Prepare the migration in old buildout. After all preparations are done, copy
Data.fs to new buildout and run plone_migration tool there.

Clear catalog

Before moving the Data.fs to new version, clear all site portal_catalog
information.

Fix persistent utilities

You might need to clean up some leftovers from uninstalled add-ons which have
not performed a clean uninstall.

Use this utility:

	https://pypi.python.org/pypi/wildcard.fixpersistentutilities

Note

Perform this against old buildout

Content Upgrades

For content migrations, Products.contentmigration [https://pypi.python.org/pypi/Products.contentmigration/] can help you.
Documentation on how to use it can be found on plone.org [http://plone.org/documentation/kb/migrate-custom-types-with-products.contentmigration].

Migration from non-folderish to folderish Archetypes based content types

Non-folderish content types are missing some BTree attributes, which folderish
content types have (See Products.BtreeFolder2.BTreeFolder2Base._initBtrees
).

plone.app.folder provides an upgrade view to migrate pre-plone.app.folder (or
non-folderish) types to the new BTree based implementation (defined in:
plone.app.folder.migration.BTreeMigrationView).

To upgrade your non-folderish content types to folderish ones, just call
@@migrate-btrees on your Plone site root, and you're done.

This applies to Archetypes based content types.

Upgrading theme

Make sure that your site them works on Plone 4.
Official upgrade guide has tips how the theme codebase should
be upgraded.

Theme fixing and portal_skins

Your theme might be messed up after upgrade.

Try playing around setting in portal_skins Properties tab.
You can enable, disable and reorder skins layer applied in the theme.

Upgrade may change the default theme and you might want to restore
custom theme in portal_skins.

Upgrade tips for plone.app.discussion

Enabling plone.app.discussion after Plone 4.1 upgrade

After migration from an earlier version of Plone, you will may notice that you
do not have a Discussion control panel for plone.app.discussion, the new
commenting infrastructure which now ships as part of new Plone installs beyond
version 4.1. If a check of your Site Setup page reveals that you do not have
the Discussion control panel, implement the following.

Install plone.app.discussion manually

	Log into your Plone site as a user with Manager access

	Browse to the following URL to manually install plone.app.discussion:

http://<your-plone-url>:<port>/<plone-instance>/portal_setup/manage_importSteps

	In the Select Profile or Snapshot drop-down menu, select
Plone Discussions.

	Click the Import all steps button at the bottom of the page.

	Confirm that Discussion is now present as a control panel in your
Site Setup

Migrate existing comments

Follow the instructions regarding How to migrate comments to
plone.app.discussion [http://plone.org/products/plone.app.discussion/documentation/how-to/how-to-migrate-comments-to-plone.app.discussion]
to migrate existing Plone comments.

Fixing Creator details on existing comments

You may notice that some of your site's comments have the user's ID as their
Creator property. At time of writing (for plone.app.discussion==2.0.10),
the Creator field should refer to the user's full name and not their user ID.
You'll likely notice that a number of other fields, including
author_username, author_name and author_email are not present on
some of your migrated comments. Reasons why comments get migrated but
unsuccessfully are being investigated.

This may change for future versions of plone.app.discussion. For now,
though, having the user ID left as the Creator is less than helpful and means
aspects like the username, name, and email not present affect usability of
comments.

If a site has many comments with this issue, it is possible to step through all
of them and correct them. Using a script like the following will process each
of the affected comments accordingly:

from Products.CMFPlone.utils import getToolByName
from zope.app.component import hooks
context = hooks.getSite()
catalog = getToolByName(context, 'portal_catalog')
mtool = getToolByName(context, 'portal_membership')
brains = catalog.searchResults(object_provides='plone.app.discussion.interfaces.IComment')
for brain in brains:
 member = mtool.getMemberById(brain.Creator)
 comment = brain.getObject()

 if member and not comment.author_username and not comment.author_name and not comment.author_email:
 fullname = member.getProperty('fullname')
 email = member.getProperty('email')
 if fullname and email:
 comment.author_username = brain.Creator #our borked user ID
 comment.creator = fullname
 comment.author_name = fullname
 comment.author_email = email
 comment.reindexObject()
 print 'Fixed and reindexed %s' % comment
 else:
 print 'Could not find properties for author of %s' % comment

This can be run anywhere an Acquisition context object is available, such
as running your Zope instance in debug mode, an ipython prompt, or some
other function on the filesystem. The getSite() function call can (and may
need to) be replaced with some other pre-existing context object if that is
more suitable.

Keep in mind that this script was successfully used in a situation where no
possible collisions existed between correctly-migrated comments Creators' full
names and user IDs (the code looks up the Creator in the hope of finding a
valid Plone member). So, if you had a situation where you had some correctly
migrated comments written by a user with ID david and full name of
Administrator, and also had a user with the ID of Administrator, then
this script may not be suitable. In the test situation, the three attributes
of author_username, author_name, and author_email were observed as
all being None, so in checking for this too, this may avoid problems. Test
the code first with something like a print statement to ensure all comments
will get modified correctly.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

HTML manipulation and transformations

Description

How to programmatically rewrite HTML in Plone.

	Introduction

	Converting HTML to plain text

	Converting plain text to HTML

	Rewriting relative links

Introduction

It is recommended to use the lxml [http://lxml.de/] library
for all HTML DOM manipulation in Python.

Plone is no exception.

Converting HTML to plain text

The most common use case is to override SearchableText() to return
HTML content for portal_catalog for indexing.

	http://stackoverflow.com/questions/6956326/custom-searchabletext-and-html-fields-in-plone

Converting plain text to HTML

You can use portal_transforms to do plain text -> HTML conversion.

Below is an example how to create a Description field rendered with new line support.

description.py:

from five import grok
from zope.interface import Interface
from Products.CMFCore.utils import getToolByName

class DescriptionHelper(grok.CodeView):
 """
 A helper view which exports dublin core description w/new line support
 allowing several paragraphs in Plone's description field.
 """

 grok.name("description-helper")
 grok.context(Interface)

 def render(self):
 """
 Get a content item description w/new line support.

 Transform hard lines to breaks in HTML.
 """

 # Call archetypes accessor
 text = self.context.Description()

 # Transform plain text description with ASCII newlines
 # to one with
 portal_transforms = getToolByName(self.context, 'portal_transforms')

 # Output here is a single <p> which contains
 for newline
 data = portal_transforms.convertTo('text/html', text, mimetype='text/-x-web-intelligent')
 html = data.getData()
 return html

Now you can do in your page template

<metal:main-macro define-macro="main">

 <div tal:replace="structure provider:plone.abovecontenttitle" />

 <h1 metal:use-macro="here/kss_generic_macros/macros/generic_title_view">
 Title or id
 </h1>

 <div tal:replace="structure provider:plone.belowcontenttitle" />

 <div class="documentDescription">
 <tal:desc replace="structure context/@@description-helper" />
 </div>

 ...

More info

	http://svn.plone.org/svn/collective/intelligenttext/trunk/README.txt

Rewriting relative links

Below is an example which:

	rewrites all relative links of Page content as absolute;

	removes some nasty tags from Page content;

	outputs the folder content and subcontent as one continuous page;

	is based on Grok views.

This is suitable for e.g. printing the whole folder in one pass.

help.py:

from lxml import etree
from StringIO import StringIO
import urlparse
from lxml import html

import zope.interface
from five import grok
from Products.CMFCore.interfaces import IFolderish

grok.templatedir("templates")

def fix_links(content, absolute_prefix):
 """
 Rewrite relative links to be absolute links based on certain URL.

 @param html: HTML snippet as a string
 """

 if type(content) == str:
 content = content.decode("utf-8")

 parser = etree.HTMLParser()

 content = content.strip()

 tree = html.fragment_fromstring(content, create_parent=True)

 def join(base, url):
 """
 Join relative URL
 """
 if not (url.startswith("/") or "://" in url):
 return urlparse.urljoin(base, url)
 else:
 # Already absolute
 return url

 for node in tree.xpath('//*[@src]'):
 url = node.get('src')
 url = join(absolute_prefix, url)
 node.set('src', url)
 for node in tree.xpath('//*[@href]'):
 href = node.get('href')
 url = join(absolute_prefix, href)
 node.set('href', url)

 data = etree.tostring(tree, pretty_print=False, encoding="utf-8")

 return data

def remove_bad_tags(content):
 """ Filter out HTML nodes which would prevent continuous printing """

 if type(content) == str:
 content = content.decode("utf-8")

 tree = html.fragment_fromstring(content, create_parent=True)

 # Title tag in the middle of page causes Firefox to choke and
 # aborts page rendering
 for node in tree.xpath('//title'):
 node.getparent().remove(node)

 data = etree.tostring(tree, pretty_print=False, encoding="utf-8")

 return data

class Help(grok.View):
 """ Render all folder pages and subpages as continuous printable document """

 # Available on any folder
 grok.context(IFolderish)

 def update(self):

 objects = []
 # Walk through all objects recursively

 def walk(folder, level):

 for id, object in folder.contentItems():

 if object.portal_type == "Image":
 continue

 # Output pages which have text payload
 if hasattr(object, "getText"):
 text = object.getText()
 else:
 text = ""

 objects.append({
 "object":object,
 "level":level,
 # We need to re-map relative links or
 # they are incorrect in rendered HTML output
 "text" : remove_bad_tags(fix_links(text, object.absolute_url()))
 })

 if object.portal_type == "Folder":
 walk(object,level+1)

 walk(self.context, 1)

 self.objects = objects

help.pt

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master">
<body>

<metal:slot metal:fill-slot="content-title" i18n:domain="cmf_default">
 <h1>Site help</h1>

 <p class="discreet">
 Printable versions
 </p>
</metal:slot>

<metal:block fill-slot="top_slot" tal:define="dummy python:request.set('disable_border',1)" />

<metal:slot metal:fill-slot="content-core" i18n:domain="cmf_default">

 <div class="help-all">
 <tal:rep repeat="page view/objects">
 <tal:def define="body page/text|nothing;title page/object/Title;level page/level">

 <div tal:condition="python:level==1" style="page-break-before:always"><!-- --></div>
 <h1 tal:condition="python:level==1" tal:content="title" />
 <h2 tal:condition="python:level==2" tal:content="title" />
 <h3 tal:condition="python:level>2" tal:content="title" />

 <div class="help-body">
 <tal:body tal:replace="structure body" />
 </div>

 <div style="clear: both"><!-- --></div>

 </tal:def>
 </tal:rep>
 </div>
</metal:slot>
</body>
</html>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

SQL

Description

Using SQL databases (MySQL, PostgreSQL, others) in Plone

	Introduction

	ZSQL

Introduction

If you are building the codebase Plone behaves as any other Python application.

	Write your SQL related code using known available Python SQL libraries and frameworks

	Plug your code to Plone HTML pages through views

Example Python SQL libraries

	http://www.sqlalchemy.org/

ZSQL

ZSQL is something probably written before you knew what SQL is.
Never ever use ZSQL in new code. It's not following any modern best practices
and has history of 1990s code. You have been warned. Stay away. The grue is near.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Changing Portal Transforms Settings via Python

	Introduction

	Writing an Generic Setup Import Step Method

	Registering the Import Step Method with Generic Setup

	Calling the Import Step Method in ZMI, portal_setup

Introduction

If you have to change some portal_transforms settings you can't use a Generic
Setup config file for this (as of 2010-03-25, Products.PortalTransforms 2.0b4).
But you can change it with python and a Generic Setup import step. Here's how
to do it.

Warning

Security: The configuration shown below allows users to use nasty HTML tags which can be a security issue if not used carefully.

Let's say we have a plone package called MY.PACKAGE.

Writing an Generic Setup Import Step Method

This setup method is defined in MY.PACKAGE/setuphandlers.py. It configures the
safe_html portal_transform a bit less paranoid about nasty tags and valid_tags,
so that content managers are allowed to insert iframe, object, embed, param,
script, style, tags and more into the TinyMCE editor:

import logging
from Products.CMFCore.utils import getToolByName
from Products.PortalTransforms.Transform import make_config_persistent

logger = logging.getLogger('MY.PACKAGE.setuphandlers')

def isNotThisProfile(context, marker_file):
 return context.readDataFile(marker_file) is None

def setup_portal_transforms(context):
 if isNotThisProfile(context, 'MY.PACKAGE-PROFILENAME.txt'): return

 logger.info('Updating portal_transform safe_html settings')

 tid = 'safe_html'

 pt = getToolByName(context, 'portal_transforms')
 if not tid in pt.objectIds(): return

 trans = pt[tid]

 tconfig = trans._config
 tconfig['class_blacklist'] = []
 tconfig['nasty_tags'] = {'meta': '1'}
 tconfig['remove_javascript'] = 0
 tconfig['stripped_attributes'] = ['lang', 'valign', 'halign', 'border',
 'frame', 'rules', 'cellspacing',
 'cellpadding', 'bgcolor']
 tconfig['stripped_combinations'] = {}
 tconfig['style_whitelist'] = ['text-align', 'list-style-type', 'float',
 'width', 'height', 'padding-left',
 'padding-right'] # allow specific styles for
 # TinyMCE editing
 tconfig['valid_tags'] = {
 'code': '1', 'meter': '1', 'tbody': '1', 'style': '1', 'img': '0',
 'title': '1', 'tt': '1', 'tr': '1', 'param': '1', 'li': '1',
 'source': '1', 'tfoot': '1', 'th': '1', 'td': '1', 'dl': '1',
 'blockquote': '1', 'big': '1', 'dd': '1', 'kbd': '1', 'dt': '1',
 'p': '1', 'small': '1', 'output': '1', 'div': '1', 'em': '1',
 'datalist': '1', 'hgroup': '1', 'video': '1', 'rt': '1', 'canvas': '1',
 'rp': '1', 'sub': '1', 'bdo': '1', 'sup': '1', 'progress': '1',
 'body': '1', 'acronym': '1', 'base': '0', 'br': '0', 'address': '1',
 'article': '1', 'strong': '1', 'ol': '1', 'script': '1', 'caption': '1',
 'dialog': '1', 'col': '1', 'h2': '1', 'h3': '1', 'h1': '1', 'h6': '1',
 'h4': '1', 'h5': '1', 'header': '1', 'table': '1', 'span': '1',
 'area': '0', 'mark': '1', 'dfn': '1', 'var': '1', 'cite': '1',
 'thead': '1', 'head': '1', 'hr': '0', 'link': '1', 'ruby': '1',
 'b': '1', 'colgroup': '1', 'keygen': '1', 'ul': '1', 'del': '1',
 'iframe': '1', 'embed': '1', 'pre': '1', 'figure': '1', 'ins': '1',
 'aside': '1', 'html': '1', 'nav': '1', 'details': '1', 'u': '1',
 'samp': '1', 'map': '1', 'object': '1', 'a': '1', 'footer': '1',
 'i': '1', 'q': '1', 'command': '1', 'time': '1', 'audio': '1',
 'section': '1', 'abbr': '1'}
 make_config_persistent(tconfig)
 trans._p_changed = True
 trans.reload()

Registering the Import Step Method with Generic Setup

Add an import step in MY.PACKAGE/MYPROFILESDIR/PROFILENAME/import_steps.xml like
so::

<?xml version="1.0"?>
<import-steps>
 <import-step
 id="MY.PACKAGE-portal_transforms"
 handler="MY.PACKAGE.setuphandlers.setup_portal_transforms"
 title="MY.PACKAGE portal_transforms setup"
 version="1.0">
 <dependency step="plone-final"/>
 </import-step>
</import-steps>

And create the File
MY.PACKAGE/MYPROFILESDIR/PROFILENAME/MY.PACKAGE-PROFILENAME.txt, so that this
import step is not run for any profile but just for this one.

Calling the Import Step Method in ZMI, portal_setup

Goto your site's portal_setup in ZMI, select your registered profile and import
the import step "MY.PACKAGE portal_transforms setup". That's it.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Running plone.org site locally

	Introduction

	Base buildout and Zope

	XDV theming

	Notes

Introduction

This document tells how to duplicate plone.org to your local machine.
Previous Plone development experience needed.

Base buildout and Zope

Grab your own buildout copy from

	https://github.com/plone/Products.PloneOrg

	buildout it

	bin/instance fg

XDV theming

	Enter xdv:

cd xdv

	Checkout dv.xdvserver:

svn co https://codespeak.net/svn/z3/deliverance/sandboxes/optilude/dv.xdvserver/trunk/ src/dv.xdvserver

	Get static folder to correct context:

ln -s ../static .

	Edit nginx.cfg:

[nginx]
libxml2 = ${buildout:directory}/parts/lxml/libxml2
libxslt = ${buildout:directory}/parts/lxml/libxslt

[buildxsl]
command = ${nginx:libxslt}/bin/xsltproc
 ...
 ${nginx:libxslt}/bin/xsltproc --html --nonet \

	NGINX build instructions for OSX: http://www.ravelrumba.com/blog/install-nginx-webfaction/

	Add --with-pcre=/path/to/your/pcre-8.1 in nginx.cfg. This must point extracted PCRE source code (you don't
need to compile PCRE by hand, just get the source)

	Build it:

bin/buildout -c nginx.cfg

	If nginx building fails you can reset it with:

rm -rf parts/nginx*

	If your buildout fails with messages like:

 > /Users/moo/plone/xdv/etc/wide.xsl
 /bin/sh: line 1: /Users/moo/plone/xdv/parts/libxslt/bin/xsltproc: No such file or directory
 /bin/sh: line 7: /Users/moo/plone/xdv/parts/libxslt/bin/xsltproc: No such file or directory

Check that you have xsltproc configured in nginx.cfg as instructed above.

	After buildout completes do ngingx configtest:

bin/nginxctl configtest
...
2010/03/19 21:14:38 [info] 68212#0: the configuration file /Users/moo/plone/xdv/etc/nginx.conf was tested successfully

	Then run it:

bin/nginxctl start

	Add see that this servers static plone.html:

http://localhost:5500/

	Now you can edit nginx.cfg to pull content from your local Plone:

[nginx-conf]

#virtual-host = VirtualHostBase/http/new.plone.org:80/plone.org/VirtualHostRoot
#backend = http://127.0.0.1:8001

replace foobar with your Plone site id
virtual-host = VirtualHostBase/http/localhost:5500/foobar/VirtualHostRoot
backend = http://127.0.0.1:5011

	You also need to touch static/rules/default.xml and comment out:

<!-- Drop plone.css, we want the merged, compressed version from plone -->
<!--
 <drop theme='/html/head/link[@rel="stylesheet"]'/>
-->

	Rebuild and restart nginx:

bin/buildout -c nginx.cfg ; bin/nginxctl stop ; bin/nginxctl start

	Start Plone instance:

cd ..
bin/instance1 fg

	Try:

http://localhost:5011/manage

This should give Zope access and unthemed Plone site.

	Try:

http://localhost:5500/

It should show the themed default "Welcome to Plone page" instead of static XDV HTML content before.

Notes

	Front page theming is done by static/plone-wide.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Programming Plone »

 	Miscellaneous information »

Looking ahead towards Plone 5

Concerns regarding removal of portal_skins and reliance on browser views

Specific Things We Like to Do with portal_skins

This document includes a bunch of specific use cases showing how we as
integrators typically rely on portal_skin.

Nathan Van Gheem's responses below are indented.

Live Sites

We can modify live sites’ appearance without having to touch the file system by
putting things in the custom folder.

Plone has, and will always try to provide a rich TTW editing and
customization story. This is true with plone.app.theming and diazo. If all
skins are removed, we WILL provide an alternative way to customize template
TTW. Right now, it looks to me like making portal_view_customizations work
better.

No Filesystem or Buildout Access

We often do not have access to the file system nor can we run buildout.

See Live Sites response.

Customizing a collection’s display

We have some custom content types that we want to display using a collection.
We build the collection and specify “item type”. We want the display to show
fields that are unique to the custom content types. We locate the collection
view template, customize it, rename it (to, say, custom_collection_view),
enhance it to show the additional field values, then in portal_types we add the
new custom_collection_view to the list of available views for Topics. The
collection’s “Display” menu now includes the new custom_collection_view.

First off, best case we still have a story to do the exact same thing only
with portal_view_customizations.

Secondly, it can be easier to hit that use-case with a combination of
collective.listingviews and diazo. There has been discussion of integrating
a lot of what collective.listingviews does and more into plone.app.theming.

Creating a cloned content type so that it has a different default view

Let’s say a site has a custom content type based on Document but we want to have
the default view include boilerplate text around the rich text and description.
We would go to portal_types, clone the Document type, rename the cloned type
“Project”. Then we go to portal_skins, find document_view, customize it,
rename it to project_view, and add the boilerplate text we want. Then back in
portal_types for Project, we change the default view to project_view. This way,
anywhere in the site we create a Project object, its default view (its only
view) shows the boilerplate text we wanted.

Cloned content types will still be available with dexterity. In fact, it’ll
be incredibly more robust and powerful.

For the views, look to the previous point about using
collective.listingviews and diazo.

Classic Portlets

We use classic portlets a lot to put together (quickly) something that displays
arbitrary content.

There is nothing scheduled to get rid of portlet or the classic portlet
right now. portal_skins will still be there.

That being said, I might need more specific use-cases of how you’re using
classic portlets in order to explain how it’d be a replacement.

Things We Don’t Like About Having to Rely Only on Browser Views

Why browser views are hard for integrators (non-developers):

	We may not have file system access

	We may not want to have to (and are not in fact able to) create a product to
register a new view

	We may not want to have to re-run buildout (nor are we able to) to register a
new view

	Unless a browser view is correctly registered, customizing it via
portal_view_customizations breaks Python methods associated with the view

I hope I’ve addressed your concerns. The final point is valid and a concern
of mine also. We’ll need to make sure there is a way to customize all
templates safely. I sort of hope people simply won’t be doing TTW
customizations of templates as much anymore though and they’ll just use
diazo with something like listingviews.

Others might have different ideas about how things will work. Dylan Jay
might be someone that can give really good answers regarding these questions.

A good discussion regarding some of these issues can be found at:
http://plone.293351.n2.nabble.com/enhanced-collections-views-td7565206.html;cid=1372262563684-127

The final response there has a good overview.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Process for Plone core's development

Introduction

This documentation describes the process for developing Plone. It is primarily a technical resource for setting up your core developer buildout, fixing bugs, and writing plips.

Warning

STOP!

Legally, you can NOT contribute code unless you have signed the contributor agreement. This means that we can NOT accept pull requests from you unless this is done, so please don't put the code reviewers at risk and do it anyways. Submitting the agreement is easy (and will soon be easier) and if you want quick access and are familiar with the community, go into irc and ask one of the repo admins to give you access with a scanned copy of the agreement. They will get you going as fast as possible!

Table of Awesome

	Contributing to Plone Core
	Dealing with pull requests on GitHub

	Plone Developer Culture

	How To Commit Fixes to Plone Core
	Version Support Policy

	Dependencies

	Setting up Your Development Environment

	Checking out Packages for Fixing

	Testing Locally

	Updating CHANGES.rst and checkouts.cfg

	Committing and Pull Requests

	Committing to Products.CMFPlone

	Jenkins

	Finalizing Tickets

	FAQ

	Writing documentation
	Documentation of Plone

	Documenting a package

	Style Guide
	Naming Conventions

	File Conventions

	Concrete Rules

	Implementing PLIPS
	All about PLIPS

	Process Overview

	How to Submit a PLIP

	Implementing Your PLIP

	Troubleshooting
	Buildout Issues

	Other Random Issues

	How to Update these Docs

Others

These are some documents using as reference for this documentation.

	Contributor’s Agreement for Plone Explained

	Mr. Developer

	Reviewing PLIPs

Translations available

There are some initiatives to maintenance available translations in other languages for this documentation like:

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Contributing to Plone Core

There are many people and companies who rely on Plone on a day-to-day basis so we have to introduce some level of code quality control. Plone's source code is hosted in a git repository at https://github.com/plone, but only members of the developer team have commit-rights.

Just sending in a contributors agreement does not guarantee you access to the repository, but once you send it in we will always have it on file for when you are ready to contribute. We do ask that before requesting core access you familiarize yourself a little with the community since they will help you get ramped up:

	Ask and (especially) answer questions on stack overflow [http://stackoverflow.com/] and IRC with a focus on getting to know the active developers a bit.

	Attend a conference [http://plone.org/events/conferences] / symposium [http://plone.org/events/regional] or participate in a sprint [http://plone.org/events/sprints] / tune-up [http://plone.org/events/plone-tuneups]. There are plenty of opportunities to meet the community and start contributing through various coding sessions, either in person or on the web. You may even be able to get immediate core access at a conference if you are flexing your mad coding skills and the right people are attending.

	Get your feet wet by contributing to the collective [http://collective.github.com/]. Don't worry about getting it perfect or asking for help; this way you get to know us and we improve our code together as a community.

	Patches: Historically we encouraged people to submit patches to the ticket collector. These tickets are usually ignored forever. Technically, in order for us to accept your patch you must sign the contributors agreement. If you want to contribute fixes, please just sign the agreement and go through the standard github pull request process described until you feel comfortable to bypass review. If the ticket is trivial, or you're fixing documentation, you do not need to sign a contributor's agreement.

Once you have familiarized yourself with the community and you are excited to contribute to the core:

	Sign the contributor agreement at http://plone.org/foundation/contributors-agreement/agreement.pdf/at_download/file, then either snail mail it to the address provided or scan and email it to assignments@plone.org. This offers both copyright protection and ensures that the Plone Foundation is able to exercise some control over the codebase, ensuring it is not appropriated for someone's unethical purposes. For questions about why the agreement is required, please see Contributor’s Agreement for Plone Explained.

If you aren't sure where to start or just want more direction, feel free to get on IRC, mailing lists, Twitter, etc... and ask for help. While there is no official mentoring process, there are plenty of people willing to act in that role and guide you through the steps of getting involved in the community. A common way to start contributing is to participate in a Plone tune-up day. Tune-ups are filled with a good mix of newbies and experienced devs alike. For more information, please see http://plone.org/tuneup.

Welcome to the Plone community!

Dealing with pull requests on GitHub

Before we can merge a pull request, we have to check that the author has signed the contributor's agreement.

If they're listed in https://github.com/plone?tab=members, the author has signed so we can go ahead and merge.

If they aren't listed there, there's still a chance they have signed the contributor's agreement.
Check on IRC #plone-framework [http://webchat.freenode.net?channels=plone-framework].

Pull requests without contributor's agreement can only be merged in trivial cases, and only by the release manager.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Plone Developer Culture

If you are going to be contributing back to Plone, we ask a couple things. First, please join the plone-developers [https://lists.sourceforge.net/lists/listinfo/Plone-developers] list and at minimum lurk around. You will quickly see how people work and what kind of things are best suited for group discussion. Second, please ask for help setting up your environment in IRC. Most of our developers work there and you will get the best advice there.

Download an IRC client (Or using an alternative client through the web [http://webchat.freenode.net/]) and jump on to #plone-framework [http://webchat.freenode.net?channels=plone-framework] (and/or #plone [http://webchat.freenode.net?channels=plone] - both on freenode). The people in #plone-framework [http://webchat.freenode.net?channels=plone-framework] have been using plone for a very long time and are happy to help you get going and make the right decisions. More info on IRC can be found at http://plone.org/support/chat.

If you are actively committing code, join the test bot mailing list [https://lists.plone.org/mailman/listinfo/plone-testbot/] so you know if your recent commits have broken (or fixed!) the build.

If you are in a timezone when things are not very active, please post to the plone-developers mailing list or grab a beer and wait for people to wake up.

When in doubt, please ask. The code base is very complicated and everyone is vested in the right thing happening. Despite the occasional grouch here and there, most plone devs will go out of their way to get you on the right path.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

How To Commit Fixes to Plone Core

This document assumes you want to fix a bug and will detail the full process. For more information on writing PLIPS, please go here.

Version Support Policy

If you are triaging or fixing bugs, keep in mind that Plone has a version support policy [http://plone.org/support/version-support-policy].

Dependencies

	Git [http://help.github.com/mac-set-up-git/]

	Subversion [http://subversion.apache.org/]

	Python [http://python.org/] 2.6 or 2.7 including development headers.

	If you are on Mac OSX, you will need to install XCode [https://developer.apple.com/xcode/]. You can do this through the app store or several other soul-selling methods. You will likely want to install your own python 2.6 as well since they strip out all the header files which makes compiling some extensions weird. You can ignore this advice to start, but have faith, you'll come back to it later. They always do...

	Python Imaging Library (PIL) [http://www.pythonware.com/products/pil/]. Make sure to install this into the proper python environment.

	VirtualEnv [http://www.virtualenv.org/en/latest/index.html] in the proper python environment.

	GCC [http://gcc.gnu.org/] in order to compile ZODB, Zope and lxml.

	libxml2 and libxslt [http://xmlsoft.org/XSLT/downloads.html], including development headers.

Setting up Your Development Environment

The first step in fixing a bug is getting this buildout [https://github.com/plone/buildout.coredev] running. We recommend fixing the bug on the latest branch and then backporting [http://en.wikipedia.org/wiki/Backporting] as necessary. Github [https://github.com/plone/buildout.coredev/] by default always points to the currently active branch. More information on switching release branches is below.

To set up a plone 4.2 development environment:

> cd ~/buildouts # or wherever you want to put things
> git clone -b 4.2 https://github.com/plone/buildout.coredev ./plone42devel
> virtualenv --no-site-packages plone42devpy
> cd plone42devel
> ../plone42devpy/bin/python bootstrap.py # (where "python" is your python 2.6 or 2.7 binary).
> bin/buildout -v

If you run into issues in this process, please see the doc Troubleshooting.

This will run for a long time if it is your first pull (~20 mins). Once that is done pulling down eggs, You can start your new instance with:

> ./bin/instance fg

The default username/password for a dev instance is admin/admin.

Switching Branches

If your bug is specific to one branch or you think it should be backported [http://en.wikipedia.org/wiki/Backporting], you can easily switch branches. The first time you get a branch, you must do:

> git checkout -t origin/4.1

This should set up a local 4.1 branch tracking the one on github. From then on you can just do:

> git checkout 4.1

To see what branch you are currently on, just do:

> git branch

The line with a * by it will indicate which branch you are currently working on.

Important

Make sure to rerun buildout if you were in a different branch earlier to get the correct versions of packages, otherwise you will get some weird behavior!

For more information on buildout, please see the collective developer manual documentation on buildout.

Checking out Packages for Fixing

Most packages are not in src/ by default, so you can use mr.developer to get the latest and make sure you are always up to date. It can be a little daunting at first to find out which packages are causing the bug in question, but just ask on irc if you need some help. Once you [think you] know which package(s) you want, we need to pull the source.

You can get the source of the package with mr.developer and the checkout command, or you can go directly to editing checkouts.cfg. We recommend the latter but will describe both. In the end, checkouts.cfg must be configured either way so you might as well start there.

At the base of your buildout, open checkouts.cfg and add your package if it's not already there:

auto-checkout =
 # my modified packages
 plone.app.caching
 plone.caching
 # others
 ...

Then rerun buildout to get the source packages:

> ./bin/buildout

Altternatively, we can manage checkouts from the command line, by using mr.developer's bin/develop command to get the latest source. For example, if the issue is in plone.app.caching and plone.caching:

> ./bin/develop co plone.app.caching
> ./bin/develop co plone.caching
> ./bin/buildout

Don't forget to rerun buildout! In both methods, mr.developer will download the source from github (or otherwise) and put the package in the src/ directory. You can repeat this process with as many or as few packages as you need. For some more tips on working with mr.developer, please read more here.

Testing Locally

In an ideal world, you would write a test case for your issue before actually trying to fix it. In reality this rarely happens. No matter how you approach it, you should ALWAYS run test cases for both the module and plone.org before commiting any changes.

If you don't start with a test case, save yourself potential problems and validate the bug before getting too deep into the issue!

To run a test for the specific module you are modifying:

> ./bin/test -m plone.app.caching

These should all run without error. Please don't check in anything that doesn't! If you haven't written it already, this is a good time to write a test case for the bug you are fixing and make sure everything is running as it should.

After the module level tests run with your change, please make sure other modules aren't affected by the change by running the full suite:

> ./bin/alltests

Note

Tests take a long time to run. Once you become a master of bugfixes, you may just let jenkins do this part for you. More on that below.

Updating CHANGES.rst and checkouts.cfg

Once all the tests are running locally on your machine, you are ALMOST ready to commit the changes. A couple housekeeping things before moving on.

First, please edit CHANGES.rst (or CHANGES.txt, or HISTORY.txt) in each package you have modified and add a summary of the change. This change note will be collated for the next Plone release and is important for integrators and developers to be able to see what they will get if they upgrade.
New changelog entries should be added at the very top of CHANGES.txt.

Most importantly, if you didn't do it earlier, edit checkouts.cfg file in the buildout directory and add your changes package to the auto-checkout list. This lets the release manager know that the package has been updated so that when the next release of Plone is cut a new egg will be released and Plone will need to pin to the next version of that package. READ: this is how your fix becomes an egg!

Note that there is a section seperator called "# Test Fixes Only". Make sure your egg is above that line or your egg probably won't get made very quickly. This just tells the release manager that any eggs below this line have tests that are updated, but no code changes.

Modifying checkouts.cfg file also triggers the buildbot, jenkins [https://jenkins.plone.org/], to pull in the egg and run all the tests against the changes you just made. Not that you would ever skip running all tests of course... More on that below.

If your bug is in more than one release (e.g. 4.1 and 4.2), please checkout both branches and add to the checkouts.cfg file.

Committing and Pull Requests

Phew! We are in the home stretch. How about a last minute checklist:

	Did you fix the original bug?

	Is your code consistent with our Style Guide?

	Did you remove any extra code and lingering pdbs?

	Did you write a test case for that bug?

	Are all test cases for the modules(s) and for Plone passing?

	Did you update CHANGES.rst in each packages you touched?

	Did you add your changed packages to checkouts.cfg?

If you answered YES to all of these questions, you are ready to push your changes! A couple quick reminders:

	Only commit directly to the development branch if you're confident your code won't break anything badly and the changes are small and fairly trivial. Otherwise, please create a pull request (more on that below).

	Please try to make one change per commit. If you are fixing three bugs, make three commits. That way, it is easier to see what was done when, and easier to roll back any changes if necessary. If you want to make large changes cleaning up whitespace or renaming variables, it is especially important to do so in a separate commit for this reason.

	We have a few angels that follow the changes and each commit to see what happens to their favourite CMS! If you commit something REALLY sketchy, they will politely contact you, most likely after immediately reverting changes. There is no official people assigned to this so if you are especially nervous, jump into #plone [http://webchat.freenode.net?channels=plone] and ask for a quick eyeball on your changes.

Committing to Products.CMFPlone

If you are working a bug fix on Products.CMFPlone,
there are a couple other things to take notice of.
First and foremost,
you'll see that there are several branches.
At the time of writing this document,
there are branches for 4.1, 4.2, and master, which is the implied 4.3.

Still with me? So you have a bug fix for 4.x.
If the fix is only for one version,
make sure to get that branch and party on.
However, chances are the bug is in multiple branches.

Let's say the bug starts in 4.1. Pull the 4.1 branch and fix and commit there with tests.

If your fix only involved a single commit,
you can use git's cherry-pick command to apply the same commit
to a different branch.

First check out the branch:

> git checkout 4.2

And then cherry-pick the commit (you can get the SHA hash from git log).:

> git cherry-pick b6ff4309

There may be conflicts; if so, resolve them and then follow the directions
git gives you to complete the cherry-pick.

If your fix involved multiple commits, cherry-picking them one by one can get tedious.
In this case things are easiest if you did your fix in a separate feature branch.

In that scenario, you first merge the feature branch to the 4.1 branch:

> git checkout 4.1
> git merge my-awesome-feature

Then you return to the feature branch and make a branch for rebasing it onto the 4.2 branch:

> git checkout my-awesome-feature
> git checkout -b my-awesome-feature-4.2
> git rebase ef978a --onto 4.2

(ef978a happens to be the last commit in the feature branch's history before
it was branched off of 4.1. You can look at git log to find this.)

At this point, the feature branch's history has been updated, but it hasn't actually
been merged to 4.2 yet. This lets you deal with resolving conflicts before you
actually merge it to the 4.2 release branch. Let's do that now:

> git checkout 4.2
> git merge my-awesome-feature-4.2

Branches and Forks and Direct Commits - Oh My!

Plone used to be in an svn repository, so everyone is familiar and accustomed to committing directly to the branches. After the migration to github, the community decided to maintain this spirit. If you have signed the contributor agreement form, you can commit directly to the branch (for plone this would be the version branch, for most other packages this would be master).

	HOWEVER, there are a few situations where a branch is appropriate. If you:

	
	are just getting started,

	are not sure about your changes

	want feedback/code review

	are implementing a non-trivial change

then you likely want to create a branch of whatever packages you are using and then use the pull request [https://help.github.com/articles/using-pull-requests] feature of github to get review. Everything about this process would be the same except you need to work on a branch. Take the plone.app.caching example. After checking it out with mr.developer, create your own branch with:

> cd src/plone.app.caching
> git checkout -b my_descriptive_branch_name

Note

Branching or forking is your choice. I prefer branching, and I'm writing the docs so this uses the branch method. If you branch, it helps us because we know that you have committer rights. Either way it's your call.

Proceed as normal. When you are ready to push your fix, push to a remote branch with:

> git push origin my_descriptive_branch_name

This will make a remote branch in github. Navigate to this branch in the github UI and on the top right there will be a button that says "Pull Request". This will turn your request into a pull request on the main branch. There are people who look once a week or more for pending pull requests and will confirm whether or not its a good fix and give you feedback where necessary. The reviewers are informal and very nice so don't worry - they are there to help! If you want immediate feedback, jump into IRC with the pull request link and ask for a review.

Note

you still need to update checkouts.cfg file in the correct branches of buildout.coredev!

Jenkins

You STILL aren't done! Please check jenkins to make sure your changes haven't borked things. It runs every half an hour and takes a while to run so checking back in an hour is a safe bet. Have a beer and head over to the Jenkins control panel [https://jenkins.plone.org/].

Finalizing Tickets

If you are working from a ticket, please don't forget to go back to the ticket and add a link to the changeset. We don't have integration with github yet so it's a nice way to track changes. It also lets the reporter know that you care. If the bug is really bad, consider pinging the release manager and asking him to make a release pronto.

FAQ

	
	How do I know when my package got made?

	You can follow the project on github and watch its timeline [https://github.com/organizations/plone]. You can also check the CHANGES.txt of every plone release for a comprehensive list of all changes and validate that yours is present.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Writing documentation

Documentation of Plone

docs.plone.org [http://docs.plone.org] contains a full overview of the current documentation for Plone.

Documenting a package

The basics

At the very least, your package should include the following forms of documentation:

	README.rst

	The readme is the first entry point for most people to your package. It will be included on the PyPI page for your egg, and on the front page of its github repository. It should be formatted using reStructuredText (reST) [http://docutils.sourceforge.net/rst.html] in order to get formatted properly by those systems.

README.rst should include:

	A brief description of the package's purpose

	Installation information (How do I get it working?)

	Compatibility information (what versions of Plone does it work with?)

	Links to other sources of documentation

	Links to issue trackers, mailing lists, and other ways to get help.

The manual (a.k.a. narrative documentation)

The manual goes into further depth for people who want to know all about how to use the package.

It includes topics like:

	What the features are

	How to use them (in English—not doctests!)

	Information about architecture

	Common gotchas

The manual should consider various audiences who may need different types of information:

	End users who use Plone for content editing but don't manage the site.

	Site administrators who install and configure the package.

	Integrators who need to extend the functionality of the package in code.

	Sysadmins who need to maintain the server running the software.

Simple packages with limited functionality can get by with a single page of narrative documentation. In this case it's simplest to include it in an extended README.rst. Some excellent examples of a single-page readme are https://pypi.python.org/pypi/plone.outputfilters and https://github.com/plone/plone.app.caching

If your project is moderately complex, you may want to set up your documentation with multiple pages. The best way to do this is to add Sphinx to your project and host your docs on readthedocs.org so that it rebuilds the documentation whenever you push to github. If you do this, your README.rst must link off site to the documentation.

Reference (a.k.a. API documentation)

An API reference provides information about the package's public API (that is, the code that the package exposes for use from external code.) It is meant for random access to remind the reader of how a particular class or method works, rather than for reading in its entirety.

If the codebase is written with docstrings, API documentation can be automatically generated using Sphinx.

	CHANGES.txt

	The changelog is a record of all the changes made to the package and who made them, with the most recent changes at the top. This is maintained separately from the git commit history to give a chance for more user-friendly messages and to and record when releases were made.

A changelog looks something like:

Changelog
=========

1.0 (2012-03-25)

* Documented changelogs.
 [davisagli]

See https://raw.github.com/plone/plone.app.caching/master/CHANGES.rst for a full example.

If a change was related to a bug in the issue tracker, the changelog entry should include a link to that issue.

	Licenses

	Information about the open source license used for the package should be placed within the docs directory.

For Plone core packages, this includes LICENSE.txt and LICENSE.GPL.

Using Sphinx

reST References:

	Sphinx reST Primer [http://sphinx-doc.org/rest.html]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Style Guide

Python, like any programming language, can be written in a number of styles. We're the first to admit that Zope and Plone are not the finest examples of stylistic integrity, but that doesn't stop us from trying!

If you are not familiar with PEP 8 [http://www.python.org/dev/peps/pep-0008] - the python style guide, please take a moment to read and get up to date. We don't require it but we as a community really, really appreciate it.

Naming Conventions

Above all else, be consistent with any code your are modifying! Historically the code is all camel case, but many new libraries are in the PEP8 convention. The mailing list is exploding with debate over what is better so we'll leave the excersize of deciding what to do with the user.

File Conventions

In Zope 2, file names used to be MixedCase. In Python, and thus in Plone going forward, we prefer all-lowercase filenames. This has the advantage that you can instantly see if you refer to a module / file or a class:

from zope.pagetemplate.pagetemplate import PageTemplate

compare that to:

from Products.PageTemplates.PageTemplate import PageTemplatePageTemplate

Filenames should be short and descriptive. Think about how an import would read:

from Products.CMFPlone.utils import safe_hasattr

compare that to:

from Products.CMFPlone.PloneUtilities import safe_hasattr

The former is obviously much easier to read, less redundant and generally more aesthetically pleasing.

Note

This example is just about as terrible as they come. We need a better one.

Concrete Rules

	Do not use tabs in Python code! Use spaces as indenting, 4 spaces for each level. We don't "require" PEP8 [http://www.python.org/dev/peps/pep-0008/], but most people use it and it's good for you.

	Indent properly, even in HTML.

	Never use a bare except. Anything like except: pass will likely be reverted instantly

	Avoid tal:on-error, since this swallows exceptions

	Don't use hasattr() - this swallows exceptions, use getattr(foo, 'bar', None) instead. The problem with swallowed exceptions is not just poor error reporting. This can also mask ConflictErrors, which indicate that something has gone wrong at the ZODB level!

	Never, ever put any HTML in Python code and return it as a string

	Do not acquire anything unless absolutely necessary, especially tools. For example, instead of using context.plone_utils, use:

from Products.CMFCore.utils import getToolByName
plone_utils = getToolByName(context, 'plone_utils')

	Do not put too much logic in ZPT (use Views instead!)

	Remember to add i18n tags in ZPTs and Python code

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Implementing PLIPS

All about PLIPS

	What is a PLIP?

	A PLIP is a Plone Improvement Proposal. It is a change to a Plone package that would affect everyone. PLIPs go through a different process than bug fixes because of their broad reaching effect. The Plone 4.x Framework Team reviews all PLIPs to be sure that it’s in the best interest of the broader community to be implemented and that it is of high quality.

	Is it a PLIP or a bugfix?

	In general, anything that changes the API of Plone in the backend or UI on the front end should be filed as a PLIP. When in doubt, submit it as a PLIP. The framework team is eager to reduce its own workload and will re-classify it for you.

	Who can submit PLIPs?

	Anyone who has signed a Plone core contributor agreement can work on a PLIP. Don’t let the wording freak you out: signing the agreement is easy and you will get access almost immediately.
You do not have to be the most amazing coder in the entire world to submit a PLIP. The Framework Team is happy to help you at any point in the process. Submitting a PLIP can be a great learning process and we encourage people of all backgrounds to submit. When the PLIP is accepted, a Framework Team member will “champion” your PLIP and be dedicated to seeing it completed.
PLIPs are not just for code monkeys. If you have ideas on new interactions or UI your ideas are more than welcome. We will even help you pair up with implementors if needed.

	What is a PLIP champion?

	When you submit your PLIP and it is approved, 1 Framework Team member who is especially excited about seeing the PLIP completed will be assigned to your PLIP as a champion. They are there to push you through completion as well as answer any questions and provide guidance.

A champion should:

	Answer any questions the PLIP implementor has, technically and otherwise

	Encourage the PLIP author by constantly giving feedback and encouragement

	Keep the implementor aware of timelines and push to get things done on time

	Assist with finding additional help when needed to complete the implementation in a timely matter

Keep in mind that champions are in passive mode by default. If you need help or guidance, please reach out to them as soon as possible to activate help mode.

	I’m still nervous. Can I get involved other ways at first?

	If you want to feel the process and how it works, help us review PLIPs as the implementations finish up. Simply ask on of the Framework Team members what PLIPs are available for review or check the status of PLIPs at the following link [https://dev.plone.org/report/24]. Make sure to let us know you intend to review the PLIP by joining the Framework Team mailing list [https://lists.plone.org/mailman/listinfo/plone-framework-team] and sending a quick email.
Then, follow the simple instructions for reviewing a PLIP. Thank you in advance!

	When can I submit a PLIP?

	Today, tomorrow, any time! After the PLIP is accepted, the Framework Team will try to judge complexity and time to completion and assign it to a milestone. You can begin working immediately, and we encourage submitting fast and furious.

	When is the PLIP due?

	Summary: As soon as you get it done.
Technically, we want to see it completed for the release to which it’s assigned. We know that things get busy and new problems make PLIPs more complicated and we will push it to the next release.
In general, we don’t want to track a PLIP for more than a year. If your PLIP is accepted and we haven’t seen activity in over a year, we will probably ask you to restart the whole process.

	You don’t like my PLIP :(What now?

	Just because a PLIP isn’t accepted in core doesn’t mean it’s a bad idea. It is often the case that there are competing implementations and we want to see it vetted as an add on before “blessing” a preferred implementation.

Process Overview

	Submit a PLIP (at any time)

	PLIP is approved for inclusion into core for a given release

	Developer implements PLIP (code, tests, documentation)

	PLIP is submitted for review by developer

	Framework Team reviews the PLIP and gives feedback

	Developer addresses concerns in feedback and re-submits if necessary. This may go back and forth a few times until both the FWT and developer are happy with the result.

	PLIP is approved for merge. In rare circumstances, a PLIP will be rejected. This is usually the result of the developer not responding to feedback or dropping out of the process. Hang in there!

	After all other PLIPS are merged, a release is cut. Standby for bugs!

How to Submit a PLIP

Whether you want to update the default theme or rip out a piece of architecture, everyone should go through the PLIP process. If you need help at any point in this process, please contact a member of the framework team personally or ask for help on the FWT mailing list [https://lists.plone.org/mailman/listinfo/plone-framework-team].

A PLIP is just a ticket with a special template. To get started, open a new ticket [https://dev.plone.org/newticket] and select "PLIP" as the ticket type. A new ticket template will reload and you should plan to fill in all of the fields.

When writing a PLIP, be as specific and to-the-point as you can. Remember your audience - to get support for your proposal, people will have to be able to read it! A good PLIP is sufficiently clear for a knowledgeable Plone user to be able to understand the proposed changes, and sufficiently detailed for the release manager and other developers to understand the full impact the proposal would have on the codebase. You don't have to list every line of code that needs to be changed, but you should also give an indication that you have some idea that how the change can be feasibly implemented.

If your change is minor then a ticket in the tracker will be sufficient, added as an enhancement. The key point here is that each change needs documentation so other users can see what it is. This can be in the form of an issue tracker entry, or a PLIP in the case of a bigger change. A bug or minor change does normally not need to go through a review process - a PLIP does.

After your PLIP is written, solicit feedback on your idea on the plone-developers mailing list. In this vetting process, you want to make sure that the change won’t adversely affect other people on accident. Others may be able to point out risks or even offer up better or existing solutions.

When you are happy with the feedback, submit a PLIP. Please use the template provided (XXX: put the template here? Can we just have a custom ticket type?). Please note a few things. It is very rare that the “Risks” section will be empty or none. If you find this is the case and your PLIP is anything more than trivial, maybe some more vetting should be done.

The seconder field is REQUIRED. We will send the PLIP back to you if it is not filled in. Currently, this is just someone else who thinks your PLIP is a good idea, a +1. In the near future, we will start asking that the seconder is either a coding partner, or someone who is willing and able to finish the PLIP should something happen to the implementor.

Everything else should be self explanatory. That or I got lazy when writing these docs. I'm betting on the latter.

Evaluating PLIPs

After you submit your PLIP, the Framework Team will meet within a couple weeks and let you know if the PLIP is accepted. If the PLIP is not accepted, please don't be sad! We encourage most PLIPs to go through the add on process at first if at all possible to make sure the majority of the community uses it.

All communication with you occurs on the PLIP ticket itself so please keep your eyes and inbox open for changes.

	These are the criteria by which the framework team will review your bundle:

	
	What is size and status of the work needed to be done? Is it already an add-on and well established?

	Is this idea well baked and expressed clearly?

	Does the work proposed belong in Plone now, in the future?

	Is this PLIP more appropriate as a qualified add-on?

	Is this PLIP too risky?

See the Reviewing PLIPs page for more information.

Implementing Your PLIP

You can start the development at any time - but if you are going to modify Plone itself, you might want to wait to see if your idea is approved first to save yourself some work if it isn't.

General Rules

	Any new packages must be in a branch in the plone namespace in github. You don't have to develop there, but it must be there when submitted. We recommend using branches off of the github.com/plone repo and will detail that below.

	Most importantly, the PLIP reviewers must be able run buildout and everything should "just work" (tm).

	
	Any new code must:

	
	Be Properly Documented

	Have clear code

	User the current idioms of development

	Be tested [http://collective-docs.plone.org/en/latest/testing_and_debugging/index.html]

Creating a New PLIP Branch

Create a buildout configuration file for your PLIP in the plips folder.
Give it a descriptive name, starting with the PLIP number;
plip-1234-widget-frobbing.cfg for example. This file will define the
branches/trunks you're working with in your PLIP. It should look something
like this:

In file plips/plip-1234-widget-frobbing.cfg:

[buildout]
extends = plipbase.cfg
auto-checkout +=
 plone.somepackage
 plone.app.someotherpackage

[sources]
plone.somepackage = git git://github.com/plone/plone.somepackage.git branch=plip-1234-widget-frobbing
plone.app.someotherpackage = git git://github.com/plone/plone.app.somepackage.git branch=plip-1234-widget-frobbing

[instance]
eggs +=
 plone.somepackage
 plone.app.someotherpackage
zcml +=
 plone.somepackage
 plone.app.someotherpackage

Use the same naming convention when branching existing packages, and you
should always be branching packages when working on PLIPs.

Finishing Up

Before marking your PLIP as ready for review, please add a file to give a set of instructions to the PLIP reviewer.

	This file should be called plip_<number>_notes.txt. This should include (but is not limited to):

	
	URLs pointing to all documentation created / updated

	Any concerns, issues still remaining

	Any weird buildout things

	XXX: What else?

Once you have finished, please update your PLIP ticket to indicate that it is ready for review. The Framework Team will assign 2-3 people to review your PLIP. They will follow the guidelines listed at Reviewing PLIPs.

After the PLIP has been accepted by the framework team and the release manager, you will be asked to merge your work into the main development line. Merging the PLIP in is not the hardest part, but you must think about it when you develop. You'll have to interact with a large number of people to get it all set up. The merge may cause problems with other PLIPs coming in. During the merge phase you must be prepared to help out with all the features and bugs that arise.

If all went as planned the next Plone release will carry on with your PLIP in it. You'll be expected to help out with that feature after it's been released (within reason).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Troubleshooting

Buildout Issues

Buildout can be frustrating for those unfamiliar with parsing through autistic robot language. Fear not! These errors are almost always a quick fix and a little bit of understanding goes a long ways.

Errors Running bootstrap.py

You may not even get to running buildout and then you will already have an error. Let's take this one for example:

...
 File "/usr/local/lib/python2.6/site-packages/distribute-0.6.13-py2.6.egg/pkg_resources.py", line 556, in resolve
 raise VersionConflict(dist,req) # XXX put more info here
 pkg_resources.VersionConflict: (zc.buildout 1.5.1 (/usr/local/lib/python2.6/site-packages/zc.buildout-1.5.1-py2.6.egg), Requirement.parse('zc.buildout==1.5.2'))

You may think the buildout god is angry because it's been MONTHS since you've made a human sacrifice to her but be strong and follow along. Buildout has simply noticed that the version of buildout required by the bootstrap.py file you are trying to run does not match the version of buildout in your python library. In the error above, your system has buildout 1.5.1 installed and the bootstrap.py file wants to run with 1.5.2.

To fix, you have a couple options. First, you can force buildout to run with the version you already have installed by invoking the version tag. This tells your [Plone] bootstrap.py file to play nicely with the version that you already have installed. In the case of the error pasted above, that would be:

> python bootstrap.py --version=1.5.1

I personally know that versions 1.4.4, 1.5.1, and 1.5.2 all work this way.

The other option is to delete your current egg and force the upgrade. In the case of the error above, all you need to do is delete the egg the system currently has. eg:

> rm -rf /usr/local/lib/python2.6/site-packages/zc.buildout-1.5.1-py2.6.egg

When you rerun bootstrap, it will look for the buildout of the egg, note that there isn't one, and then go fetch a new egg in the version that it wants for you.

Do one of those, say two hail marys, and re-run bootstrap. Tada!

One other thing of note is that running bootstrap effectively ties that python executable and all of its libraries to your buildout. If you have several python installs and want to switch which python is tied to your buildout, simply rerun bootstrap.py with the new python (and then rerun buildout). You may get the same error above again but now that you know how to fix it, you can spend that time drinking beer instead of smashing your keyboard.

Hooray!

When Mr. Developer is Unhappy

mr.developer is never unhappy, except when it is. Although this technically isn't a buildout issue, it happens when running buildout so I'm putting it under buildout issues.

When working with the dev instance, especially with all the moving back and forth between github and svn, you may have an old copy of a src package. The error looks like:

mr.developer: Can't update package 'Products.CMFPlone' because its URL doesn't match.

As long as you don't have any pending commits, you just need to remove the package from src/ and it will recheck it out for you when it updates.

You can also get such fun errors as:

Link to http://sphinx-doc.org/ ***BLOCKED*** by --allow-hosts

These are ok to ignore IF and ONLY IF the lines following it say:

Getting distribution for 'Sphinx==1.0.7'.
Got Sphinx 1.0.7.

If buildout ends with warning you that some packages could not be downloaded, then chances are that package wasn't downloaded. This is bad and could cause all sorts of whack out errors when you start or try to run things because it never actually downloaded the package.

There are two ways to get this error to go away. The first is to delete all instances of host filtering. Comb through all the files and delete any lines which say allow-hosts = and allow-hosts +=. In theory, by restricting which hosts you download from, buildout will go faster. Whether that actually happens or not I can not judge. The point is that they are safely deletable.

The second option is to allow the host that it is pointing to by adding something like this to your .cfg:

allow-hosts += sphinx.pocoo.org

Again, this is only necessary if the package wasn't found in the end.

Hooray!

mr.developer Path Errors

ERROR: You are not in a path which has mr.developer installed (:file:`.mr.developer.cfg` not found).

When running any ./bin/develop command.

To fix, simply do:

ln -s plips/.mr.developer.cfg

Other Random Issues

Dirty Packages

"ERROR: Can't update package '[Some package]', because it's dirty."

Fix

mr.developer is complaining because a file has been changed/added, but not
committed.

Use bin/develop update --force. Adding *.pyc *~.nib *.egg-info
.installed.cfg *.pt.py *.cpt.py *.zpt.py *.html.py *.egg to your subversion
config's global-ignores has been suggested as a more permanent solution.

No module named zope 2

ImportError: No module named Zope2" when building using a PLIP cfg file.

Appears to not actually be the case. Delete mkzopeinstance.py from bin/ and
rerun buildout to correct this if you're finding it irksome.

Can't open file '/Startup/run.py'

Two possible fixes, you are using Python 2.4 by mistake, so use 2.6 instead. Or, you may need to make sure you run bin/buildout … after bin/develop …. Try removing parts/*, bin/*, .installed.cfg, then re-bootstrap and re-run buildout, develop, buildout.

Missing PIL

pil.cfg is include within this buildout to aid in PIL installation. Run
bin/buildout -c pil.cfg to install. This method does not work on Windows, so
we're unable to run it by default.

Modified Egg Issues

bin/develop status is showing that the Products.CMFActionIcons egg has been
modified, but I haven't touched it. And this is preventing bin/develop up
from updating all the eggs.

Fix

Edit ~/.subversion/config and add eggtest*.egg to the list of global-ignores

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

How to Update these Docs

These documents are currently stored with the coredev buildout in github in /docs. To update them, please checkout the coredev buildout and update there. Make the changes on the latest version branch (as of this writing 4.4):

> git clone git@github.com:plone/buildout.coredev.git
> cd buildout.coredev
> git checkout 4.4

To test your changes locally, re-run buildout and then:

> bin/sphinx-build docs docs/build

Sphinx will poop out a directory that you can put in your browser to validate. For example: file:///home/user/buildout.coredev/docs/build/index.html

Please make sure to validate all warnings and errors before committing to make sure the documents remain valid. Once everything is ready to go, commit and push changes.

Cherry pick commits on the latest branch to the currently released branch (as of this writing 4.3) if these changes apply to that version (you can get the SHA hash from git log):

> git checkout 4.3
> git cherry-pick b6ff4309

There may be conflicts; if so, resolve them and then follow the directions
git gives you to complete the git cherry-pick.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Contributor’s Agreement for Plone Explained

Prospective contributors to the Plone core code base are required to sign a
contributor’s agreement, which assigns copyright in the code to the Plone
Foundation, the non-profit organization which stewards the Plone code base.
This document explains the purposes of this, along with questions and answers
about what this means.

The Plone Contributor Agreement can be found at:
http://plone.org/foundation/contributors-agreement/agreement.pdf

About the Plone Contributor Agreement

The Foundation feels that it benefits the community for a single organization
to hold the rights to Plone. Prior to the Foundation, the intellectual
property of Plone was jointly held by individual developers and by Alan
Runyan and Alexander Limi. The community members who formed the Foundation
felt that having the Foundation hold these rights provides several benefits:

	Minimizing confusion / maximizing business compatibility --
Organizations considering adopting Plone have a simple answer for "Who
owns this?", rather than a more complicated answer that might scare away
the legally-cautious.

	Trademark protection -- By having the Foundation hold the
trademarks and rights to the Plone branding assets, it can effectively
protect these from unfair use.

	Guarantee of future Open Source versions -- The Foundation's
contributor agreement ensures that there will always be an OSI-
approved version of Plone.

Questions & Answers

What does the contributor's agreement cover?

This agreement is for the Plone core codebase only. The Plone core codebase is
that code which lives in the Plone core version repositories, currently located at
http://dev.plone.org/plone and https://github.com/plone. Contributions to
the "Collective," currently located at http://dev.plone.org/collective and
https://github.com/collective are not assigned to the Plone Foundation, and
are made available under whatever license the project developers wish to use,
although add-on products that import from GPLed Plone code are of course subject
to the terms of the GPL, which requires derived works to be GPL licensed.

What rights will I continue to have for my contributions?

Contributors are asked to transfer their intellectual property rights to the Foundation.
In return, they will be given back irrevocable rights to use and distribute their
contributions. They can even give their contributions to other Open Source projects (as
long as those projects are compatible with the license Plone itself is issued under) or
use them in non-Open Source commercial applications (if that is compatible with the license
Plone is under).

	Do I have to sign the contributor's agreement to make checkins to the Plone core codebase?

	Yes.

Do I have to sign the contributor's agreement to submit a patch to the Plone core codebase?

We enthusiastically welcome patches, but we can't merge them until you sign and return a
contributor's agreement. (Unless, in the judgement of the Plone Release Manager, the patch
is so tiny as not to constitute a "creative work." See the
Policy for Contributor Agreements and Patches [http://plone.org/foundation/materials/foundation-resolutions/patch-policy-052011] for more detail on this policy.)

Can I grant the Plone foundation a non-exclusive license to my contributions rather than an exclusive license, so that I can contribute the same code to other projects under different terms or use the contribution for other commercial endeavors?

Not under the current version of the contributors agreement.

Does the Foundation control use of the Plone trademark?

Yes. In order to keep the trademark, the Foundation (or any trademark owner) must
demonstrate that they have acted to protect it.

Will Plone always be available under an OSI-approved/Open Source license? Couldn't the Board change its mind about this?

Plone will always be available under an OSI-approved license; this is written into
the language of the contributor agreement each developer and the foundation sign.

Will Plone ever be available under a non-GPL license?

The current Plone approach states that companies can negotiate a non-GPL license.
Thus, the Foundation might pursue a dual-licensing (GPL and non-GPL) scheme - but,
at this time, the Board has not yet created any policies on this.
This is an important question for the community, of course, and the Foundation intends
to have this conversation in a transparent way.

Why would anyone want a non-GPL Plone?

Two possible reasons: Some companies are reluctant to do in-house modifications of
framework-like systems (such as Plone) that are under the GPL, fearing that a clause
in the GPL might force them to disclose their internal work - thus wanting to license
it under (for example) a BSD-style license. Second, companies may wish to offer a
commercial version of Plone, under a conventional shrink-wrap license, without the
obligation to reveal source code or share changes.

How much would a non-GPL version of Plone cost?

Would a small company be able to afford one? -- Neither the Foundation nor the Board have
made any decisions about a non-GPL version, let alone about pricing. However, one of the
Foundation's stated goals is to maintain a level playing field for Plone while trying to
benefit all of the Plone commons. If a non-GPL version was available, and a large company
bought it, added features to it, and sold it, wouldn't they be using our work without an
obligation to give back? It's helpful to remember the core value open source provides: distributed
development, maintenance, security checking, and support. Companies that build large features
for Plone are already having to make decisions of whether to release their products
under an open source license or not (since they could always release them as a Product, not
as a modification to the Plone core). Despite this, though, many large and excellent
contributions - such as Archetypes - have been made, and the Foundation hopes that companies will
continue to do so. In any event, a company that purchases a non-GPL license (should such ever
become available) is contributing financial resources to our community, which can be used to
further develop, market, and protect the GPL version of Plone.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Mr. Developer

This buildout uses mr.developer to manage package development. See
https://pypi.python.org/pypi/mr.developer for more information or run
bin/develop help for a list of available commands.

The most common workflow to get all the latest updates is:

> git pull
> bin/develop rb

This will get you the latest coredev configuration, checkout and update all
packages via Subversion in src and run buildout to configure the whole thing.

From time to time you can check if some old cruft has accumulated:

> bin/develop st

If this prints any lines with a question mark in front, you can cleanup by:

> bin/develop purge

This will remove packages from src/ which are no longer needed, as they have
been replaced by proper egg releases of these packages.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Process for Plone core's development »

Reviewing PLIPs

Expectations

A good PLIP review takes about 4 hours so please plan accordingly. When you are done, if you have access to core please commit the review to the plips folder and reference the PLIP in your commit message. If you do not have access, please attach your review to the PLIP ticket itself.

Setting up the environment

Follow the instructions on setting up a development environment [https://dev.plone.org/wiki/DevelopmentEnvironment] for "Getting the Code". You will need to checkout the branch to which the PLIP is assigned. Instead of running the buildout with the default buildout file, you will run the config specific to that plip:

> ./bin/buildout -c plips/plipXXXX.cfg

Functionality Review

There are several things that could be addressed in a PLIP review depending on the nature of the PLIP itself. This is by no means an exhaustive list, but a place to start. Things to think about when reviewing:

General

	Does the PLIP actually do what the implementors proposed? Are there incomplete variations?

	Were there any errors running buildout? Did the migration(s) work?

	Do error and status messages make sense? Are they properly internationalized?

	Are there any performance considerations? Has the implementor addressed them if so?

Bugs

	Are there any bugs? Nothing is too big nor small.

	Do fields handle whacky data? How about strings in date fields or nulls in required?

	Is validation up to snuff and sensical? Is it too restrictive or not restrictive enough?

Usability Issues

	Is the implementation usable?

	How will novice end users respond to the change?

	Does this PLIP need a usability review? If you think this PLIP needs a usability review, please change the state to "please review" and add a note in the comments.

	Is the PLIP consistent with the rest of Plone? For example, if there is control panel configuration, does the new form fit in with the rest of the panels?

	Does everything flow nicely for novice and advanced users? Is there any workflow that feels odd?

	Are there any new permissions and do they work properly? Does their role assignment make sense?

Documentation Issues

	Is the corresponding documentation for the end user, be it developer or plone user, sufficient?

	Is the change itself properly documented?

Please report bugs/issues in Trac as you would for any Plone bug. Reference the PLIP in the bug, assign to its implementor, and add a tag for the PLIP in the form of plip-xxx. This way the implementor can find help if he needs it. Please also prioritize the ticket. The PLIP will not be merged until all blockers and critical bugs are fixed.

Code Review

Python

	Is this code maintainable?

	Is the code properly documented?

	Does the code adhere to PEP8 standards (more or less)?

	Are they importing deprecated modules?

Javascript

	Does the javascript meet our set of javascript standards? See Javascript coding conventions

	Does the Javascript work in all currently supported browsers? Is it performant?

ME/TAL

	Does the PLIP use views appropriately and avoiding too much logic?

	Is there any code in a loop that could potentially be a performance issue?

	Are there any deprecated or old style ME/TAL lines of code such as using DateTime?

	Is the rendered html standards compliant? Are ids and classes used appropriately?

Example PLIP Reviews

	https://svn.plone.org/svn/plone/buildouts/plone-coredev/branches/4.1/plips/plip9352-review-davisagli.txt

	https://svn.plone.org/svn/plone/buildouts/plone-coredev/branches/4.1/plips/plip10886-review-cah190.txt

	https://svn.plone.org/svn/plone/buildouts/plone-coredev/branches/4.1/plips/plip9352-review-rossp.txt

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Welcome to plone.app.testing's documentation!

	Introduction
	Compatibility

	Installation and usage

	Layer reference
	Plone site fixture

	Integration and functional testing test lifecycles

	Plone integration testing

	Plone functional testing

	Plone ZServer

	Plone FTP server

	Helper functions
	Plone site context manager

	User management

	Product and profile installation

	Component architecture sandboxing

	Global state cleanup

	Layer base class

	Common test patterns
	Basic content management

	Searching

	User management

	Permissions and roles

	Workflow

	Properties

	Installing products and extension profiles

	Traversal

	Simulating browser interaction

	Comparison with ZopeTestCase/PloneTestCase

	Views
	Test view registration

	Test with getMultiAdapter

	Test with restrictedTraverse

	Test view with parameter

	Test with restrictedTraverse and parameter

	Test if view is protected

	Test if object exists in folder

	Test Redirect

	Test View HTML Output

	Troubleshooting
	ComponentLookupError

	AttributeError: @@plone_portal_state

	Test View Methods
	View Status Messages

	Simulating browser interaction with zope.testbrowser
	Input

	Text Area

	Radio Buttons

	Checkboxes

	Select

	Links

	Buttons

	Image Upload

	File Upload

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Welcome to plone.app.testing's documentation! »

Introduction

Table of contents

	Introduction
	Compatibility

	Installation and usage

	Layer reference
	Plone site fixture

	Integration and functional testing test lifecycles

	Plone integration testing

	Plone functional testing

	Plone ZServer

	Plone FTP server

	Helper functions
	Plone site context manager

	User management

	Product and profile installation

	Component architecture sandboxing

	Global state cleanup

	Layer base class

	Common test patterns
	Basic content management

	Searching

	User management

	Permissions and roles

	Workflow

	Properties

	Installing products and extension profiles

	Traversal

	Simulating browser interaction
	Debugging tips

	Comparison with ZopeTestCase/PloneTestCase

plone.app.testing provides tools for writing integration and functional
tests for code that runs on top of Plone. It is based on plone.testing [http://pypi.python.org/pypi/plone.testing].
If you are unfamiliar with plone.testing, the concept of layers, or the
zope.testing [http://pypi.python.org/pypi/zope.testing] testrunner, please take a look at the the plone.testing
documentation. In fact, even if you are working exclusively with Plone, you
are likely to want to use some of its features for unit testing.

In short, plone.app.testing includes:

	A set of layers that set up fixtures containing a Plone site, intended for
writing integration and functional tests.

	A collection of helper functions, some useful for writing your own layers
and some applicable to tests themselves.

	A convenient layer base class, extending plone.testing.Layer, which
makes it easier to write custom layers extending the Plone site fixture,
with proper isolation and tear-down.

	Cleanup hooks for zope.testing.cleanup to clean up global state found
in a Plone installation. This is useful for unit testing.

Compatibility

plone.app.testing 4.x works with Plone 4 and Zope 2.12. It may work with
newer versions. It will not work with earlier versions. Use
plone.app.testing 3.x for Plone 3 and Zope 2.10.

Installation and usage

To use plone.app.testing in your own package, you need to add it as a
dependency. Most people prefer to keep test-only dependencies separate, so
that they do not need to be installed in scenarios (such as on a production
server) where the tests will not be run. This can be achieved using a
test extra.

In setup.py, add or modify the extras_require option, like so:

extras_require = {
 'test': [
 'plone.app.testing',
]
},

This will also include plone.testing, with the [z2], [zca] and
[zodb] extras (which plone.app.testing itself relies on).

Please see the plone.testing [http://pypi.python.org/pypi/plone.testing] documentation for more details about how to
add a test runner to your buildout, and how to write and run tests.

Layer reference

This package contains a layer class,
plone.app.testing.layers.PloneFixture, which sets up a Plone site fixture.
It is combined with other layers from plone.testing [http://pypi.python.org/pypi/plone.testing] to provide a number of
layer instances. It is important to realise that these layers all have the
same fundamental fixture: they just manage test setup and tear-down
differently.

When set up, the fixture will:

	Create a ZODB sandbox, via a stacked DemoStorage. This ensures
persistent changes made during layer setup can be cleanly torn down.

	Configure a global component registry sandbox. This ensures that global
component registrations (e.g. as a result of loading ZCML configuration)
can be cleanly torn down.

	Create a configuration context with the disable-autoinclude feature
set. This has the effect of stopping Plone from automatically loading the
configuration of any installed package that uses the
z3c.autoinclude.plugin:plone entry point via z3c.autoinclude [http://pypi.python.org/pypi/z3c.autoinclude]. (This
is to avoid accidentally polluting the test fixture - custom layers should
load packages' ZCML configuration explicitly if required).

	Install a number of Zope 2-style products on which Plone depends.

	Load the ZCML for these products, and for Products.CMFPlone, which in
turn pulls in the configuration for the core of Plone.

	Create a default Plone site, with the default theme enabled, but with no
default content.

	Add a user to the root user folder with the Manager role.

	Add a test user to this instance with the Member role.

For each test:

	The test user is logged in

	The local component site is set

	Various global caches are cleaned up

Various constants in the module plone.app.testing.interfaces are defined
to describe this environment:

	Constant
	Purpose

	PLONE_SITE_ID
	The id of the Plone site object inside the Zope
application root.

	PLONE_SITE_TITLE
	The title of the Plone site

	DEFAULT_LANGUAGE
	The default language of the Plone site ('en')

	TEST_USER_ID
	The id of the test user

	TEST_USER_NAME
	The username of the test user

	TEST_USER_PASSWORD
	The password of the test user

	TEST_USER_ROLES
	The default global roles of the test user -
('Member',)

	SITE_OWNER_NAME
	The username of the user owning the Plone site.

	SITE_OWNER_PASSWORD
	The password of the user owning the Plone site.

All the layers also expose a resource in addition to those from their
base layers, made available during tests:

	portal

	The Plone site root.

Plone site fixture

	Layer:
	plone.app.testing.PLONE_FIXTURE

	Class:
	plone.app.testing.layers.PloneFixture

	Bases:
	plone.testing.z2.STARTUP

	Resources:
	

This layer sets up the Plone site fixture on top of the z2.STARTUP
fixture.

You should not use this layer directly, as it does not provide any test
lifecycle or transaction management. Instead, you should use a layer
created with either the IntegrationTesting or FunctionalTesting
classes, as outlined below.

Integration and functional testing test lifecycles

plone.app.testing comes with two layer classes, IntegrationTesting
and FunctionalTesting, which derive from the corresponding layer classes
in plone.testing.z2.

These classes set up the app, request and portal resources, and
reset the fixture (including various global caches) between each test run.

As with the classes in plone.testing, the IntegrationTesting class
will create a new transaction for each test and roll it back on test tear-
down, which is efficient for integration testing, whilst FunctionalTesting
will create a stacked DemoStorage for each test and pop it on test tear-
down, making it possible to exercise code that performs an explicit commit
(e.g. via tests that use zope.testbrowser).

When creating a custom fixture, the usual pattern is to create a new layer
class that has PLONE_FIXTURE as its default base, instantiating that as a
separate "fixture" layer. This layer is not to be used in tests directly,
since it won't have test/transaction lifecycle management, but represents a
shared fixture, potentially for both functional and integration testing. It
is also the point of extension for other layers that follow the same pattern.

Once this fixture has been defined, "end-user" layers can be defined using
the IntegrationTesting and FunctionalTesting classes. For example:

from plone.testing import Layer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting, FunctionalTesting

class MyFixture(Layer):
 defaultBases = (PLONE_FIXTURE,)

 ...

MY_FIXTURE = MyFixture()

MY_INTEGRATION_TESTING = IntegrationTesting(bases=(MY_FIXTURE,), name="MyFixture:Integration")
MY_FUNCTIONAL_TESTING = FunctionalTesting(bases=(MY_FIXTURE,), name="MyFixture:Functional")

See the PloneSandboxLayer layer below for a more comprehensive example.

Plone integration testing

	Layer:
	plone.app.testing.PLONE_INTEGRATION_TESTING

	Class:
	plone.app.testing.layers.IntegrationTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE

	Resources:
	portal (test setup only)

This layer can be used for integration testing against the basic
PLONE_FIXTURE layer.

You can use this directly in your tests if you do not need to set up any
other shared fixture.

However, you would normally not extend this layer - see above.

Plone functional testing

	Layer:
	plone.app.testing.PLONE_FUNCTIONAL_TESTING

	Class:
	plone.app.testing.layers.FunctionalTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE

	Resources:
	portal (test setup only)

This layer can be used for functional testing against the basic
PLONE_FIXTURE layer, for example using zope.testbrowser.

You can use this directly in your tests if you do not need to set up any
other shared fixture.

Again, you would normally not extend this layer - see above.

Plone ZServer

	Layer:
	plone.app.testing.PLONE_ZSERVER

	Class:
	plone.testing.z2.ZServer

	Bases:
	plone.app.testing.PLONE_FUNCTIONAL_TESTING

	Resources:
	portal (test setup only)

This is layer is intended for functional testing using a live, running HTTP
server, e.g. using Selenium or Windmill.

Again, you would not normally extend this layer. To create a custom layer
that has a running ZServer, you can use the same pattern as this one, e.g.:

from plone.testing import Layer
from plone.testing import z2
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import FunctionalTesting

class MyFixture(Layer):
 defaultBases = (PLONE_FIXTURE,)

 ...

MY_FIXTURE = MyFixture()
MY_ZSERVER = FunctionalTesting(bases=(MY_FIXTURE, z2.ZSERVER_FIXTURE), name='MyFixture:ZServer')

See the description of the z2.ZSERVER layer in plone.testing [http://pypi.python.org/pypi/plone.testing]
for further details.

Plone FTP server

	Layer:
	plone.app.testing.PLONE_FTP_SERVER

	Class:
	plone.app.testing.layers.FunctionalTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE
plone.testing.z2.ZSERVER_FIXTURE

	Resources:
	portal (test setup only)

This is layer is intended for functional testing using a live FTP server.

It is semantically equivalent to the PLONE_ZSERVER layer.

See the description of the z2.FTP_SERVER layer in plone.testing [http://pypi.python.org/pypi/plone.testing]
for further details.

Helper functions

A number of helper functions are provided for use in tests and custom layers.

Plone site context manager

	ploneSite(db=None, connection=None, environ=None)

	Use this context manager to access and make changes to the Plone site
during layer setup. In most cases, you will use it without arguments,
but if you have special needs, you can tie it to a particular database
instance. See the description of the zopeApp() context manager in
plone.testing [http://pypi.python.org/pypi/plone.testing] (which this context manager uses internally) for details.

The usual pattern is to call it during setUp() or tearDown() in
your own layers:

from plone.testing import Layer
from plone.app.testing import ploneSite

class MyLayer(Layer):

 def setUp(self):

 ...

 with ploneSite() as portal:

 # perform operations on the portal, e.g.
 portal.title = u"New title"

Here, portal is the Plone site root. A transaction is begun before
entering the with block, and will be committed upon exiting the block,
unless an exception is raised, in which case it will be rolled back.

Inside the block, the local component site is set to the Plone site root,
so that local component lookups should work.

Warning: Do not attempt to load ZCML files inside a ploneSite
block. Because the local site is set to the Plone site, you may end up
accidentally registering components in the local site manager, which can
cause pickling errors later.

Note: You should not use this in a test, or in a testSetUp() or
testTearDown() method of a layer based on one of the layer in this
package. Use the portal resource instead.

Also note: If you are writing a layer setting up a Plone site fixture,
you may want to use the PloneSandboxLayer layer base class, and
implement the setUpZope(), setUpPloneSite(), tearDownZope()
and/or tearDownPloneSite() methods instead. See below.

User management

	login(portal, userName)

	Simulate login as the given user. This is based on the z2.login()
helper in plone.testing [http://pypi.python.org/pypi/plone.testing], but instead of passing a specific user folder,
you pass the portal (e.g. as obtained via the portal layer resource).

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import TEST_USER_NAME
from plone.app.testing import login

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 login(portal, TEST_USER_NAME)

 ...

	logout()

	Simulate logging out, i.e. becoming the anonymous user. This is equivalent
to the z2.logout() helper in plone.testing [http://pypi.python.org/pypi/plone.testing].

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import logout

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 logout()

 ...

	setRoles(portal, userId, roles)

	Set the roles for the given user. roles is a list of roles.

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 setRoles(portal, TEST_USER_ID, ['Manager'])

Product and profile installation

	applyProfile(portal, profileName, blacklisted_steps=None)

	Install a GenericSetup profile (usually an extension profile) by name,
using the portal_setup tool. The name is normally made up of a package
name and a profile name. Do not use the profile- prefix.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import applyProfile

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 applyProfile(portal, 'my.product:default')

 ...

	quickInstallProduct(portal, productName, reinstall=False)

	Use this function to install a particular product into the given Plone
site, using the portal_quickinstaller tool. If reinstall is
False and the product is already installed, nothing will happen; if
reinstall is True, the product will be reinstalled. The
productName should be a full dotted name, e.g. Products.MyProduct,
or my.product.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import quickInstallProduct

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 quickInstallProduct(portal, 'my.product')

 ...

Component architecture sandboxing

	pushGlobalRegistry(portal, new=None, name=None)

	Create or obtain a stack of global component registries, and push a new
registry to the top of the stack. This allows Zope Component Architecture
registrations (e.g. loaded via ZCML) to be effectively torn down.

If you are going to use this function, please read the corresponding
documentation for zca.pushGlobalRegistry() in plone.testing [http://pypi.python.org/pypi/plone.testing]. In
particular, note that you must reciprocally call popGlobalRegistry()
(see below).

This helper is based on zca.pushGlobalRegistry(), but will also fix
up the local component registry in the Plone site portal so that it
has the correct bases.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import pushGlobalRegistry
from plone.app.testing import popGlobalRegistry

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 pushGlobalRegistry(portal)

 ...

	popGlobalRegistry(portal)

	Tear down the top of the component architecture stack, as created with
pushGlobalRegistry()

For example:

...

 def tearDown(self):

 with ploneSite() as portal:
 popGlobalRegistry(portal)

Global state cleanup

	tearDownMultiPluginRegistration(pluginName)

	PluggableAuthService "MultiPlugins" are kept in a global registry. If
you have registered a plugin, e.g. using the registerMultiPlugin()
API, you should tear that registration down in your layer's tearDown()
method. You can use this helper, passing a plugin name.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import tearDownMultiPluginRegistration

...

class MyLayer(Layer):

 ...

 def tearDown(self):

 tearDownMultiPluginRegistration('MyPlugin')

 ...

Layer base class

If you are writing a custom layer to test your own Plone add-on product, you
will often want to do the following on setup:

	Stack a new DemoStorage on top of the one from the base layer. This
ensures that any persistent changes performed during layer setup can be
torn down completely, simply by popping the demo storage.

	Stack a new ZCML configuration context. This keeps separate the information
about which ZCML files were loaded, in case other, independent layers want
to load those same files after this layer has been torn down.

	Push a new global component registry. This allows you to register
components (e.g. by loading ZCML or using the test API from
zope.component) and tear down those registration easily by popping the
component registry.

	Load your product's ZCML configuration

	Install the product into the test fixture Plone site

Of course, you may wish to make other changes too, such as creating some base
content or changing some settings.

On tear-down, you will then want to:

	Remove any Pluggable Authentication Service "multi-plugins" that were added
to the global registry during setup.

	Pop the global component registry to unregister components loaded via ZCML.

	Pop the configuration context resource to restore its state.

	Pop the DemoStorage to undo any persistent changes.

If you have made other changes on setup that are not covered by this broad
tear-down, you'll also want to tear those down explicitly here.

Stacking a demo storage and component registry is the safest way to avoid
fixtures bleeding between tests. However, it can be tricky to ensure that
everything happens in the right order.

To make things easier, you can use the PloneSandboxLayer layer base class.
This extends plone.testing.Layer and implements setUp() and
tearDown() for you. You simply have to override one or more of the
following methods:

	setUpZope(self, app, configurationContext)

	This is called during setup. app is the Zope application root.
configurationContext is a newly stacked ZCML configuration context.
Use this to load ZCML, install products using the helper
plone.testing.z2.installProduct(), or manipulate other global state.

	setUpPloneSite(self, portal)

	This is called during setup. portal is the Plone site root as
configured by the ploneSite() context manager. Use this to make
persistent changes inside the Plone site, such as installing products
using the applyProfile() or quickInstallProduct() helpers, or
setting up default content.

	tearDownZope(self, app)

	This is called during tear-down, before the global component registry and
stacked DemoStorage are popped. Use this to tear down any additional
global state.

Note: Global component registrations PAS multi-plugin registrations are
automatically torn down. Product installations are not, so you should use
the uninstallProduct() helper if any products were installed during
setUpZope().

	tearDownPloneSite(self, portal)

	This is called during tear-down, before the global component registry and
stacked DemoStorage are popped. During this method, the local
component site hook is set, giving you access to local components.

Note: Persistent changes to the ZODB are automatically torn down by
virtue of a stacked DemoStorage. Thus, this method is less commonly
used than the others described here.

Let's show a more comprehensive example of what such a layer may look like.
Imagine we have a product my.product. It has a configure.zcml file
that loads some components and registers a GenericSetup profile, making it
installable in the Plone site. On layer setup, we want to load the product's
configuration and install it into the Plone site.

The layer would conventionally live in a module testing.py at the root of
the package, i.e. my.product.testing:

from plone.app.testing import PloneSandboxLayer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting

from plone.testing import z2

class MyProduct(PloneSandboxLayer):

 defaultBases = (PLONE_FIXTURE,)

 def setUpZope(self, app, configurationContext):
 # Load ZCML
 import my.product
 self.loadZCML(package=my.product)

 # Install product and call its initialize() function
 z2.installProduct(app, 'my.product')

 # Note: you can skip this if my.product is not a Zope 2-style
 # product, i.e. it is not in the Products.* namespace and it
 # does not have a <five:registerPackage /> directive in its
 # configure.zcml.

 def setUpPloneSite(self, portal):
 # Install into Plone site using portal_setup
 self.applyProfile(portal, 'my.product:default')

 def tearDownZope(self, app):
 # Uninstall product
 z2.uninstallProduct(app, 'my.product')

 # Note: Again, you can skip this if my.product is not a Zope 2-
 # style product

MY_PRODUCT_FIXTURE = MyProduct()
MY_PRODUCT_INTEGRATION_TESTING = IntegrationTesting(bases=(MY_PRODUCT_FIXTURE,), name="MyProduct:Integration")

Here, MY_PRODUCT_FIXTURE is the "fixture" base layer. Other layers can
use this as a base if they want to build on this fixture, but it would not
be used in tests directly. For that, we have created an IntegrationTesting
instance, MY_PRODUCT_INTEGRATION_TESTING.

Of course, we could have created a FunctionalTesting instance as
well, e.g.:

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(bases=(MY_PRODUCT_FIXTURE,), name="MyProduct:Functional")

Of course, we could do a lot more in the layer setup. For example, let's say
the product had a content type 'my.product.page' and we wanted to create some
test content. We could do that with:

from plone.app.testing import TEST_USER_ID
from plone.app.testing import TEST_USER_NAME
from plone.app.testing import login
from plone.app.testing import setRoles

...

 def setUpPloneSite(self, portal):

 ...

 setRoles(portal, TEST_USER_ID, ['Manager'])
 login(portal, TEST_USER_NAME)
 portal.invokeFactory('my.product.page', 'page-1', title=u"Page 1")
 setRoles(portal, TEST_USER_ID, ['Member'])

...

Note that unlike in a test, there is no user logged in at layer setup time,
so we have to explicitly log in as the test user. Here, we also grant the test
user the Manager role temporarily, to allow object construction (which
performs an explicit permission check).

Note: Automatic tear down suffices for all the test setup above. If
the only changes made during layer setup are to persistent, in-ZODB data,
or the global component registry then no additional tear-down is required.
For any other global state being managed, you should write a
tearDownPloneSite() method to perform the necessary cleanup.

Given this layer, we could write a test (e.g. in tests.py) like:

import unittest2 as unittest
from my.product.testing import MY_PRODUCT_INTEGRATION_TESTING

class IntegrationTest(unittest.TestCase):

 layer = MY_PRODUCT_INTEGRATION_TESTING

 def test_page_dublin_core_title(self):
 portal = self.layer['portal']

 page1 = portal['page-1']
 page1.title = u"Some title"

 self.assertEqual(page1.Title(), u"Some title")

Please see plone.testing [http://pypi.python.org/pypi/plone.testing] for more information about how to write and run
tests and assertions.

Common test patterns

plone.testing [http://pypi.python.org/pypi/plone.testing]'s documentation contains details about the fundamental
techniques for writing tests of various kinds. In a Plone context, however,
some patterns tend to crop up time and again. Below, we will attempt to
catalogue some of the more commonly used patterns via short code samples.

The examples in this section are all intended to be used in tests. Some may
also be useful in layer set-up/tear-down. We have used unittest syntax
here, although most of these examples could equally be adopted to doctests.

We will assume that you are using a layer that has PLONE_FIXTURE as a base
(whether directly or indirectly) and uses the IntegrationTesting or
FunctionalTesting classes as shown above.

We will also assume that the variables app, portal and request are
defined from the relative layer resources, e.g. with:

app = self.layer['app']
portal = self.layer['portal']
request = self.layer['request']

Note that in a doctest set up using the layered() function from
plone.testing, layer is in the global namespace, so you would do e.g.
portal = layer['portal'].

Where imports are required, they are shown alongside the code example. If
a given import or variable is used more than once in the same section, it
will only be shown once.

Basic content management

To create a content item of type 'Folder' with the id 'f1' in the root of
the portal:

portal.invokeFactory('Folder', 'f1', title=u"Folder 1")

The title argument is optional. Other basic properties, like
description, can be set as well.

Note that this may fail with an Unauthorized exception, since the test
user won't normally have permissions to add content in the portal root, and
the invokeFactory() method performs an explicit security check. You can
set the roles of the test user to ensure that he has the necessary
permissions:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

setRoles(portal, TEST_USER_ID, ['Manager'])
portal.invokeFactory('Folder', 'f1', title=u"Folder 1")

To obtain this object, acquisition-wrapped in its parent:

f1 = portal['f1']

To make an assertion against an attribute or method of this object:

self.assertEqual(f1.Title(), u"Folder 1")

To modify the object:

f1.setTitle(u"Some title")

To add another item inside the folder f1:

f1.invokeFactory('Document', 'd1', title=u"Document 1")
d1 = f1['d1']

To check if an object is in a container:

self.assertTrue('f1' in portal)

To delete an object from a container:

del portal['f1']

There is no content or workflows installed by default. You can enable workflows:

portal.portal_workflow.setDefaultChain("simple_publication_workflow")

Searching

To obtain the portal_catalog tool:

from Products.CMFCore.utils import getToolByName

catalog = getToolByName(portal, 'portal_catalog')

To search the catalog:

results = catalog(portal_type="Document")

Keyword arguments are search parameters. The result is a lazy list. You can
call len() on it to get the number of search results, or iterate through
it. The items in the list are catalog brains. They have attributes that
correspond to the "metadata" columns configured for the catalog, e.g.
Title, Description, etc. Note that these are simple attributes (not
methods), and contain the value of the corresponding attribute or method from
the source object at the time the object was cataloged (i.e. they are not
necessarily up to date).

To make assertions against the search results:

self.assertEqual(len(results), 1)

Copy the list into memory so that we can use [] notation
results = list(results)

Check the first (and in this case only) result in the list
self.assertEqual(results[0].Title, u"Document 1")

To get the path of a given item in the search results:

self.assertEqual(resuls[0].getPath(), portal.absolute_url_path() + '/f1/d1')

To get an absolute URL:

self.assertEqual(resuls[0].getURL(), portal.absolute_url() + '/f1/d1')

To get the original object:

obj = results[0].getObject()

To re-index an object d1 so that its catalog information is up to date:

d1.reindexObject()

User management

To create a new user:

from Products.CMFCore.utils import getToolByName

acl_users = getToolByName(portal, 'acl_users')

acl_users.userFolderAddUser('user1', 'secret', ['Member'], [])

The arguments are the username (which will also be the user id), the password,
a list of roles, and a list of domains (rarely used).

To make a particular user active ("logged in") in the integration testing
environment use the login method and pass it the username:

from plone.app.testing import login

login(portal, 'user1')

To log out (become anonymous):

from plone.app.testing import logout

logout()

To obtain the current user:

from AccessControl import getSecurityManager

user = getSecurityManager().getUser()

To obtain a user by name:

user = acl_users.getUser('user1')

Or by user id (id and username are often the same, but can differ in real-world
scenarios):

user = acl_users.getUserById('user1')

To get the user's user name:

userName = user.getUserName()

To get the user's id:

userId = user.getId()

Permissions and roles

To get a user's roles in a particular context (taking local roles into
account):

from AccessControl import getSecurityManager

user = getSecurityManager().getUser()

self.assertEqual(user.getRolesInContext(portal), ['Member'])

To change the test user's roles:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

setRoles(portal, TEST_USER_ID, ['Member', 'Manager'])

Pass a different user name to change the roles of another user.

To grant local roles to a user in the folder f1:

f1.manage_setLocalRoles(TEST_USER_ID, ('Reviewer',))

To check the local roles of a given user in the folder 'f1':

self.assertEqual(f1.get_local_roles_for_userid(TEST_USER_ID), ('Reviewer',))

To grant the 'View' permission to the roles 'Member' and 'Manager' in the
portal root without acquiring additional roles from its parents:

portal.manage_permission('View', ['Member', 'Manager'], acquire=False)

This method can also be invoked on a folder or individual content item.

To assert which roles have the permission 'View' in the context of the
portal:

roles = [r['name'] for r in portal.rolesOfPermission('View') if r['selected']]
self.assertEqual(roles, ['Member', 'Manager'])

To assert which permissions have been granted to the 'Reviewer' role in the
context of the portal:

permissions = [p['name'] for p in portal.permissionsOfRole('Reviewer') if p['selected']]
self.assertTrue('Review portal content' in permissions)

To add a new role:

portal._addRole('Tester')

This can now be assigned to users globally (using the setRoles helper)
or locally (using manage_setLocalRoles()).

To assert which roles are available in a given context:

self.assertTrue('Tester' in portal.valid_roles())

Workflow

To set the default workflow chain:

from Products.CMFCore.utils import getToolByName

workflowTool = getToolByName(portal, 'portal_workflow')

workflowTool.setDefaultChain('my_workflow')

In Plone, most chains contain only one workflow, but the portal_workflow
tool supports longer chains, where an item is subject to more than one
workflow simultaneously.

To set a multi-workflow chain, separate workflow names by commas.

To get the default workflow chain:

self.assertEqual(workflowTool.getDefaultChain(), ('my_workflow',))

To set the workflow chain for the 'Document' type:

workflowTool.setChainForPortalTypes(('Document',), 'my_workflow')

You can pass multiple type names to set multiple chains at once. To set a
multi-workflow chain, separate workflow names by commas. To indicate that a
type should use the default workflow, use the special chain name '(Default)'.

To get the workflow chain for the portal type 'Document':

chains = dict(workflowTool.listChainOverrides())
defaultChain = workflowTool.getDefaultChain()
documentChain = chains.get('Document', defaultChain)

self.assertEqual(documentChain, ('my_other_workflow',))

To get the current workflow chain for the content object f1:

self.assertEqual(workflowTool.getChainFor(f1), ('my_workflow',))

To update all permissions after changing the workflow:

workflowTool.updateRoleMappings()

To change the workflow state of the content object f1 by invoking the
transaction 'publish':

workflowTool.doActionFor(f1, 'publish')

Note that this performs an explicit permission check, so if the current user
doesn't have permission to perform this workflow action, you may get an error
indicating the action is not available. If so, use login() or
setRoles() to ensure the current user is able to change the workflow
state.

To check the current workflow state of the content object f1:

self.assertEqual(workflowTool.getInfoFor(f1, 'review_state'), 'published')

Properties

To set the value of a property on the portal root:

portal._setPropValue('title', u"My title")

To assert the value of a property on the portal root:

self.assertEqual(portal.getProperty('title'), u"My title")

To change the value of a property in a property sheet in the
portal_properties tool:

from Products.CMFCore.utils import getToolByName

propertiesTool = getToolByName(portal, 'portal_properties')
siteProperties = propertiesTool['site_properties']

siteProperties._setPropValue('many_users', True)

To assert the value of a property in a property sheet in the
portal_properties tool:

self.assertEqual(siteProperties.getProperty('many_users'), True)

Installing products and extension profiles

To apply a particular extension profile:

from plone.app.testing import applyProfile

applyProfile(portal, 'my.product:default')

This is the preferred method of installing a product's configuration.

To install an add-on product into the Plone site using the
portal_quickinstaller tool:

from plone.app.testing import quickInstallProduct

quickInstallProduct(portal, 'my.product')

To re-install a product using the quick-installer:

quickInstallProduct(portal, 'my.product', reinstall=True)

Note that both of these assume the product's ZCML has been loaded, which is
usually done during layer setup. See the layer examples above for more details
on how to do that.

When writing a product that has an installation extension profile, it is often
desirable to write tests that inspect the state of the site after the profile
has been applied. Some of the more common such tests are shown below.

To verify that a product has been installed (e.g. as a dependency via
metadata.xml):

from Products.CMFCore.utils import getToolByName

quickinstaller = getToolByName(portal, 'portal_quickinstaller')
self.assertTrue(quickinstaller.isProductInstalled('my.product'))

To verify that a particular content type has been installed (e.g. via
types.xml):

typesTool = getToolByName(portal, 'portal_types')

self.assertNotEqual(typesTool.getTypeInfo('mytype'), None)

To verify that a new catalog index has been installed (e.g. via
catalog.xml):

catalog = getToolByName(portal, 'portal_catalog')

self.assertTrue('myindex' in catalog.indexes())

To verify that a new catalog metadata column has been added (e.g. via
catalog.xml):

self.assertTrue('myattr' in catalog.schema())

To verify that a new workflow has been installed (e.g. via
workflows.xml):

workflowTool = getToolByName(portal, 'portal_workflow')

self.assertNotEqual(workflowTool.getWorkflowById('my_workflow'), None)

To verify that a new workflow has been assigned to a type (e.g. via
workflows.xml):

self.assertEqual(dict(workflowTool.listChainOverrides())['mytype'], ('my_workflow',))

To verify that a new workflow has been set as the default (e.g. via
workflows.xml):

self.assertEqual(workflowTool.getDefaultChain(), ('my_workflow',))

To test the value of a property in the portal_properties tool (e.g. set
via propertiestool.xml)::

propertiesTool = getToolByName(portal, 'portal_properties')
siteProperties = propertiesTool['site_properties']

self.assertEqual(siteProperties.getProperty('some_property'), "some value")

To verify that a stylesheet has been installed in the portal_css tool
(e.g. via cssregistry.xml):

cssRegistry = getToolByName(portal, 'portal_css')

self.assertTrue('mystyles.css' in cssRegistry.getResourceIds())

To verify that a JavaScript resource has been installed in the
portal_javascripts tool (e.g. via jsregistry.xml):

jsRegistry = getToolByName(portal, 'portal_javascripts')

self.assertTrue('myscript.js' in jsRegistry.getResourceIds())

To verify that a new role has been added (e.g. via rolemap.xml):

self.assertTrue('NewRole' in portal.valid_roles())

To verify that a permission has been granted to a given set of roles (e.g. via
rolemap.xml):

roles = [r['name'] for r in portal.rolesOfPermission('My Permission') if r['selected']]
self.assertEqual(roles, ['Member', 'Manager'])

Traversal

To traverse to a view, page template or other resource, use
restrictedTraverse() with a relative path:

resource = portal.restrictedTraverse('f1/@@folder_contents')

The return value is a view object, page template object, or other resource.
It may be invoked to obtain an actual response (see below).

restrictedTraverse() performs an explicit security check, and so may
raise Unauthorized if the current test user does not have permission to
view the given resource. If you don't want that, you can use:

resource = portal.unrestrictedTraverse('f1/@@folder_contents')

You can call this on a folder or other content item as well, to traverse from
that starting point, e.g. this is equivalent to the first example above:

f1 = portal['f1']
resource = f1.restrictedTraverse('@@folder_contents')

Note that this traversal will not take IPublishTraverse adapters into
account, and you cannot pass query string parameters. In fact,
restrictedTraverse() and unrestrictedTraverse() implement the type of
traversal that happens with path expressions in TAL, which is similar, but not
identical to URL traversal.

To look up a view manually:

from zope.component import getMultiAdapter

view = getMultiAdapter((f1, request), name=u"folder_contents")

Note that the name here should not include the @@ prefix.

To simulate an IPublishTraverse adapter call, presuming the view
implements IPublishTraverse:

next = view.IPublishTraverse(request, u"some-name")

Or, if the IPublishTraverse adapter is separate from the view:

from zope.publisher.interfaces import IPublishTraverse

publishTraverse = getMultiAdapter((f1, request), IPublishTraverse)
next = view.IPublishTraverse(request, u"some-name")

To simulate a form submission or query string parameters:

request.form.update({
 'name': "John Smith",
 'age': 23
 })

The form dictionary contains the marshalled request. That is, if you are
simulating a query string parameter or posted form variable that uses a
marshaller like :int (e.g. age:int in the example above), the value
in the form dictionary should be marshalled (an int instead of a string,
in the example above), and the name should be the base name (age instead
of age:int).

To invoke a view and obtain the response body as a string:

view = f1.restrictedTraverse('@@folder_contents')
body = view()

self.assertFalse(u"An unexpected error occurred" in body)

Please note that this approach is not perfect. In particular, the request
is will not have the right URL or path information. If your view depends on
this, you can fake it by setting the relevant keys in the request, e.g.:

request.set('URL', f1.absolute_url() + '/@@folder_contents')
request.set('ACTUAL_URL', f1.absolute_url() + '/@@folder_contents')

To inspect the state of the request (e.g. after a view has been invoked):

self.assertEqual(request.get('disable_border'), True)

To inspect response headers (e.g. after a view has been invoked):

response = request.response

self.assertEqual(response.getHeader('content-type'), 'text/plain')

Simulating browser interaction

End-to-end functional tests can use zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] to simulate user
interaction. This acts as a web browser, connecting to Zope via a special
channel, making requests and obtaining responses.

Note: zope.testbrowser runs entirely in Python, and does not simulate
a JavaScript engine.

Note that to use zope.testbrowser, you need to use one of the functional
testing layers, e.g. PLONE_FUNCTIONAL_TESTING, or another layer
instantiated with the FunctionalTesting class.

If you want to create some initial content, you can do so either in a layer,
or in the test itself, before invoking the test browser client. In the latter
case, you need to commit the transaction before it becomes available, e.g.:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

Make some changes
setRoles(portal, TEST_USER_ID, ['Manager'])
portal.invokeFactory('Folder', 'f1', title=u"Folder 1")
setRoles(portal, TEST_USER_ID, ['Member'])

Commit so that the test browser sees these changes
import transaction
transaction.commit()

To obtain a new test browser client:

from plone.testing.z2 import Browser

This is usually self.app (Zope root) or site.portal (test Plone site root)
browser = Browser(app)

To open a given URL:

portalURL = portal.absolute_url()
browser.open(portalURL)

To inspect the response:

self.assertTrue(u"Welcome" in browser.contents)

To inspect response headers:

self.assertEqual(browser.headers['content-type'], 'text/html; charset=utf-8')

To follow a link:

browser.getLink('Edit').click()

This gets a link by its text. To get a link by HTML id:

browser.getLink(id='edit-link').click()

To verify the current URL:

self.assertEqual(portalURL + '/edit', browser.url)

To set a form control value:

browser.getControl('Age').value = u"30"

This gets the control by its associated label. To get a control by its form
variable name:

browser.getControl(name='age:int').value = u"30"

See the zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] documentation for more details on how to select
and manipulate various types of controls.

To submit a form by clicking a button:

browser.getControl('Save').click()

Again, this uses the label to find the control. To use the form variable
name:

browser.getControl(name='form.button.Save').click()

To simulate HTTP BASIC authentication and remain logged in for all
requests:

from plone.app.testing import TEST_USER_NAME, TEST_USER_PASSWORD

browser.addHeader('Authorization', 'Basic %s:%s' % (TEST_USER_NAME, TEST_USER_PASSWORD,))

To simulate logging in via the login form:

browser.open(portalURL + '/login_form')
browser.getControl(name='__ac_name').value = TEST_USER_NAME
browser.getControl(name='__ac_password').value = TEST_USER_PASSWORD
browser.getControl(name='submit').click()

To simulate logging out:

browser.open(portalURL + '/logout')

Debugging tips

By default, only HTTP error codes (e.g. 500 Server Side Error) are shown when
an error occurs on the server. To see more details, set handleErrors to
False:

browser.handleErrors = False

To inspect the error log and obtain a full traceback of the latest entry:

from Products.CMFCore.utils import getToolByName

errorLog = getToolByName(portal, 'error_log')
print errorLog.getLogEntries()[-1]['tb_text']

To save the current response to an HTML file:

open('/tmp/testbrowser.html', 'w').write(browser.contents)

You can now open this file and use tools like Firebug to inspect the structure
of the page. You should remove the file afterwards.

Comparison with ZopeTestCase/PloneTestCase

plone.testing [http://pypi.python.org/pypi/plone.testing] and plone.app.testing have in part evolved from
ZopeTestCase, which ships with Zope 2 in the Testing package, and
Products.PloneTestCase [http://pypi.python.org/pypi/Products.PloneTestCase], which ships with Plone and is used by Plone itself
as well as numerous add-on products.

If you are familiar with ZopeTestCase and PloneTestCase, the concepts
of these package should be familiar to you. However, there are some important
differences to bear in mind.

	plone.testing and plone.app.testing are unburdened by the legacy
support that ZopeTestCase and PloneTestCase have to include. This
makes them smaller and easier to understand and maintain.

	Conversely, plone.testing only works with Python 2.6 and Zope 2.12 and
later. plone.app.testing only works with Plone 4 and later. If you need
to write tests that run against older versions of Plone, you'll need to use
PloneTestCase.

	ZopeTestCase/PloneTestCase were written before layers were available
as a setup mechanism. plone.testing is very layer-oriented.

	PloneTestCase provides a base class, also called PloneTestCase,
which you must use, as it performs setup and tear-down. plone.testing
moves shared state to layers and layer resources, and does not impose any
particular base class for tests. This does sometimes mean a little more
typing (e.g. self.layer['portal'] vs. self.portal), but it makes
it much easier to control and re-use test fixtures. It also makes your
test code simpler and more explicit.

	ZopeTestCase has an installProduct() function and a corresponding
installPackage() function. plone.testing [http://pypi.python.org/pypi/plone.testing] has only an
installProduct(), which can configure any kind of Zope 2 product (i.e.
packages in the Products.* namespace, old-style products in a special
Products folder, or packages in any namespace that have had their ZCML
loaded and which include a <five:registerPackage /> directive in their
configuration). Note that you must pass a full dotted name to this function,
even for "old-style" products in the Products.* namespace, e.g.
Products.LinguaPlone instead of LinguaPlone.

	On setup, PloneTestCase will load Zope 2's default site.zcml. This
in turn will load all ZCML for all packages in the Products.* namespace.
plone.testing does not do this (and you are strongly encouraged from
doing it yourself), because it is easy to accidentally include packages in
your fixture that you didn't intend to be there (and which can actually
change the fixture substantially). You should load your package's ZCML
explicitly. See the plone.testing [http://pypi.python.org/pypi/plone.testing] documentation for details.

	When using PloneTestCase, any package that has been loaded onto
sys.path and which defines the z3c.autoinclude.plugin:plone entry
point will be loaded via z3c.autoinclude [http://pypi.python.org/pypi/z3c.autoinclude]'s plugin mechanism. This loading
is explicitly disabled, for the same reasons that the Products.* auto-
loading is. You should load your packages' configuration explicitly.

	PloneTestCase sets up a basic fixture that has member folder enabled,
and in which the test user's member folder is available as self.folder.
The plone_workflow workflow is also installed as the default.
plone.app.testing takes a more minimalist approach. To create a test
folder owned by the test user that is similar to self.folder in a
PloneTestCase, you can do:

import unittest2 as unittest
from plone.app.testing import TEST_USER_ID, setRoles
from plone.app.testing import PLONE_INTEGRATION_TESTING

class MyTest(unitest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']

 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])

 self.folder = self.portal['test-folder']

You could of course do this type of setup in your own layer and expose it
as a resource instead.

	To use zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] with PloneTestCase, you should use its
FunctionalTestCase as a base class, and then use the following pattern:

from Products.Five.testbrowser import Browser
browser = Browser()

The equivalent pattern in plone.app.testing is to use the
FunctionalTesting test lifecycle layer (see example above), and then
use:

from plone.testing.z2 import Browser
browser = Browser(self.layer['app'])

Also note that if you have made changes to the fixture prior to calling
browser.open(), they will not be visible until you perform an
explicit commit. See the zope.testbrowser examples above for details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Welcome to plone.app.testing's documentation! »

Views

Test view registration

Test if view has been properly registered:

def test_delete_view_registered(self):
 try:
 getMultiAdapter(
 (self.portal.mi.se.tc, self.request),
 name="delete"
)
 except:
 self.fail("Delete view is not registered properly.")

Test with getMultiAdapter

Test:

def test_view_is_registered(self):
 # Get the view
 view = getMultiAdapter((self.portal, self.portal.REQUEST), name="create-user")
 # Put the view into the acquisition chain
 view = view.__of__(self.portal)
 # Call the view
 self.assertTrue(view())

Test with restrictedTraverse

Test:

def test_view_is_registered(self):
 view = self.portal.restrictedTraverse('@@list-products')
 self.assertTrue(view)
 self.assertEqual(view(), 'ListProductsView')

Test view with parameter

Test:

def test_autocomplete_tags_view_registered(self):
 self.request.set('term', 'foo')
 view = getMultiAdapter((self.portal, self.request),
 name="autocomplete-tags")
 view = view.__of__(self.portal)
 self.assertTrue(view())

Test with restrictedTraverse and parameter

Test:

def test_view_with_restrictedTraverse_and_params(self):
 view = self.context.restrictedTraverse("comment-statistics-batch")
 view = view.__of__(self.context)
 view(query, base_number * i, base_number * (i + 1) - 1)

Test if view is protected

Test:

def test_view_is_protected(self):
 from AccessControl import Unauthorized
 self.logout()
 self.assertRaises(Unauthorized,
 self.portal.restrictedTraverse,
 '@@deploymentmanager')

Test if object exists in folder

Test:

def test_object_in_folder(self):
 self.assertFalse('yoda' in self.portal.objectIds())

Test Redirect

Test:

def test_component_view(self):
 self.portal.mi.sec.invokeFactory(
 "TextComponent",
 id="tx",
 title="Text Component 1",
)
 view = getMultiAdapter(
 (self.portal.mi.sec.tx, self.request),
 name="view"
)
 view = view.__of__(self.portal.mi.sec)

 view()

 self.assertEqual(
 self.request.response.headers['location'],
 'http://nohost/plone/mi/sec'
)

Test View HTML Output

Test:

from lxml import html
output = lxml.html.fromstring(view())
self.assertEqual(len(output.xpath("/html/body/div")), 1)

Troubleshooting

KeyError: 'ACTUAL_URL':

def setUp(self):
 self.portal = self.layer['portal']
 self.request = self.layer['request']
 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 self.folder = self.portal['test-folder']
 self.request.set('URL', self.folder.absolute_url())
 self.request.set('ACTUAL_URL', self.folder.absolute_url())

def test_view(self):
 view = self.collection.restrictedTraverse('@@RSS')
 self.assertTrue(view())
 self.assertEqual(view.request.response.status, 200)

ComponentLookupError

If a view can not be looked up on a particular context, Plone will raise a
ComponentLookupError (because views are multi-adapters), e.g.:

ComponentLookupError: ((<PloneSite at /plone>, <HTTPRequest, URL=http://nohost/plone>), <InterfaceClass zope.interface.Interface>, 'recipes')::

This can be solved for instance by providing a browser layer that has been
missing:

def setUp(self):
 self.request = self.layer['request']
 from zope.interface import directlyProvides
 directlyProvides(self.request, IMyCompanyContenttypes)
 ...

AttributeError: @@plone_portal_state

Test View Methods

Test:

def test_method_sections(self):
 self.portal.mi.invokeFactory("Section", id="s1", title="Section 1")
 self.portal.mi.invokeFactory("Section", id="s2", title="Section 2")
 view = getMultiAdapter(
 (self.portal.mi, self.request),
 name="view"
)
 view = view.__of__(self.portal.mi)

 self.assertEqual(len(view.sections()), 2)
 self.assertEqual(
 [x.title for x in view.sections()]
 [u'Section 1', u'Section 2']
)

View Status Messages

Test:

def test_delete_comments_sets_status_message(self):
 view = getMultiAdapter(
 (self.portal.mi.se.tc, self.request),
 name="delete"
)
 view.__of__(self.portal.mi.se)

 view()

 self.assertEqual(
 IStatusMessage(self.request).show()[0].message,
 u'Item deleted'
)

View Class:

class DeleteComponent(BrowserView):

 def __call__(self):
 section = aq_parent(self.context)
 section.manage_delObjects([self.context.id])
 IStatusMessage(self.context.REQUEST).addStatusMessage(
 _("Item deleted"),
 type="info"
)
 self.request.response.redirect(section.absolute_url())

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Welcome to plone.app.testing's documentation! »

Simulating browser interaction with zope.testbrowser

Input

todo

Text Area

HTML:

<textarea name="form.widgets.mytext"></textarea>

Test:

self.browser.getControl(name='form.widgets.mytext').value = '<p>Lorem Ipsum</p>'

Radio Buttons

self.browser.getControl(name='form.widgets.city:list').value = ['Berlin']

Checkboxes

HTML:

<input type="checkbox"
 value="selected"
 checked="checked"
 name="form.widgets.city:list">

Test:

self.browser.getControl(
 name="form.widgets.city:list"
).value = ['checked']

Select

todo

Links

self.browser.getLink('Publish').click()

Buttons

self.browser.getControl('Save').click()

Image Upload

self.browser.getLink('Image').click()
self.browser.getControl(name='form.widgets.title')

.value = "My image"

	self.browser.getControl(name='form.widgets.description')

	.value = "This is my image."

image_path = os.path.join(os.path.dirname(__file__), "image.png")
image_ctl = self.browser.getControl(name='form.widgets.image')
image_ctl.add_file(open(image_path), 'image/png', 'image.png')
self.browser.getControl('Save').click()

File Upload

todo

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/index.html]
so you have working references and proper formatting.

A Plone API

The plone.api is an elegant and simple API, built for humans wishing to develop with Plone.

It comes with cookbook-like documentation and step-by-step instructions for doing common development tasks in Plone.
Recipes try to assume the user does not have extensive knowledge about Plone internals.

The intention of this package is to provide clear API methods for Plone functionality which may be confusing or difficult to access.
As the underlying code improves some API methods may be deprecated and the documentation here will be updated to show how to use the improved code
(even if it means not using plone.api).

Some parts of the documentation do not use plone.api methods directly, but simply provide guidance on achieving a task using Plone's internal API. For example, using the portal catalog (see 'Find content objects').

The intention is to cover 20% of the tasks any Plone developer does 80% of the time.
By keeping everything in one place, the API stays introspectable and discoverable, important aspects of being Pythonic.

Note

This package is stable and used in production, but from time to time changes will be made to the API.
Additional api methods may be introduced in minor versions (1.1 -> 1.2).
Backward-incompatible changes to the API will be restricted to major versions (1.x -> 2.x).

Narrative documentation

	About
	Inspiration

	Design decisions

	FAQ

	Portal
	Get portal object

	Get navigation root

	Get portal url

	Get tool

	Get localized time

	Send E-Mail

	Show notification message

	Get plone.app.registry record

	Set plone.app.registry record

	Further reading

	Content
	Create content

	Get content object

	Find content objects

	Get content object UUID

	Move content

	Rename content

	Copy content

	Delete content

	Content manipulation with the safe_id option

	Get workflow state

	Transition

	Get view

	Further reading

	Users
	Create user

	Get user

	User properties

	Get currently logged-in user

	Check if current user is anonymous

	Get all users

	Get group's users

	Delete user

	Get user roles

	Get user permissions

	Check user permission

	Grant roles to user

	Revoke roles from user

	Further reading

	Groups
	Create group

	Get group

	Editing a group

	Get all groups

	Get user's groups

	Get group members

	Delete group

	Adding user to group

	Removing user from group

	Get group roles

	Grant roles to group

	Revoke roles from group

	Further reading

	Environment
	Switch roles inside a block

	Switch user inside a block

	Debug mode

	Test mode

	Plone version

	Zope version

	Further reading

Complete API and advanced usage

	List of all API methods with descriptions

	plone.api.portal

	plone.api.content

	plone.api.user

	plone.api.group

	plone.api.env

	plone.api.exc

Contribute

	How to contribute to this package?
	Conventions

	Local development environment

	Releasing a new version

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/about.html] so you have working references and proper formatting.

About

	Inspiration

	Design decisions
	Import and usage style

	Prefer keyword arguments

	FAQ
	Why aren't we using wrappers?

	Why delete instead of remove?

Inspiration

We want plone.api to be developed with PEP 20 [http://www.python.org/dev/peps/pep-0020/] idioms in mind, in particular:

Explicit is better than implicit.

Readability counts.

There should be one-- and preferably only one --obvious way to do it.

Now is better than never.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

All contributions to plone.api should keep these rules in mind.

Two libraries are especially inspiring:

	SQLAlchemy [http://www.sqlalchemy.org/]

	Arguably, the reason for SQLAlchemy's success in the developer community lies as much in its feature set as in the fact that its API is very well designed, is consistent, explicit, and easy to learn.

	Requests [http://docs.python-requests.org]

	If you look at the documentation for this library, or make a comparison between the urllib2 way and the requests way [https://gist.github.com/973705], you cannot but see a parallel between the way we have been and the way we should be writing code for Plone.
At the least, we should have the option to write such clean code.

The API provides grouped functional access to otherwise distributed logic in Plone.
This distribution is a result of two historical factors: re-use of CMF- and Zope-methods and reasonable but hard to remember splits like acl_users and portal_memberdata.
Methods defined in plone.api implement best-practice access to the original distributed APIs.
These methods also provide clear documentation of how best to access Plone APIs directly.

Note

If you doubt those last sentences:
We had five different ways to get the portal root with different edge-cases.
We had three different ways to move an object.
With this in mind, it's obvious that even the most simple tasks can't be documented in Plone in a sane way.

We do not intend to cover all possible use-cases, only the most common.
We will cover the 20% of possible tasks on which we spend 80% of our time.
If you need to do something that plone.api does not support, use the underlying APIs directly.
We try to document sensible use cases even when we don't provide APIs for them, though.

Design decisions

Import and usage style

API methods are grouped according to what they affect.
For example:
Portal,
Content,
Users,
Environment and
Groups.
In general, importing and using an API looks something like this:

from plone import api

portal = api.portal.get()
catalog = api.portal.get_tool(name="portal_catalog")
user = api.user.create(email='alice@plone.org')

Always import the top-level package
(from plone import api)
and then use the group namespace to access the method you want
(portal = api.portal.get()).

All example code should adhere to this style, to encourage one and only one preferred way of consuming API methods.

Prefer keyword arguments

We prefer using keyword arguments to positional arguments.
Example code in plone.api will use this style, and we recommend users to follow this convention.
For the curious, here are the reasons:

	There will never be a doubt when writing a method on whether an argument should be positional or not.
Decision already made.

	There will never be a doubt when using the API on which argument comes first, or which ones are named/positional.
All arguments are named.

	When using positional arguments, the method signature is dictated by the underlying implementation
(think required vs. optional arguments).
Named arguments are always optional in Python.
Using keywords allows implementation details to change while the signature is preserved.
In other words, the underlying API code can change substantially but code using it will remain valid.

	The arguments can all be passed as a dictionary.

GOOD
from plone import api
alice = api.user.get(username='alice@plone.org')

BAD
from plone.api import user
alice = user.get('alice@plone.org')

FAQ

Why aren't we using wrappers?

We could wrap an object (like a user) with an API to make it more usable right now.
That would be an alternative to the convenience methods.

Unfortunately a wrapper is not the same as the object it wraps, and answering the inevitable questions about this difference would be confusing. Moreover, functionality provided by zope.interface such as annotations would need to be proxied.
This would be extremely difficult, if not impossible.

It is also important that developers be able to ensure that their tests continue to work even if wrappers were to be deprecated.
Consider the failure lurking behind test code such as this:

if users['bob'].__class__.__name__ == 'WrappedMemberDataObject':
 # do something

Why delete instead of remove?

	The underlying code uses methods that are named more similarly to delete rather than to remove.

	The CRUD verb is delete, not remove.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/portal.html] so you have working references and proper formatting.

Portal

	Get portal object

	Get navigation root

	Get portal url

	Get tool

	Get localized time

	Send E-Mail

	Show notification message

	Get plone.app.registry record

	Set plone.app.registry record

	Further reading

Get portal object

Getting the Plone portal object is easy with api.portal.get().

from plone import api
portal = api.portal.get()

Get navigation root

In multi-lingual or multi-site Plone installations you probably want to get the language-specific navigation root object, not the top portal object.
You do this with api.portal.get_navigation_root().

Assuming there is a document english_page in a folder en, which is the navigation root:

from plone import api
nav_root = api.portal.get_navigation_root(english_page)

returns the folder en. If the folder en is not a navigation root it would return the portal.

Get portal url

Since we now have the portal object, it's easy to get the portal url.

from plone import api
url = api.portal.get().absolute_url()

Get tool

To get a portal tool in a simple way, just use api.portal.get_tool() and pass in the name of the tool you need.

from plone import api
catalog = api.portal.get_tool(name='portal_catalog')

Get localized time

To display the date/time in a user-friendly way, localized to the user's prefered language, use api.portal.get_localized_time().

from plone import api
from DateTime import DateTime
today = DateTime()
localized = api.portal.get_localized_time(datetime=today)

Send E-Mail

To send an e-mail use api.portal.send_email():

from plone import api
api.portal.send_email(
 recipient="bob@plone.org",
 sender="noreply@plone.org",
 subject="Trappist",
 body="One for you Bob!",
)

Show notification message

With api.portal.show_message() you can show a notification message to the user.

from plone import api
api.portal.show_message(message='Blueberries!', request=request)

Get plone.app.registry record

Plone comes with a package plone.app.registry that provides a common way to store various configuration and settings.
api.portal.get_registry_record() provides an easy way to access these.

from plone import api
api.portal.get_registry_record('my.package.someoption')

Set plone.app.registry record

Plone comes with a package plone.app.registry that provides a common way to store various configuration and settings.
api.portal.set_registry_record() provides an easy way to change these.

from plone import api
api.portal.set_registry_record('my.package.someoption', False)

Further reading

For more information on possible flags and usage options please see the full plone.api.portal specification.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/content.html] so you have working references and proper formatting.

Content

	Create content

	Get content object

	Find content objects

	Get content object UUID

	Move content

	Rename content

	Copy content

	Delete content

	Content manipulation with the safe_id option

	Get workflow state

	Transition

	Get view

	Further reading

Create content

To add an object, you must first have a container in which to put it.
Get the portal object, it will serve nicely:

from plone import api
portal = api.portal.get()

Create your new content item using the api.content.create() method.
The type argument will decide which content type will be created.
Both Dexterity and Archetypes content types are supported.

from plone import api
obj = api.content.create(
 type='Document',
 title='My Content',
 container=portal)

The id of the new object is automatically and safely generated from its title.

assert obj.id == 'my-content'

Get content object

There are several approaches to getting your content object.
Consider the following portal structure:

plone (portal root)
|-- blog
|-- about
| |-- team
| `-- contact
`-- events
 |-- training
 |-- conference
 `-- sprint

The following operations will get objects from the stucture above, including using api.content.get().

let's first get the portal object
from plone import api
portal = api.portal.get()
assert portal.id == 'plone'

content can be accessed directly with dict-like access
blog = portal['blog']

another way is to use ``get()`` method and pass it a path
about = api.content.get(path='/about')

more examples
conference = portal['events']['conference']
sprint = api.content.get(path='/events/sprint')

moreover, you can access content by its UID
uid = about['team'].UID()
team = api.content.get(UID=uid)

returns None if UID cannot be found in catalog
not_found = api.content.get(UID='notfound')

Find content objects

You can use the find function to search for content.

Finding all Documents:

from plone import api
documents = api.content.find(portal_type='Document')

Finding all Documents within a context:

from plone import api
documents = api.content.find(
 context=api.portal.get(), portal_type='Document')

Limit search depth:

from plone import api
documents = api.content.find(depth=1, portal_type='Document')

Limit search depth within a context:

from plone import api
documents = api.content.find(
 context=api.portal.get(), depth=1, portal_type='Document')

Search by interface:

from plone import api
from Products.ATContentTypes.interfaces.document import IATDocument
documents = api.content.find(object_provides=IATDocument)

Combining multiple arguments:

from plone import api
from Products.ATContentTypes.interfaces.document import IATDocument
documents = api.content.find(
 context=api.portal.get(),
 depth=2,
 object_provides=IATDocument,
 SearchableText='Team',
)

More information about how to use the catalog may be found in the Plone Documentation [http://docs.plone.org/develop/plone/searching_and_indexing/index.html].
Note that the catalog returns brains (metadata stored in indexes) and not objects.
However, calling getObject() on brains does in fact give you the object.

document_brain = documents[0]
document_obj = document_brain.getObject()
assert document_obj.__class__.__name__ == 'ATDocument'

Get content object UUID

A Universally Unique IDentifier (UUID) is a unique, non-human-readable identifier for a content object which stays on the object even if the object is moved.

Plone uses UUIDs for storing references between content and for linking by UIDs, enabling persistent links.

To get the UUID of any content object use api.content.get_uuid().
The following code gets the UUID of the contact document.

from plone import api
portal = api.portal.get()
contact = portal['about']['contact']

uuid = api.content.get_uuid(obj=contact)

Move content

To move content around the portal structure defined above use the api.content.move() method.
The code below moves the contact item (with all it contains) out of the folder about and into the Plone portal root.

from plone import api
portal = api.portal.get()
contact = portal['about']['contact']

api.content.move(source=contact, target=portal)

Actually, move behaves like a filesystem move.
If you pass it an id argument the object will have that new ID in it's new home.
By default it will retain its original ID.

Rename content

To rename a content object (change its ID), use the api.content.rename() method.

from plone import api
portal = api.portal.get()
api.content.rename(obj=portal['blog'], new_id='old-blog')

Copy content

To copy a content object, use the api.content.copy() method.

from plone import api
portal = api.portal.get()
training = portal['events']['training']

api.content.copy(source=training, target=portal)

Note that the new object will have the same ID as the old object (unless otherwise stated).
This is not a problem, since the new object is in a different container.

You can also set target to source's container and set safe_id=True.
This will duplicate your content object in the same container and assign it a new, non-conflicting ID.

api.content.copy(source=portal['training'], target=portal, safe_id=True)
new_training = portal['copy_of_training']

Delete content

To delete a content object, pass the object to the api.content.delete() method:

from plone import api
portal = api.portal.get()
api.content.delete(obj=portal['copy_of_training'])

To delete multiple content objects, pass the objects to the api.content.delete() method:

from plone import api
portal = api.portal.get()
data = [portal['copy_of_training'], portal['events']['copy_of_training'],]
api.content.delete(objects=data)

Content manipulation with the safe_id option

When manipulating content with api.content.create(), api.content.move() or api.content.copy() the safe_id flag is disabled by default.
This means the uniqueness of IDs will be enforced.
If another object with the same ID is already present in the target container these API methods will raise an error.

However, if the safe_id option is enabled, a non-conflicting id will be generated.

api.content.create(container=portal, type='Document', id='document', safe_id=True)
document = portal['document-1']

Get workflow state

To find out the current workflow state of your content, use the api.content.get_state() method.

from plone import api
portal = api.portal.get()
state = api.content.get_state(obj=portal['about'])

Transition

To transition your content to a new workflow state, use the api.content.transition() method.

from plone import api
portal = api.portal.get()
api.content.transition(obj=portal['about'], transition='publish')

Get view

To get a BrowserView for your content, use api.content.get_view().

from plone import api
portal = api.portal.get()
view = api.content.get_view(
 name='plone',
 context=portal['about'],
 request=request,
)

Further reading

For more information on possible flags and usage options please see the full plone.api.content specification.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/user.html] so you have working references and proper formatting.

Users

	Create user

	Get user

	User properties

	Get currently logged-in user

	Check if current user is anonymous

	Get all users

	Get group's users

	Delete user

	Get user roles

	Get user permissions

	Check user permission

	Grant roles to user

	Revoke roles from user

	Further reading

Create user

To create a new user, use api.user.create().
If your portal is configured to use emails as usernames, you just need to pass in the email of the new user.

from plone import api
user = api.user.create(email='alice@plone.org')

Otherwise, you also need to pass in the username of the new user.

user = api.user.create(email='jane@plone.org', username='jane')

To set user properties when creating a new user, pass in a properties dict.

properties = dict(
 fullname='Bob',
 location='Munich',
)
user = api.user.create(
 username='bob',
 email='bob@plone.org',
 properties=properties,
)

Besides user properties you can also specify a password for the new user.
Otherwise a random 8-character alphanumeric password will be generated.

user = api.user.create(
 username='noob',
 email='noob@plone.org',
 password='secret',
)

Get user

You can get a user with api.user.get().

from plone import api
user = api.user.get(username='bob')

User properties

Users have various properties set on them.
This is how you get and set them, using the underlying APIs:

from plone import api
user = api.user.get(username='bob')
user.setMemberProperties(mapping={ 'location': 'Neverland', })
location = user.getProperty('location')

Get currently logged-in user

Getting the currently logged-in user is easy with api.user.get_current().

from plone import api
current = api.user.get_current()

Check if current user is anonymous

Sometimes you need to trigger or display some piece of information only for logged-in users.
It's easy to use api.user.is_anonymous() to do a basic check for it.

from plone import api
if not api.user.is_anonymous():
 trigger = False
trigger = True

Get all users

Get all users in your portal with api.user.get_users().

from plone import api
users = api.user.get_users()

Get group's users

If you set the groupname parameter, then api.user.get_users() will return only users that are members of this group.

from plone import api
users = api.user.get_users(groupname='staff')

Delete user

To delete a user, use api.user.delete() and pass in either the username or the user object you want to delete.

from plone import api
api.user.create(username='unwanted', email='unwanted@example.org')
api.user.delete(username='unwanted')

unwanted = api.user.create(username='unwanted', email='unwanted@example.org')
api.user.delete(user=unwanted)

Get user roles

The api.user.get_roles() method is used for getting a user's roles.
By default it returns site-wide roles.

from plone import api
roles = api.user.get_roles(username='jane')

If you pass in a content object, it will return local roles of the user in that particular context.

from plone import api
portal = api.portal.get()
blog = api.content.create(container=portal, type='Document', id='blog', title='My blog')
roles = api.user.get_roles(username='jane', obj=portal['blog'])

Get user permissions

The api.user.get_permissions() method is used for getting user's permissions.
By default it returns site root permissions.

from plone import api
mike = api.user.create(email='mike@plone.org', username='mike')
permissions = api.user.get_permissions(username='mike')

If you pass in a content object, it will return local permissions of the user in that particular context.

from plone import api
portal = api.portal.get()
folder = api.content.create(container=portal, type='Folder', id='folder_two', title='Folder Two')
permissions = api.user.get_permissions(username='mike', obj=portal['folder_two'])

Check user permission

Instead of getting all user permissions, you can check a single permission using the api.user.has_permission() method.
By default it checks the permission on the site root.

from plone import api
adam = api.user.create(email='adam@plone.org', username='adam')
can_view = api.user.has_permission('View', username='adam')

If you pass in a content object, it will check the permission in that particular context.

from plone import api
portal = api.portal.get()
folder = api.content.create(container=portal, type='Folder', id='folder_hp', title='Folder')
can_view = api.user.has_permission('View', username='adam', obj=folder)

Grant roles to user

The api.user.grant_roles() allows us to grant a list of roles to the user.

from plone import api
api.user.grant_roles(username='jane',
 roles=['Reviewer', 'SiteAdministrator']
)

If you pass a content object or folder,
the roles are granted only on that context and not site-wide.
But all site-wide roles will also be returned by api.user.get_roles() for this user on the given context.

from plone import api
folder = api.content.create(container=portal, type='Folder', id='folder_one', title='Folder One')
api.user.grant_roles(username='jane',
 roles=['Editor', 'Contributor'],
 obj=portal['folder_one']
)

Revoke roles from user

The api.user.revoke_roles() allows us to revoke a list of roles from the user.

from plone import api
api.user.revoke_roles(username='jane', roles=['SiteAdministrator'])

If you pass a context object the local roles for that context will be removed.

from plone import api
folder = api.content.create(
 container=portal,
 type='Folder',
 id='folder_three',
 title='Folder Three'
)
api.user.grant_roles(
 username='jane',
 roles=['Editor', 'Contributor'],
 obj=portal['folder_three'],
)
api.user.revoke_roles(
 username='jane',
 roles=['Editor'],
 obj=portal['folder_three'],
)

Further reading

For more information on possible flags and usage options please see the full plone.api.user specification.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/group.html] so you have working references and proper formatting.

Groups

	Create group

	Get group

	Editing a group

	Get all groups

	Get user's groups

	Get group members

	Delete group

	Adding user to group

	Removing user from group

	Get group roles

	Grant roles to group

	Revoke roles from group

	Further reading

Create group

To create a new portal group, use api.group.create().

from plone import api
group = api.group.create(groupname='staff')

When creating groups title, description, roles and groups are optional.

from plone import api

group = api.group.create(
 groupname='board_members',
 title='Board members',
 description='Just a description',
 roles=['Readers',],
 groups=['Site Administrators',],
)

Get group

To get a group by its name, use api.group.get().

from plone import api
group = api.group.get(groupname='staff')

Editing a group

Groups can be edited by using the group_tool.
In this example the title, description and roles are updated for the group 'Staff'.

from plone import api
group_tool = api.portal.get_tool(name='portal_groups')
group_tool.editGroup(
 'staff',
 roles=['Editor', 'Reader'],
 title='Staff',
 description='Just a description',
)

Get all groups

You can also get all groups, by using api.group.get_groups().

from plone import api
groups = api.group.get_groups()

Get user's groups

The groups returned may be filtered by member. By passing the username parameter,
api.group.get_groups() will return only those groups to which the user belongs.

from plone import api
user = api.user.get(username='jane')
groups = api.group.get_groups(username='jane')

You may also pass the user directly to api.group.get_groups():

from plone import api
user = api.user.get(username='jane')
groups = api.group.get_groups(user=user)

Get group members

Use the api.user.get_users() method to get all the users that are members of a group.

from plone import api
members = api.user.get_users(groupname='staff')

Delete group

To delete a group, use api.group.delete() and pass in either the groupname or the group object you want to delete.

from plone import api
api.group.create(groupname='unwanted')
api.group.delete(groupname='unwanted')

unwanted = api.group.create(groupname='unwanted')
api.group.delete(group=unwanted)

Adding user to group

To add a user to a group, use the api.group.add_user() method.
This method accepts either the groupname or the group object for the target group and the username or the user object you want to add to the group.

from plone import api

api.user.create(email='bob@plone.org', username='bob')
api.group.add_user(groupname='staff', username='bob')

Removing user from group

To remove a user from a group, use the api.group.remove_user() method.
This also accepts either the groupname or the group object for the target group and either the username or the user object you want to remove from the group.

from plone import api
api.group.remove_user(groupname='staff', username='bob')

Get group roles

To find the roles assigned to a group, use the api.group.get_roles() method.
By default it returns site-wide roles.

from plone import api
roles = api.group.get_roles(groupname='staff')

If you pass in a content object, it will return the local roles of the group in that particular context.

from plone import api
portal = api.portal.get()
folder = api.content.create(
 container=portal,
 type='Folder',
 id='folder_four',
 title='Folder Four',
)
roles = api.group.get_roles(groupname='staff', obj=portal['folder_four'])

Grant roles to group

To grant roles to a group, use the api.group.grant_roles() method.
By default, roles are granted site-wide.

from plone import api
api.group.grant_roles(
 groupname='staff',
 roles=['Reviewer, SiteAdministrator'],
)

If you pass in a content object, roles will be assigned in that particular context.

from plone import api
portal = api.portal.get()
folder = api.content.create(
 container=portal, type='Folder', id='folder_five', title='Folder Five')
api.group.grant_roles(
 groupname='staff', roles=['Contributor'], obj=portal['folder_five'])

Revoke roles from group

To revoke roles already granted to a group, use the api.group.revoke_roles() method.

from plone import api
api.group.revoke_roles(
 groupname='staff', roles=['Reviewer, SiteAdministrator'])

If you pass in a content object, it will revoke roles granted in that particular context.

from plone import api
api.group.revoke_roles(
 groupname='staff', roles=['Contributor'], obj=portal['folder_five'])

Further reading

For more information on possible flags and complete options please see the full plone.api.group specification.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/env.html] so you have working references and proper formatting.

Environment

	Switch roles inside a block

	Switch user inside a block

	Debug mode

	Test mode

	Plone version

	Zope version

	Further reading

Switch roles inside a block

To temporarily override the list of roles that are available, use api.env.adopt_roles().
This is especially useful in unit tests.

from plone import api
from AccessControl import Unauthorized

portal = api.portal.get()
with api.env.adopt_roles(['Anonymous']):
 self.assertRaises(
 Unauthorized,
 lambda: portal.restrictedTraverse("manage_propertiesForm")
)

with api.env.adopt_roles(['Manager', 'Member']):
 portal.restrictedTraverse("manage_propertiesForm")

Switch user inside a block

To temporarily override the user which is currently active, use api.env.adopt_user().

from plone import api

portal = api.portal.get()

Create a new user.
api.user.create(
 username="doc_owner",
 roles=('Member', 'Manager',),
 email="new_owner@example.com",
)

Become that user and create a document.
with api.env.adopt_user(username="doc_owner"):
 api.content.create(
 container=portal,
 type='Document',
 id='new_owned_doc',
)

self.assertEqual(
 portal.new_owned_doc.getOwner().getId(),
 "doc_owner",
)

Debug mode

To know if your zope instance is running in debug mode, use api.env.debug_mode().

from plone import api

in_debug_mode = api.env.debug_mode()
if in_debug_mode:
 print 'Zope is in debug mode'

Test mode

To know if your plone instance is running in a test runner, use api.env.test_mode().

from plone import api

in_test_mode = api.env.test_mode()
if in_test_mode:
 pass # do something

Plone version

To know what version of Plone you are using, use api.env.plone_version().

from plone import api

plone_version = api.env.plone_version()
if plone_version < '4.1':
 pass # do something

Zope version

To know what version of Zope 2 you are using, use api.env.zope_version().

from plone import api

zope_version = api.env.zope_version()
if zope_version >= '2.13':
 pass # do something

Further reading

For more information on possible flags and usage options please see the full plone.api.env specification.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/index.html]
so you have working references and proper formatting.

List of all API methods with descriptions

api.portal

	api.portal.get()
	Get the Plone portal object out of thin air.

	api.portal.get_navigation_root([context])
	Get the navigation root object for the context.

	api.portal.get_tool([name])
	Get a portal tool in a simple way.

	api.portal.get_localized_time([datetime, ...])
	Display a date/time in a user-friendly way.

	api.portal.send_email([sender, recipient, ...])
	Send an email.

	api.portal.show_message([message, request, type])
	Display a status message.

	api.portal.get_registry_record([name])
	Get a record value from a the plone.app.registry

api.content

	api.content.get([path, UID])
	Get an object.

	api.content.create([container, type, id, ...])
	Create a new content item.

	api.content.delete([obj])
	Delete the object.

	api.content.copy([source, target, id, safe_id])
	Copy the object to the target container.

	api.content.move([source, target, id, safe_id])
	Move the object to the target container.

	api.content.rename([obj, new_id, safe_id])
	Rename the object.

	api.content.get_uuid([obj])
	Get the object's Universally Unique IDentifier (UUID).

	api.content.get_state([obj])
	Get the current workflow state of the object.

	api.content.transition([obj, transition, ...])
	Perform a workflow transition for the object or attempt to perform workflow transitions on the object to reach the given state.

	api.content.get_view([name, context, request])
	Get a BrowserView object.

api.user

	api.user.get([userid, username])
	Get a user.

	api.user.create([email, username, password, ...])
	Create a user.

	api.user.delete([username, user])
	Delete a user.

	api.user.get_current()
	Get the currently logged-in user.

	api.user.is_anonymous()
	Check if the currently logged-in user is anonymous.

	api.user.get_users([groupname, group])
	Get all users or all users filtered by group.

	api.user.get_roles([username, user, obj, ...])
	Get user's site-wide or local roles.

	api.user.get_permissions([username, user, obj])
	Get user's site-wide or local permissions.

	api.user.grant_roles([username, user, obj, ...])
	Grant roles to a user.

	api.user.revoke_roles([username, user, obj, ...])
	Revoke roles from a user.

api.group

	api.group.get([groupname])
	Get a group.

	api.group.create([groupname, title, ...])
	Create a group.

	api.group.delete([groupname, group])
	Delete a group.

	api.group.add_user([groupname, group, ...])
	Add the user to a group.

	api.group.remove_user([groupname, group, ...])
	Remove the user from a group.

	api.group.get_groups([username, user])
	Get all groups or all groups filtered by user.

	api.group.get_roles([groupname, group, obj])
	Get group's site-wide or local roles.

	api.group.grant_roles([groupname, group, ...])
	Grant roles to a group.

	api.group.revoke_roles([groupname, group, ...])
	Revoke roles from a group.

api.env

	api.env.adopt_roles([roles])
	Context manager for temporarily switching roles.

	api.env.adopt_user([username, user])
	Context manager for temporarily switching user inside a block.

	api.env.debug_mode()
	Returns True if your zope instance is running in debug mode.

	api.env.test_mode()
	Returns True if you are running the zope test runner.

Exceptions and errors

	api.exc.PloneApiError
	Base exception class for plone.api errors.

	api.exc.MissingParameterError
	Raised when a parameter is missing.

	api.exc.InvalidParameterError
	Raised when a parameter is invalid.

	api.exc.CannotGetPortalError
	Raised when the portal object cannot be retrieved.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/portal.html]
so you have working references and proper formatting.

plone.api.portal

Module that provides various utility methods on the portal level.

	
plone.api.portal.get()

	Get the Plone portal object out of thin air.

Without the need to import fancy Interfaces and doing multi adapter
lookups.

	Returns:	Plone portal object

	Return type:	Portal object

	Example:	Get portal object

	
plone.api.portal.get_localized_time(datetime=None, long_format=False, time_only=False)

	Display a date/time in a user-friendly way.

It should be localized to the user's preferred language.

Note that you can specify both long_format and time_only as True
(or any other value that can be converted to a boolean True
value), but time_only then wins: the long_format value is ignored.

You can also use datetime.datetime or datetime.date instead of Plone's
DateTime. In case of datetime.datetime everything works the same, in
case of datetime.date the long_format parameter is ignored and on time_only
an empty string is returned.

	Parameters:	
	datetime (DateTime, datetime or date) -- [required] Message to show.

	long_format (boolean) -- When true, show long date format. When false
(default), show the short date format.

	time_only (boolean) -- When true, show only the time, when false
(default), show the date.

	Returns:	Localized time

	Return type:	string

	Raises:	ValueError

	Example:	Get localized time

	
plone.api.portal.get_navigation_root(context=None)

	Get the navigation root object for the context.

This traverses the path up and returns the nearest navigation root.
Useful for multi-lingual installations and sites with subsites.

	Parameters:	context (context object) -- [required] Context on which to get the navigation root.

	Returns:	Navigation Root

	Return type:	Portal object

	Example:	Get navigation root

	
plone.api.portal.get_registry_record(name=None)

	Get a record value from a the plone.app.registry

	Parameters:	name (string) -- [required] Name

	Returns:	Registry record value

	Return type:	plone.app.registry registry record

	Example:	Get plone.app.registry record

	
plone.api.portal.get_tool(name=None)

	Get a portal tool in a simple way.

	Parameters:	name (string) -- [required] Name of the tool you want.

	Returns:	The tool that was found by name

	Raises:	MissingParameterError,
InvalidParameterError

	Example:	Get tool

	
plone.api.portal.send_email(sender=None, recipient=None, subject=None, body=None)

	Send an email.

	Parameters:	
	sender (string) -- Email sender, 'from' field. If not set, the portal default
will be used.

	recipient (string) -- [required] Email recipient, 'to' field.

	subject (string) -- [required] Subject of the email.

	body (string) -- [required] Body text of the email

	Raises:	ValueError

	Example:	Send E-Mail

	
plone.api.portal.set_registry_record(name=None, value=None)

	Set a record value in the plone.app.registry

	Parameters:	
	name (string) -- [required] Name of the record

	value (python primitive) -- [required] Value to set

	Example:	Set plone.app.registry record

	
plone.api.portal.show_message(message=None, request=None, type='info')

	Display a status message.

	Parameters:	
	message (string) -- [required] Message to show.

	request (TODO: hm?) -- [required] Request.

	type (string) -- Message type. Possible values: 'info', 'warn', 'error'

	Raises:	ValueError

	Example:	Show notification message

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/api/content.html] so you have working references and proper formatting.

plone.api.content

Module that provides functionality for content manipulation.

	
plone.api.content.copy(source=None, target=None, id=None, safe_id=False)

	Copy the object to the target container.

	Parameters:	
	source (Content object) -- [required] Object that we want to copy.

	target (Folderish content object) -- Target container to which the source object will
be moved. If no target is specified, the source object's container will
be used as a target.

	id (string) -- Id of the copied object on the target location. If no id is
provided, the copied object will have the same id as the source object
- however, if the new object's id conflicts with another object in the
target container, a suffix will be added to the new object's id.

	safe_id (boolean) -- When False, the given id will be enforced. If the id is
conflicting with another object in the target container, raise a
InvalidParameterError. When True, choose a new, non-conflicting id.

	Returns:	Content object that was created in the target location

	Raises:	KeyError,
ValueError

	Example:	Copy content

	
plone.api.content.create(container=None, type=None, id=None, title=None, safe_id=False, **kwargs)

	Create a new content item.

	Parameters:	
	container (Folderish content object) -- [required] Container object in which to create the new
object.

	type (string) -- [required] Type of the object.

	id (string) -- Id of the object. If the id conflicts with another object in
the container, a suffix will be added to the new object's id. If no id
is provided, automatically generate one from the title. If there is no
id or title provided, raise a ValueError.

	title (string) -- Title of the object. If no title is provided, use id as
the title.

	safe_id (boolean) -- When False, the given id will be enforced. If the id is
conflicting with another object in the target container, raise an
InvalidParameterError. When True, choose a new, non-conflicting id.

	Returns:	Content object

	Raises:	KeyError,
MissingParameterError,
InvalidParameterError

	Example:	Create content

	
plone.api.content.delete(obj=None)

	Delete the object.

	Parameters:	obj (Content object) -- [required] Object that we want to delete.

	Raises:	ValueError

	Example:	Delete content

	
plone.api.content.get(path=None, UID=None)

	Get an object.

	Parameters:	
	path (string) -- Path to the object we want to get, relative to
the portal root.

	UID (string) -- UID of the object we want to get.

	Returns:	Content object

	Raises:	ValueError,

	Example:	Get content object

	
plone.api.content.get_state(obj=None)

	Get the current workflow state of the object.

	Parameters:	obj (Content object) -- [required] Object that we want to get the state for.

	Returns:	Object's current workflow state

	Return type:	string

	Raises:	ValueError

	Example:	Get workflow state

	
plone.api.content.get_uuid(obj=None)

	Get the object's Universally Unique IDentifier (UUID).

	Parameters:	obj (Content object) -- [required] Object we want its UUID.

	Returns:	Object's UUID

	Return type:	string

	Raises:	ValueError

	Example:	Get content object UUID

	
plone.api.content.get_view(name=None, context=None, request=None)

	Get a BrowserView object.

	Parameters:	
	name (string) -- [required] Name of the view.

	context (context object) -- [required] Context on which to get view.

	request (request object) -- [required] Request on which to get view.

	Raises:	MissingParameterError,
InvalidParameterError

	Example:	Get view

	
plone.api.content.move(source=None, target=None, id=None, safe_id=False)

	Move the object to the target container.

	Parameters:	
	source (Content object) -- [required] Object that we want to move.

	target (Folderish content object) -- Target container to which the source object will
be moved. If no target is specified, the source object's container will
be used as a target, effectively making this operation a rename
(Rename content).

	id (string) -- Pass this parameter if you want to change the id of the moved
object on the target location. If the new id conflicts with another
object in the target container, a suffix will be added to the moved
object's id.

	safe_id (boolean) -- When False, the given id will be enforced. If the id is
conflicting with another object in the target container, raise a
InvalidParameterError. When True, choose a new, non-conflicting id.

	Returns:	Content object that was moved to the target location

	Raises:	KeyError
ValueError

	Example:	Move content

	
plone.api.content.rename(obj=None, new_id=None, safe_id=False)

	Rename the object.

	Parameters:	
	obj (Content object) -- [required] Object that we want to rename.

	new_id (string) -- New id of the object.

	safe_id (boolean) -- When False, the given id will be enforced. If the id is
conflicting with another object in the container, raise a
InvalidParameterError. When True, choose a new, non-conflicting id.

	Returns:	Content object that was renamed

	Example:	Rename content

	
plone.api.content.transition(obj=None, transition=None, to_state=None)

	Perform a workflow transition for the object or attempt to perform
workflow transitions on the object to reach the given state.
The later will not guarantee that transition guards conditions can be met.

	Parameters:	
	obj (Content object) -- [required] Object for which we want to perform the workflow
transition.

	transition (string) -- Name of the workflow transition.

	to_state (string) -- Name of the workflow state.

	Raises:	MissingParameterError,
InvalidParameterError

	Example:	Transition

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/user.html]
so you have working references and proper formatting.

plone.api.user

Module that provides functionality for user manipulation.

	
plone.api.user.create(email=None, username=None, password=None, roles=('Member',), properties=None)

	Create a user.

	Parameters:	
	email (string) -- [required] Email for the new user.

	username (string) -- Username for the new user. This is required if email
is not used as a username.

	password (string) -- Password for the new user. If it's not set we generate
a random 8-char alpha-numeric one.

	properties (dict) -- User properties to assign to the new user. The list of
available properties is available in portal_memberdata through ZMI.

	Returns:	Newly created user

	Return type:	MemberData object

	Raises:	MissingParameterError
InvalidParameterError

	Example:	Create user

	
plone.api.user.delete(username=None, user=None)

	Delete a user.

Arguments username and user are mutually exclusive. You can either
set one or the other, but not both.

	Parameters:	
	username (string) -- Username of the user to be deleted.

	user (MemberData object) -- User object to be deleted.

	Raises:	MissingParameterError
InvalidParameterError

	Example:	Delete user

	
plone.api.user.get(userid=None, username=None)

	Get a user.

Plone provides both a unique, unchanging identifier for a user (the
userid) and a username, which is the value a user types into the login
form. In many cases, the values for each will be the same, but under some
circumstances they will differ. Known instances of this behavior include:

	using content-based members via membrane

	users changing their email address when using email as login is enabled

We provide the ability to look up users by either.

	Parameters:	
	userid (string) -- Userid of the user we want to get.

	username (string) -- Username of the user we want to get.

	Returns:	User

	Return type:	MemberData object

	Raises:	MissingParameterError

	Example:	Get user

	
plone.api.user.get_current()

	Get the currently logged-in user.

	Returns:	Currently logged-in user

	Return type:	MemberData object

	Example:	Get currently logged-in user

	
plone.api.user.get_permissions(username=None, user=None, obj=None)

	Get user's site-wide or local permissions.

Arguments username and user are mutually exclusive. You
can either set one or the other, but not both. if username and
user are not given, the authenticated member will be used.

	Parameters:	
	username (string) -- Username of the user for which you want to check
the permissions.

	user (MemberData object) -- User object for which you want to check the permissions.

	obj (content object) -- If obj is set then check the permissions on this context.
If obj is not given, the site root will be used.

	Raises:	InvalidParameterError

	Example:	Get user permissions

	
plone.api.user.get_roles(username=None, user=None, obj=None, inherit=True)

	Get user's site-wide or local roles.

Arguments username and user are mutually exclusive. You
can either set one or the other, but not both. if username and
user are not given, the currently authenticated member will be used.

	Parameters:	
	username (string) -- Username of the user for which to get roles.

	user (MemberData object) -- User object for which to get roles.

	obj (content object) -- If obj is set then return local roles on this context.
If obj is not given, the site root local roles will be returned.

	inherit (bool) -- if obj is set and inherit is False, only return
local roles

	Raises:	MissingParameterError

	Example:	Get user roles

	
plone.api.user.get_users(groupname=None, group=None)

	Get all users or all users filtered by group.

Arguments group and groupname are mutually exclusive.
You can either set one or the other, but not both.

	Parameters:	
	groupname -- Groupname of the group of which to return users. If set,
only return users that are member of this group.

	group (GroupData object) -- Group of which to return users.
If set, only return users that are member of this group.

	Returns:	All users (optionlly filtered by group)

	Return type:	List of MemberData objects

	Example:	Get all users,
Get group's users

	
plone.api.user.grant_roles(username=None, user=None, obj=None, roles=None)

	Grant roles to a user.

Arguments username and user are mutually exclusive. You
can either set one or the other, but not both. if username and
user are not given, the authenticated member will be used.

	Parameters:	
	username (string) -- Username of the user that will receive the granted roles.

	user (MemberData object) -- User object that will receive the granted roles.

	obj (content object) -- If obj is set then grant roles on this context. If obj is not
given, the site root will be used.

	roles (list of strings) -- List of roles to grant

	Raises:	InvalidParameterError
MissingParameterError

	Example:	Grant roles to user

	
plone.api.user.has_permission(permission, username=None, user=None, obj=None)

	Check whether this user has the given permssion.

Arguments username and user are mutually exclusive. You
can either set one or the other, but not both. if username and
user are not given, the authenticated member will be used.

	Parameters:	
	permission (string) -- The permission you wish to check

	username (string) -- Username of the user for which you want to check
the permission.

	user (MemberData object) -- User object for which you want to check the permission.

	obj (content object) -- If obj is set then check the permission on this context.
If obj is not given, the site root will be used.

	Raises:	InvalidParameterError

	Returns:	True if the user has the permission, False otherwise.

	Return type:	bool

	
plone.api.user.is_anonymous()

	Check if the currently logged-in user is anonymous.

	Returns:	True if the current user is anonymous, False otherwise.

	Return type:	bool

	Example:	Check if current user is anonymous

	
plone.api.user.revoke_roles(username=None, user=None, obj=None, roles=None)

	Revoke roles from a user.

Arguments username and user are mutually exclusive. You
can either set one or the other, but not both. if username and
user are not given, the authenticated member will be used.

	Parameters:	
	username (string) -- Username of the user that will receive the revoked roles.

	user (MemberData object) -- User object that will receive the revoked roles.

	obj (content object) -- If obj is set then revoke roles on this context. If obj is not
given, the site root will be used.

	roles (list of strings) -- List of roles to revoke

	Raises:	InvalidParameterError

	Example:	Revoke roles from user

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/group.html]
so you have working references and proper formatting.

plone.api.group

Module that provides functionality for group manipulation.

	
plone.api.group.add_user(groupname=None, group=None, username=None, user=None)

	Add the user to a group.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

Arguments username and user are mutually exclusive. You can
either set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to which to add the user.

	group (GroupData object) -- Group to which to add the user.

	username (string) -- Username of the user to add to the group.

	user (MemberData object) -- User to add to the group.

	Raises:	ValueError
UserNotFoundError

	Example:	Adding user to group

	
plone.api.group.create(groupname=None, title=None, description=None, roles=[], groups=[])

	Create a group.

	Parameters:	
	groupname (string) -- [required] Name of the new group.

	title (string) -- Title of the new group

	description (string) -- Description of the new group

	roles (list) -- Roles to assign to this group

	groups (list) -- Groups that belong to this group

	Returns:	Newly created group

	Return type:	GroupData object

	Raises:	ValueError

	Example:	Create group

	
plone.api.group.delete(groupname=None, group=None)

	Delete a group.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to be deleted.

	group (GroupData object) -- Group object to be deleted.

	Raises:	ValueError

	Example:	Delete group

	
plone.api.group.get(groupname=None)

	Get a group.

	Parameters:	groupname (string) -- [required] Name of the group we want to get.

	Returns:	Group

	Return type:	GroupData object

	Raises:	ValueError

	Example:	Get group

	
plone.api.group.get_groups(username=None, user=None)

	Get all groups or all groups filtered by user.

Arguments username and user are mutually exclusive. You can either
set one or the other, but not both.

	Parameters:	
	username (string) -- Username of the user for which to return groups. If set,
only return groups that this user is member of.

	user (MemberData object) -- User for which to return groups. If set, only return groups
that this user is member of.

	Returns:	All groups (optionlly filtered by user)

	Return type:	List of GroupData objects

	Raises:	UserNotFoundError

	Example:	Get all groups,
Get user's groups

	
plone.api.group.get_roles(groupname=None, group=None, obj=None)

	Get group's site-wide or local roles.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to get roles from.

	group (GroupData object) -- Group to get roles from.

	obj (content object) -- If obj is set then return local roles on this context.

	Raises:	ValueError

	Example:	Get group roles

	
plone.api.group.grant_roles(groupname=None, group=None, roles=None, obj=None)

	Grant roles to a group.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to grant roles to.

	group (GroupData object) -- Group to grant roles to.

	roles (list of strings) -- List of roles to grant

	obj (content object) -- If obj is set then grant local roles on this context.

	Raises:	ValueError

	Example:	Grant roles to group

	
plone.api.group.remove_user(groupname=None, group=None, username=None, user=None)

	Remove the user from a group.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

Arguments username and user are mutually exclusive. You can either
set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to remove the user from.

	group (GroupData object) -- Group to remove the user from.

	username (string) -- Username of the user to delete from the group.

	user (MemberData object) -- User to delete from the group.

	Raises:	ValueError
UserNotFoundError

	Example:	Removing user from group

	
plone.api.group.revoke_roles(groupname=None, group=None, roles=None, obj=None)

	Revoke roles from a group.

Arguments groupname and group are mutually exclusive. You can
either set one or the other, but not both.

	Parameters:	
	groupname (string) -- Name of the group to revoke roles to.

	group (GroupData object) -- Group to revoke roles to.

	roles (list of strings) -- List of roles to revoke

	obj (content object) -- If obj is set then revoke local roles on this context.

	Raises:	ValueError

	Example:	Revoke roles from group

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/env.html]
so you have working references and proper formatting.

plone.api.env

	
plone.api.env.adopt_roles(roles=None)

	Context manager for temporarily switching roles.

	Parameters:	roles (list of strings) -- New roles to gain inside block. Existing roles will be lost.

	Example:	Switch roles inside a block

	
plone.api.env.adopt_user(username=None, user=None)

	Context manager for temporarily switching user inside a block.

	Parameters:	
	user (user object from acl_users.getUser() or api.user.get().) -- User object to switch to inside block.

	username (string) -- username of user to switch to inside block.

	Example:	Switch user inside a block

	
plone.api.env.debug_mode()

	Returns True if your zope instance is running in debug mode.

	Example:	Debug mode

	
plone.api.env.plone_version()

	Return Plone version number.

	Returns:	string denoting what release of Plone this distribution contains

	Example:	Plone version

	
plone.api.env.test_mode()

	Returns True if you are running the zope test runner.

	Example:	Test mode

	
plone.api.env.zope_version()

	Return Zope 2 version number.

	Returns:	string denoting what release of Zope2 this distribution contains

	Example:	Zope version

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/api/exceptions.html]
so you have working references and proper formatting.

plone.api.exc

Exceptions raised by plone.api methods.

	
exception plone.api.exc.CannotGetPortalError

	Raised when the portal object cannot be retrieved.

This normally happens if you are using plone.api bin/instance debug,
because debug sessions do not have a request and so the getSite() cannot
know which Plone portal you want to get (as there can be multiple Plone
sites).

The solution is to use the -O <portal_id> parameter to tell Zope to
traverse to a portal, for example bin/instance -O Plone debug.

	
exception plone.api.exc.GroupNotFoundError

	Raised when a specified or implicit group can not be retrieved.

	
exception plone.api.exc.InvalidParameterError

	Raised when a parameter is invalid.

	
exception plone.api.exc.MissingParameterError

	Raised when a parameter is missing.

	
exception plone.api.exc.PloneApiError

	Base exception class for plone.api errors.

	
exception plone.api.exc.UserNotFoundError

	Raised when a specified or implicit user can not be retrieved.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T!
Read the documentation at api.plone.org [http://api.plone.org/contribute/index.html] so you have working references and proper formatting.

How to contribute to this package?

Conventions

Rules and guidelines on syntax style, development process, repository workflow, etc.

	Conventions
	Introduction

	Line length

	Indentation

	Quoting

	Docstrings style

	Unit tests style

	String formatting

	About imports

	Declaring dependencies

	Versioning scheme

	Restructured Text versus Plain Text

	Tracking changes

	Sphinx Documentation

	Travis Continuous Integration

	Git workflow & branching model

	Release process for Plone packages

	Setting up Git

Local development environment

Setting up and using the local development environment.

	Development environment
	Locations of information and tools

	Prerequisites

	Creating and using the development environment

	Working on an issue

	Commit checklist

Releasing a new version

Description of our release process and guidelines.

	Releasing a new version
	Checklist

	Example

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

 	How to contribute to this package? »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation
at api.plone.org [http://api.plone.org/contribute/conventions.html]
so you have working references and proper formatting.

Conventions

	Introduction

	Line length
	Breaking lines

	Indentation
	EditorConfig

	Quoting

	Docstrings style

	Unit tests style

	String formatting

	About imports
	Grouping and sorting

	Declaring dependencies

	Versioning scheme

	Restructured Text versus Plain Text

	Tracking changes

	Sphinx Documentation

	Travis Continuous Integration

	Git workflow & branching model

	Release process for Plone packages

	Setting up Git
	Enhanced git prompt

	Git dotfiles

	Git Commit Message Style

Introduction

We've modeled the following rules and recommendations based on the following
documents:

	PEP8 [http://www.python.org/dev/peps/pep-0008]

	PEP257 [http://www.python.org/dev/peps/pep-0257]

	Rope project [http://rope.sourceforge.net/overview.html]

	Google Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html]

	Pylons Coding Style [http://docs.pylonsproject.org/en/latest/community/codestyle.html]

	Tim Pope on Git commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]

Line length

All Python code in this package should be PEP8 valid. This includes adhering
to the 80-char line length. If you absolutely need to break this rule, append
noPEP8 to the offending line to skip it in syntax checks.

Note

Configuring your editor to display a line at 79th column helps a lot
here and saves time.

Note

The line length rule also applies to non-python source files, such as
documentation .rst files or .zcml files,
but is a bit more relaxed there.

Breaking lines

Based on code we love to look at (Pyramid, Requests, etc.), we allow the
following two styles for breaking long lines into blocks:

	Break into next line with one additional indent block.

foo = do_something(
 very_long_argument='foo', another_very_long_argument='bar')

For functions the): needs to be placed on the following line
def some_func(
 very_long_argument='foo', another_very_long_argument='bar'
):

	If this still doesn't fit the 80-char limit, break into multiple lines.

foo = dict(
 very_long_argument='foo',
 another_very_long_argument='bar',
)

a_long_list = [
 "a_fairly_long_string",
 "quite_a_long_string_indeed",
 "an_exceptionally_long_string_of_characters",
]

	Arguments on first line, directly after the opening parenthesis are
forbidden when breaking lines.

	The last argument line needs to have a trailing comma (to be nice to the
next developer coming in to add something as an argument and minimize VCS
diffs in these cases).

	The closing parenthesis or bracket needs to have the same indentation level
as the first line.

	Each line can only contain a single argument.

	The same style applies to dicts, lists, return calls, etc.

This package follows all rules above, check out the source [https://github.com/plone/plone.api/tree/master/src/plone/api] to see them
in action.

Indentation

For Python files, we stick with the PEP 8 recommondation [http://www.python.org/dev/peps/pep-0008/#indentation]: Use 4 spaces per
indentation level.

For ZCML and XML (GenericSetup) files, we recommend the Zope Toolkit's coding
style on ZCML [http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html]

Indentation of 2 characters to show nesting, 4 characters to list attributes
on separate lines. This distinction makes it easier to see the difference
between attributes and nested elements.

EditorConfig

EditorConfig [http://editorconfig.org/]
provides a way to share the same configuration for all major source code editors.

You only need to install the plugin for your editor of choice,
and add the following configuration on ~/.editorconfig.

[*]
indent_style = space
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
charset = utf-8

[{*.py,*.cfg}]
indent_size = 4

[{*.html,*.dtml,*.pt,*.zpt,*.xml,*.zcml,*.js}]
indent_size = 2

[Makefile]
indent_style = tab

Quoting

For strings and such prefer using single quotes over double quotes. The reason
is that sometimes you do need to write a bit of HTML in your python code, and
HTML feels more natural with double quotes so you wrap HTML string into single
quotes. And if you are using single quotes for this reason, then be consistent
and use them everywhere.

There are two exceptions to this rule:

	docstrings should always use double quotes (as per PEP-257).

	if you want to use single quotes in your string, double quotes might make
more sense so you don't have to escape those single quotes.

GOOD
print 'short'
print 'A longer string, but still using single quotes.'

BAD
print "short"
print "A long string."

EXCEPTIONS
print "I want to use a 'single quote' in my string."
"""This is a docstring."""

Docstrings style

Read and follow http://www.python.org/dev/peps/pep-0257/. There is one
exception though: We reject BDFL's recommendation about inserting a blank line
between the last paragraph in a multi-line docstring and its closing quotes as
it's Emacs specific and two Emacs users here on the Beer & Wine Sprint both
support our way.

The content of the docstring must be written in the active first-person form,
e.g. "Calculate X from Y" or "Determine the exact foo of bar".

def foo():
 """Single line docstring."""

def bar():
 """Multi-line docstring.

 With the additional lines indented with the beginning quote and a
 newline preceding the ending quote.
 """

If you wanna be extra nice, you are encouraged to document your method's
parameters and their return values in a reST field list syntax [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists].

:param foo: blah blah
:type foo: string
:param bar: blah blah
:type bar: int
:returns: something

Check out the plone.api source [https://github.com/plone/plone.api/tree/master/src/plone/api] for more
usage examples. Also, see the following for examples on how to write
good Sphinxy docstrings: http://stackoverflow.com/questions/4547849/good-examples-of-python-docstrings-for-sphinx.

Unit tests style

Read http://www.voidspace.org.uk/python/articles/unittest2.shtml to learn what
is new in unittest2 and use it.

This is not true for in-line documentation tests. Those still use old unittest
test-cases, so you cannot use assertIn and similar.

String formatting

As per http://docs.python.org/2/library/stdtypes.html#str.format, we should
prefer the new style string formatting (.format()) over the old one
(% ()).

Also use numbering, like so:

GOOD
print "{0} is not {1}".format(1, 2)

and not like this:

BAD
print "{} is not {}".format(1, 2)
print "%s is not %s" % (1, 2)

because Python 2.6 supports only explicitly numbered placeholders.

About imports

	Don't use * to import everything from a module, because if you do,
pyflakes cannot detect undefined names (W404).

	Don't use commas to import multiple things on a single line.
Some developers use IDEs (like Eclipse [http://pydev.org/]) or tools
(such as mr.igor [http://pypi.python.org/pypi/mr.igor])
that expect one import per line.
Let's be nice to them.

	Don't use relative paths, again to be nice to people using certain IDEs and
tools. Also Google Python Style Guide recommends against it.

GOOD
from plone.app.testing import something
from zope.component import getMultiAdapter
from zope.component import getSiteManager

instead of

BAD
from plone.app.testing import *
from zope.component import getMultiAdapter, getSiteManager

	Don't catch ImportError to detect whether a package is available or not,
as it might hide circular import errors. Instead, use
pkg_resources.get_distribution and catch DistributionNotFound. More
background at http://do3.cc/blog/2010/08/20/do-not-catch-import-errors,-use-pkg_resources/.

GOOD
import pkg_resources

try:
 pkg_resources.get_distribution('plone.dexterity')
except pkg_resources.DistributionNotFound:
 HAS_DEXTERITY = False
else:
 HAS_DEXTERITY = True

instead of

BAD
try:
 import plone.dexterity
 HAVE_DEXTERITY = True
except ImportError:
 HAVE_DEXTERITY = False

Grouping and sorting

Since Plone has such a huge code base, we don't want to lose developer time
figuring out into which group some import goes (standard lib?, external
package?, etc.). So we just sort everything alphabetically and insert one blank
line between from foo import bar and import baz blocks. Conditional imports
come last. Again, we do not distinguish between what is standard lib,
external package or internal package in order to save time and avoid the hassle
of explaining which is which.

As for sorting, it is recommended to use case-sensitive sorting. This means
uppercase characters come first, so "Products.*" goes before "plone.*".

GOOD
from __future__ import division
from Acquisition import aq_inner
from Products.CMFCore.interfaces import ISiteRoot
from Products.CMFCore.WorkflowCore import WorkflowException
from plone.api import portal
from plone.api.exc import MissingParameterError

import pkg_resources
import random

try:
 pkg_resources.get_distribution('plone.dexterity')
except pkg_resources.DistributionNotFound:
 HAS_DEXTERITY = False
else:
 HAS_DEXTERITY = True

Declaring dependencies

All direct dependencies should be declared in install_requires or
extras_require sections in setup.py. Dependencies, which are not needed for
a production environment (like "develop" or "test" dependencies) or are
optional (like "Archetypes" or "Dexterity" flavors of the same package) should
go in extras_require. Remember to document how to enable specific features
(and think of using zcml:condition statements, if you have such optional
features).

Generally all direct dependencies (packages directly imported or used in ZCML)
should be declared, even if they would already be pulled in by other
dependencies. This explicitness reduces possible runtime errors and gives a
good overview on the complexity of a package.

For example, if you depend on Products.CMFPlone and use getToolByName
from Products.CMFCore, you should also declare the CMFCore dependency
explicitly, even though it's pulled in by Plone itself. If you use namespace
packages from the Zope distribution like Products.Five you should
explicitly declare Zope as dependency.

Inside each group of dependencies, lines should be sorted alphabetically.

Versioning scheme

For software versions, use a sequence-based versioning scheme, which is
compatible with setuptools [http://pythonhosted.org/setuptools/setuptools.html#specifying-your-project-s-version]:

MAJOR.MINOR[.MICRO][STATUS]

The way, setuptools interprets versions is intuitive:

1.0 < 1.1dev < 1.1a1 < 1.1a2 < 1.1b < 1.1rc1 < 1.1 < 1.1.1

You can test it with setuptools:

>>> from pkg_resources import parse_version
>>> parse_version('1.0') < parse_version('1.1.dev')
... < parse_version('1.1.a1') < parse_version('1.1.a2')
... < parse_version('1.1.b') < parse_version('1.1.rc1')
... < parse_version('1.1') < parse_version('1.1.1')

Setuptools recommends to seperate parts with a dot. The website about semantic
versioning [http://semver.org/] is also worth a read.

Restructured Text versus Plain Text

Use the Restructured Text (.rst file extension) format instead of plain text
files (.txt file extension) for all documentation, including doctest files.
This way you get nice syntax highlighting and formating in recent text editors,
on GitHub and with Sphinx.

Tracking changes

Feature-level changes to code are tracked inside CHANGES.rst. The title
of the CHANGES.rst file should be Changelog. Example:

Changelog
=========

1.0.0-dev (Unreleased)

- Added feature Z.
 [github_userid1]

- Removed Y.
 [github_userid2]

1.0.0-alpha.1 (2012-12-12)

- Fixed Bug X.
 [github_userid1]

Add an entry every time you add/remove a feature, fix a bug, etc. on top of the
current development changes block.

Sphinx Documentation

Un-documented code is broken code.

For every feature you add to the codebase you should also add documentation
for it to docs/.

After adding/modifying documentation, run make to re-generate your docs.

Publicly available documentation on http://api.plone.org is automatically
generated from these source files, periodically. So when you push changes
to master on GitHub you should soon be able to see them published on
api.plone.org.

Read the reStructuredText Primer [http://sphinx-doc.org/rest.html] to brush
up on your reST skills.

Example:

def add(a, b):
 """Calculate the sum of the two parameters.

 Also see the :func:`mod.path.my_func`, :meth:`mod.path.MyClass.method`
 and :attr:`mod.path.MY_CONSTANT` for more details.

 :param a: The first operand.
 :type a: :class:`mod.path.A`

 :param b: The second operand.
 :type b: :class:`mod.path.B`

 :rtype: int
 :return: The sum of the operands.
 :raise: `KeyError`, if the operands are not the correct type.
 """

Attributes are documented using the #: marker above the attribute. The
documentation may span multiple lines.

#: Description of the constant value
MY_CONSTANT = 0xc0ffee

class Foobar(object):

 #: Description of the class variable which spans over
 #: multiple lines
 FOO = 1

Travis Continuous Integration

On every push to GitHub, Travis [http://travis-ci.org/plone/plone.api]
runs all tests and syntax validation checks and reports build outcome to
the #sprint IRC channel and the person who committed the last change.

Travis is configured with the .travis.yml file located in the root of this
package.

Git workflow & branching model

Our repository on GitHub has the following layout:

	feature branches: all development for new features must be done in
dedicated branches, normally one branch per feature,

	master branch: when features get completed they are merged into the
master branch; bugfixes are commited directly on the master branch,

	tags: whenever we create a new release we tag the repository so we can
later re-trace our steps, re-release versions, etc.

Release process for Plone packages

To keep the Plone software stack maintainable, the Python egg release process
must be automated to high degree. This happens by enforcing Python packaging
best practices and then making automated releases using the
zest.releaser [https://github.com/zestsoftware/zest.releaser/] tool.

	Anyone with necessary PyPi permissions must be able to make a new release
by running the fullrelease command

... which includes ...

	All releases must be hosted on PyPi

	All versions must be tagged at version control

	Each package must have README.rst with links to the version control
repository and issue tracker

	CHANGES.txt (docs/HISTORY.txt in some packages) must be always up-to-date and
must contain list of functional changes which may affect package users.

	CHANGES.txt must contain release dates

	README.rst and CHANGES.txt must be visible on PyPi

	Released eggs must contain generated gettext .mo files, but these files must
not be committed to the repository (files can be created with
zest.pocompile addon)

	.gitignore and MANIFEST.in must reflect the files going to egg (must
include page template, po files)

More information

	High quality automated package releases for Python with zest.releaser [http://opensourcehacker.com/2012/08/14/high-quality-automated-package-releases-for-python-with-zest-releaser/].

Setting up Git

Git is a very useful tool, especially when you configure it to your needs. Here
are a couple of tips.

Enhanced git prompt

Do one (or more) of the following:

	http://clalance.blogspot.com/2011/10/git-bash-prompts-and-tab-completion.html

	http://en.newinstance.it/2010/05/23/git-autocompletion-and-enhanced-bash-prompt/

	http://gitready.com/advanced/2009/02/05/bash-auto-completion.html

Git dotfiles

Plone developers have dotfiles similar to these:
https://github.com/plone/plone.dotfiles.

Git Commit Message Style

Tim Pope's post on Git commit message style [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]
is widely considered the gold standard:

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the imperative: "Fix bug" and not "Fixed bug"
or "Fixes bug." This convention matches up with commit messages generated
by commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay, too
- Typically a hyphen or asterisk is used for the bullet, preceded by a
 single space, with blank lines in between, but conventions vary here
- Use a hanging indent

Github flavored markdown [http://github.github.com/github-flavored-markdown/]
is also useful in commit messages.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

 	How to contribute to this package? »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T! Read the documentation at api.plone.org [http://api.plone.org/contribute/develop.html] so you have working references and proper formatting.

Development environment

This section is meant for contributors to the plone.api project.
Its purpose is to guide them through the steps needed to start contributing.

Locations of information and tools

	Documentation @ api.plone.org [http://api.plone.org]

	Source code @ GitHub [http://github.com/plone/plone.api]

	Issues @ GitHub [http://github.com/plone/plone.api/issues]

	Continuous Integration @ Travis CI [http://travis-ci.org/plone/plone.api]

	Code Coverage @ Coveralls.io [http://coveralls.io/r/plone/plone.api]

Prerequisites

System libraries

First let's look at 'system' libraries and applications that are normally installed with your OS packet manager, such as apt, aptitude, yum, etc.:

	libxml2 - An xml parser written in C.

	libxslt - XSLT library written in C.

	git - Version control system.

	gcc - The GNU Compiler Collection.

	g++ - The C++ extensions for gcc.

	GNU make - The fundamental build-control tool.

	GNU tar - The (un)archiving tool for extracting downloaded archives.

	bzip2 and gzip decompression packages - gzip is nearly standard, however some platforms will require that bzip2 be installed.

	Python 2.7 - Linux distributions normally already have it, OS X users should use https://github.com/collective/buildout.python to get a clean Python version (the one that comes with OS X is broken).

Python tools

Then you'll also need to install some Python specific tools:

	easy_install - the Python packaging system (download http://peak.telecommunity.com/dist/ez_setup.py and run sudo python2.7 ez_setup.py.

	virtualenv - a tool that assists in creating isolated Python working environments. Run sudo easy_install virtualenv after your have installed easy_install above.

Note

Again, OS X users should use https://github.com/collective/buildout.python,
it will make your life much easier to have a cleanly compiled Python instead of using the system one that is broken in many deeply confusing ways.

Further information

If you experience problems read through the following links as almost all of the above steps are required for a default Plone development environment:

	http://plone.org/documentation/tutorial/buildout

	http://pypi.python.org/pypi/zc.buildout/

	http://pypi.python.org/pypi/setuptools

	http://plone.org/documentation/manual/installing-plone

If you are an OS X user, you first need a working Python implementation
(the one that comes with the operating system is broken).
Use https://github.com/collective/buildout.python and be happy.
Also applicable to other OSes, if getting a working Python proves a challenge.

Creating and using the development environment

Go to your projects folder and download the lastest plone.api code:

[you@local ~]$ cd <your_work_folder>
[you@local work]$ git clone https://github.com/plone/plone.api.git

Now cd into the newly created directory and build your environment:

[you@local work]$ cd plone.api
[you@local plone.api]$ make

Go make some tea while

	make creates an isolated Python environment in your plone.api` folder,

	bootstraps zc.buildout,

	fetches all dependencies,

	builds Plone,

	runs all tests and

	generates documentation so you can open it locally later on.

Other commands that you may want to run:

[you@local plone.api]$ make tests # run all tests and syntax validation
[you@local plone.api]$ make docs # re-generate documentation
[you@local plone.api]$ make clean # reset your env back to a fresh start
[you@local plone.api]$ make # re-build env, generate docs, run tests

Open Makefile in your favorite code editor to see all possible commands and what they do.
And read http://www.gnu.org/software/make/manual/make.html to learn more about make.

Working on an issue

Our GitHub account contains a list of open issues [https://github.com/plone/plone.api/issues].
Click on one that catches your attention.
If the issue description says No one is assigned it means no-one is already working on it and you can claim it as your own.
Click on the button next to the text and make yourself the one assigned for this issue.

Based on our Git workflow & branching model all new features must be developed in separate git branches.
So if you are not doing a very trivial fix, but rather adding new features/enhancements, you should create a feature branch.
This way your work is kept in an isolated place where you can receive feedback on it, improve it, etc.
Once we are happy with your implementation, your branch gets merged into master at which point everyone else starts using your code.

[you@local plone.api]$ git checkout master # go to master branch
[you@local plone.api]$ git checkout -b issue_17 # create a feature branch
replace 17 with the issue number you are working on

change code here

[you@local plone.api]$ git add -p && git commit # commit my changes
[you@local plone.api]$ git push origin issue_17 # push my branch to GitHub
at this point others can see your changes but they don't get effected by
them; in other words, others can comment on your code without your code
changing their development environments

Read more about Git branching at http://learn.github.com/p/branching.html.
Also, to make your git nicer, read the Setting up Git chapter.

Once you are done with your work and you would like us to merge your changes into master, go to GitHub to do a pull request.
Open a browser and point it to https://github.com/plone/plone.api/tree/issue_<ISSUE_NUMBER>.
There you should see a Pull Request button.
Click on it, write some text about what you did and anything else you would like to tell the one who will review your work, and finally click Send pull request.
Now wait that someone comes by and merges your branch (don't do it yourself, even if you have permissions to do so).

An example pull request text:

Please merge my branch that resolves issue #13,
where I added the get_navigation_root() method.

Commit checklist

Before every commit you should:

	Run unit tests and syntax validation checks.

	Add an entry to Tracking changes (if applicable).

	Add/modify Sphinx Documentation (if applicable).

All syntax checks and all tests can be run with a single command.
This command also re-generates your documentation.

$ make

Note

It pays off to invest a little time to make your editor run pep8 and pyflakes on a file every time you save that file
(or use flake8 which combines both).
This saves you lots of time in the long run.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	A Plone API »

 	How to contribute to this package? »

GitHub-only

WARNING: If you are reading this on GitHub, DON'T!
Read the documentation at api.plone.org [http://api.plone.org/contribute/release.html] so you have working references and proper formatting.

Releasing a new version

Releasing a new version of plone.api involves the following steps:

	Prepare source for a new release.

	Create a git tag for the release.

	Push the git tag upstream to GitHub.

	Generate a distribution file for the package.

	Upload the generated package to Python Package Index (PyPI).

To avoid human errors and to automate some of the tasks above we use jarn.mkrelease.
It's listed as a dependency in setup.py and should already be installed in your local bin:

$ bin/mkrelease --help

Apart from that, in order to be able to upload a new version to PyPI you need to be listed under Package Index Owner list and you need to configure your PyPI credentials in the ~/.pypirc file, e.g.:

[distutils]
index-servers =
 pypi

[pypi]
username = fred
password = secret

Checklist

Folow these step to create a new release of plone.api.

	Verify that we have documented all changes in the docs/CHANGES.rst file.
Go through the list of commits since last release on GitHub and check all changes are documented.

	Modify the version identifier in the setup.py to reflect the version of the new release.

	Confirm that the package description (generated from README.rst and others) renders correctly by running bin/longtest and open its ouput in
your favorite browser.

	Commit all changes to the git repository and push them upstream to GitHub.

	Create a release, tag it in git and upload it to GitHub by running bin/mkrelease -d pypi -pq . (see example below).

Example

In the following example we are releasing version 0.1 of plone.api.
The package has been prepared so that setup.py contains the version 0.1,
this change has been committed to git and all changes have been pushed upstream to GitHub:

Check that package description is rendered correctly
$ bin/longtest

Make a release and upload it to PyPI
$ bin/mkrelease -d pypi -pq ./
Releasing plone.api 0.1
Tagging plone.api 0.1
To git@github.com:plone/plone.api.git
* [new tag] 0.1 -> 0.1
running egg_info
running sdist
warning: sdist: standard file not found: should have one of README, README.txt
running register
Server response (200): OK
running upload
warning: sdist: standard file not found: should have one of README, README.txt
Server response (200): OK
done

Note

Please ignore the sdist warning about README file above.
PyPI does not depend on it and it's just a bug in setupools (reported and waiting to be fixed).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Contents

	plone.app.contenttypes documentation
	Introduction

	Compatibility

	Installation

	What happens to existing content?

	Uninstalling

	Dependencies

	Migration
	Migrating Archetypes-based content to plone.app.contenttypes

	Migrating only certain types

	Migrating Topics

	Migrating content that is translated with LinguaPlone

	Migrating from old versions of plone.app.contenttypes

	Migrating default-content that was extended with archetypes.schemaextender

	Migrating images created with collective.contentleadimage

	Migrating custom content

	Widgets
	How to override widgets

	Information for Addon-Developers
	Design decisions

	Installation as a dependency from another product

	Using folderish types

	Changing the base class for existing objects

	Extending the types

	Reordering fields provided by behaviors

	Differences to Products.ATContentTypes

	Toubleshooting
	ValueError on installing

	Branches

	License

	Contributors

[image: https://pypip.in/d/plone.app.contenttypes/badge.png]
 [https://crate.io/packages/plone.app.contenttypes][image: https://pypip.in/v/plone.app.contenttypes/badge.png]
 [https://crate.io/packages/plone.app.contenttypes]
plone.app.contenttypes documentation

Introduction

plone.app.contenttypes provides default content types for Plone based on Dexterity. It replaces Products.ATContentTypes and provides the default-types in Plone 5. It can be used as an add-on in Plone 4.x.

It contains the following types:

	Collection

	Document

	Event

	File

	Folder

	Image

	Link

	News Item

The main difference from a users perspective is that these types are extendable through-the-web. This means you can add or remove fields and behaviors using the control-panel "Dexterity Content Types" (/@@dexterity-types).

Warning: Using plone.app.contenttypes on a site with existing Archetypes-based content requires migrating the sites content. Please see the chapter "Migration".

Compatibility

Version 1.1b3 is tested with Plone 4.3.x. The versions of branch 1.1.x will stay compatible with Plone 4.3.x.

For support of Plone 4.1 and 4.2 please use version 1.0.x. Please note that they do not provide the full functionality.

The versions 1.2.x of the master-branch are compatible with Plone 5 and plone.app.widgets.

Installation

This package is included in Plone 5 and does not need installation.

To use plone.app.contenttypes in Plone 4.x add this line in the eggs section of your buildout.cfg

eggs =
 ...
 plone.app.contenttypes

If you have a Plone site with mixed Archetypes and Dexterity content use the extra requirement atrefs.

eggs =
 ...
 plone.app.contenttypes [atrefs]

This will also install the package plone.app.referenceablebehavior [https://pypi.python.org/pypi/plone.app.referenceablebehavior] that allows you to reference dexterity-based content from archetypes-based content. You will have to enable the behavior plone.app.referenceablebehavior.referenceable.IReferenceable for all types that need to be referenced by Archetypes-content.

What happens to existing content?

If you install plone.app.contenttypes in a existing site all Archetypes-based content of the default types still exists and can be viewed but can't be edited. On installation plone.app.contenttypes removes the type-definitions for the old default-types like this:

<object name="Document" remove="True" />

They are then replaced by new Definitions:

<object meta_type="Dexterity FTI" name="Document" />

To make the existing content editable again you need to migrate it to Dexterity (please see the section on migration) or uninstall plone.app.contenttypes (see the section on uninstalling).

Archetypes-based content provided by add-ons (e.g. Products.PloneFormGen) will still work since only the default-types are replaced.

If you install plone.app.contenttypes on a fresh site (i.e. when no content has been edited or added) the usual default-content (Events, News, Members...) will be created as dexterity-content.

Uninstalling

Uninstalling the default-types is not supported in Plone 5. If you really want to switch back to Archetypes-based types you have to to the following:

	Go to the ZMI

	In portal_types delete the default-types

	In portal_setup navigate to the tab 'import', select the profile 'Archetypes Content Types for Plone' and install all step including dependencies.

Any content you created based on plone.app.contenttypes will no longer be editable until you reinstall plone.app.contenttypes.

Dependencies

	plone.app.dexterity >= 2.0.7. Dexterity is shipped with Plone 4.3.x. Version pinns for Dexterity are included in Plone 4.2.x. For Plone 4.1.x you need to pin the right version for Dexterity in your buildout. See Installing Dexterity on older versions of Plone [http://docs.plone.org/external/plone.app.dexterity/docs/install.html#installing-dexterity-on-older-versions-of-plone].

	plone.dexterity >= 2.2.1. Olders version of plone.dexterity break the rss-views because plone.app.contenttypes uses behaviors for the richtext-fields.

	plone.app.event >= 1.1.4. This provides the behaviors used for the event-type.

	plone.app.portlets >= 2.5a1. In older version the event-portlet will not work with the new event-type.

These are the version-pinns for Plone 4.3.4:

[buildout]
versions = versions

[versions]
plone.app.event = 1.1.4

Plone 4.3.3 also needs plone.app.portlets = 2.5.2

Plone-versions before 4.3.3 need to pinn more packages:

[buildout]
versions = versions

[versions]
plone.dexterity = 2.2.1
plone.app.dexterity = 2.0.11
plone.schemaeditor = 1.3.5
plone.app.event = 1.1b1
plone.app.portlets = 2.5.1

For migrations to work you need at least Products.contentmigration = 2.1.9 and plone.app.intid (part of Plone since Plone 4.1.0).

Migration

To migrate your existing content from Archetypes to Dexterity use the form at /@@atct_migrator.

Migrating Archetypes-based content to plone.app.contenttypes

plone.app.contenttypes can migrate the following archetypes-based default types:

	Document

	Event

	File

	Folder

	Image

	Link

	News Item

	Collection

	Topic (old Collections)

The following non-default types will also be migrated:

	The AT-based Event-type provided by plone.app.event

	The DX-based Event-type provided by plone.app.event

	The Event-type provided by plone.app.contenttypes until version 1.0

	News Items with blobs (provoded by https://github.com/plone/plone.app.blob/pull/2)

	Files and Images without blobs

The migration tries to keep most features (including portlets, comments, contentrules, local roles and local workflows).

Warning: Versions of content are not migrated. During migration you will lose all old revisions.

Migrating only certain types

There is also a view /@@pac_installer that allows you to install plone.app.contenttypes without replacing those archetypes-types with the dexterity-types of which there are existing objects in the site. Afterwards it redirects to the migration-form and only the types that you chose to migrate are installed. This allows you to keep certain types as archetypes while migrating others to dexterity (for example if you did heavy customizations of these types and do not have the time to reimplement these features in dexterity.

Migrating Topics

Topics are migrated to Collections. However, the old type Topic had support for Subtopics, a feature that does not exit in Collections. Subtopics are nested Topics that inherited search terms from their parents. Since Collections are not folderish (i.e. they cannot contain content) Subtopics cannot be migrated unless Collections are made folderish (i.e. that they can contain content). Also the feature that search terms can be inherited from parents does not exist for Collections.

The migration-form will warn you if you have subtopics in your site and your Collections are not folderish. You then have several options:

	You can delete all Subtopics before migrating and achieve their functionality in another way (e.g. using eea.facetednavigation).

	You can choose to not migrate Topics by not selecting them. This will keep your old Topics functional. You can still add new Collections.

	You can modify Collections to be folderish or create your own folderish content-type. That type would need a base-class that inherits from plone.dexterity.content.Container instead of plone.dexterity.content.Item:

from plone.app.contenttypes.behaviors.collection import ICollection
from plone.dexterity.content import Container
from zope.interface import implementer

@implementer(ICollection)
class FolderishCollection(Container):
 pass

You can either use a new Collection type or simply modify the default type to use this new base-class by overriding the klass-attribute of the default Collection. To override add a Collection.xml in your own package:

<?xml version="1.0"?>
<object name="Collection" meta_type="Dexterity FTI">
 <property name="klass">my.package.content.FolderishCollection</property>
</object>

If you really need it you could add the functionality to inherit search terms to your own folderish Collections by extending the behavior like in the example at https://github.com/plone/plone.app.contenttypes/commit/366cc1a911c81954645ec6aabce925df4a297c63

Migrating content that is translated with LinguaPlone

Since LinguaPlone does not support Dexterity you need to migrate from LinguaPlone to plone.app.multilingual (http://pypi.python.org/pypi/plone.app.multilingual). The migration from Products.LinguaPlone to plone.app.multilingual should happen before the migration from Archetypes to plone.app.contenttypes. For details on the migration see http://pypi.python.org/pypi/plone.app.multilingual#linguaplone-migration

Migrating from old versions of plone.app.contenttypes

Before version 1.0a2 the content-items did not implement marker-interfaces. They will break in newer versions since the views are now registered for these interfaces (e.g. plone.app.contenttypes.interfaces.IDocument). To fix this you can call the view /@@fix_base_classes on your site-root.

Since plone.app.contenttypes 1.1a1, the Collection type uses the new Collection behavior and the Event type utilizes behaviors from plone.app.event [http://pypi.python.org/pypi/plone.app.event]. In order to upgrade:

	First run the default profile (plone.app.contenttypes:default) or reinstall plone.app.contenttypes

	Then run the upgrade steps.

Migrating default-content that was extended with archetypes.schemaextender

The migration-form warns you if any of your old types were extended with aditional fields using archetypes.schemaextender. The data contained in these fields will be lost during migration (with the exception of images added with collective.contentleadimage).

To keep the data you would need to write a custom migration for your types dexterity-behaviors for the functionality provided by the schemaextenders. This is an advanced development task and beyond the scope of this documentation.

Migrating images created with collective.contentleadimage

collective.contentleadimage [https://pypi.python.org/pypi/collective.contentleadimage/] was a popular addon that allows you to add images to any content in your site by extending the default types. To make sure these images are kept during migration you have to enable the behavior "Lead Image" on all those types where you want to migrate images added using collective.contentleadimage.

The old types that use leadimages are listed in the navigation-form with the comment "extended fields: 'leadImage', 'leadImage_caption'". The migration-form informs you which new types have the behavior enabled and which do not. Depending on the way you installed plone.app.contenttypes you might have to first install these types by (re-)installing plone.app.contenttypes.

Migrating custom content

During migrations of the default types any custom content-types will not be migrated and will continue to work as expected.

To help you migrating these types to Dexterity plone.app.contenttypes contains a migration form (/@@custom_migration) that allows you to migrate any (custom or default) Archetypes-type to any (custom or default) Dexterity-type. The only requirement is that the Dexterity-type you want to migrate to has to exist and that the class of the old type is still present. It makes no difference if the type you are migrating from is still registered in portal_types or is already removed or replaced by a dexterity-version using the same name.

In the form /@@custom_migration you can select a Dexterity-type for any Archetypes-types that exists in the portal. You can then map the source-types fields to the targets fields. You can also choose to ignore fields. You have to take care that the values can be migrated (since there is no validation for that), e.g. it would make no sense to migrate a ImageField to a TextField. There are build-in methods for most field-types, custom or rarely used fields might not migrate properly (you can create a issue if you miss a migration that is not yet supported).

After you map the fields you can test the configuration. During a test one item will be test-migrated and Plone checks if the migrated item will be accessible without throwing a errors. After the test any changes will be rolled back.

Widgets

When used in Plone 4.x plone.app.contenttypes uses the default z3c.form widgets. All widgets work as they used to with Archetypes except for the keywords-widget for which a simple linesfield is used. Replacing that with a nicer implementation is explained below.

It is also possible to use plone.app.widgets to switch to the widgets that are used in Plone 5.

How to override widgets

To override the default keywords-widgets with a nicer widget you can use the package collective.z3cform.widgets [https://pypi.python.org/pypi/collective.z3cform.widgets].

Add collective.z3cform.widgets to your buildout and in your own package register the override in your configure.zcml:

<adapter factory=".subjects.SubjectsFieldWidget" />

Then add a file subjects.py

-*- coding: UTF-8 -*-
from collective.z3cform.widgets.token_input_widget import TokenInputFieldWidget
from plone.app.dexterity.behaviors.metadata import ICategorization
from plone.app.z3cform.interfaces import IPloneFormLayer
from z3c.form.interfaces import IFieldWidget
from z3c.form.util import getSpecification
from z3c.form.widget import FieldWidget
from zope.component import adapter
from zope.interface import implementer

@adapter(getSpecification(ICategorization['subjects']), IPloneFormLayer)
@implementer(IFieldWidget)
def SubjectsFieldWidget(field, request):
 widget = FieldWidget(field, TokenInputFieldWidget(field, request))
 return widget

Once you install collective.z3cform.widgets in the quickinstaller, the new widget will then be used for all types.

Information for Addon-Developers

Design decisions

The schemata for the types File, Image and Link are defined in xml-files using plone.supermodel. This allows the types to be editable trough the web. The types Document, News Item, Folder and Event have no schemata at all but only use behaviors to provide their fields.

Installation as a dependency from another product

If you want to add plone.app.contenttypes as a dependency from another products use the profile plone-content in your metadata.xml to have Plone populate a new site with DX-based default-content.

<metadata>
 <version>1</version>
 <dependencies>
 <dependency>profile-plone.app.contenttypes:plone-content</dependency>
 </dependencies>
</metadata>

If you use the profile default then the default-content in new sites will still be Archetypes-based. You'll then have to migrate that content using the migration-form @@atct_migrator or delete it by hand.

Using folderish types

At some point all default types will probably be folderish. If you want the default types to be folderish before that happens please look at https://pypi.python.org/pypi/collective.folderishtypes.

Changing the base class for existing objects

If you changed the base-class of existing types (e.g. because you changed them to be folderish) you also need to upgrade the base-class of existing objects. You can use the following form for this: @@base_class_migrator_form.

This form lets you select classes to be updated and shows the number of objects for each class. This form can be used to change the base-class of any dexterity-types instances. The migration will also transform itemish content to folderish content if the new class is folderish. You might want to use the method plone.app.contenttypes.migration.dxmigration.migrate_base_class_to_new_class in your own upgrade-steps.

Extending the types

You have several options:

	Extend the types through-the-web by adding new fields or behaviors in the types-controlpanel /@@dexterity-types.

	Extend the types with a custom type-profile that extends the existing profile with behaviors, or fields.

You will first have to add the type to your [yourpackage]/profiles/default/types.xml.

<?xml version="1.0"?>
<object name="portal_types" meta_type="Plone Types Tool">
 <object name="Folder" meta_type="Dexterity FTI" />
</object>

Here is an example that enables the image-behavior for Folders in [yourpackage]/profiles/default/types/Folder.xml:

<?xml version="1.0"?>
<object name="Folder" meta_type="Dexterity FTI">
 <property name="behaviors" purge="False">
 <element value="plone.app.contenttypes.behaviors.leadimage.ILeadImage"/>
 </property>
</object>

By adding a schema-definition to the profile you can add fields.

<?xml version="1.0"?>
<object name="Folder" meta_type="Dexterity FTI">
 <property name="model_file">your.package.content:folder.xml</property>
 <property name="behaviors" purge="False">
 <element value="plone.app.contenttypes.behaviors.leadimage.ILeadImage"/>
 </property>
</object>

Put the schema-xml in your/package/content/folder.xml (the folder content needs a __init__.py)

<model xmlns:security="http://namespaces.plone.org/supermodel/security"
 xmlns:marshal="http://namespaces.plone.org/supermodel/marshal"
 xmlns:form="http://namespaces.plone.org/supermodel/form"
 xmlns="http://namespaces.plone.org/supermodel/schema">
 <schema>
 <field name="teaser_title" type="zope.schema.TextLine">
 <description/>
 <required>False</required>
 <title>Teaser title</title>
 </field>
 <field name="teaser_subtitle" type="zope.schema.Text">
 <description/>
 <required>False</required>
 <title>Teaser subtitle</title>
 </field>
 <field name="teaser_details" type="plone.app.textfield.RichText">
 <description/>
 <required>False</required>
 <title>Teaser details</title>
 </field>
 </schema>
</model>

For more complex features you should create custom behaviors and/or write your own content-types. For more information on creating custom dexterity-types or custom behaviors to extend these types with read the dexterity documentation [http://docs.plone.org/external/plone.app.dexterity/docs/].

Reordering fields provided by behaviors

TODO

Differences to Products.ATContentTypes

	The image of the News Item is not a field on the contenttype but a behavior that can add a image to any contenttypes (similar to http://pypi.python.org/pypi/collective.contentleadimage)

	All richtext-fields are also provided by a reuseable behavior.

	The functionality to transform (rotate and flip) images has been removed.

	There is no more field Location. If you need georeferenceable consider using collective.geo.behaviour

	The link on the image of the newsitem triggers an overlay

	The link-type now allows the of the variables ${navigation_root_url} and ${portal_url} to construct relative urls.

	The views for Folders and Collections changed their names and now share a common implementation (since version 1.2a8):
	folder_listing_view (Folders) and collection_view (Collections) -> listing_view (Folders and Collections)

	folder_summary_view (Folders) and summary_view (Collections) -> summary_view (Folders and Collections)

	folder_tabular_view (Folders) and tabular_view (Collections) -> tabular_view (Folders and Collections)

	folder_full_view (Folders) and all_content (Collections) -> full_view (Folders and Collections)

	atct_album_view (Folders) and thumbnail_view (Collections) -> album_view (Folders and Collections)

Toubleshooting

Please report issues in the bugtracker at https://github.com/plone/plone.app.contenttypes/issues.

ValueError on installing

When you try to install plone.app.contenttypes < 1.1a1 in a existing site you might get the following error:

 (...)
 Module Products.GenericSetup.utils, line 509, in _importBody
 Module Products.CMFCore.exportimport.typeinfo, line 60, in _importNode
 Module Products.GenericSetup.utils, line 730, in _initProperties
ValueError: undefined property 'schema'

Before installing plone.app.contenttypes you have to reinstall plone.app.collection to update collections to the version that uses Dexterity.

Branches

The master-branch supports Plone 5 only. From this 1.2.x-releases will be cut.

The 1.1.x-branch supports Plone 4.3.x. From this 1.1.x-releases will be cut.

License

GNU General Public License, version 2

Contributors

	Philip Bauer <bauer@starzel.de>

	Michael Mulich <michael.mulich@gmail.com>

	Timo Stollenwerk <contact@timostollenwerk.net>

	Peter Holzer <hpeter@agitator.com>

	Patrick Gerken <gerken@starzel.de>

	Steffen Lindner <lindner@starzel.de>

	Daniel Widerin <daniel@widerin.net>

	Jens Klein <jens@bluedynamics.com>

	Joscha Krutzki <joka@jokasis.de>

	Mathias Leimgruber <m.leimgruber@4teamwork.ch>

	Matthias Broquet <mbroquet@atreal.fr>

	Wolfgang Thomas <thomas@syslab.com>

	Bo Simonsen <bo@geekworld.dk>

	Andrew Mleczko <andrew@mleczko.net>

	Roel Bruggink <roel@jaroel.nl>

	Carsten Senger <senger@rehfisch.de>

	Rafael Oliveira <rafaelbco@gmail.com>

	Martin Opstad Reistadbakk <martin@blaastolen.com>

	Nathan Van Gheem <vangheem@gmail.com>

	Johannes Raggam <raggam-nl@adm.at>

	Jamie Lentin <jm@lentin.co.uk>

	Maurits van Rees <maurits@vanrees.org>

	David Glick <david@glicksoftware.com>

	Kees Hink <keeshink@gmail.com>

	Roman Kozlovskyi <krzroman@gmail.com>

	Gauthier Bastien <gauthier.bastien@imio.be>

	Andrea Cecchi <andrea.cecchi@redturtle.it>

	Bogdan Girman <bogdan.girman@gmail.com>

	Martin Opstad Reistadbakk <martin@blaastolen.com>

	Florent Michon <fmichon@atreal.fr>

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Listing and working with Plone content objects using plone.app.contentlisting

This is valid for Plone 4.1 upwards.

Many of the operations for customizations, templates, views and portlets in
Plone are related to lists of content objects. Their sources can be different,
although usually they are some sort of catalog search, the contents of a
particular folder or a list of objects from a relation.

To make it simpler to work with these, we have made plone.app.contentlisting,
which ensures that lists of content objects always behave in the same way and
according to predefined interfaces, regardless of what the source of the
objects are. The integrator shouldn't have to care whether the list of objects
came from the catalog, an ORM or they are the actual objects.

Making or getting a contentListing

The typical way to get a contentlisting is to call one of two built-in views:

Listing the contents of a folder

In Page templates getting the contents of a folder is as simple as this:

context/@@folderListing

Every template-writer's dream ;)

A real example of listing the titles of the content objects of a folder:

 <li tal:repeat="item context/@@folderListing" tal:content="item/Title"/>

The context in which it is called defines which folder is listed.

You can also use Python expressions to be able to pass parameters, like which
content type or review state you want to use:

<li tal:repeat="item python:context.restrictedTraverse('@@folderListing')(portal_type='Document')">

Batching can be done like this:

<ul tal:define="
 Batch python:modules['Products.CMFPlone'].Batch;
 b_size python:int(request.get('b_size', 20));
 b_start python:int(request.get('b_start', 0));
 results python:context.restrictedTraverse('@@folderListing')(batch=True, b_size=b_size, b_start=b_start);
 batch python:Batch(results, b_size, b_start);">
 <li tal:repeat="item results"
 tal:content="item/Title" />
 <div metal:use-macro="context/batch_macros/macros/navigation" />

Note that you iterate directly over the results that you get from
@@folderListing. The definition of batch is only used in the
batch_macros call.

In Python a ContentListing of a particular folder's contents can be fetched
by using:

>>> path.to.your.folder.restrictedTraverse('@@folderListing')()

The folderListing view called above implements all the logic the old
getFolderContents script in Plone used to do. The old script has been left in
place to not break compatibility for customizations and add-ons that might
depend on its particular return values.

Rolling your own with adaption

At the time of writing, all parts of Plone do not yet return 'contentlistings'
when asked for lists of content. It was impossible to change this everywhere
without breaking backwards compatibility. Therefore you may have to convert
your sequence of stuff to a contentlisting manually.

To do this, you need to import and adapt:

>>> from plone.app.contentlisting.interfaces import IContentListing
>>> catalog = getToolByName(self.portal, 'portal_catalog')
>>> results = catalog.searchResults()
>>> contentlist = IContentListing(results)
>>> print(contentlist)
<plone.app.contentlisting.contentlisting.ContentListing object ...>

The contentListing, its properties and behaviors

Now, you no longer need to worry whether you have a bunch of catalog brains or
the actual objects (or fake objects for that sake). As long as you have a
contentlisting, you know what you can expect from it. You also know what you
can expect from each item within it - a content listing object.

The content listing is a normal iterator that we can loop over and do all sorts
of stuff you normally can do with sequences.

contentListingObjects, the items inside the sequence

The contentListingObjects are wrapper objects, each representing a content
object in the site. Their intention is to be predictable so you can always call
at least a common base set of methods on the objects listed.

You do not have to be aware whether the object originates from a brain, a full
object or something else. If you try to call a method or access an attribute of
the object and the wrapper is not aware of it, it will silently fetch the real
object and delegate the call to it. This means you can treat your objects as
you would any other -- even writing to it.

Methods of contentlistingObjects

	getId() -

	Returns the object id in its container for example my-example-page.

	getObject() -

	Returns the real object

	def getDataOrigin() -

	The origin of the data for the object.

	getPath() -

	Path to the object, relative to the site root for example
/artifacts/my-example-page

	getURL()-

	Full url to the object, including the site root for example
http://my.site.com/artifacts/my-example-page

	uuid() -

	Unique content identifier for example an uuid from plone.uuid The only real
point of it is to be unique. It can for example look like this
b0e80776-d41d-4f48-bf9e-7cb1aebabad5.

	getIcon() -

	Icon for the object. Returns an icon object from plone.app.layout.
If printed as a string, it will produce an HTML tag for the icon. Check
plone.app.layout for more info.

	getSize() -

	Size in bytes for example 24.

	review_state() -

	Workflow review state for example published.

	ContentTypeClass() -

	A normalized type name that identifies the object in listings. Used for CSS
styling, for example content-type-page.

	Title() -

	Return a single string, the DCMI Title element (resource name).
For example My example page.

	Description() -

	Return the DCMI Description element (resource summary). Result is a natural
language description of this object. Description is a plain text string
describing the object. It should not contain HTML or similar.

	Type() -

	Return the DCMI Type element (resource type). Result is a human-readable
message id for the resource (typically the Title of its type info object).
For example u'Page' from the plone domain.

	listCreators() -

	Return a sequence of DCMI Creator elements (resource authors).
Depending on the implementation, this returns the full name(s) of the
author(s) of the content object or their ids. For example Jane Smith.

	Creator() -

	Return the first DCMI Creator element, or an empty string.
For example Jane Smith.

	Subject() -

	Return a sequence of DCMI Subject elements (resource keywords).
Result is zero or more keywords associated with the content object.
These are the tags in Plone. For example ['Ecology', 'Sustainability'].

	Publisher() -

	Return the DCMI Publisher element (resource publisher). Result is the full
formal name of the entity or person responsible for publishing the resource.
For example Plone Foundation.

	listContributors() -

	Return a sequence of DCMI Contributor elements (resource collaborators).
Return zero or more collaborators (beyond those returned by listCreators).

	Contributors() -

	Deprecated alias for listContributors.

	Date(zone=None) -

	Return the DCMI Date element (default resource date). Result is a string,
formatted 'YYYY-MM-DD H24:MN:SS TZ'. The zone keyword is not yet supported
(but is part of the DublinCore interface and has to stay)

	CreationDate(zone=None) -

	Return the DCMI Date element (date resource created). Result is a string,
formatted 'YYYY-MM-DD H24:MN:SS TZ'. The zone keyword is not yet supported
(but is part of the DublinCore interface and has to stay)

	EffectiveDate(zone=None) -

	Return the DCMI Date element (date resource becomes effective). Result is a
string, formatted 'YYYY-MM-DD H24:MN:SS TZ', or None. The zone keyword is
not yet supported (but is part of the DublinCore interface and has to stay)

	ExpirationDate(zone=None) -

	Return the DCMI Date element (date resource expires). Result is a string,
formatted 'YYYY-MM-DD H24:MN:SS TZ', or None. The zone keyword is not yet
supported (but is part of the DublinCore interface and has to stay)

	ModificationDate(zone=None) -

	DCMI Date element - date resource last modified. Result is a string,
formatted 'YYYY-MM-DD H24:MN:SS TZ'. The zone keyword is not yet supported
(but is part of the DublinCore interface and has to stay)

	Format() -

	Return the DCMI Format element (resource format).
Result is the resource's MIME type (e.g. text/html, image/png, etc.).

	Identifier() -

	Return the DCMI Identifier element (resource ID). Result is a unique ID
(a URL) for the resource.

	Language() -

	DCMI Language element (resource language). Result it the RFC language code
(e.g. en-US, pt-BR) for the resource.

	Rights() -

	Return the DCMI Rights element (resource copyright). Return a string
describing the intellectual property status, if any, of the resource.

	isVisibleInNav() -

	Return whether this object will be visible in a navigation view.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Writing Robot Framework tests for Plone

plone.app.robotframework [http://pypi.python.org/pypi/plone.app.robotframework] provides Robot Framework [http://robotframework.org/]-compatible tools and
resources for writing functional Selenium [http://seleniumhq.org/]-tests (including acceptance tests)
for Plone CMS [http://plone.org/] and its add-ons.

This documentation gives you everything to get started in writing and
executing functional Selenium tests (including acceptance tests) for Plone or
your own Plone add-on. We depend on two testing frameworks, Robot Framework [http://robotframework.org/]
and Selenium [http://seleniumhq.org/] (with Selenium2Library [https://pypi.python.org/pypi/robotframework-selenium2library]), and our tools and resources provided
in plone.app.robotframework.

Robot Framework [http://robotframework.org/] is a generic test automation framework for acceptance
testing and acceptance test-driven development (ATDD), even for behavior driven
development (BDD). It has easy-to-use plain text test syntax and utilizes the
keyword-driven testing approach. Selenium is a web browser automation framework
that exercises the browser as if the user was interacting with the browser.

Start here

Start here to learn the default way of writing Robot Framework tests to be
run just next to your other Plone-tests with zope.testrunner [http://pypi.python.org/pypi/zope.testrunner]:

	How to write Robot Framework tests for Plone
	Require plone.app.robotframework

	Define functional testing layer

	Install Robot-tools

	Start test server

	Write your first test suite

	Run your first test suite

	Integrate with Zope-testrunner

	Running tests with zope.testrunner

	How to write more tests

	Robot terminology
	Test suites

	Keywords libraries

	Remote keyword libraries

	Resource files

	BDD-style tests

Print these

Print these keyword libraries to be easily available when writing Robot
Framework tests, because they provide the basic building blocks for your
tests:

	Robot Framework built-in library documentation [http://robotframework.org/robotframework/latest/libraries/BuiltIn.html]

	Robot Framework Selenium2Library documentation [http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html]

Advanced topics

	Debugging Robot Framework tests

	Integrate with Travis-CI

	Integrate with Sauce Labs

	Auto-reload code with robot-server

	Installing RIDE (Robot Framework IDE)

User keywords

plone.app.robotframework ships with the following user keyword libraries
as resource files:

	libdoc/user_keywords.html

	libdoc/user_saucelabs.html

	libdoc/user_selenium.html

	libdoc/user_server.html

Each user keyword library can be included as a resource with Resource
plone/app/robotframework/libraryname.rst in test suite *** Settings ***.

Remote keywords

Remote keywords are a special plone.app.robotframework-way to implement
Plone-specific keyword in Python for e.g. creating Plone content in test setup
keywords. plone.app.robotframework comes with the following remote keyword
libraries:

	libdoc/remote_autologin.html

	libdoc/remote_content.html

	libdoc/remote_genericsetup.html

	libdoc/remote_i18n.html

	libdoc/remote_mockmailhost.html

	libdoc/remote_quickinstaller.html

	libdoc/remote_users.html

	libdoc/remote_zope2server.html

All remote keywords above are included by including a special test fixture
plone.app.robotframework.testing.REMOTE_LIBRARY_BUNDLE_FIXTURE in bases
of the used functional testing fixture, and finally with Library Remote
${PLONE_URL}/RobotRemote-command in test suite *** Settings ***.

See testing.py in plone.app.robotframework for how to create a custom
remote library bundle fixture with only selected (or custom) remote keyword
libraries.

Python keywords

In addition to user keywords and remote libraries, plone.app.robotframeworks
provides the following generic Python keyword libraries (their code is not
dependent on Plone code base).

	libdoc/python_debugging.html

	libdoc/python_layoutmath.html

	libdoc/python_saucelabs.html

	libdoc/python_zope2server.html

Each Python keyword library can be included as with Library
plone.app.robotframework.LibraryClassName in test suite `*** Settings
***.

Other resources

	How to write good Robot Framework test cases [http://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases]

	List of available Robot Framework test libraries [http://code.google.com/p/robotframework/wiki/TestLibraries]

	plone.app.robotframework examples of use

Old tutorials

Note

While these tutorials are still useful for gettings started with
Robot Framework testing for Plone, these may contain outdated instructions!

	Write a robot test for a new Plone add-on

	Write a robot test for an existing Plone add-on

	Speed up your test writing with robot-server

	Speed up your BDD Given-clauses with a remote library

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

How to write Robot Framework tests for Plone

This is a brief tutorial for writing Robot Framework test for Plone with
plone.app.robotframework [http://pypi.python.org/pypi/plone.app.robotframework]. plone.app.robotframework provides Robot
Framework [http://robotframework.org] -compatible resources and tools for writing functional Selenium
tests (including acceptance tests) for Plone CMS and its add-ons. (See also
Known plone.app.robotframework-examples for more ideas).

Require plone.app.robotframework

Update setup.py to require plone.app.robotframework:

extras_require={
 'test': [
 ...
 'plone.app.robotframework',
],
},

All you need is plone.app.robotframework. It will require the rest
(selenium [http://pypi.python.org/pypi/selenium], robotframework [http://pypi.python.org/pypi/robotframework], robotframework-selenium2library [http://pypi.python.org/pypi/robotframework-selenium2library] and
also robotsuite [http://pypi.python.org/pypi/robotsuite]).

Note

Selenium-bindings for Python use Firefox as the default browser.
Unless you know how to configure other browsers to work with Selenium you
should have Firefox installed in your system

Define functional testing layer

Plone add-on testing requires defining a custom test layer,
which setups Plone-sandbox, the dependent add-ons and any custom configuration
required by the tests.

Update your src/my/product/testing.py to include:

from plone.testing import z2
from plone.app.testing import FunctionalTesting
from plone.app.robotframework.testing import AUTOLOGIN_LIBRARY_FIXTURE

MY_PRODUCT_ROBOT_TESTING = FunctionalTesting(
 bases=(MY_PRODUCT_FIXTURE, AUTOLOGIN_LIBRARY_FIXTURE,
 z2.ZSERVER_FIXTURE),
 name="MyProduct:Robot")

Note

AUTOLOGIN_LIBRARY_FIXTURE is optional, but it will allow you to
write faster Selenium tests, because tests don't need to spend time on
login forms. Also note that the order of the bases matters.

If you don't have any testing layers for your product yet, or want to know
more about them, please read plone.app.testing [http://pypi.python.org/pypi/plone.app.testing]-documentation.

Install Robot-tools

plone.app.robotframework ships with two main helper scripts for
writing tests:

	bin/robot-server starts a temporary Plone site with the given
test layer set up

	bin/robot executes Robot Framework's pybot-runner so that it
will run the given test suite against the running robot-server,
ensuring that tests will be run in isolation (database is cleaned between
the tests)

Update buildout.cfg:

[buildout]
parts =
 ...
 robot

[robot]
recipe = zc.recipe.egg
eggs =
 Pillow
 ${test:eggs}
 plone.app.robotframework

Note

Robot-tools are optional, but will ease and speed up your test
development.

Start test server

Once the buildout with Robot-tools is run, start the test server with:

$ bin/robot-server my.product.testing.MY_PRODUCT_ROBOT_TESTING

Once the test server has started, there should be a test Plone-site served at
http://localhost:55001/plone/ (by default). This allows you to play with the
sandbox while writing the tests.

Note

The default admin user for plone.app.testing [http://pypi.python.org/pypi/plone.app.testing]-based Plone-sandbox
is admin and password is secret.

Write your first test suite

Robot tests are written in test suites, which are plain text files, usually
ending with .robot (and older ones with .txt).

The first test can be written anywhere in the filesystem.

For example, a test_hello.robot:

Robot is all about running test clauses called keywords (or, to be more
exact, keyword calls with parameters). Every test case may contain one or more
keywords, which are run sequentially -- usually until the first of them fails.
Keywords are separated from their arguments (and arguments from each other)
using at least two spaces.

Keywords are defined in keyword libraries and as user keywords. Keyword
libraries can be Python libraries or XML-RPC-services. User keywords are just
lists of test clauses reusing existing keywords or other user keywords. User
keywords are described in the test suite, or imported from resource files.

Here is a more complicated example with some user keywords in action:

Please, stop for a while end read the example above again. Once you understand
how you can stack keyword calls with user keywords, you are ready to unleash
the power of Robot Framework all the way to building your own domain specific
test language.

Note

We use .robot as the Robot Framework test suite file extension
to make it easier for developers to configure Robot Framework syntax
highlighting for their editors (otherwise .txt would work also).

Run your first test suite

Once the bin/robot-server has been started and a test suite has been
written, the new test suite can be run with bin/robot:

$ bin/robot test_hello.robot

Note

bin/robot is mostly just a wrapper for Robot Framework's
pybot test runner, but it does inject necessary options to enable
plone.testing's test isolation for Plone when used together with
bin/robot-server.

Integrate with Zope-testrunner

It's often convenient to run Robot tests with other Plone tests (e.g. on
Jenkins or Travis-CI). To achieve that, we integrate Robot tests to be run with
other tests so that all tests can be run with zope.testrunner [http://pypi.python.org/pypi/zope.testrunner].

For zope.testrunner integration, create
src/my/product/tests/test_robot.py:

import unittest

import robotsuite
from my.product.testing import MY_PRODUCT_ROBOT_TESTING
from plone.testing import layered

def test_suite():
 suite = unittest.TestSuite()
 suite.addTests([
 layered(robotsuite.RobotTestSuite('test_hello.robot'),
 layer=MY_PRODUCT_ROBOT_TESTING),
])
 return suite

Note

For this to work and zope.testrunner to discover your
robot test suite, remember to move test_hello.robot under
my/product/tests.

RobotSuite [http://pypi.python.org/pypi/robotsuite] is our package for wrapping Robot Framework tests into Python
unittest compatible test cases. It's good to know that this registration
pattern is the same as how doctest-suites are registered to support
zope.testrunner's layers (see https://pypi.python.org/pypi/plone.testing for
layered doctest examples).

Running tests with zope.testrunner

Once your robot test have been integrated with zope.testrunner using
test_robot.py-module (or any other module returning RobotTestSuite),
you can list your integrated robot test cases with command:

$ bin/test --list-tests

And run robot tests cases with all other test cases with command:

$ bin/test

You can filter robot test using -t-argument for zope.testrunner*:

$ bin/test -t robot

And it's also possible to filter test by Robot Framework tags:

$ bin/test -t \#mytag

Or exclude matching tests from being run:

$ bin/test -t \!robot

How to write more tests

The most difficult part in writing robot tests with Selenium-keywords is to
know the application you are testing: which link to click when and to which
field to input test data.

At first, you should have a brief idea about the available keywords:

	Robot Framework built-in library documentation [http://robotframework.googlecode.com/hg/doc/libraries/BuiltIn.html]

	Robot Framework Selenium2Library documentation [http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html]

Then, learn to use pause test execution to make it easier to figure out,
what to do next:

*** Settings ***

Resource plone/app/robotframework/selenium.robot

Library Remote ${PLONE_URL}/RobotRemote

Test Setup Open test browser
Test Teardown Close all browsers

*** Test Cases ***

Let me think what to do next
 Enable autologin as Site Administrator
 Go to ${PLONE_URL}

 Import library Dialogs
 Pause execution

Robot Framework ships with a few selected standard libraries. One of them is
the Dialogs-library, which provides a very useful keyword: Pause execution.
By importing Dialogs-library (while developing the test) and adding the Pause
execution keyword, you can pause the test at any point to make it possible to
figure out what to do next.
(Dialogs depend on TkInter-library [http://wiki.python.org/moin/TkInter].)

Note

Be sure to remove Import libary and Pause execution
keyword calls before committing your tests to avoid pausing your
tests on CI.

Note

plone.app.robotframework ships with an optional collection
of Plone-specific user keywords, which already include Pause keyword as a
shortcut for Pause execution keywords. You can include and use the
collection with:

*** Settings ***

...

Resource plone/app/robotframework/keywords.robot

*** Test Cases ***

Let me think what to do next
 ...
 Pause

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Robot terminology

Robot Framework is a generic and independent test automation framework.
It has its own expandable test syntax, test runner and test reporting tools.
Yet, because of its extensibility it's very pleasant to work with.

Robot is all about running test clauses called keywords (or, to be more
exact, keyword calls with parameters). Every test case may contain one or more
keywords, which are run sequentially -- usually until the first of them fails.
Keyword arguments use two spaces as a separator. Keywords are separated from
their arguments (and arguments from each other) using at least two spaces.

Keywords are defined in keyword libraries and as user keywords. Keyword
libraries can be Python libraries or XML-RPC-services. User keywords are just
lists of test clauses reusing existing keywords or other user keywords. User
keywords are described in the test suite, or imported from resource files.

Test suites

Robot tests cases are written in test suites, which are plain text files,
usually ending with .robot (or just .txt).

Note

Advanced robot users may learn from the Robot Framework User Guide [http://code.google.com/p/robotframework/wiki/UserGuideRobot]
how to make hierarchical test suites.

Let's look into an example test suite in detail:

Each test suite may contain one to four different parts:

	Settings

	Is used to import available keyword libraries or resources
(resources are plain text files like test suites, but without test cases)
and define possible setup and teardown keywords.

	Variables

	Is used to define available robot variables with their default values,
or override variables defined in imported resources.

	Test Cases

	Is used to define runnable tests cases, which are made of test clauses
calling test keywords.

	Keywords

	Is used to define new user keywords, which may re-use existing keywords
from imported libraries or resource files.

Keywords libraries

By default, only keywords from built-in [http://robotframework.googlecode.com/hg/doc/libraries/BuiltIn.html]-library are available to be used in
tests. Other keywords must be included by importing a keyword library in
Settings part of test suite:

*** Settings ***

Library String
Library Selenium2Library

View the complete list of available keyword libraries shipped with
Robot Framework or available as separate package [http://code.google.com/p/robotframework/wiki/TestLibraries].

Note

Libraries may also be included in resource files, and then it's
enough to import such resource file.

There's also a built-in-keyword Import Library for importing library
in a middle of test case or keyword:

*** Test Cases ***

Test Import library keyword
 Import library String

Remote keyword libraries

One of the available keyword libraries (shipped with Robot Framework) is
special: Remote [http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html#remote-library-interface]-library. Remote-library makes it possible to provide test
keywords from an XML-RPC-service, for example, from a public Zope2-object.

plone.app.robotframework-provides convention and helpers to enable
customizable set of remote keywords in Python as a public portal-tool object
called RobotRemote. These keywords can be imported with:

*** Settings ***

Resource plone/app/robotframework/selenium.robot

Library Remote ${PLONE_URL}/RobotRemote

Remote-library approach provides the following benefits when testing Plone:

	All test setup keywords can be implemented in Python, which makes their
execution almost instant when compared to executing similar steps in
Selenium (to make your Selenium tests as fast as possible only the really
meaningful steps should be executed through Selenium).

	Each keyword call is executed as a normal transaction in Plone, which
makes all code behave normally as in real use.

	When e.g.
content creation (remote) keywords
are called with
autologin
enabled, all actions are performed as the autologin user so author
metadata etc is created correctly.

Resource files

Resource files provide a re-usable way to abstract your test suites. To put
it simply, resources files are just like all the other .robot-files, but
they should not contain *** Test Cases *** certain *** Settings ***
commands (Suite Setup, Suite Teardown, Test Setup or Test Teardown).

Resource files are the perfect way to import common libraries (with Library
command in `*** Settings ***), define global *** Variables *** and
define re-usable common `*** Keywords ***`. Resource files are included
in a test suite with Resource-command in `*** Settings ***:

*** Settings ***

Resource plone/app/robotframework/keywords.robot
Resource plone/app/robotframework/selenium.robot
Resource plone/app/robotframework/saucelabs.robot

BDD-style tests

Robot support Gherkin-style tests by removing exact words given,
when, then and and from the beginning of keyword to find
a matching keyword.

For example, a clause Given I'm logged in as an admin:

*** Test Cases ***

Test something as logged in admin
 Given I'm logged in as an admin

will match to a keyword I'm logged in as an admin:

*** Keywords ***

I'm logged in as an admin
 Enable autologin as Manager

There's a little bit more of BDD-style tests available in Robot Framework User
Guide [http://code.google.com/p/robotframework/wiki/UserGuideRobot].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Debugging Robot Framework tests

It's not always so easy to get the used Selenium keywords right. There are
a few ways to pause the test runner in middle of a test to ease figuring out
what to do next:

	Set the variable SELENIUM_RUN_ON_FAILURE to use the Debug-keyword
provided in plone/app/robotframework/keywords.robot resource file,
e.g. with:

$ ROBOT_SELENIUM_RUN_ON_FAILURE=Debug bin/test -t robot

Or when testing against robot-server, just run your test suite with provided
script:

$ bin/robot-debug src/path/to/my/test.robot

This will stop the test automatically at the first failing step with the
first working approach listed also below.

	Use interactive robotframework-debuglibrary [https://pypi.python.org/pypi/robotframework-debuglibrary] with Debug-keyword'
(requires that the used python is compiled with readline-support):

*** Test Cases ***

Start interactive debugger with Debug-keyword from DebugLibrary
 Import library DebugLibrary
 Debug

	Pause Selenium (WebDriver) completely to inspect your step with
Pause execution keywords from Dialogs-library shipped with
Robot Framework:

*** Test Cases ***

Pause tests with interactive pause execution -keyword
 Import library Dialogs
 Pause execution

The above is also provided as Pause-keyword in keywords.robot
resource file:

*** Settings ***

Resource plone/app/robotframework/keywords.robot

*** Test Cases ***

Pause tests with included Pause-keyword
 Pause

	Let Selenium (WebDriver) sleep for long time:

*** Test Cases ***

Pause test with non-interactive (and auto-continuing) sleep
 Sleep 10 min

	Slow down Selenium (WebDriver) to make the tests easier to follow:

*** Settings ***

Suite setup Set Selenium speed 0.5s

	Use provided Python keyword to drop Zope server (or Robot Framework
test runner) into debugger:

*** Test Cases ***

Pause test with Python debugger
 Import library plone.app.robotframework.Debugging
 Stop

	Write a custom python keyword into your custom Python keyword library
to drop Zope server (or Robot Framework test runner) into debugger.

But there's one catch in debugging your code while running Robot Framework
tests: Robot may eat your standard input and output, which prevents you to
just import pdb; pdb.set_trace().

Instead, you have to add a few more lines to reclaim your I/O at first, and
only then let your debugger in:

import sys
import pdb
for attr in ('stdin', 'stdout', 'stderr'):
 setattr(sys, attr, getattr(sys, '__%s__' % attr))
pdb.set_trace()

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Integrate with Travis-CI

travis.cfg

[buildout]
extends =
 https://raw.github.com/collective/buildout.plonetest/master/travis-4.x.cfg

package-name = my.product
package-extras = [test]

allow-hosts +=
 code.google.com
 robotframework.googlecode.com

.travis.yml

language: python
python: "2.7"
install:
- virtualenv test-env --no-setuptools
- mkdir -p buildout-cache/downloads
- test-env/bin/python bootstrap.py -c travis.cfg
- bin/buildout -N -t 3 -c travis.cfg
before_script:
- export DISPLAY=:99.0
- sh -e /etc/init.d/xvfb start
script: bin/test

Build matrix

env:
 matrix:
 - PLONE_VERSION=4.0
 - PLONE_VERSION=4.1
 - PLONE_VERSION=4.2
 - PLONE_VERSION=4.3

S3 artifacts

$ gem install travis
$ travis encrypt ARTIFACTS_AWS_ACCESS_KEY_ID=... -r gh-user/my.product --add
$ travis encrypt ARTIFACTS_AWS_SECRET_ACCESS_KEY=... -r gh-user/my.product--add

language: python
python: '2.7'
install:
- virtualenv test-env --no-setuptools
- mkdir -p buildout-cache/downloads
- test-env/bin/python bootstrap.py -c travis.cfg
- bin/buildout -N -t 3 -c travis.cfg
before_script:
- export DISPLAY=:99.0
- sh -e /etc/init.d/xvfb start
- gem install travis-artifacts
after_script:
- travis-artifacts upload --path parts/test
script: bin/test
env:
 global:
 - secure: ...
 - secure: ...
 - ARTIFACTS_S3_BUCKET=my.product

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Integrate with Sauce Labs

	Register an account for http://saucelabs.com/ with the Open Sauce plan.
Derive username from product name. For example, myproduct. Use your own
contact email for the beginning. It can be changed later.

	Install travis-gem for your active Ruby-installation:

$ sudo gem install travis

	Log in to Sauce Labs to see your Sauce Labs access key (at the bottom of
the left column).

	Encrypt Sauce Labs credentials into .travis.yml:

$ travis encrypt SAUCE_USERNAME=... -r gh-user/myproduct --add
$ travis encrypt SAUCE_ACCESS_KEY=... -r hg-user/myproduct --add

	Update .travis.yml to set up the Sauce Labs connection before tests:

language: python
python: '2.7'
addons:
 sauce_connect:
 - username: $SAUCE_USERNAME
 - access_key: $SAUCE_ACCESS_KEY
install:
- mkdir -p buildout-cache/downloads
- python bootstrap.py -c travis.cfg
- bin/buildout -N -t 3 -c travis.cfg
script: bin/test
env:
 global:
 - secure: ...
 - secure: ...
 - ROBOT_BUILD_NUMBER=travis-$TRAVIS_BUILD_NUMBER
 - ROBOT_REMOTE_URL=http://$SAUCE_USERNAME:$SAUCE_ACCESS_KEY@ondemand.saucelabs.com:80/wd/hub
 - ROBOT_DESIRED_CAPABILITIES=tunnel-identifier:$TRAVIS_JOB_NUMBER

Note

If you already have an env section, for instance to define
different versions of Plone like this:

env:
- PLONE_VERSION=4.0
- PLONE_VERSION=4.1
- PLONE_VERSION=4.2
- PLONE_VERSION=4.3

you will need to declare those variables in a matrix section, like this:

env:
 matrix:
 - PLONE_VERSION=4.0
 - PLONE_VERSION=4.1
 - PLONE_VERSION=4.2
 - PLONE_VERSION=4.3
 global:
 - secure: ...
 - secure: ...
 - ROBOT_BUILD_NUMBER=travis-$TRAVIS_BUILD_NUMBER
 - ROBOT_REMOTE_URL=http://$SAUCE_USERNAME:$SAUCE_ACCESS_KEY@ondemand.saucelabs.com:80/wd/hub
 - ROBOT_DESIRED_CAPABILITIES=tunnel-identifier:$TRAVIS_JOB_NUMBER

	Update your test suites to use SauceLabs test browser by including
saucelabs.robot resource and updating your Test Setup and Test
Teardown to use SauceLabs-supporting keywords (with these changes
the test suites will still continue to work also without SauceLabs):

*** Settings ***

...

Resource plone/app/robotframework/saucelabs.robot

Test Setup Open SauceLabs test browser
Test Teardown Run keywords Report test status Close all browsers

...

	Update travis.cfg to allow downloading robotframework-packages:

[buildout]

...

allow-hosts +=
 code.google.com
 robotframework.googlecode.com

Running Sauce Labs build manually

	Download and unzip http://saucelabs.com/downloads/Sauce-Connect-latest.zip,
then start Sauce-Connect with:

$ java -jar Sauce-Connect.jar <your_sauce_username> <your_sauce_accesskey> -i manual

	Start bin/robot-server:

$ bin/robot-server my.product.testing.ROBOT_TESTING

	Run tests with bin/robot:

$ bin/robot -v REMOTE_URL:http://SAUCE_USERNAME:SAUCE_ACCESS_KEY@ondemand.saucelabs.com:80/wd/hub -v BUILD_NUMBER:manual -v DESIRED_CAPABILITIES:tunnel-identifier:manual src/my/product/tests/test_product.robot

or

	Create an argument file, e.g. saucelabs_arguments.txt:

-v REMOTE_URL:http://SAUCE_USERNAME:SAUCE_ACCESS_KEY@ondemand.saucelabs.com:80/wd/hub
-v BUILD_NUMBER:manual
-v DESIRED_CAPABILITIES:tunnel-identifier:manual

	Execute bin/robot with the argument file option:

$ bin/robot -A saucelabs_arguments.txt src/my/product/tests/test_product.robot

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Auto-reload code with robot-server

[reload]-extras will make robot-server to detect filesystem changes under
./src and reload the test layer when a change is detected.

Update buildout.cfg:

[buildout]
parts =
 ...
 robot

[robot]
recipe = zc.recipe.egg
eggs =
 Pillow
 ${test:eggs}
 plone.app.robotframework[reload]

If you added the reload-extras to the plone.app.robotframework egg and
there is no src directory in your buildout (such as when you are using the
buildout of a specific product), robot-server will complain and fail to start.
In this case, use the --reload-paths option on the command line to tell it where it
should watch for changes, e.g.:

$ bin/robot-server --reload-path <mypath> my.product.testing.MY_PRODUCT_ROBOT_TESTING

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Installing RIDE (Robot Framework IDE)

[ride]-extras will create a script to start RIDE, the IDE for Robot Framework,
but it can be launched only explicitly with a compatible system python with
wxPython 2.8.x installed.

Update buildout.cfg:

[buildout]
parts =
 ...
 robot

[robot]
recipe = zc.recipe.egg
eggs =
 Pillow
 ${test:eggs}
 plone.app.robotframework[ride]

If you can get RIDE running, you should select its Run-tab, change the value
of Execution Profile to custom script, and click Browser*-button to select
bin/robot from the buildout directory. Running RIDE using bin/robot* will
enable test isolation to work when running tests from RIDE.

If you want to place a breakpoint you can use the Comment keyword with
argument PAUSE. RIDE will stop and let you step through your test.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Write a robot test for a new Plone add-on

This is a minimal tutorial for getting started with writing functional Selenium
tests for a new Plone add-on with Robot Framework.

Install Templer

At first, we should have an add-on to test with. For creating a new add-on, we
use Templer [http://templer-manual.readthedocs.org/en/latest/].

	Create a directory for a Templer-buildout and move there:

$ mkdir templer-buildout
$ cd templer-buildout

	Create a file templer-buildout/buildout.cfg for Templer-installation
with:

[buildout]
parts = templer

[templer]
recipe = zc.recipe.egg
eggs =
 templer.core
 templer.plone

	Download a bootstrap for running the buildout:

$ curl -O http://python-distribute.org/bootstrap.py

	Bootstrap and run the buildout:

$ python bootstrap.py --distribute
$ bin/buildout
Installing templer.
Generated script '/.../templer-buildout/bin/templer'.

	Return back to the parent directory:

$ cd ..

Create a new product

Once we have Templer installed, we create a Plone add-on product by entering
templer-buildout/bin/templer plone_basic and answering to the upcoming
questions.

We must make sure to answer True for the question:

Robot Tests (Should the default robot test be included) [False]: True

Once we have answered for all the questions, our add-on template is ready:

$ templer-buildout/bin/templer plone_basic

plone_basic: A package for Plone add-ons

This template creates a package for a basic Plone add-on project with
a single namespace (like Products.PloneFormGen).

To create a Plone project with a name like 'collective.geo.bundle'
(2 dots, a 'nested namespace'), use the 'plone_nested' template.

If you are trying to create a Plone *site* then the best place to
start is with one of the Plone installers. If you want to build
your own Plone buildout, use one of the plone'N'_buildout templates

This template expects a project name with 1 dot in it (a 'basic
namespace', like 'foo.bar').

Enter project name (or q to quit): my.product

If at any point, you need additional help for a question, you can enter
'?' and press RETURN.

Expert Mode? (What question mode would you like? (easy/expert/all)?) ['easy']:
Version (Version number for project) ['1.0']:
Description (One-line description of the project) ['']:
Register Profile (Should this package register a GS Profile) [False]:
Robot Tests (Should the default robot test be included) [False]: True
Creating directory ./my.product
Replace 1019 bytes with 1378 bytes (2/43 lines changed; 8 lines added)
Replace 42 bytes with 119 bytes (1/1 lines changed; 4 lines added)

Bootstrap and run buildout

Before we continue, now is a good time to run bootstrap and buildout to
get the development environment ready:

$ python bootstrap.py --distribute
$ bin/buildout

Run the default tests

Templer does create a couple of example tests for us -- one of them being
a robot test.

We can list the available tests with:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

And run the example robot test with:

$ bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.237 seconds.
 Set up plone.app.testing.layers.PloneFixture in 8.093 seconds.
 Set up my.product.testing.MyproductLayer in 0.178 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.588 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.251 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.087 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.005 seconds.

About functional test fixture

Functional Selenium tests require a fully functional Plone-environment.

Luckily, with
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
we can easily define a custom test fixture with Plone and our own add-on
installed.

With Templer, both the base fixture and the functional test fixtures have
already been defined in my.product/src/my/product/testing.py. The latter
with:

from plone.app.testing import FunctionalTesting

...

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
 name="MyproductLayer:Functional"
)

Create a new robot test suite

Robot tests are written as text files, which are called test suites.

It's good practice, with Plone, to prefix all robot test suite files with
robot_. This makes it easier to both exclude the robot tests (which are
usually very time consuming) from test runs or run only the robot tests.

Write an another robot tests suite
my.product/src/my/product/tests/robot_hello.txt:

*** Settings ***

Library Selenium2Library timeout=10 implicit_wait=0.5

Suite Setup Start browser
Suite Teardown Close All Browsers

*** Variables ***

${BROWSER} = Firefox

*** Test Cases ***

Hello World
 [Tags] hello
 Go to http://localhost:55001/plone/hello-world
 Page should contain Hello World!

*** Keywords ***

Start browser
 Open browser http://localhost:55001/plone/ browser=${BROWSER}

Note

Defining browser for Open browser keyword as a variable makes it easy to
run the test later with different browser.

Register the suite for zope.testrunner

To be able to run Robot Framework test suite with
zope.testrunner [http://pypi.python.org/pypi/zope.testrunner/]
and on top of our add-ons functional test fixture, we need to

	wrap the test suite into properly named Python unittest test suite

	assign our functional test layer for all the test cases.

We do this all by simply adding our new robot test suite into
my.product/src/my/product/tests/test_robot.py:

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered
import robotsuite
import unittest

def test_suite():
 suite = unittest.TestSuite()
 suite.addTests([
 layered(robotsuite.RobotTestSuite("robot_test.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING),
 layered(robotsuite.RobotTestSuite("robot_hello_world.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING)
])
 return suite

Note that test_-prefix in the filename of test_robot.py is required for
zope.testunner to find the test suite.

List and filter tests

Run bin/test (zope.testrunner) with --list-tests-argument to
see that our test is registered correctly:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
 Hello_World (robot_hello_world.txt) #hello
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

Experiment with -t-argument to filter testrunner to find only our
robot test:

$ bin/test -t robot_ --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
 Hello_World (robot_hello_world.txt) #hello

or everything else:

$ bin/test -t \!robot_ --list-tests
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

Run (failing) test

After the test has been written and registered, it can be run normally
with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t \#hello

Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.217 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.643 seconds.
 Set up my.product.testing.MyproductLayer in 0.026 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:
 1/1 (100.0%)
==
Robot Hello World
==
Hello World | FAIL |
Page should have contained text 'Hello World!' but did not
--
Robot Hello World | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
==
Output: /.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
Log: /.../my.product/parts/test/robot_hello_world/Hello_World/log.html
Report: /.../my.product/parts/test/robot_hello_world/Hello_World/report.html

Failure in test Hello World (robot_hello_world.txt) #hello
Traceback (most recent call last):
 File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py", line 340, in run
 testMethod()
 File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__.py", line 317, in runTest
 assert last_status == 'PASS', last_message
AssertionError: Page should have contained text 'Hello World!' but did not

 Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.282 seconds.
 Tear down my.product.testing.MyproductLayer in 0.003 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.084 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Create an example view

Create view described in the test by registering a template into
my.product/src/my/product/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="my.product">

 <five:registerPackage package="." initialize=".initialize" />

 <browser:page
 name="hello-world"
 for="Products.CMFCore.interfaces.ISiteRoot"
 template="hello_world.pt"
 permission="zope2.View"
 />

 <!-- -*- extra stuff goes here -*- -->

</configure>

And writing the template into my.product/src/my/product/hello_world.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="plone">
<body>

<metal:content-core fill-slot="content-core">
 <metal:content-core define-macro="content-core">
 <p>Hello World!</p>
 </metal:content-core>
</metal:content-core>

</body>
</html>

Run (passing) test

Re-run the test to see it passing:

$ bin/test -t \#hello
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.220 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
 Set up my.product.testing.MyproductLayer in 0.027 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.253 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Test reports

Robot Framework generates high quality test reports with screenshots of
failing tests as:

	my.product/parts/tests/robot_report.html

	Overview of the test results.

	my.product/parts/tests/robot_log.html:

	Detailed log for every test with screenshots of failing tests.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Write a robot test for an existing Plone add-on

This is a tutorial for getting started with writing functional Selenium tests
for an existing Plone add-on with Robot Framework.

Let's assumpt that we have an add-on my.product.

Update requirements

At first, we need to fix our product to require all the necessary dependencies
for running Robot Framework tests.

To fix our dependencies, we update my.product/setup.py with:

extras_require={'test': ['plone.app.testing[robot]]},

Note

When testing with Plone version less than 4.3, we must pin
the version of plone.app.testing into buildout.cfg.

Update my.product/buildout.cfg with:

[buildout]
extends =
 ...
 versions.cfg

And create my.product/versions.cfg with:

[versions]
plone.app.versions = 4.2.2

Bootstrap and run buildout

Before we continue, now is a good time to run bootstrap and buildout to get the
development environment ready:

$ python bootstrap.py --distribute
$ bin/buildout

Define functional test fixture

Functional Selenium tests require a fully functional Plone-environment.

Luckily, with
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
we can easily define a custom test fixture with Plone and our own add-on
installed.

After the base fixture has been created (by following
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
documentation) we only need to define a functional testing fixture, which adds
a fully functional ZServer to serve a Plone sandbox with our add-on.

Update my.product/src/my/product/testing.py with:

from plone.app.testing import FunctionalTesting

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
 name="MyproductLayer:Functional"
)

Create a robot test suite

Robot tests are written as text files, which are called test suites.

It's good practice, with Plone, to prefix all robot test suite files with
robot_. This makes it easier to both exclude the robot tests (which are
usually very time consuming) from test runs or run only the robot tests.

Write a simple robot tests suite
my.product/src/my/product/tests/robot_hello.txt:

*** Settings ***

Library Selenium2Library timeout=10 implicit_wait=0.5

Suite Setup Start browser
Suite Teardown Close All Browsers

*** Variables ***

${BROWSER} = Firefox

*** Test Cases ***

Hello World
 [Tags] hello
 Go to http://localhost:55001/plone/hello-world
 Page should contain Hello World!

*** Keywords ***

Start browser
 Open browser http://localhost:55001/plone/ browser=${BROWSER}

Note

Defining browser for Open browser keyword as a variable makes it easy to
run the test later with different browser.

Register the suite for zope.testrunner

To be able to run Robot Framework test suite with
zope.testrunner [http://pypi.python.org/pypi/zope.testrunner/]
and on top of our add-ons functional test fixture, we need to

	wrap the test suite into properly named Python unittest test suite

	assign our functional test layer for all the test cases.

We do this all by simply writing
my.product/src/my/product/tests/test_robot.py:

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered
import robotsuite
import unittest

def test_suite():
 suite = unittest.TestSuite()
 suite.addTests([
 layered(robotsuite.RobotTestSuite("robot_hello_world.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING)
])
 return suite

Note that test_-prefix in the filename of test_robot.py is required for
zope.testunner to find the test suite.

List and filter tests

Run bin/test (zope.testrunner) with --list-tests-argument to
see that our test is registered correctly:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello
Listing my.product.testing.MyproductLayer:Integration tests:
 ...

Experiment with -t-argument to filter testrunner to find only our
robot test:

$ bin/test -t robot_ --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

or everything else:

$ bin/test -t \!robot_ --list-tests
Listing my.product.testing.MyproductLayer:Integration tests:
 ...

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

Run (failing) test

After the test has been written and registered, it can be run normally
with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t robot_

Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.217 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.643 seconds.
 Set up my.product.testing.MyproductLayer in 0.026 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:
 1/1 (100.0%)
==
Robot Hello World
==
Hello World | FAIL |
Page should have contained text 'Hello World!' but did not
--
Robot Hello World | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
==
Output: /.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
Log: /.../my.product/parts/test/robot_hello_world/Hello_World/log.html
Report: /.../my.product/parts/test/robot_hello_world/Hello_World/report.html

Failure in test Hello World (robot_hello_world.txt) #hello
Traceback (most recent call last):
 File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py", line 340, in run
 testMethod()
 File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__.py", line 317, in runTest
 assert last_status == 'PASS', last_message
AssertionError: Page should have contained text 'Hello World!' but did not

 Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.282 seconds.
 Tear down my.product.testing.MyproductLayer in 0.003 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.084 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Create an example view

Create view described in the test by registering a template into
my.product/src/my/product/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="my.product">

 ...

 <browser:page
 name="hello-world"
 for="Products.CMFCore.interfaces.ISiteRoot"
 template="hello_world.pt"
 permission="zope2.View"
 />

 ...

</configure>

And writing the template into my.product/src/my/product/hello_world.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="plone">
<body>

<metal:content-core fill-slot="content-core">
 <metal:content-core define-macro="content-core">
 <p>Hello World!</p>
 </metal:content-core>
</metal:content-core>

</body>
</html>

Run (passing) test

Re-run the test to see it passing:

$ bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.220 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
 Set up my.product.testing.MyproductLayer in 0.027 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.253 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Test reports

Robot Framework generates high quality test reports with screenshots of
failing tests as:

	my.product/parts/tests/robot_report.html

	Overview of the test results.

	my.product/parts/tests/robot_log.html:

	Detailed log for every test with screenshots of failing tests.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Speed up your test writing with robot-server

plone.app.robotframework comes with a special console script
robot-server, which starts up a Plone site with a given plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/] testing layer set up.

This will save time when writing new robot tests, because you can try out your
unfinished test over and over again without the usual time consuming
setup/teardown of testing layers between every test.

Install robot-server and its counter part robot with support for the
developed product with a buildout part:

[buildout]
...
parts += robot

[robot]
recipe = zc.recipe.egg
eggs =
 ${test:eggs}
 plone.app.robotframework
scripts =
 robot-server
 robot

After buildout, start robot-server with:

$ bin/robot-server my.product.testing.MY_PRODUCT_FUNCTIONAL_TESTING

And run tests with robot and robot-server test isolation support with:

$ bin/robot src/my/product/tests/test_something.robot

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Speed up your BDD Given-clauses via a remote library

BDD-style tests begin with one or more Given-clauses that should setup the
test environment for the actual tests-clauses (When and Then).

Because Given-clauses are not really part of the actual test, it is not
necessary to run them through Selenium (using Selenium2Library), but it would
be faster to write custon Python keywords for them.

plone.act includes an example, how to a robot
remote library [http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.6#remote-library-interface],
which could be called to interact with the site without Selenium.

The base implementation is provided at:

https://github.com/plone/plone.app.robotframework/blob/master/src/plone/app/robotframework/remote.py

https://github.com/plone/plone.app.robotframework/blob/master/src/plone/app/robotframework/quickinstaller.py

An example integration into testing layer is provided at:

https://github.com/plone/plone.app.robotframework/blob/master/src/plone/app/robotframework/testing.py#L65

An example test suite using the library is provided at:

https://github.com/plone/plone.app.robotframework/blob/master/src/plone/app/robotframework/tests/test_robot.py#L48

https://github.com/plone/plone.app.robotframework/blob/master/src/plone/app/robotframework/tests/robot_quickinstaller_library.robot

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Known plone.app.robotframework-examples

A minimal example plone.app.robotramework-example:

	https://github.com/datakurre/example.product/tree/p.a.robotframework

	https://travis-ci.org/datakurre/example.product

	https://saucelabs.com/u/exampleproduct

This is how we used this for Plomino to run some robot tests at SauceLabs:

	https://github.com/plomino/Plomino/pull/322/files

	https://travis-ci.org/fulv/Plomino

	https://saucelabs.com/u/fulv_plomino

More examples which already contain robotframework tests in collective:

	https://github.com/collective/collective.wfcomment
(checking prepOverlays)

	https://github.com/collective/collective.prettyphoto

	https://github.com/collective/plone.app.imagecropping
(includes javascript interaction in cropping editor).

	https://github.com/plone/plone.app.robotframework/tree/master/src/plone/app/robotframework/tests

	http://plone.293351.n2.nabble.com/Robot-Framework-How-to-fill-TinyMCE-s-text-field-tp7563662p7563691.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Selenium2Library Keywords

Note

TODO: The general idea of this document is to give a first introduction to
the Selenium2Library keywords. We do NOT want to re-document the existing
Selenium2Library documentation.

Selenium2Library is a web testing library for Robot Framework. It provides you
with several low-level keywords to access certain elements of a web page, to
conduct actions on a web page and to test if a page met certain acceptance critera.

First Example

TODO: We need a simple first example to explain the basic concepts. Here are
some ideas.

Test Google Search For Plone:

Test Google Search For Plone
 Go to www.google.com

 Input text id=gbqfq Plone
 Click Button id=gbqfbb

 Page should contain Plone CMS: Open Source Content Management
 Page should contain plone.org

Test Plone Search:

Test Plone Search
 Go to http://localhost:55001/plone/

 Input Text SearchableText batman
 Click Button Search

 Page should contain Search results
 Page should contain Welcome to Plone

Test Plone Live Search:

Test Plone Live Search
 Go to http://localhost:55001/plone/

 Input Text SearchableText Plone

 Page should contain Search results
 Page should contain Welcome to Plone

Test Plone Contact Form:

Test Plone Contact Form

 Click Link Contact
 Page should contain Contact
 ...

TODO: Explain the concepts of tests

Form:

	Precondition (Given)

	Action (When)

	Postcondition/Test (Then)

These parts should be separated by blank lines.

Preconditions

	Open Browser???

	Go to ...

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Go%20To

Actions

Click on elements

	Click Button

	Click Element

	Click Image

	Click Link

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Click%20Button

Fill out form

	Input Text

	Input Password

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Input%20Text

Postconditions

	Page Should Contain <locator>

	Page Should Contain Button | Checkbox | Element | Image | Link | List | Radio Button | Textfield <locator>

	Page Should Not Contain <locator>

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Page%20Should%20Contain

Locating elements

Locating element by id:

Click Element id=submit
Click Element name=submit
Click Element xpath=//div[@id='my_element']
Click Element dom=document.images[56]
Click Element link=Save
Click Element css=div.submit Matches by CSS selector
Click Element tag=div Matches by HTML tag name

See also

'locating elements' section http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

 	Plone Keywords »

Plone Browser Keywords

Start browser and wake plone up:

Start browser and wake plone up

 [Arguments] ${ZOPE_LAYER_DOTTED_NAME}

 Start Zope Server ${ZOPE_LAYER_DOTTED_NAME}
 Zodb setup
 Set Selenium timeout 15s
 Set Selenium implicit wait 1s

 ${previous} Register keyword to run on failure Close Browser
 Wait until keyword succeeds 2min 3s Access plone
 Register keyword to run on failure ${previous}

 Wait until keyword succeeds 30s 1s Log in as site owner
 Log out
 Zodb teardown

Close browser and selenium server:

Close browser and selenium server
 Close browser
 Stop Zope Server

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

 	Plone Keywords »

Plone Content Keywords

Robot Framework / Selenium2Library keywords to create/delete/change Plone
content.

	Use a test-folder (like in p.a.testing) for isolation and to avoid problems
for instance with name clashes in the global navigation.

	We currently have two different ways to create content:

	Create <portal_type> <title>: create content object in portal root / test
folder.

	Add <portal_type> <title>: add content object in current context / folder.

Maybe we can come up with a smart way to do both with one keyword with
optional parameters?

Create content

Create folder (Create a folder object within the test-folder):

Create folder
 [arguments] ${title}

 Goto homepage
 Open Add New Menu
 Click Link css=#plone-contentmenu-factories a#folder
 Element should be visible css=#archetypes-fieldname-title input
 Input Text title ${title}
 Click Button Save
 Page should contain ${title}
 Element should contain css=#parent-fieldname-title ${title}

Create page (Create a page object within the test-folder):

Create page
 [arguments] ${title}

 Create folder Folder for ${title}
 Open Add New Menu
 Click Link css=#plone-contentmenu-factories a#document
 Element should be visible css=#archetypes-fieldname-title input
 Input Text title ${title}
 Click Button Save
 Page should contain ${title}
 Element should contain css=#parent-fieldname-title ${title}

Add content

Add page (Add a page object in the current context/location):

Add page
 [arguments] ${title}

 Open Add New Menu
 Click Link link=Page
 Input Text title ${title}
 Click button name=form.button.save
 Page Should Contain Changes saved.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

 	Plone Keywords »

Edit Wizard Keywords

Wizard tabs

Open Wizard Tab:

Open wizard tabs with <title> title

[arguments] ${title}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

 	Plone Keywords »

History Keywords

Open history popup:

Open history popup for current context

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Plone Keywords

plone.act provides high-level keywords to test Plone. Idealy it should provide
all the keywords that are necessary to write acceptance test in Plone.

	Plone Content Keywords

	Plone Browser Keywords

	Plone Login/Logout Keywords

	History Keywords

	Edit Wizard Keywords

	Reference Browser Widget Keywords

Using plone.app.testing variables

You can use existing plone.app.testing variables defined in plone/app/testing/interfaces.py [https://github.com/plone/plone.app.testing/blob/master/plone/app/testing/interfaces.py]. in your acceptance tests:

*** Settings ***

Library plone.act.PloneLibrary
Library Selenium2Library run_on_failure=Capture Page Screenshot
Variables plone/app/testing/interfaces.py

*** Test cases ***

Test variable file
 Should Be Equal ${PLONE_SITE_ID} plone
 Should Be Equal ${PLONE_SITE_TITLE} Plone site
 Should Be Equal ${DEFAULT_LANGUAGE} en

 Should Be Equal ${TEST_USER_NAME} test-user
 Should Be Equal ${TEST_USER_ID} test_user_1_
 Should Be Equal ${TEST_USER_PASSWORD} secret
 #Should Be Equal ${TEST_USER_ROLES} ['Member',]

 Should Be Equal ${SITE_OWNER_NAME} admin
 Should Be Equal ${SITE_OWNER_PASSWORD} secret

Misc

Goto homepage:

Goto homepage
 Go to ${PLONE_URL}
 Page should contain Powered by Plone & Python

..note:

I think we should deprecate that keyword because it is too close to the
existing "Go to" selenium2library keyword.

Click Overlay Link:

Click Overlay Link
 [Arguments] ${element}
 Click Link ${element}
 Wait Until Page Contains Element css=div.pb-ajax div#content-core

Should be above:

Should be above
 [Arguments] ${locator1} ${locator2}

 ${locator1-position} = Get vertical position ${locator1}
 ${locator2-position} = Get vertical position ${locator2}
 Should be true ${locator1-position} < ${locator2-position}

Remove Content:

Remove Content
 [arguments] ${id}

 Go to ${PLONE_URL}/${id}
 Page Should Contain Element css=body.section-${id}
 Click Delete Action
 Wait Until Page Contains Element css=input.destructive
 Click Button css=input.destructive
 Page Should Contain Plone site

Rename Content Title:

Rename Content Title
 [arguments] ${id} ${new_title}

 Go to ${PLONE_URL}/${id}
 Page Should Contain Element css=body.section-${id}
 Click Rename Action
 Wait Until Page Contains Element css=input#${id}_id
 Input Text css=input#${id}_title ${new_title}
 Click Button Rename All

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Plone Login/Logout Keywords

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Writing Robot Framework tests for Plone »

Reference Browser Widget Keywords

Set Reference Browser Field Value:

Set reference browser field value

[arguments] ${fieldName} @{path}

Checkbox Select:

Select checkbox (check it)

[arguments] ${title}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

Importing content from other sources

Description

There are various tools to help you import content from other systems into Plone

Introduction

Rarely does a new website start all from scratch.
Most of the time, you will have to import content from other systems. These may include:

	other CMS systems, sometimes based on PHP/MySQL

	legacy sites in plain HTML

	resources that exist on a filesystem, such as files and images

	other Plone sites, including older and unmaintained versions

While Plone even comes with an FTP service, that can serve as a last-ditch effort to get some pictures in, there are far more sophisticated tools available.

Transmogrify

By far the most flexible tool available is something called collective.transmogrifier.

Note

A transmogrifier is fictional device used for transforming one object into another object. The term was coined by Bill Waterson of Calvin and Hobbes fame.

In principle, what it does is to allow you to lay a 'pipeline', whereby an object (a piece of content) is transported. At each part of the pipeline, you can perform various operations on it: extract, change, add metadata, etcetera. These operations are in the form of so-called 'blueprints'.

In short: an object is gathered from a source you define. Then, it goes to one or more segments of the pipeline to let the various blueprints work on it, and in the end you use a 'constructor' to turn it into a Plone content object.

That's the basics, but by combining all your options you have an incredibly flexible and powerful tool at hand.

collective.transmogrifier

See the extensive documentation:

	collective.transmogrifier documentation

	Transmogrifier

	Credits

Transmogrify helpers

Various add-ons exist to make working with transmogrify easier:

	mr.migrator [https://pypi.python.org/pypi/mr.migrator] is a way to easily lay pipelines

	funnelweb [https://pypi.python.org/pypi/funnelweb] helps to parse static sites, and crawl external sites

	parse2plone [https://pypi.python.org/pypi/parse2plone] is meant to get HTML content from the file system into Plone

And a wide array of extra 'blueprints' exist, like

	quintagroup.transmogrifier [https://pypi.python.org/pypi/quintagroup.transmogrifier]

	transmogrify.sqlalchemy [https://pypi.python.org/pypi/transmogrify.sqlalchemy/1.0.1] to get content out of just about any SQL database you can think of

	collective.jsonmigrator [https://pypi.python.org/pypi/collective.jsonmigrator] is good at migrating data via JSON format from very old Plone versions, going back all the way to 2.x

Note this is only a selection, do a search on pypi to find more. NB searching both on transmogrify [https://pypi.python.org/pypi?%3Aaction=search&term=transmogrify&submit=search] and transmogrifier [https://pypi.python.org/pypi?%3Aaction=search&term=transmogrifier&submit=search] gives more results!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

collective.transmogrifier documentation

Transmogrifier

Transmogrifier provides support for building pipelines that turn one thing
into another. Specifically, transmogrifier pipelines are used to convert and
import legacy content into a Plone site. It provides the tools to construct
pipelines from multiple sections, where each section processes the data
flowing through the pipe.

A "transmogrifier pipeline" refers to a description of a set of pipe sections,
slotted together in a set order. The stated goal is for these sections to
transform data and ultimately add content to a Plone site based on this data.
Sections deal with tasks such as sourcing the data (from textfiles, databases,
etc.) and characterset conversion, through to determining portal type,
location and workflow state.

Note that a transmogrifier pipeline can be used to process any number of
things, and is not specific to Plone content import. However, it's original
intent is to provide a pluggable way to import legacy content.

Credits

	Development sponsored by

	Elkjøp Nordic AS

	Design and development

	Martijn Pieters at Jarn [http://www.jarn.com/]

	Project name

	A transmogrifier [http://en.wikipedia.org/wiki/Transmogrifier] is fictional device used for transforming one object
into another object. The term was coined by Bill Waterson of Calvin and
Hobbes fame.

Content

	Installation

	Pipelines
	Pipeline sections

	Configuration file syntax

	Conventions

	GenericSetup import integration

	Default section blueprints
	Breakpoint section

	Codec section

	Condition section

	Constructor section

	CSV source section

	Directory Walker section

	Folders section

	Inserter section

	collective.blueprint.listsource

	Logger section

	Manipulator section

	Savepoint section

	Splitter section

	URL Opener section

	XML Walker section

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

Installation

	When you're reading this you have probably already run
easy_install collective.transmogrifier. Find out how to install setuptools
(and EasyInstall) here:
http://peak.telecommunity.com/DevCenter/EasyInstall

	Create a file called collective.transmogrifier-configure.zcml in the
/path/to/instance/etc/package-includes directory. The file
should only contain this:

<include package="collective.transmogrifier" />

Alternatively, if you are using zc.buildout and the plone.recipe.zope2instance
recipe to manage your project, you can do this:

	Add collective.transmogrifier to the list of eggs to install, e.g.:

[buildout]
...
eggs =
 ...
 collective.transmogrifier

	Tell the plone.recipe.zope2instance recipe to install a ZCML slug:

[instance]
recipe = plone.recipe.zope2instance
...
zcml =
 collective.transmogrifier

	Re-run buildout, e.g. with:

$./bin/buildout

You can skip the ZCML slug if you are going to explicitly include the package
from another package's configure.zcml file.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

Pipelines

To transmogrify, or import and convert non-plone content, you simply define a
pipeline. Pipe sections, the equivalent of parts in a buildout [http://pypi.python.org/pypi/zc.buildout], are slotted
together into a processing pipe. To slot sections together, you define a
configuration file, define named sections, and a main pipeline definition that
names the sections in order (one section per line):

>>> exampleconfig = """\
... [transmogrifier]
... pipeline =
... section 1
... section 2
... section 3
...
... [section 1]
... blueprint = collective.transmogrifier.tests.examplesource
... size = 5
...
... [section 2]
... blueprint = collective.transmogrifier.tests.exampletransform
...
... [section 3]
... blueprint = collective.transmogrifier.tests.exampleconstructor
... """

As you can see this is also very similar to how you construct WSGI pipelines
using paster. The format of the configuration files is defined by the Python
ConfigParser module, with extensions that we'll describe later. At minimum, at
least the transmogrifier section with an empty pipeline is required:

>>> mimimalconfig = """\
... [transmogrifier]
... pipeline =
... """

Transmogrifier can load these configuration files either by looking them up
in a registry or by loading them from a python package.

You register transmogrifier configurations using the registerConfig
directive in the http://namespaces.plone.org/transmogrifier namespace,
together with a name, and optionally a title and description:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:transmogrifier="http://namespaces.plone.org/transmogrifier"
 i18n_domain="collective.transmogrifier">

<transmogrifier:registerConfig
 name="exampleconfig"
 title="Example pipeline configuration"
 description="This is an example pipeline configuration"
 configuration="example.cfg"
 />

</configure>

You can then tell transmogrifier to load the 'exampleconfig' configuration. To
load configuration files directly from a python package, name the package and
the configuration file separated by a colon, such as
'collective.transmogrifier.tests:exampleconfig.cfg'.

Registering files with the transmogrifier registry allows other uses, such as
listing available configurations in a user interface, together with the
registered description. Loading files directly let's you build reusable
libraries of configuration files more quickly though.

In this document we'll use the shorthand registerConfig to register
example configurations:

>>> registerConfig(u'collective.transmogrifier.tests.exampleconfig',
... exampleconfig)

Pipeline sections

Each section in the pipeline is created by a blueprint. Blueprints are looked
up as named utilities implementing the ISectionBlueprint interface. In the
transmogrifier configuration file, you refer to blueprints by the name under
which they are registered. Blueprints are factories; when called they produce
an ISection pipe section. ISections in turn, are iterators implementing the
iterator protocol [http://www.python.org/dev/peps/pep-0234/].

Here is a simple blueprint, in the form of a class definition:

>>> from zope.interface import classProvides, implements
>>> from zope.component import provideUtility
>>> class ExampleTransform(object):
... classProvides(ISectionBlueprint)
... implements(ISection)
...
... def __init__(self, transmogrifier, name, options, previous):
... self.previous = previous
... self.name = name
...
... def __iter__(self):
... for item in self.previous:
... item['exampletransformname'] = self.name
... yield item
...
>>> provideUtility(ExampleTransform,
... name=u'collective.transmogrifier.tests.exampletransform')

Note that we register this class as a named utility, and that instances of
this class can be used as an iterator. When slotted together, items 'flow'
through the pipeline by iterating over the last section, which in turn
iterates over it's preceding section (self.previous in the example), and
so on.

By iterating over the source, then yielding the items again, each section
passes items on to the next section. During the iteration loop, sections can
manipulate the items. Note that items are python dictionaries; sections simply
operate on the keys they care about. In our example we add a new key,
exampletransformname, which we set to the name of the section.

Sources

The items that flow through the pipe have to originate from somewhere though.
This is where special sections, sources, come in. A source is simply a pipe
section that inserts extra items into the pipeline. This is best illustrated
with another example:

>>> class ExampleSource(object):
... classProvides(ISectionBlueprint)
... implements(ISection)
...
... def __init__(self, transmogrifier, name, options, previous):
... self.previous = previous
... self.size = int(options['size'])
...
... def __iter__(self):
... for item in self.previous:
... yield item
...
... for i in range(self.size):
... yield dict(id='item%02d' % i)
...
>>> provideUtility(ExampleSource,
... name=u'collective.transmogrifier.tests.examplesource')

In this example we use the options dictionary to read options from the
section configuration, which in the example configuration we gave earlier has
the option size defined as 5. Note that the configuration values are
always strings, so we need to convert the size option to an integer here.

The source first iterates over the previous section and yields all items
unchanged. Only when that loop is done, does the source produce new items and
puts those into the pipeline. This order is important: when you slot multiple
source sections together, you want items produced by earlier sections to be
processed first too.

There is always a previous section, even for the first section defined in the
pipeline. Transmogrifier passes in a empty iterator when it instantiates this
first section, expecting such a first section to be a source that'll produce
items for the pipeline to process.

Constructors

As stated before, transmogrifier is intended for importing content into a
Plone site. However, transmogrifier itself only drives the pipeline, inserting
an empty iterator and discarding whatever it pulls out of the last section.

In order to create content then, a constructor section is required. Like
source sections, you should be able to use multiple constructors, so
constructors should always start with yielding the items passed in from the
previous section on to a possible next section.

So, a constructor section is an ISection that consumes items from the previous
section, and affects the plone site based on items, usually by creating
content objects based on these items, then yield the item for a next section.
For example purposes, we simply pretty print the items instead:

>>> import pprint
>>> class ExampleConstructor(object):
... classProvides(ISectionBlueprint)
... implements(ISection)
...
... def __init__(self, transmogrifier, name, options, previous):
... self.previous = previous
... self.pprint = pprint.PrettyPrinter().pprint
...
... def __iter__(self):
... for item in self.previous:
... self.pprint(sorted(item.items()))
... yield item
...
>>> provideUtility(ExampleConstructor,
... name=u'collective.transmogrifier.tests.exampleconstructor')

With this last section blueprint example completed, we can load the example
configuration we created earlier, and run our transmogrification:

>>> from collective.transmogrifier.transmogrifier import Transmogrifier
>>> transmogrifier = Transmogrifier(plone)
>>> transmogrifier(u'collective.transmogrifier.tests.exampleconfig')
[('exampletransformname', 'section 2'), ('id', 'item00')]
[('exampletransformname', 'section 2'), ('id', 'item01')]
[('exampletransformname', 'section 2'), ('id', 'item02')]
[('exampletransformname', 'section 2'), ('id', 'item03')]
[('exampletransformname', 'section 2'), ('id', 'item04')]

Developing blueprints

As we could see from the ISectionBlueprint examples above, a blueprint gets
called with several arguments: transmogrifier, name, options and
previous.

We discussed previous before, it is a reference to the previous pipe
section and must be looped over when the section itself is iterated. The
name argument is simply the name of the section as given in the
configuration file.

The transmogrifier argument is a reference to the transmogrifier itself,
and it can be used to reach the context we are importing to through it's
context attribute. The transmogrifier also acts as a dictionary, mapping
from section names to a mapping of the options in each section.

Finally, as seen before, the options argument is a mapping of the current
section options. It is the same mapping as can be had through
transmogrifier[name].

A short example shows each of these arguments in action:

>>> class TitleExampleSection(object):
... classProvides(ISectionBlueprint)
... implements(ISection)
...
... def __init__(self, transmogrifier, name, options, previous):
... self.transmogrifier = transmogrifier
... self.name = name
... self.options = options
... self.previous = previous
...
... pipeline = transmogrifier['transmogrifier']['pipeline']
... pipeline_size = len([s.strip() for s in pipeline.split('\n')
... if s.strip()])
... self.size = options['pipeline-size'] = str(pipeline_size)
... self.site_title = transmogrifier.context.Title()
...
... def __iter__(self):
... for item in self.previous:
... item['pipeline-size'] = self.size
... item['title'] = '%s - %s' % (self.site_title, item['id'])
... yield item
>>> provideUtility(TitleExampleSection,
... name=u'collective.transmogrifier.tests.titleexample')
>>> titlepipeline = """\
... [transmogrifier]
... pipeline =
... section1
... titlesection
... section3
...
... [section1]
... blueprint = collective.transmogrifier.tests.examplesource
... size = 5
...
... [titlesection]
... blueprint = collective.transmogrifier.tests.titleexample
...
... [section3]
... blueprint = collective.transmogrifier.tests.exampleconstructor
... """
>>> registerConfig(u'collective.transmogrifier.tests.titlepipeline',
... titlepipeline)
>>> plone.Title()
u'Plone Test Site'
>>> transmogrifier = Transmogrifier(plone)
>>> transmogrifier(u'collective.transmogrifier.tests.titlepipeline')
[('id', 'item00'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item00')]
[('id', 'item01'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item01')]
[('id', 'item02'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item02')]
[('id', 'item03'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item03')]
[('id', 'item04'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item04')]

Configuration file syntax

As mentioned earlier, the configuration files use the format
defined by the Python ConfigParser module with extensions. The
extensions are based on the zc.buildout extensions and are:

	option names are case sensitive

	option values can use a substitution syntax, described below, to
refer to option values in specific sections.

	you can include other configuration files, see Including other
configurations.

The ConfigParser syntax is very flexible. Section names can contain any
characters other than newlines and right square braces ("]"). Option names can
contain any characters (within the ASCII character set) other than newlines,
colons, and equal signs, can not start with a space, and don't include
trailing spaces.

It is a good idea to keep section and option names simple, sticking to
alphanumeric characters, hyphens, and periods.

Variable substitution

Transmogrifier supports a string.Template-like syntax for variable
substitution, using both the section and the option name joined by a colon:

>>> substitutionexample = """\
... [transmogrifier]
... pipeline =
... section1
... section2
... section3
...
... [definitions]
... item_count = 3
...
... [section1]
... blueprint = collective.transmogrifier.tests.examplesource
... size = ${definitions:item_count}
...
... [section2]
... blueprint = collective.transmogrifier.tests.exampletransform
...
... [section3]
... blueprint = collective.transmogrifier.tests.exampleconstructor
... """
>>> registerConfig(u'collective.transmogrifier.tests.substitutionexample',
... substitutionexample)

Here we created an extra section called definitions, and refer to the
item_count option defined in that section to set the size of the section1
pipeline section, so we only get 3 items when we execute this pipeline:

>>> transmogrifier = Transmogrifier(plone)
>>> transmogrifier(u'collective.transmogrifier.tests.substitutionexample')
[('exampletransformname', 'section2'), ('id', 'item00')]
[('exampletransformname', 'section2'), ('id', 'item01')]
[('exampletransformname', 'section2'), ('id', 'item02')]

Including other configurations

You can include other transmogrifier configurations with the include
option in the transmogrifier section. This option takes a list of
configuration ids, separated by whitespace. All sections and options from
those configuration files will be included provided the options weren't
already present. This works recursively; inclusions in the included
configuration files are honoured too:

>>> inclusionexample = """\
... [transmogrifier]
... include =
... collective.transmogrifier.tests.sources
... collective.transmogrifier.tests.base
...
... [section1]
... size = 3
... """
>>> registerConfig(u'collective.transmogrifier.tests.inclusionexample',
... inclusionexample)
>>> sources = """\
... [section1]
... blueprint = collective.transmogrifier.tests.examplesource
... size = 10
... """
>>> registerConfig(u'collective.transmogrifier.tests.sources',
... sources)
>>> base = """\
... [transmogrifier]
... pipeline =
... section1
... section2
... section3
... include = collective.transmogrifier.tests.constructor
...
... [section2]
... blueprint = collective.transmogrifier.tests.exampletransform
... """
>>> registerConfig(u'collective.transmogrifier.tests.base',
... base)
>>> constructor = """\
... [section3]
... blueprint = collective.transmogrifier.tests.exampleconstructor
... """
>>> registerConfig(u'collective.transmogrifier.tests.constructor',
... constructor)
>>> transmogrifier = Transmogrifier(plone)
>>> transmogrifier(u'collective.transmogrifier.tests.inclusionexample')
[('exampletransformname', 'section2'), ('id', 'item00')]
[('exampletransformname', 'section2'), ('id', 'item01')]
[('exampletransformname', 'section2'), ('id', 'item02')]

Like zc.buildout configurations, we can also add or remove lines from included
configuration options, by using the += and -= syntax:

>>> advancedinclusionexample = """\
... [transmogrifier]
... include =
... collective.transmogrifier.tests.inclusionexample
... pipeline -=
... section2
... section3
... pipeline +=
... section4
... section3
...
... [section4]
... blueprint = collective.transmogrifier.tests.titleexample
... """
>>> registerConfig(u'collective.transmogrifier.tests.advancedinclusionexample',
... advancedinclusionexample)
>>> transmogrifier = Transmogrifier(plone)
>>> transmogrifier(u'collective.transmogrifier.tests.advancedinclusionexample')
[('id', 'item00'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item00')]
[('id', 'item01'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item01')]
[('id', 'item02'),
 ('pipeline-size', '3'),
 ('title', u'Plone Test Site - item02')]

When calling transmogrifier, you can provide your own sections too: any extra
keyword is interpreted as a section dictionary. Do make sure you use string
values though:

>>> transmogrifier(u'collective.transmogrifier.tests.inclusionexample',
... section1=dict(size='1'))
[('exampletransformname', 'section2'), ('id', 'item00')]

Conventions

At its most basic level, transmogrifier pipelines are just iterators passing
'things' around. Transmogrifier doesn't expect anything more than being able
to iterate over the pipeline and doesn't dictate what happens within that
pipeline, what defines a 'thing' or what ultimately gets accomplished.

But as has been stated repeatedly, transmogrifier has been developed to
facilitate importing legacy content, processing data in incremental steps
until a final section constructs new content.

To reach this end, several conventions have been established that help the
various pipeline sections work together.

Items are mappings

The first one is that the 'things' passed from section to section are
mappings; i.e. they are or behave just like python dictionaries. Again,
transmogrifier doesn't produce these by itself, source sections (see Sources)
produce them by injecting them into the stream.

Keys are fields

Secondly, all keys in such mappings that do not start with an underscore
will be used by constructor sections (see Constructors) to construct Plone
content. So keys that do not start with an underscore are expected to map to
Archetypes fields or Zope3 schema fields or whatever the constructor expects.

Paths are to the target object

Many sections either create objects (constructors) or operate on
already-constructed or pre-existing objecs. Such sections should interpret
paths as the complete path for the object. For constructors this means they'll
need to split the path into a container path and an id in order for them to
find the correct context for constructing the object.

Keys with a leading underscore are controllers

This leaves the keys that do start with a leading underscore to have special
meaning to specific sections, allowing earlier pipeline sections to inject
'control statements' for later sections in the item mapping. To avoid name
clashes, sections that do expect such controller keys should use prefixes
based on the name under which their blueprint was registered, plus optionally
the name of the pipe section. This allows for precise targeting of pipe
sections when inserting such keys.

We'll illustrate this with an example. Let's say a source section loads news
items from a database, but the database tables for such items hold filenames
to point to binary image data. Rather than have this section load those
filenames directly and add them to the item for image creation, a generic
'file loader' section is used to do this. Let's suppose that this file loader
is registered as acme.transmogrifier.fileloader. This section then could
be instructed to load files and store them in a named key by using 2
'controller' keys named _acme.transmogrifier.fileloader_filename and
_acme.transmogrifier.fileloader_targetkey. If the source section were to
create pipeline items with those keys, this later fileloader section would
then automatically load the filenames and inject them into the items in the
right location.

If you need 2 such loaders, you can target them each individually by including
their section names; so to target just the imageloader1 section you'd use
the keys _acme.transmogrifier.fileloader_imageloader1_filename and
_acme.transmogrifier.fileloader_imageloader1_targetkey. Sections that
support such targeting should prefer such section specific keys over those
only using the blueprint name.

The collective.transmogrifier.utils module has a handy utility method called
defaultKeys that'll generate these keys for you for easy matching:

>>> from collective.transmogrifier import utils
>>> keys = utils.defaultKeys('acme.transmogrifier.fileloader',
... 'imageloader1', 'filename')
>>> pprint.pprint(keys)
('_acme.transmogrifier.fileloader_imageloader1_filename',
 '_acme.transmogrifier.fileloader_filename',
 '_imageloader1_filename',
 '_filename')
>>> utils.Matcher(*keys)('_filename', '_imageloader1_filename')
('_imageloader1_filename', True)

Keep memory use to a minimum

The above example is a little contrived of course; you'd generally configure a
file loader section with a key name to grab the filename from, and perhaps put
the loader after the constructor section and load the image data straight
into the already constructed content item instead. This lowers memory
requirements as image data can go directly into the ZODB this way, and the
content object can be deactivated after the binary data has been stored.

By operating on one item at a time, a transmogrifier pipeline can handle huge
numbers of content without breaking memory limits; individual sections should
also avoid using memory unnecessarily.

Previous sections go first

As mentioned in the Sources section, when inserting new items into the
stream, generally previous pipe sections come first. This way someone
constructing a pipeline knows what source section will be processed earlier
(those slotted earlier in the pipeline) and can adjust expectations
accordingly. This makes content construction more predictable when dealing
with multiple sources.

An exception would be a Folder Source, which inserts additional Folder items
into the pipeline to ensure that the required container for any given content
item exists at construction time. Such a source would inject extra items as
needed, not before or after the previous source section.

Iterators have 3 stages

Some tasks have to happen before the pipeline runs, or after all content has
been created. In such cases it is handy to realise that iteration within a
section consists of three stages: before iteration, iteration itself, and
after iteration.

For example, a section creating references may have to wait for all content to
be created before it can insert the references. In this case it could build a
queue during iteration, and only when the previous pipe section has been
exhausted and the last item has been yielded would the section reach into the
portal and create all the references.

Sources following the Previous sections go first convention basically
inject the new items in the after iteration stage.

Here's a piece of psuedo code to illustrate these 3 stages:

def __iter__(self):
 # Before iteration
 # You can do initialisation here

 for item in self.previous
 # Iteration itself
 # You could process the items, take notes, inject additional
 # items based on the current item in the pipe or manipulate portal
 # content created by previous items
 yield item

 # After iteration
 # The section still has control here and could inject additional
 # items, manipulate all portal content created by the pipeline,
 # or clean up after itself.

You can get quite creative with this. For example, the reference creator could
get quite creative and defer creation of references until it knew the
referenced object has been created too and periodically create these
references. This would keep memory requirements smaller as not all
references to create have to be remembered.

Store pipeline-wide information in annotations

If, for some reason or other, you need to remember state across section
instances that is pipeline-wide (such as database connections, or data
counters), such information should be stored as annotations on the transmogrifier object:

from zope.annotation.interfaces import IAnnotations

MYKEY = 'foo.bar.baz'

def __init__(self, transmogrifier, name, options, previous):
 self.storage = IAnnotations(transmogrifier).setdefault(MYKEY, {})
 self.storage.setdefault('spam', 0)
 ...

def __iter__(self):
 ...
 self.storage['spam'] += 1
 ...

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

GenericSetup import integration

To ease running a transmogrifier pipeline during site configuration, a generic
import step for GenericSetup is included.

The import step looks for a file named transmogrifier.txt and reads
pipeline configuration names from this file, one name per line. Empty lines
and lines starting with a # (hash mark) are skipped. These pipelines are then
executed in the same order as they are found in the file.

This means that if you want to run one or more pipelines as part of a
GenericSetup profile, all you have to do is name these pipelines in a file
named transmogrifier.txt in your profile directory.

The GenericSetup import context is stored on the transmogrifier as an
annotation:

from collective.transmogrifier.genericsetup import IMPORT_CONTEXT
from zope.annotation.interfaces import IAnnotations

def __init__(self, transmogrifier, name, options, previous):
 self.import_context = IAnnotations(transmogrifier)[IMPORT_CONTEXT]

This will of course prevent your code from running outside the generic setup
import context.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

Default section blueprints

	Breakpoint section

	Codec section

	Condition section

	Constructor section

	CSV source section

	Directory Walker section

	Folders section

	Inserter section

	collective.blueprint.listsource

	Logger section

	Manipulator section

	Savepoint section

	Splitter section

	URL Opener section

	XML Walker section

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Breakpoint section

A breakpoint section will stop and enter pdb when a specific condition is
met. This is useful for debugging, as you can add a brekpoint section just
before a section that gets an error on a specific item.

The alternative is to add a conditional breakpoint in the section that fails,
but that can require findning the code in some egg somewhere, adding the
breakpoint and restarting the server. This speeds up the process.

>>> breaker = """
... [transmogrifier]
... pipeline =
... source
... breaker
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [breaker]
... blueprint = collective.transmogrifier.sections.breakpoint
... condition = python: item['id'] == 'item-01'
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.breaker',
... breaker)

Since pdb requires input, for this test we replace stdin with something
giving some input (just a continue cammand).

>>> oldstdin = make_stdin('c\n')
>>> transmogrifier(u'collective.transmogrifier.sections.tests.breaker')
> .../collective.transmogrifier/src/collective/transmogrifier/sections/logger.py(...)__iter__()
-> ...
(Pdb) c
>>> print handler
logger INFO
 {'id': 'item-00'}
logger INFO
 {'id': 'item-01'}
logger INFO
 {'id': 'item-02'}

And finally we reset the stdin:

>>> reset_stdin(oldstdin)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Codec section

A codec pipeline section lets you alter the character encoding of item
values, allowing you to recode text from and to unicode and any of the
codecs supported by python. The codec section blueprint name is
collective.transmogrifier.sections.codec.

What values to recode is determined by the keys option, which takes a set
of newline-separated key names. If a key name starts with re: or
regexp: it is treated as a regular expression instead.

The optional from and to options determine what codecs values are
recoded from and to. Both these values default to unicode, meaning no
translation. If either option is set to default, the current default
encoding of the Plone site is used.

To deal with possible encoding errors, you can set the error handler of both
the from and to codecs separately with the from-error-handler and
to-error-handler options, respectively. These default to strict, but
can be set to any error handler supported by python, including replace and
ignore.

Also optional is the condition option, which lets you specify a TALES
expression that when evaluating to False will prevent any en- or decoding from
happening. The condition is evaluated for every matched key.

>>> codecs = """
... [transmogrifier]
... pipeline =
... source
... decode-all
... encode-id
... encode-title
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.samplesource
... encoding = utf8
...
... [decode-all]
... blueprint = collective.transmogrifier.sections.codec
... keys = re:.*
... from = utf8
...
... [encode-id]
... blueprint = collective.transmogrifier.sections.codec
... keys = id
... to = ascii
...
... [encode-title]
... blueprint = collective.transmogrifier.sections.codec
... keys = title
... to = ascii
... to-error-handler = backslashreplace
... condition = python:'Brand' not in item['title']
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.codecs',
... codecs)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.codecs')
>>> print handler
logger INFO
 {'id': 'foo', 'status': u'\u2117', 'title': 'The Foo Fighters \\u2117'}
logger INFO
 {'id': 'bar', 'status': u'\u2122', 'title': u'Brand Chocolate Bar \u2122'}
logger INFO
 {'id': 'monty-python', 'status': u'\xa9', 'title': "Monty Python's Flying Circus \\xa9"}

The condition expression has access to the following:

	item
	the current pipeline item

	key
	the name of the matched key

	match
	if the key was matched by a regular expression, the match
object, otherwise boolean True

	transmogrifier
	the transmogrifier

	name
	the name of the splitter section

	options
	the splitter options

	modules
	sys.modules

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Condition section

A condition pipeline section lets you selectively discard items from the
pipeline. The condition section blueprint name is
collective.transmogrifier.sections.condition.

A condition section takes a condition TALES expression. When this
expression when matched against the current item is True, the item is yielded
to the next pipe section, otherwise it is not:

>>> condition = """
... [transmogrifier]
... pipeline =
... source
... condition
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 5
...
... [condition]
... blueprint = collective.transmogrifier.sections.condition
... condition = python:int(item['id'][-2:]) > 2
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.condition',
... condition)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.condition')
>>> print handler
logger INFO
 {'id': 'item-03'}
logger INFO
 {'id': 'item-04'}

The condition expression has access to the following:

	item
	the current pipeline item

	transmogrifier
	the transmogrifier

	name
	the name of the splitter section

	options
	the splitter options

	modules
	sys.modules

As condition sections skip items in the pipeline, they should not be used
inside a splitter section!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Constructor section

A constructor pipeline section is the heart of a transmogrifier content import
pipeline. It constructs Plone content based on the items it processes. The
constructor section blueprint name is
collective.transmogrifier.sections.constructor. Constructor sections do
only one thing, they construct new content. No schema changes are made.
Also, constructors create content without restrictions, no security checks or
containment constraints are checked.

Construction needs 2 pieces of information: the path to the item (including
the id for the new item itself) and it's portal type. To determine both of
these, the constructor section inspects each item and looks for 2 keys, as
described below. Any item missing any of these 2 pieces will be skipped.
Similarly, items with a path for a container or type that doesn't exist will
be skipped as well; make sure that these containers are constructed
beforehand. Because a constructor section will only construct new objects, if
an object with the same path already exists, the item will also be skipped.

For the object path, it'll look (in order) for
collective.transmogrifier.sections.constructor[sectionname]_path,
_collective.transmogrifier.sections.constructor_path,
_[sectionname]_path, and _path, where [sectionname] is replaced
with the name given to the current section. This allows you to target the
right section precisely if needed. Alternatively, you can specify what key to
use for the path by specifying the path-key option, which should be a list
of keys to try (one key per line, use a re: or regexp: prefix to
specify regular expressions).

For the portal type, use the type-key option to specify a set of keys just
like path-key. If omitted, the constructor will look for
collective.transmogrifier.sections.constructor[sectionname]_type,
_collective.transmogrifier.sections.constructor_type,
_[sectionname]_type, _type, portal_type and Type (in that
order, with [sectionname] replaced).

Unicode paths will be encoded to ASCII. Using the path and type, a new object
will be constructed using invokeFactory; nothing else is done. Paths are
always interpreted as relative to the context object, with the last path
segment being the id of the object to create.

By default the constructor section will log a warning if the container for
the item is missing and the item can't be constructed. However if you add a
required = True key to the constructor section it will instead raise a KeyError.

>>> import pprint
>>> constructor = """
... [transmogrifier]
... pipeline =
... contentsource
... constructor
... logger
...
... [contentsource]
... blueprint = collective.transmogrifier.sections.tests.contentsource
...
... [constructor]
... blueprint = collective.transmogrifier.sections.constructor
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.constructor',
... constructor)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.constructor')
>>> print handler
logger INFO
 {'_path': '/eggs/foo', '_type': 'FooType'}
logger INFO
 {'_path': '/spam/eggs/foo', '_type': 'FooType'}
logger INFO
 {'_path': '/foo', '_type': 'FooType'}
logger INFO
 {'_path': u'/unicode/encoded/to/ascii', '_type': 'FooType'}
logger INFO
 {'_path': 'not/existing/bar',
 '_type': 'BarType',
 'title': 'Should not be constructed, not an existing path'}
logger INFO
 {'_path': '/spam/eggs/existing',
 '_type': 'FooType',
 'title': 'Should not be constructed, an existing object'}
logger INFO
 {'_path': '/spam/eggs/incomplete',
 'title': 'Should not be constructed, no type'}
logger INFO
 {'_path': '/spam/eggs/nosuchtype',
 '_type': 'NonExisting',
 'title': 'Should not be constructed, not an existing type'}
logger INFO
 {'_path': 'spam/eggs/changedByFactory',
 '_type': 'FooType',
 'title': 'Factories are allowed to change the id'}
>>> pprint.pprint(plone.constructed)
[('eggs', 'foo', 'FooType'),
 ('spam/eggs', 'foo', 'FooType'),
 ('', 'foo', 'FooType'),
 ('unicode/encoded/to', 'ascii', 'FooType'),
 ('spam/eggs', 'changedByFactory', 'FooType')]

>>> constructor = """
... [transmogrifier]
... pipeline =
... contentsource
... constructor
... logger
...
... [contentsource]
... blueprint = collective.transmogrifier.sections.tests.contentsource
...
... [constructor]
... blueprint = collective.transmogrifier.sections.constructor
... required = True
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.constructor2',
... constructor)
>>> handler.clear()
>>> try:
... transmogrifier(u'collective.transmogrifier.sections.tests.constructor2')
... raise AssertionError("Required constructor did not raise an error for missing folder")
... except KeyError:
... pass
>>> print handler
logger INFO
 {'_path': '/eggs/foo', '_type': 'FooType'}
logger INFO
 {'_path': '/spam/eggs/foo', '_type': 'FooType'}
logger INFO
 {'_path': '/foo', '_type': 'FooType'}
logger INFO
 {'_path': u'/unicode/encoded/to/ascii', '_type': 'FooType'}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

CSV source section

A CSV source pipeline section lets you create pipeline items from CSV files.
The CSV source section blueprint name is
collective.transmogrifier.sections.csvsource.

A CSV source section will load the CSV file named in the filename
option or the CSV file named in an item key using the key option,
and will yield an item for each line in the CSV file. It'll use the first line
of the CSV file to determine what keys to use, or you can specify a
fieldnames option to specify the key names.

The filename option may be an absolute path, or a package reference, e.g.
my.package:foo/bar.csv.

By default the CSV file is assumed to use the Excel CSV dialect, but you can
specify any dialect supported by the python csv module if you specify it with
the dialect option. You can also specify `fmtparams`_ using
options that start with fmtparam-.

>>> import os
>>> from collective.transmogrifier import tests
>>> csvsource = """
... [transmogrifier]
... pipeline =
... csvsource
... logger
...
... [csvsource]
... blueprint = collective.transmogrifier.sections.csvsource
... filename = {}/csvsource.csv
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """.format(os.path.dirname(tests.__file__))
>>> registerConfig(u'collective.transmogrifier.sections.tests.csvsource.file',
... csvsource)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.csvsource.file')
>>> print handler
logger INFO
 {'bar': 'first-bar', 'baz': 'first-baz', 'foo': 'first-foo'}
logger INFO
 {'bar': 'second-bar', 'baz': 'second-baz', 'foo': 'second-foo'}

The CSV file column field names can also be specified.

>>> handler.clear()
>>> transmogrifier(u'collective.transmogrifier.sections.tests.csvsource.file',
... csvsource=dict(fieldnames='monty spam eggs'))
>>> print handler
logger INFO
 {'eggs': 'baz', 'monty': 'foo', 'spam': 'bar'}
logger INFO
 {'eggs': 'first-baz', 'monty': 'first-foo', 'spam': 'first-bar'}
logger INFO
 {'eggs': 'second-baz', 'monty': 'second-foo', 'spam': 'second-bar'}

Here is the same example, loading a file from a package instead:

>>> csvsource = """
... [transmogrifier]
... pipeline =
... csvsource
... logger
...
... [csvsource]
... blueprint = collective.transmogrifier.sections.csvsource
... filename = collective.transmogrifier.tests:sample.csv
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.csvsource.package',
... csvsource)
>>> handler.clear()
>>> transmogrifier(u'collective.transmogrifier.sections.tests.csvsource.package')
>>> print handler
logger INFO
 {'bar': 'first-bar', 'baz': 'first-baz', 'foo': 'first-foo'}
logger INFO
 {'_csvsource_rest': ['corge', 'grault'],
 'bar': 'second-bar',
 'baz': 'second-baz',
 'foo': 'second-foo'}

We can also load a file from a GS import context:

>>> from collective.transmogrifier.transmogrifier import Transmogrifier
>>> from collective.transmogrifier.genericsetup import IMPORT_CONTEXT
>>> from zope.annotation.interfaces import IAnnotations
>>> class FakeImportContext(object):
... def __init__(self, subdir, filename, contents):
... self.filename = filename
... self.subdir = subdir
... self.contents = contents
... def readDataFile(self, filename, subdir=None):
... if subdir is None and self.subdir is not None:
... return None
... if filename != self.filename:
... return None
... return self.contents
>>> csvsource = """
... [transmogrifier]
... pipeline =
... csvsource
... logger
...
... [csvsource]
... blueprint = collective.transmogrifier.sections.csvsource
... filename = importcontext:sub/dir/somefile.csv
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.csvsource.gs',
... csvsource)
>>> handler.clear()
>>> t = Transmogrifier({})
>>> IAnnotations(t)[IMPORT_CONTEXT] = FakeImportContext('sub/dir/', 'somefile.csv',
... """animal,name
... cow,daisy
... pig,george
... duck,archibald
... """)
>>> t(u'collective.transmogrifier.sections.tests.csvsource.gs')
>>> print handler
logger INFO
 {'animal': 'cow', 'name': 'daisy'}
logger INFO
 {'animal': 'pig', 'name': 'george'}
logger INFO
 {'animal': 'duck', 'name': 'archibald'}

Import contexts can be chunked, and that's okay:

>>> import StringIO
>>> class FakeChunkedImportContext(object):
... def __init__(self, subdir, filename, contents):
... self.filename = filename
... self.contents = contents
... def openDataFile(self, filename, subdir=None):
... if subdir is None and self.subdir is not None:
... return None
... if filename != self.filename:
... return None
... return StringIO.StringIO(self.contents)
>>> handler.clear()
>>> t = Transmogrifier({})
>>> IAnnotations(t)[IMPORT_CONTEXT] = FakeChunkedImportContext(None, 'somefile.csv',
... """animal,name
... fish,wanda
... """)
>>> t(u'collective.transmogrifier.sections.tests.csvsource.gs')
>>> print handler
logger INFO
 {'animal': 'fish', 'name': 'wanda'}

Attempting to load a nonexistant file won't do anything:

>>> handler.clear()
>>> t = Transmogrifier({})
>>> IAnnotations(t)[IMPORT_CONTEXT] = FakeImportContext(None, 'someotherfile.csv',
... """animal,name
... cow,daisy
... pig,george
... duck,archibald
... """)
>>> t(u'collective.transmogrifier.sections.tests.csvsource.gs')
>>> print handler

Not having an import context around will also find nothing:

>>> handler.clear()
>>> t = Transmogrifier({})
>>> t(u'collective.transmogrifier.sections.tests.csvsource.gs')
>>> print handler

The file can also be taken from a source item's key. A key can also be
specified for rows that have more values than the fieldnames.

>>> csvsource = """
... [transmogrifier]
... include = collective.transmogrifier.sections.tests.csvsource.package
... pipeline =
... csvsource
... filename
... item-csvsource
... logger
...
... [csvsource]
... blueprint = collective.transmogrifier.sections.csvsource
... filename = collective.transmogrifier.tests:keysource.csv
...
... [filename]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:_item-csvsource
... condition = exists:item/_item-csvsource
... value = python:modules['os.path'].join(modules['os.path'].dirname(
... modules['collective.transmogrifier.tests'].__file__),
... item['_item-csvsource'])
...
... [item-csvsource]
... blueprint = collective.transmogrifier.sections.csvsource
... restkey = _args
... row-key = string:_csvsource
...
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.csvsource.key',
... csvsource)

>>> handler.clear()
>>> transmogrifier(u'collective.transmogrifier.sections.tests.csvsource.key')
>>> print handler
logger INFO
 {'_item-csvsource': '.../collective/transmogrifier/tests/sample.csv'}
logger INFO
 {'_csvsource': '.../collective/transmogrifier/tests/sample.csv',
 'bar': 'first-bar',
 'baz': 'first-baz',
 'foo': 'first-foo'}
logger INFO
 {'_args': ['corge', 'grault'],
 '_csvsource': '.../collective/transmogrifier/tests/sample.csv',
 'bar': 'second-bar',
 'baz': 'second-baz',
 'foo': 'second-foo'}

The fmtparam- expressions have access to the following:

	key
	the `fmtparam`_ attribute

	transmogrifier
	the transmogrifier

	name
	the name of the inserter section

	options
	the inserter options

	modules
	sys.modules

The row-key and row-value expressions have access to the following:

	item
	the pipeline item to be yielded from this CSV row

	source_item
	the pipeline item the CSV filename was taken from

	transmogrifier
	the transmogrifier

	name
	the name of the inserter section

	options
	the inserter options

	modules
	sys.modules

	key
	(only for the value and condition expressions) the key
being inserted

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Directory Walker section

An directory walker source section yields a hierarchy of items with
paths from a filesystem using `os.walk()`_.

>>> infologger = """
... [transmogrifier]
... pipeline =
... source
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.dirwalker
... dirname = collective.transmogrifier:.
... sort-key = python:not basename.lower().startswith('dir'), basename
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.dirwalker',
... infologger)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.dirwalker')
>>> print handler
logger INFO
 {'_path': '/', '_type': 'Folder'...
logger INFO
 {'_path': '__init__.py'...
logger INFO
 {'_path': 'sections/', '_type': 'Folder'...
logger INFO
 {'_path': 'tests/', '_type': 'Folder'...
logger INFO
 {'_path': 'sections/dirwalker.py'...
logger INFO
 {'_path': 'sections/breakpoint.py'...

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Folders section

The collective.transmogrifier.sections.constructor blueprint can construct
new content, based on a type (_type key) and a path (_path key).
However, it will bail if it is asked to create an item for which the parent
folder does not exist.

One way to work around this is to ensure that the folders already exist, for
example by sending the instruction to construct them through the pipeline
before any contents of that folder. This requires sorted input, of course.

Alternatively, you can use the collective.transmogrifier.sections.folders
blueprint. This will look at the path of each incoming item and construct
parent folders if needed. This implies that all folders (that do not yet
exist), are of the same type. That type defaults to Folder, although you
can supply an alternative type. The folder will be created without an id only,
but a subsequent schema updated section for a subsequent item may have the
opportunity to update it (but not change its type.)

This blueprint can take the following options, all of the optional:

	path-key

	The name of the key holding the path. This defaults to the same semantics
as those used for the constructor section. Just use _path and you'll
be OK.

	new-type-key

	The type key to use when inserting a new item in the pipeline to create
folders. The default is _type. Change it if you need to target a
specific constructor section.

	new-path-key

	The path key to use when inserting a new item in the pipeline to create
folders. The default is to use the same as the incoming path key. Change
it if you need to target a specific constructor section.

	folder-type

	The name of the portal type to use for new folders. Defaults to
Folder, which is the default folder type in CMF and Plone.

	cache

	By default, the section will keep a cache in memory of each folder it has
checked (and possibly created) to know whether it already exists. This
saves a lot of traversal, especially if you have many items under a
particular folder. This will use a small amount of memory. If you have
millions of objects, you can trade memory for speed by setting this option
to false.

Here is how it might look by default:

>>> import pprint
>>> constructor = """
... [transmogrifier]
... pipeline =
... contentsource
... folders
... logger
...
... [contentsource]
... blueprint = collective.transmogrifier.sections.tests.folderssource
...
... [folders]
... blueprint = collective.transmogrifier.sections.folders
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.folders',
... constructor)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.folders')
>>> print handler
logger INFO
 {'_path': '/foo', '_type': 'Document'}
logger INFO
 {'_path': '/existing/foo', '_type': 'Document'}
logger INFO
 {'_path': '/nonexisting', '_type': 'Folder'}
logger INFO
 {'_path': '/nonexisting/alpha', '_type': 'Folder'}
logger INFO
 {'_path': '/nonexisting/alpha/foo', '_type': 'Document'}
logger INFO
 {'_path': '/nonexisting/beta', '_type': 'Folder'}
logger INFO
 {'_path': '/nonexisting/beta/foo', '_type': 'Document'}
logger INFO
 {'_type': 'Document'}
logger INFO
 {'_folders_path': '/delta', '_type': 'Folder'}
logger INFO
 {'_folders_path': '/delta/foo', '_type': 'Document'}

To specify alternate types and keys, we can do something like this:

>>> import pprint
>>> constructor = """
... [transmogrifier]
... pipeline =
... contentsource
... folders
... logger
...
... [contentsource]
... blueprint = collective.transmogrifier.sections.tests.folderssource
...
... [folders]
... blueprint = collective.transmogrifier.sections.folders
... folder-type = My Folder
... new-type-key = '_folderconstructor_type
... new-path-key = '_folderconstructor_path
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.folders2',
... constructor)
>>> handler.clear()
>>> plone.exists.clear()
>>> transmogrifier(u'collective.transmogrifier.sections.tests.folders2')
>>> print handler
logger INFO
 {'_path': '/foo', '_type': 'Document'}
logger INFO
 {'_path': '/existing/foo', '_type': 'Document'}
logger INFO
 {"'_folderconstructor_path": '/nonexisting',
 "'_folderconstructor_type": 'My Folder'}
logger INFO
 {"'_folderconstructor_path": '/nonexisting/alpha',
 "'_folderconstructor_type": 'My Folder'}
logger INFO
 {'_path': '/nonexisting/alpha/foo', '_type': 'Document'}
logger INFO
 {"'_folderconstructor_path": '/nonexisting/beta',
 "'_folderconstructor_type": 'My Folder'}
logger INFO
 {'_path': '/nonexisting/beta/foo', '_type': 'Document'}
logger INFO
 {'_type': 'Document'}
logger INFO
 {"'_folderconstructor_path": '/delta',
 "'_folderconstructor_type": 'My Folder'}
logger INFO
 {'_folders_path': '/delta/foo', '_type': 'Document'}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Inserter section

An inserter pipeline section lets you define a key and value to insert into
pipeline items. The inserter section blueprint name is
collective.transmogrifier.sections.inserter.

A inserter section takes a key and a value TALES expression. These
expressions are evaluated to generate the actual key-value pair that gets
inserted. You can also specify an optional condition option; if given, the
key only gets inserted when the condition, which is also a TALES is true.

Because the inserter value expression has access to the original item, it
could even be used to change existing item values. Just target an existing
key, pull out the original value in the value expression and return a modified
version.

>>> inserter = """
... [transmogrifier]
... pipeline =
... source
... simple-insertion
... expression-insertion
... transform-id
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [simple-insertion]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:foo
... value = string:bar (inserted into "${item/id}" by the "$name" section)
...
... [expression-insertion]
... blueprint = collective.transmogrifier.sections.inserter
... key = python:'foo-%s' % item['id'][-2:]
... value = python:int(item['id'][-2:]) * 15
... condition = python:int(item['id'][-2:])
...
... [transform-id]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:id
... value = string:foo-${item/id}
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.inserter',
... inserter)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.inserter')
>>> print handler
logger INFO
 {'foo': 'bar (inserted into "item-00" by the "simple-insertion" section)',
 'id': 'foo-item-00'}
logger INFO
 {'foo': 'bar (inserted into "item-01" by the "simple-insertion" section)',
 'foo-01': 15,
 'id': 'foo-item-01'}
logger INFO
 {'foo': 'bar (inserted into "item-02" by the "simple-insertion" section)',
 'foo-02': 30,
 'id': 'foo-item-02'}

The key, value and condition expressions have access to the
following:

	item
	the current pipeline item

	transmogrifier
	the transmogrifier

	name
	the name of the inserter section

	options
	the inserter options

	modules
	sys.modules

	key
	(only for the value and condition expressions) the key
being inserted

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

collective.blueprint.listsource

The collective.blueprint.listsource transmogrifier blueprint can be
used to add recursion or looping to a pipeline. Specifically,
sections down stream from the list source section can access the list
source section and inject items.

If items from sources before the listsource section are appended, then
a loop is formed. If items from sources after the listsource section
are appended, then a form of recursion is added to the pipeline. If
the keys or copy-keys options are used, then certain item keys
may be postponed while other items complete such as to defer
processing keys until other items are constructed.

Items from previous sections are yielded first until items are
appended to the listsource. Then the listsource items are yielded
until the listsource is empty at which point it continues yielding
from previous sections. This is to avoid keeping item references in
the listsource as much as possible, but care should still be taken not
to fill the list with too many items and that those items do not
contain memory or other resource intensive references.

Assemble and register a transmogrifier with a list source section.

>>> lister = """
... [transmogrifier]
... pipeline =
... source
... list
... logger
... insert
... append
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 1
...
... [list]
... blueprint = collective.transmogrifier.sections.listsource
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
...
... [insert]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:id
... value = python:'item-%02d' % (int(item['id'].rsplit('-', 1)[-1]) + 1)
...
... [append]
... blueprint = collective.transmogrifier.sections.listappender
... condition = python:item['id'] < 'item-03'
... section = list
... """
>>> registerConfig(
... u'collective.transmogrifier.sections.tests.listsource',
... lister)

Run the transmogrifier. An item with contents corresponding the
section config is injected. All values are stripped of whitespace. A
variable whose name is listed in the listsource-lists variable will
be broken up on newlines into a list.

>>> transmogrifier(
... u'collective.transmogrifier.sections.tests.listsource')
>>> print handler
logger INFO
 {'id': 'item-00'}
logger INFO
 {'id': 'item-01'}
logger INFO
 {'id': 'item-02'}
>>> handler.clear()

Instead of diverting the whole item, the appender section can move or
copy keys from the original item into a new item which will be
appended to the list source.

>>> lister = """
... [transmogrifier]
... include = collective.transmogrifier.sections.tests.listsource
... pipeline -=
... logger
... append
... pipeline +=
... copy
... append
... logger
...
... [source]
... size = 3
...
... [copy]
... blueprint = collective.transmogrifier.sections.manipulator
... keys = id
... destination = string:copy
...
... [append]
... keys = python:['id']
... copy-keys = python:['copy']
... """
>>> registerConfig(
... u'collective.transmogrifier.sections.tests.listsource-move',
... lister)
>>> transmogrifier(
... u'collective.transmogrifier.sections.tests.listsource-move')
>>> print handler
logger INFO
 {'copy': 'item-01'}
logger INFO
 {'copy': 'item-02'}
logger INFO
 {'copy': 'item-03', 'id': 'item-03'}
logger INFO
 {'copy': 'item-02'}
logger INFO
 {'copy': 'item-03', 'id': 'item-03'}
logger INFO
 {'copy': 'item-03', 'id': 'item-03'}

The condition expression has access to the following:

	item
	the current pipeline item

	transmogrifier
	the transmogrifier

	name
	the name of the splitter section

	options
	the splitter options

	modules
	sys.modules

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Logger section

First we need to set up a logger for testing:

>>> import logging, sys
>>> logger = logging.getLogger()
>>> handler = logging.StreamHandler(sys.stdout)
>>> handler.setFormatter(logging.Formatter('%(name)s: %(message)s'))
>>> logger.addHandler(handler)

A logger section lets you log a piece of data from the item together with a
name. You can set any logging level in the logger. The logger blueprint name
is collective.transmogrifier.sections.logger.

>>> infologger = """
... [transmogrifier]
... pipeline =
... source
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... level = INFO
... name = Infologger test
... key = id
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.infologger',
... infologger)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.infologger')
Infologger test: item-00
Infologger test: item-01
Infologger test: item-02

We can also have numerical levels, and if the key is missing, it will print out
a message to that effect. A condition may also be used to restrict
the items logged.

>>> debuglogger = """
... [transmogrifier]
... pipeline =
... source
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... level = 10
... name = Infologger test
... key = foo
... condition = python:item['id'] != 'item-01'
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.debuglogger',
... debuglogger)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.debuglogger')
Infologger test: -- Missing key --
Infologger test: -- Missing key --

If no key option is given, the logger will render the whole item
in a readable format using Python's pprint module. The delete
option can be used to omit certain keys from the output, such as body
text fields which may be too large and make the output too noisy.

>>> logger = """
... [transmogrifier]
... pipeline =
... source
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.samplesource
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... level = INFO
... delete =
... title-duplicate
... id-duplicate
... nonexistent
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.logger',
... logger)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.logger')
collective.transmogrifier.sections.tests.logger.logger:
 {'id': 'foo', 'status': u'\u2117', 'title': u'The Foo Fighters \u2117'}
collective.transmogrifier.sections.tests.logger.logger:
 {'id': 'bar', 'status': u'\u2122', 'title': u'Brand Chocolate Bar \u2122'}
collective.transmogrifier.sections.tests.logger.logger:
 {'id': 'monty-python',
 'status': u'\xa9',
 'title': u"Monty Python's Flying Circus \xa9"}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Manipulator section

A manipulator pipeline section lets you copy, move or discard keys from the
pipeline. The manipulator section blueprint name is
collective.transmogrifier.sections.manipulator.

A manipulator section will copy keys when you specify a set of keys to copy,
and an expression to determine what to copy these to. These are the keys
and destination options.

The keys option is a set of key names, one on each line; keynames starting
with re: or regexp: are treated as regular expresions. The
destination expression is a TALES expression that can access not only the
item, but also the matched key and, if a regular expression was used, the
match object.

If a delete option is specified, it is also interpreted as a set of keys,
like the keys option. These keys will be deleted from the item; if used
together with the keys and destination options, keys will be renamed
instead of copied.

Also optional is the condition option, which lets you specify a TALES
expression that when evaluating to False will prevent any manipulation from
happening. The condition is evaluated for every matched key.

>>> manipulator = """
... [transmogrifier]
... pipeline =
... source
... copy
... rename
... delete
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.samplesource
...
... [copy]
... blueprint = collective.transmogrifier.sections.manipulator
... keys =
... title
... id
... destination = string:$key-copy
...
... [rename]
... blueprint = collective.transmogrifier.sections.manipulator
... keys = re:([^-]+)-copy$
... destination = python:'%s-duplicate' % match.group(1)
... delete = ${rename:keys}
...
... [delete]
... blueprint = collective.transmogrifier.sections.manipulator
... delete = status
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.manipulator',
... manipulator)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.manipulator')
>>> print handler
logger INFO
 {'id': 'foo',
 'id-duplicate': 'foo',
 'title': u'The Foo Fighters \u2117',
 'title-duplicate': u'The Foo Fighters \u2117'}
logger INFO
 {'id': 'bar',
 'id-duplicate': 'bar',
 'title': u'Brand Chocolate Bar \u2122',
 'title-duplicate': u'Brand Chocolate Bar \u2122'}
logger INFO
 {'id': 'monty-python',
 'id-duplicate': 'monty-python',
 'title': u"Monty Python's Flying Circus \xa9",
 'title-duplicate': u"Monty Python's Flying Circus \xa9"}
>>> handler.clear()

The destination expression has access to the following:

	item
	the current pipeline item

	key
	the name of the matched key

	match
	if the key was matched by a regular expression, the match
object, otherwise boolean True

	transmogrifier
	the transmogrifier

	name
	the name of the splitter section

	options
	the splitter options

	modules
	sys.modules

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Savepoint section

A savepoint pipeline section commits a savepoint every so often, which has a
side-effect of freeing up memory. The savepoint section blueprint name is
collective.transmogrifier.sections.savepoint.

A savepoint section takes an optional every option, which defaults to
1000; a savepoint is committed every every items passing through the pipe.
A savepoint section doesn't alter the items in any way:

>>> savepoint = """
... [transmogrifier]
... pipeline =
... source
... savepoint
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 10
...
... [savepoint]
... blueprint = collective.transmogrifier.sections.savepoint
... every = 3
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.savepoint',
... savepoint)

We'll show savepoints being committed by overriding transaction.savepoint:

>>> import transaction
>>> original_savepoint = transaction.savepoint
>>> counter = [0]
>>> def test_savepoint(counter=counter, *args, **kw):
... counter[0] += 1
>>> transaction.savepoint = test_savepoint
>>> transmogrifier(u'collective.transmogrifier.sections.tests.savepoint')
>>> transaction.savepoint = original_savepoint
>>> counter[0]
3

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

Splitter section

A splitter pipeline section lets you branch a pipeline into 2 or more
sub-pipelines. The splitter section blueprint name is
collective.transmogrifier.sections.splitter.

A splitter section takes 2 or more pipeline definitions, and sends the items
from the previous section through each of these sub-pipelines, each with it's
own copy [*] of the items:

>>> emptysplitter = """
... [transmogrifier]
... pipeline =
... source
... splitter
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [splitter]
... blueprint = collective.transmogrifier.sections.splitter
... pipeline-1 =
... pipeline-2 =
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.emptysplitter',
... emptysplitter)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.emptysplitter')
>>> print handler
logger INFO
 {'id': 'item-00'}
logger INFO
 {'id': 'item-00'}
logger INFO
 {'id': 'item-01'}
logger INFO
 {'id': 'item-01'}
logger INFO
 {'id': 'item-02'}
logger INFO
 {'id': 'item-02'}

Although the pipeline definitions in the splitter are empty, we end up with 2
copies of every item in the pipeline as both splitter pipelines get to process
a copy. Splitter pipelines are defined by options starting with pipeline-.

Normally you'll use conditions to identify items for each sub-pipe, making the
splitter the pipeline equivalent of an if/elif statement. Conditions are
optional and use the pipeline option name plus -condition:

>>> evenoddsplitter = """
... [transmogrifier]
... pipeline =
... source
... splitter
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 3
...
... [splitter]
... blueprint = collective.transmogrifier.sections.splitter
... pipeline-even-condition = python:int(item['id'][-2:]) % 2
... pipeline-even = even-section
... pipeline-odd-condition = not:${splitter:pipeline-even-condition}
... pipeline-odd = odd-section
...
... [odd-section]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:even
... value = string:The even pipe
...
... [even-section]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:odd
... value = string:The odd pipe
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(u'collective.transmogrifier.sections.tests.evenodd',
... evenoddsplitter)
>>> handler.clear()
>>> transmogrifier(u'collective.transmogrifier.sections.tests.evenodd')
>>> print handler
logger INFO
 {'even': 'The even pipe', 'id': 'item-00'}
logger INFO
 {'id': 'item-01', 'odd': 'The odd pipe'}
logger INFO
 {'even': 'The even pipe', 'id': 'item-02'}

Conditions are expressed as TALES statements, and have access to:

	item
	the current pipeline item

	transmogrifier
	the transmogrifier

	name
	the name of the splitter section

	pipeline
	the name of the splitter pipeline this condition belongs
to (including the pipeline- prefix)

	options
	the splitter options

	modules
	sys.modules

Warning

Although the splitter section employs some techniques to avoid memory
bloat, if any contained section swallows items (so taking them from the
previous section without passing them on), runs the risk of pulling all
remaining items into the splitter buffer as a next match for the contained
pipeline is being sought.

You can avoid this by not using sections that discard items within a
splitter; place these before or after a splitter section. Better still,
use a correct condition in the splitter configuration that won't include
the items to discard in the first place.

	[*]	Note that copy.deepcopy is used on all items. This will fail on items
containing file handles, modules or other non-copyable values. See the
copy module documentation.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

URL Opener section

An URL opener source section requests a URL and inserts keys for the
response and header optionally also using a local cache.

>>> urlopener = """
... [transmogrifier]
... pipeline =
... source
... url
... urlopen
... headers
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.csvsource
... filename = collective.transmogrifier.tests:urlopener.csv
...
... [url]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:_url
... condition = python:not modules['urlparse'].urlsplit(
... item.get('_url', '')).netloc
... value = python:'file://' + modules['posixpath'].join(
... modules['os.path'].dirname(
... modules['collective.transmogrifier'].__file__), item['_url'])
...
... [urlopen]
... blueprint = collective.transmogrifier.sections.urlopener
... handlers = python:[modules[
... 'collective.transmogrifier.sections.tests'].HTTPHandler]
... ignore-error = python:error.code == 404
... cache-directory = var/tests.urlopener.cache.d
...
... [headers]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:_headers
... condition = exists:item/_headers
... value = python:dict(item['_headers'])
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """
>>> registerConfig(
... u'collective.transmogrifier.sections.tests.urlopener', urlopener)

>>> transmogrifier(u'collective.transmogrifier.sections.tests.urlopener')
>>> print handler
logger INFO
 {'_cache': 'var/tests.urlopener.cache.d/http/foo/bar/qux/non-existent.html',
 '_headers': {'status': '404 Not Found',
 'url': 'http://foo/bar/qux/non-existent.html'},
 '_url': 'http://foo/bar/qux/non-existent.html'}
logger INFO
 {'_cache': 'var/tests.urlopener.cache.d/http/foo/bar/qux/redirect.html',
 '_headers': {'redirect-status': '301 Permanent',
 'status': '200 Ok',
 'url': 'http://foo/bar/qux/location.html'},
 '_url': 'http://foo/bar/qux/redirect.html'}

The cache directory has had response bodies written as files and
headers as RFC822 messages.

>>> import os
>>> import pprint
>>> pprint.pprint(sorted(list(
... (x[0], sorted(x[1]), sorted(x[2]))
... for x in os.walk('var/tests.urlopener.cache.d')
...), key= lambda x: x[0]))
[('var/tests.urlopener.cache.d', ['http'], []),
 ('var/tests.urlopener.cache.d/http', ['foo'], []),
 ('var/tests.urlopener.cache.d/http/foo', ['bar'], []),
 ('var/tests.urlopener.cache.d/http/foo/bar', ['qux'], []),
 ('var/tests.urlopener.cache.d/http/foo/bar/qux',
 [],
 ['non-existent.html',
 'non-existent.html.mht',
 'redirect.html',
 'redirect.html.mht'])]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Importing content from other sources »

 	collective.transmogrifier documentation »

 	Default section blueprints »

XML Walker section

An XML walker source section yields a hierarchy of items by iterating
over an `lxml.etree`_ tree of XML elements that match an `XPath`_.
This can be used to build content structure based on the sitemap or
navigation of a HTML web site.

Options starting with element- may contain expressions whose value
will be inserted into the element items. The expressions have access
to the following:

	element
	the current walked element

	item
	the current walked element item to be yielded

	source_item
	the original item containing the walked tree

	tree
	the original walked tree

	transmogrifier
	the transmogrifier

	name
	the name of the inserter section

	options
	the inserter options

	modules
	sys.modules

Start with an HTML file containing a heirarchical navbar.

>>> import os
>>> html_file = os.path.join(
... os.path.dirname(__file__), 'xmlwalker.html')

>>> infologger = """
... [transmogrifier]
... pipeline =
... source
... parse
... walk
... defaultpage
... clean
... logger
...
... [source]
... blueprint = collective.transmogrifier.sections.tests.rangesource
... size = 1
...
... [parse]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:_trees
... value = python:modules['lxml.html'].parse('{}').xpath(\
... "//*[contains(@class, 'navbar')]//ul[contains(@class, 'nav')]")
...
... [walk]
... blueprint = collective.transmogrifier.sections.xmlwalker
... element-keys =
... _path
... title
... element-_path = python:element.attrib.get(\
... 'href', element.attrib.get('src', ''))
... element-title = python:element.text_content().strip()\
... or element.attrib.get('alt', '')
...
... [defaultpage]
... blueprint = collective.transmogrifier.sections.inserter
... key = string:_defaultpage
... condition = python:item.get('_parent', dict()).pop('_parent', True)\
... and item.get('_defaultpage')
... value = exists:item/_defaultpage
...
... [clean]
... blueprint = collective.transmogrifier.sections.manipulator
... delete =
... _trees
... _element
... id
...
... [logger]
... blueprint = collective.transmogrifier.sections.logger
... name = logger
... level = INFO
... """.format(html_file)
>>> registerConfig(u'collective.transmogrifier.sections.tests.xmlwalker',
... infologger)
>>> transmogrifier(u'collective.transmogrifier.sections.tests.xmlwalker')
>>> print handler
logger INFO
 {}
logger INFO
 {'_parent': {}, '_path': '#', '_type': 'Folder', 'title': 'Foo Tab'}
logger INFO
 {'_is_defaultpage': True,
 '_parent': {'_path': '#', '_type': 'Folder', 'title': 'Foo Tab'},
 '_path': '#',
 'title': 'Foo Tab'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Foo Tab'},
 '_path': '../foo-tab/index.html',
 'title': 'Foo Tab Default Page'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Foo Tab'},
 '_path': '../foo-tab/bar-image.png',
 'title': 'Bar Image'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Foo Tab'},
 '_path': '../foo-tab/qux-page.html',
 'title': 'Qux Page'}
logger INFO
 {'_parent': {}, '_path': '#', '_type': 'Folder', 'title': 'Company'}
logger INFO
 {'_is_defaultpage': True,
 '_parent': {'_path': '#', '_type': 'Folder', 'title': 'Company'},
 '_path': '#',
 'title': 'Company'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Company'},
 '_path': '../company/news.html',
 '_type': 'Folder',
 'title': 'News'}
logger INFO
 {'_is_defaultpage': True,
 '_parent': {'_path': '../company/news.html',
 '_type': 'Folder',
 'title': 'News'},
 '_path': '../company/news.html',
 'title': 'News'}
logger INFO
 {'_parent': {'_path': '../company/news.html',
 '_type': 'Folder',
 'title': 'News'},
 '_path': '../company/news.html',
 'title': 'News'}
logger INFO
 {'_parent': {'_path': '../company/news.html',
 '_type': 'Folder',
 'title': 'News'},
 '_path': '../company/press_releases.html',
 'title': 'Press Releases'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Company'},
 '_path': '../company/events.html',
 'title': 'Events'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Company'},
 '_path': '../contact_us/contact.html',
 'title': 'Contact Us'}
logger INFO
 {'_parent': {'_path': '#', '_type': 'Folder', 'title': 'Company'},
 '_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'}
logger INFO
 {'_is_defaultpage': True,
 '_parent': {'_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'},
 '_path': '../company/index.html',
 'title': 'About Company'}
logger INFO
 {'_parent': {'_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'},
 '_path': '../company/management.html',
 'title': 'Management'}
logger INFO
 {'_parent': {'_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'},
 '_path': '../company/investors.html',
 'title': 'Investors'}
logger INFO
 {'_parent': {'_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'},
 '_path': '../company/careers.html',
 'title': 'Careers'}
logger INFO
 {'_parent': {'_path': '../company/index.html',
 '_type': 'Folder',
 'title': 'About Company'},
 '_path': '../company/company.html',
 'title': 'About Us'}

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/index.html so you have

working references and proper formatting.

Plone Todo list application tutorial

	Framework:	Plone 4.3 [http://plone.org]

	Bug tracker:	https://github.com/collective/tutorial.todoapp/issues

	Source:	https://github.com/collective/tutorial.todoapp

	Documentation:	http://tutorialtodoapp.readthedocs.org/

	Code status:	
 [http://travis-ci.org/collective/tutorial.todoapp]

You will learn to:

	create custom content-types Through-The-Web

	create and apply custom workflows

	create custom listings

	dump your changes into a filesytem package to future-proof them

	write tests for your filesystem package

Summary

It’s a fact - Plone has a lot of complicated features. That doesn’t mean
Plone is hard for everything! This is a simple tutorial that anyone can
follow to get a simple Todo list application running inside of Plone.
Would you want to deploy Plone for just a Todo list in real life? Probably
not. You can however learn several simple, fast concepts that will get you
most of the way there. Feeling like you don’t understand something
completely or the terminology is getting to you? Sit back, relax, and finish
the tutorial. If in the end things still aren’t clear, please give feedback
and we’ll look at what we could do better.

The Tutorial

	Prerequisites

	Tutorial Setup

	Virtualenv

	Troubleshooting

	Chapter 1: Through-The-Web
	Getting Started with Content Types

	Getting Started with Workflows

	Chapter 2: Filesystem package
	Package skeleton

	Exporting configuration

	Tests

	Troubleshooting

	Chapter 3: Custom View
	View class

	View template

	Static resources

	Try it out

	Tests

	Troubleshooting

	Chapter 4: Bling-bling
	AJAX view

	Custom JavaScript

	Trying it out!

	Tests

	The end

	Troubleshooting

Developer Documentation

Information on how to contribute to this tutorial. Note that all code
should follow plone.api code conventions [http://ploneapi.readthedocs.org/en/latest/contribute/conventions.html].

	Releasing a new version
	Checklist

	Actions

	Example

	Changelog
	1.1 (2013-07-04)

	1.0 (2012-09-11)

	License (3-clause BSD)

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/prelude.html so you have

working references and proper formatting.

Prerequisites

	You have Git installed and vaguely know how to use it.

	You are working with Python 2.6 or 2.7

	You have already installed (listed names are for Ubuntu/Debian, should be
similar for your distribution): python-setuptools, python-virtualenv,
zlib1g-dev, libxslt1-dev and libxml2-dev.

	For Ubuntu/Debian users it may be worthwhile to install build-essential
(sudo apt-get install build-essential) to make sure you have necessary
build tools.

	Sorry Windows users, but you'll have to translate as usual from n*x to
Windows-ese.

Tutorial Setup

Since this is a tutorial on how to be a developer, there will always be a
little bit of setup. There are many ways that this could be done and integrated
with the Plone Unified Installer [https://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/what-is-the-unified-installer],
but those are not covered here. It is possible though to use this tutorial in
the context of the Unified Installer by just installing the source skeleton.

	Using Git, checkout the project code for this tutorial. Then run make
to prepare the development environment. There are sometimes problems on Mac
and Linux machines with pre-installed versions of Python. If you run into
issues, please see Troubleshooting:

> mkdir tutorial.todoapp
> git clone git://github.com/collective/tutorial.todoapp.git ./
> make

Note

This will take your system python interpreter. If you wish to use a custom
one, run it like make python=/usr/local/bin/python2.7

Note

Whenever you are stuck with a broken environment and want to start over,
run make clean followed by make. This will remove everything but
your source files and your database, and then continue to rebuild the
entire environment.

Note

Running make also generates this documentation for you locally and
runs all tests. See Makefile for other commands you have available,
such as make docs and make tests.

	Before starting the Plone instance, lets activate our virtualenv. For more information on virtualenv check Virtualenv:

> source bin/activate

	Next up, start the Plone instance:

> ./bin/instance fg

	Open up your browser and navigate to http://localhost:8080/

	Click 'Create a New Plone Site'. The default username and password is
admin:admin.

	Change the name and id if you wish, but keep in mind that for this
tutorial we will assume that the name of the site is Plone and the
Plone instance is located at http://localhost:8080/Plone.

[image: ../../../_images/dexterity_extension.jpg]

	Under Add-ons, make sure to check Dexterity Content Types and
tutorial.todoapp then click Create Plone Site.

[image: ../../../_images/install_todo.jpg]

	There, your Plone site is created and you can continue with the tutorial.

[image: ../../../_images/welcome_to_plone.jpg]

Woot! Let's go.

Virtualenv

virtualenv is a tool to create isolated Python environments. virtualenv documentation [http://www.virtualenv.org/en/latest/].

Troubleshooting

Sometimes setting up development environment gives you lemons. There are various
ways to go around that.

In case you don't have correct Python version or your system Python environment
is broken (yes, I'm looking to you OS X), buildout.python gives you get out of
jail free card. To install it, see the
install docs [https://github.com/collective/buildout.python/blob/master/docs/INSTALL.txt].
Then use buildout.python/python-2.7/bin/python bootstrap.py --distribute step as
in Tutorial Setup section and so on.

If everything fails, it's time to use a virtual machine. See install steps [https://github.com/plone/coredev.vagrant#installation] to prepare and try
again with Tutorial Setup section.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_1.html so you

have working references and proper formatting.

Chapter 1: Through-The-Web

Getting Started with Content Types

If you don't know what a content type is, don't worry! Sit back, relax, and do
the tutorial! I'll save the mumbo jumbo definitions for another day. In this
first part, we will make a Todo list without touching any code. It won't be
fancy, but it will give you a good idea of how things work in Plone.

The way Plone handles content is a little different than your average
relational database driven framework, so if you don't understand something
right away, sit back, relax, and finish the tutorial.

Generally speaking, content-types are just that: types of content. By default,
in Plone you get the News Item content-type, the Event content-type and so on.
So if you add a content item that is of Event type, you are using the Event
content-type. In our case, we will create a new content-type that will
represent a Todo Item.

Create a New Content Type

First we need to create a new content type to represent an item on our Todo
list. This will be a type with one field, that which needs to be done.

	Navigate to site setup as shown below, or just enter
http://localhost:8080/Plone/@@overview-controlpanel in your browser.
This is where you can configure Plone for happy fun time.

[image: ../../../_images/site_setup.jpg]

	Now comes the fun part. We want to create our own type Through-The-Web
aka. TTW. This type will be a Todo Item. Let’s click Dexterity Content
Types (or go directly to
http://localhost:8080/Plone/@@dexterity-types).

[image: ../../../_images/plone_configuration_panel.jpg]

	Create a Todo List Item by clicking Add New Content Type.

[image: ../../../_images/add_content_type.jpg]

	Fill in the fields as seen below and then click Add.

[image: ../../../_images/add_todo_content_type.jpg]

	Now you will see that there is a new type to play with. There are two
important things we need to do here: we need to adjust some behaviors,
and add some fields. Let’s look at behaviors first.

[image: ../../../_images/todo_item_behaviors.jpg]

	By default, all Plone content-types have Dublin Core [http://en.wikipedia.org/wiki/Dublin_Core] metadata enabled (you may know
it as title and description. We don’t need this for our über simple
Todo list item. Uncheck Dublin Core metadata and then click Save.

[image: ../../../_images/behaviors_config.jpg]

	Next we need to add some fields. Because this type is so simple, we will
add just one field, but feel free to go CRAZY. Start by going back to the
Fields tab and clicking Add new field....

[image: ../../../_images/add_new_field.jpg]

	Add a field called Todo, or anything else you want. But! Note that it's
very important that the Short Name field value is title. By using
this key short name, we make sure that all Todo Items are searchable from
smart search. Update the field as seen below and click Add.

[image: ../../../_images/add_todo_field.jpg]

	You will see that a new field has been added to your content type. If you
are feeling adventuresome, click on the settings tab next to the field to
set other properties, or just see what’s available.

[image: ../../../_images/final_todo_fields_config.jpg]

Trying out the Todo Item content-type

Now it's time to reap the rewards of all of your effort. Let's put all of our
Todo Items in one particular folder so that we can have collections of items
throughout the site. For this tutorial, we will be putting everything in the
root of the site so it's easy to debug.

	From the root, add a new folder called TODO list.

[image: ../../../_images/add_folder_menu.jpg]
[image: ../../../_images/save_todo_folder.jpg]

	Add a new Todo Item to the new Todo folder.

[image: ../../../_images/add_todo_item.jpg]
[image: ../../../_images/save_todo_item.jpg]

	Celebrate!

[image: ../../../_images/todo_item.jpg]
You may be wondering about earlier, when we asked you to make sure that the
short name for the Todo Item was called title. The time has come to
let you in on a little secret. Calling the short name either title or
description will automatically add that text to the livesearch menu.
WHAT?!? I know! When life gives you lemonade, spike it with vodka and enjoy
liberally! You can now search for your Todo Items in Live Search.

[image: ../../../_images/live_search_title.jpg]

But wait a minute... This todo item is marked private, and that doesn't
really make sense. It's a good thing Plone has an easy solution for that. In
the next section, we will go over the basics of that magical, mystical word:
workflow.

Getting Started with Workflows

So what is a workflow? It is a mechanism to control the flow of a
content item through various states in time. Most commonly, and by default in Plone,
you deal with a publication workflow. For example: A writer writes up a News
Item and submits it for review. Then the in-house reviewing team goes through
the text and publishes the News Item so it is public for the entire world to
see.

The Todo Item we added in the last section is marked as private because by
default all new Plone content items are assigned a workflow
called simple_publication_workflow. I know what you are thinking:
simple publication whodie whatie grble gobble??!?! Just like before, let's
bypass trying to explain what that means and just fix it. Relax, enjoy, and
finish the tutorial!

Todo Items really have 2 states that we are interested in: open and
complete. Let's make that happen.

	Head over to the ZMI at http://localhost:8080/Plone/manage_main.

	In the ZMI, open the portal_workflow tool.

[image: ../../../_images/manage_portal_workflow.jpg]
On this page, we see all content-types in our portal mapped to a workflow.
Our new type, Todo Item, is mapped to (Default). You can see right below
that the default is Simple Publication Workflow. This is just too
complex for our little Todo Item.

[image: ../../../_images/default_workflow.jpg]

	So let's create a new one that suites our needs perfectly! Click the
contents tab at the top of the page to get a listing of all the
available workflows.

[image: ../../../_images/portal_workflow_contents.jpg]
You can poke around here all you like, but the details of each one of these
workflows are better left to another tutorial. When in doubt, you can always
come back to these workflows to see examples of how things can be done.
Onwards and upwards!

	Let's create a new workflow for our Todo Items and call it
todo_item_workflow. We will make a new workflow by copying and
customising one of the workflows that are already there. Duplicate the
one_state_workflow.

[image: ../../../_images/copy_workflow.jpg]

	Rename the copied workflow to todo_item_workflow.

[image: ../../../_images/rename_workflow.jpg]
[image: ../../../_images/save_rename_workflow.jpg]

	You will be spit back out to the workflow contents page. Click the workflow
to start editing.

[image: ../../../_images/edit_todo_workflow.jpg]

	Let's update the name of the workflow so we don't double take later on.

[image: ../../../_images/retitle_workflow.jpg]

	Workflow is something that takes time to get used to if you have never
encountered the concept. The best analogy in our case is to a car. The car
engine has two simple states: on and off. To transition from on to off
and vice versa, it needs some action from the driver. The same for our TODO
items. They have two states: open and completed. In order to get them
from open to completed, the user needs to click something. Don't
understand yet? Relax, sit back, and finish the tutorial.

Lets start by adding our base states. We will call them open and
complete. From the edit workflow screen, click on the States tab.

[image: ../../../_images/workflow_base_view.jpg]

	Delete the currently listed state.

[image: ../../../_images/cleanup_states.jpg]

	Add two states with the ids open and completed.

[image: ../../../_images/add_open.jpg]
[image: ../../../_images/add_completed.jpg]

	Next lets add transitions. They will take the TODO item from
open to completed and vice versa (in case a user wants to revert an item
back to open). Click on the Transitions tab.

[image: ../../../_images/transitions_tab.jpg]

	Add two transitions: complete and reopen. When a user completes a
task, it will move into the completed state. When a user reopens a task,
it will go back to the open state.

[image: ../../../_images/add_transitions.jpg]

	Let's add a few details to these new transitions. Let's start with
complete. Click on complete to edit the transition.

[image: ../../../_images/edit_complete.jpg]

	First add a title so you remember later what this does. Description is
optional but adding one will help you keep your thoughts clear and remind
the future you what the today you is thinking. The destination state
should be set to completed. We also want to make sure that only people
with mega permissions, or the creator of the todo item itself, can change
the state so we add Modify portal content to the Permissions box.

All this means nothing if we don't give the user a chance to change the
state. Next to Display in actions box, we can set the title for what
will be displayed in the workflow drop down box of the item (where
Pending, Reject, etc. where earlier). Let's call it Complete. Last
but not least, we need to add the URL that the action points to. I could
make this tutorial 100 years long and explain why you have to do this, but
accept that it has to be done, relax, and follow this formula:

URL = %(content_url)s/content_status_modify?workflow_action=X

where X is the id of the transition. So for this case, in the URL box, you
will add

%(content_url)s/content_status_modify?workflow_action=complete

[image: ../../../_images/complete_details.jpg]
Double check everything and click Save.

	If your brain isn't hurting yet it will be soon. Go back to the transitions
listing.

[image: ../../../_images/youre_welcome.jpg]
[image: ../../../_images/edit_reopen.jpg]

	Let's update the reopen transition and update in a similar manner. This
time, the destination state is open, and following the formula above,
the URL is %(content_url)s/content_status_modify?workflow_action=reopen.

[image: ../../../_images/save_reopen.jpg]

	Now we have 2 states and 2 transitions, but they aren't 100% linked
together ... yet. Go back to the workflow listing, click the States tab
and then click on completed to edit the state.

[image: ../../../_images/back_to_workflow.jpg]
[image: ../../../_images/edit_completed.jpg]

	Add a title, since this is what users see in the top right corner of the
TODO items, and then check reopen as a possible transition. This means
that when a TODO item is completed, it will only allow the user to reopen it
(and not re-complete it, for example). In the same respect, open the
open transition, add a title, and mark complete as a possible
transition.

[image: ../../../_images/save_completed.jpg]
[image: ../../../_images/save_open.jpg]

	When we create a new TODO item, we need to tell Plone what the first state
is. Go back to the workflow states listing, and make open the initial
state.

[image: ../../../_images/initial_state.jpg]

	And that's it! Almost... Last but not least, we need to assign our new
workflow to our TODO item type. Go back to the main workflow screen.

[image: ../../../_images/home_base.jpg]

	Instead of mapping to the (Default) workflow, we are going to map to the
id of our new workflow, todo_item_workflow, and then click Change.

If you already have TODO items in your site, you MUST click Update
Security Settings to update the workflow for the items. Instead of going
into gross detail about why this is the case, just sit back, relax, finish
the tutorial, and remember to click this button any time you make changes
(yes! you can continue to change and update your workflows!).

[image: ../../../_images/map_to_workflow.jpg]

	Could the time have arrived? Time to try it out? YES! Go to your Todo
folder and add a new TODO Item. Validate that the workflow works as
expected. By toggling between the states.

[image: ../../../_images/works.jpg]

Congrats! You have now passed Plone Workflow 101. Next we will transition
from developing through the web (TTW) to developing on the filesystem.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_2.html so you

have working references and proper formatting.

Chapter 2: Filesystem package

Alright! In Chapter 1 you got your content-type and your workflow hooked up and
running. You're now ready for the next step: pushing your changes to a
filesystem-based package and into a version control system.

Now, why would you even want to do that? Here's a couple of reasons:

	Tracking of changes

The most obvious one: when you store the configuration of your content-type
and your workflow in a VCS [http://en.wikipedia.org/wiki/Revision_control],
you can track how they changed over time. It's useful to be able to look
back a few months and see how your files changed.

	Distribution to other developers

If you are working in a team you have two ways of distributing your work:
either write up a guide on what needs to be clicked for someone to come to
the state you are currently at (slow, manual and error-prone) OR you export
your configuration and the other developer simply imports it (fast,
consistent).

	Tests

Last, but the most important one, having your configuration exported to a
filesystem package allows you to write tests for it. When your test runner
spins up a Plone site to run tests against, it needs to have the same
content-type and workflow that you configured TTW. And importing
configuration is by far the easiest way to give the test runner just that.

Package skeleton

Let's start by creating a package skeleton. Since writing things up from
scratch kinda sucks, use this tutorial as your skeleton.

Exporting configuration

Exporting Todo Item content-type

Navigate back to the dexterity content type panel or go directly to
http://localhost:8080/Plone/@@dexterity-types

Check the TODO item and then click on export type profile to download the
type. If you don't check anything, it won't do anything and there is currently
no error message so don't be surprised.

[image: ../../../_images/export_todo.jpg]

This will start a download to your machine. Navigate to the download directory
and unzip the contents of the file that was downloaded. Here is an example of
what it will look like:

[image: ../../../_images/dexterity_export.jpg]

We need to take types.xml and the types folder, and save it in our base
product. You can use your finder or explorer to drag and drop, or use the
command line. I'll use command line as an example but feel free to improvise.
You want to move the files into your default product profile. What's a profile?
Don't worry about it. Sit back, relax, and finish the tutorial. You will move
the files into

tutorial.todoapp/src/tutorial/todoapp/profiles/default

Warning

There is a bug in Plone 4.3 that makes the import process brake when
parsing XMLs that the export tool exports. To make it work we need to
remove the comment line from types.xml:

<!---*- extra stuff goes here -*--->

Anytime you perform some sort of configuration export from Plone to a custom
product, you will put the XML files in the profiles/default folder. Every time
you make changes to your types, you should re-export and save into the same
location. Now, when the next person installs the add-on, they wil have the
type already there!

Dependencies

Before we continue we need to tell Plone that whenever we install
tutorial.todoapp we want it to also pull in the Dexterity package, so our
content type is working happily. We do that by adding the following lines to
profiles/default/metadata.xml, inside the <metadata> tag.

<dependencies>
 <dependency>profile-plone.app.dexterity:default</dependency>
</dependencies>

Exporting todo_item_workflow

Exporting a workflow is very similar to exporting a Dexterity type. It just
takes a little bit more navigating and a trip to the ZMI. To export the
workflow, navigate to the root of the ZMI by gong to
http://localhost:8080/Plone/manage_main. From there, head into the
portal_setup tool:

[image: ../../../_images/enter_portal_setup.jpg]

WARNING: The following User Interface is not recommended for children under 18.

In the portal_setup tool, click on the export tab.

[image: ../../../_images/setup_export.jpg]

There are a LOT of things that you can export here, but that is for a different
tutorial. For now, find export item #27 called Workflow Tool, check the box
to the left. Then scroll all the way to the bottom and
Export selected steps.

[image: ../../../_images/check_workflow.jpg]

Just like the Dexterity content type, you will want to untar the downloaded
folder, and move into your default profile folder.

In that download you should have a file called workflows.xml and a folder
called workflows like below. You will move both of them to the default
profile.

[image: ../../../_images/export_workflow_example.jpg]

Place all of these files in your profile at

tutorial.todoapp/src/tutorial/todoapp/profiles/default

Now, this export exported the entire configuration for all workflows in your
site. But you are only interested in the todo_item_workflow configuration
and you don't want to change configuration for other workflows. So, first,
remove all other workflow definitions (XML files).

rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/comment_review_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_folder_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/intranet_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/one_state_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/plone_workflow
rm -rf tutorial.todoapp/src/tutorial/todoapp/profiles/default/workflows/simple_publication_workflow

Secondly, remove all non-todoitem-related stuff from workflows.xml. In the
end the file should look like this:

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
 <object name="todo_item_workflow" meta_type="Workflow"/>
 <bindings>
 <type type_id="todo_item">
 <bound-workflow workflow_id="todo_item_workflow"/>
 </type>
 </bindings>
</object>

And you are done! Congratulations on the birth of your new product!

Tests

Alright, tests! Considered a pain and a nuisance by some but loved by all
who do it. If you want your code to be solid and your site to be stable, tests
are a great way to get there.

The package you have on your filesystem is already configured to give you a
test-runner so you can immediately go and run it -- obviously you have no
tests, but at least you try if your test runner works.

tutorial.todoapp$ make tests
Total: 0 tests, 0 failures, 0 errors in 0.000 seconds.

Note: you do NOT need to stop your Plone instance in order to run tests. They
will peacefully co-exist.

Good, the next thing to do is to add tests. Go to tutorial.todoapp repo on
GitHub [https://github.com/collective/tutorial.todoapp/]
and copy/paste (or download) all files from the src/tutorial/todoapp/tests
folder to your local src/tutorial/todoapp/tests folder. You can also get
the tests with git:

$ git branch --track chapter2 origin/chapter2 # tell git what chapter2 is
$ git checkout chapter2 src/tutorial/todoapp/tests # get tests

This folder will contain your test files:

	test_setup.py

This module contains tests that check if your package was successfully
installed and configured. Tests in here are concerned with XML files you have
in the profiles/default folder.

	test_todo_item.py

And finally a module that contains tests for your custom content-type.

We will not go into details of what each test does as we believe the test code
and its comments are in themselves informative and we will rather encourage you
to go through all tests, try to understand what they do, maybe change something
and see what happens, etc.

Remember that you run tests with make tests and you should get an output that
looks somewhat like this:

tutorial.todoapp$ make tests
[...snip...]
Set up tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Running:

Ran 11 tests with 0 failures and 0 errors in 9.782 seconds.
Tearing down left over layers:
Tear down tutorial.todoapp.tests.base.TodoAppLayer:Integration in 0.000 seconds.
Tear down tutorial.todoapp.tests.base.TodoAppLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.164 seconds.
Tear down plone.testing.z2.Startup in 0.012 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Also, remember that whenever you run make your tests are gonna be run too.

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
for chapter 2 [https://github.com/collective/tutorial.todoapp/tree/chapter2]
should look like and compare this to what you have on your local machine.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you

have working references and proper formatting.

Chapter 3: Custom View

In this chapter you will learn how to add a custom view -- in our case a
listing of Todo Items.

View class

Let's start by adding the view class. You can go to tutorial.todoapp repo on
GitHub [https://github.com/collective/tutorial.todoapp/] and copy over code
from src/tutorial/todoapp/todo.py to your local computer or just
use git:

$ git branch --track chapter3 origin/chapter3 # tell git what chapter 3 is
$ git checkout chapter3 src/tutorial/todoapp/todo.py

We also need to tell Plone to display this view in the display drop-down menu
for Folders so we will later be able to set our view as a default display view
for our Todo folder. Let's do that by using git to get a version of
Folder.xml and put it in src/tutorial/todoapp/profiles/default/types.

$ git checkout chapter3 src/tutorial/todoapp/profiles/default/types/Folder.xml

View template

Now that we have a class we can also add the template. Go to tutorial.todoapp
repo on GitHub [https://github.com/collective/tutorial.todoapp/] and copy
over code from src/tutorial/todoapp/templates/todo.pt to your local
computer or, again, use git.

$ git checkout chapter3 src/tutorial/todoapp/templates/todo.pt

The template uses the ZPT syntax, read more about it here [http://wiki.zope.org/ZPT/TutorialPart1].

Static resources

The template displays different icons for different workflow states of your
Todo Items. We need to add these icons to your package:

	Download open.png and completed.png from GitHub (they are in
src/tutorial/todoapp/static) into a new folder on your local
computer: src/tutorial/todoapp/static. You can use git again if
you don't like manual work.

$ git checkout chapter3 src/tutorial/todoapp/static

	Tell Zope that this static folder contains static resources (icons,
CCS files, JavaScript files, etc.) by adding the following lines to
src/tutorial/todoapp/configure.zcml inside the <configure
tag:

<!-- Publish static files -->
<browser:resourceDirectory
 name="tutorial.todoapp"
 directory="static" />

After restarting your Zope server, files in your static folder will be
available on a standard URL:
http://localhost:8080/Plone/++resource++tutorial.todoapp/<filename>

Try it out

Because the XML configuration of our product has change, we need to
reinstall the product. This is accomplished by deactivating and
reactivating the product. Navigate to the add-ons manager or go directly
to http://localhost:8080/Plone/@@overview-controlpanel.

[image: ../../../_images/find_addons.jpg]

Deactivate the tutorial.todoapp product, and then reactivate it.

[image: ../../../_images/deactivate.jpg]
[image: ../../../_images/reactivate.jpg]

Note that every time you make a change to the xml files, by exporting or manual
edit, you must reactivate the product for the changes to take effect!

Now, we apply the new view to the folder holding our todo items. Navigate to
the folder you created in chapter 1, and update the display.

[image: ../../../_images/select_todo_view.jpg]

Celebrate!

[image: ../../../_images/custom_view.jpg]

If the de-activate / activate does not work you may need to restart Plone
instance to see the changes.

Tests

Cool, so you have verified that your code works through the browser and it's
time to add tests to make sure your code keeps on working in the future.

First add the following snippet to test_setup.py to verify that your
Folders have the todo view on the Display drop-down menu.

types/Folder.xml
def test_folder_available_layouts(self):
 """Test that our custom display layout (@@todo) is available on folder.

 Also make sure that layouts that come with Plone out-of-the-box are
 also still there.
 """
 layouts = self.portal.folder.getAvailableLayouts()
 layout_ids = [id for id, title in layouts]

 # out-of-the-box layouts are still there
 self.assertIn('folder_listing', layout_ids)
 self.assertIn('folder_summary_view', layout_ids)
 self.assertIn('folder_tabular_view', layout_ids)
 self.assertIn('atct_album_view', layout_ids)
 self.assertIn('folder_full_view', layout_ids)

 # our custom one
 self.assertIn('todo', layout_ids)

If you haven't already downloaded it, add a new test module:
test_todo_view.py. Download it from GitHub, put and it in your tests
folder and run tests. Feel free to fiddle around with it to see what it does.
As always, you can use git to get the file.

$ git checkout chapter3 src/tutorial/todoapp/tests/test_todo_view.py

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
for chapter 3 [https://github.com/collective/tutorial.todoapp/tree/chapter3]
should look like and compare this to what you have on your local machine.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

WARNING: If you are reading this on GitHub, DON'T! Read it on ReadTheDocs:

http://tutorialtodoapp.readthedocs.org/en/latest/chapter_3.html so you

have working references and proper formatting.

Chapter 4: Bling-bling

As a reward for making it all the way to the end, we will help you add some
fancy features to your project, otherwise known as bling and that means having
to write JavaScript. Fortunately Plone comes with jQuery so we can easily
integrate.

The final part of this tutorial will allow users to check and un-check items on
their todo list without having to load a new page request. Note that by
developing the functionality in this order, 100% of the functionality of the
application remains working even when javascript is disabled. Win!

AJAX view

Before we add front-end bling, we need some code that can handle these requests
coming in. Let's create a simple view that will update the object in context to
a new state. Go to GitHub and copy the code for WorkflowTransition class
in todo.py. This class represents a view that our AJAX code will
call. You can also get the code with git, however note that now we are checking
out code from master, as Chapter 4 is the last chapter and its code is in
the master branch.

$ git checkout master src/tutorial/todoapp/todo.py

Take a look at the WorkflowTransition class and comments around the
code. There are a couple of things to point out specific to this setup:

grok.context(Container)

Tells us that this view should be called in the context of a Dexterity
Container item. So if you try to go to this view from the portal root or
anywhere in the site that is not a Dexterity item, Plone will return a 404 -
not found error. By default all Dexterity types that you create TTW are based
on the Dexterity Container base class.

grok.name('update_workflow')

This tells us on which URL the view will be available on. In this case, on
<url_to_plone_content_object>/update_workflow.

def render(self):

render is a special function that must be used. It is where all of the code
must go when used with grok directives. This is the main block of code that
will be executed.

transition = self.request.form.get('transition', '')

self.request is set by the base class, and anything based on BrowserView
will have access to this variable. All of GET/POST parameters will be stored
in self.request.form.

self.request.response.setHeader(
 'Content-Type', 'application/json; charset=utf-8')
return json.dumps(results)

When working with JSON, it's not required to set the header content type, but
when used with certain jQuery calls it is expected to have the header set
correctly. If you don't set this, it will sometimes work and sometimes not. Get
used to setting it!

Additionally, we return the result serialized as json by default. For making
and testing JSON web service calls, keep in mind that they should do exactly
one thing and no more. This makes it easy to integrate with Javascript and VERY
easy to test. We'll see later on how easy it is to test this view.

Furthermore, before taking the plunge to wire up JavaScript, go directly to the
url and test the change. For example, if you have an item at
http://localhost:8080/Plone/todo-list/go-to-the-bathroom, you can test the
view by appending the view name and GET variables to the end of the item's url.
However, you first need to restart your Zope first, so your Python files get
reloaded!

http://localhost:8080/Plone/todo-list/go-to-the-bathroom + update_workflow?transition = complete

http://localhost:8080/Plone/todo-list/go-to-the-bathroom/update_workflow?transition=complete

[image: ../../../_images/ajax_call.jpg]
For extra clarity: if you are not an expert in python, plone, AND javascript, I
highly recommend integrating bling bling in the following order:

	Write base view and passing test cases

	Test views in browser

	Make ajax interactive

Starting with bling from the start will only bring you pain.

Custom JavaScript

Now that we know the update_workflow view is working, let's add some AJAX
handling on the top of it. Checkout the Javascript file and a JavaScript
registry file into your working directory:

git checkout master src/tutorial/todoapp/static/todoapp.js
git checkout master src/tutorial/todoapp/profiles/default/jsregistry.xml

jsregistry.xml contains all configuration needed to tell Plone how it
should register and use our JavaScript. It has a lot of options that are pretty
self explanatory (if you think like a machine).

Trying it out!

Holy moley you made it! Restart Zope (to reload Python files), reactivate the
product (to reimport XML files), do a hard reload in your web browser (to clear
any caches) and check out your todo list. The todo items should toggle between
complete and incomplete without the page reloading. Sweet!

Tests

As always, let's add tests! First add the following snippet to test_setup
to verify that your JavaScript is registered in Plone.

jsregistry.xml
def test_js_registered(self):
 """Test that todoapp.js file is registered in portal_javascript."""
 resources = self.portal.portal_javascripts.getResources()
 ids = [r.getId() for r in resources]

 self.assertIn('++resource++tutorial.todoapp/todoapp.js', ids)

Lastly, add a new test module: test_workflow.py. Download it from GitHub,
put and it in your tests folder and run tests. Then fiddle around with it
to see what it does. As always, you can use git to get the file.

$ git checkout master src/tutorial/todoapp/tests/test_workflow.py

The end

This concludes the Todo app in Plone tutorial. Congratulations! Now it's time
to checkout other tutorials and documentation available on developer.plone.org [http://developer.plone.org]!

Troubleshooting

If something goes wrong you can always go to GitHub and see how the code
in master [https://github.com/collective/tutorial.todoapp/]
should look like and compare this to what you have on your local machine.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

Releasing a new version

Releasing a new version of tutorial.todoapp involves the following steps:

	Create a git tag for the release.

	Push the git tag upstream to GitHub.

	Generate a distribution file for the package.

	Upload the generated package to Python Package Index (PyPI).

Checklist

Before every release make sure that:

	You have documented your changes in the HISTORY.rst file.

	You have modified the version identifier in setup.py to reflect the new
release.

	You have confirmed that the package description (generated from
README.rst and others) renders correctly by running bin/longtest.

	You have committed all changes to the git repository and pushed them
upstream.

	You have the working directory checked out at the revision you wish to
release.

Actions

For help with releasing we use jarn.mkreleaser. It's listed as a dependency
in setup.py and should already be installed in your local bin:

$ bin/mkrelease -d pypi -pq ./

Note

In order to push packages to PyPI you need to have the appropriate access
rights to the package on PyPI and you need to configure your PyPI credentials
in the ~/.pypirc file, e.g.:

[distutils]
index-servers =
 pypi

[pypi]
username = fred
password = secret

Example

In the following example we are releasing version 0.1 of tutorial.todoapp. The
package has been prepared so that setup.py contains the version 0.1,
this change has been committed to git and all changes have been pushed
upstream to GitHub:

Check that package description is rendered correctly
$ bin/longtest

Make a release and upload it to PyPI
$ bin/mkrelease -d pypi -pq ./
Releasing tutorial.todoapp 0.1
Tagging tutorial.todoapp 0.1
To git@github.com:collective/tutorial.todoapp.git
* [new tag] 0.1 -> 0.1
running egg_info
running sdist
warning: sdist: standard file not found: should have one of README, README.txt
running register
Server response (200): OK
running upload
warning: sdist: standard file not found: should have one of README, README.txt
Server response (200): OK
done

Note

Please ignore the sdist warning about README file above. PyPI does not depend
on it and it's just a bug in setupools (reported and waiting to be fixed).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

Changelog

1.1 (2013-07-04)

	Instructions for preparing the environment on various OSes.
[ielectric, zupo]

	Proof-reading the tutorial text.
[ielectric, zupo]

	Use latest best practices from bobtemplates.niteoweb.
[zupo]

	Use Plone 4.3.
[zupo]

1.0 (2012-09-11)

	Acted as guinea pigs and went through the entire tutorial slowly and
thoroughly.
[matejc, plamut]

	AJAXifying the @@todo view.
[eleddy]

	The @@todo BrowserView for listing Todo Items.
[zupo]

	Tests for GenericSetup exports of content-type and workflow.
[zupo]

	TTW part of the tutorial, loads of screenshots.
[eleddy]

	Skeleton.
[zupo]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Developing for Plone »

 	Plone Todo list application tutorial »

License (3-clause BSD)

Copyright (c) 2012, Caipirinha Sprinters. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Caipirinha Spriners nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CAIPIRINHA SPRINTERS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

Appendices

	Glossary

	Error Reference

	older manuals

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

Glossary

This is a glossary for some definitions used in this documentation and
still heavily under construction.

It incorporates the original glossary on plone.org [http://plone.org/documentation/glossary].

	.po

	The file format used by the gettext translation system.
http://www.gnu.org/software/hello/manual/gettext/PO-Files.html

	Acquisition

	Simply put, any Zope object can acquire any object or property from
any of its parents. That is, if you have a folder called A,
containing two resources (a document called homepage and another
folder called B), then an URL pointing at http://.../A/B/homepage
would work even though B is empty. This is because Zope starts to
look for homepage in B, doesn't find it, and goes back up to
A, where it's found. The reality, inevitably, is more complex than
this. For the whole story, see the Acquisition chapter in the Zope
Book [http://www.plope.com/Books/2_7Edition/Acquisition.stx].

	AGX

	AGX is short for ArchGenXML.

	Archetypes

	Archetypes is a framework designed to facilitate the building of
applications for Plone and CMF. Its main purpose is to
provide a common method for building content objects, based on
schema definitions. Fields can be grouped for editing, making it
very simple to create wizard-like forms. Archetypes is able to do
all the heavy lifting needed to bootstrap a content type, allowing
the developer to focus on other things such as business rules,
planning, scaling and designing. It provides features such as
auto-generation of editing and presentation views. Archetypes code
can be generated from UML using ArchGenXML.

	ArchGenXML

	ArchGenXML is a code-generator for CMF/Plone applications
(a Product) based on the Archetypes framework. It
parses UML models in XMI-Format (.xmi, .zargo, .zuml),
created with applications such as ArgoUML, Poseidon or ObjectDomain.
A brief tutorial for ArchGenXML is present on the plone.org site.

	ATCT

	ATContentTypes - the Plone content types written with Archetypes which
replaces the default CMF content types in Plone 2.1 onwards.

	BBB

	When adding (or leaving) a piece of code for backward compatibility,
we use a BBB comment marker with a date.

	Buildout

	Buildout is a Python-based build system for creating, assembling and deploying applications from multiple parts, some of which may be non-Python-based. It lets you create a buildout configuration and reproduce the same software later. See buildout.org [http://www.buildout.org/en/latest/]

	Catalog

	The catalog is an internal index of the content inside Plone so that
it can be searched. The catalog object is accessible through the
ZMI as the portal_catalog object.

	CMF

	The Content Management Framework is a framework for building
content-oriented applications within Zope. It as formed the basis
of Plone content from the start.

	Collective

	The Collective is a community code repository for Plone Products
and other add-ons, and is a useful place to find the very latest
code for hundreds of add-ons to Plone. Developers of new Plone
Products are encouraged to share their code via the Collective so
that others can easily find it, use it, and contribute fixes and
improvements.

	control panel

	The Control Panel is the place where many parameters of a Plone site can be set.
Here add-ons can be enabled, users and groups created, the workflow and permissions can be set and settings for language, caching and many other can be found.
If you have "Site Admin" permissions, you can find it under "Site -> Site Setup" in your personal tools.

	CSS

	Cascading Style Sheets is a way to separate content from
presentation. Plone uses this extensively, and it is a web standard
documented at the W3C web site [http://www.w3.org/Style/CSS/]. If
you want to learn CSS, we recommend the W3Schools CSS Resources [http://www.w3schools.com/Css/default.asp]
and the SitePoint CSS Reference [http://reference.sitepoint.com/css].

	Dexterity

	Dexterity is an alternative to Archetypes, Plone's venerable content type framework. Being more recent, Dexterity has been able to learn from some of the mistakes that were made Archetypes, and - more importantly - leverage some of the technologies that did not exist when Archetypes was first conceived. Dexterity is built from the ground up to support through-the-web type creation. Dexterity also allows types to be developed jointly through-the-web and on the filesystem. For example, a schema can be written in Python and then extended through the web.

	Document

	A document is a page of content, usually a self-contained piece of
text. Documents can be written in several different formats, plain
text, HTML or (re)Structured Text. The default home page for a Plone
site is one example of a document.

	DTML

	Document Template Markup Language. DTML is a server-side templating
language used to produce dynamic pieces of content, but is now
superseded by ZPT for HTML and XML content. It is still used
sparingly for non-XML content like SQL and mail/CSS.

	Dublin Core

	Dublin Core is a standard set of metadata which enables the
description of resources for the purposes of discovery. See
https://en.wikipedia.org/wiki/Dublin_Core

	easy_install

	A command-line tool for automatic discovery and installation of
packages into a Python environment. The easy_install script is
part of the setuptools package, which uses the
Python Package Index as its source for packages.

	Egg

	See Python egg.

	Expiration Date

	The last day an item should show up in searches, news listings etc.
Please note that this doesn't actually remove or disable the item,
it merely makes it not show up in searches.

This is part of the Dublin Core metadata that is present on all
Plone objects.

	GenericSetup

	An XML-based configuration system for Zope and Plone applications.

Todo

Add reference.

	gettext

	UNIX standard software translation tool. See
http://www.gnu.org/software/gettext/

	grok

	See Grok framework

	i18n

	i18n is shorthand for "internationalization" (the letter I, 18
letters, the letter N) - and refers to the process of preparing a
program so that it can be used in multiple languages without further
altering the source. Plone is fully internationalized.

	i18ndude

	Support tool to create and update message catalogs from instrumented
source code.

	JSON

	JavaScript Object Notation. JSON is a lightweight text-based open
standard designed for human-readable data interchange. In short,
it's a string that looks like a JavaScript array, but is constrained
to 6 simple data types. It can be parsed by many languages.

	KSS

	Kinetic Style Sheets is a client-side framework for implementing
rich user interfaces with AJAX functionality. It allows attaching
actions to elements using a CSS-like rule syntax. KSS was added to Plone
in Plone 3 and removed in Plone 4.3, because JQuery made it obsolete.

	Kupu

	Kupu is the user-friendly graphical HTML editor component that used
to be bundled with Plone, starting with version 2.1. It has since
been replaced by TinyMCE.

	l10n

	Localization is the actual preparing of data for a particular
language. For example Plone is i18n aware and has localization for
several languages. The term l10n is formed by the first and last
letter of the word and the number of letters in between.

	Layer

	A layer is a set of templates and scripts that get presented to the
user. By combining these layers, you create what is referred to as a
skin. The order of layers is important, the topmost layers
will be examined first when rendering a page. Each layer is an entry
in portal_skins -> 'Contents', and is usually a Filesystem
Directory View or a Folder.

	LDAP

	Lightweight Directory Access Protocol. An internet protocol which
provides a specification for user-directory access by wire,
attribute syntax, representation of distinguished names, search
filters, an URL format, a schema for user-centric information,
authentication methods, and transport layer security. Example: an
email client might connect to an LDAP server in order to look up an
email address for a person by a person's name.

	Manager

	The Manager Security role is a standard role in Zope. A user with
the Manager role has ALL permissions except the Take Ownership
permission. Also commonly known as Administrator or root in other
systems.

	METAL

	Macro Expansion Template Attribute Language. See ZPT.

	Monkey patch

	A monkey patch is a way to modify the behavior of Zope or a Product
without altering the original code. Useful for fixes that have to
live alongside the original code for a while, like security
hotfixes, behavioral changes, etc.

The term "monkey patch" seems to have originated as follows: First
it was "guerrilla patch", referring to code that sneakily changes
other code at runtime without any rules. In Zope 2, sometimes these
patches conflict. This term went around Zope Corporation for a
while. People heard it as "gorilla patch", though, since the two
words sound very much alike, and the word gorilla is heard more
often. So, when someone created a guerrilla patch very carefully and
tried to avoid any battles, they tried to make it sound less
forceful by calling it a monkey patch. The term stuck.

	Namespace package

	A feature of setuptools which makes it possible to distribute
multiple, separate packages sharing a single top-level namespace.
For example, the packages plone.theme and plone.portlets
both share the top-level plone namespace, but they are
distributed as separate eggs. When installed, each egg's source code
has its own directory (or possibly a compressed archive of that
directory). Namespace packages eliminate the need to distribute one
giant plone package, with a top-level plone directory containing all
possible children.

	OpenID

	A distributed identity system. Using a single URI provider an
individual is able to login to any web site that accepts OpenID
using the URI and a password. Plone implements OpenID as a
PAS plug-in.

	PAS

	The Pluggable Authentication Service (PAS) is a framework for
handling authentication in Zope 2. PAS is a Zope acl_users
folder object that uses "plugins" that can implement various
authentication interfaces (for example LDAP and
OpenID) that plug into the PAS framework . Zope 3 also uses
a design inspired by PAS. PAS was integrated into Plone at the 2005
San Jose Sprint.

	PLIP

	PLone Improvement Proposal (just like Python's PEPs: Python
Enhancement Proposals). These are documents written to structure and
organise proposals for the improvement of Plone.

Motivation, deliverables, risks and a list of people willing to do
the work must be included. This document is submitted to the
Framework Team [http://plone.org/team/FrameworkTeam], who reviews
the proposal and decides if it's suitable to be included in the next
Plone release or not.

See more info about how to write a
PLIP [https://dev.plone.org/plone/wiki/PLIP].

	Plonista

	A Plonista is a member of the Plone community.
It can be somebody who loves Plone, or uses Plone, or someone who spreads Plone and Plone knowledge.
It can also be someone who is a Plone developer, or it can be all of the above.

	Product

	A Plone-specific module that extends Plone functionality and can be
managed via the Plone Control Panel. Plone Products often integrate
non-Plone-specific modules for use within the Plone context.

	Python egg

	A widely used Python packaging format which consists of a zip or
.tar.gz archive with some metadata information. It was
introduced by
setuptools [https://pypi.python.org/pypi/setuptools]

A way to package and distribute Python packages. Each egg contains a
setup.py file with metadata (such as the author's name and email
address and licensing information), as well as information about
dependencies. setuptools, the Python library that powers the egg
mechanism, is able to automatically find and download dependencies
for eggs that you install. It is even possible for two different
eggs to concurrently use different versions of the same dependency.
Eggs also support a feature called entry points, a kind of generic
plug-in mechanism.

	Python package

	A general term describing a redistributable Python module. At the
most basic level, a package is a directory with an __init__.py
file, which can be blank.

	Python Package Index

	The Python community's index of thousands of downloadable Python
packages. It is available as a website to browse, with the ability
to search for a particular package. More importantly,
setuptools-based packaging tools (most notably, buildout and
easy_install) can query this index to download and install eggs
automatically. Also known as the Cheese Shop or PyPI.

	Python path

	The order and location of folders in which the Python interpreter
will look for modules. It's available in python via sys.path.
When Zope is running, this typically includes the global Python
modules making up the standard library, the interpreter's
site-packages directory, where third party "global" modules and eggs
are installed, the Zope software home, and the lib/python
directory inside the instance home. It is possible for python
scripts to include additional paths in the Python path during
runtime. This ability is used by zc.buildout.

	RAD

	Rapid Application Development - A term applied to development tools
to refer to any number of features that make programming easier.
Archetypes and ArchGenXML are examples of these from
the Plone universe.

	Request

	Each page view by a client generates a request to Plone. This
incoming request is encapsulated in a request object in Zope,
usually called REQUEST (or lowercase "request" in the case of ZPT).

	ResourceRegistries

	A piece of Plone infrastructure that allows CSS/Javascript
declarations to be contained in separate, logical files before
ultimately being appended to the existing Plone CSS/Javascript files
on page delivery. Primarily enables Product authors to "register"
new CSS/Javascript without needing to touch Plone's templates, but
also allows for selective inclusion of CSS/Javascript files and
reduces page load by minimizing individual calls to separate blocks
of CSS/Javascript files. Found in the ZMI under
portal_css and portal_javascript.

	reStructuredText

	The standard plaintext markup language used for Python
documentation: http://docutils.sourceforge.net/rst.html

reStructuredText [http://docutils.sourceforge.net/rst.html] is an
easy-to-read plaintext markup syntax and parser system. It is useful
for in-line program documentation (such as Python docstrings), for
quickly creating simple web pages, and for standalone documents.
reStructuredText is designed to be extensible for specific
application domains. The reStructuredText parser is a component of
Docutils [http://docutils.sourceforge.net/index.html].

reStructuredText is a revision and reinterpretation of the
StructuredText [http://plone.org/documentation/glossary/stx] and
Setext [http://docutils.sourceforge.net/mirror/setext.html]
lightweight markup systems.

	Skin

	A collection of template layers (see layer) is used as the
search path when a page is rendered and the different parts look up
template fragments. Skins are defined in the ZMI in
portal_skins tool. Used for both presentation and code
customizations.

	slug

	A ZCML slug is a one-line file created in a Zope instance's
etc/package-includes directory, with a name like
my.package-configure.zcml. The contents of the file would be
something like:
<include package="my.package" file="configure.zcml" />

This is the Zope 3 way to load a particular package.

	Software home

	The directory inside the Zope installation (on the filesystem) that
contains all the Python code that makes up the core of the Zope
application server. The various Zope packages are distributed here.
Also referred to as the SOFTWARE_HOME environment variable. It
varies from one system to the next, depending where you or your
packaging system installed Zope. You can find the value of this in
the ZMI > Control Panel.

	Sprint

	Based on ideas from the extreme programming (XP) community. A sprint
is a three to five day focused development session, in which
developers pair in a room and focus on building a particular
subsystem. See http://plone.org/events/sprints

	STX

	Structured Text is a simple markup technique that is useful when you
don't want to resort to HTML for creating web content. It uses
indenting for structure, and other markup for formatting. It has
been superseded by reStructuredText, but some people still
prefer the old version, as it's simpler.

	Syndication

	Syndication shows you the several most recently updated objects in a
folder in RSS format. This format is designed to be read by other
programs.

	TAL

	Template Attribute Language. See ZPT.

	TALES

	TAL Expression Syntax. The syntax of the expressions used in
TAL attributes.

	TinyMCE

	A graphical HTML editor bundled with Plone.

	TODO

	The TODO marker in source code records new features, non-critical
optimization notes, design changes, etc.

	Traceback

	A Python "traceback" is a detailed error message generated when an
error occurs in executing Python code. Since Plone, running atop
Zope, is a Python application, most Plone errors will generate a
Python traceback. If you are filing an issue report regarding a
Plone or Plone-product error, you should try to include a traceback
log entry with the report.

To find the traceback, check your
event.log log file. Alternatively, use the ZMI to check the
error_log object in your Plone folder. Note that your Zope must
be running in debug mode in order to log tracebacks.

A traceback will be included with nearly all error entries. A
traceback will look something like this: "Traceback (innermost
last): ... AttributeError: adapters" They can be very long. The
most useful information is generally at the end.

	traversal

	Publishing an object from the ZODB by traversing its parent objects,
resolving security and names in scope. See the Acquisition chapter
in the Zope 2 book [http://docs.zope.org/zope2/zope2book/ZEO.html].
http://docs.zope.org/zope2/zope2book/Acquisition.html

	TTP

	Actions done TTP are performed "Through the Plone" interface. It is
normally a lazy way of telling you that you should not add things
from the ZMI, as is the case for adding content, for example.

	TTW

	This is a general term meaning an action can be performed
"Through The Web," as opposed to, say, being done programmatically.

	UML

	The Unified Modeling Language is a general-purpose modeling
language that includes a standardized graphical notation used to
create an abstract model of a system, referred to as a UML model.
With the use of ArchGenXML, this can be used to generate
code for CMF/Plone applications (a Product) based on the
Archetypes framework.

	virtualenv

	virtualenv is a tool for creating a project directory with a
Python interpreter that is isolated from the rest of the system.
Modules that you install in such an environment remain local to it,
and do not impact your system Python or other projects.

Todo

Add reference.

	VirtualHostMonster

	A Zope technology that supports virtual hosting. See
VirtualHostMonster URL rewriting mechanism [http://docs.zope.org/zope2/zope2book/VirtualHosting.html]

	Workflow

	Workflow is a very powerful way of mimicking business processes - it
is also the way security settings are handled in Plone.

	XXX

	XXX is a marker in the comments of the source code that should only
be used during development to note things that need to be taken care
of before a final (trunk) commit. Ideally, one should not expect to
see XXXs in released software. XXX shall not be used to record new
features, non-critical optimization, design changes, etc. If you
want to record things like that, use TODO comments instead. People
making a release shouldn't care about TODOs, but they ought to be
annoyed to find XXXs.

	ZCA

	The Zope Component Architecture (ZCA) is a Python framework for
supporting component-based design and programming. It is very well
suited to developing large Python software systems. The ZCA is not
specific to the Zope web application server: it can be used for
developing any Python application.
From A Comprehensive Guide to Zope Component Architecture [http://www.muthukadan.net/docs/zca.html].

	ZCML

	Zope Configuration Markup Language. Zope 3 separates policy from the
actual code and moves it out to separate configuration files,
typically a configure.zcml file in a buildout. This file
configures the Zope instance. 'Configuration' might be a bit
misleading here and should be thought or more as wiring. ZCML, the
XML-based configuration language that is used for this, is tailored
to do component registration and security declarations, for the most
part. By enabling or disabling certain components in ZCML, you can
configure certain policies of the overall application. In Zope 2,
enabling and disabling components means to drop in or remove a
certain Zope 2 product. When it's there, it's automatically imported
and loaded. This is not the case in Zope 3. If you don't enable it
explicitly, it will not be found.

	ZEO server

	ZEO (Zope Enterprise Objects) is a scaling solution used with Zope.
The ZEO server is a storage server that allows multiple Zope
instances, called ZEO clients, to connect to a single database. ZEO
clients may be distributed across multiple machines. For additional
info, see the related chapter in The Zope Book [http://docs.zope.org/zope2/zope2book/ZEO.html].

	ZMI

	The Zope Management Interface. Zope has a built in Management
Interface that is accessible through the web. Accessing is as simple
as appending /manage to your URL, for example:
http://localhost/manage - or visiting Plone Setup and clicking
the Zope Management Interface link (Click 'View' to go back to the
Plone site). Be careful in there, though - it's the "geek view" of
things, and is not straightforward, nor does it protect you from
doing stupid things. :)

	ZODB

	The Zope Object Database is where your content is normally stored
when you are using Plone. The default storage backend of the ZODB is
filestorage, which stores the database on the file system in the
file(s) such as Data.fs, normally located in the var
directory.

	Zope instance

	An operating system process that handles HTTP interaction with a
Zope database (ZODB). In other words, the Zope web server
process. Alternatively, the Python code and other configuration
files necessary for running this process.

One Zope installation can support multiple instances. Use the
buildout recipe plone.recipe.zope2instance to create new Zope
instances in a buildout environment.

Several Zope instances may serve data from a single ZODB using a
ZEO server on the back-end.

	Zope product

	A special kind of Python package used to extend Zope. In old
versions of Zope, all products were directories inside the special
Products directory of a Zope instance; these would have a Python
module name beginning with Products. For example, the core of
Plone is a product called CMFPlone, known in Python as
Products.CMFPlone.

	ZPL

	Zope Public License, a BSD-style license that Zope is licensed
under.

	ZPT

	Zope Page Templates is the templating language that is used to
render the Plone pages. It is implemented as two XML namespaces,
making it possible to create templates that look like normal
HTML/XML to editors. See
http://docs.zope.org/zope2/zope2book/AppendixC.html

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

Error Reference

	Exceptions and common tracebacks
	Add-on installer error: This object was originally created by a product that is no longer installed

	Add-on installer error: too many values to unpack

	Archetypes: TypeError: getattr(): attribute name must be string

	AttributeError in setRoles due to workflow state transition

	AttributeError: 'FilesystemResourceDirectory' object has no attribute 'absolute_url'

	AttributeError: 'RelationList' object has no attribute 'source'

	AttributeError: 'module' object has no attribute 'HTTPSConnection'

	AttributeError: 'str' object has no attribute 'other' (Mixed zope.viewpagetemplate and Five.viewpagetemplate)

	AttributeError: 'wrapper_descriptor' object has no attribute 'im_func'

	AttributeError: REQUEST in getObject

	AttributeError: Schema

	AttributeError: getPhysicalPath()

	AttributeError: type object 'IRAMCache' has no attribute '__iro__'

	BadRequest: The id "xxx" is invalid - it is already in use.

	ComponentLookupError: cmf.ManagePortal

	Content status history won't render - traceback is content path reversed

	ContentProviderLookupError: plone.htmlhead

	ERROR ZODB.Connection Couldn't load state for 0x00

	Error _restore_index() when starting instance / ZEO server

	Error: Incorrect padding

	Exception: Type name not specified in createObject

	ExpatError: portlets.xml: unbound prefix

	IOError: [Errno url error] unknown url type: 'https'

	ImportError: Couldn't import ZPublisherEventsBackport

	ImportError: Inappropriate file type for dynamic loading

	ImportError: No module named PIL

	ImportError: No module named html

	ImportError: No module named pkgutil

	Invalid or Duplicate property id

	InvalidInterface: Concrete attribute

	Iteration over non-sequence in _normalizeargs

	LinguaPlone: ImportError: cannot import name permissions

	NameError: name 'test' is not defined

	NotFound error (Page not found) when accessing @@manage-portlets

	NotFound while accessing a BrowserView based view

	POSKeyError

	PicklingError: Can't pickle <class 'collective.singing.async.IQueue'>: import of module collective.singing.async

	RuntimeError: maximum recursion depth exceeded (Archetypes field problem)

	TraversalError with lots of tuples and lists (METAL problem)

	TraversalError(subject, name) in expressions

	TraversalError: @@standard_macros

	TraversalError: No traversable adapter found

	TypeError: 'ExtensionClass.ExtensionClass' object is not iterable

	TypeError: 'NoneType' object is not callable during upgrade

	TypeError: argument of type 'NoneType' is not iterable

	TypeError: len() of unsized object in smtplib

	Unauthorized: The object is marked as private

	Unknown message (kss optimized for production mode) in Javascript console

	ValueError: Non-zero version length. Versions aren't supported.

	Zope suddenly dies on OSX without a reason

	from zopeskel.basic_namespace import BasicNamespace

	getUtility() fails: ComponentLookupError

	get_language: 'NoneType' object has no attribute 'getLocaleID'

	importToolset: TypeError: 'NoneType' object is not callable

	z3c.form based form updateWidgets() raises ComponentLookupError

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

older manuals

Some of these are still valid, and give a deeper understanding of the Plone/Zope ecosystem

	ArchGenXML

	Buildout

	Using zope.formlib

	zope.formlib

	Zope 2 vs. Zope 3 practices

	Pluggable Authentication Service

	Portlets

	PloneTestCase tests

	Zope 2 internals

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

ArchGenXML

Description

ArchGenXML is a code-generator for CMF/Plone applications ("Products").
It currently targets the Archetypes framework. It parses UML models in
XMI-Format (.xmi, .zargo, .zuml), created with applications
such as ArgoUML, Poseidon or ObjectDomain. This tutorial will help you
get started developing applications with the aid of ArchGenXML.

	Getting Started
	Introduction

	Installation

	Configure ArgoUML to use the archgenxml profile

	UML

	Hello World

	Basic Features
	Classes / Content Types

	Attributes / Fields / Indexing

	Widgets

	Methods and Actions

	Relationships between classes and objects

	Workflows

	Tests

	Third Party Product Integration
	ATVocabularyManager

	Relations

	Remember

	CompoundField and ArrayField

	Content Flavors

	archetypes.schemaextender

	Reference
	Quick Reference

	Tagged Values

	Stereotypes

	Step by Step Instructions
	Setup of a Testcase Environment using UML and ArchGenXML

	Recipes and Tips
	Using the config file to get shorter tagged values

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Getting Started

Description

Introduction, Installation and Hello World.

	Introduction
	What is ArchGenXML

	Why should I use ArchGenXML?

	Contributors

	Installation
	Installation

	Configure ArgoUML to use the archgenxml profile
	Background and Notes

	UML

	Hello World
	Generating the product

	Installing and using the generated product

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Getting Started »

Introduction

	What is ArchGenXML

	Why should I use ArchGenXML?

	Contributors
	Authors

	Sponsors

Description

An introduction to ArchGenXML — what it is, reasons to use it, who made it.

What is ArchGenXML

With ArchGenXML, you can create working Python code without writing one single
line of Python. It is a command-line utility that generates fully functional
Zope Products, based on the Archetypes framework, from UML models using XMI
(.xmi, .zargo, .zuml) files. The most common use-case is to
generate a set of custom content types and folders, possibly with a few tools,
a member type and some workflows thrown in.

In practice, you draw your UML diagrams in a tool which has the ability to
generate XMI files, like ArgoUML or Poseidon. Once you are ready to test your
product, you run ArchGenXML on the XMI file, which will generate the product
directory. After generation, you will be able to install your product in Plone
and have your new content types, tools and workflows available.

At present, round-trip support is not implemented: custom code can't be
converted back into XMI (and thus diagrams). However, you can re-generate your
product over existing code; method bodies and certain "protected" code sections
will be preserved. This means that you can evolve your product's public
interfaces, its methods and its attributes in the UML model, without fear of
losing your hand-written code.

ArchGenXML is hosted at svn.plone.org [http://svn.plone.org/svn/archetypes/ArchGenXML/]
as a subproject of the Archetypes project. It is released under GNU General
Public Licence 2 or later.

[image: Eyecatcher: UML Model, small image as an example from a real life project of BlueDynamics]

Why should I use ArchGenXML?

Major reasons:

	You want to save time

	You are a lazy programmer

	You don't like to reinvent the wheel

	You don't like copying and pasting code (and bugs)

	You make heavy use of references and interfaces

	You have big projects with many different custom types

	You want or need a well-documented interface to your product

	You like structured model- and pattern-driven software development

	You want to maintain your project in future without getting a headache

and many other good and odd reasons.

Contributors

The project was initially started by Phil Auersperg. Thanks to his laziness :-)

Authors

	Phil Auersperg (Project Leader)

	BlueDynamics Alliance, Auersperg-Castell KEG, phil@bluedynamics.com,

	Jens Klein (Release Manager, Developer and Doc-Writer)

	BlueDynamics Alliance, Klein & Partner KEG, jens@bluedynamics.com,

	Reinout van Rees (Co-Release Manager, Developer and Doc-Writer)

	ZestSoftware

	Fabiano Weimar dos Santos (Ideas, Testing, Bugfixing, Workflow)

	Weimar Desenvolvimento e Consultoria em Informatica Ltda., xiru@xiru.org,

	Martin Aspeli (Improvements, bug fixes and documentation)

	Martin Aspeli

	Robert Niederreiter (Lots of base work on AGX 2.0)

	Robert Niederreiter

	and others

	thanks to everybody who contributed with testing, doc-writing or code-pieces!

Sponsors

	Xiru.org, Brazil (Fabiano Weimar dos Santos) sponsors a valuable amount of
money into workflow support (State diagrams -> DCWorkflow, will go into release
1.2),

	PilotSystems, Paris, France (David Sapiro),

	OpenSource.ag, Innsbruck, Austria (Georg Pleger).

Todo

"will go"?

Todo

hyperlink companies

If you want to contribute ArchGenXML by improving the code, helping with
documentation or sponsoring it to make us improve it, please contact one of
us.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Getting Started »

Installation

	Installation
	Installing stable version
	Using buildout

	Using easy_install in a virtualenv
	Installing the development version

	Get the ArchGenXML profile

	Troubleshooting

	Support

Description

How to install ArchGenXML and get up and running.

Installation

ArchGenXML has a dependency on some Zope 3 eggs. To avoid messing up your
global site-packages directory, using buildout or virtualenv is recommended.

Note

In an older version of AGX, a Zope 3 installation could be configured in a
~/.agx_zope_path file. This case is not supported anymore. You can
delete this file if you have it.

On Windows, I assume that you installed Python 2.4.4 using the
msi installer [http://www.python.org/download/releases/2.4.4/] installer,
and that you installed it in the default location. If you have not already
done so, configure the Path environment variable to include your python
path and scripts directory. For this, go to Control Panel, Advanced,
Environment Variables, edit Path, and append
;C:\\Python24;C:\\Python24\Scripts to the existing string.

Installing stable version

Attention

Adding the ArchGenXML egg to a Plone buildout is not supported! The Plone
3.x buildout is shipped with an old Zope 3.3. ArchGenXML depends on the
latest version of Zope 3 eggs. So please create a buildout only for
ArchGenXML like described below.

If you want to install archgenxml via buildout (recommended), read
Using buildout and skip the
Using easy_install in a virtualenv part.

It can happen that the ArchGenXML version on http://plone.org is older than
PyPI because the release manager forgot to upload it on http://plone.org or for
another reason. easy_install and buildout will get the latest
ArchGenXML version from PyPI by default, so it's fine.

Using buildout

Create a fresh directory and go into it:

$ mkdir archgenxml_buildout
$ cd archgenxml_buildout

Download the normal bootstrap.py [http://svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py]
and put it in this directory. You can copy an existing bootstrap.py file of
one of your buildout, it's the same file.

Then create a buildout.cfg file in this directory with the following
snippet:

[buildout]
parts =
 archgenxml

[archgenxml]
recipe = zc.recipe.egg:scripts
eggs = archgenxml

Todo

Is ini the appropriate lexer here?

Finally bootstrap the buildout and run it:

$ python bootstrap.py
$./bin/buildout

On Windows, it's bin\buildout; you have to replace '/' by '' in all following examples.

The archgenxml command is now available as ./bin/archgenxml.

To update ArchGenXML later, go in your directory and run buildout again:

$./bin/buildout

It will download latest version of ArchGenXML and all its dependencies.

In the following, I refer to the <path to archgenxml> as the
archgenxml_buildout directory.

Using easy_install in a virtualenv

If you don't want to use buildout, you can use virtualenv to create an
isolated environment. You have to install the setuptools egg in order to
have the easy_install command available. On Ubuntu you can do it with
apt-get install python-setuptools. On Windows, go to the
setuptools pypi page [https://pypi.python.org/pypi/setuptools], download the
exe which matches the Python version you are using, and execute it to
install it.

Install virtualenv with easy_install:

$ easy_install virtualenv

On Windows, easy_install.exe is in C:\Python24\Scripts, so you have to
invoke it with the full path if you haven't added this directory to your
PATH.

Create the virtualenv with the --no-site-packages option to ignore
globally-installed packages:

$ virtualenv --no-site-packages agx
$ cd agx/
$ source bin/activate
$ easy_install archgenxml

Every time you want use ArchGenXML, you have to go in the agx directory and
type source bin/activate to activate the environment. To deactivate the
environment, type deactivate.

To update ArchGenXML, you have to update each egg. The most important ones are
archgenxml and xmiparser:

$ easy_install -U archgenxml
$ easy_install -U xmiparser

If you have a problem with ArchGenXML, please be sure to recreate the
virtualenv completely so you have the latest versions of all eggs before asking
on the archetypes-users mailing-list.

I call below <path to archgenxml> the path to the virtualenv agx directory.

Installing the development version

ArchGenXML's svn trunk is for the 2.x development version.

As usual, the goal is to keep trunk workable. Some of the developers work and develop on the edge: trunk.

If you need stability, use the latest release.

The only supported way to use the ArchGenXML trunk is with buildout. You install it like this:

$ svn co https://svn.plone.org/svn/archetypes/ArchGenXML/buildout archgenxml_buildout
$ cd archgenxml_buildout
$ python bootstrap.py
$ bin/buildout

To update your buildout:

$ cd archgenxml_buildout
$ svn up
$ bin/buildout

If you are interested in AGX 3 development, see http://dev.plone.org/archetypes/browser/AGX

I call below <path to archgenxml> the archgenxml_buildout directory.

Get the ArchGenXML profile

The archgenxml_profile.xmi file contains information about stereotypes,
fields, and other stuff that AGX needs to generate valid Python code from your
model. You can get the profile [http://svn.plone.org/svn/archetypes/ArchGenXML/trunk/umltools/argouml/archgenxml_profile.xmi]
from subversion.

Or you can regenerate it with <path to archgenxml>/bin/agx_argouml_profile.
An archgenxml_profile.xmi file is generated in the current directory.

Create a <path to archgenxml>/profiles directory and put the file here.

Note: In an older version of AGX, this file was called argouml_profile.xmi.
You should not use it with ArgoUML > 0.24.

Troubleshooting

On Windows, you may have to install and configure the mingw32 compiler [http://plone.org/documentation/kb/using-buildout-on-windows] to compile the
zope.proxy egg, an indirect dependency of ArchGenXML. Now zope.proxy
eggs are built for Windows, so you should not have this problem anymore.

Support

For any questions or problems, please ask on the archetypes-users mailing-list [http://plone.org/support/forums/archetypes]. Please don't use comments on
the manual pages. Not everybody is alerted when a comment is added.

If you want to contribute to this documentation, please post on the plone-docs
mailing-list [http://plone.org/support/forums/docs].

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Getting Started »

Configure ArgoUML to use the archgenxml profile

	Background and Notes
	Assumptions

	Install ArgoUML

	Configure ArgoUML to use the definition file

	Why ArgoUML?

Description

ArgoUML can load a "definition" file with predefined tagged values and stereotypes. So you
have all the custom tagged values and stereotypes used by ArchGenXML available in dropdown
menus.

Background and Notes

The screenshot below shows ArgoUML with the custom tags from the definition file. Having many of the possible options available from a menu has the following benefits:

	saves time - sometimes clicking is faster than typing

	reduces errors - no more mispelled tags

	presents a learning opportunity - seeing new tags and stereotypes provides a springboard for further investigation

[image: ArgoUML with ArchGenXML profile]
This walks you through how a setup of ArgoUML on an Ubuntu desktop system. The methodology should be easily adjusted to other platforms.

Assumptions

These are my assumptions:

	You already have latest sun java JRE installed. You can get it on Ubuntu with:

apt-get install sun-java6-jdk

If:

update-alternatives --list java

don't give you /usr/lib/jvm/java-6-sun/jre/bin/java, you can set java sun as the default java implementation like this:

update-alternatives --set java /usr/lib/jvm/java-6-sun/jre/bin/java

	You have copied archgenxml_profile.xmi in the <path to archgenxml>/profiles directory like described in the previous section.

Install ArgoUML

Go to http://argouml.tigris.org and download the latest stable version of ArgoUML (0.28 when these lines are written). Download the exe for Windows, the tar.gz archive for Linux.

On Windows, execute the downloaded exe to install it.

On Linux, unpack the archive somewhere, a good location is '/opt':

$ sudo mkdir /opt
$ cd /opt
$ sudo tar xvf /tmp/ArgoUML-0.28.tar.gz

It should create a argouml-0.28 directory.

It is handy to symlink 'argouml.sh' to '/usr/local/bin/argouml':

$ sudo ln -s /opt/argouml-0.28/argouml.sh /usr/local/bin/argouml

Configure ArgoUML to use the definition file

Note

ArgoUML 0.24 used to use the argo.defaultModel option to specify a profile to use like this:

java -Dargo.defaultModel=<path to archgenxml>/profiles/archgenxml_profile.xmi -jar /opt/ArgoUML/argouml.jar

It's not the case anymore with latest ArgoUML version. Please read on.

	Launch ArgoUML and go to Edit -> Settings... -> Profiles

	Click on Add and specify your <path to archgenxml>/profiles directory.

Note

archgenxml will use the list of profiles directories configured on ArgoUML.

	Close ArgoUML and launch it again.

	Go again in Edit -> Settings... -> Profiles AGXProfile should be visible now in "Available Profiles".

	Click on ">>" to add it to "Default profiles".

	You should remove the Java profile from the "Default profiles" list to be sure to not use stereotypes and tag definitions from this one. You should only have AGXProfile and UML 1.4 in this list. You can't remove the UML 1.4 here, but you remove it by project.

The global configuration is now done.

Now for every new project you create:

	Click on the fourth icon in the toolbar to configure Profiles for this project. Delete UML 1.4. You should really only have AGXProfile is this list.

Note

if you want to generate Plone 2.5 compatible code, set on the model root the plone_target_version tag definition with value 2.5.

Why ArgoUML?

Just a few notes on why using ArgoUML.

	Mature - it supports the important stuff (at least as far as ArchGenXML goes), state diagrams, tagged-values, stereotypes.

	It is pretty lightweight, which is important when your laptop only has 256 MB of RAM and a PIII 700 Mhz processor. Poseidon Community Edition, though nice, is just too memory hungry.

	Price is good (free and open source)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Getting Started »

UML

Description

A brief introduction to UML and pointers to further readings.

UML — the Unified Modeling Language — is a graphical language
designed to describe software through formalised diagrams. There are several
different types of diagrams available, but the ones most relevant to ArchGenXML
are:

	The class diagram

	The state diagram

Class diagrams are used to draw interfaces, content types (represented as
classes) and tools (represented as classes with the portal_tool
stereotype), as well as the attributes and public operations on these. In
addition, associations in the diagram show how objects are aggregated within or
referenced from one another.

The goal of model-driven development is to create the "blueprints" for your
software in a well-defined, easily-communicated format: the UML model and
diagram thereof. You can design your model using visual tools until you have a
structure which adequately represents your needs, and ArchGenXML will generate
the necessary code.

For all but the simplest products, you will have to customise that code
somewhat, filling in method bodies, creating new page templates, etc., but
ArchGenXML takes care of all the boilerplate for you. With tagged values and
stereotypes you can customise the generated code with a surprising degree of
flexibility and control, and when you need to hand-code something, ArchGenXML
won't overwrite your changes (provided you stick to the protected code
sections, clearly marked in the source code).

This manual does not aim to teach you UML and object-oriented, model-driven
software development. There are several other fine manuals about that on the
web. A very good starting point is the OMG UML Resource Page [http://www.uml.org/], including its web-links to tutorials.

For a quick-start read Practical UML [http://bdn.borland.com/article/0,1410,31863,00.html]
chapters 'class-diagram' and 'state-chart-diagram'.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Getting Started »

Hello World

	Generating the product

	Installing and using the generated product

Description

Create your first minimal content type with ArchGenXML

Open the UML tool of your choice. Make a new UML model and give it a name
HelloWorld. Then add a class diagram (most UML tools do this automatically).

Choose the tool for class creation and add a class to the diagram. Give it a
name such as HelloType and add an attribute HelloText with type
string. The helloworld3.zargo (Plone 3.0) /
helloworld25.zargo (Plone 2.5) models were created using
ArgoUML, and contain the type as described above.

[image: Example HelloWorld with HelloType in UML]

Generating the product

Save your model as helloworld.zargo (ArgoUML) or helloworld.zuml
(Poseidon), or export it as an XMI file with the name helloworld.xmi. Then
go to the command line and execute:

$ archgenxml helloworld.zargo

ArchGenXML will begin code generation. When it completes, you will have a new
folder HelloWorld on your file system. Its contents looks like:

HelloWorld/
|-- Extensions (only with plone_target_version=2.5)
| |-- Install.py
| `-- __init__.py
|-- HelloType.py
|-- __init__.py
|-- config.py
|-- configure.zcml
|-- i18n
| `-- generated.pot
|-- interfaces.py
|-- locales
|-- profiles
| `-- default
| |-- HelloWorld_marker.txt
| |-- cssregistry.xml
| |-- factorytool.xml
| |-- import_steps.xml
| |-- jsregistry.xml
| |-- metadata.xml
| |-- skins.xml
| |-- types
| | `-- HelloType.xml
| `-- types.xml
|-- profiles.zcml
|-- refresh.txt
|-- setuphandlers.py
`-- skins
|-- helloworld_images
| `-- HelloType.gif
|-- helloworld_styles
`-- helloworld_templates

Installing and using the generated product

Move the whole folder HelloWorld to your Zope/Plone 3 instance's
Products folder. Restart Zope, open Plone in a browser and log in as
Manager. Choose Plone Setup from the personal bar and choose Add/Remove
Products. A new product HelloWorld should now appear in the list of
products available for install. Choose it and click install. Go to your
personal folder. In the list of addable items, you'll find the content type
from the new product. Add a test instance to see if it works.

[image: Plone: HelloType in action]
That's the trick. By the way: the title is always part of the schema. But don't
worry: you can hide or recycle it later.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Basic Features

Description

Content Types, Fields, Widgets, References and Workflow

	Classes / Content Types
	Overview

	Variants of Content Types

	Portal tools

	Abstract mixin classes

	Stub classes

	Deriving/Subclassing Classes

	Packages - bring order to your code

	Attributes / Fields / Indexing
	Usage of tagged values

	Non-string tagged values

	field recycling - copy from parents schema or another source schema and modify

	Index and metadata in catalogs and Collection

	Widgets
	Changing the default widgets

	Creating new widgets

	Methods and Actions

	Relationships between classes and objects
	Aggregations: Global Containment

	Compositions: Strict Containment

	Directed Associations: References

	Workflows
	Problems with UML-Software

	Creating a workflow

	States

	Transitions

	Workflow actions

	Attach workflow to more than one class

	Worklist support

	Tests
	Overview

	Base Test Case

	Test Setup

	Test Cases

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Classes / Content Types

	Overview

	Variants of Content Types
	Simple Classes

	Folderish Classes

	Portal tools

	Abstract mixin classes

	Stub classes

	Deriving/Subclassing Classes
	Simple Derivation

	Multiple Derivation

	Deriving from other Products

	Deriving form ATContentTypes

	Packages - bring order to your code

Description

Use classes to generate content types and portal tools.

Overview

By default, when you create a class in your class diagram, it represents an
Archetypes content type. You can add operations in your model to generate
methods on the class, and attributes to generate fields in the schema. The
quick reference at the end of this tutorial will tell you which field types
you can use. You should also browse the "Archetypes quick reference
documentation":/documentation/manual/archetypes-developer-manual/fields to
see what properties are available for each field and widget type. You may set
these using tagged values (see below).

There are three basic ways in which you can alter the way your content types
are generated:

	You may set one or more stereotypes on your class, which alters the "type" of class. A stereotype <<portal_tool>>, for example means you are generating a portal tool rather than just a simple content type.

	You can use tagged values in your model to configure many aspects of your classes, their attributes and their methods. A list of recognised tagged values acting on classes, fields and methods are found in the "quick reference":archgenxmlquickref at the end of this tutorial.

When reading tagged values, ArchGenXML will generally treat them as strings, with a few exceptions where only non-string values are permitted, such as the required tagged value. If you do not wish your value to be quoted as a string, prefix it with python:. For example, if you set the tagged value default to python:["high", "low"] on a lines attribute, you will get default=["high", "low"] in a LinesField in your schema.

	ArchGenXML is clever about aggregation and composition. If your class aggregates other classes, it will be automatically made into a folder with those classes as the allowed content types. If you use composition (signified by a filled diamond in the diagram) rather than aggregation, the contained class will only be addable inside the container, otherwise it will be addable globally in your portal by default.

Variants of Content Types

Simple Classes

A simple class is what we had in HelloWorld in the previous chapter.
A simple class is based on BaseContent and BrowserDefault. This is the default if no other options override.

Folderish Classes

The easiest way to make a content type folderish is to introduce composition
or aggregation in your model - the parent class will become folderish and will
be permitted to hold objects of the child classes. You can also make a class
folderish just by giving it the <<folder>> stereotype. Both of these
approaches will result in an object derived from BaseFolder.

You can also give a class the <<ordered>> stereotype (possibly in addition
to <<folder>>) in order to make it derive from OrderedBaseFolder and thus
have ordering support. Alternatively, you can set the base_class tagged
value on the class to OrderedBaseFolder. This is a general technique which
you can use to override the base folder should you need to. As an aside, the
additional_parents tagged value permits you to derive from multiple parents.

Another option is to derive from ATFolder (from ATContentTypes) by giving the
class the stereotype <<atfolder>>.

Other tagged values which may be useful when generating folders are:

filter_content_types -- Set this to 0 or 1 to turn on/off filtering of
content types. If content types are not filtered, the class will act as a
general folder for all globally addable content.

allowed_content_types -- To explicitly set the allowable content types, for
example to only allow images and documents, set this to: 'Image, Document'.
Note that if you use aggregation or composition to create folderish types as
described above, setting the allowed content types manually is not necessary.

Portal tools

A portal tool is a unique singleton which other objects may find via
getToolByName and utilise. There are many tools which ship with Plone,
such as portal_actions or portal_skins. To create a portal tool instead of
a regular content type, give your class the <<portal_tool>> stereotype.
Tools can hold attributes and provide methods just like a regular content
type. Typically, these hold configuration data and utility methods for the
rest of your product to use. Tools may also have configlets - configuration
pages in the Plone control panel. See the quick reference at the end of this
document for details on the tagged values you must set to generate configlets.

Abstract mixin classes

By marking your class as abstract in your model (usually a separate
tick-box), you are signifying that it will not be added as a content type.
Such classes are useful as mixin parents and as abstract base classes for more
complex content types, and will not have the standard Archetypes registration
machinery, factory type information or derive from BaseClass.

Stub classes

By giving your class the <<stub>> stereotype, you can prevent it from being
generated at all. This is useful if you wish to show content types which are
logically part of your model, but which do not belong to your product. For
instance, you could create a stub for Plone's standard Image type if you wish
to include this as an aggregated object inside your content type - that is,
your content type will become folderish, with Image as an allowable contained
type.

Deriving/Subclassing Classes

Deriving or subclassing a class is used to extend existing classes, or change
their behavior. Using generalisation arrows in your model, you can inherit
the methods and schema from another content type or mixin class in your class.

Simple Derivation

All content types in Archetypes are derived from one of the base classes -
BaseContent, BaseFolder, OrderedBaseFolder and so on. If you wish to turn
this off, for example because the base class is being inherited from a
parent class, you can set the base_class tagged value to 0.

Multiple Derivation

You can of course use multiple inheritance via multiple generalisation
arrows in your model. However, if you need to use a base class that is not
on your model, you can set the additional_parents tagged value on your
class to a comma-separated list of parent classes.

Deriving from other Products

If you want to derive from a class of an other product create a stub class
with a tagged value import_from: This will generate a import line
from VALUE import CLASSNAME in classes derived from this class.

Deriving form ATContentTypes

To derive from ATDocument just use a stereotype <<atdocument>>. Also
possible with <<atfile>>, <<atevent>> and <<atfolder>>.

Packages - bring order to your code

Packages are both a UML concept and a Python concept. In Python, packages are
directories under your product containing a set of modules (.py files). In
UML, a package is a logical grouping of classes, drawn as a large "folder"
with classes inside it. To modularise complex products, you should use
packages to group classes together.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Attributes / Fields / Indexing

	Usage of tagged values

	Non-string tagged values

	field recycling - copy from parents schema or another source schema and modify

	Index and metadata in catalogs and Collection

Description

How to control the fields of your schema.

Archetypes are using schemas (also called schemata) with fields to define the form-fields on your content. The schema and its fields of your content types is generated from the attributes of your classes in your model and their tagged values. Each field has a type and a widget.

The Archetypes documentation [http://plone.org/documentation/manual/archetypes-developer-manual] and the quick reference at the end of this document describes which fields are available and what parameters they take as configuration.

Usage of tagged values

If you set a tagged value on an attribute of your class, in general that tagged value will be passed through as a parameter to the generated Archetypes field. Hence, if you set a tagged value enforceVocabulary to the value 1 on an attribute, you will get enforceVocabulary=1 for that field in the generated schema. Similarly, you can set a field's widget properties by prefixing the tagged value with widget:. widget:label sets the label of a widget, for instance.

Non-string tagged values

As before, when reading tagged values, ArchGenXML will generally treat them as strings, with a few exceptions where only non-string values are permitted, such as the 'required' tagged value. If you do not wish your value to be quoted as a string, prefix it with python:. For example, if you set the tagged value default to python:["high", "low"] on a lines attribute, you will get default=["high", "low"] in a LinesField in your schema.

field recycling - copy from parents schema or another source schema and modify

This feature allows you to copy a field from another source schema and rename the field.

Rather than subclass an entire class then delete unwanted fields, you can explicitly copy just the fields you need. You can keep the copied field "as-is" or modify it by overriding properties with tag values as needed.

For example you may need a Description field that is usually defined in your parent classes (BaseContent, BaseFolder) Schema. You would create a new attribute in your class named description with a type of copy. If you want it to appear in your base_edit form rather then the default of properties/metadata page you just need to change one property of the field by adding the tag schemata = "default".

You may also copy from any other schema or from within the same schema. You need to specify the source schema using the tag copy_from and if you need to rename the field use the source_name tag to indicate the source field Id, otherwise the Id of the field in you schema is used.

Index and metadata in catalogs and Collection

ArchgenXML can create configuration files to create an index and/or metadata entries in the catalog such as portal_catalog.

Available are the following tagged values:

catalog:index -- add the field to the index. Boolean, 1 or 0. Default is 0. If set, you may need to provide index:* tagged values too.

catalog:metadata -- add the field to the metadata record on the query result? Boolean, 1 or 0. If you do not provide index:attributes, the name of the accessor of the field is the default. If catalog:metadata_accessor is given it will be used instead.

catalog:metadata_accessor -- the accessor used for the metadata (string).

catalog:name -- sometimes you need to add an index to a other catalog than portal_catalog and its XML-File catalog.xml. Provide a tuple of comma separated strings, id of the catalog and the filename of its configuration file. default is "portal_catalog, Plone Catalog Tool'.

index:type -- the type of index used as (string), for example FieldIndex, KeywordIndex, DateIndex or any available index in your portal. For known types a default is guessed, such as FieldIndex for StringFields or DateIndex for DateFields. If no guess is possible, we assume a FieldIndex.

index:attributes -- the attributes to use for index (string or comma separated list of strings). This are the methods called at indexing time. Normally it is enough to provide one index method, but for some specific use cases you might need to provide alternatives. If you do not provide this tagged value, the name of the accessor of the field is the default.

index:name -- the name of the index used (string). Use this name in your queries. If you do not provide a name, the name of the accessor of the field is the default.

index:extras -- some indexes are using so called extras on installation as configuration. If the index need extras you'll need to declare them here. provide a comma separated list.

index:properties -- some indexes are using properties on installation as configuration. If the index need properties you'll need to declare them here. Provide a comma separated list.

collection:criteria -- add the index to the Collection (aka Smart Folder) Indexes available for defining Criteria. Provide a comma seprated list of criteria that will be available by default. Available criterias are: ATBooleanCriterion, ATDateCriteria, ATDateRangeCriterion, ATListCriterion, ATPortalTypeCriterion, ATReferenceCriterion, ATSelectionCriterion, ATSimpleIntCriterion, ATSimpleStringCriterion, ATSortCriterion, ATCurrentAuthorCriterion, ATPathCriterion, ATRelativePathCriterion. You must provide an index:type as well.

collection:criteria_label -- the display name of the collection:criteria, called friendly name (string). Its added to the generated.pot as a literal. If not given the widget:label is taken if provided.

collection:criteria_description -- a help text (string), used for collection:criteria. Its added to the generated.pot as a literal. if not provided the widget:description is used.

collection:metadata -- register the catalog:metadata as an available column in a Collection. Can be used as an alternative for catalog:metadata. catalog:metadata_accessor is used if given.

collection:metadata_label -- the display name of the collection:metadata, called friendly name (string), used for index:criteria. Its added to the generated.pot as a literal. If not given the widget:label is taken if provided.

collection:metadata_description -- a help text (string), used for collection:criteria. Its added to the generated.pot as a literal. If not provided the collection:criteria_help or - if not provided - widget:description is used.

DEPRECATED For backward compatibility reasons we support a sub part of the old style in ArchGenxML Version 1.6 and earlier using the tagged value index. This is deprecated and will be removed in one of the next version of ArchGenXML. A tagged value index with value like index:type above creates an index with the accessor. To include the index in catalog metadata (and have the attribute ready to use in the brain objects), append :brains (same as older :schema), (e.g. FieldIndex:brains). ArchGenXML does longer provides the ability to define multiple indexes using the old declaration style.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Widgets

	Changing the default widgets

	Creating new widgets

Description

Setting up the Widgets for each field.

ArchGenXML will pick a default widget for your fields and fill in default labels and descriptions. For example, a string field gets a StringWidget by default, but a selection field type gets SelectionWidget on a StringField! You can override this in two ways. So ArchGenXML mixes up fields and widgets slightly for convinience reasons. Anyway, you can override all predefined definitions using widget options.

Widget options are specified with the prefix widget:. As with normal field tagged values, unrecognised options will be passed straight through to the widget definition.

The most common widget options are:

widget:type -- sets the widget type used. Its the name of the widget class. You can use all widgets shipped within the Archetypes-Framework by just providing this tagged value. To use 3rd-Party widgets you additionally need to import the class using the imports tagged value on class level.

widget:label -- sets the widget's label

widget:description -- sets the widget's description

widget:label_msgid -- overrides the default label message id (i18n)

widget:description_msgid -- overrides the default description message id (i18n)

widget:i18n_domain -- sets the i18n domain (defaults to the product name)

You may also use widget-specific options, such as widget:size where they apply. Look up possible widget-specific options at the documentation of the widget you want to use.

Changing the default widgets

To change the widget used for one field-type for a whole model, a product, a package or just for all fields in one class you can set on the product, package or class level the tagged value default:widget:FIELDNAMEABBREVIATION to WIDGETNAME. For example use the tagged value default:widget:Reference set it to ReferenceBrowserWidget to use the ReferenceBrowserWidget instead of the ReferenceWidget. You might also want to also use the imports tagged value and set it to from ATReferenceBrowserWidget.ATReferenceBrowserWidget import ReferenceBrowserWidget on your class to ensure that you get the widget definition imported into your class.

Creating new widgets

To define a new widget add a class to your model with the <<widget>> stereotype.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Methods and Actions

Description

Defining Methods and Actions

To create a method in your class, add a method to the UML diagram, with the desired parameters. The types of the parameters and the type of the return value are ignored, since Python does not support this.

Methods can different access specifiers (also called visibilities) These are:

	public (shown by a + before the method name) -- The method is part of the class' public interface. It will be declared public (accessible from unsafe/through-the-web code) by default. If you add a tagged value 'permission' (see below), it will be declared as protected by this permission.

	protected (#) -- The method is not part of the class' public interface, but is meant for use by sub-classes. It will be declared private to prevent unsafe code from accessing it.

	private (-) -- The method is internal to the class. It will be declared private to prevent unsafe code from accessing it.

	package (~) -- The method is intended to be accessed by other code in the same module as the class. It will not gain any Zope security assertions, relying instead on the class/module defaults.

There are a few tagged values you can use to alter how the code is generated:

	code -- Sets the python code body of the method. Only use this for short one-liners. If you fill in code manually in the generated files, method bodies will be preserved when you re-generate the product from the UML model.

	documentation -- Content of the python doc-string of the method. You can also use the documentation feature of most UML modellers to set documentation strings.

	permission -- Applies to methods with 'public' visiblity only. If you set the permission tagged value to My custom permission results in security.declareProtected("""My custom permission""",'methodname') - that is, access to your method is protected by the permission with the name My custom permission.

If you want to use the CMF core permissions, add an imports tagged value to the method's class containing from Products.CMFCore import permissions, and then set the permission tagged value of your method to python:permissions.View, python:permissions.ModifyPortalContent or any other core permission. You can also use the common paradigm of defining permissions in config.py as constants with names like EDIT_PERMISSION. A config.py is automatically generated and its contents imported, so you can just set the permission tagged value to, for example, python:EDIT_PERMISSION.

Archetypes uses actions for generating custom tabs to access some view of an Archetype object. ArchGenXML can generate actions for you: Just define a method without any parameters and set its stereotype to <<action>>.

Once again tagged values can be set on the sterotyped methods in order to set some properties of the action:

	action -- The TAL expression representing the action to be executed when the user invokes the action. Defaults to the methodname.

	category -- The category of an action, view or form. Defaults to object.

	id -- The id of an action, view or form. Defaults to the methodname.

	label -- The label of an action, view or form. Defaults to the methodname.

	permission -- permission=My permission results in permissions: ('''My Permission''',). See the description of the general permission tagged value above for more.

	condition -- A TALES expression giving a condition to control when the action is to be made available.

You can override the default Archetypes actions by using special names for the id. These are:

	view -- for overriding the default view action.

	edit -- for overriding the default edit action.

	contents -- for overriding the default contents action.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Relationships between classes and objects

	Aggregations: Global Containment

	Compositions: Strict Containment

	Directed Associations: References
	Directed Associations

	References as class attributes

	Reference classes (advanced)

Description

How to use references, associations, aggregations and compositions

With aggregations, compositions and associations you define where your new type will show up, what it might contain and to which content it can point to.

There is virtually no limit on how many aggregations, compositions and associations you can attach to a class.

Aggregations: Global Containment

[image: Aggregation]
Aggregation means: This content can exist global and in this container. The container class that gets the empty rhomb (diamond) attached is derived from BaseFolder and it's allowed_content_types is set to the class that is attached to it. If more than class is attached to one class by aggregations the allowed_content_types is extended accordingly. The attached class keeps the default global_allow=1.

Compositions: Strict Containment

[image: Composition]
Compositions are used to model parts that exist or live and die with their associated owner. So the code generated is similar to the one generated by aggregations, but with one major difference: The attached classes are only allowed to be generated in the folderish type of the class they're attached to (this is done by setting global_allow=0 in the factory type information of the class).

Directed Associations: References

[image: Directed Association]
References are used to store the relation of an object to other objects.

Each content type that derives from IReferenceable is capable of being referenced. Objects from such a content type have an UID (Unique Identification) that's unique throughout the whole Plone site. Therefore References don't break if you move referenced objects around in the site.

To use ReferenceFields there are two possible ways. The by models-design clean way is to use directed associations. Another possibility is to define References as class-attributes.

Directed Associations

An directed association between two classes generates a ReferenceField in the class where the association starts.

The relationship itself is named after the association's name.

The multiplicity defines if the allows a 1:1 or 1:n relation.

Attention

This only results in validation on the field. References at all don't know anything about
multiplicity, so this is only a check on userinterface-level.

All other field settings are taken from the association's end, including information how to generate the widget. By default a ReferenceWidget is used. You can use tagged values on the association's end to define label, description, a different widget-type, schemata, etc. like you do it on a field (on a class attribute).

The big drawback of using associations to create ReferenceFields is that they always get attached to the end of the schema and there is no way to change that in the UML diagram. So if you need order in your fields read the next section.

References as class attributes

You can define an attribute with the type reference. Then you can apply any needed tagged values to it.

keys of interest are:

	allowed_types : needs a list of allowed types

	multiValued : set to 0 to only be able to select one object to reference to

	relationship : name of the relationship in the reference_catalog

The benefit of using an attribute to define the reference is that you can define the place in the schema where the ReferenceField will show up.

Reference classes (advanced)

Sometimes it's needed to store information not in the origin or
destination class, but in the reference itself. UML has a notation to
model this: association classes [http://argouml.tigris.org/documentation/defaulthtml/manual/ch17s11.html#s2.ref.association_multiway]

ArchGenXML support them automatically. When a model includes an
association class, two things occur:

	A new content type is created, named like the association name

	The generated ReferenceField has a new attribute defined like this: referenceClass = ContentReferenceCreator('My_Association_Name')

This causes that the class of the reference instances is now not Archetypes.ReferenceEngine.Reference, but Archetypes.ReferenceEngine.ContentReference, a subclass of it that has a new method: getContentObject(), that return the content inside the
reference.

The same effect can be reached without association classes, by defining a content type and then adding the association_class tagged value to the association (although I haven't been able to make this work).

To create the reference via code, use a special form of the addReference method:

origin = <the origin content>
destination = <the destination content>
assocName = <the association name>

origin.addReference(destination,
 assocName,
 referenceClass=ContentReferenceCreator(assocName),
 attr1=value1,
 attr2=value2...)

(where attr1, attr2... are the attributes of the association)

To read the data, we can't use the origin.getRefs(assocName) method, as usual, because it returns only the destination objects. One way to read it is by using the reference_catalog tool:

from Products.CMFCore.utils import getToolByName
tool = getToolByName(origin, 'reference_catalog')
refs = tool.getReferences(origin, assocName)
if not refs:
 return []
else:
 return [(ref.getContentObject(), ref.getTargetObject()) for ref in refs]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Workflows

	Problems with UML-Software

	Creating a workflow

	States

	Transitions
	Transition guards

	Permissions

	Workflow actions

	Attach workflow to more than one class

	Worklist support

Description

Usage of state diagrams to create custom workflows.

ArchGenXML can use state diagrams to generate workflows for a portal type. Workflows are used to set the various states an object can be in, and the transitions between them.

Importantly, workflows control permissions of objects. By convention, and for convenience and consistency, most content types will use the permissions found in the CMFCorePermissions class in the CMFCore product to control access to their methods. The methods generated by and inherited from the CMF and Archetypes frameworks adhere to this principle. Although many different content types use the same basic permissions to control access, workflows are the means by which you can control permissions for an object in detail. For instance, you may wish to specify that in the testing state, Manager and Reviewer has Modify portal content permissions, and Owner, Manager and Reviewer has View permissions. For the completed state, you could have a different set of permissions. See the DCWorkflow documentation for more details about how to use workflows.

Problems with UML-Software

The workflow implementation of ArchGenXML has to date only been tested with ArgoUML and Poseidon (tested Version is 3.1 and 3.2 CE).

ObjectDomain is known not to work at this time, because it does not appear to correctly export the XMI for state diagrams. If you have different experiences, please add a comment to this document or contact us.

Creating a workflow

In your UML modeller, add a state diagram for the class you wish to create a custom workflow for. If you don't want to assign the workflow to a class use an class with stereotype stub. In Poseidon, this is done by right-clicking on the object in the tree on the left hand side, and selecting to add a new state diagram. The name of the state diagram becomes the name of the workflow.

States

On the state diagram, add a state item (a rounded-corner box) for each state. You must have an initial state of your workflow for it to work correctly. Use a "initial state" symbol (filled cirlce) for the state your object defaults to after creation. Optional you can use a normal state item and set a tagged value initial_state with value 1 to it.

At present, ArchGenXML does not support the "final state" UML symbols to represent final states, so you should stick to the standard state symbols.

The names of your states in UML become the names of the states in your workflow. The user-visible label can be set with the label tagged value; it defaults to the state name.

[image: Workflow in UML]

Transitions

For each possible transition between states, add a transition arrow to your UML model. The name of the transition becomes the name of the workflow action. You can set the label tagged value on the transition to set a custom label to display to the user.

If a transition with the same name/target is used more than one time, you can use the stereotype <<primary>> to define its settings once and use it by name on all similar transitions.

Transition guards

You can add a guard to a transition to restrict to whom and when it is made available. Set the expression field of a transition to a |-separated list of the following pairs:

	guard_roles

	Set guard_roles:Owner; Manager to restrict the transition to users posessing the Owner or Manager role in the current context.

	guard_permissions

	Set guard_permissions:My custom permission;View to ensure that only those users with My custom permission or View permissions in the current context are allowed to access the transition.

	guard_expr

	Set guard_expr:expression, where expression is a TALES expression, to have the expression be evaluated in order to determine whether the transition should be made available.

Thus, to restrict access to roles Reviewer and Manager, and only those users with permission My custom permission and View in the current context, you can set the expression of the transition to guard_roles:Reviewer;Manager|guard_permissions:My custom permission, View.

If you are using Poseidon, transition guards are located in the property of the transition arrow with the name [A] Guard. You can add an expression like the one outlined above to this field.

Permissions

ArchGenXML uses tagged values on states in a somewhat unconventional, though convenient, way to control permissions. With the exception of the special-case initial_state and label tagged values, you give the name of the permission as the tagged value key, and a comma-separated list of roles the permission should be enabled for as the value.

There are three shorthand permission names available:

	access

	referes to the Access contents information permission,

	view

	refers to the View permission,

	modify

	refers to the Modify portal content permission,

	list

	refers to the List folder contents permission.

	delete

	refers to the Delete objects permission.

Hence, if you want your state to permit anonymous users and members to view your content, only permit managers to modify, and permit both the owner and managers to add new objects controlled by the Add MySubTypes permission, you can add tagged values to the workflow state:

view ==> Anonymous, Member
modify ==> Manager
Add MySubTypes ==> Owner, Manager

If you want to aquire the permissions and add new ones you can use the value 'aquire':

view ==> acquire, Anonymous, Member

(One special case: if you leave the value empty, no one gets that permission (which is logical), but it also explicitly unsets acquisition of the permission).

Workflow actions

The portal_workflow tool allows a script to be executed before and/or after a transition is completed. This is no longer supported. Instead subscribers to the Workflow events are used. Event-subsribers are more flexible.

Actions are set using the effect field of a transition. The value given here gives the name of the subscriber to execute (and thus must be valid python method name). ArchGenXML will create or modify a subscriber for each workflow-action in a file wfsubsribers.py in your product. You must fill in the method bodies for the actions in this file. Method bodies will be preserved upon re-generation of your product from the UML model. In Plone 2.5 compatible mode DCWorkflow needs a patch with a backport. This patch is generated, if 2.5 is selected as plone_target_version (tagged value on model).

By default, actions specified in this way are post-transition actions, meaning that they are executed after the transition has taken place. If you wish to specify a pre-transition action, executed before the transition takes place, separate action names by semicolons: preActionName;postActionName. If you want only a pre-transition action, use preActionName; to specify that there is an empty post-transition action.

Attach workflow to more than one class

In UML there is no semantic to use a workflow for more than one class. We introduced the tagged value use_workflow for classes. Value is the workflow name.

Worklist support

You can attach objects in a certain state to a worklist. A worklist is something like the "documents to review" list you get when you're a reviewer in a Plone site. This is done by adding a tag worklist to the state with the name of the worklist as value (like review_list).

You can add more than one state to a worklist, just by specifying the same name for the worklist tagged value. Likewise, you can have more than one worklist (just not on the same state). The tagged value worklist:guard_permissions allows you to specify the permission you need to have to view the worklist. The default value is Review portal content.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Basic Features »

Tests

	Overview

	Base Test Case

	Test Setup

	Test Cases
	Test Case

	Doc Tests

	Functional Tests

	Interface Tests

Description

Generation of tests from UML.

Overview

We hope there is no need for us to emphasize how important testing is for even the most simple products you may be developing. This makes it especially useful to include the creation of both your testing framework and individual tests within your UML model.

Within a new package with a stereotype of <<tests>> you can create your base test case class with a stereotype of <<plone_testcase>> and a test setup class with a stereotype of <<setup_testcase>>. You can then add additional test classes as needed with a stereotype of either <<testcase> or <<doc_testcase>>.

[image: Sample UML]

Base Test Case

Creating a class in your tests package with a stereotype of <<plone_testcase>> generates the needed base test case for all other test cases.

Test Setup

Creating a class in your tests package with a stereotype of <<setup_testcase>> generates a testcase for the setup, with pre-defined common checks.

Test Cases

Test Case

Creating a class in your tests package with a stereotype of <<testcase>> generates a standard test case class.

Doc Tests

Creating a class in your tests package with a stereotype of <<doc_testcase>> generates a doc test file in the doc folder of your product with a name of class + .txt. You can use the tag of doctest_name on your class (excluding any extension as .txt is appended automatically) to indicate a different name for your generated doc test.

Functional Tests

Generate browser functional tests using the <<plonefunctional_testcase> stereotype.

Interface Tests

Generate interface tests using the <<interface_testcase>> stereotype.

It is unverified whether these generated test cases will verify Z3 style interfaces but stay tuned!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Third Party Product Integration

Description

The usage of add on products.

	ATVocabularyManager
	Using simple flat vocabularies

	Using simple tree vocabularies

	Relations
	Prerequisites

	Basics

	Inverse Relation

	Cardinality

	Constraints

	Association classes

	Remember
	Prerequisites

	A Content-Type based on remember

	CompoundField and ArrayField
	Prerequisites

	List of fields - ArrayField

	Custom Fields compounds - CompoundField

	Content Flavors
	Prerequisites

	Adding a field to an existing content typ

	Limits

	archetypes.schemaextender
	Prerequisites

	Adding a field to an existing content type

	Example model and additional features

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

ATVocabularyManager

	Using simple flat vocabularies

	Using simple tree vocabularies

Description

ATVocabularyManager is a product for letting site managers define
vocabularies for fields through-the-web or by import from XML files.
ArchGenXML can generate the necessary code to use this product.

ATVM manages dynamic vocabularies. It installs a tool, where a site Manager can add, change and delete vocabularies. These vocabularies can then be used anywhere on the site.

You can download ATVocabularyManager from the Plone.org products area: /products/atvocabularymanager [http://plone.org/products/atvocabularymanager]

Using simple flat vocabularies

Adding ATVM-vocabs to your UML model is quite easy.

	Add a selection or multiselection field to your type.

	Add a tag vocabulary:name and give it a name, let's say countries

	Add a tag vocabulary:type with the value ATVocabularyManager

We are now finished with the UML. Save it and let AGX do the work. What still is missing, is to install the countries vocabulary. Therefore:

	Add a function called setupVocabularies to the protected code section in setuphandlers.py in your product and register it as an import step in /profiles/default/import_steps.xml in a code section (make it dependent from you *QI-Dependencies step.

	Add the following code to your setuphandler.py (this sets up a vocabulary countries with the given values, and registers it with ATVocabularyManager):

from Products.ATVocabularyManager.config import TOOL_NAME as ATVOCABULARYTOOL
from Products.CMFCore.utils import getToolByName
from Products.ATVocabularyManager.utils.vocabs import createSimpleVocabs

def setupVocabularies(context):
 """let's install the countries vocab"""

 vocabs = {}
 vocabs['countries'] = (
 ('ice', u'Iceland'),
 ('nor', u'Norway'),
 ('fin', u'Finland'),
 ('tyr', u'Tyrol'),
 ('auf', u'Ausserfern'),
)
 site = context.getSite()
 atvm = getToolByName(site, ATVOCABULARYTOOL)
 createSimpleVocabs(atvm, vocabs)

Using simple tree vocabularies

If you are interested in using and creating hierachical vocab:

	use additional tag vocabulary:vocabulary_type with value TreeVocabulary,

	have a look at the doc-string of Products.ATVocabularyManager.utils.createHierarchicalVocabs.

Using vocabularies based on the IMS Vocabulary Definition Exchange (VDEX) format.

VDEX [http://www.imsglobal.org/vdex/index.html] is a simple XML based format to define flat or hierachical multilingual vocabularies. ATVocabularyManager supports VDEX in most of its dialects.

To tell Archetypes to use them in your UML first take Steps 1 to 3 of the first section and skip the import part. Then add a tag vocabulary:vocabulary_type and give it the value VdexVocabulary.

Now add a folder called data in your products folder. Inside the /data folder create a new file called countries.vdex ("example":countries.vdex). It will be imported automatically on install or reinstall, but only if a vocabulary named countries does not exist.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

Relations

	Prerequisites

	Basics

	Inverse Relation

	Cardinality

	Constraints

	Association classes

Description

Create relations between portal-types model-driven. Support for
Relations Product (complex references). Define sets of rules for
validation, creation and lifetime of Archetypes references. ArchGenXML
can generate the necessary code and XML-configuration data to use this
product.

Prerequisites

To enable Relations install the Product (code-location [http://plone.org/products/relations/]).

Basics

As an option on command line, up to a tagged-value on model-level or on a single UML-Association you just define the relation_implementation and set it to relations. A directed Association results in one Relation.

Give the association and its assoziation ends names. They'll be used as the names for the RelationField. If you don't want a field turn it off by setting a tagged value generate_reference_fields on class (or package, model) level to 0.

Inverse Relation

If the association is not directed (navigable on both association ends) an inverse relation will be created.

The tagged-value inverse_relation_name will be used for the back-relation on undirected associations. It defaults to a relation named toend_fromend, where these are the lowercased versions of the association ends. If the two ends are named the same, then the relation will be named association_inv, where association is the name of the association. (Finally, if the option old_inverse_relation_name is set, then it defaults to the association name postfixed by _inverse.)

Cardinality

You can use the Multiplicity on in UML to define the cardinality of an Relation.
You can use the minimum and maximum value here using the syntax 1..5 which means at least one relation related objects but not more than five.

Constraints

	type-constraint

	as described above an association between two portal-types will be created.

	interface-constraint

	an association between an archetypes class and an interface will create an interface-constraint. the relation is allowed to all classes implementing this interface.

Association classes

Association classes can be used to store data on the relation as an object. You can model it using the UML association class or using a tagged value association_class on the association.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

Remember

	Prerequisites

	A Content-Type based on remember

Description

Generate 'Remember' based Member-Types. Its the successor of CMFMember.

Prerequisites

You must install to additional Products:

	membrane [http://plone.org/products/membrane]

	remember [http://plone.org/products/remember] (using Five 1.4.3+ [http://codespeak.net/z3/five/])

You should also read the documentation of both and understand how they work!

A Content-Type based on remember

	Create a class in your class diagram and give it a a stereotype <<remember>>

	add the tagged value use_workflow and set it to one of member_approval_workflow or member_auto_workflow. You can create also your own workflow if you know what remember needs (look at the workflows shipped with remember).

	set the active_workflow_states tagged value to the class and declare which states of the used workflow are the ones, where the user can log in with. It expects a list of values, e.g. python:["private", "public"]

	Add attributes (fields) as you need. Attention here, only override fields of remembers BaseMember schema if you know what youre doing.

	Generate & Done

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

CompoundField and ArrayField

	Prerequisites

	List of fields - ArrayField

	Custom Fields compounds - CompoundField

Description

How to make custom fields: a list of some default field type, a
compound of a two or more default fields.

Prerequisites

Install the CompoundField [http://plone.org/products/compoundfield] extension into you Products folder.

List of fields - ArrayField

Assume you want to have content type where the user can provide one or more files.
Its easy by making the type folderish. But for some use-cases this is to heavy or to
difficult, you want the user to use a form for those files.

You could say, ok, up to 5 files is enough and model 5 file fields into your class.
Not very elegant, huh?

The easiest way is to to use the UML multiplicity feature on your attribute aka field of the class. If you want to enable unlimited attachments use multiplicity *. Or choose a number like 5, as in our above example.

You can set the initial size of the array by using the tagged value array:size to python:10 for example. Prefixed with array: you can access also the label array:widget:label of it and so on. If you prefer the EnhancedArrayWidget you need to add an tagged value imports from Products.Compoundfield.EnhancedArrayWidget import EnhancedArrayWidget to your class and set on the attribute the tagged value array:widget:type to EnhanceArrayWidget.

Custom Fields compounds - CompoundField

With ArchGenXML you can create compounds of fields from existing fields. Such a set of fields behaves almost like a normal field. To create such a compounded field create a new class and give it the stereotype <<field>>

Now add attributes to it like you would do on a content type class. You can use almost every field type, just some special fields, mostyl those acting as a proxy without own storage, wont work (such as ReferenceField or AttachementField).

For example we create a PointField consisting out of two FloatFields by just adding a x and y attribute of type float.

To use the new field create a fresh content class and name it Polygon. Take a dependency arrow pointing from your Polygon class to the field class. This ensures it gets imported!

Next add an attribute points to the class. The type of the new points attribute is PointsField. Now to make it a polygon give it a multiplicity of * and you are done: You have a list of Points as one field.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

Content Flavors

	Prerequisites

	Adding a field to an existing content typ

	Limits

Description

When you want to add a couple of fields to an existing content type
(including reference fields), you may decide to create a whole new
product that subclasses that type. You then have a whole bunch of code
to maintain and you are dependent on changes that may occur in your
parent class. Or you let ArchGenXML use the Content Flavors product and
your day gets brighter. Note that the use of the experimental content
flavors product is now deprecated in favor of the more reliable and
feature-rich archetypes.schemaextender.

Prerequisites

You must install the Content Flavors [http://plone.org/products/contentflavors] product.

Adding a field to an existing content typ

	Let an existing content type, e.g. "ExistingType", be present in your diagram (as a class with stereotypes <<archetype>> and <<stub>>)

	Create a class, e.g. "MyCoolFlavor", in your diagram and give it the <<flavor>> stereotype

	Add any field(s), e.g. "MyAdditionalField", to this flavor class

	Create a realization arrow from "ExistingType" to "MyCoolFlavor"

	Generate & Done

Now every new instance of ExistingType will have the MyAdditionalField field in its schema, default view and default edit form.

Limits

Note

The use of the experimental content flavors product is now deprecated in favor of the more reliable and feature-rich archetypes.schemaextender.

	Content Flavors also allows custom views to be used by existing types but this feature is not supported by ArchGenXML yet.

	You may not be able to see the additional field(s) if the ExistingType uses some non-default view. You then have to manually manage this by overriding these existing views with some of your own, with or without the help of the Content Flavors product.

	The existing content type may have to be based on ATCT (to be tested)?

	Several flavors can be applied to a given type. The order of precedence can be managed through the web if the existing type follows some requirements detailed in the Content Flavors documentation [http://plone.org/products/contentflavors/documentation].

	There are possible issues with indexing the additional fields, see CF documentation for details [http://plone.org/products/contentflavors/documentation].

	Content Flavors was an experiment and is now deprecated in favour of the archetypes.schemaextender [http://plone.org/products/realestatebroker/documentation/how-to/customize-the-fields-of-the-content-types], which is also supported by AGX.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Third Party Product Integration »

archetypes.schemaextender

	Prerequisites

	Adding a field to an existing content type

	Example model and additional features

Description

When you want to add a couple of fields to an existing content type
(including reference fields), you may decide to create a whole new
product that subclasses that type. You then have a whole bunch of code
to maintain and you are dependent on changes that may occur in your
parent class. Or you let ArchGenXML make your product use
archetypes.schemaextender and your day gets brighter.

Prerequisites

You must install the archetypes.schemaextender [https://pypi.python.org/pypi/archetypes.schemaextender] product.

Adding a field to an existing content type

Let's say you want to add superPower (a field) to HumanBeing

(a class).

	Let the content type to extend, e.g. "HumanBeing", be present in your diagram (as a class, possibly with the <<stub>> stereotype)

	Create an interface, e.g. "ISuperHero" (the "I" helps remembering this is an interface), in your diagram ; it has the <<interface>> stereotype

	Draw a realization arrow from "HumanBeing" to "ISuperHero"

	Create a class, e.g. "SuperHero", in your diagram and give it the <<extender>> stereotype

	Add any field (s), e.g. "superPower", to this extender

	Create a realization arrow from the extender class to the interface, e.g. from "SuperHero" to "ISuperHero", remove its <<realize>> stereotype and replace it with a <<adapts>> stereotype

	Generate & Done

Now every new instance of HumanBeing will have the superPower field in its schema, default view and default edit form. And even if the developer of the HumanBeing content type decides to remove its arms or legs, human beings (all of them) will still have super powers because you declared they are super heros (they implement ISuperHero).

Note that, in order to add these stereotypes (<<extender>>, <<adapts>>) to your (Argo)UML model, you have to create a stereotype, give it the proper name (extender, adapts) and select its proper "Super-class" in the properties tab (you either select class for class stereotypes, or abstraction for the "adapts" stereotype).

Example model and additional features

AGX support of archetypes schemaextender is illustrated by the example model in the screenshot below :

[image: Screenshot of a model showing how to use AGX with schemaextender]
You may note from this example model that AGX support of archetypes.schemaextender comes with a bunch of funny features :

	support for adapters and named adapters [http://plone.org/documentation/tutorial/borg/a-whirlwind-tour-of-zope-3/]

	adapted interfaces (or classes) can be external to your model (using the <<stub>> stereotype)

	you can even let a stub class implement a stub interface : in the example above, the HumanBeing stub class has a realization arrow to IAStubInterfaceFromYetAnotherProduct, which will be turned by AGX into a five:implement ZCML declaration. This is useful when you want to integrate 2 distinct third party products via your own product. Your model is then nothing more than a "glue" model, which is a good thing in many cases.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Reference

Description

Reference of Stereotypes, Tagged Values and more.

	Quick Reference
	Complete list of the field types including their default settings

	Tagged values for fields

	Tagged Values
	action

	association

	attribute

	class

	field

	method

	model

	package

	portlet

	state

	state action

	state machine

	state transition

	tool

	unknown

	view

	widget

	Stereotypes
	abstraction

	class

	dependency

	interface

	method

	model

	operation

	package

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Reference »

Quick Reference

	Complete list of the field types including their default settings

	Tagged values for fields

Description

A quick reference sheet.

Todo

UPDATE!

Complete list of the field types including their default settings

string -- StringField

	StringField

	searchable=1

text -- TextField

	StringField

	searchable=1

	TextAreaWidget()

richtext -- TextField

	TextField

	default_output_type=text/html

	allowed_content_types=('text/plain','text/structured','text/html','application/msword',)

selection -- StringField with SelectionWidget

	StringField

multiselection -- LinesField with SelctionWidget

	LinesField

	multiValued=1

integer -- IntegerField

	IntegerField

	searchable=1

float -- Floatfield

	FloatField

	searchable=1

	DecimalWidget()

boolean -- BoleanField

	BooleanField

	searchable=1

lines -- LinesField

	LinesField

	searchable=1

date -- DateTimeField

	DateTimeField

	searchable=1

image -- ImageField

	ImageField

	sizes ={'small':(100,100),'medium':(200,200),'large':(600,600)}

	AttributeStorage()

file -- FileField

	FileField

	AttributeStorage()

	FileWidget()

lines -- LinesField

	LinesField

	searchable=1

fixedpoint -- FixedPointField

	FixedPointField

reference -- ReferenceField

	ReferenceField

backreference -- BackReferenceField

	BackReferenceField

computed -- ComputedField

	ComputedField

color -- StringField w/Color picker

	StringField

country -- StringField

	StringField

	CountryWidget

datagrid -- DataGridField

	DataGridField

	DataGridWidget

photo -- PhotoField

	PhotoField

Tagged values for fields

searchable -- register and index the field in the catalog,

	1 .. register and index

	0 .. don't register and index

storage -- AttributeStorage(), SQLStorage(),

sizes -- defines the sizes of the images in a ImageField
example: python:{'small':(80,80),'medium':(200,2000),'large':(600,600)}

default_method -- no idea what that does

required -- defines whether a field should be rendered required, or not.

	1 .. field is required

	0 .. field is not required

accessor -- defines the accessor of a field

vocabulary -- defines the vocabulary or the method generating a vocabulary

allowed_types -- defines the allowed types in a ReferenceField

relationship -- defines the relationship, used in a ReferenceField

multiValued -- defines whether a SelectionField accepts one or more values,

	1 .. multivalued

	0 .. singlevalued

These tagged values are just the ones handy for fields, the full lists of tagged values
and stereotypes are shown on the next two pages.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Reference »

Tagged Values

	action

	association

	attribute

	class

	field

	method

	model

	package

	portlet

	state

	state action

	state machine

	state transition

	tool

	unknown

	view

	widget

Description

All tagged values available in its context.

This file was generated 2009-05-12 with bin/agx_taggedvalues 2.4.1.

action

	action

	For a stereotype 'action', this tagged value can be used to overwrite the default URL ('..../name_of_method') into '..../tagged_value'.

	category

	The category for the action. Defaults to 'object'.

	condition

	A TALES expression defining a condition which will be evaluated to determine whether the action should be displayed.

	id

	The id of the action. Use 'id',

	label

	The label of the action - displayed to the user.

	permission

	The permission used for the action, a string or comma separated list of strings, default to 'View'.

	visible

	Sets the visible property, default to 'True'

association

	association_class

	You can use associations classes to store content on the association itself. The class used is specified by this setting. Don't forget to import the used class properly.

	association_vocabulary

	Switch, defaults to False. Needs Product 'ATVocabularyManager'. Generates an empty vocabulary with the name of the relation.

	back_reference_field

	Use a custom field instead of ReferenceField.

	field

	Synonymous with either reference_field or relation_field, depending on whether you use it on the from end or the to end of a relation. Works only together with 'Relations' Product and relation_implementation set to 'relations'.

	inverse_relation_name

	Together with 'Relations' Product you have inverse relations. the name default to 'name_of_your_relation_inverse', but you can overrrule it using this tagged value.

	label

	Sets the readable name.

	reference_field

	Use a custom field instead of ReferenceField.

	relation_field

	Use a custom field instead of RelationField. Works only together with 'Relations' Product and relation_implementation set to 'relations'.

	relation_implementation

	Sets the type of implementation is used for an association: 'basic' (used as default) for classic style archetypes references or 'relations' for use of the 'Relations' Product.

	relationship

	Standard relationship for ReferenceField

attribute

	accessor

	Set the name of the accessor (getter) method. If you are overriding one of the DC metadata fields such as 'title' or 'description' be sure to set the correct accessor names such as 'Title' and 'Description'; by default these accessors would be generated as getTitle() or getDescription().

	allowed_types

	Sets the types allowed for a ReferenceField. Default is []

	array:widget

	specify which custom ArrayWidget should be used for a field (only applies if the field has cardinality >1.

	catalog:index

	Add the field (or all fields of a class, package, model) to the index. Boolean, 1 or 0. Default is 0. If set, you may need to provide index:* tagged values too.

	catalog:metadata

	Adds the field to the metadata record on the query result. Boolean, 1 or 0. If you do not provide 'index:attributes', the name of the accessor of the field is the default. If 'catalog:attributes' is given for each attribute one field at the record will be created.

	catalog:name

	Sometimes you need to add an index to a other catalog than 'portal_catalog' and its XML-File 'catalog.xml'. Provide a tuple of comma separated strings, id of the catalog and the filename of its configuration file. default is "portal_catalog, Plone Catalog Tool'.

	collection:criteria

	Add the index to the Collection (aka Smart Folder) Indexes available for defining Criteria. Provide a comma separated list of criteria that will be available by default. Available criterias are: ATBooleanCriterion, ATDateCriteria, ATDateRangeCriterion, ATListCriterion, ATPortalTypeCriterion, ATReferenceCriterion, ATSelectionCriterion, ATSimpleIntCriterion, ATSimpleStringCriterion, ATSortCriterion, ATCurrentAuthorCriterion, ATPathCriterion, ATRelativePathCriterion. You must provide an index:type as well.

	collection:criteria_description

	A help text (string), used for collection:criteria. Its added to the generated.pot as a literal. If not provided the widget:description is used.

	collection:criteria_label

	The display name of the collection:criteria, called friendly name (string). Its added to the generated.pot as a literal. If not given the widget:label is taken if provided.

	collection:metadata

	register the catalog:metadata as an available column in a Collection. Can be used as an alternative for catalog:metadata. catalog:metadata_accessor is used if given.

	collection:metadata_description

	A help text (string), used for collection:criteria. Its added to the generated.pot as a literal. If not provided the collection:criteria_help or - if not provided - widget:description is used.

	collection:metadata_label

	the display name of the collection:metadata, called friendly name (string), used for index:criteria. Its added to the generated.pot as a literal. If not given the widget:label is taken if provided.

	copy_from

	To copy an attribute from another schema, give it the type 'copy'. The tagged value 'copy_from' is then used to specify which schema to copy it from (for instance, 'BaseSchema' when copying Description from the base schema). For copying your own schemas, add an 'imports' tagged value to import your class (say 'MyClass') and then put 'MyClass.schema' in your 'copy_from' value.

	default

	Set a value to use as the default value of the field.

	default_method

	Set the name of a method on the object which will be called to determine the default value of the field.

	enforceVocabulary

	Set to true (1) to ensure that only items from the vocabulary are permitted.

	expression

	evaluation expression for computed fields.

	i18ncontent

	Enables the content type(s) for LinguaPlone. Only allowed value is 'linguaplone'.

	index

	DEPRECATED: Add an index to the attribute. Use catalog:index and the index:* tagged value instead.

	index:attributes

	The attributes to use for index or metadata (string or comma separated list of strings). This are the methods called at indexing time. Normally it is enough to provide one index method, but for some specific use cases you might need to provide alternatives. If you don not provide this tagged value, the name of the accessor of the field is the default.

	index:extras

	Some indexes are using so called 'extras' on installation as configuration. If the index need extras you'll need to declare them here. Provide a comma separated list.

	index:name

	the name of the index used (string). Use this name in your queries. If you do not provide a name, the name of the accessor of the field is the default.

	index:properties

	Some indexes are using 'properties' on installation as configuration. If the index need properties you'll need to declare them here. Provide a comma separated list.

	index:type

	the type of index used as (string), for example 'FieldIndex', 'KeywordIndex', 'DateIndex' or any available index in your portal. For known types a default is guessed, such as FieldIndex for StringFields or DateIndex for DateFields. If no guess is possible, we assume a FieldIndex.

	indexMethod

	DEPRECATED: Declares method used for indexing.

	label

	Sets the readable name.

	move:after

	Move the current field after the given field (put the field name between quote).

	move:before

	Move the current field before the given field (put the field name between quote).

	move:bottom

	Move the current field to the bottom (put 1 for the value).

	move:pos

	Move the current field at the given position (an int).

	move:top

	Move the current field to the top (put 1 for the value).

	multiValued

	Certain fields, such as reference fields, can optionally accept more than one value if multiValued is set to true (1)

	mutator

	Similarly, set the name of the mutator (setter) method.

	original_size

	Sets the maximum size for the original for an ImageField widget.

	read_permission

	Defines archetypes fields read-permission. Use it together with workflow to control ability to view fields based on roles/permissions.

	required

	Set to true (1) to make the field required

	schemata

	If you want to split your form with many, many attibutes in multiple schemata ("sub-forms"), add a tagged value 'schemata' to the attributes you want in a different schemata with the name of that schemata (for instance "personal data"). The default schemata is called "default", btw.

	searchable

	Whether or not the field should be searchable when performing a search in the portal.

	sizes

	Sets the allowed sizes for an ImageField widget.

	source_name

	With attribute type 'copy' sometimes schema-recycling is fun, together with copy_from you can specify the source name of the field in the schema given by copy_from.

	validation_expression

	Use an ExpressionValidator and sets the by value given expression.

	validation_expression_errormsg

	Sets the error message to the ExpressionValidator (use with validation_expression to define the validation expression to which this error message applies).

	validators

	
Todo

Not supported for now.

	vocabulary

	Set to a python list, a DisplayList or a method name (quoted) which provides the vocabulary for a selection widget.

	vocabulary:name

	Together with Products 'ATVocabularyManager' this sets the name of the vocabulary.

	vocabulary:term_type

	For use with 'ATVocabularyManager'. Defaults to 'SimplevocabularyTerm'. Let you define the portal_type of the vocabularyterm used for the default term that is created in Install.py.

	vocabulary:type

	Enables support for Products 'ATVocabularyManager' by setting value to 'ATVocabularyManager'.

	widget

	Allows you to set the widget to be used for this attribute.

	widget:description

	Set the widget's description.

	widget:description_msgid

	Set the description i18n message id. Defaults to a name generated from the field name.

	widget:i18n_domain

	Set the i18n domain. Defaults to the product name.

	widget:label

	Set the widget's label.

	widget:label_msgid

	Set the label i18n message id. Defaults to a name generated from the field name.

	widget:type

	Set the name of the widget to use. Each field has an associated default widget, but if you need a different one (e.g. a SelectionWidget for a string field), use this value to override.

	write_permission

	Defines archetypes fields write-permission. Use it together with workflow to control ability to write data to a field based on roles/permissions.

class

	active_workflow_states

	The active workflow states for a remember type. MUST be set on <<remember>> types. Format is ['state', 'anotherstate'].

	additional_parents

	A comma-separated list of the names of classes which should be used as additional parents to this class, in addition to the Archetypes BaseContent, BaseFolder or OrderedBaseFolder. Usually used in conjunction with 'imports' to import the class before it is referenced.

	alias

	FTI Alias definition in the form alias=fromvalue,tovalue

	allow_discussion

	Whether or not the content type should be discussable in the portal by default.

	allowable_content_types

	A comma-separated list of allowed test format for a textarea widget.

	allowed_content_types

	A comma-separated list of allowed sub-types for a (folderish) content type. Note that allowed content types are automatically set when using aggregation and composition between classes to specify containment.

	archetype_name

	The name which will be shown in the "add new item" drop-down and other user-interface elements. Defaults to the class name, but whilst the class name must be valid and unique python identifier, the archetype_name can be any string.

	author

	You can set the author project-wide with the '--author' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a class level.

	base_actions

	Sets the base actions in the class's factory type information (FTI).

	base_class

	Explicitly set the base class of a content type, overriding the automatic selection of BaseContent, BaseFolder or OrderedBaseFolder as well as any parent classes in the model. What you specify here ends up as the first item (or items: comma-separate them) in the classes it inherits from. So this is also a handy way to place one class explicitly in front of the other. See also additional_parents.

	base_schema

	Explicitly set the base schema for a content type, overriding the automatic selection of the parent's schema or BaseSchema, BaseFolderSchema or OrderedBaseFolderSchema.

	catalog:index

	Add the field (or all fields of a class, package, model) to the index. Boolean, 1 or 0. Default is 0. If set, you may need to provide index:* tagged values too.

	catalog:metadata

	Adds the field to the metadata record on the query result. Boolean, 1 or 0. If you do not provide 'index:attributes', the name of the accessor of the field is the default. If 'catalog:attributes' is given for each attribute one field at the record will be created.

	catalog:name

	Sometimes you need to add an index to a other catalog than 'portal_catalog' and its XML-File 'catalog.xml'. Provide a tuple of comma separated strings, id of the catalog and the filename of its configuration file. default is "portal_catalog, Plone Catalog Tool'.

	catalogmultiplex:black

	Remove an archetypes class (identified by meta_type) from one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'portal_catalog, another_catalog'. Explaination: Instances of the class wont be catalogged in portal_catalog anymore.

	catalogmultiplex:white

	Add an archetypes class (identified by meta_type) to one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'myfancy_catalog, another_catalog'. Explaination: Additionally to the default 'portal_catalog' the instances of this class will be catalogged in the two given catalogs.

	content_icon

	The name of an image file, which must be found in the skins directory of the product. This will be used to represent the content type in the user interface.

	copyright

	You can set the copyright project-wide with the '--copyright' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a class level.

	creation_permission

	Sets the creation permission for the class. Example: 'Add portal content'.

	creation_roles

	You can set an own role who should be able to add a type. Use an Tuple of Strings. Default and example for this value: '("Manager", "Owner", "Member")'.

	default_interface_type

	default type of interfaces (z2 or z3).

	default_view

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The default_view value sets the default one. Defaults to 'base_view'. Only relevant if you use TemplateMixin.

	description

	A description of the type, a sentence or two in length. Used to describe the type to the user.

	detailed_creation_permissions

	Give the content-type (types in the package, model) own creation permissions, named automagically 'ProductName: Add ClassName'.

	disable_polymorphing

	Normally, archgenxml looks at the parents of the current class for content types that are allowed as items in a folderish class. So: parent's allowed content is also allowed in the child. Likewise, subclasses of classes allowed as content are also allowed on this class. Classic polymorphing. In case this isn't desired, set the tagged value 'disable_polymorphing' to 1.

	display_in_navigation

	Setting this boolean value adds the type to 'Displayed content types' in the portals navigation settings. Default is True

	doctest_name

	In a tests package, setting the stereotype <<doc_testcase>> on a class turns it into a doctest. The doctest itself is placed in the doc/ subdirectory. The 'doctest_name' tagged value overwrites the default name for the file (which is the name of the doctestcase class + '.txt'). ArchGenXML appends the '.txt' extension automatically, so you don't need to specify it.

	email

	You can set the email project-wide with the '--email' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a class level.

	filter_content_types

	If set to true (1), explicitly turn on the filter_content_types factory type information value. If this is off, all globally addable content types will be addable inside a (folderish) type; if it is on, only those values in the allowed_content_types list will be enabled. Note that when aggregation or composition is used to define containment, filtered_content_types will be automatically turned on.

	folder_base_class

	Useful when using the '<<folder>>' stereotype in order to set the folderish base class.

	generate_reference_fields

	Per default (True) navigable reference (or relation) ends are resulting in a ReferenceField (or RelationField). Setting this value to False results in not generating ReferenceFields automagically.

	global_allow

	Overwrite the AGX-calculated 'global_allow' setting of class. Setting it to '1' makes your content type addable everywhere (in principle), setting it to '0' limits it to places where it's explicitly allowed as content.

	hide_actions

	A comma- or newline-separated list of action ids to hide on the class. For example, set to 'metadata, sharing' to turn off the metadata (properties) and sharing tabs.

	hide_folder_tabs

	When you want to hide the folder tabs (mostly the "contents" tab, just set this tagged value to 1.

	i18ncontent

	Enables the content type(s) for LinguaPlone. Only allowed value is 'linguaplone'.

	immediate_view

	Set the immediate_view factory type information value. This should be the name of a page template, and defaults to 'base_view'. Note that Plone at this time does not make use of immediate_view, which in CMF core allows you to specify a different template to be used when an object is first created from when it is subsequently accessed.

	import_from

	If you wish to include a class in your model (as a base class or aggregated class, for example) which is actually defined in another product, add the class to your model and set the import_from tagged value to the class that should be imported in its place. You probably don't want the class to be generated, so add a stereotype '<<stub>>' as well.

	imports

	A list of python import statements which will be placed at the top of the generated file. Use this to make new field and widget types available, for example. Note that in the generated code you will be able to enter additional import statements in a preserved code section near the top of the file. Prefer using the imports tagged value when it imports something that is directly used by another element in your model. You can have several import statements, one per line, or by adding several tagged values with the name 'imports'.

	index:type

	the type of index used as (string), for example 'FieldIndex', 'KeywordIndex', 'DateIndex' or any available index in your portal. For known types a default is guessed, such as FieldIndex for StringFields or DateIndex for DateFields. If no guess is possible, we assume a FieldIndex.

	inherit_allowed_types

	By default, a child type will inherit the allowable content types from its parents. Set this property to false (0) to turn this off.

	label

	Sets the readable name.

	license

	You can set the license project-wide with the '--license' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a class level.

	marshaller

	Specify a marshaller to use for the class' schema.

	module

	Like 'module_name', it overwrites the name of the directory it'd be normally placed in.

	module_name

	Like 'module', it overwrites the name of the directory it'd be normally placed in.

	parentclass_first

	if this tgv is set to true generalization parents are used before the standard base classes (e.g. BaseContent) this option is sometimes necessary when inheriting from some special parents (e.g. 'remember' style classes).

	parentclasses_first

	if this tgv is set to true generalization parents are used before the standard base classes (e.g. BaseContent) this option is sometimes necessary when inheriting from some special parents (e.g. 'remember' style classes).

	portal_type

	Sets the CMF portal-type this class will be registered with, defaults to the class-name.

	read_permission

	Defines archetypes fields read-permission. Use it together with workflow to control ability to view fields based on roles/permissions.

	register

	'Remember' related. Set as default member type.

	searchable

	Per default a fields 'searchable' property is set to False. Sometimes you want it for all fields True. This TGV let you define the default for a class, package or model.

	searchable_type

	Setting this boolean value adds the type to 'types to be searched' in the portals search settings. Default is True

	strict

	On a class with the <<interface_doctest>> stereotype: check for inherited interfaces as well.

	suppl_views

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The suppl_views value sets the available views. Example: '("my_view", "myother_view")'. Defaults to '()'. Only relevant if you use TemplateMixin.

	typeDescription

	DEPRECATED. Use 'description' instead.

	use_dynamic_view

	Controles wether CMFDynamicViewFTI is used for a type/class. Boolean, default is True.

	use_portal_factory

	This boolean value controls the registration of the type for use with portal_factory. Default: True.

	use_workflow

	Tie the class to the named workflow. A state diagram (=workflow) attached to a class in the UML diagram is automatically used as that class's workflow; this tagged value allows you to tie the workflow to other classes.

	version_info

	Add ArchGenXML version information to the generated file (default is 1).

	vocabulary:type

	Enables support for Products 'ATVocabularyManager' by setting value to 'ATVocabularyManager'.

	vocabulary:vocabulary_type

	For use with 'ATVocabularyManager'. Defaults to 'Simplevocabulary'. Let you define the portal_type of the vocabulary used as initial vocabulary at Product install time. If VdexVocabulary is used, the install-script tries to install a vocabulary from a vdex file names 'Products/PRODUCTNAME/data/VOCABULARYNAME.vdex'.

	write_permission

	Defines archetypes fields write-permission. Use it together with workflow to control ability to write data to a field based on roles/permissions.

field

	description

	Sets a description for this field. It's used for field documentation while registering inside Archetypes.

	label

	Sets the readable name.

	validation_expression

	Use an ExpressionValidator and sets the by value given expression.

	validation_expression_errormsg

	Sets the error message to the ExpressionValidator (use with validation_expression to define the validation expression to which this error message applies).

method

	code

	The actual python code of the method. Only use this for simple one-liners. Code filled into the generated file will be preserved when the model is re-generated.

	documentation

	You can add documention via this tag; it's better to use your UML tool's documentation field.

	label

	Sets the readable name.

	permission

	For method with public visibility only, if a permission is set, declare the method to be protected by this permission. Methods with private or protected visiblity are always declared private since they are not intended for through-the-web unsafe code to access. Methods with package visibility use the class default security and do not get security declarations at all.

model

	alias

	FTI Alias definition in the form alias=fromvalue,tovalue

	association_class

	You can use associations classes to store content on the association itself. The class used is specified by this setting. Don't forget to import the used class properly.

	association_vocabulary

	Switch, defaults to False. Needs Product 'ATVocabularyManager'. Generates an empty vocabulary with the name of the relation.

	author

	You can set the author project-wide with the '--author' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a model level.

	catalog:index

	Add the field (or all fields of a class, package, model) to the index. Boolean, 1 or 0. Default is 0. If set, you may need to provide index:* tagged values too.

	catalog:metadata

	Adds the field to the metadata record on the query result. Boolean, 1 or 0. If you do not provide 'index:attributes', the name of the accessor of the field is the default. If 'catalog:attributes' is given for each attribute one field at the record will be created.

	catalog:name

	Sometimes you need to add an index to a other catalog than 'portal_catalog' and its XML-File 'catalog.xml'. Provide a tuple of comma separated strings, id of the catalog and the filename of its configuration file. default is "portal_catalog, Plone Catalog Tool'.

	catalogmultiplex:black

	Remove an archetypes class (identified by meta_type) from one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'portal_catalog, another_catalog'. Explaination: Instances of the class wont be catalogged in portal_catalog anymore.

	catalogmultiplex:white

	Add an archetypes class (identified by meta_type) to one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'myfancy_catalog, another_catalog'. Explaination: Additionally to the default 'portal_catalog' the instances of this class will be catalogged in the two given catalogs.

	copyright

	You can set the copyright project-wide with the '--copyright' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a model level.

	creation_permission

	Sets the creation permission for the class. Example: 'Add portal content'.

	creation_roles

	You can set an own role who should be able to add a type. Use an Tuple of Strings. Default and example for this value: '("Manager", "Owner", "Member")'.

	default_interface_type

	default type of interfaces (z2 or z3).

	default_view

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The default_view value sets the default one. Defaults to 'base_view'. Only relevant if you use TemplateMixin.

	dependency_step_qi

	Generate Quickinstaller dependency installation for your product. Boolean (1 or 0), default 0 (off). Dependencies can be declared in AppConfig.py in a variable DEPENDENCIES.

	dependend_profiles

	GenericSetup profiles your product depends on. A list of profile names separated by commas. This list is used for the dependencies tag inside the metadata.xml file of the product's profile

	detailed_creation_permissions

	Give the content-type (types in the package, model) own creation permissions, named automagically 'ProductName: Add ClassName'.

	display_in_navigation

	Setting this boolean value adds the type to 'Displayed content types' in the portals navigation settings. Default is True

	email

	You can set the email project-wide with the '--email' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a model level.

	fixtools

	Generate fixTools function in setuphandlers.py. It calls initializeArchetypes for generated tools, thus reset existing data in the tools. Boolean (1 or 0), default 0 (off).

	generate_reference_fields

	Per default (True) navigable reference (or relation) ends are resulting in a ReferenceField (or RelationField). Setting this value to False results in not generating ReferenceFields automagically.

	global_allow

	Overwrite the AGX-calculated 'global_allow' setting of class. Setting it to '1' makes your content type addable everywhere (in principle), setting it to '0' limits it to places where it's explicitly allowed as content.

	i18ncontent

	Enables the content type(s) for LinguaPlone. Only allowed value is 'linguaplone'.

	immediate_view

	Set the immediate_view factory type information value. This should be the name of a page template, and defaults to 'base_view'. Note that Plone at this time does not make use of immediate_view, which in CMF core allows you to specify a different template to be used when an object is first created from when it is subsequently accessed.

	imports

	A list of python import statements which will be placed at the top of the generated file. Use this to make new field and widget types available, for example. Note that in the generated code you will be able to enter additional import statements in a preserved code section near the top of the file. Prefer using the imports tagged value when it imports something that is directly used by another element in your model. You can have several import statements, one per line, or by adding several tagged values with the name 'imports'.

	index:type

	the type of index used as (string), for example 'FieldIndex', 'KeywordIndex', 'DateIndex' or any available index in your portal. For known types a default is guessed, such as FieldIndex for StringFields or DateIndex for DateFields. If no guess is possible, we assume a FieldIndex.

	label

	Sets the readable name.

	license

	You can set the license project-wide with the '--license' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a model level.

	module

	Like 'module_name', it overwrites the name of the directory it'd be normally placed in.

	module_name

	Like 'module', it overwrites the name of the directory it'd be normally placed in.

	plone_target_version

	The target version of Plone. Defaults to 3.0 Possible values are 2.5 and 3.0

	product_description

	The description of the Product. This is placed as description tag in the metadata.xml file of the product's profile

	read_permission

	Defines archetypes fields read-permission. Use it together with workflow to control ability to view fields based on roles/permissions.

	relation_implementation

	Sets the type of implementation is used for an association: 'basic' (used as default) for classic style archetypes references or 'relations' for use of the 'Relations' Product.

	searchable

	Per default a fields 'searchable' property is set to False. Sometimes you want it for all fields True. This TGV let you define the default for a class, package or model.

	searchable_type

	Setting this boolean value adds the type to 'types to be searched' in the portals search settings. Default is True

	skin_directories

	A comma separated list of subdirectories to be generated inside the product skins directory. Each of this directories is prefixed with productname in lowercase. The default value is "'templates', 'styles', 'images'".

	suppl_views

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The suppl_views value sets the available views. Example: '("my_view", "myother_view")'. Defaults to '()'. Only relevant if you use TemplateMixin.

	use_dynamic_view

	Controles wether CMFDynamicViewFTI is used for a type/class. Boolean, default is True.

	use_portal_factory

	This boolean value controls the registration of the type for use with portal_factory. Default: True.

	use_workflow

	Tie the class to the named workflow. A state diagram (=workflow) attached to a class in the UML diagram is automatically used as that class's workflow; this tagged value allows you to tie the workflow to other classes.

	version_info

	Add ArchGenXML version information to the generated file (default is 1).

	vocabulary:type

	Enables support for Products 'ATVocabularyManager' by setting value to 'ATVocabularyManager'.

	vocabulary:vocabulary_type

	For use with 'ATVocabularyManager'. Defaults to 'Simplevocabulary'. Let you define the portal_type of the vocabulary used as initial vocabulary at Product install time. If VdexVocabulary is used, the install-script tries to install a vocabulary from a vdex file names 'Products/PRODUCTNAME/data/VOCABULARYNAME.vdex'.

	write_permission

	Defines archetypes fields write-permission. Use it together with workflow to control ability to write data to a field based on roles/permissions.

package

	alias

	FTI Alias definition in the form alias=fromvalue,tovalue

	association_class

	You can use associations classes to store content on the association itself. The class used is specified by this setting. Don't forget to import the used class properly.

	association_vocabulary

	Switch, defaults to False. Needs Product 'ATVocabularyManager'. Generates an empty vocabulary with the name of the relation.

	author

	You can set the author project-wide with the '--author' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a package level.

	catalog:index

	Add the field (or all fields of a class, package, model) to the index. Boolean, 1 or 0. Default is 0. If set, you may need to provide index:* tagged values too.

	catalog:metadata

	Adds the field to the metadata record on the query result. Boolean, 1 or 0. If you do not provide 'index:attributes', the name of the accessor of the field is the default. If 'catalog:attributes' is given for each attribute one field at the record will be created.

	catalog:name

	Sometimes you need to add an index to a other catalog than 'portal_catalog' and its XML-File 'catalog.xml'. Provide a tuple of comma separated strings, id of the catalog and the filename of its configuration file. default is "portal_catalog, Plone Catalog Tool'.

	catalogmultiplex:black

	Remove an archetypes class (identified by meta_type) from one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'portal_catalog, another_catalog'. Explaination: Instances of the class wont be catalogged in portal_catalog anymore.

	catalogmultiplex:white

	Add an archetypes class (identified by meta_type) to one or more catalogs to be cataloged in. Comma-separated list of catalogs. Example-value: 'myfancy_catalog, another_catalog'. Explaination: Additionally to the default 'portal_catalog' the instances of this class will be catalogged in the two given catalogs.

	copyright

	You can set the copyright project-wide with the '--copyright' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a package level.

	creation_permission

	Sets the creation permission for the class. Example: 'Add portal content'.

	creation_roles

	You can set an own role who should be able to add a type. Use an Tuple of Strings. Default and example for this value: '("Manager", "Owner", "Member")'.

	default_view

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The default_view value sets the default one. Defaults to 'base_view'. Only relevant if you use TemplateMixin.

	detailed_creation_permissions

	Give the content-type (types in the package, model) own creation permissions, named automagically 'ProductName: Add ClassName'.

	display_in_navigation

	Setting this boolean value adds the type to 'Displayed content types' in the portals navigation settings. Default is True

	email

	You can set the email project-wide with the '--email' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a package level.

	generate_reference_fields

	Per default (True) navigable reference (or relation) ends are resulting in a ReferenceField (or RelationField). Setting this value to False results in not generating ReferenceFields automagically.

	global_allow

	Overwrite the AGX-calculated 'global_allow' setting of class. Setting it to '1' makes your content type addable everywhere (in principle), setting it to '0' limits it to places where it's explicitly allowed as content.

	i18ncontent

	Enables the content type(s) for LinguaPlone. Only allowed value is 'linguaplone'.

	immediate_view

	Set the immediate_view factory type information value. This should be the name of a page template, and defaults to 'base_view'. Note that Plone at this time does not make use of immediate_view, which in CMF core allows you to specify a different template to be used when an object is first created from when it is subsequently accessed.

	imports

	A list of python import statements which will be placed at the top of the generated file. Use this to make new field and widget types available, for example. Note that in the generated code you will be able to enter additional import statements in a preserved code section near the top of the file. Prefer using the imports tagged value when it imports something that is directly used by another element in your model. You can have several import statements, one per line, or by adding several tagged values with the name 'imports'.

	index:type

	the type of index used as (string), for example 'FieldIndex', 'KeywordIndex', 'DateIndex' or any available index in your portal. For known types a default is guessed, such as FieldIndex for StringFields or DateIndex for DateFields. If no guess is possible, we assume a FieldIndex.

	label

	Sets the readable name.

	license

	You can set the license project-wide with the '--license' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a package level.

	module

	Like 'module_name', it overwrites the name of the directory it'd be normally placed in.

	module_name

	Like 'module', it overwrites the name of the directory it'd be normally placed in.

	read_permission

	Defines archetypes fields read-permission. Use it together with workflow to control ability to view fields based on roles/permissions.

	relation_implementation

	Sets the type of implementation is used for an association: 'basic' (used as default) for classic style archetypes references or 'relations' for use of the 'Relations' Product.

	searchable

	Per default a fields 'searchable' property is set to False. Sometimes you want it for all fields True. This TGV let you define the default for a class, package or model.

	searchable_type

	Setting this boolean value adds the type to 'types to be searched' in the portals search settings. Default is True

	suppl_views

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The suppl_views value sets the available views. Example: '("my_view", "myother_view")'. Defaults to '()'. Only relevant if you use TemplateMixin.

	use_dynamic_view

	Controles wether CMFDynamicViewFTI is used for a type/class. Boolean, default is True.

	use_portal_factory

	This boolean value controls the registration of the type for use with portal_factory. Default: True.

	use_workflow

	Tie the class to the named workflow. A state diagram (=workflow) attached to a class in the UML diagram is automatically used as that class's workflow; this tagged value allows you to tie the workflow to other classes.

	version_info

	Add ArchGenXML version information to the generated file (default is 1).

	vocabulary:type

	Enables support for Products 'ATVocabularyManager' by setting value to 'ATVocabularyManager'.

	vocabulary:vocabulary_type

	For use with 'ATVocabularyManager'. Defaults to 'Simplevocabulary'. Let you define the portal_type of the vocabulary used as initial vocabulary at Product install time. If VdexVocabulary is used, the install-script tries to install a vocabulary from a vdex file names 'Products/PRODUCTNAME/data/VOCABULARYNAME.vdex'.

	write_permission

	Defines archetypes fields write-permission. Use it together with workflow to control ability to write data to a field based on roles/permissions.

portlet

	label

	Sets the readable name.

	template_name

	Specify a template for the portlet (without .pt). Default is the class name. (on classes with the stereotype <<portlet_class>>)

state

	access

	Shortcut for 'Access contents information'.

	add

	Shortcut for 'Add portal content'.

	delete

	Shortcut for 'Delete objects'.

	description

	Sets the state description.

	inactive

	Shortcut for 'Access inactive portal content'.

	initial_state

	Sets this state to be the initial state. This allows you to use a normal state in your UML diagram instead of the special round starting-state symbol.

	label

	Sets the readable name.

	list

	Shortcut for 'List folder contents'.

	modify

	Shortcut for 'Modify portal content'.

	review

	Shortcut for 'Review portal content'.

	role

	Shortcut for 'Change local roles'.

	view

	Shortcut for 'View'.

	worklist

	Attach objects in this state to the named worklist. An example of a worklist is the to-review list.

	worklist:guard_permissions

	Sets the permissions needed to be allowed to view the worklist. Default value is 'Review portal content'. Set to 'False' for no guard_permission.

	worklist:guard_roles

	Sets the roles needed to be allowed to view the worklist. No default value

state action

	after:binding

	Interface to bind the after effect to.

	before:binding

	Interface to bind the before effect to.

	label

	Sets the readable name.

state machine

	bindings

	List of portal-types this workflow should be bound to. Comma-separated, i.e. 'Document, Image, File'.

	default

	A workflow id to be set as the default workflow.

	label

	Sets the readable name.

state transition

	label

	Sets the readable name.

	trigger_type

	Sets the trigger type, following what is defined by DCWorkflow: automatic user action (default) workflow method

	url

	Action URL, need 'PloneWorkflowTransitions' to see it in Plone.

tool

	author

	You can set the author project-wide with the '--author' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a tool level.

	autoinstall

	Controls, wether the tool is automatically installed when your product is installed. Boolean, default is True.

	configlet

	Set to true (1) to set up a configlet in the Plone control panel for your tool.

	configlet:condition

	A TALES expression defining a condition which will be evaluated to determine whether the configlet should be displayed.

	configlet:description

	A description of the configlet.

	configlet:icon

	The name of an image file, which must be in your product's skin directory, used as the configlet icon.

	configlet:permission

	A permission which is required for the configlet to be displayed.

	configlet:section

	The section of the control panel where the configlet should be displayed. One of 'Plone', 'Products' (default) or 'Member'. warning: older documentation versions mentioned 'Members' here.

	configlet:title

	The name of the configlet.

	configlet:view

	The id of the view template to use when first opening the configlet. By default, the 'view' action of the object is used (which is usually base_view)

	copyright

	You can set the copyright project-wide with the '--copyright' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a tool level.

	creation_permission

	Sets the creation permission for the class. Example: 'Add portal content'.

	creation_roles

	You can set an own role who should be able to add a type. Use an Tuple of Strings. Default and example for this value: '("Manager", "Owner", "Member")'.

	default_view

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The default_view value sets the default one. Defaults to 'base_view'. Only relevant if you use TemplateMixin.

	email

	You can set the email project-wide with the '--email' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a tool level.

	immediate_view

	Set the immediate_view factory type information value. This should be the name of a page template, and defaults to 'base_view'. Note that Plone at this time does not make use of immediate_view, which in CMF core allows you to specify a different template to be used when an object is first created from when it is subsequently accessed.

	imports

	A list of python import statements which will be placed at the top of the generated file. Use this to make new field and widget types available, for example. Note that in the generated code you will be able to enter additional import statements in a preserved code section near the top of the file. Prefer using the imports tagged value when it imports something that is directly used by another element in your model. You can have several import statements, one per line, or by adding several tagged values with the name 'imports'.

	label

	Sets the readable name.

	license

	You can set the license project-wide with the '--license' commandline parameter (or in the config file). This TGV allows you to use/ overwrite it on a tool level.

	module

	Like 'module_name', it overwrites the name of the directory it'd be normally placed in.

	module_name

	Like 'module', it overwrites the name of the directory it'd be normally placed in.

	suppl_views

	The TemplateMixin class in Archetypes allows your class to present several alternative view templates for a content type. The suppl_views value sets the available views. Example: '("my_view", "myother_view")'. Defaults to '()'. Only relevant if you use TemplateMixin.

	tool_instance_name

	The id to use for the tool. Defaults to 'portal_<name>', where <name> is the class name in lowercase.

	toolicon

	The name of an image file, which must be found in the skins directory of the product. This will be used to represent your tool in the Zope Management Interface.

unknown

Modify

access

allow_empty_rows

columns

default:widget:Reference

default_content_type

default_output_type

default_page_type

i18ncontent

index_method

languageIndependent

max_size

mode

pil_quality

pil_resize_algo

rename_after_creation

storage

swallowResizeExceptions

widget:addable

widget:allow_brightness

widget:allow_browse

widget:allow_file_upload

widget:allow_search

widget:allow_sorting

widget:append_only

widget:auto_insert

widget:available_indexes

widget:base_query

widget:checkbox_bound

widget:cols

widget:columns

widget:default_search_index

widget:destination

widget:destination_types

widget:divider

widget:dollars_and_cents

widget:ending_year

widget:force_close_on_insert

widget:format

widget:future_years

widget:history_length

widget:image_method

widget:image_portal_types

widget:maxlength

widget:nullValueTitle

widget:omitCountries

widget:only_for_review_states

widget:provideNullValue

widget:restrict_browsing_to_startup_directory

widget:rows

widget:search_catalog

widget:show_hm

widget:show_indexes

widget:show_path

widget:show_review_state

widget:show_ymd

widget:size

widget:starting_year

widget:startup_directory

widget:thousands_commas

widget:visible

widget:whole_dollars

view

	label

	Sets the readable name.

	name

	Specify a name for the zope3 view.. Default is the class name. (on classes with the stereotype <<view_class>>)

widget

	description

	Sets a description for this widget. It's used for widget documentation while registering inside Archetypes.

	label

	Sets the readable name.

	macro

	Sets the macro used by the widget. This will be used as the name of the auto-created page template for the widget.

	title

	Sets the widget title. It's used for widget documentation while registering inside Archetypes.

	used_for

	Sets the possible fields which can use this widget. It's used for widget documentation while registering inside Archetypes. The list has the form: '"Products.Archetypes.Field.Field1Name", "Products.Archetypes.Field.FieldName2"'.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Reference »

Stereotypes

	abstraction

	class

	dependency

	interface

	method

	model

	operation

	package

Description

All stereotypes available in its context.

This file was generated 2009-05-12 with bin/agx_stereotypes 2.4.1.

abstraction

	adapts

	On a realization, specify a class (<<adapter>>, <<named_adapter>>, <<extender>>) adapts another class (<<stub>>, <<interface>>).

class

	adapter

	Is a (non-named) adapter.

	archetype

	Explicitly specify that a class represents an Archetypes type. This may be necessary if you are including a class as a base class for another class and ArchGenXML is unable to determine whether the parent class is an Archetype or not. Without knowing that the parent class in an Archetype, ArchGenXML cannot ensure that the parent's schema is available in the derived class.

	atblob

	Turns the class into an plone.app.blob.content.ATBlob subclass.

	atdocument

	Turns the class into an Atdocument subclass.

	atevent

	Turns the class into an ATEvent subclass.

	atfile

	Turns the class into an ATFile subclass.

	atfolder

	Turns the class into an ATFolder subclass.

	atimage

	Turns the class into an ATImage subclass.

	atlink

	Turns the class into an ATLink subclass.

	atnewsitem

	Turns the class into an ATNewsItem subclass.

	btree

	Like <<folder>>, it generates a folderish object. But it uses a BTree folder for support of large amounts of content. The same as <<large>>.

	content_class

	
Todo

Complete

	doc_testcase

	Turns a class into a doctest class. It must subclass a <<plone_testcase>>.

	extender

	Is a schema extender supported by archetypes.schemaextender.

	field

	Class will target in a ObjectField or CompoundField (latter if Attributes are provided)

	flavor

	Generates a ContentFlavors flavor from this class.

	folder

	Turns the class into a folderish object. When a UML class contains or aggregates other classes, it is automatically turned into a folder; this stereotype can be used to turn normal classes into folders, too.

	functional_doc_testcase

	Turns a class into a functional doctest class. It must subclass a <<plone_testcase>>.

	functional_testcase

	Turns a class into a functional testcase. It must subclass a <<functional_testcase>>. Adding an interface arrow to another class automatically adds that class's methods to the testfile for testing.

	hidden

	Generate the class, but turn off "global_allow", thereby making it unavailable in the portal by default. Note that if you use composition to specify that a type should be addable only inside another (folderish) type, then "global_allow" will be turned off automatically, and the type be made addable only inside the designated parent. (You can use aggregation instead of composition to make a type both globally addable and explicitly addable inside another folderish type).

	interface

	Is an interface.

	interface_testcase

	Turns a class into a testcase for the interfaces.

	large

	Like <<folder>>, it generates a folderish object. But it uses a BTree folder for support of large amounts of content. The same as <<large>>.

	mixin

	Don't inherit automatically from "BaseContent" and so. This makes the class suitable as a mixin class. See also <<archetype>>.

	named_adapter

	Is a named adapter.

	odStub

	Prevents a class/package/model from being generated. Same as <<stub>>.

	ordered

	For folderish types, include folder ordering support. This will allow the user to re-order items in the folder manually.

	plone_testcase

	Turns a class into the (needed) base class for all other <<testcase>> and <<doc_testcase>> classes inside a <<test>> package.

	plonefunctional_testcase

	Turns a class into the base class for all other <<functionaltestcase>> classes inside a <<test>> package.

	portal_tool

	Turns the class into a portal tool.

	portlet_class

	Generate this class as a zope3 portlet class instead of as an Archetypes class.

	python_class

	Generate this class as a plain python class instead of as an Archetypes class.

	remember

	The class will be treated as a remember member type. It will derive from remember's Member class and be installed as a member data type. Note that you need to install the separate remember product.

	setup_testcase

	Turns a class into a testcase for the setup, with pre-defined common checks.

	stub

	Prevents a class/package/model from being generated.

	testcase

	Turns a class into a testcase. It must subclass a <<plone_testcase>>. Adding an interface arrow to another class automatically adds that class's methods to the testfile for testing.

	tool

	Turns the class into a portal tool. Similar to <<portal_tool>>.

	variable_schema

	Include variable schema support in a content type by deriving from the VariableSchema mixin class.

	view_class

	Generate this class as a zope3 view class instead of as an Archetypes class.

	vocabulary

	
Todo

Complete

	vocabulary_term

	
Todo

Complete

	widget

	A simple stub archetypes-widget class will be created.

	zope_class

	Generate this class as a plain Zope class instead of as an Archetypes class.

dependency

	value_class

	Declares a class to be used as value class for a certain field class (see <<field>> stereotype).

interface

	stub

	Prevents a class/package/model from being generated.

	z3

	Generate this interface class as zope 3 interface. This will inherit from zope.interface.Interface.

method

	action

	Generate a CMF action which will be available on the object. The tagged values "action" (defaults to method name), "id" (defaults to method name), "category" (defaults to "object"), "label" (defaults to method name), "condition" (defaults to empty), and "permission" (defaults to empty) set on the method and mapped to the equivalent fields of any CMF action can be used to control the behaviour of the action.

	form

	Generate an action like with the <<action>> stereotype, but also copy an empty controller page template to the skins directory with the same name as the method and set this up as the target of the action. If the template already exists, it is not overwritten.

	noaction

	Disables standard actions, applied to a method out of 'view', 'edit', 'metadata', 'references.

	view

	Generate an action like with the <<action>> stereotype, but also copy an empty page template to the skins directory with the same name as the method and set this up as the target of the action. If the template exists, it is not overwritten.

model

	odStub

	Prevents a class/package/model from being generated. Same as <<stub>>.

	stub

	Prevents a class/package/model from being generated.

operation

	action

	Generate a CMF action which will be available on the object. The tagged values "action" (defaults to method name), "id" (defaults to method name), "category" (defaults to "object"), "label" (defaults to method name), "condition" (defaults to empty), and "permission" (defaults to empty) set on the method and mapped to the equivalent fields of any CMF action can be used to control the behaviour of the action.

	form

	Generate an action like with the <<action>> stereotype, but also copy an empty controller page template to the skins directory with the same name as the method and set this up as the target of the action. If the template already exists, it is not overwritten.

	noaction

	Disables standard actions, applied to a method out of 'view', 'edit', 'metadata', 'references.

	view

	Generate an action like with the <<action>> stereotype, but also copy an empty page template to the skins directory with the same name as the method and set this up as the target of the action. If the template exists, it is not overwritten.

package

	odStub

	Prevents a class/package/model from being generated. Same as <<stub>>.

	stub

	Prevents a class/package/model from being generated.

	tests

	Treats a package as test package. Inside such a test package, you need at a <<plone_testcase>> and a <<setup_testcase>>.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Step by Step Instructions

Description

Step by step instructions for common tasks while developing with ArchGenXML.

	Setup of a Testcase Environment using UML and ArchGenXML
	About Testing

	Testing and UML/ ArchGenXML

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Step by Step Instructions »

Setup of a Testcase Environment using UML and ArchGenXML

	About Testing

	Testing and UML/ ArchGenXML

Description

Environment for test-driven and architecture centric development.

Todo

Check if it works in 2.0. Add some information how to run the tests.

About Testing

Since development is going on at many places in the Plone system,
it is important to have a way ready to test if the software
you wrote is affected by the changes. And, more important the other
way around, if your work, in case it makes it way into the Plone
core or other add-on products, affects the work of others.

There are several documents available to read on why testing is
important, so feel free to have a look:

	Testing in Plone - Introduction [http://plone.org/documentation/tutorial/testing/introduction]

	Best Practices for Plone development - Unit Testing [http://plone.org/documentation/tutorial/best-practices/unit-testing]

	RichDocument Tutorial - Unit testing [http://plone.org/documentation/tutorial/richdocument/unit-testing]

and there are many more: Try the testing. Some of these documents
are describing in detail how to write the tests itself, which this
manual page is not intended for.

Testing and UML/ ArchGenXML

This document describes the few steps necessary to setup your testing
environment when using an UML diagram and ArchGenXML. It generates
your projects with the test infrastructure and you can focus on writing
the test itself

ArchGenXML provides a pre-configured testing environment - no more
hand-work to create it !

Steps:

	Check if PloneTestCase [http://plone.org/products/plonetestcase/] product was shipped with your Plone. If not install it in the version for your Plone.

	Create a package in your model and name it 'tests' and give it the stereotype <<tests>>

	Inside the new tests package create class 'MyFancyTestcase' (in the uml below named 'testPlone') and give it the stereotype <<plone_testcase>>. This is your main testcase class.

	Create an additional class inside the test package, call it 'testSetup', and give it the stereotype <<setup_testcase>>. Let it derive from the main testcase class using the generalization arrow.

	Testing methods/behaviour of archetypes classes: Create a class inside the test package. Give it the stereotype <<testcase>> or <<doc_testcase>>. Make them derive from main testcase class using the generalization arrow. On a testcase class you can add methods starting with 'test' such as 'testMyFancyFeature'. After code generation you just need to fill in your test code. A doc_testcase class creates an empty doctest text-file in the '/docs' directory of your product. There are some tagged value available to control the testcase in detail. Please look at the chapter Tagged Values for more information.

	To generate all imports and some startup code, you can use the dependency arrow from the testcase class to the archetypes class.

	You can repeat 5 and 6 for every class you want to include in yout test. You can organize your tests also different, like one integration test, as you like.

	Generate and run the tests.

Todo

steps needed to get the test fly, such as 'zopectl test' or setting SOFTWAREHOME and INSTANCEHOME environment.

[image: Sample UML]
These are the basic steps necessary to get it running.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

Recipes and Tips

Description

A collection of recipes for real world use cases and tips for making life easier.

	Using the config file to get shorter tagged values
	The config file

	Shorter tagged values

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	ArchGenXML »

 	Recipes and Tips »

Using the config file to get shorter tagged values

	The config file

	Shorter tagged values

Description

Some tagged values can get quite lengthy. If you use such a lengthy value a
few times, you can store it in your project's config file.

An example of long tagged values are the permissions you set on workflow
states. A key view, with the value Manager, Member, Reviewer, for
instance.

In tagged values, the text you type in is normally taken as a string. If you
prefix your value with python:, it is copy-pasted literally into your code.
So python:["a", "b"] is put into your code as ["a", "b"].

The config file

ArchGenXML generates a config.py file in your Product's root directory,
which in turn tries to import AppConfig.py. So stuff you put in there is
treated as if it is placed in the main config file.

Every ArchGenXML-generated file contains an import like from
Products.YourProduct.config import *, so the variables defined in your
AppConfig are directly available in all the files. This means that you can
specify shortcuts for the tagged values.

Shorter tagged values

Example line in your 'AppConfig.py':

EDITORS = 'Manager, Member, Reviewer'

Remember that we can use python: to paste raw python code directly into the
generated files. After adding above line, the original tagged value view
with value Manager, Member, Reviewer can be shortened to the tagged value
view with value python:EDITORS. Now that's handy :-) And if you need to
change this definition you have it at a central place. No need to touch 2, 3 or
more states in UML where it's used several times on each.

You can use this little feature almost everywhere, so its not limited to
workflow.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Buildout

Description

Buildout is a tool used to make site configuration repeatable and automatic.
It will download and configure software for you.

	Introduction
	More buildout documentation and background

	Packages, products and eggs
	Terminology

	The magic Products namespace

	Prerequisites
	Additional installation steps for Windows

	Creating a buildout for your project
	Directories in the buildout

	Understanding buildout.cfg
	The main [buildout] section

	The extends and versions lines

	The [zope2] section

	The [productdistros] section

	The [instance] section

	The [zopepy] section

	Creating a buildout defaults file

	Installing a third party product
	Installing eggs

	Installing a traditional Zope 2 product

	Managing ZCML files

	Policy products

	Creating a new package
	Creating a traditional Zope 2 product

	Creating an egg

	Creating development releases

	A deployment configuration
	Further options

	Useful buildout recipes

	Installing products from Subversion
	Step by step

	Further information

	Certification errors and passwords

	Converting single process Zope instance to ZEO cluster buildout.cfg
	Introduction

	Steps

	Starting ZEO cluster

	Other resources

	Additional information
	Recipes

	Making buildout faster

	Buildout folder structure

	Running buildout on Windows

	Running buildout behind a proxy

	Buildout cache folder

	Manually picking downloaded and active component versions

	Migrating buildout to a different Python interpreter

	Setting up a Plone site from buildout.cfg and Data.fs

	Configuring plone products from buildout

	Setting LD_LIBRARY_PATH

	Extending buildout section

	Overriding parts variables from command line

	Troubleshooting

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Introduction

Description

Or: "What's wrong with a plain old Zope instance"?

This tutorial shows how to install Plone 3 into a buildout, and
how to use that buildout when working on a software project that
extends Plone. A buildout is a self-contained environment where you
can manage the dependencies (including Zope and Plone and any
third-party products or libraries you need) and custom code for
your project. Even if you are not planning on writing any custom
code, the buildout approach is an easy way to install Plone in a
robust, well-tested manner. As of Plone 3.2, all of the installers
are now buildout based.

Prior to Plone 3.0, most developers and users who did not use a GUI
installer, would set up a Zope instance, drop in a few products
into the Products folder, and be done with it. Unfortunately, this
approach has a few problems:

	Plain old Zope instances are not very well equipped to deal with
packages distributed as python eggs or using setuptools
namespace packages. Many new packages in Plone 3 are made in this
way, and more and more third party modules will be as well.

	Without access to the metadata that is held in eggs, developers
may find it too time-consuming or confusing to factor their work
into multiple packages that are more re-usable, preferring
monolithic products that are impossible to re-use outside Zope.

	Without any further tools, it is cumbersome to repeat a setup
across different environments.

As eggs become more important, developers should look to employ
more appropriate tools for managing their code. zc.buildout,
hereafter referred to only as "buildout" is one such tool. This
tutorial shows how to use buildout for day-to-day development as
well as deployment.

More buildout documentation and background

Buildout was created by Jim Fulton of Zope Corporation, and is
documented in depth at: http://buildout.org/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Packages, products and eggs

Description

Looking at the core concepts in more detail

Terminology

Before we begin, you should familiarize yourself with these terms:

	Software home [http://plone.org/documentation/glossary/software-home]

	Zope instance [http://plone.org/documentation/glossary/zope-instance]

	Python path [http://plone.org/documentation/glossary/python-path]

	Python package [http://plone.org/documentation/glossary/python-package]

	Zope product [http://plone.org/documentation/glossary/zope-product]

	Python egg [http://plone.org/documentation/glossary/python-egg]

	The Python Package Index [http://plone.org/documentation/glossary/python-package-index]

	easy_install [http://plone.org/documentation/glossary/easy_install]

	Namespace package [http://plone.org/documentation/glossary/namespace-package]

The magic Products namespace

When Zope finds a "product", it will create an entry in
Control_Panel/Products in the root of the ZMI, and run the
initialize() method, found in the product's root
__init__.py file, each time Zope starts up. Not every package
used in a Plone context needs to be a product, but "productness" is
required for:

	GenericSetup profiles

	Skin directories being installed as layers in the
portal_skins tool (but not for Zope 3-style browser views)

The easiest way to create a product is to use Paster/ZopeSkel to
create an egg-ready package in the Products.* namespace using
the basic_namespace template:

$ paster create -t basic_namespace Products.myproduct
Selected and implied templates:
 ZopeSkel#basic_namespace A project with a namespace package

Variables:
 egg: Products.myproduct
 package: productsmyproduct
 project: Products.myproduct
Enter namespace_package (Namespace package (like plone)) ['plone']: Products
Enter package (The package contained namespace package (like example)) ['example']: myproduct
... accept defaults to end

If you're using buildout, create your package in the
src directory, and add references to it in the develop and
instance/eggs sections of buildout.cfg:

develop =
 src/Products.myproduct
...
[instance]
...
eggs =
 ${buildout:eggs}
 ${plone:eggs}
 Products.myproduct

Run bin/buildout and you'll be set up to develop your egg-ready
product in the src directory. Turn it into a distribution egg when
complete.

It is possible to use packages (including egg-distributed ones)
outside the Products namespace/directory as Zope 2 products. Many
developers prefer this approach, feeling it is unnatural to keep
everything in a single, "flat" namespace.

Extra steps are required for this. Prior to Zope 2.10.4, this is
also required for products in the Products namespace

We must add a line like the following to the package's
configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five">

 <five:registerPackage package="." initialize=".initialize" />

</configure>

Secondly, it is important to realize that packages outside the
Products namespace are not automatically detected when Zope starts
up. If they contain configure.zcml files (as most packages will
do), this must be explicitly included from somewhere. This may be:

	Another package's configure.zcml file.

	Zope's site.zcml, the root of all ZCML files, which is found in
the etc directory in the instance home.

	A ZCML Slug, a one-liner created in the zope instance's
etc/package-includes directory, with a name like
my.package-configure.zcml.

In all cases, the syntax is the same:

<include package="my.package" file="configure.zcml" />

If you have meta.zcml or overrides.zcml files, you can add
<include /> directives for these as well. If you are using slugs,
it must be named accordingly, e.g. my.package-meta.zcml or
my.package-overrides.zcml. A Slug can not contain more than one
line.

Later in this tutorial, we will show how buildout can manage slugs
for us automatically.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Prerequisites

Description

A few things you need before we can get started.

Before we can create a buildout to manage Zope and Plone, there are
a few prerequisites to take care of.

As of Plone 3.2, all of the Plone installers are buildout based.
You can get the latest installer [http://plone.org/products/plone] and run it to have a working
buildout without having to follow these steps. However, these steps
are still valid if you want to create the buildout manually with
ZopeSkel.

First, you will need an appropriate Python interpreter, if you do
not have one already:

	Install Python 2.4 [http://www.python.org/download/releases/] for your platform, and add it to your
system PATH. It is easiest if Python 2.4 is what you get when you
type python -V on a command line. Make sure you're using Python
2.4 and not 2.5, since Plone 3.x doesn't support Python 2.5 or
later. You might need to type python2.4 instead of just python
when running some of the following commands.

	If you installed Python using an operating system package (e.g.
an RPM), make sure you get the development package (e.g.
python-devel) as well. This includes Python header files that we
will use later to compile Zope. If you installed from source, or
used the Python Windows installer, you should already have these.

	Install PIL [http://www.pythonware.com/products/pil/], the Python Imaging Library into this Python
interpreter.

	Install setuptools [http://peak.telecommunity.com/DevCenter/setuptools]. If you're using Linux and your
distribution doesn't provide a package for setuptools, download
ez_setup.py [http://peak.telecommunity.com/dist/ez_setup.py] and run it with:

$ python ez_setup.py

This will download and install setuptools and the
easy_install script. Watch the console output to understand where
easy_install is installed. If this is not in your system PATH,
you should add this directory to the path as well.

Finally, use easy_install to get ZopeSkel, a collection of
skeleton templates for Zope and Plone development:

$ easy_install -U ZopeSkel

This will get Paste Script and various other dependencies.

Linux note: If you're installing setuptools and ZopeSkel
system-wide, you will probably need to become superuser or use
sudo, if you're not using virtualenv or similar. But please note
that bin/buildout (introduced later) should never be run as root.
If you really can't avoid running this script as root, don't forget
to change the owner of created files (chown -R) so the unprivileged
user that runs the zope instance will be able to read those files.

If you added the Python console scripts directory (where
easy_install was placed) to your system path, you should now be
able to run the paster command. You can test it with:

$ paster create --list-templates
Available templates:
 archetype: A Plone project that uses Archetypes content types
 basic_namespace: A basic Python project with a namespace package
 basic_package: A basic setuptools-enabled package
 basic_zope: A Zope project
 kss_plugin: A project for a KSS plugin
 nested_namespace: A basic Python project with a nested namespace (2 dots in name)
 paste_deploy: A web application deployed through paste.deploy
 plone: A project for Plone products
 plone2.5_buildout: A buildout for Plone 2.5 projects
 plone2.5_theme: A theme for Plone 2.5
 plone2_theme: A theme for Plone 2.1
 plone3_buildout: A buildout for Plone 3 installation
 plone3_portlet: A Plone 3 portlet
 plone3_theme: A theme for Plone 3
 plone4_buildout: A buildout for Plone 4 developer installation
 plone_app: A project for Plone products with a nested namespace (2 dots in name)
 plone_hosting: Plone hosting: buildout with ZEO and Plone versions below 3.2
 plone_pas: A project for a Plone PAS plugin
 recipe: A recipe project for zc.buildout
 silva_buildout: A buildout for Silva projects

Your output may differ slightly, but make sure you have the
plone3_buildout and plone templates at least.

Additional installation steps for Windows

If you are using Windows, there are a few more things you need to
do.

First, get and install the Python Win32 extensions [http://downloads.sourceforge.net/pywin32/pywin32-210.win32-py2.4.exe?modtime=1159009237&big_mirror=0] for Python
2.4.

If you intend to compile Zope yourself, rather than using a binary
installer, or if you ever need to compile an egg with C extensions,
you will need the mingw32 compiler [http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?modtime=1168794334&big_mirror=1]. Make sure you choose the
"base" and "make" modules at a minimum when the installer asks. By
default, this installs into C:\MingW32. Inside the installation
directory, there will be a bin directory, e.g. C:\MingW32\bin.
Add this to your system PATH.

Finally, you need to configure Python's distutils package to use
the mingw32 compiler. Create a file called distutils.cfg in the
directory C:\Python24\Lib\distutils (presuming Python was
installed in C:\Python24, as is the default). Edit this with
Notepad, and add the TRUNCATED! Please download pandoc if you want
to convert large files.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Creating a buildout for your project

Description

How to create a new buildout for a project, adding Plone and other third party products as dependencies

We are now ready to create a new buildout. The "buildout" is a
directory containing all the parts that make up a project,
including a Zope instance, the Plone sources, custom configuration
options, and your our project's source code.

Note

As of Plone 3.2, all of the Plone installers are buildout based.
You can get the latest installer [http://plone.org/products/plone] and run it to have a working
buildout without having to follow these steps. However, these steps
are still valid if you want to create the buildout manually with
ZopeSkel.

Create one like this:

$ paster create -t plone3_buildout myproject

This will ask a series of questions. If you want to use an existing
installation of Zope rather than have buildout download and compile
one for you, specify an absolute path as the zope2_install.
Similarly, if you do not want buildout to download the core Plone
products, you can point it to an existing directory containing all
the products (it will still download Plone 3's eggs, but as we will
see later, it is possible to share an eggs directory among multiple
buildouts). You will need to enter a Zope administrator username
and password, and you may want to turn debug mode and verbose
security on during development.

Now, enter the newly created myproject directory, and run the
buildout bootstrap script. NOTE: Python 2.4 is currently required
to Plone 3.x:

$ cd myproject
$ python2.4 bootstrap.py

This will create a number of directories and scripts and download
the latest version of the zc.buildout egg. This step should be
needed only once.

To get started straight away, run:

$./bin/buildout

This reads the generated buildout.cfg file and executes its various
"parts", setting up Zope, creating a Zope instance, downloading and
installing Plone. We will explain this file in more detail
shortly.

You will need to run ./bin/buildout again each time you change
buildout.cfg. If you do not want buildout to go online and look
for updated versions of eggs or download other archives, you can
run it in non-updating, offline mode, with;

$./bin/buildout -No

To start Zope in foreground and debug mode, run:

$./bin/instance fg

The instance script is analogous to zopectl as found in a
standard Zope instance. You can use ./bin/instance start to run
Zope in daemon mode. It can also be used to run tests:

$./bin/instance test -s plone.portlets

Running:

bin/instance console

is equivalent to bin/instance fg, but does not implicitly turn on
debug mode but respects the debug-mode setting in buildout.cfg.
This can be useful to run Zope in non-development mode with
daemon-control programs like supervisord.

Once your buildout installation is up and running, you will still
need to install a Plone site. Log in to the Zope Management
Interface (ZMI) and from "select type to add..." choose Plone
Site. Fill in the required details and submit. Now you have a
Plone site at the ID that you specified.

Directories in the buildout

Before we dive into buildout.cfg, let us take a quick look at the
directories that buildout has created for us:

	bin/

	Contains various executables, including the buildout command, and
the instance Zope control script.

	eggs/

	Contains eggs that buildout has downloaded. These will be
explicitly activated by the control scripts in the bin/
directory.

	downloads/

	Contains non-egg downloads, such as the Zope source code archive.

	var/

	Contains the log files (in var/log/) and the file storage ZODB
data (in var/filestorage/Data.fs). Buildout will never overwrite
these.
If you want to import a .zexp file, place it in the
var/instance/imports folder.
Previously one had to put that file into parts/instance/import,
but this folder gets wiped and regenerated when running
bin/buildout, so the import location was changed.

	src/

	Initially empty. You can place your own development eggs here and
reference them in buildout.cfg. More on that later.

	products/

	This is analogous to a Zope instance's Products/ directory (note
the difference in capitalisation). If you are developing any
old-style Zope 2 products, place them here. We will see how
buildout can automatically download and manage archives of
products, but if you want to extract a product dependency manually,
or check one out from Subversion, this is the place to do so.

	parts/

	Contains code and data managed by buildout. In our case, it will
include the local Zope installa TRUNCATED! Please download pandoc
if you want to convert large files.

Note

You can check in a buildout directory to a source code repository
to share it among developers. In this case, you should ignore
the directories bin/, eggs/, downloads/, var/, and parts/. Each
developer can run bootstrap.py to get these back, and will
normally need local copies anyway. All your configuration should be
in the buildout.cfg file, and all custom code in src/ or products/.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Understanding buildout.cfg

Description

How to manage the main buildout configuration file

Important note: This document applies to Plone 3.2 onwards. In
Plone versions prior to 3.2 the vanilla buildout.cfg file was
significatively different because Plone wasn't fully eggified.

buildout.cfg is the most important file in your new buildout
environment. Here is how it looks:

[buildout]
parts =
 zope2
 productdistros
 instance
 zopepy

Change the number here, and in find-links below, to change the version of
Plone being used
extends = http://dist.plone.org/release/3.3.5/versions.cfg
versions = versions

Add additional egg download sources here. dist.plone.org contains archives
of Plone packages.
find-links =
 http://dist.plone.org/release/3.3.5
 http://dist.plone.org/thirdparty

Add additional eggs here
eggs =

Reference any eggs you are developing here, one per line
e.g.: develop = src/my.package
develop =

[zope2]
recipe = plone.recipe.zope2install
url = ${versions:zope2-url}

Use this section to download additional old-style products.
List any number of URLs for product tarballs under URLs (separate
with whitespace, or break over several lines, with subsequent lines
indented). If any archives contain several products inside a top-level
directory, list the archive file name (i.e. the last part of the URL,
normally with a .tar.gz suffix or similar) under 'nested-packages'.
If any archives extract to a product directory with a version suffix, list
the archive name under 'version-suffix-packages'.
[productdistros]
recipe = plone.recipe.distros
urls =
nested-packages =
version-suffix-packages =

[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
user = admin:admin
http-address = 8080
comment the following two options in production sites
debug-mode = on
verbose-security = on

If you want Zope to know about any additional eggs, list them here.
This should include any development eggs you listed in develop-eggs above,
e.g. eggs = Plone my.package
eggs =
 Plone
 ${buildout:eggs}

If you want to register ZCML slugs for any packages, list them here.
e.g. zcml = my.package my.other.package
zcml =

products =
 ${buildout:directory}/products
 ${productdistros:location}

[zopepy]
recipe = zc.recipe.egg
eggs = ${instance:eggs}
interpreter = zopepy
extra-paths = ${zope2:location}/lib/python
scripts = zopepy

Let us walk through this file step-by-step:

The main [buildout] section

The [buildout] section is the starting point for the file. It
lists a number of "parts", which are configured in separate
sections later in the file. Each part has an associated recipe,
which is the name of an egg that knows how to perform a particular
task, e.g. build Zope or create a Zope instance. A recipe typically
takes a few configuration options.

Our global settings are as follows:

[buildout]
parts =
 zope2
 productdistros
 instance
 zopepy

find-links =
 http://dist.plone.org/release/3.3.5
 http://dist.plone.org/thirdparty

eggs =

develop =

This specifies that the parts zope2, productdistros,
instance and zopepy will be run, in that order. Then, we tell
buildout that it can search one of a number of URLs when it is
looking for eggs to download. In addition, it will always search
the Cheese Shop.

Note that configuration entries are commonly split into multiple
lines. For this to work, all lines after the first must begin with
at least 4 spaces.

Next, we can list any eggs that buildout should download and
install for us. This may include version specifications. For
example, if you want sqlalchemy 0.3, but not 0.4, you could list;

eggs =
 sqlalchemy>=0.3,<0.4dev

Please note that you will need the Python Imaging Library (PIL) for
Plone to work. This example assumes that you have this library
already installed and available from your Python interpreter, but
otherwise you can install a slightly modified (to workaround some
common problems) version from the "thirdparty" Plone repository in
your buildout adding its name to the eggs list:

eggs = PILwoTk

And the full path to the package in the find-links, e.g.:

find-links = http://dist.plone.org/thirdparty/PILwoTk-1.1.6.4.tar.gz

Finally, we can list development eggs, by specifying a directory
where the egg is extracted in source format. For example:

eggs =
 my.package

develop =
 src/my.package

This presumes that there is an egg called my.package in the
src/ directory. We will learn how to create such eggs a little
later in this tutorial. Notice how we must also list my.package as
an actual egg dependency: development eggs are not automatically
added to the "working set" of eggs that are installed for Zope.

The extends and versions lines

This part was introduced with Plone 3.2. It references a remote
file where the version of each needed package is specified. Check
that remote file to see yourself how these dependencies are
specified.

Change the number here, and in find-links below, to change the version of
Plone being used
extends = http://dist.plone.org/release/3.3.5/versions.cfg
versions = versions

If you want to use a local file instead of a remote one to be able
to work offline, download it to your buildout directory and
reference it like this:

extends = versions.cfg

The [zope2] section

This part builds Zope 2, using
plone.recipe.zope2install [http://cheeseshop.python.org/pypi/plone.recipe.zope2install].
If you specified an existing Zope installation, you will not have
this part. Otherwise, it looks like this:

[zope2]
recipe = plone.recipe.zope2install
url = ${versions:zope2-url}

Here, we reference the download location for Zope as present in the
versions file. This ensures that we always get the recommended
version of Zope. You could specify a download URL manually instead,
if you wanted to use a different version of Zope.

When the recipe is run, Zope 2 is installed in parts/zope2. The
Zope software home becomes parts/zope2/lib/python.

The [productdistros] section

This uses the
plone.recipe.distros [http://cheeseshop.python.org/pypi/plone.recipe.distros] recipe,
which is able to download distributions (archives) of Zope 2 style
products and make them available to Zope. It is empty to begin
with:

[productdistros]
recipe = plone.recipe.distros
urls =
nested-packages =
version-suffix-packages =

However, you can list any number of downloads. The recipe is also
able to deal with archives that contain a single top-level
directory that contains a bundle of actual product directories
(nested-packages), or packages that have a version number in the
directory name and thus need to be renamed to get the actual
product directory (version-suffix-packages).

Consider the following distributions:

A typical distribution
ExampleProduct-1.0.tgz
 |
 |- ExampleProduct
 |
 |- __init__.py
 |- (product code)

A version suffix distribution
AnotherExampleProduct-2.0.tgz
 |
 |- AnotherExampleProduct-2.0
 |
 |- __init__.py
 |- (product code)

A nested package distribution
ExampleProductBundle-1.0.tgz
 |
 |- ExampleProductBundle
 |
 |- ProductOne
 | |- __init__.py
 | |- (product code)
 |
 |- ProductTwo
 |- __init__.py
 |- (product code)

Here is what the part would look like if we try to install the
three distributions above:

[productdistros]
recipe = plone.recipe.distros
urls =
 http://example.com/dist/ExampleProduct-1.0.tgz
 http://example.com/dist/AnotherExampleProduct-2.0.tgz
 http://example.com/dist/ExampleProductBundle-1.0.tgz
nested-packages = ExampleProductBundle-1.0.tgz
version-suffix-packages = AnotherExampleProduct-2.0.tgz

You can specify multiple downloads on separate lines. When the
recipe is run, the product directories for downloaded products are
found in parts/productdistros.

The [instance] section

The instance section pulls it all together: It configures a Zope
instance using the
plone.recipe.zope2instance [http://cheeseshop.python.org/pypi/plone.recipe.zope2instance] script.
Here is how it looks:

[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
user = admin:admin
http-address = 8080
comment the following two options in production sites
debug-mode = on
verbose-security = on

eggs =
 Plone
 ${buildout:eggs}

zcml =

products =
 ${buildout:directory}/products
 ${productdistros:location}

Here, we reference the Zope 2 installation from the [zope2] part
- if you specified a location yourself when creating the buildout,
you would see that one here. Then, we specify the initial admin
user and password used only when creating the initial database, and
the port that Zope will be bound to. We also turn on debug mode and
verbose security. They are useful for development, but remember to
turn them off in production sites since they can compromise the
security of your site. These options are used to generate an
appropriate zope.conf file for this instance. See the
recipe page in the Cheese Shop [http://cheeseshop.python.org/pypi/plone.recipe.zope2instance]
for more details on the options available.

Next, we specify which eggs that will be made available to Zope.
This references the "global" eggs from the [buildout] section, as
well as Plone itself. You could add additional eggs here, though it
is generally easier to specify these at the top of the file, so
that they get included in the ${buildout:eggs} working set.

Zope 3 configure.zcml files are not automatically loaded for eggs
or packages that lack z3c.autoinclude support and are not in the
Products namespace. To load ZCML files for a regular package, we
can make buildout create a ZCML slug by listing the package under
the zcml option:

zcml =
 my.package
 my.package-overrides

This assumes that my.package was previously referenced in the
buildout. This would load both the main configure.zcml*and the
*overrides.zcml file from this package. Over time, the need for
these entries should diminish, as z3c.autoinclude support becomes
widespread.

Finally, we list the various directories that contain Zope 2 style
products - akin to the Products/ directory in a traditional
instance. Notice how the products/ directory in the main buildout
directory comes first, followed by the products downloaded with the
[productdistros] part.

When the recipe is run, the Zope instance home will be
parts/instance, and a control script is created in
./bin/instance.

The [zopepy] section

This final section creates a Python interpreter that has all the
eggs and packages (but not Zope 2 style products) that Zope would
have during startup. This can be useful for testing purposes.

[zopepy]
recipe = zc.recipe.egg
eggs = ${instance:eggs}
interpreter = zopepy
extra-paths = ${zope2:location}/lib/python
scripts = zopepy

Here, we copy the eggs from the [instance] section, and include
in the pythonpath the Zope instance home.

When the recipe is run, the script will be created in
./bin/zopepy.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Creating a buildout defaults file

Description

This makes it possible to share configuration across multiple
buildouts, and save some time and disk space.

To set "global" options affecting all buildouts, create a directory
.buildout (note leading dot) in your home directory, and add a
file there called default.cfg. Any option set here will be
applied to the corresponding section in any buildout.cfg that you
run, unless it is overridden by a more specific option in the
*buildout.cfg file itself.

Note

Windows may error when creating the .buildout directory with
"You must type a file name" due to the leading dot. This directory
can be created using the command line. Once created, it can
be accessed normally in the Windows gui.

The most common options are:

	executable

	Specify a python interpreter other than the system default. This is
useful if you have Python 2.5 installed, say, but you want your
buildouts to use another installation of Python 2.4.

	eggs-directory

	Specify a directory where eggs will be downloaded. This allows
multiple buildouts to share the same eggs, saving disk space and
download time. Note that only those eggs explicitly required by a
particular buildout will be activated. The eggs directory may
contain many more eggs (or many different versions of the same
package) than what is used at any one time.

	download-cache

	Specify a shared directory for downloaded archives. Again, this can
save disk space and download time. NOTE: before zc.buildout 1.0,
this was called download-directory

	extends-cache

	Specify a shared directory for extended buildout configurations
that are downloaded from a URL. As of Plone 3.2 this is how Plone
pins the versions [http://dist.plone.org/release/3.2/versions.cfg] of its eggs. This option was added in
zc.buildout 1.4.1 [https://pypi.python.org/pypi/zc.buildout/1.4.1#specifying-extends-cache-and-offline-mode], prior to that the offline mode in combination
with a extends URL would not work.

Here is an example ~/.buildout/default.cfg setting all three:

[buildout]
executable = /opt/python24/bin/python
eggs-directory = /home/username/.buildout/eggs
download-cache = /home/username/.buildout/downloads
extends-cache = /home/username/.buildout/extends

This assumes Python 2.4 is installed in /opt/python2.4. For the
last two options to work, you would need to create the directories
eggs and downloads inside the ~/.buildout directory.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Installing a third party product

Description

How to install a new package using these tools

How to install a new third-party products will depend on whether it
is packaged as an egg, or a traditional Zope 2 product.

Installing eggs

So long as an egg has a release in the
PyPi [https://pypi.python.org/pypi] or elsewhere, buildout can
download and install it, including any explicitly specified
dependencies. Simply list the egg, and optionally a version
(otherwise, you get the latest available), in the eggs option.

[buildout]
...
eggs =
 elementtree
 borg.project>=1.0b1,<2.0dev

If you want buildout to search an index other than PyPi's, you can
add a URL to find-links that contains download links for the
eggs. In fact, we have already seen an example of this:
elementtree is found at http://effbot.org/downloads, not in PyPi
directly. Thus, we have:

[buildout]
...

find-links =
 http://dist.plone.org
 http://download.zope.org/ppix/
 http://download.zope.org/distribution/
 http://effbot.org/downloads

eggs =
 elementtree

We have also listed some of the download locations for Zope and
Plone eggs.

Again - re-run buildout for the changes to take effect:

$./bin/buildout

Development eggs

If there is not a release for your egg, or you want to track an egg
in Subversion, check it out to the src/ directory. Make sure you
get the full egg, including the top-level setup.py file. For
example, to get the plone.portlets trunk development, egg do:

$ cd src
$ git clone git://github.com/plone/plone.portlets.git

Then, add the following to buildout.cfg:

[buildout]
...
eggs =
 ...
 plone.portlets

develop =
 src/plone.portlets

Note that:

	The develop*option contains a relative path to where the source
egg is installed. Buildout will expect to find a suitable
*setup.py in this directory.

	Development eggs always take precedence over regular eggs.

	You still need to list the egg name in the eggs option for it
to be installed.

	If you are overriding an egg that ships with Plone, you may need
to list it in the eggs section of the [plone] part instead:

[buildout]
...
develop =
 src/plone.portlets

...

[plone]
recipe = plone.recipe.plone
eggs =
 plone.portlets

This is because plone.recipe.plone is very explicit about which
versions of its various eggs to use, to ensure Plone keeps running
as it was released.

Buildout recipes (such as plone.recipe.plone) are distributed as
eggs. You can use a development egg of a recipe by listing it under
the develop option. There is no need to explicitly list it under
the eggs option, since it is referenced by the recipe option of
the relevant part.

Installing a traditional Zope 2 product

The easiest way to try out a traditional Zope 2 product is to
extract it into the products/ folder inside the buildout. If you
see documentation referring to the Products/ folder in a Zope
instance, this is the same thing.

However, this approach makes it harder to redistribute your project
and share it with other developers. It is often more predictable to
let buildout download and install the package for you. You can do
this with the [productdistros] section of buildout.cfg. For
example, here is how you might install a product named
ExampleProduct and a set of products named
ExampleProductBundle:

[productdistros]
recipe = plone.recipe.distros
urls =
 http://example.com/dist/ExampleProduct-1.0.tgz
 http://example.com/dist/ExampleProductBundle-1.0.tgz
nested-packages =
 ExampleProductBundle-1.0.tgz
version-suffix-packages =

Note that our fictional ExampleProductBundle is distributed as a
single directory containing a number of products in
sub-directories, so we list it under nested-packages.

As always, if you change buildout.cfg, you must re-run buildout:

$./bin/buildout

Managing ZCML files

It is important to realize that Zope will not load configure.zcml
files automatically for packages that are not in the Products.*
namespace and lack support for z3c.autoinclude (see next page for
more on using z3c.autoinclude). Instead, you must explicitly
reference the package. Buildout can create such a reference (known
as a ZCML slug) with the zcml*option under the *[instance]
part. Here is how to ensure that borg.project is available to
Zope:

[buildout]
...
eggs =
 elementtree
 borg.project

...

[instance]
...
zcml =
 borg.project

Should you need to load an overrides.zcml or a meta.zcml, you
can use a syntax like:

zcml =
 some.package
 some.package-overrides
 some.package-meta

Policy products

Many developers prefer to create a single "policy product" (also
known as a "deployment product") that orchestrates various
dependencies. If you have such a product, you may want to include
various dependencies directly from the policy product's
configure.zcml file, with lines such as:

<configure xmlns="http://namespace.zope.org/zope">

 <include package="borg.project" />

</configure>

In this case, you may still need one slug (using the zcml option
as above) for the policy product.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Creating a new package

Description

Adding a new custom package is not much different from installing a
third-party one.

Creating a traditional Zope 2 product

To create a traditional Zope 2 product, put it in the top-level
products/ directory and re-start Zope. Nothing more should be
required. As explained previously, products placed here will be
found automatically at start-up, and their configure.zcml files
will be executed automatically.

Creating an egg

Of course, if you are using products, you cannot benefit from the
additional features of eggs, including automatic dependency
management, distribution via the Cheese Shop and nested
namespaces.

The easiest way to create a new egg is to use the paster*command,
which we already used to create the buildout. To create a new basic
package, with a top-level namespace (e.g. your company name) and a
specific name, go to the *src/ directory and run:

$ cd src
$ paster create -t plone myorg.mypackage

You will be asked a series of questions. Make sure that the
namespace package and package name correspond to the name of the
egg. In this case, the namespace package is myorg and the package
name is mypackage. In general, answer False to the question on
whether your package if "zip safe". Enter other metadata as
requested.

You will now have:

	A setup.py which contains the metadata you entered

	A package in myorg.mypackage/myorg/mypackage. Your source code
goes here.

	A skeleton configure.zcml, tests.py and a few other useful
starting points.

	Some generic documentation in myorg.mypackage/docs.

Of course, you must also add this package to the buildout. In
buildout.cfg, you might have:

[buildout]
...
eggs =
 ...
 myorg.mypackage

develop =
 src/myorg.mypackage

Unless you plan to include this package from another one (or use
automatic ZCML loading, explained below), you probably also need a
ZCML slug:

[instance]
...
zcml =
 myorg.mypackage

Do not forget to re-run buildout after making the change:

$./bin/buildout

Automate ZCML loading for your package

If you're not including your package from another one, you can
still avoid having to include a ZCML slug in buildout.cfg for it.
This is particulary useful to avoid unneccessary repetition of
package names in buildout.cfg, which beginner integrators might
easily overlook. From Plone 3.3 on, you can make your packages
signal that their ZCML should be included by adding:

setup(...
 entry_points="""
 [z3c.autoinclude.plugin]
 target = plone
 """

to their setup.py file. For further information, see the
setuptools documentation about dynamic discovery of services and plugins [http://peak.telecommunity.com/DevCenter/setuptools#dynamic-discovery-of-services-and-plugins].` <http://peak.telecommunity.com/DevCenter/setuptools#id19>`_

Specifying dependencies

If your new package has explicit dependencies, you can list them in
setup.py. That way, buildout will be able to download and install
these as well. Dependencies are listed in the install_requires
argument to the setup() method, By default, setuptools*is listed
here, since we need this to support namespace packages. To add
*sqlalchemy*0.3 (but not 0.4), and the *MySQL-Python driver, you
could amend this to read:

install_requires=[
 'setuptools',
 'sqlalchemy>=0.3,<0.4dev',
 'MySQL-Python',
],

Uploading your egg to the Cheese Shop

If you want to share your package with the rest of the Python
community and make it easy to install using tools like buildout and
easy_install, you can upload the package to the Cheese Shop.

Before doing so, you should:

	Commit your latest changes and tag the release in Subversion, if
applicable.

	Make sure the version number in setup.py is correct. This
should use common conventions such as "1.0b2" for the second beta
of version 1.0, or "2.1.3rc1" for the first release candidate of
version 2.1.3.

	If you are using Mac OS X, run
export COPY_EXTENDED_ATTRIBUTES_DISABLE=true on the shell first
- otherwise, the egg will contain Mac OS X resource forks which
cause problems if your egg is used on Windows.

When you are ready, run the following command from your package's
directory (e.g. src/myorg.mypackage):

$ python setup.py egg_info -RDb "" sdist register upload

This will ask you to create a Cheese Shop account if you do not
have one already. You can run this command as often as you'd like
to release a new version (probably with a new version number).

Creating development releases

When working on a project, you might want to generate development
releases of a project to push to a staging server. Instead of
increasing the version number in the setup.py file each time, you
can use the egg_info command to name the release appropiately.

For a complete list of the available options, run:

$ python setup.py --help egg_info

If you're using subversion for version control, you can use the
revision numbers. For example, this will generate a targz package in
the dist folder named your.package-rXXXX, where XXXX is a
revision number:

$ python setup.py sdist egg_info -r

If you do nightly releases, tagging with the date is a good option:

$ python setup.py sdist egg_info -d

If you don't want to enter the full command everytime you make a
release, you can use the setup.cfg file to set the defaults. For example:

[egg_info]
tag_date = true

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

A deployment configuration

Description

How to use buildout for deployment configuration

Finally, let's take a look at a more advanced configuration, better
suited for deployment. Save this file as deployment.cfg, at the
root of the buildout next to the main buildout.cfg file:

[buildout]
extends =
 buildout.cfg

parts +=
 debug-instance
 zeoserver
 varnish-build
 varnish-instance

[zeoserver]
recipe = plone.recipe.zope2zeoserver
zope2-location = ${instance:zope2-location}
zeo-address = ${instance:zeo-address}

[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
zeo-client = true
zeo-address = 8100
zodb-cache-size = 5000
zeo-client-cache-size = 300MB
debug-mode = off
verbose-security = off
eggs += Products.CacheSetup

[debug-instance]
recipe = collective.recipe.zope2cluster
instance-clone = instance
http-address = 8081
debug-mode = on
verbose-security = on

[varnish-build]
recipe = zc.recipe.cmmi
url = http://downloads.sourceforge.net/varnish/varnish-2.0.2.tar.gz

[varnish-instance]
recipe = plone.recipe.varnish
daemon = ${buildout:parts-directory}/varnish-build/sbin/varnishd
bind = 127.0.0.1:8082
backends = 127.0.0.1:8080
cache-size = 1G

Here, we are:

	Referencing the main buildout.cfg file, extending and
overriding it with configuration more appropriate for deployment.

	Setting up a ZEO server with two client instances, instance**and
debug-instance (see plone.recipe.zope2zeoserver [http://cheeseshop.python.org/pypi/plone.recipe.zope2zeoserver] and
plone.recipe.zope2instance [http://cheeseshop.python.org/pypi/plone.recipe.zope2instance] for more details)

	Compiling the Varnish cache server (see plone.recipe.varnish [http://cheeseshop.python.org/pypi/plone.recipe.varnish]
for more details).

By combining buildout configuration files like this, you can create
tailor-made configurations for different deployment scenarios. To
learn more about the advanced features of buildout, see
its documentation [http://cheeseshop.python.org/pypi/zc.buildout].

To build this environment, you must explicitly specify a
configuration file:

$./bin/buildout -c deployment.cfg

To start Zope and Plone, you will need to start the ZEO server, the
instance and the Varnish server:

$./bin/zeoserver start
$./bin/instance start
$./bin/varnish-instance

If you need to bring up an instance for debugging then you can
start up the debug-instance in foreground mode.

$./bin/debug-instance fg

The recipes will also create scripts to back up the ZODB
filestorage (in ./bin/repozo) and to pack the database (in
.*/bin/zeopack*).

Further options

zc.buildout is a very flexible system. It is relatively easy to
create new recipes, and you can combine existing recipes in
powerful ways. Search the Cheese Shop for "buildout" [http://cheeseshop.python.org/pypi?:action=search&term=buildout&submit=search] to find
more recipes, or take a look at the
source code for some of Plone's own recipes [http://dev.plone.org/collective/browser/buildout] to understand how
recipes are created.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Useful buildout recipes

Description

A list of the most common and useful buildout recipes used when
working with Plone.

The list is more or less sorted by topic. Check all available
recipes at PyPI [https://pypi.python.org/pypi?:action=browse&show=all&c=512].

	zc.recipe.egg [https://pypi.python.org/pypi/zc.recipe.egg/] - Installs eggs into a buildout eggs directory.
It also generates scripts in a buildout bin directory with egg
paths baked into them.

	infrae.subversion [https://pypi.python.org/pypi/infrae.subversion/1.4.5] - This zc.buildout recipe will check out a
number of URLs into its parts directory. It won't remove its
parts directory if there are any changes in the checkout, so it's
safe to work with that checkout for development.

	plone.recipe.zope2install [https://pypi.python.org/pypi/plone.recipe.zope2install/] - Installs Zope 2, i.e. its Python
libraries and scripts, but doesn't create any instance.

	plone.recipe.zope2instance [https://pypi.python.org/pypi/plone.recipe.zope2instance/] - Creates and configures a Zope 2
instance in parts. It also installs a control script, which is like
zopectl, in the bin/ directory.

	plone.recipe.zope2zeoserver [https://pypi.python.org/pypi/plone.recipe.zope2zeoserver/] - This recipe creates and
configures a Zope 2 ZEO server in parts. It also installs a control
script, which is like zeoctl, in the bin/ directory.

	plone.recipe.distros [https://pypi.python.org/pypi/plone.recipe.distros/] - Installs distributions, i.e. Zope
products not packaged as eggs.

	plone.recipe.apache [https://pypi.python.org/pypi/plone.recipe.apache/] - Builds and configures the Apache web
server.

	gocept.nginx [https://pypi.python.org/pypi/gocept.nginx/0.9.4] - zc.buildout recipe for configuring an nginx
server

	plone.recipe.varnish [https://pypi.python.org/pypi/plone.recipe.varnish/] - Installs the Varnish reverse-cache
proxy. It works for non-Zope sites as well.

	plone.recipe.squid [https://pypi.python.org/pypi/plone.recipe.squid] - Installs the Squid proxy. It works for
non-Zope sites as well.

	collective.recipe.omelette [https://pypi.python.org/pypi/collective.recipe.omelette/] - Creates a unified directory
structure of all namespace packages, symlinking to the actual
contents, in order to ease navigation.

	collective.recipe.i18noverrides [https://pypi.python.org/pypi/collective.recipe.i18noverrides/] - Creates an i18n directory
within one or more Zope 2 instances in your buildout. It copies
some .po files to those directories. The translations in those .po
files will override any other translations.

	zc.recipe.cmmi [https://pypi.python.org/pypi/zc.recipe.cmmi/] - The Configure-Make-Make-Install recipe
automates installation of configure-based source distribution into
buildouts.

	plone.recipe.command [https://pypi.python.org/pypi/plone.recipe.command/] - Execute arbitrary commands in buildout
through os.system.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Installing products from Subversion

Description

Sometimes Plone products are not eggified, but available only in
Subversion version control repository. This how to tells how such
product can be automatically installed in buildout installations.

A few buildout recipes provide direct version control checkout
functionality:

	plone.recipe.bundlecheckout [https://pypi.python.org/pypi/plone.recipe.bundlecheckout] - recipe provides Subversion (and
CVS) downloads. Always does checkout - not suitable if you change
files.

	mr.developer [https://pypi.python.org/pypi/mr.developer] - a zc.buildout extension which makes it easier
to work with buildouts containing lots of packages of which you
only want to develop some.

	infrae.subversion [https://pypi.python.org/pypi/infrae.subversion] - can do SVN update

In this example we use the later.

Step by step

Add the infrae.buildout recipe to your buildout.cfg. Adding a
recipe means adding a new line to
[buildout] parts=...myrecipename at the beginning of the file and
then later a corresponding [mypartname] recipe = xxx.yyy
section.

[buildout]

parts =

 plone
 zope2
 productdistros
 svnproducts
 instance
 zopepy
 zopeskel

List all the URLs of the products you want in svnproducts
section. In the example below we checkout TickingMachine product.

Get TickingMachine directly from SVN since it's not eggified

[svnproducts]
recipe = infrae.subversion

urls =
 http://tickingmachine.googlecode.com/svn/trunk TickingMachine

In the case you're installing an old product (not eggified) you
will also need to register it in the [products] section so that
they get added to your Python path:

products =
 ${buildout:directory}/products
 ${productdistros:location}
 ${plone:products}
 ${svnproducts:location

After rerunning buildout, TickingMachine will be found under
parts/development-products folder.

Further information

	infrae.subversion: a recipe against disaster [http://danielnouri.org/blog/devel/zope/infrae-subversion.html]

	Note that pointing to trunk is only a good practice for active
development. Anyone else that needs to use this technique should
point to a tag or branch URL.

Certification errors and passwords

Self-signed certificates are often used with Subversion
repositories. Since infrae.subversion is made for automatization,
it cannot accept security decisions for the user. So if you are
receiving certification validation errors and password prompts,
please access the Subversion repository first manually using svn
command. Accept the choice and the svn client will remember this in
your user account home folder. It is recommended not to use your
commit account for this, since storing passwords is insecure.

Here's an example about how to access a SVN repository using the
svn ls command and accepting the security decisions for the svn
client to remember them permanently:

 svn ls https://svn.plone.org/svn/collective/collective.easytemplate/trunk
Error validating server certificate for 'https://svn.plone.org:443':
 - The certificate is not issued by a trusted authority. Use the
 fingerprint to validate the certificate manually!
Certificate information:
 - Hostname: *.plone.org
 - Valid: from Mon, 14 Jan 2008 08:35:24 GMT until Wed, 13 Jan 2010 08:35:24 GMT
 - Issuer: Plone Foundation, Houston, Texas, US
 - Fingerprint: 39:6e:42:08:44:65:aa:7b:cb:55:85:9a:0c:0c:13:95:16:aa:38:48

(R)eject, accept (t)emporarily or accept (p)ermanently? p

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Converting single process Zope instance to ZEO cluster buildout.cfg

	Introduction

	Steps

	Starting ZEO cluster

	Other resources

Introduction

See ZEO [http://plone.org/documentation/manual/installing-plone/installing-on-linux-unix-bsd/to-zeo-or-not-to-zeo].

See the plone.app.blob product page [http://plone.org/products/plone.app.blob]
for good ZEO configuration examples.

Steps

Use link above for a buildout.cfg example.

Changes needed to a single process buildout.cfg:

	Add [zeo] section:

[zeo]
recipe = plone.recipe.zope2zeoserver
zope2-location = ${zope2:location}
zeo-address = 127.0.0.1:8100
zeo-var = ${buildout:directory}/var
blob-storage = ${zeo:zeo-var}/blobstorage
eggs = plone.app.blob

	Convert [instance] to [client1]. Add the following new settings:

zeo-client = on
zeo-address = ${zeo:zeo-address}
If blobs are used
shared-blob = on

	Add [client2] ... [clientN] sections:

[client2]
recipe = plone.recipe.zope2instance
http-address = 8081
zope2-location = ${client1:zope2-location}
zeo-client = ${client1:zeo-client}
zeo-address = ${client1:zeo-address}
blob-storage = ${client1:blob-storage}
shared-blob = ${client1:shared-blob}
user = ${client1:user}
products = ${client1:products}
eggs = ${client1:eggs}
zcml = ${client1:zcml}

	Reconfigure [buildout] parts to include zeo, client1, client2...

[buildout]
parts =
 plone
 zope2
 zeo
 client1
 client2
instance ... instance is no longer required when running ZEO based instance

	Change all ${instance:...} references to ${client1:...}. Search and replace ${instance: -> ${client1:

Starting ZEO cluster

You need to start ZEO and clients independently

	bin/zeo start

	bin/client1 start

	bin/client2 start

	etc.

Other resources

	http://blog.twinapex.fi/2008/07/07/zope-zeo-setupconversion-and-zeo-vs-standalone-performance-review/

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Buildout »

Additional information

Description

Further in-depth information about dealing with buildout
in Plone context

	Recipes

	Making buildout faster

	Buildout folder structure

	Running buildout on Windows

	Running buildout behind a proxy

	Buildout cache folder
	Bauildout defaults

	Manually picking downloaded and active component versions

	Migrating buildout to a different Python interpreter

	Setting up a Plone site from buildout.cfg and Data.fs

	Configuring plone products from buildout

	Setting LD_LIBRARY_PATH

	Extending buildout section

	Overriding parts variables from command line
	Examples

	Troubleshooting

Recipes

Buildout consists of recipes. In use, a recipe consists of:

	a Python package published to in pypi.python.org,

	a declaration in [buildout] parts=partname, and

	a [partname] section with a recipe= assignment specifying the
package name at pypi.python.org name

Recipes are automatically downloaded from pypi as Python eggs.

Making buildout faster

easy_install crawls unnecessary web pages when trying to install Python eggs.
You can limit this crawl by using allow-hosts to specify a whitelist:

allow-hosts =
 github.com
 *.python.org
 *.plone.org
 *.zope.org
 launchpad.net

Buildout folder structure

Plone buildouts have folders with predefined purposes:

	bin/

	Contains Python scripts and shell scripts installed by various eggs,
including the buildout command itself. The default Plone start
script bin/instance is here.

	parts/

	The source tree constructed by buildout. This is wiped between buildout
runs, so you should not change anything here (note: some broken recipes
store things like pid files here). Generated configuration files are
stored here: don't change them directly (changes will be wiped), change
the corresponding buildout sections instead.

	src/

	source code you are developing yourself.

	eggs/

	extracted Python eggs.

	downloads/

	Python egg download cache (may be elsewhere depending on the system
configuration).

	var/

	Persistent data such as logfiles, pid files, and Zope's database
consisting of filestorage files (e.g. Data.fs) and blobstorage
directories.

	bootstrap.py

	Installs the buildout command.

	buildout.cfg

	Basic buildout file. May extend other .cfg files. Sometimes there
are many files and you need to pick one for buildout to use; e.g.:

bin/buildout -c production.cfg

Running buildout on Windows

The Windows Plone installer provides buildout.exe.
This executable uses the system Python installation.
This installation is not necessarily the correct Python
version, if multiple Pythons are installed on the computer.

Many Windows Python software uses
wrapper .exe files which pick the Python interpreter
based on registry settings. One notable exe is buildout.exe,
which is used to run buildout.

If you install multiple Pythons,
the latter installations might not become active in the registry automatically,
and your Python wrapper still rely on the old version. This leads to
version incompatibilities and you are unable to start the Python applications.

Since only one Python interpreter can be active at a time,
it is tricky to develop multi-version Python code on Windows,
for example if you need to develop Plone 3 sites
(Python 2.4) and Plone 4 sites (Python 2.6) simultaneously.

Below is a script (regpy.py) which changes the active Python interpreter.
The orignal author is unknown, I picked up this code from some paste board
long time ago. Just run this code with your Python and the running
interpreter becomes active.

Example:

C:\Plone\python\python.exe regpy.py

Code:

import sys

from _winreg import *

tweak as necessary
version = sys.version[:3]
installpath = sys.prefix

regpath = "SOFTWARE\\Python\\Pythoncore\\%s\\" % (version)
installkey = "InstallPath"
pythonkey = "PythonPath"
pythonpath = "%s;%s\\Lib\\;%s\\DLLs\\" % (
 installpath, installpath, installpath
)

def RegisterPy():
 try:
 reg = OpenKey(HKEY_LOCAL_MACHINE, regpath)
 except EnvironmentError:
 try:
 reg = CreateKey(HKEY_LOCAL_MACHINE, regpath)
 SetValue(reg, installkey, REG_SZ, installpath)
 SetValue(reg, pythonkey, REG_SZ, pythonpath)
 CloseKey(reg)
 except:
 print "*** Unable to register!"
 return
 print "--- Python", version, "is now registered!"
 return
 if (QueryValue(reg, installkey) == installpath and
 QueryValue(reg, pythonkey) == pythonpath):
 CloseKey(reg)
 print "=== Python", version, "is already registered!"
 return
 CloseKey(reg)
 print "*** Unable to register!"
 print "*** You probably have another Python installation!"

if __name__ == "__main__":
 RegisterPy()

Example error when going from Plone 3 to Plone 4:

Traceback (most recent call last):

 File "C:\xxx\bin\idelauncher.py", line 99, in ?

 exec(data, globals())

 File "<string>", line 419, in ?

 File "c:\xxx\buildout-cache\eggs\plone.recipe.zope2instance-4.0.3-py2.6.egg\plone\recipe\zope2instance__init__.py", line 27, in ?

 from plone.recipe.zope2instance import make

 File "c:\xxx\buildout-cache\eggs\plone.recipe.zope2instance-4.0.3-py2.6.egg\plone\recipe\zope2instance\make.py", line 5, in ?

 from hashlib import sha1

ImportError: No module named hashlib

More info

	http://blog.mfabrik.com/2011/02/22/changing-the-active-python-interpreter-on-windows/

Running buildout behind a proxy

Buildout uses setuptools, which uses urllib,
which allows you to set a
proxy using the http_proxy (lowercase!) environment variable.

Example for UNIX shell (bash):

Set proxy address as environment variable.
In this case we use Polipo server running on the same computer.
http_proxy=http://localhost:8123/

This is Bash shell specific command to export environment variable
to processes started from the shell
export http_proxy

Run buildout normally
bin/buildout

You can also SSH tunnel the proxy from a remote server:

Make Polipo proxy yourserver.com:8123
made to be available at local port 8123
through SSH tunnel
ssh -L 8123:localhost:8123 yourserver.com

!!Attention!!

In Plone 4.3 the System changed , and from now on you get special users with different privileges for buildout and run. Because of the sudo command you proxy environment variables aren't saved in the sudo env list.

There are 3 ways to fix this in *nix systems:

	Inline: Set the environment variable inline.

	
	sudo -u plone_buildout http_proxy="http://myproxy:1234" ./bin/buildout

	Copy the environment from the currently logged in user.

	
	sudo -E -u plone_buildout ./bin/buildout

	Setup sudoers

	3)Maybe this article is interesting for setting up sudoers: http://ubuntuforums.org/showthread.php?t=1132821

Buildout cache folder

If you are running several buildouts as the same user you should
consider setting the cache folder. All downloaded eggs are cached here.

There are two ways to set the cache folder

	Use the PYTHON_EGG_CACHE environment variable;

	or set the download-cache variable in [buildout].
This is only recommended if the buildout.cfg
file is not shared between different configurations.

Example:

Create a cache directory
mkdir ~/python-egg-cache

Set buildout cache directory for this shell session
export PYTHON_EGG_CACHE=~/python-egg-cache

Bauildout defaults

You can set user-wide buildout settings in the following file:

$HOME/.buildout/default.cfg

This is especially useful if you are running many Plone development buildouts on your computer
and you want them to share the same buildout egg cache settings.

Example settings how to setting shared egg cache across various buildouts on your computer:

[buildout]
eggs-directory = /Users/mikko/code/buildout-cache/eggs
download-cache = /Users/mikko/code/buildout-cache/downloads
extends-cache = /Users/mikko/code/buildout-cache/extends

Warning

If you are sharing egg cache you might run into egg versioning problems especially
with older Plone installs. If you are having mysterious VersionConflict etc. problems
try disable buildout defaults and run buildout cleanly without shared eggs.

Manually picking downloaded and active component versions

This is also known as pinning versions.
You can manually choose what Python egg versions
of each component are used. This is often needed to resolve version conflict issues.

	http://www.uwosh.edu/ploneprojects/documentation/how-tos/how-to-use-buildout-to-pin-product-versions

Migrating buildout to a different Python interpreter

You can either:

	copy the whole buildout folder to a new computer (not recommended); or

	changing the Python interpreter on the same computer.

First you need to clear existing eggs as they might contain binary compilations
for wrong Python version or CPU architecture:

rm -rf eggs/*

Also clear the src/ folder if you are developing any binary eggs.

Buildout can be made aware of a new Python interpreter by rerunning
bootstrap.py:

source ~/code/python/python-2.4/bin/activate
python bootstrap.py

Then run buildout again and it will fetch all Python eggs for the new Python interpreter:

bin/buildout

Setting up a Plone site from buildout.cfg and Data.fs

This is often needed when you are copying or moving a Plone site.
If the repeatable deployment strategy is done correctly, all that is
needed to establish a Plone site is:

	buildout.cfg (which describes the Plone site and its add-on products
and how they are downloaded or checked out from version control)

	Data.fs (and blobstorage directories) which contains the site
database.

Below is an example process.

Activate Python 2.6 for Plone (see how to use virtualenv controlled non-system wide Python):

source ~/code/python/python-2.6/bin/activate

Install ZopeSkel templates which contains a buildout and folder structure
template for Plone site (plone3_buildout
works also for Plone 4 as long as you type in the correct version when
paster template engine asks for it):

easy_install ZopeSkel # creates paster command under virtual bin/ folder and downloads Plone/Zope templates
paster create -t plone3_buildout

paster create -t plone3_buildout newprojectfoldername
...
Selected and implied templates:
 ZopeSkel#plone3_buildout A buildout for Plone 3 installation
...

Expert Mode? (What question mode would you like? (easy/expert/all)?) ['easy']:
Plone Version (Plone version # to install) ['3.3.4']: 4.0
Zope2 Install Path (Path to Zope2 installation; leave blank to fetch one!) ['']:
Plone Products Directory (Path to Plone products; leave blank to fetch [Plone 3.0/3.1 only]) ['']:
Initial Zope Username (Username for Zope root admin user) ['admin']: admin
Initial User Password (Password for Zope root admin user) ['']: admin
HTTP Port (Port that Zope will use for serving HTTP) ['8080']:
Debug Mode (Should debug mode be "on" or "off"?) ['off']: on
Verbose Security? (Should verbose security be "on" or "off"?) ['off']: on

Then you can copy buildout.cfg from the existing site to your new
project:

copy buildout.cfg newproject # Copy the existing site configuration file to new project
cd newproject
python bootstrap.py # Creates bin/buildout command for buildout
bin/buildout # Run buildout - will download and install necessary add-ons to run Plone site

Assuming buildout completes succesfully, test that the site starts (without
database):

bin/instance fg # Start Zope in foreground debug mode

Press CTRL+C to stop the instance.

Now copy the existing database to the buildout directory:

cp Data.fs var/filestorage/Data.fs # There should be existing Data.fs file here, created by site test launch

If you do not know the admin user account for the database,
you can create an additional admin user:

bin/instance adduser admin2 admin # create user admin2 with password admin

Look for the Zope start-up message, which mentions the port the instance is
running on (the default port is 8080):

2010-09-06 12:55:17 INFO ZServer HTTP server started at Mon Sep 6 12:55:17 2010
Hostname: 0.0.0.0
Port: 20001

Then log in to the Zope Management Interface using your browser:

http://localhost:8080

Configuring plone products from buildout

In case add-on products require configuration which is not
handled by buildout recipes, you can supply this configuration using the
zope-conf-additional specification of the plone.recipe.zope2instance
recipe:

[instance]
recipe = plone.recipe.zope2instance
...
zope-conf-additional =
<product-config foobar>
 spam eggs
</product-config>

These configuration sections are added directly to your zope.conf file.

Any named product-config section is then available as a simple dictionary to any python product that cares to look for it.
The above example creates a foobar entry which is a dict with a
'spam': 'eggs' mapping.

Here is how you then access that from your code:

from App.config import getConfiguration

config = getConfiguration()
configuration = config.product_config.get('foobar', dict())
spamvalue = configuration.get('spam')

A similar method is used to configure the built-in Zope ClockServer enabling
you to trigger scripts:

zope-conf-additional =
 <clock-server>
 method /mysite/do_stuff
 period 60
 user admin
 password secret
 host www.mysite.com
 </clock-server>

Setting LD_LIBRARY_PATH

LD_LIBRARY_PATH is a UNIX environment variable which specifies
from which folders to load native dynamic linked libraries (.so files).
You might want to override your system-wide libraries,
because operating systems may ship with old, incompatible, versions.

You can use environment-vars of the
zope2instance [https://pypi.python.org/pypi/plone.recipe.zope2instance] recipe.

Example in buildout.cfg

[instance]
Use statically compiled libxml2
environment-vars =
 LD_LIBRARY_PATH ${buildout:directory}/parts/lxml/libxml2/lib:${buildout:directory}/parts/lxml/libxslt/lib

Extending buildout section

Buildout extensions can be extended in another buildout file.

	https://pypi.python.org/pypi/zc.buildout#extending-sections-macros

Overriding parts variables from command line

Sometimes, you need a variable from one of your buildout parts to be different, but for just one run.

So, instead of modifying your .cfg file for just one run and remember to revert it back before pushing your changes back to the server, you can just do that from the command line.

The format is:

./bin/builodut partname:some_variable=new_value

Examples

Need to create your site from scratch using the plonesite recipe:

./bin/buildout plonesite:site-replace=true

Want to re-run buildout, but you don't want to mr.developer to update packages:

./bin/buildout buildout:always-checkout=false

Want to do both examples at the same time:

./bin/buildout plonesite:site-replace=true buildout:always-checkout=false

Troubleshooting

See Buildout troubleshooting chapter.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Using zope.formlib

Description

zope.formlib is a zope 3 library to handle forms creation,
validation, display and actions. It provides a series of base
classes and methods to allow forms to be defined with just a little
bit of meta data.

	Why learn how to use a new framework?
	Note: Where do I place the code?

	Creating a simple feedback form

	Adding validation
	Field validation

	Invariants validation

	Customizing the template and the widgets
	Customizing the template

	Customizing the widgets

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Using zope.formlib »

Why learn how to use a new framework?

Description

You may be wondering why should you learn how to use a new forms
framework if you already know how to use the CMF Form Controller
Tool (Form Controller).

Why should you use a forms framework at all? You could always write
your own HTML form snippets and use the request dictionary to
retrieve and handle data.

The reason is simple: you'll end up writing a lot of boilerplate
code to collect, validate and build the response. It would be
better if you could just define the fields and metadata of the form
and re-use a set of base classes to do the repetitive work behind
the scenes, i.e., a forms framework.

One of these frameworks is the Form Controller Tool, which is not
bad, but has some disadvantages over formlib:

	First, the Form Controller spreads the form logic across several
files so it can be hard to follow it.

	Second, the From Controller doesn't handle the creation and
display of the widgets, so you have to create them manually, what
could become especially unmantainable when using choice-type
fields.

	Last, the Form Controller doesn't work with Zope 3 schema
interfaces nor views. Using a Zope 3 schema can help you creating
add and edit forms.

However, the Form Controller can be useful and even preferable when
you need to implement a complex page flow, or if you want to
customize Plone forms that use it; e.g. the ''Send this page to
someone'' form.

Beginning with Zope 2.9.3 (Plone 2.5) zope.formlib is being
distributed with Zope 2. Five >= 1.4 is required to make use of
this Zope 3 package.

Note: Where do I place the code?

You can place the code wherever you want: all in the same file,
each class in a file, in several directories, utilities in a
utilities.py file, etc. Just keep in mind two things:

	If you write several pieces of code (functions, classes) in
separate files, remember to import them whenever you use them, as
you would do in any other Python program.

	The ZCML statements have to be placed into a file called
configure.zcml in the root of your package, or in any other
file included from it.

Said that, the author reccommends putting all the Python code in a
file named browser.py in this tutorial to avoid confusion.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Using zope.formlib »

Creating a simple feedback form

Description

This section explains how to create a very basic feedback form.

Note

The code for this example is available to checkout from the
collective as the *example.formlib* package [http://svn.plone.org/svn/collective/example.formlib/].

For all practical sense formlib based components are really regular
Zope view components with some convenient base classes for
auto-generating output based on schemas and other configuration
info. You will see that in a moment.

First, define an interface class with the schema of the form:

from zope.interface import Interface
from zope.schema import TextLine, Text

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True)

 subject = TextLine(title=u'Subject',
 required=True)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

The purpose of this interface is to define the fields of the form.
The type of each schema field determines the type of widget that
will be used by default for that field, so choose it carefully. To
see all the schema fields available, read the zope.schema package's
interfaces.

Next, create a form instance, which is a class that groups an
ordered collection of fields and actions. To do that, simply
subclass Five's PageForm class, a wrapper to the formlib Form class
to keep Zope 2 happy. Type the following code into a Python file
inside your product:

from five.formlib.formbase import PageForm

You will also need to make use of Five's strange hybrid between
Zope 2 and Zope 3 page templates:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

The simplest way to define a collection of form fields is using the
Fields constructor with the previous schema:

from zope.formlib import form

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 form_fields = form.Fields(IFeedbackForm)

By inheriting from the PageForm class, the FeedbackForm
class inherit functionality from formlib itself. By default,
PageForm knows how to generate all the HTML that will make up
of a finished form. But in order to do this, formlib needs to know
what fields are wanted. This is done by providing the form_fields
attribute. The Fields constructor is a formlib helper class
that generates the appropriate field items from any Zope 3 schema
(in this case, the schema interface defined above).

In order to provide a complete form, you need to specify the action
to perform when the "submit" button of the form (or any other
indicated) is activated. To define the action, use the
form.action decorator with a handler function for the submitted
data. More on actions later.

use a dummy MailHost tool here to keep it simple
class MHost:
 def __init__(self):
 pass
 def Send(self, sender, to, subject, body):
 pass

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 form_fields = form.Fields(IFeedbackForm)
 result_template = ViewPageTemplateFile('feedback_result.pt')

 @form.action("send")
 def action_send(self, action, data):
 mhost = MHost()
 self.mFrom = data['customer']
 self.mTo = "feedback@mycompany.com"
 self.mSubject = data['subject']
 self.mBody = data['message']
 mhost.Send(self.mFrom, self.mTo, self.mSubject, self.mBody)
 return self.result_template()

This is where the real work takes place. In this example, the
feedback_result.pt page template is rendered and returned. All
the view's attributes will be available inside this template, which
will be introduced later.

An example result form is:

<html metal:use-macro="context/@@standard_macros/view">

<head>
</head>

<body>
 <div metal:fill-slot="body">
 <h1 tal:content="view/label">Form label</h1>
 <p>Thank you for your request about
 subject,
 customer@mail.</p>
 <p>We will reply to it shortly.</p>
 </div>
</body>
</html>

zope.formlib already includes a default general page form template,
with the fields labels, the widgets structures and the submit
buttons, so you only have to register your form page with the
appropiate ZCML snippet in order to make it accesible from a
browser. Assuming you've placed your code into a file named
browser.py:

<browser:page
 name="feedback"
 for="Products.CMFPlone.Portal.PloneSite"
 class=".browser.FeedbackForm"
 permission="zope.Public"
 />

Let's explain what this ZCML snippet means:

	The for attribute indicates the class or interface this view
will be available for; in this case, it will be shown only from the
root of a Plone site. To see the interfaces provided by a certain
object, fire up the ZMI, navigate up to your object and check the
Interfaces tab.

	The name attribute sets the name of the view, so the form
will be available from a URL with the form
http://<plone-site>/feedback.

	The class attribute indicates the view class responsible for
displaying the page form, in this case, the FeedbackForm class
inside the browser.py file.

	The permission attribute specify the permission needed to
access the page.

Among the most used permissions you can find:

	zope.Public - no restrictions, available to everyone.

	zope.View - permission to view this component.

	zope.ManageContent - add, edit and delete content objects.

Note: Keen readers will notice the special name for configuring the
new view component, browser:page. This XML tag actually employs an
XML namespace prefix which needs to be defined. Normally this is
added right onto the configure tag like this:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:five="http://namespaces.zope.org/five">

And that's all! Here's how the form and result pages will look
like:

Contact form:

[image: ../../_images/firstform-filled.png]
Result page:

[image: ../../_images/firstresult.png]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Using zope.formlib »

Adding validation

Description

Server-side form validation is vital to ensure data sanity and
protect our site from malicious users.

Field validation

Once you've understood the "hello form", let's move onto a more
advanced topic: validation.

The easiest way to manage validation in a formlib-based form is to
specify the validation rules in our schema. Actually, you've
already implemented some validation: the customer, subject and
message fields are required. If you leave the subject field
empty, for example, and click the send button, a pretty red error
message will show up asking you to fill that field.

Let's add email validation to the customer field using the
constraint keyword argument fot that attribute in our schema. For
simplicity, the mail address checker that comes with the CMFDefault
utilities toolbox will be used in this example, althought you could
also use your own regular expression checking. The constraint
argument must be a callable that returns True if the value
submitted is valid, or raise an exception inheriting from
zope.schema.ValidationError, whose docstring will be used in
the error message.

from zope.schema import ValidationError

class InvalidEmailAddress(ValidationError):
 "Invalid email address"

from Products.CMFDefault.utils import checkEmailAddress
from Products.CMFDefault.exceptions import EmailAddressInvalid

def validateaddress(value):
 try:
 checkEmailAddress(value)
 except EmailAddressInvalid:
 raise InvalidEmailAddress(value)
 return True

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True,
 constraint=validateaddress)

 subject = TextLine(title=u'Subject',
 required=True)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

Now, if you type an invalid address into the customer field and
click send, a kind and colorful error message will be displayed:

[image: ../../_images/validation_error_pretty.png]
That was too easy, wasn't it?

Invariants validation

zope.formlib also supports the validation of schema invariants,
e.g. the min value entered must be smaller than the max value. In
this example the form will be extended to provide a set of
predefined subjects and a field named other which must be filled
when selecting the the Other option in the subject select
dropdown. It's easier to explain it in Python than in English:

from zope.schema import Choice
from zope.interface import invariant, Invalid

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True,
 constraint=validateaddress)

 subject = Choice(title=u'Subject',
 vocabulary='Available Subjects',
 required=True,
)

 other = TextLine(title=u'Other',
 description=u"""
 If you've specified Other above,
 please fill this this field too.""",
 required=False)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

 @invariant
 def otherFilledIfSelected(feedback):
 if feedback.subject == u'Other' and not feedback.other:
 raise Invalid("Please specify the motivation of your request")

Here, the subject field type has been set to Choice, and the
list of available values has been indicated to be obtained from the
Available Subjects vocabulary, a named utility which will be
defined shortly.

The form will call all the invariant-decorated functions of the
schema upon validation and catch any raised Invalid exceptions.

You still need to define the Available Subjects vocabulary:

from zope.schema.vocabulary import SimpleVocabulary

def availableSubjects(context):
 subjects = ('Comment',
 'Feature Request',
 'Technical Issue',
 'Complaint',
 'Other',
)
 return SimpleVocabulary.fromValues(subjects)

and register it as a named utility using ZCML in the
configure.zcml file:

<configure ... >
...
 <utility
 component=".browser.availableSubjects"
 name="Available Subjects"
 provides="zope.schema.interfaces.IVocabularyFactory"
 />
</configure>

Restart your Zope instance for the changes to take effect and test
your new form. You'll see something similar to this:

[image: ../../_images/invariant_error.png]
Unfortunately, invariant errors descriptions are not shown in the
default template.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Using zope.formlib »

Customizing the template and the widgets

Description

Hack into the appearance of your form.

Customizing the template

plone.app.form provides a handy default template named
pageform.pt which integrates well with the default Plone skin,
but you might need to customize it or write your own one.

To do that, override the template attribute of the form class
definition:

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 template = ViewPageTemplateFile('feedback_form.pt')
 result_template = ViewPageTemplateFile('feedback_result.pt')

 @form.action("send")
 def action_send(self, action, data):
 mhost = MHost()
 self.mFrom = data['customer']
 self.mTo = "feedback@mycompany.com"
 self.mSubject = data['subject']
 self.mBody = data['message']
 mhost.Send(self.mFrom, self.mTo, self.mSubject, self.mBody)
 return self.result_template()

As already stated, all the view attributes will be available inside
the page template, including:

	label - A label to display at the top of the form.

	prefix - A string added to all widget and action names.

	form_fields - The list of form's fields.

	widgets - A list of views for the former fields. The widgets
are looked up as multiadapters for each schema field and the
request providing IDisplayWidget or IInputWidget.

	errors - A list of errors encountered during validation.

	error_views - A list of views for the former errors. These
views are looked up as multiadapters for each error and the request
providing
zope.app.form.browser.interfaces.IWidgetInputErrorView.

	status - An update status message, normally generated by
success or failure handlers.

	availableActions - The list of form's available actions.

	template - The template used to display the form.

It's reccommended to start with the default pageform.pt and
customize it cutting, pasting, deleting and entering text and
tags.

Using named templates

Another really zope3-ish method to choose the form template is
using the zope.formlib named templates. Using named templates can
be (and actually is) an overkill if you've designed your template
to work with your form class as a single component. But if you
write a form class and the template is just a visual customization
of that form, you might want to be able to customize the template
without having to reimplement the whole class, or let others do so.
This is exactly how Plone overrides the default zope.formlib
template with a more plone-ish one in the plone.app.form
package.

Please note that this approach was not taken in the example product
example.formlib.

Named templates are adapters for the form's view class to
INamedTemplate, bound to the form class only by their names.
This way, a third party product (e.g. a theme) can register a
different template with the same name (usually in a different
browser skin layer) to override the default one. Moreover, they're
very easy to use. Modify and add the emphasized lines:

from zope.formlib.namedtemplate import NamedTemplate
Five's ViewPageTemplateFile doesn't work correctly with formlib's NamedTemplateImplementation,
so we use here the Plone implementation
from plone.app.form import named_template_adapter

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 template = NamedTemplate('feedback.form')
 result_template = ViewPageTemplateFile('feedback_result.pt')
 # rest of the form class implementation...

feedback_template = named_template_adapter(
 ViewPageTemplateFile('feedback_form.pt'))

In configure.zcml, add the following snippet to register the named
template as an adapter for your form:

<adapter
 factory=".browser.feedback_template"
 for=".browser.FeedbackForm"
 name="feedback.form"
 />

Name your page template feedback_form.pt and you're done.

Customizing the widgets

As we've already stated earlier, form widgets are views for schema
fields, i.e. multiadapters for each schema field and the request
providing IDisplayWidget or IInputWidget, depending on if they
display field data or offer editing funcionality to the user.

To do so, override the custom_widget attribute of a field
(which defaults to None). Remember how we set up the form's
fields:

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 # rest of the form class...

The form_fields fields are accessible throught a dict-like
interface, with the schema field names as keys, so we write:

from zope.app.form.browser import RadioWidget as _RadioWidget

def RadioWidget(field, request):
 vocabulary = field.vocabulary
 widget = _RadioWidget(field, vocabulary, request)
 return widget

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 form_fields['subject'].custom_widget = RadioWidget
 # rest of the form class...

Here, we're specifying a custom widget for the subject field:
RadioWidget, which displays a radio box for every item from the
field's vocabulary. The zope.app.form.browser and
plone.app.form.widgets packages provide a reasonable set of widgets
to use and customize, including dropdowns and Kupu/WYSIWYG.
Unfortunately, creating new widgets is out of the scope of this
tutorial for now.

The RadioWidget function deserves a little explanation. Believe
it or not, zope.formlib doesn't handle custom widgets with
vocabularies (called items widgets) properly, because it calls
form_field.custom_widget(field, request) either the field has
an associated vocabulary or not, and item widgets have to be
initialized with a vocabulary argument too; so a wrapper function
is needed to workaround this issue.

Here's how the improved form looks like:

[image: ../../_images/form_radiobuttons.png]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

zope.formlib

Description

How to use zope.formlib library to create forms.

	Why learn how to use a new framework?

	Creating a simple feedback form

	Adding validation

	Customizing the template and the widgets

	Using CMFFormController

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	zope.formlib »

Why learn how to use a new framework?

Description

You may be wondering why should you learn how to use a new forms framework
if you already know how to use the CMF Form Controller Tool (Form Controller).

Why should you use a forms framework at all? You could always write your
own HTML form snippets and use the request dictionary to retrieve and
handle data.

The reason is simple: you’ll end up writing a lot of boilerplate code to
collect, validate and build the response. It would be better if you
could just define the fields and metadata of the form and re-use a set
of base classes to do the repetitive work behind the scenes, i.e., a
forms framework.

One of these frameworks is the Form Controller Tool, which is not bad,
but has some disadvantages over formlib:

	First, the Form Controller spreads the form logic across several
files so it can be hard to follow it.

	Second, the From Controller doesn’t handle the creation and display
of the widgets, so you have to create them manually, what could
become especially unmantainable when using choice-type fields.

	Last, the Form Controller doesn’t work with Zope 3 schema interfaces
nor views. Using a Zope 3 schema can help you creating add and edit
forms.

However, the Form Controller can be useful and even preferable when you
need to implement a complex page flow, or if you want to customize Plone
forms that use it; e.g. the ‘’Send this page to someone’’ form.

Beginning with Zope 2.9.3 (Plone 2.5) zope.formlib is being distributed
with Zope 2. Five >= 1.4 is required to make use of this Zope 3 package.

Note: Where do I place the code?

You can place the code wherever you want: all in the same file, each
class in a file, in several directories, utilities in a utilities.py
file, etc. Just keep in mind two things:

	If you write several pieces of code (functions, classes) in separate
files, remember to import them whenever you use them, as you would do
in any other Python program.

	The ZCML statements have to be placed into a file called
configure.zcml in the root of your package, or in any other file
included from it.

Said that, the author reccommends putting all the Python code in a file
named browser.py in this tutorial to avoid confusion.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	zope.formlib »

Creating a simple feedback form

Description

This section explains how to create a very basic feedback form.

The code for this example is available to checkout from the collective
as the *example.formlib*
package [http://svn.plone.org/svn/collective/example.formlib/].

For all practical sense formlib based components are really regular Zope
view components with some convenient base classes for auto-generating
output based on schemas and other configuration info. You will see that
in a moment.

First, define an interface class with the schema of the form:

from zope.interface import Interface
from zope.schema import TextLine, Text

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True)

 subject = TextLine(title=u'Subject',
 required=True)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

The purpose of this interface is to define the fields of the form. The
type of each schema field determines the type of widget that will be
used by default for that field, so choose it carefully. To see all the
schema fields available, read the zope.schema package's interfaces.

Next, create a form instance, which is a class that groups an ordered
collection of fields and actions. To do that, simply subclass Five's
PageForm class, a wrapper to the formlib Form class to keep Zope 2
happy. Type the following code into a Python file inside your product:

from Products.Five.formlib.formbase import PageForm

You will also need to make use of Five's strange hybrid between Zope 2
and Zope 3 page templates:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

The simplest way to define a collection of form fields is using the
Fields constructor with the previous schema:

from zope.formlib import form

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 form_fields = form.Fields(IFeedbackForm)

By inheriting from the PageForm class, the FeedbackForm class
inherit functionality from formlib itself. By default, PageForm
knows how to generate all the HTML that will make up of a finished form.
But in order to do this, formlib needs to know what fields are wanted.
This is done by providing the form_fields attribute. The Fields
constructor is a formlib helper class that generates the appropriate
field items from any Zope 3 schema (in this case, the schema interface
defined above).

In order to provide a complete form, you need to specify the action to
perform when the "submit" button of the form (or any other indicated) is
activated. To define the action, use the form.action decorator with
a handler function for the submitted data. More on actions later.

use a dummy MailHost tool here to keep it simple
 class MHost:
 def __init__(self):
 pass
 def Send(self, sender, to, subject, body):
 pass

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 form_fields = form.Fields(IFeedbackForm)
 result_template = ViewPageTemplateFile('feedback_result.pt')

 @form.action("send")
 def action_send(self, action, data):
 mhost = MHost()
 self.mFrom = data['customer']
 self.mTo = "feedback@mycompany.com"
 self.mSubject = data['subject']
 self.mBody = data['message']
 mhost.Send(self.mFrom, self.mTo, self.mSubject, self.mBody)
 return self.result_template()

This is where the real work takes place. In this example, the
feedback_result.pt page template is rendered and returned. All the
view's attributes will be available inside this template, which will be
introduced later.

An example result form is:

<html metal:use-macro="context/@@standard_macros/view">

<head>
</head>

<body>
 <div metal:fill-slot="body">
 <h1 tal:content="view/label">Form label</h1>
 <p>Thank you for your request about
 subject,
 customer@mail.</p>
 <p>We will reply to it shortly.</p>
 </div>
</body>
</html>

zope.formlib already includes a default general page form template, with
the fields labels, the widgets structures and the submit buttons, so you
only have to register your form page with the appropiate ZCML snippet in
order to make it accesible from a browser. Assuming you've placed your
code into a file named browser.py:

<browser:page
 name="feedback"
 for="Products.CMFPlone.Portal.PloneSite"
 class=".browser.FeedbackForm"
 permission="zope.Public"
 />

Let's explain what this ZCML snippet means:

	The for attribute indicates the class or interface this view will
be available for; in this case, it will be shown only from the root
of a Plone site. To see the interfaces provided by a certain object,
fire up the ZMI, navigate up to your object and check the Interfaces
tab.

	The name attribute sets the name of the view, so the form will be
available from a URL with the form http://<plone-site>/feedback.

	The class attribute indicates the view class responsible for
displaying the page form, in this case, the FeedbackForm class inside
the browser.py file.

	The permission attribute specify the permission needed to access
the page.

Among the most used permissions you can find:

	zope.Public - no restrictions, available to everyone.

	zope.View - permission to view this component.

	zope.ManageContent - add, edit and delete content objects.

Note: Keen readers will notice the special name for configuring the
new view component, browser:page. This XML tag actually employs an
XML namespace prefix which needs to be defined. Normally this is
added right onto the configure tag like this:

<configure xmlns="http://namespaces.zope.org/zope" xmlns:browser="http://namespaces.zope.org/browser" xmlns:five="http://namespaces.zope.org/five">

And that's all! Here's how the form and result pages will look like:**
**

Contact form:

[image: First form]

Result page:

[image: First result]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	zope.formlib »

Adding validation

Description

Server-side form validation is vital to ensure data sanity and protect
our site from malicious users.

Field validation

Once you've understood the "hello form", let's move onto a more advanced
topic: validation.

The easiest way to manage validation in a formlib-based form is to
specify the validation rules in our schema. Actually, you've already
implemented some validation: the customer, subject and message fields
are required. If you leave the subject field empty, for example, and
click the send button, a pretty red error message will show up asking
you to fill that field.

Let's add email validation to the customer field using the constraint
keyword argument fot that attribute in our schema. For simplicity, the
mail address checker that comes with the CMFDefault utilities toolbox
will be used in this example, althought you could also use your own
regular expression checking. The constraint argument must be a callable
that returns True if the value submitted is valid, or raise an
exception inheriting from zope.schema.ValidationError, whose
docstring will be used in the error message.

from zope.schema import ValidationError

 class InvalidEmailAddress(ValidationError):
 "Invalid email address"

 from Products.CMFDefault.utils import checkEmailAddress
 from Products.CMFDefault.exceptions import EmailAddressInvalid

 def validateaddress(value):
 try:
 checkEmailAddress(value)
 except EmailAddressInvalid:
 raise InvalidEmailAddress(value)
 return True

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True,
 constraint=validateaddress)

 subject = TextLine(title=u'Subject',
 required=True)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

Now, if you type an invalid address into the customer field and click
send, a kind and colorful error message will be displayed:

[image: Simple validation error]

That was too easy, wasn't it?

Invariants validation

zope.formlib also supports the validation of schema invariants, e.g.
the min value entered must be smaller than the max value. In this
example the form will be extended to provide a set of predefined
subjects and a field named other which must be filled when selecting
the the Other option in the subject select dropdown. It's easier to
explain it in Python than in English:

from zope.schema import Choice
from zope.interface import invariant, Invalid

class IFeedbackForm(Interface):
 """
 A typical feedback schema
 """
 customer = TextLine(title=u'Customer',
 description=u'Customer email',
 required=True,
 constraint=validateaddress)

 subject = Choice(title=u'Subject',
 vocabulary='Available Subjects',
 required=True,
)

 other = TextLine(title=u'Other',
 description=u"""
 If you've specified Other above,
 please fill this this field too.""",
 required=False)

 message = Text(title=u'Message',
 description=u'The message body',
 required=True)

 @invariant
 def otherFilledIfSelected(feedback):
 if feedback.subject == u'Other' and not feedback.other:
 raise Invalid("Please specify the motivation of your request")

Here, the subject field type has been set to Choice, and the list of
available values has been indicated to be obtained from the Available
Subjects vocabulary, a named utility which will be defined shortly.

The form will call all the invariant-decorated functions of the schema
upon validation and catch any raised Invalid exceptions.

You still need to define the Available Subjects vocabulary:

from zope.schema.vocabulary import SimpleVocabulary

def availableSubjects(context):
 subjects = ('Comment',
 'Feature Request',
 'Technical Issue',
 'Complaint',
 'Other',
)
 return SimpleVocabulary.fromValues(subjects)

and register it as a named utility using ZCML in the configure.zcml
file:

<configure ... >
...
 <utility
 component=".browser.availableSubjects"
 name="Available Subjects"
 provides="zope.schema.interfaces.IVocabularyFactory"
 />
</configure>

Restart your Zope instance for the changes to take effect and test your
new form. You'll see something similar to this:

[image: Invariant error]

Unfortunately, invariant errors descriptions are not shown in the
default template.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	zope.formlib »

Customizing the template and the widgets

Description

Hack into the appearance of your form.

Customizing the template

plone.app.formprovides a handy default template named
pageform.pt which integrates well with the default Plone skin, but
you might need to customize it or write your own one.

To do that, override the template attribute of the form class
definition:

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 template = ViewPageTemplateFile('feedback_form.pt')
 result_template = ViewPageTemplateFile('feedback_result.pt')

 @form.action("send")
 def action_send(self, action, data):
 mhost = MHost()
 self.mFrom = data['customer']
 self.mTo = "feedback@mycompany.com"
 self.mSubject = data['subject']
 self.mBody = data['message']
 mhost.Send(self.mFrom, self.mTo, self.mSubject, self.mBody)
 return self.result_template()

As already stated, all the view attributes will be available inside the
page template, including:

	label - A label to display at the top of the form.

	prefix - A string added to all widget and action names.

	form_fields - The list of form's fields.

	widgets - A list of views for the former fields. The widgets are
looked up as multiadapters for each schema field and the request
providing IDisplayWidget or IInputWidget.

	errors - A list of errors encountered during validation.

	error_views - A list of views for the former errors. These views
are looked up as multiadapters for each error and the request
providing zope.app.form.browser.interfaces.IWidgetInputErrorView.

	status - An update status message, normally generated by success
or failure handlers.

	availableActions - The list of form's available actions.

	template - The template used to display the form.

It's reccommended to start with the default pageform.pt and
customize it cutting, pasting, deleting and entering text and tags.

Using named templates

Another really zope3-ish method to choose the form template is using the
zope.formlib named templates. Using named templates can be (and
actually is) an overkill if you've designed your template to work with
your form class as a single component. But if you write a form class and
the template is just a visual customization of that form, you might want
to be able to customize the template without having to reimplement the
whole class, or let others do so. This is exactly how Plone overrides
the default zope.formlib template with a more plone-ish one in the
plone.app.form package.

Please note that this approach was not taken in the example product
example.formlib.

Named templates are adapters for the form's view class to
INamedTemplate, bound to the form class only by their names. This
way, a third party product (e.g. a theme) can register a different
template with the same name (usually in a different browser skin layer)
to override the default one. Moreover, they're very easy to use. Modify
and add the emphasized lines:

from zope.formlib.namedtemplate import NamedTemplate
Five's ViewPageTemplateFile doesn't work correctly with formlib's NamedTemplateImplementation,
so we use here the Plone implementation
from plone.app.form import named_template_adapter

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 template = NamedTemplate('feedback.form')
 result_template = ViewPageTemplateFile('feedback_result.pt')
 # rest of the form class implementation...

feedback_template = named_template_adapter(
 ViewPageTemplateFile('feedback_form.pt'))

In configure.zcml, add the following snippet to register the named
template as an adapter for your form:

<adapter
 factory=".browser.feedback_template"
 for=".browser.FeedbackForm"
 name="feedback.form"
 />

Name your page template feedback_form.pt and you're done.

Customizing the widgets

As we've already stated earlier, form widgets are views for schema
fields, i.e. multiadapters for each schema field and the request
providing IDisplayWidget or IInputWidget, depending on if they
display field data or offer editing funcionality to the user.

To do so, override the custom_widget attribute of a field (which
defaults to None). Remember how we set up the form's fields:

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
rest of the form class...

The form_fields fields are accessible throught a dict-like
interface, with the schema field names as keys, so we write:

from zope.app.form.browser import RadioWidget as _RadioWidget

 def RadioWidget(field, request):
 vocabulary = field.vocabulary
 widget = _RadioWidget(field, vocabulary, request)
 return widget

class FeedbackForm(PageForm):
 """
 A typical feedback form
 """
 label = u'Contact Us'
 form_fields = form.Fields(IFeedbackForm)
 form_fields['subject'].custom_widget = RadioWidget
 # rest of the form class...

Here, we're specifying a custom widget for the subject field:
RadioWidget, which displays a radio box for every item from the
field's vocabulary. The zope.app.form.browser and
plone.app.form.widgets packages provide a reasonable set of widgets to
use and customize, including dropdowns and Kupu/WYSIWYG. Unfortunately,
creating new widgets is out of the scope of this tutorial for now.

The RadioWidget function deserves a little explanation. Believe it
or not, zope.formlib doesn't handle custom widgets with vocabularies
(called items widgets) properly, because it calls
form_field.custom_widget(field, request) either the field has an
associated vocabulary or not, and item widgets have to be initialized
with a vocabulary argument too; so a wrapper function is needed to
workaround this issue.

Here's how the improved form looks like:

[image: Form radio buttons]
Form radio buttons

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	zope.formlib »

Using CMFFormController

Description

How to create and validate forms in Plone using its CMFFormController.
Be sure to also read the CMFFormController tutorial in the
Products/CMFFormController/documentation directory, included with your
copy of Plone. This how-to is also available in
Products/CMFFormController/www/ as the file docs.stx, included with Plone.

The CMFFormController package helps developers by simplifying the
process of validating forms. It also makes it easier for site
administrators to override some of the behavior of packages without
modifying code, making it easier to upgrade packages without disturbing
the modifications.

How it works:

	Developers associate a set of default variables for their Page
Templates. These variables control the validation that takes place
after the form is submitted and the actions that occur after
validation. The variables are stored on the filesystem in the
.metadata properties file.

	Site administrators can override the default validations and actions
using the ZMI. Once a set of validations or actions has been
specified in the ZMI, the default validations and actions will be
ignored.

Forms

To take advantage of CMFFormController, you need to use Controller Page
Templates rather than ordinary Page Templates. Controller Page Templates
act just like ordinary Page Templates, but they do some extra work when
they are viewed.

Here is a basic form that uses CMFFormController:

<form tal:define="errors options/state/getErrors"
 tal:attributes="action string:${here/absolute_url}/${template/id};"
 method="post">
 <input type="hidden" name="form.submitted" value="1" />
 <p tal:define="err errors/foo|nothing" tal:condition="err" tal:content="err" />
 <input type="text"
 name="foo"
 tal:define="val request/foo|nothing"
 tal:attributes="value val" />
 <input type="submit" name="submit" value="submit" />
</form>

Let's take a look.

	First, we note that the form is set up to submit to itself. Forms
must submit to themselves.

	Second, we see the special hidden variable form.submitted. The
controlled page template checks the REQUEST for form.submitted to see
if the form has been submitted or if, instead, it has just been
accessed, e.g. via a link. Forms must contain the hidden variable
``form.submitted``

	At the beginning of the form we set the variable errors. The errors
dictionary comes from the state object which is passed in the
template options. The state object lets validators and scripts pass
information to each other and to forms. For our purposes, the most
important information is the errors dictionary, which has entries of
the form {field_name:error_message}.

Before we can use this form we need to specify the validators that will
be used to check the form values, and we need to specify the action that
will occur after validation.

Specifying Validators

There are two basic ways to specify a form's validators.

	You can specify the validators in the .metadata properties for
filesystem-based Controller Page Templates.

	You can specify the validators via the ZMI (or programmatically).
These values will be stored in the ZODB as attributes of the
portal_form_controller object.

If you specify validators in both places, the validators specified in
the ZMI will take precedence over those specified in the .metadata file.

Specifying Validators on the Filesystem

You can specify validators on the filesystem using an objects .metadata
properties file.

To create a .metadata file, simply create a file with the same name as
your page template, and then append .metadata to the end of the name of
the file. For instance, you might have a Controller Page Template called
document_edit_form.cpt. The properties for that file would be stored
in a file called document_edit_form.cpt.metadata

The .metadata file uses the standard python ConfigParser syntax. The
validator section of the .metadata file would look like:

[validators]
validators = validate_script1, validate_script2

The validation scripts validate_script1 and validate_script2
will be called in order.

Type-Specific Validators

Suppose you want different validators to be called, depending on the
type of context the form has.

You can do so as follows:

[validators]
validators = validate_script1
validators.Document = validate_script2

In the above example, if the context is a Document object,
validate_script2 will be called for validation; for everything else,
only validate_script1 will be called.

Note that the order in which the variables are specified does not
matter; the type-specific validators override non-specific validators if
both are applicable.

Button-Specific Validators

Suppose instead that you have two different buttons on your form, and
you want different validation sequences to occur depending on which
button is pressed. You can accomplish this as follows:

First, name your buttons button1 and button2:

<input type="submit"
 name="form.button.button1"
 value="First Button" />
<input type="submit"
 name="form.button.button2"
 value="Second Button" />

Next, specify validators in the .metadata file for button1 and for
button2:

[validators]
validators..button1 = validate_script1, validate_script3
validators..button2 = validate_script2, validate_script4

Note the presence of the ... This is a placeholder for a type
specifier. You could further specify that validate_script5 is called
if button2 is pressed and the context is a Document by adding:

[validators]
validators.Document.button2 = validate_script5

Remember that button specific validators take precedence over
non-specific validators.

Specifying Validators in the ZMI

If you look at a Controller Page Template in the ZMI, you will see that
it looks just like an ordinary Page Template with two extra tabs,
Validation and Actions. Click on the Validation tab.

The Validation tab shows all the validators for the page template in
question. You can specify validators with the same kind of
specialization options as above via a web form.

The validator information for all forms is stored in the
portal_form_controller tool in your portal. This means that you can
specify validators for filesystem objects with no problems, since the
information is persisted in the ZODB. Note that the validator
information is bound to the form's Id, so all forms with the same Id use
the same validators. This keeps things simple when you have multiple
skins:

Forms with the same Id use the same validators, no matter what skin
they are in.

When a form is submitted, it first checks to see if there are any
applicable validators that have been specified via the ZMI. If it finds
one, it uses it. If it does not find a validator via the ZMI, it then
checks the REQUEST object to see if validators have been specified in
hidden variables. As a result, validators specified in the ZMI take
precedence over those specified in forms.

Specifying Validators Programmatically

The portal's portal_form_controller tool has methods you can use to
specify the validators for a given ControllerPageTemplate. The API is as
follows:

portal_form_controller.addFormValidators(id,
 context_type,
 button,
 validators)

Here id is the Id of the ControllerPageTemplate, context_type is
the class name for the class of the context object, button is the
name of the button pressed, and validators is a comma-delimited string
or a list of strings. If you want a validator to act for any class, set
context_type to None. Similarly, you want a validator to act for any
button, set button to None.

Specifying Actions

The sequence of validators that is executed returns a status in the
state object. The default status is success, i.e. if no validators
are executed, the status will be success. If a validator encounters
an error, it will typically set the status to failure. The next
thing we need to do in your form is to specify what happens when a given
status is returned.

As with validators, there are two basic ways to specify a form's
actions.

	You can specify the actions in the .metadata properties for
filesystem-based Controller Page Templates and Controller Python
Scripts.

	You can specify the actions via the ZMI (or programmatically). These
values will be stored in the ZODB as attributes of the
portal_form_controller object.

If you specify actions in both places, the actions specified in the ZMI
will take precedence over those specified in the form.

Specifying Actions on the Filesystem

You can specify actions on the filesystem using an objects .metadata
properties file.

Actions are stored in the same .metadata file as the validators. The
syntax for the actions section of your file would look like:

[actions]
action.success = traverse_to:string:script1

In the above example, when the form is submitted and the validation
scripts return a status of success, the traverse_to action is
called with the argument string:script1, i.e. if the form data is
valid, we run the script script1. Alternatively, we could specify
action.success = redirect_to:string:http://my_url_here, which would
cause the browser to be redirected to http://my_url_here.

The default action for the failure status is to reload the current
form. The form will have access to all the error messages, via the state
object in its options.

Type-Specific Actions

Suppose you want different actions to occur depending on the type of
context the form has.

You can do so as follows:

[actions]
action.success = traverse_to:string:script1
action.success.Document = traverse_to:string:document_script

In the above example, if the context is a Document object,
document_script will be executed upon successful validation; for
everything else, script1 will be executed. Note that the order in which
the variables are specified does not matter; the type-specific actions
will override non-specific actions if both are applicable.

Button-Specific Actions

Suppose instead that you have two different buttons on your form, and
you want different actions to occur depending on which button is
pressed. You can accomplish this as follows:

First, name your buttons button1 and button2:

<input type="submit"
 name="form.button.button1"
 value="First Button" />
<input type="submit"
 name="form.button.button2"
 value="Second Button" />

Next, specify actionss for button1 and for button2:

[actions]
action.success..button1 = traverse_to:string:script1
action.success..button2 = traverse_to:string:script2

Note the presence of the ... This is a placeholder for a type
specifier. You could further specify that document_script2 is called
if button2 is pressed and the context is a Document by adding:

[actions]
action.success.Documnet.button2 = traverse_to:string:document_script2

Specifying Actions in the ZMI

If you look at a Controller Page Template in the ZMI, you will see that
it looks just like an ordinary Page Template with two extra tabs,
Validation and Actions. Click on the Actions tab.

The Actions tab shows all the actions for the page template in question.
You can specify actions with the same kind of specialization options as
above via a web form.

The action information for all forms is stored in the
portal_form_controller tool in your portal. This means that you can
specify actions for filesystem objects with no problems, since the
information is persisted in the ZODB. Note that the action information
is bound to the form's Id, so all forms with the same Id use the same
actions. This keeps things simple when you have multiple skins: forms
with the same Id use the same actions, no matter what skin they are in.

When a form is submitted, it first checks to see if there are any
applicable actions that have been specified via the ZMI. If it finds
one, it uses it. If it does not find an action via the ZMI, it then
checks the REQUEST object to see if actions have been specified in
hidden variables. As a result, actions specified in the ZMI take
precedence over those specified in forms.

Specifying Actions Programmatically

The portal's portal_form_controller tool has methods you can use to
specify the actions for a given ControllerPageTemplate. The API is as
follows:

portal_form_controller.addFormAction(id,
 status,
 context_type,
 button,
 action_type,
 args)

Here id is the Id of the ControllerPageTemplate, status is the
status for which the action will be executed, context_type is the
class name for the class of the context object, button is the name
of the button pressed, action_type is the type of action that will
occur, and args is a string (typically a TALES expression) that will
be passed to the action. If you want an action to be executed for any
class, set context_type to None. Similarly, you want an action to be
executed for any button, set button to None.

Validation Scripts

When writing validation scripts, use Controller Validators instead of
Python Scripts. Controller Validators are just like ordinary Scripts
with the addition of a ZMI Actions tab. On the file system, Controller
Validators use the extension .vpy rather than .py.

Let's take a look at a basic validation script that tests the REQUEST
value n to see if it is an integer:

n = context.REQUEST.get('n', None)
if not n:
 state.setError('n', 'Please enter a value', new_status='failure')
else:
 try:
 int(n)
 except ValueError:
 state.setError('n', 'Please enter an integer',
 new_status='failure')

if state.getErrors():
 state.set(portal_status_message='Please correct the errors shown.')
return state

The first thing to note is that Controller Validators have a built-in
state object called state. This state object (of class
ControllerState) contains basic information about what has happened
during the validation chain.

The state object has a status attribute which contains the current
validation status. The initial status is success. If errors are
detected by validators, they set the status to something else, typically
failure.

The state object also stores errors that have been detected. The
setError method is used to set an error message for a particular
variable. The setError method has the optional new_status argument
that can be used to both set an error message as well as to update the
status. You can see if an error message has already been stored for a
particular variable by calling state.getError(variable_name).

The set method lets you set multiple attributes of the state object all
at once, e.g.:

state.set(status='my_new_status')

You can also pass keyword arguments to the state object via the set
method. These arguments will get passed along by the action. The
traverse_to action places these keyword arguments in the REQUEST.
The redirect_to action adds them to the query string of the URL to
which it is redirecting.

Finally, we return the state object.

Another interesting example is email validation:

from Products.CMFDefault.utils import checkEmailAddress
from Products.CMFDefault.exceptions import EmailAddressInvalid

email = context.REQUEST.get('email', None)
if not email:
 state.setError('email', 'No e-mail address')
else:
Do try-catch here because checkEmailAddress will throw an exception
instead of saying "no, not valid".
try:
 checkEmailAddress(email)
 email_ok = True
except EmailAddressInvalid:
 email_ok = False
if not email_ok:
 state.setError('email', 'Invalid e-mail address.')

Scripts

When writing scripts that do some processing after a validated form, you
can use Controller Python Scripts instead of ordinary Python Scripts to
let site managers override their actions via the ZMI. On the file
system, Controller Python Scripts use the extension .cpy rather than
.py. Note that Controller Validators and Controller Python Scripts
differ in signficant ways. Be sure to use the appropriate script type
(Controller Validator or Controller Python Script) and/or the
appropriate file extension (.cpy or .vpy).

Let's take a look at a basic script that sets a context attribute to the
value n that is passed in via the 'REQUEST':

context.n = context.REQUEST.get('n')

Optionally set the default next action (this can be overridden
in the ZMI)

state.setNextAction('redirect_to:string:view')

Optionally pass a message to display to the user
state.setKwargs({'portal_status_message':'You set context.n to %s.' % str(context.n)})
return state

Note that you will usually want to use the traverse_to action to
call your script. This will ensure that form variables set in the
REQUEST object are available to your script.

This script sets its action to redirect to the relative url view for
the current context object. The status has not been set, so it is the
default status, success.

The state.setNextAction directive above is analogous to having the
following line in your .metadata file:

[actions]
action.success = redirect_to:string:view

As with the .metadata file, the default action specified in the script
can be overridden via the ZMI. This allows site managers to override
post-script actions without having to customize your code.

Finally, we return the state object.

Validation for Scripts

Having separate validation scripts typically means that validation is
moved out of scripts. This simplifies scripts, but means that it is
possible to call them directly with invalid data. We can prevent this
problem by adding validators to scripts. Controller Python Scripts use
the same ZMI and/or .metadata file mechanisms for adding validators as
do Controller Page Templates.

Each time a validator is called, it logs the call in the state object.
Validation is smart enough that if a validator is called by a form, it
will not be called again by the script.

Note that if you associate validators with a script, you will need to
set a sensible failure status action, since scripts do not set such
an action by default. You may wish to define a different failure status
for failures that occur within your script, e.g. script_failure.
Then you can specify a behavior for failures that occur as a result of
invalid parameters coming in and for failures that occur within the
script.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Zope 2 vs. Zope 3 practices

Over the years Plone has used many, many different technologies to
deliver its award-winning CMS to the masses.

You may often hear of a particular technology being referred to as "old style" or
"new style".

This section aims to give a cursory overview of all of Plone technologies,
particularly with regard to their categorization as "old style" or "new style".

Note

This section does not aim to tell you which technology to choose over another;
and it is certainly not a definitive resource for what is "old" or "new" in
Plone. It only aims to clear up confusion with regard to the common use of
such terminology.

Note

Also please note that while "old" generally refers to Zope 2 before the ZTK
existed and "new" generally refers to the mixture of Zope 2 and ZTK
technologies, there are no absolutes. You can apply the terms "old" and
"new" to just about anything in Plone, and the terminology is always
changing as Plone development advances.

	Packaging

	Theming

	Content types

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 vs. Zope 3 practices »

Packaging

To understand Plone's packaging story you must first understand both the
historic Zope2 add-on packaging story and the present day Python packaging
story. It also doesn't hurt to understand the future of Python packaging.

Zope2 products

Old style

Zope2 introduces the concept of "products" which are bundles of Python source
code that live in a special "products" directory; Zope2 looks for these on
startup and then registers them if they meet a certain set of criteria.

The specialized creation and use of products in Zope2 has generally fallen
out of favor, and given way to the use of generic Python packages, which are
widely used by the rest of the Python community.

Python packages

New style

The Setuptools add-on module for Python introduces the concept of
Python packages, called "eggs" (although recently, they are more and more
being referred to as just packages to avoid any "cuteness" getting in the
way of the concept.)

Note

If the packaging story were over now, things would be simple; but life is
never simple. What follows is an explanation of Setuptools vs. Distribute.
Or if you will, old style (Setuptools) vs. new style (Distribute) within the
new style of packaging (eggs).

Setuptools

Old style within new style

There are several important things you should know about Setuptools:

	It's built on top of a core module called Distutils, but it itself is
not part of the Python core.

	It was forked in 2009 into the Distribute project (based on a
disagreement over frequency of releases, among other things).

	It continues to exist.

Based on the above criteria, and what follows below about Distribute, you may
sometimes (perhaps less frequently then in the case of products vs. packages)
hear Setuptools referred to as "old style" and Distribute referred to as "new style".
And even if you don't, being aware of the distinction will certainly help you
understand "new style" packaging better.

Distribute

New style within new style

Distribute is a fork of Setuptools. It is intended to "get us through" to the
point where a better solution can be implemented within the Python core in
the Distutils2 module which is currently in development (as of early 2011).

Distribute is actively maintained, has frequent bug fixes and releases, and
is the self-proclaimed "new hotness".

And the "new hotness" part is no false promise. Using Distribute means you are using
the newest Python packaging technology short of Distutils2. One of the promises of
Distribute is using it will prepare you as gently as possible for the arrival of
Distutils2.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 vs. Zope 3 practices »

Theming

To understand Plone's theming story you must first understand the technology
stack on which it is built (or not built).

Zope2

Old style

Zope2 is the oldest portion of the stack. It offers technologies like
Acquisition (among others) which facilitate the reuse of objects
such as page templates amongst a website full of "content" objects.

CMF

Old style

Next came The Zope Content Management Framework (CMF); it offers
technologies like file system directory views (FSDV) and skin layers (among
others). The CMF allows people to manage their website's CSS, JavaScript and
image resources on the filesystem, typically inside a "skins" directory.

ZTK

New style

Initially called Zope 3 (more or less), the Zope Toolkit (ZTK) is a set of
reusable packages (including zope.component and zope.interface which
provide the Zope Component Architecture) that bring a modern, scalable
development environment to Plone.

Diazo

New style

Born out of a desire to separate Python package code from website resources
like CSS, JavaScript and images; Diazo (orginally called XDV) is a technology
that maps Plone content to an XHTML template, based on an XML ruleset.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 vs. Zope 3 practices »

Content types

Plone is a content management system (CMS) built on top of the Zope Content
Management Framework (CMF).

As such, one of the core features is the ability to add various types of
content objects, such as:

	Folder

	Page

	Image

	File

Early implementations of content types in Plone were built exclusively with
the Zope CMF. Since then, two other significant
frameworks have come along to advance the state of the art: Archetypes and
Dexterity.

This document aims to provide "top level" perspective for those not familiar
with Plone technology. And what follows is a description of each technology
along with information about the version of Plone it works with.

CMF

Used to build the orginal content types from Plone 0.1 to 2.0.

Archetypes

Used to build the content types from versions 2.1 to present (4.1 at the time
of this writing).

Dexterity

Came along around the time of Plone 3 as an alternative to Archetypes. Will
likely replace AT as the default content type technology in a future release
of Plone (hard to say when, but if "Plone 6" means anything to you, then that is
when it might happen.)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Pluggable Authentication Service

Description

The Pluggable authentication service (PAS)
provides an easy way to customize the way your users are
authenticated and assigned roles.

	Introduction

	Features and interfaces

	The important interfaces

	Configuring PAS

	Configuring an individual PAS plugin

	Concepts

	The user object

	User creation

	User factory plugin

	Properties plugins

	Group plugins

	Roles plugin

	Authorisation algorithm

	Credential extraction
	Writing a plugin

	Credential authentication

	Challenges

	PAS eats exceptions
	Do not swallow

	Plugins
	Plugin interfaces

	Plugin Types

	Repositories
	PAS

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Introduction

Description

The Pluggable Authentication Service (PAS) is an alternative
to the standard Zope User Folder
or the popular Group User Folder (GRUF).
PAS has a highly modular design, which is
very powerful, but also a lot harder to understand.

PAS is built around the concepts of interfaces and plugins:
all possible tasks related to user and group management and authentication
are described in separate interfaces.
These interfaces are implemented by plugins
which can be selectively enabled per interface.

Plone uses PlonePAS, which extends PAS with a couple of extra plugin types
and which adds GRUF compatibility.
Since PlonePAS extensions are rarely needed and are subject to change
in new Plone releases, this tutorial will focus only on pure PAS features.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Features and interfaces

Description

A user folder such as PAS provides a number of different services:
it takes care of user authentication,
it asks users to login if needed,
and it allows you to search for users and groups.

In order to make both configuration and implementation simpler
and more powerful, all these different tasks have been divided
into different interfaces.
Each interface describes how a specific feature,
such as authenticating a user, has to be implemented.

Within PAS, plugins are used to provide these features.
Plugins are small pieces of logic which implement one or more functions
as defined by these interfaces.

This separation is useful for different reasons:

	it makes it possible to configure different aspects of the system
separately.
For example how users authenticate (cookies, login forms, etc.) can be
configured separately
from where user information is stored (ZODB, LDAP, RADIUS, SQL, etc.).
This flexibility makes it very easy to tune the system to specific needs.

	it makes it possible for developers to write small pieces of code
that only perform a single task.
This leads to code that is easier to understand,
more testable and better maintainable.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

The important interfaces

Description

PAS has a number of interfaces that are important for everyone.

The most important interfaces that you may want to configure are:

	Authentication

	Authentication plugins are responsible for authenticating a set of
credentials. Usually that will mean verifying if a login name and
password are correct by comparing them with a user record in a database
such as the ZODB or an SQL database.

	Extraction

	Extraction plugins determine the credentials for a request.
Credentials can take different forms, such as a HTTP cookie, HTTP form
data or the user's IP address.

	Groups

	These plugins determine which group(s) a user (or group) belongs to.

	Properties

	Property plugins manage all properties for users.
This includes the standard information such as the user's name and
email address but can also be any other piece of data that you want to
store for a user.
Multiple properties plugins can be used in parallel,
making it possible for example to use some information from a central
system such as active directory while storing data specific to your
Plone site in the ZODB.

	User Enumeration

	User enumeration plugins implement the searching logic for users.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Configuring PAS

Description

There is no Plone interface to configure PAS:
you will need to use the Zope Management Interface (ZMI).
In the ZMI you will see a acl_users folder in the site root.
This is your PAS object.

If you open the acl_users folder you will see
a number of different items.
Each item is a PAS plugin, which implements some PAS functionality.

[image: The contents of a PAS user folder in the ZMI]
There is one special item: the plugins object manages
all administrative bookkeeping within PAS.
It remembers which interfaces are active for each plugin
and in what order the plugins should be called.

Let's take a look to see how this works.
If you open the plugins object
you will see a list of all the PAS interfaces,
along with a short description of what they do.

We will take a look at the extraction plugins.
These plugins take care of extracting the credentials
such as your username and password from a request.
These credentials can then be used to authenticate the user.
If you click on the Extraction Plugins header you will see
a screen which shows the plugins which implement this interface
and allows you to configure which plugins will be used and in what order.

[image: Configuration for the extraction plugins.]
In the default Plone configuration there are two plugins enabled for this
interface:

	the credentials_cookie_auth plugin can extract the login name and
password from an HTTP cookie and HTTP form values from the login form or
portlet;

	the credentials_basic_auth plugin can extract the login name and
password from standard HTTP authentication headers.

In the default configuration the cookie plugin takes preference over the
basic authentication plugin.
This means that credentials from a HTTP cookie will be preferred over
credentials from HTTP authentication headers if both are present.
You can try this by first logging in using standard
HTTP authentication in the Zope root, and then visiting your Plone site
and logging in with a different user there: you will see that the new user
is now the active user.

You can change the order of the plugins by clicking on a plugin and moving
it up or down with the arrows. Using the left and right arrows you can
enable and disable a plugin for this interface.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Configuring an individual PAS plugin

Description

In addition to enabling and disabling plugins via the plugins object
each plugin can also have its own configuration.
You can access this by opening a plugin in the ZMI.

Taking the credentials_cookie_auth as example again you will see the
screen for the Activate tab.
This tab is mandatory and allows you to enable and disable PAS interfaces
for a plugin.
This corresponds to the plugin configuration we saw earlier, but does not
allow you to change the ordering of different plugins for an interface.
If you enable a new interface for a particular plugin, it will be
activated and placed last in the list of plugins for a particular
interface.

[image: cookie-plugin.jpg]
You can also go to the properties tab to edit settings
specific for this plugin:

[image: cookie-plugin-properties.jpg]
What you can configure will differ per plugin. Some plugins do not have
any configurations options, others can be very complex.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Concepts

Description

PAS has a few basic concepts that you must understand in order to
develop PAS related code.

There are a few basic concepts used in PAS:

	credentials

	Credentials are a set of information which can be used to authenticate
a user.
This can be a login name and password, an IP address, a session cookie
or something else.

	user name

	The user name is the name used by the user to log into the system.
To avoid confusion between "user id" and "user name" this tutorial will
use the term login name instead.

	user id

	All users must be uniquely identified by their user id.
A user's id can be different than the login name.

	principal

	A principal is an identifier for any entity within the authentication
system.
This can be either a user or a group.
This implies that it is not legal to have a user and a group with the
same id!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

The user object

Description

In contrast to other user folders, a user in a PAS environment does
not have a single source.
Various aspects of a user (properties, groups, roles, etc.) are
managed by different plugins.
To accommodate this, PAS features a user object which provides a
single interface to all different aspects.

There are two basic user types:
a normal user (as defined by the IBasicUser interface)
and a user with member properties
(defined by the IPropertiedUser interface).
Since basic users are not used within Plone we will only consider
IPropertiedUser users.

	getId()

	returns the user id. This is a unique identifier for a user.

	getUserName()

	Return the login name used by the user to log into the system.

	getRoles()

	Return the roles assigned to a user "globally".

	getRolesInContext(context)

	Return the roles assigned to the user within a specific context.
This includes the global roles as returned by getRoles().

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

User creation

Description

PAS uses a multi-phase algorithm to create a user object

	An IUserFactoryPlugin plugin is used to create a new user object.

	All IPropertiesPlugin plugins are queried to get the property sheets.

	All IGroupsPlugin plugins are queried to get the groups.

	All IRolesPlugin plugins are queried to get the global roles.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

User factory plugin

PAS supports multiple user types.
The two default user types are: IBasicUser and IPropertiesUser.
IBasicUser is a simple user type which supports a user id,
login name, roles and domain restrictions.
IPropertiedUser extends this type and adds user properties.

A user factory plugin creates a new user instance.
PAS will add properties, groups and roles to this instance as part of its
user creation process.

If no user factory plugin is able to create a user, PAS will fall back to
creating a standard PropertiedUser instance.

The IUserFactoryPlugin interface is a simple one containing a single
method:

def createUser(user_id, name):
 """ Return a user, if possible.
 o Return None to allow another plugin, or the default, to fire.
 """

The default PAS behaviour is demonstrated by this code:

def createUser(self, user_id, name):
 return ProperiedUser(user_id, name)

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Properties plugins

Properties are stored in property sheets:
mapping-like objects, such as a standard python dictionary,
which contain the properties for a principal.
The property sheets are ordered:
if a property is present in multiple property sheets only the property in
the sheet with the highest priority is visible.

Property sheets are created by plugins implementing the
IPropertiesPlugin interface.
This interface contains only a single method:

def getPropertiesForUser(user, request=None):
 """ user -> {}
 o User will implement IPropertiedUser.
 o Plugin may scribble on the user, if needed (but must still
 return a mapping, even if empty).
 o May assign properties based on values in the REQUEST object, if
 present
 """

Here is a simple example:

def getPropertiesForUser(self, user, request=None):
 return { "email" : user.getId() + "@ourcompany.com" }

this adds an email property to a user which is hardcoded to the user id
followed by a company's domain name.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Group plugins

Group plugins return the identifiers for the groups a principal is a
member of. Since a principal can be either a user or a group this means
that PAS can support nested group members. The default PAS configuration
does not support this though.

Like other PAS interfaces, the IGroupsPlugin interface is simple and
only specifies a single method:

def getGroupsForPrincipal(principal, request=None):
 """ principal -> (group_1, ... group_N)
 o Return a sequence of group names to which the principal
 (either a user or another group) belongs.
 o May assign groups based on values in the REQUEST object, if present
 """

Here is a simple example:

def getGroupsForPrincipal(self, principal, request=None):
 # Manager can not be itself
 if principal == "Manager":
 return ()

 # Only act on the current user
 if getSecurityManager().getUser().getId() != principal:
 return ()

 # Only act if the request originates from the local host
 if request is not None:
 ip=request.get("HTTP_X_FORWARDED_FOR", request.get("REMOTE_ADDR", ""))
 if ip != "127.0.0.1":
 return ()

 return ("Manager",)

This puts the current user in the Manager group if the site is being
accessed from the Zope server itself.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Roles plugin

The IRolesPlugin plugins determine the global roles for a principal.
Like the other interfaces the IRolesPlugin interface contains only a
single method:

def getRolesForPrincipal(principal, request=None):
 """ principal -> (role_1, ... role_N)
 o Return a sequence of role names which the principal has.
 o May assign roles based on values in the REQUEST object, if present.
 """

Here is a simple example:

def getRolesForPrincipal(self, principal, request=None):
 # Only act on the current user
 if getSecurityManager().getUser().getId()!=principal:
 return ()

 # Only act if the request originates from the local host
 if request is not None:
 ip=request.get("HTTP_X_FORWARDED_FOR", request.get("REMOTE_ADDR", ""))
 if ip!="127.0.0.1":
 return ()

 return ("Manager",)

This gives the current user in Manager role if the site is being accessed
from the Zope server itself.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Authorisation algorithm

These are the steps the PAS user folder follows in its validate method:

	extract all credentials.
This looks for any possible form of authentication information in a
request: HTTP cookies, HTTP form parameters, HTTP authentication
headers, originating IP address, etc.
A request can have multiple (or no) sets of credentials.

	for each set of credentials found:

	try to authorise the credentials.
This checks if the credentials correspond to a known user and are
valid.

	create a user instance

	try to authorise the request.
If successful, use this user and stop further processing.

	create an anonymous user

	try to authorise the request using the anonymous user.
If successful use this, if not:

	issue a challenge.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Credential extraction

	Writing a plugin

Description

Within PAS credentials are a set of information which can identify and authenticate a user.
A users login name and password are for example very common credentials. You may also use
an HTTP cookie to track users; if you do so the cookie will be your credential.

PAS user credential extraction plugins to find all credentials in a request. Authentication of these credentials is done at a later stage by seperate authentication plugin.

Writing a plugin

If you want to write your own credential extraction plugin it has to implement the IExtractionPlugin interface. This interface only has a single method:

def extractCredentials(request):
 """ request -> {...}
 o Return a mapping of any derived credentials.
 o Return an empty mapping to indicate that the plugin found no
 appropriate credentials.
 """

Here is a simple example:

def extractCredentials(self, request):
 login=request.get("login", None)

 if login is None:
 return {}

 password="request.get("password", None)

 return { "login" : login, "password" : password }

This plugin extracts the login name and password from fields with the same name in the request object.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Credential authentication

Description

The credentials as returned by the credential extraction plugins only reflect the
authentication information provided by the user. These credentials need to be authenticated
by an authentication plugin to check if they are correct for a real user.

The IAuthenticationPlugin interface is a simple one:

def authenticateCredentials(credentials):
 """ credentials -> (userid, login)
 o 'credentials' will be a mapping, as returned by IExtractionPlugin.
 o Return a tuple consisting of user ID (which may be different
 from the login name) and login
 o If the credentials cannot be authenticated, return None.
 """

Here is a simple example:

def authenticateCredentials(self, credentials):
 users={ "hanno" : "hannosch", "martin" : "optilude",
 "philipp" : "philiKON" }

 if "login" not in credentials or "password" not in credentials:
 return None

 login=credentials["login"]
 password=credentials["password"]
 if users.get(login, None)==password:
 return (login, login)

 return None

This plugin allows the users hanno, martin and philipp to login with their nickname as password.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Challenges

Description

If the current (possibly anonymous) user is not authorized to access a resource Zope asks
PAS to challenge the user. Generally this will result in a login form being shown, asking
the user with a appropriately privileged account.

The IChallengeProtocolChooser and IChallengePlugins plugins work together to do this. Since Zope can be accessed via various protocols (browsers, WebDAV, XML-RPC, etc.) PAS first needs to figure out what kind of protocol it is dealing with. This is done by querying all IChallengeProtocolChooser plugins. The default implementation is ChallengeProtocolChooser, which asks all IRequestTypeSniffer plugins to test for specific protocols.

Once the protocol list has been build PAS will look at all active IChallengePlugins plugins.
Writing a plugin

The IChallengePlugin interface is very simple: it only contains one method:

def challenge(request, response):
 """ Assert via the response that credentials will be gathered.
 Takes a REQUEST object and a RESPONSE object.
 Returns True if it fired, False otherwise.
 Two common ways to initiate a challenge:
 - Add a 'WWW-Authenticate' header to the response object.
 NOTE: add, since the HTTP spec specifically allows for
 more than one challenge in a given response.
 - Cause the response object to redirect to another URL (a
 login form page, for instance)
 """

The plugin can look at the request object to determine what, or if, it needs to do. It can then modify the response object to issue its challenge to the user. For example:

def challenge(self, request, response):
 response.redirect("http://www.disney.com/")
 return True

this will redirect a user to the Disney homepage every time he tries to access something he is not authorized for.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

PAS eats exceptions

	Do not swallow

A broken user folder is one of the worst things that can happen in Zope: it can make it impossible to access any objects underneath the user folders level.

In order to secure itself against errors in plugins PAS ignores all exceptions of the common exception types: NameError, AttributeError, KeyError, TypeError and ValueError.

This can make debugging plugins hard: an error in a plugin can be silently ignored if its exception is swallowed by PAS.

Do not swallow

You can tell PAS not to swallow your exceptions by setting the
_dont_swallow_my_exceptions attribute on the plugin class.

From Products/PluggableAuthService/PluggableAuthService.py line 86:

except if they tell us not to do so
def reraise(plugin):
 try:
 doreraise = plugin._dont_swallow_my_exceptions
 except AttributeError:
 return
 if doreraise:
 raise

Which means to take advantage of this feature, do something like this in your
plugin class:

class LoginOnlyOncePlugin(BasePlugin):
 """
 Class methods via Products/PluggableAuthService/interfaces/plugins.py
 """

 meta_type = 'Login Only Once Plugin'
 security = ClassSecurityInfo()
 _dont_swallow_my_exceptions = True

 def __init__(self, id, title=None):
 self._setId(id)
 self.title = title

 ...

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Plugins

Description

Detail about the stock plugins provided by PAS and how to create new ones

	Plugin interfaces
	List of Plugin Interfaces

	Plugin Types
	Extraction Plugins

	Authentication Plugins

	Challenge Plugins

	Update Credentials Plugins

	Reset Credentials Plugins

	Properties Plugins

	Groups Plugins

	Roles Plugins

	User_Enumeration Plugins

	User_Adder Plugins

	Group_Enumeration Plugins

	Role_Enumeration Plugins

	Role_Assigner Plugins

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

Plugin interfaces

Description

PAS Plugins are broken down by the different functionalities they provide.

	List of Plugin Interfaces

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin interfaces »

List of Plugin Interfaces

Description

PAS Plugins are broken down by the different functionalities they provide. A particular plugin may provide one or many of the following interfaces

	Extraction Plugins

Extraction plugins are responsible for extracting credentials from the request.

	Authentication Plugins

Authentication plugins are responsible for validating credentials generated by the Extraction Plugin.

	Challenge Plugins

Challenge plugins initiate a challenge to the user to provide credentials.

	Update Credentials Plugins

Credential update plugins respond to the user changing credentials.

	Reset Credentials Plugins

Credential clear plugins respond to a user logging out.

	Userfactory Plugins

Create users.

	Anonymoususerfactory Plugins

Create anonymous users.

	Properties Plugins

Properties plugins generate property sheets for users.

	Groups Plugins

Groups plugins determine the groups to which a user belongs.

	Roles Plugins

Roles plugins determine the global roles which a user has.

	Update Plugins

Update plugins allow the user or the application to update the user's properties.

	Validation Plugins

Validation plugins specify allowable values for user properties (e.g., minimum password length, allowed characters, etc.)

	User_Enumeration Plugins

Enumeration plugins allow querying users by ID, and searching for users who match particular criteria.

	User_Adder Plugins

User Adder plugins allow the Pluggable Auth Service to create users.

	Group_Enumeration Plugins

Enumeration plugins allow querying groups by ID.

	Role_Enumeration Plugins

Enumeration plugins allow querying roles by ID.

	Role_Assigner Plugins

Role Assigner plugins allow the Pluggable Auth Service to assign

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

Plugin Types

Description

A list of the different types of plugins

	Extraction Plugins
	Stock Plugins

	Methods

	Authentication Plugins
	Stock Plugins

	Challenge Plugins
	Stock Plugins

	Update Credentials Plugins
	Stock Plugins

	Reset Credentials Plugins
	Stock Plugins

	Properties Plugins
	Stock Plugins

	Groups Plugins
	Stock Plugins

	Roles Plugins
	Stock Plugins

	User_Enumeration Plugins
	Stock Plugins

	User_Adder Plugins
	Stock Plugins

	Group_Enumeration Plugins
	Stock Plugins

	Role_Enumeration Plugins
	Stock Plugins

	Role_Assigner Plugins
	Stock Plugins

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Extraction Plugins

	Stock Plugins
	Cookie Auth Helper

	HTTP Basic Auth Helper

	Inline Auth Helper

	Session Auth Helper

	Methods

Description

Extraction plugins are responsible for extracting credentials from the request.

Stock Plugins

The following stock plugins provide the IExtractionPlugin Interface.

Cookie Auth Helper

This plugin helps manage the details of Cookie Authentication. Allows you to extract credentials from a cookie, update them, reset them, etc.

HTTP Basic Auth Helper

Multi-plugin for managing details of HTTP Basic Authentication. Extracts credentials from request and implements the HTTP Auth challenge.

Inline Auth Helper

Manages credentials for inline authentication.

Session Auth Helper

Extracts and manages credentials for session authentication.

Methods

Each plugin implements the following methods:

	extractCredentials() -- gets credential info from the relevant request, cookie, session, etc.

	updateCredentials() -- responds to a change of credentials

	resetCredentials() -- empties out currently stored values

if appropriate, the plugin will also implement a challenge() method which will challenge the user for authentication.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Authentication Plugins

	Stock Plugins
	Delegating Multi Plugin

	Domain Auth Helper

	ZODB User Manager

Description

Authentication plugins are responsible for validating credentials generated by the
Extraction Plugin.

Stock Plugins

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

Domain Auth Helper

Authenticates users based on their IP address. Has nothing to do with Windows "Domain" Authentication.

ZODB User Manager

ZODB-based user storage. Does authentication, enumeration and properties for users and stores its data in the ZODB.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Challenge Plugins

	Stock Plugins
	Cookie Auth Helper

	HTTP Basic Auth Helper

	Inline Auth Helper

Description

Challenge plugins initiate a challenge to the user to provide credentials.

Stock Plugins

Cookie Auth Helper

This plugin helps manage the details of Cookie Authentication. Allows you to extract credentials from a cookie, update them, reset them, etc.

HTTP Basic Auth Helper

Multi-plugin for managing details of HTTP Basic Authentication. Extracts credentials from request and implements the HTTP Auth challenge.

Inline Auth Helper

Manages credentials for inline authentication.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Update Credentials Plugins

	Stock Plugins
	Cookie Auth Helper

	Delegating Multi Plugin

	Inline Auth Helper

	Session Auth Helper

Description

Credential update plugins respond to the user changing credentials.

Stock Plugins

Cookie Auth Helper

This plugin helps manage the details of Cookie Authentication. Allows you to extract credentials from a cookie, update them, reset them, etc.

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

Inline Auth Helper

Manages credentials for inline authentication.

Session Auth Helper

Extracts and manages credentials for session authentication.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Reset Credentials Plugins

	Stock Plugins
	Cookie Auth Helper

	Delegating Multi Plugin

	HTTP Basic Auth Helper

	Inline Auth Helper

	Session Auth Helper

Description

Credential clear plugins respond to a user logging out.

Stock Plugins

Cookie Auth Helper

This plugin helps manage the details of Cookie Authentication. Allows you to extract credentials from a cookie, update them, reset them, etc.

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

HTTP Basic Auth Helper

Multi-plugin for managing details of HTTP Basic Authentication. Extracts credentials from request and implements the HTTP Auth challenge.

Inline Auth Helper

Manages credentials for inline authentication.

Session Auth Helper

Extracts and manages credentials for session authentication.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Properties Plugins

	Stock Plugins
	Delegating Multi Plugin

Description

Properties plugins generate property sheets for users.

Stock Plugins

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Groups Plugins

	Stock Plugins
	Dynamic Groups Plugin

	Recursive Groups Plugin

	ZODB Group Manager

Description

Groups plugins determine the groups to which a user belongs.

Stock Plugins

Dynamic Groups Plugin

This plugin allows you to create dynamic groups via business rules.

Recursive Groups Plugin

This plugin will recursively flatten a collection of groups.

ZODB Group Manager

This plugin lets you manage groups and groups of groups in the ZODB.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Roles Plugins

	Stock Plugins
	Delegating Multi Plugin

	Domain Auth Helper

	ZODB Role Manager

Description

Roles plugins determine the global roles which a user has.

Stock Plugins

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

Domain Auth Helper

Authenticates users based on their IP address. Has nothing to do with Windows "Domain" Authentication.

ZODB Role Manager

Stores role information for users in the ZODB. Handles roles storage, role enumeration, and role assignment.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

User_Enumeration Plugins

	Stock Plugins
	Delegating Multi Plugin

	Search Principals Plugin

	ZODB User Manager

Description

Enumeration plugins allow querying users by ID, and searching for users who match
particular criteria.

Stock Plugins

Delegating Multi Plugin

This plugin delegates a PAS interface to some other acl_user folder, typically a "legacy" folder that implements some specific authentication functionality. For example, you can delegate the IAuthenticationPlugin interface to a legacy user folder via a Delegating Multi Plugin.

Search Principals Plugin

Plugin to delegate enumerateUsers and enumerateGroups requests to another PluggableAuthService

ZODB User Manager

ZODB-based user storage. Does authentication, enumeration and properties for users and stores its data in the ZODB.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

User_Adder Plugins

	Stock Plugins
	ZODB User Manager

Description

User Adder plugins allow the Pluggable Auth Service to create users.

Stock Plugins

ZODB User Manager

ZODB-based user storage. Does authentication, enumeration and properties for users and stores its data in the ZODB.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Group_Enumeration Plugins

	Stock Plugins
	Dynamic Groups Plugin

	Search Principals Plugin

	ZODB Group Manager

Description

Enumeration plugins allow querying groups by ID.

Stock Plugins

Dynamic Groups Plugin

This plugin allows you to create dynamic groups via business rules.

Search Principals Plugin

Plugin to delegate enumerateUsers and enumerateGroups requests to another PluggableAuthService

ZODB Group Manager

This plugin lets you manage groups and groups of groups in the ZODB.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Role_Enumeration Plugins

	Stock Plugins
	ZODB Role Manager

Description

Enumeration plugins allow querying roles by ID.

Stock Plugins

ZODB Role Manager

Stores role information for users in the ZODB. Handles roles storage, role enumeration, and role assignment.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

 	Plugins »

 	Plugin Types »

Role_Assigner Plugins

	Stock Plugins
	ZODB Role Manager

Description

Role Assigner plugins allow the Pluggable Auth Service to assign

Stock Plugins

ZODB Role Manager

Stores role information for users in the ZODB. Handles roles storage, role enumeration, and role assignment.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Pluggable Authentication Service »

Repositories

	PAS
	Plugin repository for PAS

PAS

	Generic Zope code base http://svn.zope.org/Products.PluggableAuthService/

	Plone codebase [https://github.com/plone/Products.PlonePAS/blob/master/README.txt]

Plugin repository for PAS

Ready or half-baked plug-ins:

http://svn.plone.org/svn/collective/PASPlugins/

Lots of examples for dynamic group configuration.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Portlets

An introduction to the portlets architecture of Plone 3, with practical examples.

	What's a Portlet?
	Differences with viewlets

	Basic plone.portlets architecture
	The use case

	The configuration data

	The add and edit forms

	The portlet presentation

	Registering the portlet

	Installing the portlet

	Testing the portlet

	How and where are Portlet Assignments stored?
	Site-wide

	Contextual

	How are portlets rendered?

	Order and blacklisting

	Appendix: Practicals
	Subclassing new portlets

	Moving portlet assignments from one item to another

	How to update schemas for already registered portlets

	How to make portlets availability configurable via adapters

	Portlet tips (advanced)
	Introduction

	Creating a portlet

	Subclassing a portlet

	Using z3c.form in portlets

	Overriding portlet rendering

	update() and render()

	available property

	Iterate portlets assigned to the portal root

	Looking up a portlet by id

	Walking through every portlet on the site

	Checking if a certain context portlet is active on a page

	Rendering a portlet

	Hiding unwanted portlets

	Disabling right or left columns in a view or template

	Disabling right or left columns on a context

	Creating a new portlet manager

	Fixing relative links for static text portlets

	Other resources and examples

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

What's a Portlet?

Description

This manual covers what a developer needs to know to create new portlet
types or customise existing ones.

Portlets are UI elements that can be shown in addition to the main content
of a page. They usually appear in the left of right columns, but are
sometimes also used instead of or below the main content. They are usually
boxes of different kinds, which content editors can add, configure, and
set policies for showing.

(Screenshot).

Differences with viewlets

A portlet is like a viewlet but with persistent configuration (i.e.
persistent in the ZODB) and runtime changeable assignments.

Use a viewlet for:

	General content which is always displayed; for example: breadcrumbs, the
logo, or the footer. This is not limited to visible elements, but can also
include CSS, javascript, etc. (actually, that's how
ResourceRegistries work).

	Displaying elements based on the interface provided by the current
context.

Use a portlet when:

	You need to specify the configuration data for an item; e.g. the number of
entries to show.

	You want to give the content editors a choice about when and where to
display it.

	You want to display it only from inside a specific folder.

	You'd like to show it only to some groups or users; e.g. the Review
portlet is only shown to users who belong to the Reviewers group.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

Basic plone.portlets architecture

Description

This section describes the general architecture of a portlet through an example. You can checkout the example code from the collective [http://svn.plone.org/svn/collective/ploneexample.portlet/trunk/].

	The use case

	The configuration data

	The add and edit forms

	The portlet presentation

	Registering the portlet

	Installing the portlet

The use case

As an example, we will develop a portlet to display the last n
(where n is a positive integer ;) modified content items to
logged-in users, which will be available to add it to any portlet
manager (left or right column by default).

[screenshot follows]

The configuration data

When a portlet is first created, there are often customizations
which can be made which tailor the portlet's behaviour to meet the
user's needs: eg. which content type to display, how many items to
list, etc... In our example, we want the person configuring the
portlet to be able to specify how many of the most recent items
will be displayed inside the portlet.

First, we have to describe the interface schema of the
configuration data we want to store using zope.schema (see
this page [http://wiki.zope.org/zope3/schema.html] for more info
on schemas). By convention, this interface derives from
IPortletDataProvider, which is just a marker interface. In the
package's interfaces.py file, type:

from plone.portlets.interfaces import IPortletDataProvider
from Products.CMFPlone import PloneMessageFactory as _

class IRecentPortlet(IPortletDataProvider):
 count = schema.Int(title=_(u'Number of items to display'),
 description=_(u'How many items to list.'),
 required=True,
 default=5)

The PloneMessageFactory makes our code ready to be localized
using the Plone i18n machinery.

After defining the configuration schema interface, we implement it
in a class called the Assignment class. This is a persistent
"content" class which stores the persistent configuration data (if
any) of the portlet. Even when a portlet is not configurable, it
needs to have an Assignment class, because the presence of an
Assignment instance in various places is what determines what
portlets show up where.

The Assignment class has a title attribute that is used in the
portlet management UI to distinguish different instances of the
portlet.

from plone.app.portlets.portlets import base
from zope.interface import implements
from ploneexample.portlet.interfaces import IRecentPortlet

class Assignment(base.Assignment):
 implements(IRecentPortlet)

 def __init__(self, count=5):
 self.count = count

 @property
 def title(self):
 return _(u"Recent items")

The add and edit forms

To add the portlet and edit its configuration, we have to define
appropiate add and edit forms.

This is typically done using zope.formlib and the portlet schema,
together with some base form classes to save us from designing the
forms template and logic ourselves. If the portlet is not
configurable, this can use the special base.NullAddForm, which
is just a view that creates the portlet and then redirects back to
the portlet management screen.

For more information about zope.formlib, check this tutorial.

The edit form can be omitted if the portlet configuration is not
editable.

from zope.formlib import form
class AddForm(base.AddForm):
 form_fields = form.Fields(IRecentPortlet)
 label = _(u"Add Recent Portlet")
 description = _(u"This portlet displays recently modified content.")

 def create(self, data):
 return Assignment(count=data.get('count', 5))

class EditForm(base.EditForm):
 form_fields = form.Fields(IRecentPortlet)
 label = _(u"Edit Recent Portlet")
 description = _(u"This portlet displays recently modified content.")

As it can be seen above, the add form must return an Assignment
instance of the portlet.

The portlet presentation

Next, we define how the portlet will be rendered.

The Portlet Renderer is the "view" of the portlet. This is just a
content provider (in the zope.contentprovider sense), in that it
has an update() and a render() method, which will be called
upon the rendering of the portlet.

It's a multi-adapter that takes a number of parameters which makes
it possible to vary the rendering of the portlet:

	context

	The current content object. Mind the type of content object that's
being shown.

	request

	The current request. Mind the current theme/browser layer.

	view

	The current (full page) view. Mind the current view, and whether or
not this is the canonical view of the object (as indicated by the
IViewView marker interface) or a particular view, like the
manage-portlets view.

	manager

	The portlet manager where this portlet was rendered (for now, think
of a portlet manager as a column). Mind where in the page the
portlet was rendered.

	data

	The portlet data, which is basically an instance of the portlet
assignment class. Mind the configuration of the portlet
assignment.

The Renderer base class relieves us from having to remember all
these parameters.

The Renderer class must have an available property, which is
used to determine whether this portlet should be shown or not. Note
you shouldn't include checks for the user id, group or content-type
here, since you can perform these assignments later by registering
the portlet under a certain category (more on this later).

from plone.memoize.instance import memoize
from zope.component import getMultiAdapter
from Acquisition import aq_inner
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile

class Renderer(base.Renderer):
 _template = ViewPageTemplateFile('recent.pt')

 def __init__(self, *args):
 base.Renderer.__init__(self, *args)

 context = aq_inner(self.context)
 portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state')
 self.anonymous = portal_state.anonymous() # whether or not the current user is Anonymous
 self.portal_url = portal_state.portal_url() # the URL of the portal object

 # a list of portal types considered "end user" types
 self.typesToShow = portal_state.friendly_types()

 plone_tools = getMultiAdapter((context, self.request), name=u'plone_tools')
 self.catalog = plone_tools.catalog()

 def render(self):
 return self._template()

 @property
 def available(self):
 """Show the portlet only if there are one or more elements."""
 return not self.anonymous and len(self._data())

 def recent_items(self):
 return self._data()

 def recently_modified_link(self):
 return '%s/recently_modified' % self.portal_url

 @memoize
 def _data(self):
 limit = self.data.count
 return self.catalog(portal_type=self.typesToShow,
 sort_on='modified',
 sort_order='reverse',
 sort_limit=limit)[:limit]

When reading the previous code, note that:

	plone_portal_state and plone_tools are helper views
providing some useful attributes to gather information from.

	The memoize decorator is used here to cache the results of
the catalog query to avoid the perfomance hit of re-generating them
in each request. See the
plone.memoize doctests [http://dev.plone.org/plone/browser/plone.memoize/trunk/plone/memoize/README.txt]
for more information.

Registering the portlet

A convenient ZCML directive is provided to glue all components of
the portlet in the Zope Component Architecture. In the package's
configure.zcml file (or any other ZCML file included from it),
write:

<configure
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="ploneexample.portlet">

 <five:registerPackage package="." initialize=".initialize" />

 <include package="plone.app.portlets"/>

 <plone:portlet
 name="ploneexample.portlet.Recent"
 interface=".recent.IRecentPortlet"
 assignment=".recent.Assignment"
 renderer=".recent.Renderer"
 addview=".recent.AddForm"
 editview=".recent.EditForm"
 />

</configure>

Note you have to define/reference the plone XML namespace for the
directive to work. There is also a <plone:portletRenderer />
directive to override the renderer for a particular
context/layer/view/manager.

You can see the descriptions of all these directives together with
their arguments in the
metadirectives.py file of the plone.app.portlets package [http://dev.plone.org/plone/browser/plone.app.portlets/trunk/plone/app/portlets/metadirectives.py].

This ZCML directive is read at the Zope startup, so to register
each class appropiately into the Component Architecture, but you
won't be able to add your new portlet yet. You first need to
install its portlet type into your Plone site, as described in the
section which follows.

Installing the portlet

The components and registration above make a new type of portlet
available for installation. To install the portlet type into a
particular Plone site, use GenericSetup.

First, register a new GenericSetup extension profile using a
registerProfile ZCML directive:

<configure
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:plone="http://namespaces.plone.org/plone"
 xmlns:gs="http://namespaces.zope.org/genericsetup"
 i18n_domain="ploneexample.portlet">

 <five:registerPackage package="." initialize=".initialize" />

 <include package="plone.app.portlets"/>

 <gs:registerProfile
 name="ploneexample.portlet"
 title="Recent Items Example"
 directory="profiles/default"
 description="An example portlet"
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />

 <plone:portlet
 name="ploneexample.portlet.Recent"
 interface=".recent.IRecentPortlet"
 assignment=".recent.Assignment"
 renderer=".recent.Renderer"
 addview=".recent.AddForm"
 editview=".recent.EditForm"
 />

</configure>

Next, create the folder profiles/default and place a
portlets.xml file inside with the following content:

<?xml version="1.0"?>
<portlets
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">
 <portlet
 addview="ploneexample.portlet.Recent"
 title="Recent items Example"
 description="An example portlet which can render a listing of recently changed items."
 i18n:attributes="title title_recent_portlet;
 description description_recent_portlet">
 <for interface="plone.app.portlets.interfaces.IColumn" />
 <for interface="plone.app.portlets.interfaces.IDashboard" />
 </portlet>
</portlets

When this is run, it will create a local utility in the Plone site
of the IPortletType. This just holds some metadata about the
portlet for UI purposes.

Title and description should be self-explanatory.

The addview is the name of the view used to add the portlet,
which helps the UI to invoke the right form when the user asks to
add the portlet. This should match the portlet name.

for is an interface or list of interfaces that describe the
type of portlet managers that this portlet is suitable for. This
means that we can install a portlet that's suitable for the
dashboard, say, but not for the general columns. In this case,
we're making the portlet suitable for the dashboard and for any
(either left or right) column. Current portlet manager interfaces
include IColumn, ILeftColumn, IRightColumn and
IDashboard, all of them defined inside the plone.app.portlets
package.

Again, this is primarily about helping the UI construct appropriate
menus.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

Testing the portlet

Description

Ensure everything's working as it should.

If the portlet was registered and installed correctly, it should
now show up in the list of portlets available for addition into the
type of portlet managers specified in the for argument of the
portlet type (IColumn and IDashboard in our case), under
the @@manage-portlets view (Manage Portlets link).

However, to ensure everything's working as it should without having
to test it through the web, we can write some integration tests.
This is recommended practice in the Plone universe. Moreover, once
you've understood how the portlet infrastructure and its API work,
you will be able to write tests first (you can copy&paste tests
from other portlets products) and then start coding the portlet.
More info on testing in the Testing in Plone tutorial.

Run them using bin/instance test -s ploneexample.portlet

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

How and where are Portlet Assignments stored?

Description

When you choose a portlet to be displayed somewhere,
for example, using the interface that appears when
you hit the Manage Portlets button, what you're doing
is storing a persistent instance of the Portlet Assignment
class into your site, together with all its associated
configuration data.

	Site-wide

	Contextual

Portlet Assignments are stored in what's called an Assignment
Mapping. This is an ordered container with a dict-like interface.
The keys are unique string names, and the values are instances of
the assignment class.

Assignment mappings can be stored in two different kinds of
locations depending on their type: site-wide or contextual.

Site-wide

Site-wide assigned portlets are shown in the whole site, unless
blocked. They're stored in Portlet Managers. Portlet Managers
define a column or other area that can be filled with portlets, and
are analogous to the viewlet manager for viewlets. They are named
persistent local utilites providing the IPortletManager
interface.

You can look up a portlet manager like this:

manager = getUtility(IPortletManager, name=u"plone.leftcolumn")

By default, there are two standard portlet managers,
plone.leftcolumn and plone.rightcolumn, as well as four
portlet managers for the four columns on the dashboard, from
plone.dashboard1 to plone.dashboard4. You can create your
own in portlets.xml like this:

<portletmanager
 name="my.package.myportletmanager"
 type="my.package.interfaces.IMyPortletManagerType"
 />

The "type" is a marker interface that can be used to install
particular portlets only for particular types of portlet managers,
as explained above. Example:
plone.app.portlets.interfaces.IDashboard.

Portlets in global categories (site-wide) are stored directly
inside the IPortletManager utility, under a particular category
- e.g. "group" - a category-specific key - e.g. the group id - and
finally a unique portlet id. Putting this together, we could access
a particular portlet assignment like this:

from plone.portlets.constants import GROUP_CATEGORY
manager = getUtility(IPortletManager, name=u"plone.leftcolumn")
recent_assignment = manager[GROUP_CATEGORY][u"Administrators"][u"recent"]

Here we look up the left column portlet manager and get the portlet
assignment named recent assigned to the Administrators group.

Each of the lookups here has a dict interface, so you can iterate,
call keys() and so on. You can store assignments under any
string as category, but the default portlet retriever is only aware
of the three site-wide assignment categories defined as constants
in plone.portlet.constants, USER_CATEGORY, GROUP_CATEGORY
and CONTENT_TYPE_CATEGORY, which should be enough for most
use-cases. More on portlet retrievers later.

Contextual

Location-specific portlet assignments are stored on annotations on
objects providing the ILocalPortletAssignable marker
interface.

To get hold of the assignment in this case, we multi-adapt the
content object and the manager instance to the
IPortletAssignment interface, like so:

manager = getUtility(IPortletManager, name=u"plone.leftcolumn")
assignment_mapping = getMultiAdapter((context, manager), IPortletAssignmentMapping)
news_portlet = assignment_mapping[u"news"]

There are two functions in plone.app.portlets.utils to make it
easier to find the appropriate mapping for a portlet, or to get a
portlet assignment directly: assignment_mapping_from_key() and
assignment_from_key().

We can use GenericSetup to assign portlets to particular portlet
managers upon the installation of a product. Read the
Theme Reference Manual for info about how to do that. Read the
Generic Setup tutorial for further info about what's
GenericSetup and how it works.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

How are portlets rendered?

Description

The process to find, update and render portlets from
the main views is rather complex. Here we describe
how does it all work, step by step.

Portlets are always rendered inside a portlet manager. From a
template, we can ask a portlet manager to render itself and all its
portlets. This is achieved using a zope.contentprovider
'provider:' expression. In Plone's main_template, for example,
you will find:

<tal:block replace="structure provider:plone.leftcolumn" />

Behind the scenes, this will look up a local adapter on (context,
request, view) with name plone.leftcolumn (this is just how the
provider expression works).

As it happens, this local adapter factory was registered when the
portlet manager was installed (via portlets.xml), and is a
callable that returns an IPortletManagerRenderer. The portlet
manager renderer is the "view" of the portlet manager.

The default implementation will simply output each portlet wrapped
in a div tag with some helpful attributes to support AJAX via KSS.
You can of course register your own portlet manager renderers. A
portlet manager renderer is a multi-adapter on (context, request,
view, manager). The @@manage-portlets view, for example, relies
on a portlet manager renderer override for this particular view
that renders the add/move/delete operations. For most people, the
standard renderer will suffice, though.

The portlet manager renderer asks an IPortletRetriever to fetch
and order the portlet assignments that it should render. This is a
multi-adapter on (context, manager), which means that the fetch
algorithm can be overridden either based on the type of content
object being viewed, or the particular manager. There are two
default implementations - one for "placeful" portlet managers
(those which know about contextual portlets, such as the standard
left/right column ones) and one for "placeless" ones that only deal
in global categories. This latter retriever is used by the
dashboard, which stores its portlets in a global "user" category.

The IPortletRetriever algorithm is reasonably complex,
especially when contextual blacklisting/blocking is taken into
account (see below). To make it possible to re-use this algorithm
across multiple configurations, it is written in terms of an
IPortletContext. The context content object will be adapted to
this interface. The portlet context provides:

	A universal identifier for the current context (usually just the
physical path) - the uid property.

	A way to obtain the parent object of the current context (for
acquiring portlets and blacklist information in a placeful
retriever) - the getParent() method.

	A list of global portlet categories to look up, and the keys to
look under (obtainable by using the globalPortletCategories()
method on the adapted context).

The last parameter is best described by an example. Let's say we're
logged in as "testuser", a member of both the "Administrators" and
"Reviewers" groups, and were looking at a Folder. The return value
of globalPortletCategories() would then be:

>>> portlet_context.globalPortletCategories()
[("content_type", "Folder",),
 ("group", "Administrators",),
 ("group", "Reviewers",),
 ("user", "testuser",)]

This informs the retriever that it should first look up any
portlets in the current portlet manager in the "content_type"
category under the "Folder" key, and then portlets in the "group"
category under the "Administators" and "Reviewers" key, and finally
portlets in the "user" category under the "testuser" key, all in
that order. Thus, if we wanted to add a new category, or change the
order of categories, we could override the IPortletContext,
either everywhere or just for one particular type of context.

Once the IPortletRetriever has retrieved the assignments that
should be shown for the current portlet manager, the portlet
manager renderer will look up the portlet renderer for each
assignment, ensure that it should indeed be rendered by checking
its available property, and finally call update() and
render(), placing the output in the reponse.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

Order and blacklisting

Description

How to change the order of the different types of
portlets (group, user, contextual) inside a
portlet manager, and how portlet blocking works.

!!! Warning: Incomplete Material !!!

When giving a key for the context assignment, the root of the site can be
referred to this way:

key="/"

Refer to the default 'news' folder in the site (NOTE: Prior to Plone 3.3.5, this
required a full path like /Plone/news):

key="/news"

Delete a portlet assignment using the remove attribute:

<assignment
 remove="True"
 manager="plone.rightcolumn"
 category="context"
 key="/"
 type="portlets.Calendar"
 name="calendar"
 />

Remove all the portlet assignments for a specific manager assigned to the
news object using the purge attribute:

<assignment
 purge="True"
 manager="plone.rightcolumn"
 category="context"
 key="/news"
 />

Add or move an existing portlet at the top of the column using
insert-before:

<assignment
 insert-before="*"
 manager="plone.rightcolumn"
 category="context"
 key="/"
 type="portlets.Calendar"
 name="calendar"
 />

Add or move an existing portlet before the 'news' portlet:

<assignment
 insert-before="news"
 manager="plone.rightcolumn"
 category="context"
 key="/"
 type="portlets.Calendar"
 name="calendar"
 />

Pro Tip: Quickest way to find out the name of a portlet: go to @@manage-
portlets and hover over the 'X'. The name for that assignment will appear in
the URL.

Looted from Six Feet Up's QuickReferenceCard [http://www.sixfeetup.com/company/technologies/plone-content-management-new/quick-reference-cards/swag/swag-images-files/generic_setup.pdf].

Blacklisting portlets (from plone.app.portlets's test suite):

<blacklist
 manager="test.testcolumn"
 category="context"
 location="/news"
 status="block"
 />
<blacklist
 manager="test.testcolumn"
 category="group"
 location="/news"
 status="show"
 />
<blacklist
 manager="test.testcolumn"
 category="content_type"
 location="/news"
 status="acquire"
 />

<blacklist
 manager="test.testcolumn"
 category="content_type"
 location="/"
 status="block"
 />

<blacklist
 manager="test.testcolumn"
 category="group"
 location="/"
 status="show"
 />

<blacklist
 manager="test.testcolumn"
 category="context"
 location="/"
 status="acquire"
 />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

Appendix: Practicals

	Subclassing new portlets

	Moving portlet assignments from one item to another

	How to update schemas for already registered portlets

	How to make portlets availability configurable via adapters

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

 	Appendix: Practicals »

Subclassing new portlets

Description

This how-to briefly explains how to create new portlets
based on another existing portlet class. (Mikko Ohtama)

Portlet subclassing is not trivial due to explict references
between portlet engine parts. Here are short instructions minimal
steps to needed to a subclass a portlet to another portlet. Instead
of modifying the existing portlet, we need to create a new
invariant with little changed properties.
See this general briefing about Plone 3.x portlet mechanism. [http://martinaspeli.net/articles/an-introduction-to-plone-portlets]
This example modifies the render behavior of static text portlet,
by adding a grey background CSS class for it.

	Create a portlet interface stub and portlets Python module: To
define a new portlet. Refer this in your product ZCML.

	Create a new assignment class: To make new portlet assignable
through portlet manager

	Create a new add form class: To make new portlet creatable,
returning your custom portlet instances

	Create a configure.xml ZCML entry: To make Zope to find the new
portlet definition

	Create a portlets.xml installer entry: To make the portlet
appear in the portlet manager menu

The portlet interface class is fixed to a portlet when the portlet
is created. Thus, if you make changes any of above, you might need
to create a new portlet to see the effect - old portlet instances
don't necessarily see the changees.

Our portlet code lies in myproduct/browser/portlets/misc.py:

from zope.interface import implements
from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
from plone.portlet.static import PloneMessageFactory as _

Import the base portlet module whose properties we will modify
from plone.portlet.static import static

class IGreyStaticPortlet(static.IStaticPortlet):
 """ Defines a new portlet "grey static" which takes properties of the existing static text portlet. """
 pass

class GreyStaticRenderer(static.Renderer):
 """ Overrides static.pt in the rendering of the portlet. """
 render = ViewPageTemplateFile('grey_static.pt')

class GreyStaticAssignment(static.Assignment):
 """ Assigner for grey static portlet. """
 implements(IGreyStaticPortlet)

class GreyStaticAddForm(static.AddForm):
 """ Make sure that add form creates instances of our custom portlet instead of the base class portlet. """
 def create(self, data):
 return GreyStaticAssignment(**data)

myproduct/browser/portlets/configure.zcml snippet. Note that we
do not need to override all (EditForm) views:

<configure xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:plone="http://namespaces.plone.org/plone">

 <include package="plone.app.portlets" />

 <plone:portlet
 name="lsm.GreyStaticPortlet"
 interface=".misc.IGreyStaticPortlet"
 assignment=".misc.GreyStaticAssignment"
 view_permission="zope2.View"
 edit_permission="cmf.ManagePortal"
 renderer=".misc.GreyStaticRenderer"
 addview=".misc.GreyStaticAddForm"
 editview="plone.portlet.static.static.EditForm"
 />

</configure>

myproducts/profiles/default/portlets.xml quick installer
snippet:

<portlets>

 <portlet
 addview="lsm.GreyStaticPortlet"
 title="Static portlet (grey)"
 description="Portlet with light grey background"
 />

</portlets>

myproduct/browser/portlets/grey_static.pt. We have added one new
CSS class (portletGrey) which has a CSS class definition defined in
ploneCustom.css (through-the-web) or some of the product's CSS
files:

<div tal:condition="view/data/omit_border"
 tal:attributes="class string:portletStaticText ${view/css_class}"
 tal:content="structure view/data/text" />
<dl tal:condition="not:view/data/omit_border"
 tal:attributes="class string:portlet portletStaticText portletGrey ${view/css_class}"
 i18n:domain="plone">

 <dt class="portletHeader">

 <a tal:omit-tag="not:view/has_link"
 tal:attributes="href view/data/more_url"
 tal:content="view/data/header"
 />

 </dt>

 <dd class="portletItem odd">
 <div tal:replace="structure view/data/text" />
 <tal:corners condition="not:view/has_footer">

 </tal:corners>
 </dd>

 <dd class="portletFooter" tal:condition="view/has_footer">

 <a tal:omit-tag="not:view/has_link"
 tal:attributes="href view/data/more_url"
 tal:content="view/data/footer"
 />

 </dd>

</dl>

myproduct/browser/portlets/__init__.py. Create empty file to
a mark a Python module.

myproduct/configure.zcml. Add following snippet:

<include package=".portlets" />

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

 	Appendix: Practicals »

Moving portlet assignments from one item to another

Description

This gives some example code for moving portlets and their settings.

The following method moves portlet assigned from one item to another and copies
over it blocking settings as well for good measure.

from logging import getLogger

from plone.portlets.interfaces import ILocalPortletAssignable
from plone.portlets.interfaces import ILocalPortletAssignmentManager
from plone.portlets.interfaces import IPortletAssignmentMapping
from plone.portlets.interfaces import IPortletManager
from plone.portlets.constants import CONTEXT_CATEGORY, GROUP_CATEGORY, CONTENT_TYPE_CATEGORY

from zope.interface import alsoProvides
from zope.component import getMultiAdapter
from zope.component import getUtility
from zope.component import getUtilitiesFor
from zope.component import queryUtility
from zope.component import provideUtility

logger = getLogger('collective.developermanual')

def move_portlet_assignments_and_settings(src, target):
 if not ILocalPortletAssignable.providedBy(src):
 alsoProvides(src, ILocalPortletAssignable)

 for manager_name, src_manager in getUtilitiesFor(IPortletManager, context=src):
 src_manager_assignments = getMultiAdapter((src, src_manager), IPortletAssignmentMapping)
 target_manager = queryUtility(IPortletManager, name=manager_name, context=target)
 if target_manager is None:
 logger.warning('New folder %s does not have portlet manager %s' %
 (target.getId(), target_manager))
 else:
 target_manager_assignments = getMultiAdapter((target, target_manager),
 IPortletAssignmentMapping)
 for id, assignment in src_manager_assignments.items():
 target_manager_assignments[id] = assignment
 del src_manager_assignments[id]

 src_assignment_manager = getMultiAdapter((src, src_manager),
 ILocalPortletAssignmentManager)
 target_assignment_manager = getMultiAdapter((target, target_manager),
 ILocalPortletAssignmentManager)
 #
 # In lineage 0.1 child folders did not inherit their parent's portlets
 # no matter what porlet block settings were set.
 #
 target_assignment_manager.setBlacklistStatus(CONTEXT_CATEGORY, True)
 for category in (GROUP_CATEGORY, CONTENT_TYPE_CATEGORY):
 target_assignment_manager.setBlacklistStatus(category,
 src_assignment_manager.getBlacklistStatus(category))

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

 	Appendix: Practicals »

How to update schemas for already registered portlets

Description

This describes how an Portlet schema can be updated for portlets,
which are already registered in the Portal.

Note: David Glick suggested an really easy fix, so this one might become
obsolete:

Add the new attribute as a class attribute of the portlet assignment class.
e.g.

	class Assignment(base.Assignment):

	image_size = 42

Then existing assignment instances which don't have that attribute will
still get them from the class.

Once a portlet with a specific schema is registered, the schema cannot easily
be modified. Because zope.formlib will try to get the value for the new field
in the schema when you visit the edit screen, it will throw an error since
there is no attribute for that object yet. So, you have to update every
instance of that specific portlet type and add the missing attributes.

And here is how, in a generic way:

from Products.CMFCore.utils import getToolByName
from plone.portlets.interfaces import ILocalPortletAssignable
from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import IPortletAssignmentMapping
from zope.component import getUtilitiesFor, getMultiAdapter

def update_portlet_schema(context, portlet_interface, attribute, value):
 """
 Helper function to update a schema of an already registered portlet.
 @param context: A Plone context.
 @param portlet_interface: The interface that the portlet implements.
 @param attribute: The name of the attribute to be added as string.
 @param value: The value, the attribute should be initialized with.

 """
 urltool = getToolByName(context, "portal_url")
 site = urltool.getPortalObject()

 cat = getToolByName(site, 'portal_catalog')
 query = {'object_provides': ILocalPortletAssignable.__identifier__}
 all_brains = cat(**query)
 all_content = [brain.getObject() for brain in all_brains]
 all_content.append(site)
 for content in all_content:
 for manager_name, manager in getUtilitiesFor(IPortletManager, context=content):
 mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)
 for id, assignment in mapping.items():
 if portlet_interface.providedBy(assignment):
 try:
 getattr(assignment, attribute)
 except AttributeError:
 setattr(assignment, attribute, value)

Just pass the function update_portlet_schema any plone content context (e.g.
the portlet root object itself), the portlet's schema interface which was
modified, the attribute name as string and the value which should set
initially. Done.

You can find this function among other useful tools in the package
collective.setuphandlertools [https://pypi.python.org/pypi/collective.setuphandlertools] and on github [https://github.com/collective/collective.setuphandlertools].

A fix, so that zope.formlib accepts schema updates is beeing discussed in the
zope mailing list (see here [http://www.gossamer-threads.com/lists/zope/dev/230105]).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

 	Appendix: Practicals »

How to make portlets availability configurable via adapters

Description

Sometimes you may want to make specific portlets available only on
some pages, like the portal root. This describes, how to implement
such a functionality for custom portlets.

The interface IPortletRenderer in plone.portlets.interfaces specifies an
available property, which is used to decide if an portlet should be shown or
not. The Renderer class in plone.app.portlets.base, from which most Renderer
classes derive, implements the available property which always returns True.
You can override this property in you own Renderer class. And if you use the
adapter pattern to calculate the available property, it gets configurable also
outside the package, your portlet is defined in.

	Define a default adapter including the adapter interface

from zope.interface import implementer
from zope.interface import Interface, Attribute

class IPortletAvailable(Interface):
 """ Interface for Adapters, implementing logic to determine, if the
 Portlet should be shown or not.
 """
 portlet = Attribute(u"""The portlet assignment""")
 manager = Attribute(u"""The portlet manager""")
 context = Attribute(u"""The context, this portlet is shown""")

@implementer(IPortletAvailable)
def portlet_default_available(portlet, manager, context):
 return True

	Register the adapter with zcml. The default adapter is registered as
multiadapter to a portlet assignment, a portlet manager and a generic
context. The portlet assignment specifies for which portlet type the adapter
is registered (in this case IMyPortlet). The portlet manager adapted in this
example is IPortletManager - the most generic one which includes IDashBoard,
ILeftColumn and IRightColumn. The context in this example is also very
generic - any content which can display portlets.

<adapter
 factory=".portlet.portlet_default_available"
 for="MY.PACKAGE.portlet.IMyPortlet
 plone.portlets.interfaces.IPortletManager
 plone.portlets.interfaces.ILocalPortletAssignable" />

	Use the adapter in your custom portlet:

from Acquisition import aq_inner, aq_base
from zope.component import getMultiAdapter, queryMultiAdapter

class PortletRenderer(base.Renderer):
 ...

 @property
 def available(self):
 context = aq_inner(self.context)
 assignment = aq_base(self.data)
 # first try to get a named multi adapter, then an unnamed
 available = queryMultiAdapter(
 (assignment, self.manager, context),
 IPortletAvailable, name=assignment.id,
 default=getMultiAdapter(
 (assignment, self.manager, context),
 IPortletAvailable))
 return available

The first adapter lookup is a named one. So it's possible to register an
adapter for one specific portlet only, whereas the second adapter lookup
can apply to more than one portlet.

The default adapter registered above always returns True. But we can override
this behavior in another package, e.g. an Pone integration package (call it
"policy product").

	Define custom adapters:

from MY.PACKAGE.portlet import IPortletAvailable
from zope.interface import implementer

@implementer(IPortletAvailable)
def portlet_disabled(portlet, manager, context):
 # also some fancy logic can be implemented here
 return False

@implementer(IPortletAvailable)
def portlet_enabled(portlet, manager, context):
 return True

	Register the adapters:

<adapter
 factory=".portlet_adapters.portlet_enabled"
 for="MY.PACKAGE.portlet.IMyPortlet
 plone.app.portlets.interfaces.ILeftColumn
 Products.CMFPlone.interfaces.siteroot.IPloneSiteRoot" />

<adapter
 factory=".portlet_adapters.portlet_disabled"
 for="MY.PACKAGE.portlet.IMyPortlet
 plone.app.portlets.interfaces.ILeftColumn
 plone.portlets.interfaces.ILocalPortletAssignable" />

<adapter
 factory=".portlet_adapters.main_teaser_available"
 for="MY.PACKAGE.portlet.IMyPortlet
 plone.app.portlets.interfaces.IRightColumn
 plone.portlets.interfaces.ILocalPortletAssignable" />

<adapter
 factory=".portlet_adapters.portlet_disabled"
 for="MY.PACKAGE.portlet.IMyPortlet
 plone.app.portlets.interfaces.IRightColumn
 Products.CMFPlone.interfaces.siteroot.IPloneSiteRoot" />

Here, if the portlet is registered on ILeftColumn and IRightColumn, it is only
shown on ILeftColumn, if the context is the portal root. Otherwise, it's shown
on IRightColumn.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Portlets »

Portlet tips (advanced)

Description

How to create and subclass portlets in Plone. How to look-up and modify
portlets on the site programmatically.

	Introduction

	Creating a portlet

	Subclassing a portlet

	Using z3c.form in portlets

	Overriding portlet rendering

	update() and render()

	available property

	Iterate portlets assigned to the portal root

	Looking up a portlet by id

	Walking through every portlet on the site

	Checking if a certain context portlet is active on a page

	Rendering a portlet

	Hiding unwanted portlets

	Disabling right or left columns in a view or template

	Disabling right or left columns on a context

	Creating a new portlet manager

	Fixing relative links for static text portlets

	Other resources and examples

Introduction

Please read Portlets developer manual.

Creating a portlet

	You need a paster-compatible product skeleton created using paster create -t plone or
paster create -t archetypes commands.

	Use project specific paster command paster addcontent portlet to create a code
skeleton for your new portlet.

Subclassing a portlet

You can subclass a portlet to create a new portlet type with your enhanced functionality.

	Subclassing new portlets

Using z3c.form in portlets

z3c.form is a modern form library for Plone. The out of the box Plone portlets
use older zope.formlib.

Discussion related to the matter

	http://stackoverflow.com/questions/5174905/can-i-use-z3c-form-on-plone-portlets-instead-of-zope-formlib

Overriding portlet rendering

Use <plone:portletRenderer> directive.
Specify 1) layer, 2) template and/or 3) class 4) portlet interface.

You need <include package=""> directive for the package
whose portlet you are going to override.

<configure
 xmlns:plone="http://namespaces.plone.org/plone"
 >

 <include package="plone.app.portlets" />

 <plone:portletRenderer
 portlet="plone.app.portlets.portlets.news.INewsPortlet"
 template="mytheme_news.pt"
 layer=".interfaces.IThemeSpecific"
 />

</configure>

More information

	overriding portlets

update() and render()

These methods should honour zope.contentprovider.interfaces.IContentProvider call contract [http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto].

available property

The portlet renderer can define available property to hint the portlet manager when the portlet should be rendered.

Example

class Renderer(base.Renderer):

 @property
 def available(self):
 # Show this portlet for logged in users only
 return not self.anonymous

Iterate portlets assigned to the portal root

Below is an simple example how to print all portlets
which have been assigned to the portal root:

def check_root_portlets(self):
 """ Print all portlet assignments in the portal root """

 from zope.component import getUtility, getMultiAdapter
 from plone.portlets.interfaces import IPortletManager
 from plone.portlets.interfaces import IPortletAssignment
 from plone.portlets.interfaces import IPortletAssignmentMapping

 content = self.portal

 for manager_name in ["plone.leftcolumn", "plone.rightcolumn"]:

 print "Checking portlet column:" + manager_name

 manager = getUtility(IPortletManager, name=manager_name, context=content)

 mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 # id is portlet assignment id
 # and automatically generated
 for id, assignment in mapping.items():
 print "Found portlet assignment:" + id + " " + str(assignment)

Looking up a portlet by id

Here are some tips how to extract the portlet id data in the portlet
renderer to pass around to be consumed elsewhere.

portlets.py:

class Renderer(base.Renderer):

 def getImageURL(self, imageDesc):
 """
 :return: The URL where the image can be downloaded from.

 """
 context = self.context.aq_inner

 # [{'category': 'context', 'assignment': <imageportlet.portlets.Assignment object at 0x1138bb140>, 'name': u'bound-method-assignment-title-of-assignment-at-1', 'key': '/Plone/fi'},
 params = dict(
 portletName=self.__portlet_metadata__["name"],
 portletManager=self.__portlet_metadata__["manager"],
 image=imageDesc["id"],
 modified=self.data._p_mtime,
 portletKey=self.__portlet_metadata__["key"],
)

 imageURL = "%s/@@image-portlet-downloader?%s" % (context.absolute_url(), urllib.urlencode(params))

 return imageURL

Then we can re-look-up this portlet and its image field, based on the field name, in the downloader view:

Zope imports
from zExceptions import InternalError
from zope.interface import Interface
from zope.component import getUtility, getMultiAdapter
from five import grok

Plone imports
from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import IPortletRetriever
from plone.namedfile.utils import set_headers, stream_data

Local imports
from interfaces import IAddonSpecific

grok.templatedir("templates")
grok.layer(IAddonSpecific)

class ImagePortletHelper(grok.CodeView):
 """
 Expose stuff downloadable from the image portlet BLOBs.
 """
 grok.context(Interface)
 grok.baseclass()

class ImagePortletImageDownload(ImagePortletHelper):
 """
 Expose image fields as downloadable BLOBS from the image portlet.

 Allow set caching rules (content caching for this view)
 """
 grok.context(Interface)
 grok.name("image-portlet-downloader")

 def getPortletById(self, content, portletManager, key, name):
 """
 :param content: Context item where the look-up is performed

 :param portletManager: Portlet manager name as a string

 :param key: Assignment key... context path as string for content portlets

 :param name: Portlet name as a string

 :return: Portlet assignment instance
 """

 # Make sure we got input
 assert key, "Give a proper portlet assignment key"
 assert name, "Give a proper portlet assignment name"

 # Resolve portlet and its image field
 manager = getUtility(IPortletManager, name=portletManager, context=content)

 # Mappings can be directly used only when
 # portlet is directly assignment to the content.
 # If it is assigned to the parent we would fail here.
 # mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 retriever = getMultiAdapter((content, manager,), IPortletRetriever)

 for assignment in retriever.getPortlets():
 if assignment["key"] == key and assignment["name"] == name:
 return assignment["assignment"]

 return None

 def render(self):
 """

 """
 content = self.context.aq_inner

 # Read portlet assignment pointers from the GET query
 name = self.request.form.get("portletName")
 manager = self.request.form.get("portletManager")
 imageId = self.request.form.get("image")
 key = self.request.form.get("portletKey")

 portlet = self.getPortletById(content, manager, key, name)
 if not portlet:
 raise InternalError("Portlet not found: %s %s" % (key, name))

 image = getattr(portlet, imageId, None)
 if not image:
 # Ohops?
 raise InternalError("Image was empty: %s" % imageId)

See imageportlet add-on for the complete example.

Walking through every portlet on the site

The following code iterates through all portlets assigned
directly to content items. This excludes dashboard, group and content type based portlets.
Then it prints some info about them and renders them.

Example code:

from Products.Five.browser import BrowserView

from zope.component import getUtility, getMultiAdapter
from zope.app.component.hooks import setHooks, setSite, getSite

from plone.portlets.interfaces import IPortletType
from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import IPortletAssignment
from plone.portlets.interfaces import IPortletDataProvider
from plone.portlets.interfaces import IPortletRenderer
from plone.portlets.interfaces import IPortletAssignmentMapping
from plone.portlets.interfaces import ILocalPortletAssignable

from Products.CMFCore.interfaces import IContentish

class FixPortlets(BrowserView):
 """ Magical portlet debugging view """

 def __call__(self):
 """
 """

 request = self.request

 portal = getSite()

 # Not sure why this is needed...
 view = portal.restrictedTraverse('@@plone')

 # Query all content items on the site which can get portlets assigned
 # Note that this should excule special, hidden, items like tools which otherwise
 # might appearn in portal_catalog queries
 all_content = portal.portal_catalog(show_inactive=True, language="ALL", object_provides=ILocalPortletAssignable.__identifier__)

 # Load the real object instead of index stub
 all_content = [content.getObject() for content in all_content]

 # portal itself does not show up in the query above,
 # though it might contain portlet assignments
 all_content = list(all_content) + [portal]

 for content in all_content:

 for manager_name in ["plone.leftcolumn", "plone.rightcolumn"]:

 manager = getUtility(IPortletManager, name=manager_name, context=content)

 mapping = getMultiAdapter((content, manager), IPortletAssignmentMapping)

 # id is portlet assignment id
 # and automatically generated
 for id, assignment in mapping.items():
 print "Found portlet assignment:" + id + " " + str(assignment)

 renderer = getMultiAdapter((content, request, view, manager, assignment), IPortletRenderer)

 # Renderer acquisition chain must be set-up so that templates
 # et. al. can resolve permission inheritance
 renderer = renderer.__of__(content)

 # Seee http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto
 renderer.update()
 html = renderer.render()
 print "Got HTML output:" + html

 return "OK"

For more information about portlet assignments and managers, see

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/tests/test_mapping.py

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/tests/test_traversal.py

	https://github.com/plone/plone.app.portlets/blob/master/plone/app/portlets/configure.zcml

	https://github.com/plone/plone.portlets/blob/master/plone/portlets/interfaces.py

	http://svn.zope.org/zope.contentprovider/trunk/src/zope/contentprovider/interfaces.py?rev=98212&view=auto (for portlet renderers)

Checking if a certain context portlet is active on a page

	Iterate through portlet managers by name

	Get portlet retriever for the manager

	Get portlets

	Check if the portlet assignment provides your particular portlet marker interface

Example:

import Acquisition
from zope.component import getUtility, getMultiAdapter

from plone.portlets.interfaces import IPortletRetriever, IPortletManager

for column in ["plone.leftcolumn", "plone.rightcolumn"]:

 manager = getUtility(IPortletManager, name=column)

 retriever = getMultiAdapter((self.context, manager), IPortletRetriever)

 portlets = retriever.getPortlets()

 for portlet in portlets:

 # portlet is {'category': 'context', 'assignment': <FacebookLikeBoxAssignment at facebook-like-box>, 'name': u'facebook-like-box', 'key': '/isleofback/sisalto/huvit-ja-harrasteet
 # Identify portlet by interface provided by assignment
 if IFacebookLikeBoxData.providedBy(portlet["assignment"]):
 return True

return False

Rendering a portlet

Below is an example how to render a portlet in Plone

	A portlet is assigned to some context in some portlet manager

	We can dig these assignments up by portlet id (not user visible) or portlet type (portlet assignment interface)

How to get your portlet HTML:

import Acquisition
from zope.component import getUtility, getMultiAdapter, queryMultiAdapter
from plone.portlets.interfaces import IPortletRetriever, IPortletManager, IPortletRenderer

def get_portlet_manager(column):
 """ Return one of default Plone portlet managers.

 @param column: "plone.leftcolumn" or "plone.rightcolumn"

 @return: plone.portlets.interfaces.IPortletManagerRenderer instance
 """
 manager = getUtility(IPortletManager, name=column)
 return manager

def render_portlet(context, request, view, manager, interface):
 """ Render a portlet defined in external location.

 .. note ::

 Portlets can be idenfied by id (not user visible)
 or interface (portlet class). This method supports look up
 by interface and will return the first matching portlet with this interface.

 @param context: Content item reference where portlet appear

 @param manager: IPortletManagerRenderer instance

 @param view: Current view or None if not available

 @param interface: Marker interface class we use to identify the portlet. E.g. IFacebookPortlet

 @return: Rendered portlet HTML as a string, or empty string if portlet not found
 """

 retriever = getMultiAdapter((context, manager), IPortletRetriever)

 portlets = retriever.getPortlets()

 assignment = None

 for portlet in portlets:

 # portlet is {'category': 'context', 'assignment': <FacebookLikeBoxAssignment at facebook-like-box>, 'name': u'facebook-like-box', 'key': '/isleofback/sisalto/huvit-ja-harrasteet
 # Identify portlet by interface provided by assignment
 if interface.providedBy(portlet["assignment"]):
 assignment = portlet["assignment"]
 break

 if assignment is None:
 # Did not find a portlet
 return ""

 #- A special type of content provider, IPortletRenderer, knows how to render each
 #type of portlet. The IPortletRenderer should be a multi-adapter from
 #(context, request, view, portlet manager, data provider).

 renderer = queryMultiAdapter((context, request, view, manager, assignment), IPortletRenderer)

 # Make sure we have working acquisition chain
 renderer = renderer.__of__(context)

 if renderer is None:
 raise RuntimeError("No portlet renderer found for portlet assignment:" + str(assignment))

 renderer.update()
 # Does not check visibility here... force render always
 html = renderer.render()

 return html

How to use this code in your own view:

def render_slope_info(self):
 """ Render a portlet from another page in-line to this page

 Does not render other portlets in the same portlet manager.
 """
 context = self.context.aq_inner
 request = self.request
 view = self

 column = "isleofback.app.frontpageportlets"

 # Alternatively, you can directly query your custom portlet manager by interface
 from isleofback.app.portlets.slopeinfo import ISlopeInfo

 manager = get_portlet_manager(column)

 html = render_portlet(context, request, view, manager, ISlopeInfo)
 return html

How to call view helper function from page template

<div tal:replace="structure view/render_slope_info" />

More info

	http://blog.mfabrik.com/2011/03/10/how%C2%A0to-render-a-portlet-in-plone/

Hiding unwanted portlets

Example portlets.xml:

<!-- This leaves only News portlet -->

<portlet addview="portlets.Calendar" remove="true" />
<portlet addview="portlets.Classic" remove="true" />
<portlet addview="portlets.Login" remove="true" />
<portlet addview="portlets.Events" remove="true" />
<portlet addview="portlets.Recent" remove="true" />
<portlet addview="portlets.rss" remove="true" />
<portlet addview="portlets.Search" remove="true" />
<portlet addview="portlets.Language" remove="true" />
<portlet addview="plone.portlet.collection.Collection" remove="true" />
<portlet addview="plone.portlet.static.Static" remove="true" />

<!-- collective.flowplayer add-on -->
<portlet addview="collective.flowplayer.Player" remove="true" />

Portlet na,es can be found in plone.app.portlets/configure.zcml.

More info:

	http://stackoverflow.com/questions/5897656/disabling-portlet-types-site-wide-in-plone

Disabling right or left columns in a view or template

Sometimes, when you work with custom views and custom templates you need to
disable right or left column for portlets.

This is how you do from within a template:

<metal:override fill-slot="top_slot"
 tal:define="disable_column_one python:request.set('disable_plone.leftcolumn',1);
 disable_column_two python:request.set('disable_plone.rightcolumn',1);"/>

And this is how you do it from within a view:

import grok

class SomeView(grok.View):
 grok.context(IPloneSiteRoot)

 def update(self):
 super(SomeView, self).update()
 self.request.set('disable_plone.rightcolumn',1)
 self.request.set('disable_plone.leftcolumn',1)

Source: http://stackoverflow.com/questions/5872306/how-can-i-remove-portlets-in-edit-mode-with-plone-4

Disabling right or left columns on a context

Sometimes you just want to turn off the portlets in a certain context that doesn't have
a template or fancy view. To do this in code do this:

from zope.component import getMultiAdapter
from zope.component import getUtility

from plone.portlets.interfaces import IPortletManager
from plone.portlets.interfaces import ILocalPortletAssignmentManager
from plone.portlets.constants import CONTEXT_CATEGORY

Get the proper portlet manager
manager = getUtility(IPortletManager, name=u"plone.leftcolumn")

Get the current blacklist for the location
blacklist = getMultiAdapter((context, manager), ILocalPortletAssignmentManager)

Turn off the manager
blacklist.setBlacklistStatus(CONTEXT_CATEGORY, True)

Or just do it using GenericSetup like a sane person:

	Add-on installation and export framework: GenericSetup

	http://plone.org/products/plone/roadmap/203

Creating a new portlet manager

If you need additional portlet slots at the site.
In this example we use Products.ContentWellCode to provide us some
facilities as a dependency.

	Create a viewlet which will handle portlet rendering in a normal page mode.
Have several portlet slots, a.k.a. wells, where you can drop in portlets.
Wells are rendered horizontally side-by-side and portlets going in
from top to bottom.

	Register this viewlet in a viewlet manager where you wish to show your portlets
on the main template

	Have a management view which allows you to shuffle portlets around. This
is borrowed from Products.ContentWellPortlets.

	Register portlet wells in portlets.xml - note that one
management view can handle several slots as in the example below

The code skeleton works against this Plone add-on template [https://github.com/miohtama/sane_plone_addon_template].

Example portlet manager viewlets.py:

"""

 For more information see

 * http://collective-docs.readthedocs.org/en/latest/views/viewlets.html

"""

import logging
from fractions import Fraction

Zope imports
from zope.interface import Interface
from zope.component import getMultiAdapter, getUtility, queryUtility
from five import grok

Plone imports
from plone.portlets.interfaces import IPortletManager
from plone.app.layout.viewlets.interfaces import IPortalFooter
from Products.CMFCore.utils import getToolByName

Local imports
from interfaces import IAddonSpecific, IThemeSpecific

grok.templatedir("templates")
grok.layer(IThemeSpecific)

By default, set context to zope.interface.Interface
which matches all the content items.
You can register viewlets to be content item type specific
by overriding grok.context() on class body level
grok.context(Interface)

logger = logging.getLogger("PortletManager")

class CustomPortletViewlet(grok.Viewlet):
 """ grok viewlet base class for a custom portlet renderer based on Products.ContentWellPortlets

 Orignal code from Products.ContentWellPortlets
 """
 grok.baseclass()

 # Id which we use to store portlets
 name = ""

 # Name of browser view which will render the management interface for portlets
 # in this manager
 manage_view = ""

 # We have 5 portlet slots in this viewlet
 portlet_count = 5

 def update(self):
 context_state = getMultiAdapter((self.context, self.request), name=u'plone_context_state')
 self.manageUrl = '%s/%s' % (context_state.view_url(), self.manage_view)

 ## This is the way it's done in plone.app.portlets.manager, so we'll do the same
 mt = getToolByName(self.context, 'portal_membership')
 self.canManagePortlets = mt.checkPermission('Portlets: Manage portlets', self.context)

 def showPortlets(self):
 return '@@manage-portlets' not in self.request.get('URL')

 def portletManagersToShow(self):
 visibleManagers = []

 for n in range(1,self.portlet_count):
 name = '%s%s' % (self.name, n)

 try:
 mgr = getUtility(IPortletManager, name=name, context=self.context)
 except:
 # In the case we have problems to load portlet manager, do something about it
 # This is graceful fallback in a situation where 1) add-on is already installed
 # 2) new portlet code drops in and re-run add-on installer is
 continue

 if mgr(self.context, self.request, self).visible:
 visibleManagers.append(name)

 import pdb ; pdb.set_trace()

 managers = []
 numManagers = len(visibleManagers)
 for counter, name in enumerate(visibleManagers):
 pos = 'position-%s' % str(Fraction(counter, numManagers)).replace('/',':')
 width = 'width-%s' % (str(Fraction(1, numManagers)).replace('/',':') if numManagers >1 else 'full')
 managers.append((name, 'cell %s %s %s' % (name.split('.')[-1], width, pos)))
 return managers

class ColophonPortlets(CustomPortletViewlet):
 """
 Render a new series of portlets in colophon.
 """

 # This name is used to store portlets,
 # as referred in portlets.xml
 name = 'PortletsColophon'

 # This is custom management URL view for this,
 # registered thru ZCML to point to Products.ContentWellContent manager view class.
 manage_view = '@@manage-portlets-colophon'

 grok.viewletmanager(IPortalFooter)
 grok.template("portlets-colophon")

Define a portlet manager declaration
from Products.ContentWellPortlets.browser.interfaces import IContentWellPortletManager

class IColphonPortlets(IContentWellPortletManager):
 """
 This viewlet is a place holder to match portlets.xml and portlet management view together.

 * Manager is referred by name in manage page template

 * portlets.xml refers to this interface

 * provider:ColophonPortlets expression is also used in template to render the actual porlets
 """

Example ZCML bit

<!-- Register new portlet management view for our portlet manager -->

<include package ="plone.app.portlets" />

<!--

 The .pt file is customized for the portlet manager name (from portlets.xml)
 and management link.

 -->
<browser:page
 name="manage-portlets-colophon"
 for="plone.portlets.interfaces.ILocalPortletAssignable"
 class="plone.app.portlets.browser.manage.ManageContextualPortlets"
 template="templates/manage-portlets-colophon.pt"
 permission="plone.app.portlets.ManagePortlets"
/>

The page template for the manager manage-portlets-colophon.pt is the following

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 metal:use-macro="context/main_template/macros/master"
 >

 <head>
 <div metal:fill-slot="javascript_head_slot" tal:omit-tag="">
 <link type="text/css" rel="kinetic-stylesheet"
 tal:attributes="href string:${context/absolute_url}/++resource++manage-portlets.kss"/>
 </div>
 </head>
 <body class="manage-portlet-well">

 <metal:block fill-slot="top_slot"
 tal:define="disable_column_one python:request.set('disable_plone.leftcolumn',1);
 disable_column_two python:request.set('disable_plone.rightcolumn',1);" />

 <div metal:fill-slot="main">

 <tal:warning tal:condition="plone_view/isDefaultPageInFolder">
 <dl class="portalMessage warning">
 <dt i18n:translate="message_warning_above_content_area_dt">Is this really where you want to add portlets above the content?</dt>
 <dd i18n:translate="message_warning_above_content_area_dd">If you add portlets here, they will only appear on this item. If instead you want portlets to appear on all items in this folder,
 <a href=""
 tal:attributes="href string:${plone_view/getCurrentFolderUrl}/@@manage-portlets-colophon"
 i18n:name="manage-portletsinheader_link">
 add them to the folder itself

 </dd>
 <dl>
 </tal:warning>

 <h1 class="documentFirstHeading"
 i18n:translate="manage_portlets_in_header">Manage portlets in colophon
 </h1>

 <p>
 <a href=""
 class="link-parent"
 tal:attributes="href string:${context/absolute_url}"
 i18n:translate="return_to_view">
 Return

 </p>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 1</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 2</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 3</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 4</h2>

 </div>

 <div class="porlet-well_manager">
 <h2 i18n:translate="portlet-well-a">Colophon Portlet Well 5</h2>

 </div>

 </div>

 </body>
</html>

Then we have portlets-colophon.pt page template for the viewlet which renders
the portlets and related management link

<div id="portlets-colophon"
 class="row">

 <tal:block tal:condition="viewlet/showPortlets">
 <tal:portletmanagers tal:repeat="manager viewlet/portletManagersToShow">
 <div tal:attributes="class python:manager[1]"
 tal:define="mgr python:manager[0]"
 tal:content="structure provider:${mgr}" />

 </tal:portletmanagers>

 <div style="clear:both"><!-- --></div>

 <div class="manage-portlets-link"
 tal:condition="viewlet/canManagePortlets">
 <a href=""
 class="managePortletsFallback"
 tal:attributes="href viewlet/manageUrl">
 Add, edit or remove a portlet in <b tal:content="viewlet/name" />

 </div>

 </tal:block>

</div>

Finally there is portlets.xml which lists all the portlet managers
and associates them with the used interface

<?xml version="1.0"?>
<!-- Set up all the new portlet managers we need above and below the content well -->
<portlets>

 <portletmanager
 name="PortletsColophon1"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon2"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon3"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon4"
 type="youraddon.viewlets.IColphonPortlets"
 />

 <portletmanager
 name="PortletsColophon5"
 type="youraddon.viewlets.IColphonPortlets"
 />

</portlets>

More info

	https://weblion.psu.edu/svn/weblion/weblion/Products.ContentWellPortlets/trunk/Products/ContentWellPortlets/

	http://stackoverflow.com/questions/9766744/dynamic-tal-provider-expressions

Fixing relative links for static text portlets

Note

This should be no longer issue with Plone 4.1 and TinyMCE 1.3+ when using UID
links.

Example how to convert links in all static text portlets:

from lxml import etree
from StringIO import StringIO
import urlparse
from lxml import html

def fix_links(content, absolute_prefix):
 """
 Rewrite relative links to be absolute links based on certain URL.

 @param html: HTML snippet as a string
 """

 parser = etree.HTMLParser()

 content = content.strip()

 tree = html.fragment_fromstring(content, create_parent=True)

 def join(base, url):
 """
 Join relative URL
 """
 if not (url.startswith("/") or "://" in url):
 return urlparse.urljoin(base, url)
 else:
 # Already absolute
 return url

 for node in tree.xpath('//*[@src]'):
 url = node.get('src')
 url = join(absolute_prefix, url)
 node.set('src', url)
 for node in tree.xpath('//*[@href]'):
 href = node.get('href')
 url = join(absolute_prefix, href)
 node.set('href', url)

 data = etree.tostring(tree, pretty_print=False, encoding="utf-8")

 return data

Other resources and examples

	Static text portlet [https://github.com/plone/plone.portlet.static/blob/master/plone/portlet/static/].

	Templated portlet [https://svn.plone.org/svn/collective/collective.easytemplate/trunk/collective/easytemplate/browser/portlets/templated.py]

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

PloneTestCase tests

Description

This tutorial will explain how to write safer, better code that makes you
look more professional. That's right - it's time to write tests, for
everything you do. Don't worry, it's not boring or complicated, you just
need to learn how.

Warning

Technologies presented here are for Plone 3.x and older.

For up-to-date testing best pratices read about plone.app.testing [https://pypi.python.org/pypi/plone.app.testing].

	Introduction

	A brief example

	Telling stories with doctests

	Types of tests

	Running tests

	Writing unit tests

	Testing a Zope 3 component with a separate doctest file

	Writing a PloneTestCase unit/integration test

	Integration doctests using PloneTestCase

	Functional and system tests with zope.testbrowser

	Using zope.testrecorder to record functional tests

	Tips for using zope.testrecorder

	Determining the Code Coverage of your Test Suite

	If what you really want is eye-candy

	Testing examples

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Introduction

description

What is this thing called testing anyway?

"I know I should write tests, but …

	… they take time to write

	… I’m a good developer

	… my customer / the community does the testing"

Sound familiar? No matter how good you think you are, you will make
mistakes. Your code will contain bugs and someone will come after you
demanding an explanation. Without some methodical way of testing, you
are guaranteeing your code with nothing more than guesswork and
arrogance. Clicking around the Plone interface for a few minutes before
you ship your code off to the customer or user is simply not enough.

Testing is an art, it needs to be built into your development cycle from
the very beginning - it is not something you do only after all the other
work is finished, it is something you do continuously. Unfortunately,
testing often evokes emotions of dread in developers. It’s slow, it’s
boring, it’s not what they signed up to do. But the art of testing has
evolved beyond that - there is considerable elegance and fun to be found
in well-conceived test strategies.

This tutorial aims to give you the tools you need to write tests and
testable software in Plone. If you are writing software for Plone core
itself, don’t even think about committing any bug fix or feature without
test coverage. If you are writing an add-on product or doing a
customisation, holding yourself to the same high standards that the
Plone core team do will give you better confidence in your software and
will likely save you considerable pain down the road.

Examples

This tutorial contains several examples of the various types of tests.
They are available in the
example.tests [http://dev.plone.org/collective/browser/examples/example.tests/trunk]
package, which you can install as a develop egg in a Plone 3 buildout.
The examples of running tests use the standard commands for buildouts, since
this is the only way that works reliably on Windows (that is, plain zopectl
test will not work on Windows).

Take a look at the buildout docs for more information.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

A brief example

description

Just so that you know what we're talking about

Try to find the bug in the following piece of code:

class Employee(object):
 def __init__(self, name, position, employee_no=None):
 self.name = name
 self.position = position
 self.employee_no = employee_no

salaries = {0: 12000,
 1: 4000,
 2: 8000,
 3: 4000}

def print_salary(employee):
 if employee.employee_no:
 salary = salaries.get(employee.employee_no, 0)
 print "You make EUR %s." % salary
 else:
 print "You're not an employee currently."

Found it yet? Did you have to spend more than a few seconds thinking
about it? Any developer could have written that code and not seen the
problem. Furthermore, the bug is an edge case that you may not have
tested using manual/through-the-web testing.

Let us write a test (actually, a doc/unit test) for this code. Don’t
worry too much about how this is set up and executed just yet.

Employee w/o an employee number is ignored:

 >>> print_salary(Employee('Adam', 'Developer'))
 You're not an employee currently

Employee w/o a known employee number earns nothing:

 >>> print_salary(Employee('Berta', 'Designer', 100))
 You make EUR 0.

Employee w/ a valid employee number is found properly:

 >>> print_salary(Employee('Chris', 'CTO', 2))
 You make EUR 8000.

Zero is a valid employee number:

 >>> print_salary(Employee('Devon', 'CEO', 0))
 You make EUR 12000

As it happens, the last test would fail. It would print You are not an
employee currently., unless we fixed the code:

class Employee(object):
 def __init__(self, name, position, employee_no=None):
 self.name = name
 self.position = position
 self.employee_no = employee_no

salaries = {0: 12000,
 1: 4000,
 2: 8000,
 3: 4000}

def print_salary(employee):
 if employee.employee_no is not None:
 salary = salaries.get(employee.employee_no, 0)
 print "You make EUR %s." % salary
 else:
 print "You're not an employee currently."

The moral of the story?

	you rarely catch problems like these with manual testing

	put the time you waste catching silly bugs and typos into writing tests

	with decent test coverage, you end up saving lots of time when you refactor

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Telling stories with doctests

description

Doctests bring code and test closer together, and makes it easier to describe what a test does, and why.

By their nature, tests should exercise an API and demonstrate how it is
used. Thus, for other developers trying to understand how a module or
library should be used, tests can be the best form of documentation.
Python supports the notion of doctests, otherwise known as
executable documentation.

Doctests look like Python interpreter sessions. They contain plain text
(normally in reStructedText, which can be rendered to HTML or PDF
easily) as well as examples. The idea is to show something that
could have been typed in an interpreter session and what the expected
outcome should be. In the Zope 3 world, doctests are extremely prevalent
and are used for most unit and integration testing.

Doctests come in two main flavours: You can write a simple text file,
such as a README.txt, that explains your code along with verifiable
examples, or you can add doctests for a given method or class into the
docstring of that method or class.

The full-file approach - sometimes known as documentation-driven
development - is the most common. This type of test is very well
suited for explaining how an API should be used and ensuring that it
works as expected at the same time. However, note that these are not
technically proper unit tests, because there is no guarantee of
isolation between the steps of the “script” that the doctest describes.
The docstring version uses the same basic syntax, but each docstring is
executed as its own test fixture, guaranteeing full isolation between
tests.

Here is a trivial example of a doctest. We will learn how to set up such
a test shortly.

Interfaces are defined using Python class statements::

 >>> import zope.interface
 >>> class IFoo(zope.interface.Interface):
 ... """Foo blah blah"""
 ...
 ... x = zope.interface.Attribute("""X blah blah""")
 ...
 ... def bar(q, r=None):
 ... """bar blah blah"""

In the example above, we've created an interface::

 >>> type(IFoo)
 <class 'zope.interface.interface.InterfaceClass'>

We can ask for the interface's documentation::

 >>> IFoo.__doc__
 'Foo blah blah'

We could create an arbitrary object - this will of course not provide
the interface.

 >>> o = object()
 >>> o # doctest: +ELLIPSIS
 <object at>
 >>> IFoo.providedBy(o)
 False
 >>> o.bar() # doctest: +ELLIPSIS
 Traceback (most recent call last):
 ...
 AttributeError: 'object' object has no attribute 'bar'

Each time the doctest runner encounters a line starting with >>>, the
prompt of the Python interpreter (i.e. what you get by running python
without any arguments in a terminal), it will execute that line of code.
If that statement is then immediately followed by a line with the same
level of indentation as the >>> that is not a blank line and does not
start with >>>, this is taken to be the expected output of the
statement. The test runner will compare the output it got by executing
the Python statement with the output specified in the doctest, and flag
up an error if they don’t match.

Note that not writing an output value is equivalent to stating that
the method has no output. Thus, this is a failure:

>>> foo = 'hello'
>>> foo
>>> # do something else

The reference to foo on its own will print the value of foo. The correct
DocTest would read:

>>> foo = 'hello'
>>> foo
'hello'
>>> # do something else

Notice also the … (ellipsis) element in the expected otuput. These mean
“any number of characters” (anologus to a .* statement in a regular
expression, if you are familiar with those). They are usually convenient
shorthand, but they can sometimes be necessary. For example:

>>> class Foo:
... pass
>>> Foo()
<__main__.Foo instance at ...>

Here, the ... in the expected output replaces a hexadecimal memory address (0x0x4523a0 on
the author's computer at the time of writing), which cannot be predicted in advance. When
writing doctests in particular (but also when writing regular unit tests), you need to be
careful about values you cannot predict, such as auto-generated ids based on the current
time or a random number. The ellipsis operator can help you work around those.

Do not confuse the ellipsis operator in the expected output with the syntax of using ...
underneath a >>> line. This is the standard Python interpreter syntax used to designate
statments that run over multiple lines, normally as the result of indentation. You can,
for example, write:

>>> if a == b:
... foo = bar

if that is necessary in your test.

Doctest tips and tricks

As with all testing, you will get better at doctests over time. Below are a few tips that
may help you get started.

	Read the documentation

	doctests have been in Python for a long time. The doctest module [http://docs.python.org/2/library/doctest.html]
comes with more documentation on how they work.

	A test is just a bunch of python statements!

	Never forget this. You can, for example, reference helper methods in
your own product, for example, imagine you have a method in
Products.MyProduct.tests.utils that has a method setUpSite() to
pre-populate your site with a few directories and users. Your
doctest could contain:

>>> from Products.MyProduct.tests.utils import setUpSite
>>> setUpSite()

	The test suite can perform additional initialisation

	A test suite can have setUp() and/or tearDown() handlers that
perform additional set-up or clean-up. We will see further examples
of this later.

	PDB is still your friend

	You can put the standard import pdb; pdb.set_trace() on a line in
doctest. Unfortunately, you can’t step through a doctest line by
line, but you can print variables and examine the state of the test
fixture.

	You can catch exceptions

	If you need to debug a doctest that is throwing an exception, this
statement is often useful:

>>> try:
... someOperation()
... except:
... import pdb; pdb.set_trace()
>>> # continue as normal

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Types of tests

description

Some terminology you should be familiar with

Broadly speaking, there are four main types of tests:

	Unit tests

	These are written from the programmer’s perspective. A unit test
should test a single method or function in isolation, to ensure that
it behaves correctly. For example, testing that a given calculation
is performed correctly given a variety of input is a good unit test
for that one method.

	Integration tests

	Whereas unit tests try to remove or abstract away as many
dependencies as possible to ensure that they are truly only
concerned with the method under test, integration tests exercise the
integration points between a method or component and the other
components it relies on. For example, testing that a method performs
some calculation and then correctly stores the result in the ZODB is
an integration test in that it tests the integration between that
component and the ZODB.

	Functional tests

	A functional test is typically demonstrating a use case, exercising
a “vertical” of functionality. For example, testing that filling in
a form and clicking “Save” then makes the resulting object available
for future use, is a functional test for the use case of using that
form to create content objects.

	System tests

	These are written from the user’s perspective, and treat the system
as a black box. A system test may be simulating a user interacting
with the system according to expected usage patterns. By their
nature, they are typically less systematic than the other types of
tests.

Furthermore, functional tests may be white box, in which case they
can make assertions about things like the underlying data storage (but
only if this is specified clearly; implementation details should never
affect functional tests). Such tests are also called functional
integration tests (you can see where the lines start to blur, but
don’t worry too much about the naming). Alternatively, functional tests
can be black box in which case they only perceive the system from
the point of view of an actor (usually the end user) and make assertions
only on what is presented in the (user) interface to that actor. Such
tests, also known as acceptance tests would not make assumptions
about the underlying architecture at all.

Tests and documentation

In a post to the Zope 3 mailing list, Jim Fulton explains the importance
of tests and documentation, and how they go hand-in-hand:

One of the important things about this is that most doctests
should be written as documentation. When you write new software
components and you need to write tests for the main functionality
of your software you need to:
- Get your head into the mode of writing documentation. This is very very very important.
- You need to document how to use the software. Include examples, which are tests

We will learn more about doctests, and how they are used for unit testing and functional
testing later. The important thing to note is that good tests often serve as documentation
describing how your component is supposed to be used. Thinking about the story they tell is
just as important as thinking about the number of input and output states they cover.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Running tests

description

It is not much good writing a test or relying on someone else's tests
if you don't know how to run them.

The easiest way to run tests in Zope is to use zopectl or the equivalent
control script.

./bin/zopectl test -s Products.RichDocument

This would run all tests in the Products.RichDocument module. If you are
using a buildout [http://www.buildout.org/] with an instance control script called instance,
this would be:

./bin/instance test -s Products.RichDocument

Using buildout is probably a good idea - see the buildout tutorial [http://www.buildout.org/docs/tutorial.html] -
not at least because this is the only way that works reliably on
Windows. We will use this syntax from now on.

To execute a single test or a set of tests matched by regular
expression, you can use:

./bin/instance test -s Products.RichDocument -t setup

This would run tests in files like test_setup.py. To run all doctests
in README.txt (presuming there was a test suite for this file) you would
write:

./bin/instance test -s Products.RichDocument -t README.txt

The new test runner also includes a few debugging options. For example:

./bin/instance test -m Products.RichDocument -D

This will stop execution at the first failing test and drop into a PDB
post-mortem.

To see the other options that are available, run:

./bin/instance test --help

When the tests you think are relevant all pass, it’s time to run all
tests and make sure nothing else broke. (No, we don’t care that you are
writing your code in a totally different python module than what those
other tests are supposed to test, and that they were all fine and good
and all you changed was a docstring. Run the tests when you think you’re
done.)

When tests finish running, you will see a report like:

...
Ran 18 tests in 6.463s

OK

(it may look slightly different, depending on which test runner you are
using)

Rehearse a satisfied sigh as you read the line “OK”, as opposed to
seeing a count of failed tests. With time, this will be the little
notifier that lets you go to bed, see your friends again or generally
get back to real life with an svn commit.

If you’re not so lucky, you may see:

Ran 18 tests in 7.009s

FAILED (failures=1, errors=1)

(again, the output may look slightly different depending on your test
runner, but the same information should always be there)

This means that there were 1 python error and 1 failed test during test
execution.

A python error means that some of your test code, or some code that was
called by a test, raised an exception. This is bad, and you should fix
it right away.

A failed test means that your test was trying to assert something that
turned out not to be true. This could be OK. It could mean you haven't
written the code the test is testing yet (well done, you wrote the test
first!), or that you don't yet know why it's failing. Sometimes you may
be radically refactoring or rewriting parts of your code, and the tests
will keep on failing until you're done. Incidentally, this is part of
the reason why unit tests are so good - you can do that kind of stuff.

It's sometimes (not always - don't try this on Plone core unless you've
been told it's OK by the release manager) acceptable to go to bed and
check in a failing test if you are not in a position to know how to fix it.
At least other developers will be aware of the problem and may be able to fix it.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Writing unit tests

description

Now that you understand the principle of tests and how to run them, it's
time to write some. We will start with simple unit tests using doctest syntax.

We will start by showing how to create a simple unit test with doctest
syntax. There is nothing Zope- or Plone-specific about this test. This
type of test is ideal for methods and classes that perform some kind of
well-defined operation on primitives or simple objects. The doctest
syntax is well-suited for explaining the inputs and outputs. Since the
tests are relatively few and/or descriptive, keeping the tests,
documentation and code close together makes sense.

Tests are usually found in a tests/ sub-package. In the example.tests
package, we have created a file called tests/test_simple_doctest.py.
This sets up a test suite to run doctests in the doc strings in the
module example.tests.context. Let’s look at the test setup first:

"""This is the setup for a doctest where the actual test examples are held in
docstrings in a module.

Here, we are not using anything Zope-specific at all. We could of course
use the Zope 3 Component Architecture in the setup if we wanted. For that,
take a look at test_zope3_doctest.py.

However, we *do* use the zope.testing package, which provides improved
version of Python's standard DocTestSuite, DocFileSuite and so on. If you
don't want this dependency, just use doctest.DocTestSuite.
"""

import unittest
import zope.testing

import example.tests.context

def setUp(test):
 """We can use this to set up anything that needs to be available for
 each test. It is run before each test, i.e. for each docstring that
 contains doctests.

 Look at the Python unittest and doctest module documentation to learn
 more about how to prepare state and pass it into various tests.
 """

def tearDown(test):
 """This is the companion to setUp - it can be used to clean up the
 test environment after each test.
 """

def test_suite():
 return unittest.TestSuite((

 # Here, we tell the test runner to execute the tests in the given
 # module. The setUp and tearDown methods can be used to perform
 # test-specific setup and tear-down.

 zope.testing.doctest.DocTestSuite(example.tests.context,
 setUp=setUp, # setUp and tearDown are optional!
 tearDown=tearDown),
))

There are a lot of comments here, and we show how to use setUp() and
tearDown() methods for additional initialisation and clean-up, if
necessary. The test runner will call the test_suite() method and expect
a TestSuite object back. If desired, we could have put multiple test
suites referring to multiple modules into the TestSuite that is being
returned.

Here is the actual code under test, in context.py:

from zope.interface import implements
from example.tests.interfaces import IContext

class Context(object):
 """An object used for testing. We will register an adapter from this
 interface to IUpperCaser in the test setup.

 Here's how you use it. First, import the class.

 >>> from example.tests.context import Context

 Then in-stan-ti-ate it (with me so far?):

 >>> my_context = Context()

 Okay, here's the tricky bit ... now we need to set the title:

 >>> my_context.title = u"Some string!"

 Phew ... did that work?

 >>> my_context.title
 u'Some string!'

 Yeah!
 """

 implements(IContext)

 def __init__(self, title=u""):
 self.title = title

Here is how we may run the tests from a buildout:

./bin/instance test -s example.tests -t context
Running unit tests:
 Running:
....
Ran 4 tests with 0 failures and 0 errors in 0.071 seconds.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Testing a Zope 3 component with a separate doctest file

description

Sometimes, we may need to perform additional set-up for our tests to run properly.

In the previous example, we wrote a doctest in a docstring. As tests
become more complex or require more involved configuration, it is
usually better to separate the actual test into a text file. Sometimes,
this can be the README.txt file of a package. This is the approach
favoured by Zope 3 components.

In this example, we will register an adapter that is used in a doctest.
This doctest also serves to illustrate how this particular adapter
should be used. This style of test is great when the emphasis is on the
documentation as well as the test. Note that we do not load the
package’s ZCML in its entirely. Instead, we register the required
components explicitly. This means that we retain control over what is
executed in the test. We use the zope.component.testing.tearDown method
to ensure that our test environment is properly cleaned up.

In the example.tests package, we have the following test setup in
tests/test_zope3_doctest.py:

"""This is the setup for a doctest that tests a Zope 3 component.

There is really nothing too different from a "plain Python" test. We are not
parsing ZCML, for example. However, we use some of the helpers from Zope 3
to ensure that the Component Architecture is properly set up and torn down.
"""

import unittest

import zope.testing
import zope.component

def setUp(test):
 """This method is used to set up the test environment. We pass it to the
 DocFileSuite initialiser. We also pass a tear-down, but in this case,
 we use the tear-down from zope.component.testing, which takes care of
 cleaning up Component Architecture registrations.
 """

 # Register the adapter. See zope.component.interfaces for more

 from example.tests.context import UpperCaser
 zope.component.provideAdapter(UpperCaser)

def test_suite():
 return unittest.TestSuite((

 # Here, we tell the test runner to execute the tests in the given
 # file. The setUp and tearDown methods employed make use of the Zope 3
 # Component Architecture, but really there is nothing Zope-specific
 # about this. If you want to test "plain-Python" this way, the setup
 # is the same.

 zope.testing.doctest.DocFileSuite('tests/zope3.txt',
 package='example.tests',
 setUp=setUp,
 tearDown=zope.component.testing.tearDown),
))

Notice how we use a custom setUp() method to register the custom
adapter, and then reference zope.component.testing.tearDown for the
tear-down method.

This refers to the file zope3.txt, which looks like this:

==========================
A Zope 3 component doctest
==========================

This is the type of test found most commonly in Zope 3. We have a custom
setup method (in test_zope3_doctest.py) which registers the components we
need for the test. We can then use those here. ZCML is not processed directly,
nor do we have a full Zope 2/Plone environment available. This makes the test
more isolated (and faster!). Often, we may choose to use mock implementations
of certain components in order to make the test properly isolated.

Of course, we should still tell a story with this documentation.

Let's say we had one of our really exciting context objects:

 >>> from example.tests.context import Context
 >>> context = Context()
 >>> context.title = u"Some puny title"

Of course, that's nice, but what if we wanted to make a bit more of an impact?
We can use our handy upper-caser adapter!

 >>> from example.tests.interfaces import IUpperCaser
 >>> shout = IUpperCaser(context)
 >>> shout.title
 u'SOME PUNY TITLE'

Wow!

To run just this test, we may do:

./bin/instance test -s example.tests -t zope3.txt
Running unit tests:
 Running:
..
 Ran 2 tests with 0 failures and 0 errors in 0.010 seconds.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Writing a PloneTestCase unit/integration test

description

Sometimes, we need access to a full-blown Plone instance in order to effectively write tests

PloneTestCase, which in turn uses ZopeTestCase, is used to set up a full
Zope environment, including a Plone instance, for testing. This type of
test is very convenient and often necessary because content types, tools
and other parts of Plone have hard dependencies on various underlying
Zope, CMF and Plone components. It is generally better to write simpler
tests, however, both because they provide better isolation (thus testing
the component more directly and under better controlled circumstances)
and because they execute faster.

PloneTestCase-tests are often referred to as “unit tests”, but in truth
they are integration tests, since they depend on a “live” Zope
instance and thus test the integration between your code and the
underlying framework. We can use the PloneTestCase setup to run
doctests, as we will see in the next section.

Here, however, we will demonstrate how to use unittest.TestCase classes,
where each test is a method on a class (with a name beginning with test)
This type of test is not as good for documentation, but can be very
useful for systematically executing many variations on the same test.
Some developers also find this type of test easier to debug, since it is
plain Python code which can be stepped through using the debugger.

In the example.tests package, we have tests/base.py. This does not
contain any tests, but performs the necessary configuration to set up
the test fixture:

"""Test setup for integration and functional tests.

When we import PloneTestCase and then call setupPloneSite(), all of Plone's
products are loaded, and a Plone site will be created. This happens at module
level, which makes it faster to run each test, but slows down test runner
startup.
"""

from Products.Five import zcml
from Products.Five import fiveconfigure

from Testing import ZopeTestCase as ztc

from Products.PloneTestCase import PloneTestCase as ptc
from Products.PloneTestCase.layer import onsetup

#
When ZopeTestCase configures Zope, it will *not* auto-load products in
Products/. Instead, we have to use a statement such as:
#
ztc.installProduct('SimpleAttachment')
#
This does *not* apply to products in eggs and Python packages (i.e. not in
the Products.*) namespace. For that, see below.
#
All of Plone's products are already set up by PloneTestCase.
#

@onsetup
def setup_product():
 """Set up the package and its dependencies.

 The @onsetup decorator causes the execution of this body to be deferred
 until the setup of the Plone site testing layer. We could have created our
 own layer, but this is the easiest way for Plone integration tests.
 """

 # Load the ZCML configuration for the example.tests package.
 # This can of course use <include /> to include other packages.

 fiveconfigure.debug_mode = True
 import example.tests
 zcml.load_config('configure.zcml', example.tests)
 fiveconfigure.debug_mode = False

 # We need to tell the testing framework that these products
 # should be available. This can't happen until after we have loaded
 # the ZCML. Thus, we do it here. Note the use of installPackage() instead
 # of installProduct().
 #
 # This is *only* necessary for packages outside the Products.* namespace
 # which are also declared as Zope 2 products, using
 # <five:registerPackage /> in ZCML.

 # We may also need to load dependencies, e.g.:
 #
 # ztc.installPackage('borg.localrole')
 #

 ztc.installPackage('example.tests')

The order here is important: We first call the (deferred) function which
installs the products we need for this product. Then, we let PloneTestCase
set up this product on installation.

setup_product()
ptc.setupPloneSite(products=['example.tests'])

class ExampleTestCase(ptc.PloneTestCase):
 """We use this base class for all the tests in this package. If necessary,
 we can put common utility or setup code in here. This applies to unit
 test cases.
 """

class ExampleFunctionalTestCase(ptc.FunctionalTestCase):
 """We use this class for functional integration tests that use doctest
 syntax. Again, we can put basic common utility or setup code in here.
 """

Notice how we can explicitly install third party products (and egg-based packages which use product semantics) and then tell PloneTestCase to quick-install these into the test fixture site. The test runner will not automatically load all products in the Products.* namespace, nor will it execute ZCML for packages outside Products.* automatically.

The test class which uses this environment is found in tests/test_integration_unit.py:

"""This is an integration "unit" test. It uses PloneTestCase, but does not
use doctest syntax.

You will find lots of examples of this type of test in CMFPlone/tests, for
example.
"""

import unittest
from example.tests.tests.base import ExampleTestCase

from Products.CMFCore.utils import getToolByName

class TestSetup(ExampleTestCase):
 """The name of the class should be meaningful. This may be a class that
 tests the installation of a particular product.
 """

 def afterSetUp(self):
 """This method is called before each single test. It can be used to
 set up common state. Setup that is specific to a particular test
 should be done in that test method.
 """
 self.workflow = getToolByName(self.portal, 'portal_workflow')

 def beforeTearDown(self):
 """This method is called after each single test. It can be used for
 cleanup, if you need it. Note that the test framework will roll back
 the Zope transaction at the end of each test, so tests are generally
 independent of one another. However, if you are modifying external
 resources (say a database) or globals (such as registering a new
 adapter in the Component Architecture during a test), you may want to
 tear things down here.
 """

 def test_portal_title(self):

 # This is a simple test. The method needs to start with the name
 # 'test'.

 # Look at the Python unittest documentation to learn more about hte
 # kinds of assertion methods which are available.

 # PloneTestCase has some methods and attributes to help with Plone.
 # Look at the PloneTestCase documentation, but briefly:
 #
 # - self.portal is the portal root
 # - self.folder is the current user's folder
 # - self.logout() "logs out" so that the user is Anonymous
 # - self.setRoles(['Manager', 'Member']) adjusts the roles of the current user

 self.assertEqual("Plone site", self.portal.getProperty('title'))

 def test_able_to_add_document(self):
 new_id = self.folder.invokeFactory('Document', 'my-page')
 self.assertEqual('my-page', new_id)

 # Keep adding methods here, or break it into multiple classes or
 # multiple files as appropriate. Having tests in multiple files makes
 # it possible to run tests from just one package:
 #
 # ./bin/instance test -s example.tests -t test_integration_unit

def test_suite():
 """This sets up a test suite that actually runs the tests in the class
 above
 """
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(TestSetup))
 return suite

Here, we have a test suite with one test class - we could have added more classes if
necessary. The afterSetUp() and beforeTearDown() methods - if present - are called
immediately before and after each test. After a test is run, the transaction is rolled
back, causing tests to run in isolation. You only really need explicit teardown if
your tests make permantent changes that are not covered by the ZODB transaction machinery.

You are free to add whatever helper methods you wish to your unit test class, but any
method with a name starting with test will be executed as a test. Tests are usually
written to be as concise (not to be confused with "obfuscated") as possible.

Notice the calls to methods like self.assertEqual() or self.assertTrue(). These are
the assertion methods that do the actual testing. If any of these fail, that test is
counted as a failure and you'll get an ugly F in your test output.

To run the test, we would do:

./bin/instance test -s example.tests -t test_integration_unit
 Running:
..
 Ran 2 tests with 0 failures and 0 errors in 0.178 seconds.

There is actually more output than this, as PloneTestCase installs a number of products and processes ZCML.

Rules of thumb

There are some basic rules of thumb for writing unit tests with
PloneTestCase you should be aware of:

	Write test first, don't put it off, and don't be lazy (did we say this enough already?)

	Write one test (i.e. one method) for each thing you want to test

	Keep related tests together (i.e. in the same test case class)

	Be pragmatic. If you want to test every combination of inputs and outputs you will
probably go blue in the face, and the additional tests are unlikely to be of much value.
Similarly, if a method is complicated, don't just test the basic case. This comes with
experience, but in general, you should test common cases, edge cases and preferably cases
in which the method or component is expected to fail (i.e. test that it fails as
expected - you still shouldn't get any F's in your test output!).

	Keep tests simple. Don't try to be clever, don't over-generalise. When a test fails,
you need to easily determine whether it is because the test itself is wrong, or the
thing it is testing has a bug.

Assertion and utility methods in the unit testing framework

There are quite a few assertion methods, most of which do basically the same thing - check
if something is True or False. Having a variety of names allows you to make your tests read
the way you want. The list of assertion methods can be found in the Python documentation
for unittest.TestCase. The most common ones are:

	assertTrue(expr)

	Ensure expr is true

	assertEqual(expr1, expr2)

	Ensure expr1 is equal to expr2

	assertRaises(exception, callable, …)

	Make sure exception is raised by the callable. Note that callable
here should be the name of a method or callable object, not an
actual call, so you write e.g. self.assertRaises(AttributeError,
myObject.myMethod, someParameter). Note lack of () after myMethod.
If you included it, you’d get the exception raised in your test
method, which is probably not what you want. Instead, the statement
above will cause the unit testing framework to call
myMethod(someParameter) (you can pass along any parameters you want
after the calalble) and check for an AttributeError.

	fail()

	Simply fail. This is useful if a test has not yet been completed, or
in an if statement inside a test where you know the test has
failed.

In addition to the unit testing framework assertion methods, ZopeTestCase and PloneTestCase include some helper methods and variables to help you interact with Zope. It's instructive to read the source code for these two products, but briefly, the key variables you can use in unit tests are:

	self.portal

	The Plone portal the test is executing in

	self.folder

	The member folder of the member you are executing as

And the key methods are:

	self.logout()

	Log out, i.e. become anonymous

	self.login()

	Log in again. Pass a username to log in as a different user.

	self.setRoles(roles)

	Pass in a list of roles you want to have. For example, self.setRoles(('Manager',)) lets you be manager for a while. How nice.

	self.setPermissions(permissions)

	Similarly, grant a number of permissions to the current user in self.folder.

	self.setGroups(groups)

	Set which groups the test user is in.

Tips & Tricks

Good unit testing comes with experience. It's always useful to read the unit tests of code with which you are fairly familiar, to see how other people unit test. We'll cover a few hints here to get you thinking about how you approach your own tests:

	Don’t be timid! Python, being a dynamic scripting language, lets you
do all kinds of crazy things. You can rip a function right out from
the Plone core and replace it with your own implementation in
afterSetUp() or a test if that serves your testing purposes.

	Similarly, replacing things like the MailHost with dummy
implementations may be the only way to test certain features. Look at
CMFPlone/tests/dummy.py for some examples of dummy objects.

	Use tests to try things out. They are a safe environment. If you need
to try something a bit out of the ordinary, writing them in a test is
often the easiest way of seeing how something works.

	During debugging, you can insert print statements in tests to get
traces in your terminal when you execute the tests. Don’t check in
code with printing tests, though. :)

	Similarly, the python debugger is very valuable inside tests. Putting
import pdb; pdb.set_trace() inside your test methods lets you step
through testing code and step into the code it calls. If you’re not
familiar with the python debugger, your life is incomplete.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Integration doctests using PloneTestCase

description

The PloneTestCase integration test setup can also be used in doctests

The choice of test case classes over doctest is purely one of syntactic
preference. We can use the test setup from the previous section (in
base.py) in a doctest as well. This type of test is more useful for
documenting the integration of your code with Zope/Plone in a narrative
fashion.

There is no change to tests/base.py for this type of setup. However, we
must be careful to use a test class that derives from
FunctionalTestCase, since this performs the initialisation necessary for
doctests. The test setup is found in
tests/test_integration_doctest.py:

"""This is an integration doctest test. It uses PloneTestCase and doctest
syntax.
"""

import unittest
import doctest

from zope.testing import doctestunit
from Testing import ZopeTestCase as ztc

from example.tests.tests import base

def test_suite():
 """This sets up a test suite that actually runs the tests in the class
 above
 """
 return unittest.TestSuite([

 # Here, we create a test suite passing the name of a file relative
 # to the package home, the name of the package, and the test base
 # class to use. Here, the base class is a full PloneTestCase, which
 # means that we get a full Plone site set up.

 # The actual test is in integration.txt

 ztc.ZopeDocFileSuite(
 'tests/integration.txt', package='example.tests',
 test_class=base.ExampleFunctionalTestCase,
 optionflags=doctest.REPORT_ONLY_FIRST_FAILURE |
 doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS),

 # We could add more doctest files here as well, by copying the file
 # block above.

])

Here, we set ExampleFunctionalTestCase from base.py as the test_class,
which means that self in the doctest will be the same as self in the
test class we saw in the previous section. In particular, we can access
variables such as self.portal and self.folder. We also set some common
doctest option flags - reporting only the first failure (to avoid overly
long error output when an example early on in the doctest fails),
normalising whitespace (so that we can use newlines freely) and allowing
the ellipsis operator everywhere (as opposed to having to turn it on
each time we want to use it). Look at the doctest module documentation
for more information.

The test itself, in tests/integration.txt, is written much like the
other doctests we have seen:

======================
An integration doctest
======================

This test is an integration test that uses PloneTestCase. Here, 'self' is
the test class, so we can use 'self.folder', 'self.portal' and so on. The
setup is done in teststest_integration_doctest.py

Being a doctest, we can tell a story here.

For example, let's say a user had a dying wish: to add a news item. We'll do
that using the standard Plone API.

 >>> self.folder.invokeFactory('News Item', 'news-item')
 'news-item'

That's great, but really, he wanted to add it to the portal root:

 >>> self.portal.invokeFactory('News Item', 'news-item')
 Traceback (most recent call last):
 ...
 Unauthorized: Cannot create News Item

Whoops! Too bad!

At least we got to demonstrate the ellipsis operator, which
matches arbitrary text. We enabled this in test_integration_doctest.py. It
is also possible to enable (or disable) this flag on a single statement.
See the Python doctest documentation for more information.

To run this test on its own, we would do:

./bin/instance test -s example.tests -t integration.txt
 Running:
..
 Ran 2 tests with 0 failures and 0 errors in 0.384 seconds.

Again, we have cut out some of the output from PloneTestCase.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Functional and system tests with zope.testbrowser

description

Whilst unit tests and doctests verify the correctness of individual methods
and modules, functional tests test portions of the application as a whole,
often from the point of view of the user, and typically aligned with use cases.
System tests, in comparison, test the entire application as a black box.

No developer likes to click around the browser to check if that button
that was only supposed to show up in some cases really did show up.
Unfortunately, these are also the types of problems that most often
suffer from regressions, because templates are difficult (and slow) to
test.

Zope 3 has an elegant library called zope.testbrowser which lets you
write doctests that behave like a real web browser (almost… it cannot
yet handle JavaScript, which means that testing dynamic UIs that depend
on JavaScript is not possible, although Selenium [http://seleniumhq.org/] may be a viable
alternative here). You can open URLs, click links, fill in form fields
and test the HTTP headers, URLs and page contents that are returned from
Plone. In fact, you could test any website, not just Zope or Plone ones.

Functional tests are no replacement for unit tests. They test a slice of
functionality, typically as the user sees it. Thus, they may not
systematically include every aspect of the application. For example, a
functional test may check whether a “Delete” button is present, and even
that it works as expected, but should not be used to exhaustively test
whether the delete operation works in every possible edge case. Where
they excel, however, is in testing things like which options appear to
which users depending on roles and permissions, or simply to exercise
all the various templates used in a given product to make sure they
don’t break.

Here is an example from the example.tests package. The test setup is in
tests/test_functional_doctest.py:

"""This is a a functional doctest test. It uses PloneTestCase and doctest
syntax. In the test itself, we use zope.testbrowser to test end-to-end
functionality, including the UI.

One important thing to note: zope.testbrowser is not JavaScript aware! For
that, you need a real browser. Look at zope.testbrowser.real and Selenium
if you require "real" browser testing.
"""

import unittest
import doctest

from Testing import ZopeTestCase as ztc

from example.tests.tests import base

def test_suite():
 """This sets up a test suite that actually runs the tests in the class
 above
 """
 return unittest.TestSuite([

 # Here, we create a test suite passing the name of a file relative
 # to the package home, the name of the package, and the test base
 # class to use. Here, the base class is a full PloneTestCase, which
 # means that we get a full Plone site set up.

 # The actual test is in functional.txt

 ztc.ZopeDocFileSuite(
 'tests/functional.txt', package='example.tests',
 test_class=base.ExampleFunctionalTestCase,
 optionflags=doctest.REPORT_ONLY_FIRST_FAILURE |
 doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS),

 # We could add more doctest files here as well, by copying the file
 # block above.

])

This code is actually identical to the test setup for the integration
doctest in the previous section. The differences are found in the actual
test itself, which uses Products.Five.testbrowser.Browser, a Zope 2
compatibility wrapper around zope.testbrowser.Browser:

====================
A functional doctest
====================

This is a full-blown functional test. The emphasis here is on testing what
the user may input and see, and the system is largely tested as a black box.
We use PloneTestCase to set up this test as well, so we have a full Plone site
to play with. We *can* inspect the state of the portal, e.g. using
self.portal and self.folder, but it is often frowned upon since you are not
treating the system as a black box. Also, if you, for example, log in or set
roles using calls like self.setRoles(), these are not reflected in the test
browser, which runs as a separate session.

Being a doctest, we can tell a story here.

First, we must perform some setup. We use the testbrowser that is shipped
with Five, as this provides proper Zope 2 integration. Most of the
documentation, though, is in the underlying zope.testbrower package.

 >>> from Products.Five.testbrowser import Browser
 >>> browser = Browser()
 >>> portal_url = self.portal.absolute_url()

The following is useful when writing and debugging testbrowser tests. It lets
us see all error messages in the error_log.

 >>> self.portal.error_log._ignored_exceptions = ()

With that in place, we can go to the portal front page and log in. We will
do this using the default user from PloneTestCase:

 >>> from Products.PloneTestCase.setup import portal_owner, default_password

 >>> browser.open(portal_url)

We have the login portlet, so let's use that.

 >>> browser.getControl(name='__ac_name').value = portal_owner
 >>> browser.getControl(name='__ac_password').value = default_password
 >>> browser.getControl(name='submit').click()

Here, we set the value of the fields on the login form and then simulate a
submit click.

We then test that we are still on the portal front page:

 >>> browser.url == portal_url
 True

And we ensure that we get the friendly logged-in message:

 >>> "You are now logged in" in browser.contents
 True

To learn more, look at the zope.testbrowser documentation and interfaces.
There are also a few examples of testbrowser tests in Plone itself.

All the action happens with the browser object. This simulates a web browser (though
as stated above, one that does not support JavaScript), and has a pleasant API for
finding form controls and links and clicking on them. The variables browser.url and
browser.contents represent what would've been in the URL bar and the rendered view
of the page, respectively, and can be examined like any other variable.

zope.testbrowser has pretty comprehensive documentation in its README.txt file - which
is, of course, a runnable doctest. In brief, the most important methods of the
IBrowser interface (and thus the Browser class) are:

	open(url)

	Open a given URL.

	reload()

	Reload the current page, much as the Refresh button in your browser would do.

	goBack(count=1)

	Simulate pressing the Back button count times.

	getLink(text=None, url=None, id=None)

	Get an ILink (which you can then call click() on), either by the text inside the <a> tags, by the URL in the href attribute, or the id of the link.

	getControl(label=None, name=None, index=None)

	Get an IControl, representing a form control, by label (either the value of a submit button or the contents of an associated <label> tag) or form name. The index argument is used to disambiguate if there is more than one control (e.g. index=0 gets the first one). Again, you can call click() on the control object to simulate clicking on it.

The IBrowser interface also provides some properties that can be used to examine
the state of the current page. The most important ones are:

	url

	The full URL to the current page.

	contents

	The full contents of the current page, as a string (usually containing HTML tags)

	headers

	A dict of HTTP headers

Please refer to the interfaces [http://svn.zope.org/zope.testbrowser/trunk/src/zope/testbrowser/interfaces.py?view=auto] and the README file [http://svn.zope.org/zope.testbrowser/trunk/src/zope/testbrowser/README.txt?view=auto] for details on
the other methods and attributes, the interfaces for various types of
links and controls, and further examples.

Debugging functional tests

Sometimes you will get errors from Zope resulting from some command executed using
the testbrowser. In this case, it can sometimes be difficult to know what the
underlying cause is. Two debugging aids exist to make this a bit easier.

First of all, make sure you see all errors in full by setting:

>>> browser.handleErrors = False

If handleErrors is True (the default) you will get errors like HTTPError: HTTP
Error 404: Not Found or HTTPError: HTTP Error 500: Internal Server Error. Those
are probably not very useful to you. Setting handleErrors to False will show the
full exceptions Zope (or possibly the HTML rendering of the error page, depending
on the type of error).

Secondly, if you are using PloneTestCase, you can use Plone's error log. At the top of the example, we do:

>>> self.portal.error_log._ignored_exceptions = ()

This means that errors such as NotFound and Unauthorized will be shown in the
error log. It may also be useful to enable Verbose Security in zope.conf (see the
comments in that file for details). Now, when a line appears that is throwing an
error you can't debug, you can do:

>>> try:
... browser.getControl('Save').click()
... except:
... print self.portal.error_log.getLogEntries()[0]['tb_text']
... import pdb; pdb.set_trace()
>>> # continue as normal

This will print the most recent entry in the error log, and set a PDB break point.

Using a real browser to render the results of your tests

Sometimes you would like to see the output of browser.contents in a browser to
easily debug what's happening in your functional tests. To do so, place a PDB
break point in your tests as described above (import pdb; pdb.set_trace())
and type the following when you get to the PDB prompt while running the tests:

	::

	>>> from Testing.ZopeTestCase.utils import startZServer
>>> startZServer()

This will print a tuple like

	::

	('127.0.0.1', 55143)

containing an IP address and port where you can access the same test site that
the testbrowser is working with, in a real browser.

Functional tests vs. system tests

A system test is one which treats the entire system as a black box, interacting
with it as a user would. A functional test is more focused on a single "vertical"
of functionality, typically linked to a particular use case.

For a functional test, it may be acceptable to examine the internal state of the
portal (using self.portal and the PloneTestCase.FunctionalTestCase class to build
a test suite) to provide assertions. A system test, by contrast, makes no such
assumptions. Ideally, you should be able to point a zope.testbrowser test at a
remote site running a fresh installation of your system, and have the tests pass.

Beyond that, the tools used to write a system test are the same. It is only the
approach to testing that changes. Whether you need one, or the other, or both,
will depend on the level of rigour you need in your tests, and how your system is
constructed. In general, though, true system tests are more rare than functional
(integration) tests and unit tests.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Using zope.testrecorder to record functional tests

description

The zope.testrecorder product brings us full-circle: functional tests are
recorded from within the browser, and saved to a runnable test.

Functional tests using zope.testbrowser save us from clicking around the
browser to regression test UI, but writing them could still be easier.
With complex templates, it can sometimes be difficult to find out what
actual links and form fields the testbrowser test should be looking for,
and what text to use in assertions.

This is where zope.testrecorder comes in. The theory is that you click
around the UI only once, and then render the history of what you did to
a runnable testbrowser test. zope.testrecorder can even create
Selenium [http://seleniumhq.org/] tests - an alternative form of
functional tests which runs in the browser (i.e. it automates your browser
right before your eyes) and thus supports JavaScript, but which cannot
be run as part of an automated test run without a browser.

Installing zope.testrecorder is simple. First, check it out from Zope’s
subversion repository:

svn co svn://svn.zope.org/repos/main/zope.testrecorder/trunk zope.testrecorder

See INSTALL.txt for further instructions, but the easiest way to install
it in a Zope 2 instance is just to put it in your Products directory:
Copy zope.testrecorder/src/zope/testrecorder as a product into
Products/testrecorder and restart Zope. Then, go to the ZMI and add a
Test Recorder object in the root of your Zope instance. Call it e.g.
test-recorder.

Presuming you run Zope on localhost:8080, you should now be able to go
to http://localhost:8080/test-recorder/index.html. You should see a page
something like this:

[image: Screenshot of blank test recorder]

NOTE: Like most things, zope.testrecorder seems to work better in
Firefox than in other browsers.

Now, enter the address of your Plone site (or indeed any web site), e.g.
http://localhost:8080/Plone and click Go. You can perform any number of
operations, e.g. logging in and clicking around the UI. If you wish to
add a comment to your test run, as you would add free text inside a
doctest, click the Add comment button. If you wish to verify that some
text appears on the page, highlight that text, shift-click on it, and
select “Check text appears on page”:

[image: Screenshot of text verification]
Screenshot of text verification

When you are done, click Stop recording. You can then choose to render
the test as a Python doctest and you will get something like:

Create the browser object we'll be using.

 >>> from zope.testbrowser import Browser
 >>> browser = Browser()
 >>> browser.open('http://localhost/test')

A test comment.

 >>> 'start writing' in browser.contents
 True

You can then paste this into a doctest file, and perform any
post-processing or make any changes that may be necessary to make the
test more generally valid.

Tips for using zope.testrecorder

	Plan, plan, plan

	It's best if you have a rough script in front of you before you start recording
tests, or you may get lost afterwards. Make good use of the Add comment button
to state what you are testing before you test it, so that the final doctest will
make sense.

	Careful where you click

	Some parts of the Plone UI are more ephemeral than others. It may not be a good
idea to rely on links in the Recent portlet, for example. Think about what
operations will provide the most general and valid test. It will save you time
in the long run.

	Set up your site beforehand

	Recall from the section on zope.testbrowser that we set up users and basic site
structure with calls to the Python APIs instead of using testbrowser to manipulate
the "site setup" screents. When using zope.testrecorder you may want to set up the
same users with the same user names and passwords, and the same site structure
before you start recording to test. Otherwise, you may need to change some of
the values of the test.

	Check the doctest

	zope.testrecorder is a time-saving tool. Sometimes, it may end up referring to
parts of the page that can't be guaranteed to be consistent (such as randomly
generated ids of content objects), and sometimes you may have gone on a detour
and ended up with a test that contains irrelevant or duplicate sections. Always
fix up your test (and run it!) afterwards, to make sure that the test remains
valid for the future - otherwise, you will end up clicking around the UI in
anger again before you know it.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Determining the Code Coverage of your Test Suite

description

Explanation for how to use the Zope test runner's built in code coverage
features to prove the quality of your test suite.

The better your test suite’s coverage, the lower the likelihood that
some modification to your code will break another piece of functionality
in some unanticipated way. But, how do you know the quality of your
test coverage? Zope’s test runner comes with several features to help
you do just that.

But first, let’s say you’ve written some code with a Python conditional
like the following:

if value % 2 == 0:
 print "This is an even number"
else:
 # we need to do some more complex
 # computation to handle odd numbers
 _someComplexCodeDealingWithOddNumbers(value)

The comments and function call in the else clause are symbolic of some
advanced coding that’s required to handle all odd numbers.

Now, as you’ve no doubt learned while reading this tutorial, testing is
important. But what if for one reason or another, all the test cases
you’ve come up with during testing amount to even numbers when you get
to the aforementioned block of code. If this were the case, you’d have a
big risk of unanticipated code breakage to the way that you handle odd
numbers. This is something that you’d ideally cover in your test suite.

Discovering the untested sections of your code

You’ve learned how to run your test suite in this tutorial. Zope’s test
runner accepts an optional parameter called –coverage. When passed a
path to a directory, Zope will generate some high-level output and
produce a coverage file for each of the Python modules in your product
or package.

In full, running your test suite with the coverage option enabled looks
like:

./bin/instance test -s Products.productname --coverage=$HOME/coverage

Note: Running your tests with the coverage option enabled takes
significantly longer (as in ~10 times or more) than without, so this is
something to be done occasionally to gauge your work, rather than each
time you run your tests.

At the end of running your test suite, you’ll get some immediate output
like the following, which includes lines of code and your coverage
percentage:

lines cov% module (path)
 104 100% $INSTANCE_HOME.parts.salesforce-integration-products.salesforcepfgadapter.Extensions.Install
 ($INSTANCE_HOME/parts/salesforce-integration-products/salesforcepfgadapter/Extensions/Install.py)
 39 41% $INSTANCE_HOME.parts.salesforce-integration-products.salesforcepfgadapter.__init__
 ($INSTANCE_HOME/parts/salesforce-integration-products/salesforcepfgadapter/__init__.py)
 2 100% $INSTANCE_HOME.parts.salesforce-integration-products.salesforcepfgadapter.content.__init__
 ($INSTANCE_HOME/parts/salesforce-integration-products/salesforcepfgadapter/content/__init__.py)
 168 91% $INSTANCE_HOME.parts.salesforce-integration-products.salesforcepfgadapter.content.salesforcepfgadapter
 ($INSTANCE_HOME/parts/salesforce-integration-products/salesforcepfgadapter/content/salesforcepfgadapter.py)
 21 100% $INSTANCE_HOME.parts.salesforce-integration-products.salesforcepfgadapter.migrations.migrateUpTo10rc1
 ($INSTANCE_HOME/parts/salesforce-integration-products/salesforcepfgadapter/migrations/migrateUpTo10rc1.py)

If all you’re looking for is a quick status report, this should
suffice.

However, if you want to dig deeper, head to the directory you listed in
the –coverage option. Note: The files may be preceded with dots,
thus requiring an ls -a in order to reach the coverage files.

A sample file may look like the following:

 1: def initializeArchetype(self, **kwargs):
 """Initialize Private instance variables
 """
 15: FormActionAdapter.initializeArchetype(self, **kwargs)

 15: self._fieldsForSFObjectType = {}

 1: security.declareProtected(View, 'onSuccess')
 1: def onSuccess(self, fields, REQUEST=None):
 """ The essential method of a PloneFormGen Adapter
"""
>>>>>> logger.debug('Calling onSuccess()')
>>>>>> sObject = self._buildSObjectFromForm(fields, REQUEST)
>>>>>> if len(sObject.keys()) > 1:

It's really just your file with some meaningful data proceeding each line. Anything
with a 1: signifies that your code was at least touched during the running of the
test suite. The higher the number, the more often your code was touched. Perhaps
this is intentional and signifies really good coverage in other cases, it's may be
either unavoidable or could even signify that the high level of coverage wouldn't
actually be required. The >>>>>> means that you've missed a line and you should
consider coming up with a test scenario or more that will touch the line of code in
question. The number of untested lines divided by total lines gives you your
coverage percentage.

If what you really want is eye-candy

If you want pretty graphs to provide for you boss to include in a report or to
make a client feel better about the quality of code they are receiving, z3c.coverage
takes the contents of the output files and creates pretty summaries. Get
z3c.coverage from subversion via the following:

svn co svn://svn.zope.org/repos/main/z3c.coverage/trunk z3c.coverage

Create a directory within your previously created coverage directory. We call it
reports. Run the coveragereport.py module with the source being you coverage output
and the destination, your newly created reports directory. See the following:

mkdir $HOME/coverage/reports
python z3c.coverage/src/z3c/coverage/coveragereport.py $HOME/coverage $HOME/coverage/reports

You should now be able to open $HOME/coverage/reports/all.html within your browser
for a pretty output like the one below.

[image: Screenshot of text verification]

With this information available, you can start to make conclusions about how you may
work your way towards better coverage of your product.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	PloneTestCase tests »

Testing examples

description

Here, we list a few packages and projects that demonstrate good test coverage

Testing is best learned by example. It can be very instructive to read
through the tests written by other developers and learn what they test,
what they don’t test and how they write their tests.

	example.tests [http://dev.plone.org/collective/browser/examples/example.tests/trunk],
which we have already mentioned, contains an
example of each of the different types of tests covered in this
tutorial. The test setup code is well-commented, with the intention
that this package should provide good boilerplate for developers
setting up a new project.

	Plone itself [http://dev.plone.org/plone/browser/Plone/trunk/Products/CMFPlone/tests]
has more than 1,600 tests at the time of writing.
Most of these are integration tests using unit-test syntax with
PloneTestCase.

	RichDocument [http://dev.plone.org/collective/browser/RichDocument/trunk/tests/testSetup.py]
has a basic test_setup.py integration test. This is
a good example of the kind of testing you may want to do to ensure
that your package installs cleanly.

	borg.project [http://dev.plone.org/collective/browser/borg/components/borg.project/trunk]
contains a
README.txt [http://dev.plone.org/collective/browser/borg/components/borg.project/trunk/borg/project/README.txt] file with an integration
doctest demonstrating how it is used. It has only a single test
module, tests.py [http://dev.plone.org/collective/browser/borg/components/borg.project/trunk/borg/project/tests.py], which performs the same setup as base.py and
test_integration_doctest.py from example.tests.

	Many of the tests in the
plone.app.controlpanel [http://dev.plone.org/plone/browser/plone.app.controlpanel/trunk/plone/app/controlpanel/tests]
package use basic test-browser functional tests to verify that the Plone control panels
work as expected.

Feel free edit or comment on this page if you have more examples to add!

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

Zope 2 internals

This documentation will attempt to explain some of Zope's internals. It may be
useful for debugging purposes, or simply to better understand how Zope works.

The guide pertains to Zope 2.13.

If you only want to know how to use the APIs and features described below,
you are probably better served reading the
Zope Developer's Guide [http://docs.zope.org/zope2/zdgbook/].

	Startup and product initialisation
	What happens on Zope startup?

	How are products installed?

	How do Zope 2 product constructors work?

	Requests and traversal
	What happens when a request is received?

	How does publication traversal work?

	How does path traversal work?

	Security
	Declaring object roles and attribute permissions

	Determining which roles have a given permission

	Checking a permission in a context

	Validating access to an object

	Changing permissions

	Global and local roles

	Emergency users

	The ExtensionClass
	What is an ExtensionClass?

	How does acquisition work?

	Zope's many hooks
	Process lifecycle

	ZODB connection lifecycle

	Request lifecycle

	Publication

	Traversal

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 internals »

Startup and product initialisation

Description

What happens on Zope startup, and how do Zope 2 products and
constructors work?

	What happens on Zope startup?

	How are products installed?

	How do Zope 2 product constructors work?

What happens on Zope startup?

A startup script (e.g. bin/instance fg) calls Zope 2's run.py in an
appropriate interpreter context (i.e. one that has the necessary packages on
sys.path). This invokes a subclass of ZopeStarter from
Zope2.Startup:

import Zope2.Startup
starter = Zope2.Startup.get_starter()
opts = _setconfig()
starter.setConfiguration(opts.configroot)
starter.prepare()
starter.run()

There are various variants that allow different ways to supply configuration.

There are two versions of the starter, one for Unix and one for Windows. It
performs a number of actions during the prepare() phase:

def prepare(self):
 self.setupInitialLogging()
 self.setupLocale()
 self.setupSecurityOptions()
 self.setupPublisher()
 # Start ZServer servers before we drop privileges so we can bind to
 # "low" ports:
 self.setupZServer()
 self.setupServers()
 # drop privileges after setting up servers
 self.dropPrivileges()
 self.setupFinalLogging()
 self.makeLockFile()
 self.makePidFile()
 self.setupInterpreter()
 self.startZope()
 self.serverListen()
 from App.config import getConfiguration
 config = getConfiguration()
 self.registerSignals()
 # emit a "ready" message in order to prevent the kinds of emails
 # to the Zope maillist in which people claim that Zope has "frozen"
 # after it has emitted ZServer messages.

 logger.info('Ready to handle requests')
 self.sendEvents()

Mostly, this is about using information from the configuration (which is read using
ZConfig from a configuration file, or taken from the global defaults) to
set various module-level variables and options.

The startZope() call ends up in Zope2.App.startup.startup(), which
performs a number of startup tasks:

	Importing products (OFS.Application.import_products())

	Creating a ZODB for the chosen storage (as set in the ZConfig
configuration). This is stored in both Globals.DB and Zope2.DB, and is
configured using a dbtab (mount points specification) read from the configuration file.
When this is done, the event zope.processlifetime.DatabaseOpened is
notified.

	Setting the ClassFactory on the ZODB instance to
Zope2.App.ClassFactory.ClassFactory. This is a function that will attempt
to import a class, and will return OFS.Uninstalled.Broken if the class
cannot be imported for whatever reason. This allows for somewhat graceful
recovery if symbols that are persistently referenced in the ZODB disappear.

	Loading ZCML configuration from site.zcml. This in turn loads ZCML for all
installed products in the Products.* namespace, and ZCML slugs. The
load_zcml() call also sets up a Zope2VocabularyRegistry.

	Creating the app object, an instance of
App.ZApplication.ZApplicationWrapper that wraps a
OFS.Application.Application. The purpose of the wrapper is to:

	Create an instance of the application object at the root of the ZODB on
__init__() if it is not there already. The name by default is Application.

	Implement traversal over this wrapper (__bobo_traverse__) to open a ZODB
connection before continuing traversal, and closing it at the end of the
request.

	Return the persistent instance of the true application root object when
called.

The wrapper is set as Zope2.bobo_application, which is used when the
publisher publishes the Zope2 module — more on publication later.

	Initialising the application object using OFS.Application.initialize().
This defensively creates a number of items:

def initialize(self):
 # make sure to preserve relative ordering of calls below.
 self.install_cp_and_products()
 self.install_tempfolder_and_sdc()
 self.install_session_data_manager()
 self.install_browser_id_manager()
 self.install_required_roles()
 self.install_inituser()
 self.install_errorlog()
 self.install_products()
 self.install_standards()
 self.install_virtual_hosting()

	Notfiying the event zope.processlifetime.DatabaseOpenedWithRoot

	Setting a number of ZPublisher hooks:

Zope2.zpublisher_transactions_manager = TransactionsManager()
Zope2.zpublisher_exception_hook = zpublisher_exception_hook
Zope2.zpublisher_validated_hook = validated_hook
Zope2.__bobo_before__ = noSecurityManager

The run() method of the ZopeStarter then runs the main startup loop
(note: this is not applicable for WSGI startup using make_wsgi_app() in
run.py, where the WSGI server is responsible for the event loop):

def run(self):
 # the mainloop.
 try:
 from App.config import getConfiguration
 config = getConfiguration()
 import ZServer
 import Lifetime
 Lifetime.loop()
 sys.exit(ZServer.exit_code)
 finally:
 self.shutdown()

The Lifetime module uses asyncore to poll for connected sockets until
shutdown is initiated, either through a signal or an explicit changing of the
flag Lifetime._shutdown_phase, which is checked for each iteraton of the
loop.

Sockets are created when new connections are received on a defined server. When
using the built-in ZServer (i.e. not WSGI), the default HTTP server is defined
in ZServer.HTTPServer.zhttp_server, which derives from
ZServer.medusa.http_server, which in turn is an asyncore.dispatcher.

Servers are created in ZopeStarter.setupServers(), which loops over the
ZConfig-defined server factories and call their create() metohod. The
server factories are defined in ZServer.datatypes. (The word datatypes
refers to ZConfig data types.)

Note also that some of the configuration data is mutated in the prepare()
method of the server instance, which is called from
Zope2.startup.handlers.root_handler() during the configuration phase. These
handlers are registered with a call to Zope2.startup.handlers.handleConfig()
during the _setconfig() call in run.py.

How are products installed?

During application initialisation, the method install_products() will call
the method OFS.Application.install_products(). This will record products
in the Control_Panel if this is enabled in zope.conf, and call the
initialize() function for any product that has one with a product context
that allows the product to register constructors for the Zope runtime.

install_products() loops over all product directories (configured via
zope.conf and kept in Products.__path___ by
Zope2.startup.handlers.root_handler()) and scans these for product
directories with an __init__.py. For each, it calls
OFS.Application.install_product. This will:

	Import the product as a Python package

	Look for an attribute misc_ at the product root, which is used to store
things like icons. If it is a dictionary, wrap it in an OFS.misc_.Misc_ object,
which is just a simple, security-aware class. Then store a copy of it as an
attribute on the object Application.misc_. The attribute name is the
product name. This allows traversal to the misc_ resources.

As an example of the use of the use of misc_, consider this dictionary set up
in Products/CMFPlone/__init__.py:

misc_ = {'plone_icon': ImageFile(
 os.path.join('skins', 'plone_images', 'logoIcon.png'),
 cmfplone_globals)}

This can now be traversed to as /misc_/CMFPlone/plone_icon by virtue
of the misc_ attribute on the application root.

	Next, create an App.ProductContext.ProductContext to be used during
product initialisation. This is passed a product object, a handle to the
application root, and the product's package.

There are two ways to obtain the product object:

	If persistent product installation (in the Control_Panel) is enabled
in zope.conf, call App.Product.initializeProduct. This will
create a App.Product.Product object and save it persistently in
App.Control_Panel.Products. It also reads the file version.txt from
the product to determine a version number, and will change the persistent
object (at Zope startup) if the version has changed. The product object is
initialised with a product name and title and is used to store basic
information about the product. The product object is then returned.

	If persistent product installation is disabled (the default), simply
instantiate a FactoryDispatcher.Product object (which is a simpler,
duck-typing-equivalent of App.Product.Product) with the product name.

	If the product has an initialize() method at its root, call it with the
product context as an argument.

Once old-style products are initialised, any packages outside the Products.*
namespace that want to be initialised are processed. The
<five:registerProduct /> ZCML directive stores a list of packages to be
processed and any referenced initialize() method in the variable
OFS.metaconfigure._packages_to_initialize, accessible via the function
get_packages_to_initialize() in the same module. install_products()
loops over this list, calling install_package() for each. This works very
much like install_product(). When it is done, it calls the function
OFS.metaconfigure.package_initialized() to remove the package from the
list of packages to initalise.

How do Zope 2 product constructors work?

Products can make constructors available to the Zope runtime. This is what
powers the Add drop-down in the ZMI, for instance. They do so by calling
registerClass() on the product context passed to the initialize()
function. This takes the following main arguments:

	instance_class

	The class of the object that will be created.

	meta_type

	A unique string representing kind of object being created, which appears in
add lists. If not specified, then the class meta_type will be used.

	permission

	The permission name for the constructors. If not specified, a permission name
generated from the meta type ("Add <meta_type>") will be used.

	constructors

	A list of constructor methods. An element in the list can be a callable object
with a __name__ attribute giving the name the method should have in the
product, or the a tuple consisting of a name and a callable
object. The first method will be used as the initial method called
when creating an object through the web (in the ZMI).

It is quite common to pass in two constructor callables: one that is a
DTMLMethod or PageTemplateFile that renders an add form and one that
is a method that actually creates and adds an instance. A typical example from
Products.MailHost is:

manage_addMailHostForm = DTMLFile('dtml/addMailHost_form', globals())

def manage_addMailHost(self,
 id,
 title='',
 smtp_host='localhost',
 localhost='localhost',
 smtp_port=25,
 timeout=1.0,
 REQUEST=None,
):
 """ Add a MailHost into the system.
 """
 i = MailHost(id, title, smtp_host, smtp_port)
 self._setObject(id, i)

 if REQUEST is not None:
 REQUEST['RESPONSE'].redirect(self.absolute_url()+'/manage_main')

These are then referenced in initialize():

def initialize(context):
 context.registerClass(
 MailHost.MailHost,
 permission='Add MailHost objects',
 constructors=(MailHost.manage_addMailHostForm,
 MailHost.manage_addMailHost),
 icon='www/MailHost_icon.gif',
)

The form will be called with a path like
/<container>/manage_addProduct/MailHost/manage_addMailHostForm. The
<form /> on this page has a relative URL action="manage_addMailHost",
which means that when the form is submitted, the manage_addMailHost()
function is called. id, title and the other variables are passed as
request parameters and marshalled (by mapply() — see below) into function
arguments, and the REQUEST is implicitly passed (again by mapply()).

	icon

	The name of an image file in the package to be used for instances. The class
icon attribute will be set automagically if an icon is provided.

	permissions

	Additional permissions to be registered.

	visibility

	The string "Global" if the object is globally visible, or None
otherwise.

	interfaces

	A list of the interfaces the object supports. These can be used to filter
addable meta-types later.

	container_filter

	A function that is called with an ObjectManager object as the only
parameter, which should return a truth value if the object is happy to be
created in that container. The filter is called before showing
ObjectManager's Add list, and before pasting (after object copy or
cut), but not before calling an object's constructor.

The main aims of this method are to register some new permissions, store
some information about the class in the variable Products.meta_types, and
create a FactoryDispatcher that allow traversal to the constructor method.

	If an icon and instance_class are supplied, set an icon attribute
on instance_class to a path like misc_/<productname>/<iconfilename>.

	Register any permissions by calling
AccessControl.Permission.registerPermissions() (described later).

	If there is no permission provided, generate a permission name as the
string "Add <meta_type>", defaulting to being granted to Manager only.
Register this permission as well.

	Grab the name of the first constructor passed in the constructors tuple.
This can either be the function's __name__, or a name can be provided
explicitly by passing as the first list element a tuple of
(name, function).

	Try to obtain the value of the symbol __FactoryDispatcher__ in the
package root (__init__.py) if set. If not, create a class on the fly with
this name by deriving from App.FactoryDispatcher.FactoryDispatcher and
set this onto the product package as an attribute named
__FactoryDispatcher__.

	Set an attribute _m in the package root if it does not exist to an
instance of AttrDict wrapped around the factory dispatcher. This is a
bizzarre construction best described by its implementation:

class AttrDict:

 def __init__(self, ob):
 self.ob = ob

 def __setitem__(self, name, v):
 setattr(self.ob, name, v)

	If no interfaces were passed in explicitly, obtain the interfaces
implemented by the instance_class, if provided.

	Record information about the primary constructor in the tuple
Products.meta_types by appending a dictionary with keys:

	name

	The meta_type passed in or obtained from the instance_class.

	action

	A path segment like manage_addProduct/<productname>/<constructorname>.
for the initial (first) constructor. More on manage_addProduct below.

	product

	The name of the product, without the Product. prefix.

	permission

	The add permission passed in or generated.

	visibility

	Either "Global" or None as passed in to the method.

	interfaces

	The list of interfaces passed in or obtained from instance_class.

	instance

	The instance_class as passed in to the method.

	container_filter

	The container_filter as passed in to the method.

	Next, put the initial constructor and any further constructors passed in onto
the _m pseudo-dictionary (which really just means setting them as
attributes on the FactoryDispatcher-subclass). The appropriate
<methodname>__roles__ attribute is set to a PermissionRole describing
the add permission as well.

	If an icon filename was passed in, construct an ImageFile to read the
icon file from the package and stash it in the OFS.misc_.misc_ class so
that it can be traversed to later.

Note that previously, the approach taken was to inject factory methods into
the class OFS.ObjectManager.ObjectManager, which is the base class for most
folderish types in Zope. This is still supported for backwards compatibility,
by providing a legacy tuple of function objects, but is deprecated.

Products.meta_types is used in various places, most notably in
OFS.ObjectManager.ObjectManager in the methods all_meta_types() and
filtered_meta_types().

The former returns all of Products.meta_types (plus possibly some legacy
entries in _product_meta_types on the application root object, used to
support through-the-web defined products via
App.ProductRegistry.ProductRegistry), applying the container_filter if
available and optionally filtering by interfaces.

The latter is used to power the Add widget in the ZMI by creating a
<select /> box for all meta_types the user is allowed to add by checking
the add permission of each of the items returned by all_meta_types(). The
action stored in the meta_types list is then used to traverse to and
invoke a constructor.

Note that subclasses of ObjectManager may sometimes override
all_meta_types() to set a more restrictive list of addable types. They may
also add to the list of the default implementation by setting a meta_types
class or instance variable containing further entries in the same format as
Products.meta_types.

Finally, let us consider the manage_addProduct method seen in the action
used to traverse to a registered constructor callable (e.g. an add form) using
a path such as /<container>/manage_addProduct/<productname>/<constructname>.
It is set on OFS.ObjectManager.ObjectManager, and is actually an instance of
App.FactoryDispatcher.ProductDispatcher. This is an
implicit-acquisition-capable object that implements __bobo_traverse__ as
follows:

	Attempt to obtain a __FactoryDispatcher__ attribute from the product
package (from the name being traversed to), defaulting to the standard
FactoryDispatcher class in the same module.

	Find a persistent App.Product.Product if there is one, or create a
simple App.FactoryDispatcher.Product wrapper if persistent product
installation has not taken place.

	Create an instance of the factory dispatcher on the fly, passing in the
product descriptor and the parent object (i.e. the container).

	Return this, acquisition-wrapped in self, to allow traversal to continue.

Traversal then continues over the FactoryDispatcher. In the version of
this created by registerClass(), each constructor is set as an attribute
on the product-specific dispatcher, with appropriate roles, so traversal will be
able to obtain the constructor callable.

There is also a fallback __getattr__() implementation in the base
FactoryDispatcher class, which will inspect the _m attribute on the
product package for an appropriate constructor, and is also able to obtain
constructor information from a persistent Product instance (from
Control_Panel if there was one). This supports a (legacy) approach where
instead of calling registerClass() to register constructors, constructors
are set in a dict called _m at the root of the product.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 internals »

Requests and traversal

Description

How does Zope handle requests and translate paths to
published objects?

	What happens when a request is received?

	How does publication traversal work?

	How does path traversal work?

What happens when a request is received?

A request is received either via a WSGI pipeline or the Medusa web server. Using
Medusa, it first hits handle_request() in the zhttp_handler used by
zhttp_server, which consumes the request until it has enough to act on.
At this point continue_request() is called. This constructs a
ZPublisher.HTTPRequest from the Medusa http_request environment and
prepares a ZServerHTTPResponse, a subclass of ZPublisher's
HTTPResponse.

The actual request is delegated to a threadpool. In a non-WSGI setup, this
is managed by ZServer.PubCore.ZRendezvous.ZRendevous (note the typo in the
module name!). This keeps track of the requests and (skeletal) responses to
be processed, and passes them to an instance of a
ZServer.PubCore.ZServerPublisher for handling. ZRendevous also deals
with thread locking.

The ZServerPublisher will call either ZPublisher.publish_module or
ZPublisher.WSGIPublisher.publish_module, depending on the deployment mode,
with the request and the response. The non-WSGI version also takes a module
name to publish, which is Zope2. This is a relic of the Bobo publisher,
which could publish other modules with a bobo_application variable set
(recall that this variable was set in the startup phase described above).

The remainder of this section will describe the non-WSGI publisher. The WSGI
publisher performs the same actions, but deals in WSGI environs and response
body iterators.

There are two versions of publish_module, one with profiling and one
without. publish_module_standard (without profiling) performs the following
actions:

	Set the default ZTK skin on the request, by adapting the request to
IDefaultSkin.

	Call publish(), which does the real publication.

	Handle errors.

	Write the response body to stdout, which is wired up to be the HTTP
response stream.

The more interesting function is publish(). This starts by calling
get_module_info() to get the information about the published module
(which, recall, is almost always going to be Zope2). The results are
cached, so this will only do its work once:

(bobo_before,
 bobo_after,
 object,
 realm,
 debug_mode,
 err_hook,
 validated_hook,
 transactions_manager) = get_module_info(module_name)

The returned variables are:

	bobo_before, set via a module level variable __bobo_before__. This is
a callable that will be invoked immediately before publication.

	bobo_after, set via a module level variable __bobo_after__. This is a
callable that will be invoked immediately after publication.

	object to publish, which defaults to the module itself, but can be
set via the module-level variable bobo_application (or web_objects)

	realm, set via the module level variable __bobo_realm__, or a global
default which can be set the ZConfig configuration file.

	debug_mode, a boolean set using the module level variable
__bobo_debug_mode__.

	err_hook, set via the module level variable zpublisher_exception_hook.
This is used to handle error responses (more below).

	validated_hook, set via the module level variable
zpublisher_validated_hook. This is used to initialize a security manager once authentication and authorization have taken place (more below).

	transactions_manager, set via the module level variable
zpublisher_transactions_manager, but defaulting to the
DefaultTransactionsManager which uses the transaction API to manage
transactions.

The publisher then performs the following steps:

	Notify the ZPublisher.pubevents.PubStart event.

	Create a new zope.security interaction.

	Call processInputs() on the request to process request parameters and
the request body so that the Zope request object works as advertised.

	If the request contains a key SUBMIT with the value cancel and
a key cancel_action with a path, a Redirect exception is raised,
which will cause an HTTP 302 redirect to be raised.

	Set debug_mode and realm on the response, as returned by
get_module_info().

	If bobo_before() is set, it is called with no arguments.

	Set the initial value for request['PARENTS'] to be the published object. This will be the ZApplicationWrapper set during the startup
phase.

	Begin a transaction using the transactions_manager.

	Traverse to the actual object being published (e.g. a view) by calling
object=request.traverse(path, validated_hook=validated_hook), where
path is request['PATH_INFO']. More on traversal below.

	Notify the ZPublisher.pubevents.PubAfterTraversal event.

	Note the path and authenticated user in the transaction.

	Call the object being pusblished using mapply():

result=mapply(object, request.args, request,
 call_object,1,
 missing_name,
 dont_publish_class,
 request, bind=1)

The ZPublisher.mapply.mapply() method is somewhat complicated, but in
essence all it does is to call either a published method, or a published
instance with a __call__() method.

request.args can contain positional arguments supplied in an XML-RPC call,
but is usually empty. The request is passed to act as a dictionary of
keyword arguments, which allows request parameters to be turned into
method parameters to a published method.

The other parameters are about policy — we call any object (e.g. a method or
object with a __call__ method) to resolve it, but we don't publish class
objects (which would in effect instantiate them). We do allow binding of
self for methods on objects, and we pass the request as context for
debugging.

	Set the result of the mapply() call as the response body. As a marker, the response object itself can be returned from the callable that mapply() invokes to bypass this behavior, i.e. if the published object set the response body itself.

	Notify the ZPublisher.pubevents.PubBeforeCommit event.

	Commit the transaction using the transactions_manager.

	End the zope.security interaction.

	Notify the ZPublisher.pubevents.PubSuccess event.

	Return the response object, which is then used by the ZServer to write to stdout.

If an exception happens during this process, the err_hook is called. This
is allowed to raise a Retry exception. Regardless, the event
ZPublisher.pubevents.PubBeforeAbort is notified before the transaction is
aborted, and then ZPublisher.pubevents.PubFailure is raised after the
zope.security interaction is ended.

If the request supports retry, it will be retried by cloning it and calling
publish recursively. All HTTP requests support retry, but only up to a limit
of retry_max_count, which by default is 3. Retry is mainly used to retry in
the case of write-conflict errors.

If there is no error hook installed, a simple abort is encountered, with no
retry.

The default error hook is an instance of
Zope2.startup.ZPublisherExceptionHook. This handles exceptions by performing
the following checks:

	SystemExit or Redirect exceptions are re-raised.

	A ConflictError, which indicates a write-conflict in the ZODB, is turned
into a Retry exception so that request can be retried.

	Other exception are stored in the __error_log__ acquired from the
published object, if possible.

	If a view named index.html is registered with the exception type as its
context, this is resolved and returned as the response.

	If the published object or any of its acquisition parents have a method
raise_standardErrorMessage(), this will be called to create an error
message instead of using the view approach. This is called with a first
argument of whichever object in the acquisition chain has an attribute
standard_error_message, as well as the request and traceback information.

When handling an exception by returning an error message, the
ZPublisherExceptionHook will call response.setStatus() with the
exception type (class) as an argument. The name of the exception class is
then used to look up the status code in the status_reasons dictionary in
ZPublisher.HTTPResponse. Hence, raising an exception called NotFound
will automatically set the response code to 404.

How does publication traversal work?

Traversal is the process during which the path elements of a URL are resolved
to an actual object to publish (there is also path traversal, used in TAL
expressions in page templates, which is similar, but implemented differently —
see below).

Traversal is invoked during object publication, which calls
request.traverse() with the path from the request (the PATH_INFO CGI
variable). This method is inordinately complicated, mostly because it caters for
a lot of edge cases. The basic idea is pretty simple, though: each path element
represents an item to traverse to, from the preceding object (its parent).
Traversal can mean dictionary-like access (__getitem__), attribute-like access
(__getattr__), or one of a number of different hooks for overriding or extending traversal.
Once the final element on the path is found, the user's access to it is validated, before it is returned to be passed to mapply().

Here are the gory details:

	Clean up the path up by stripping leading and trailing slashes, explicitly
disallowing access to things like REQUEST, aq_base and aq_self,
and resolving . or .. elements as in filesystem paths.

	Check if the top-level object (the application root) has a
__bobo_traverse__ method (it almost certainly will — as shown above, there
is a wrapper around the application root that implements this method to open
and close the ZODB connection upon traversal). If so, call it to obtain a new
top level object (which will be the real Zope application root in the ZODB).

	Aquisition-wrap the top-level object in a RequestContainer. This is the
fake root object that makes it possible to acquire the attribute REQUEST
from any traversed-to context.

	Record the request variable ACTUAL_URL, which is the inbound URL plus
the original path. Hence, this variable provides access to the URL as the
user saw it.

	Set up (and later, pop from) the request variable
TraversalRequestNameStack. This is a stack of path elements still to be
processed. Traversal hooks sometimes use this to look ahead at the path
elements that have not been traversed to and, in some cases, modify the
stack to trick traversal into going somewhere other than what the inbound
path specified.

	In a loop, process the traversal name stack:

	Check if the current object (initially the application root) has a method
__before_publishing_traverse__. If so, call it with the request as an
argument. This hook is used by many parts of Zope, CMF and Plone to support
things like content object method aliases, setting the CMF skin from the
request, or making the portal_factory tool work. This method cannot
easily change the traversal path, except by modifying
request['TraversalRequestNameStack'].

	If there are more elements in the path, pop the next element.

	Append this to the variable request['URL'], which contains the traversal
URL. Various traversal tricks may mean this is not quite the same as what
the user sees in their address bar, but it should be a valid, traversable URL.

	Attempt to traverse to the next object using the name popped from the path
stack. This takes place in the traverseName() method of the request:

	If the name starts with a + or an @, parse it as a traversal
namespace. (A name starting with an @ is taken as a shorthand for
++view++<name>, i.e. an entry in the ++view++ traversal namespace.
Other namespaces include ++skin++ and ++etc++.) If a traversal
namespace is found, attempt to look up an adapter from the current
traversal object and the request to
zope.traversing.interfaces.ITraversable with a name matching the
traversal namespace (e.g. view). Then call its traverse() method
with the name of the next entry on the traversal stack as an argument.
This is expected to return an object to traverse to next. If this
succeeds, acquisition-wrap the returned object in the parent object.

Note: As this implies, objects returned from the traverse()
method of an ITraversable adapter are not expected to be
acquisition-wrapped. This is in contrast to objects returned by
__bobo_traverse__(), __getitem__(), __getattr__(), or a
custom IPublishTraverse adapter (see below), which are expected
to be wrapped.

	If there is no namespace traversal adapter, find an IPublishTraverse
object in one of three places:

	If the current traversal object implements it directly, use that;

	if there is an adapter from the current object
and the request to IPublishTraverse, use that; or,

	fall back to the DefaultPublishTraverse implementation found in
ZPublisher.BaseRequest.

Then call the publishTraverse() method
to find an object to traverse to and return that (without
acquisition-wrapping it).

Implementing IPublishTraverse is a common way to allow further
traversal from a view, with paths like .../@@foo/some/path, where
the @@foo view either implements or is adaptable to
IPublishTraverse.

DefaultPublishTraverse is used in most cases, either directly or as a
fallback from custom implementations. It works like this:

	If the name starts with an underscore, raise a Forbidden exception

	If the object has a __bobo_traverse__ method, call it with the
request and the name of the next entry on the traversal stack as
arguments. It may return either an object, or a tuple of objects.
In the latter case, amend the request parents list as if traversal had
happened over all the elements in the tuple except the last one, and
treat that as the next object.

	If the __bobo_traverse__ call fails by raising an
AttributeError, KeyError or NotFound exception, attempt
to look up a view with the traversal name (which would have been given
without the explicit @@ prefix). If this succeeds, set the status
code to 200 (the preceding failure may have set it to 404),
acquisition-wrap the view if applicable, and return it.

	If there was no __bobo_traverse__, or if it raised the special
exception ZPublisher.interfaces.UseTraversalDefault, try the
following:

	Attempt to look up the name as an attribute of the current object,
using aq_base (i.e. explicitly not acquiring from parents of
the current object). If this succeeds, return the attribute, which
is expected to be acquisition-wrapped if applicable (i.e. the
parent object extends Acquisition.Implicit or
Acquisition.Explicit).

	Next, try to look up a view using the same semantics as above

	Next, try getattr() without the aq_base check, i.e.
allowing acquired attributes.

	Next, try __getitem__() (dictionary-like) access.

	If that fails, raise a KeyError to indicate the object could
not be found (this is later turned into a 404 response).

	If we now have a sub-object, check that it has a docstring. If it
does not, raise a Forbidden exception.

The requirement for a docstring is an ancient and primitive security
restriction, since Zope can be used to publish all kinds of Python
objects. It is mostly a nuisance these days, but note that views and
custom ITraversable and IPublishTraverse traversal do not have
this restriction.

	Next, raise a Forbidden exception if traversal resolved a
primitive or built-in list, tuple, set or dict — these are not
directly traversable.

	Finally, return the object.

	If a KeyError, AttributeError or NotFound exception is raised
during name resolution, return a 404 response by raising an exception.
Similarly, if a Forbidden exception is raised, set and return a 403
response.

	Once the end of the path is reached, we have the most specific item
mentioned in the (possibly mutated) path. However, this may choose to
delegate to another object (usually a subobject) through a mechanism known
as "browser default", which is similar to the way web servers often serve
an index.html file by default when traversing to a folder.

A browser publisher is described by the interface IBrowserPublisher,
which is a sub-interface of IPublishTraverse and is implemented by the
DefaultPublishTraverse class. Again, the IBrowserPublisher for the
traversed-to object is found in one of three ways:
* the object may implement it itself; or
* it may be adaptable, with the request, to this interface; or
* the fallback DefaultPublishTraverse may be used.
The browserDefault() method on the IBrowserPublisher is then
called with the request as an argument.

The return value from browserDefault() is a tuple of a parent object
(usually the most recently traversed-to object, i.e. self.context in the
adapter) and a tuple of further names to traverse to from this parent.

The default implementation in DefaultPublishTraverse does this:

	If the object has a method __browser_default__(), delegate to this.

	If an IDefaultViewName has been registered for the context in ZCML,
look up and use this. This is deprecated, however.

	Otherwise, return self.context, (), i.e. no further traversal
required.

	If a further path is returned and it has more than one element, add its
elements to the TraversalRequestNameStack and continue traversal as if
these elements had been part of the original path all along.

	If there is only one element in the further path returned by
browserDefault(), use this as the next entry name and continue traversal
to this.

	If no further path is used, fall back on the default method name
index_html() (applicable for HTTP GET and POST requests — there
is special handling of other HTTP verbs for WebDAV that we won't go into
here) and continue traversal to this.

	If there is no index_html() method, use the traversed-to object itself
as the final entry, so break out of the traversal loop. We always end up
here eventually: if the browser default element or index_html() method
is the last item we traverse to, eventually we reach something publishable.

This object will most likely be called (through mapply()), so we ensure
the roles used in security checks are obtained from the __call__()
method of the traversed-to object (note: function and method objects also have
a __call__() in Python).

	Once we have reached the end of the traversal stack (phew!), we make sure
the parents list is in the right order (it is built in reverse order),
even if there was a failure. Hence, request['PARENTS'] is always a useful
indicator of what objects have been traversed over, with the last item being
the special request container and the penultimate item being the application
root.

	We then set request['PUBLISHED'] to be the published callable. Note that
this is usually a view or page template, though for content types like
File or Image it is the index_html() method of the content object
itself.

	Next, we validate that the current user has sufficient permissions to call
the published object. If not, a 403 response is returned by calling
response.unauthorized().

The authentication works as follows:

	The roles required to access the traversed-to object are fetched by calling
getRoles(), first on the application root, and, if applicable, on the
__call__() method of the traversed-to object.

	A user folder (i.e. acl_users) is obtained by looking for the special
attribute __allow_groups__ on the published object or one of its
parents. This attribute is set by user folders on their parent container
when they are added.

	The validate() method of the user folder is called (there is a fallback
called old_validate(), used if there is no user folder, but that should
never happen in a modern Zope installation). This either returns a user
object or None, if the user is not found in this user folder, or there
is a user, but the user cannot be authorized by this user folder.

	If None is returned, the search continues up the list of traversal parents until a suitable user folder is found. If no such user folder is found, an Unauthorized exception is raised, unless there are no security declarations on the context.

	If a user with permissions is found, and the validated_hook is set
(found via get_module_info() as described above), it is called with the
request and user as arguments. The standard validated_hook calls
newSecurityManager() with the user, which sets the security context for
the remainder of the request.

	The user is then saved in the request variable AUTHENTICATED_USER. The
true traversal path is saved in the request variable
AUTHENTICATION_PATH.

	Finally, if any post-traverse functions have been registered (by using the
post_traverse() method of the request to register functions and optional
static arguments), they are called in the order they were registered. If any
post-traverse function returns a value other than None, no further
post-traverse functions are called, and the return value is used as the return
value of the traverse() function, discarding the actual object that was
traversed to and security checked.

How does path traversal work?

Path traversal is invoked when using path expressions in page templates or
action expressions (e.g. context/Title). It may be invoked explicitly in
code using the methods restrictedTraverse() (which performs security checks)
or unrestrictedTraverse() (which does not), defined in
OFS.Traversable.Traversable and mixed into most persistent items in Zope.
This is semantically similar to publication (URL) traversal as described above,
but is not identical — see below.

All the logic is in the unrestrictedTraverse() method, which takes an
optional argument restricted that is set to True when called via
restrictedTraverse(). It takes a path string or element list as an
argument, and optionally a default to return if traversal fails. If no default
is specified, an exception will be raised if traversal fails. This may either be
an AttributeError, KeyError or NotFound exception, depending on what
type of traversal failed.

If restricted is True, unrestrictedTraverse() will perform a
security check using getSecurityManager().validate() for every step of
traversal. This is different to URL traversal, which only validates at the end
of traversal.

The implementation does the following:

	Strip any trailing slash from the path.

	If the path starts with a slash, begin traversal from the physical application
root. Otherwise, start from self. If performing restricted traversal from
the application root, validate access to it.

	For each slash-separated name element of the path:
	If the name starts with an underscore, raise a zExceptions.NotFound
exception — traversal to names starting with an underscore is never allowed.

	If the name is .., get the acquisition parent of the current traversal
object and continue traversal from here after validating access if
applicable.

	Otherwise, if the name starts with a + or @, perform traversal
namespace lookup as described for publication traversal above. If this
throws a LocationError, fail with an AttributeError. If it succeeds,
acquisition-wrap the result if possible and validate access to it if
applicable before continuing traversal from this object.

	Otherwise, if the object has a __bobo_traverse__() hook, invoke it to
get the next object to traverse to. If this succeeds, validate access to the
result if applicable, taking into account that it could be a method or
non-security aware object, and that it may or may not be
acquisition-wrapped. Then continue traversal from this object.

	If there was no __bobo_traverse__(), or if it returned or raised the
sentinel ZPublisher.interfaces.UseTraversalDefault, attempt to obtain a
non-acquired attribute of the current object with the applicable name. If
one is found, continue traversal from this. If security checking is being
performed, use guarded_getattr() from AccessControl.ZopeGuards to
get the attribute, which may raise Unauthorized. (This is
the special getattr() that is also used for all attribute access by
untrusted Python code.) Otherwise, use standard getattr().

	Otherwise, attempt dictionary-like (__getitem__) access and validate the
result if applicable before continuing traversal from this object.

	If any of the above failed with an AttributeError, NotFound or
KeyError, attempt to look up a view on the current traversal object with
the given name. If one is found, acquisition-wrap it if possible and
validate access if applicable, before continuing traversal from the view
instance.

	If there is no view, but there was a __bobo_traverse__, fail by re-
raising the original exception. The logic behind this is that if there is a
__bobo_traverse__(), we should not attempt to acquire attributes.

	Assuming we still don't have a value and there was no
__bobo_traverse__(), attempt to acquire an attribute, using either
getattr() or guarded_getattr() depending on whether security checks
are being made and continue traversal from the result if this succeeds.

	If we reach the end of the path, return the most recently traversed-to object.

	If an exception of any kind (other than a ConflictError) is thrown and a
default was passed in, return this rather than letting the exception
bubble up to the caller.

Note: This logic does not check for the publication/request-orientated
IPublishTraverse or IBrowserPublisher hooks, although they do allow
traversal to a view (e.g. context.restrictedTraverse('@@some-view')).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 internals »

Security

Description

How does Zope handle permissions, roles and users?

Much of Zope security is implemented in C, for speed, but there is a Python
implementation in AccessControl.ImplPython, which can be enabled by setting
security-policy-implementation python in zope.conf.

Note: We will not discuss RestrictedPython, used to apply security restrictions
to through-the-web python scripts and page templates, here.

	Declaring object roles and attribute permissions

	Determining which roles have a given permission

	Checking a permission in a context

	Validating access to an object

	Changing permissions

	Global and local roles

	Emergency users

Declaring object roles and attribute permissions

The permissions required to access a given attribute are stored on classes and
modules in a variable called __ac_permissions__. This contains a tuple of
tuples that map a permission name to a list of attributes (e.g. methods)
protected by that permission, e.g.:

__ac_permissions__ = (
 ('View management screens', ['manage',
 'manage_menu',
 'manage_main',
 'manage_copyright',
 'manage_tabs',
 'manage_propertiesForm',
 'manage_UndoForm']),
 ('Undo changes', ['manage_undo_transactions']),
 ('Change permissions', ['manage_access']),
 ('Add objects', ['manage_addObject']),
 ('Delete objects', ['manage_delObjects']),
 ('Add properties', ['manage_addProperty']),
 ('Change properties', ['manage_editProperties']),
 ('Delete properties', ['manage_delProperties']),
 ('Default permission', ['']),
)

The roles required to access an object (e.g. a content object), are stored
in a class or instance variable __roles__. This may contain a tuple or list
of role names, an AccessControl.PermissionRole.PermissionRole object, or one
of the following special variables:

	AccessControl.SecurityInfo.ACCESS_NONE

	Inaccessible from any context.

	AccessControl.SecurityInfo.ACCESS_PRIVATE

	Accessible only from Python code.

	AccessControl.SecurityInfo.ACCESS_PUBLIC

	Accessible from restricted Python code and publishable through the web
(provided the object has a docstring).

For attributes (including methods), the roles are stored on the parent class in
a variable called <name>__roles__, where <name> is the attribute name.
Again, the special variables ACCESS_NONE, ACCESS_PRIVATE and
ACCESS_PUBLIC can be used.

These variables are rarely set manually. Instead, declarative security info
is typically used. For example:

from App.class_init import InitializeClass
from AccessControl.SecurityInfo import ClassSecurityInfo
from OFS.SimpleItem import Item

class SomeClass(Item):

 ...

 security = ClassSecurityInfo()
 security.declareObjectPublic() # like __roles__ = ACCESS_PUBLIC

 security.declareProtected('Some permission, 'someMethod')
 def someMethod(self):
 ...

 InitializeClass(SomeClass)

There is also security.declareObjectProtected(<permission>),
security.declareObjectPrivate(), security.declarePrivate(<attribute>)
and security.declarePublic(attribute), which do as their names suggest to
make an object or attribute protected, private or public.

Attribute security can be set in ZCML using the <class /> directive with
one or more <require /> sub-directives:

<class class=".someclass.SomeClass">
 <require
 permission="some.permission"
 attributes="someMethod"
 />
</class>

Behind the scenes, this simply creates a ClassSecurityInfo instance and invokes it
on the attributes listed as applicable. This will also call InitializeClass
on the given class.

Note that the <require /> directive, in common with all ZCML directives,
uses ZTK-style permission names, not Zope 2-style permission strings. A ZTK
permission is a named utility providing
zope.security.interfaces.IPermission, with an id that is the short
(usually dotted) name that is also the utility name, and a title that
matches the Zope 2 name. New permissions can be registered using the
<permission /> directive:

<permission
 id="some.permission"
 title="Some permission"
 />

Zope 2-style permission names spring into existence whenever used in a security
declaration, which makes them susceptible to typos (ZTK-style IPermission
utilities must be explicitly registered before they can be used).

Permissions are also represented by "mangled" permission names, which simply
turn the arbitrary string name of a permission into a valid Python identifier.
For example, the permission "Access contents information" becomes
_Access_contents_information_Permission. The mangling is done by the
function AccessControl.Permission.pname.

ClassSecurityInfo does little except record information until the
InitializeClass() call is made with the class as an argument. This will:

	Loop over all attributes and assign a __name__ attribute to the value of
any attribute in the class's __dict__ that has the _need__name__
marker set (this is used by through-the-web DTML and Zope Page Template
objects that may not have a name until they are assigned to their parent).

	Look for any function with the name manage() or a name starting with
manage_. If this does not have a corresponding <name>__roles__
attribute, one is created with the roles ('Manager',), as a way to
automatically protect such methods.

	Look for any security info object (i.e. an attribute that has an attribute
__security_info__). If one is found, call its apply() method with the
class as an argument, and then delete it.

The apply() method of ClassSecurityInfo does this:

	Collect any explicitly set __ac_permissions__ tuple and turn it into
internal state, as if the ClassSecurityInfo had been used to set it,
so that it is not lost.

	For any attribute declared with declarePublic() or declarePrivate(),
set <name>__roles__ to ACCESS_PUBLIC or ACCESS_PRIVATE as
appropriate.

	Build an __ac_permissions__ tuple from the saved declarations of any
protected attributes.

As a special case, a call to
security.declareObjectProtected(<permission>) will result in a value
stored with an empty attribute name, which later translates as setting
__roles__ directly on the class.

	Find any __ac_permissions__ on the class (probably created by the
security info apply() call) and call
AccessControl.Permission.registerPermissions with it as an argument.
This will register the permission in a global list of known permissions with
their default roles (usually ('Manager',)) held in that module under the
variable _ac_permissions. The mangled permission name (see above) will
also be set as a class attribute on the class
AccessControl.Permission.ApplicationDefaultPermissions, which is a base
class of the application root (OFS.Application.Application), hence making
the mangled permission names available as (acquirable) class attributes on
the application root. The value of this class variable is a tuple with the
default roles for that permission.

	For all permissions in __ac_permissions__ and for all attribute (method)
names assigned to each permission, set a class attribute <name>__roles__
to a PermissionRole object. If a default list/tuple of roles was supplied,
record this in the PermissionRole, otherwise default to ('Manager',).

Determining which roles have a given permission

To perform security checks, it is necessary to compare the roles a user has
with the roles required for a given permission. The method to determine the
roles of a permission on a given object is called rolesForPermissionOn().
It is found in AccessControl.ImplPython, though a C implementation may
also be in use.

rolesForPermissionOn() can be called directly, but it should be imported
from AccessControl.PermissionRole to ensure the correct implementation (C
or Python) is used. Alternatively, the correct implementation can be accessed
by using the rolesForPermissionOn() method of a PermissionRole object,
which will supply the correct permission name and default roles.

The default rolesForPermissionOn() does the following:

	Mangle the permission name (see above).

	Traverse from the object up the inner (containment) acquisition chain to find an
object with the mangled permission name as an attribute. Then:
	If the attribute is None, this is actually the ACCESS_PUBLIC marker.
Return ('Anonymous',).

	If the sequence of roles is a tuple, this is a signal to not acquire roles
from parent objects. Stop and return any roles collected by walking the
acquisition chain so far plus the roles at the current object.

	If the sequence of roles is a list, this is a signal to acquire roles from
parent objects. Hence, collect the roles at the current object and continue
the walk up the acquisition chain.

	If roles is a string, assumed to be a different mangled permission name,
this is a signal to delegate to another permission. Continue acquisition
from the parent, but discard any roles acquired so far.

	If no object with the mangled permission attribute is found, return the
default roles. Applicable default roles are stored in each PermissionRole
object, but for other types of roles, use ('Manager',).

	In all cases, if the global variable _embed_permission_in_roles is true,
include the mangled permission name in the list of roles returned (even if
an empty list). This is used as a debugging aid.

Checking a permission in a context

The most basic permission check can be done using:

from AccessControl import getSecurityManager
sm = getSecurityManager()
sm.checkPermission('Some permission', someObject)

This returns either 1 or None to indicate whether the current user
has such a permission.

The call to getSecurityManager() returns a security manager instance for the
current request. A security manager is created using newSecurityManager() in
the validated_hook at the end of traversal (hence note that it is not set
during traversal itself; specifically it is not set when a view adapter is being
looked up and instantiated and so there is no security information available in
the __init__() of a view), which creates a new security manager with a
context that is aware of the current authenticated user (or Anonymous if
there is none).

Again, the security manager may use a C implementation, but the default one
is defined in AccessControl.ImplPython. The two most important methods on
this object are checkPermission() (seen above) and validate(), which
is used during traversal to validate access to an object and will throw an
Unauthorized exception if not valid. Both of these delegate to a security
policy, which will invariably be the ZopeSecurityPolicy also found in
ImplPython (or C code) and instantiated once with a module-level call to
setDefaultBehaviors().

The checkPermission() implementation in ZopeSecurityPolicy is relatively
simple. It uses rolesForPermissionOn() to discover the roles on the object,
and then obtains the current user from the security context (passed as a
parameter to its version of checkPermission()) and calls the user object's
allowed() method with the object and its roles.

Additionally, if the security policy allows for it (which it will by default),
checks are made to ensure that if the "execution context" has an owner (e.g. it
is a through-the-web Python script or template owned by a particular user), the
owner as well as the current user has the appropriate roles, otherwise access is
disallowed. Also, if proxy roles are set (again applicable to through-the-web
scripts), these are allowed to be used in lieu of the user's actual roles.

There are various user implementations that can treat allowed() differently.
The most common use in Plone is the PropertiedUser from
Products.PluggableAuthService (PAS), though there is also a basic
implementation in AccessControl.users.BasicUser, and a class called
SpecialUser in the same module that is used for the Anonymous user.

The PAS version is only marginally more complex than the BasicUser
implementation (it deals with roles obtained from groups a user belongs to), so
we will describe the allowed() implementation from BasicUser here:

	If the object's required roles is the special variable
_what_not_even_god_should_do (you couldn't make this up), which
corresponds to the ACCESS_NONE security declaration (as used by
declareObjectPrivate()), immediately disallow access.

	If the object's required roles is None, which corresponds to the
ACCESS_PUBLIC security declaration (as used by declareObjectPublic()),
or if Anonymous is one of the roles (even if the user is not
Anonymous), immediately allow access.

	If Authenticated is one of the required roles and the user is not
Anonymous, immediately allow access unless the object does not share an
acquisition parent with the user folder (this is to avoid users with the same
id in different user folders trying to steal each other's access through
acquisition tricks). This is referred to as the "context check" below.

	Check if the user's global roles intersect with the roles required to access
the object, and allow access if the user passes the context check.

	Check if there are any local roles, as defined in the attribute
__ac_local_roles__, granted to the user and check these against the
required roles (and perform the context check). __ac_local_roles__ may be
a dictionary or a callable that returns a dictionary, containing a mapping of user ids (or
group ids, if PAS is used) to local roles granted. The local role check is
performed iteratively by walking up the acquisition chain and checking the
instances of bound methods, up to the root of the acquisition chain.

	If none of the above succeed, return None to indicate that the user is not
allowed to access the object.

Validating access to an object

The second type of security operation provided by the SecurityManager is to
check whether the user should be able to access a particular context. This is
most commonly used during traversal, by way of the user folder's validate()
method. The version in Products.PluggableAuthService.PluggableAuthService
does this:

	Get all applicable user ids from the request. Most likely, there is only one,
but PAS's modular nature means it is possible more than one plugin will supply
a user id.

	Extract the following information from the published object
(REQUEST['published']):
	accessed, the object the published object was accessed through, i.e.
the first traversal parent (request['PARENTS'][0]).

	container, the physical container of the object, i.e. the inner
acquisition parent. If the published object is a method, the container is
also set to be the method, but stripped of any outer acquisition chains by
a call to aq_inner(). If the published object does not have an inner
acquisition parent, the traversal parent is used in the same way as it is
used to set accessed.

	name, the name used to access the object, e.g. a traversal path element.

	value, the object we are validating access to, i.e. the published
object.

	If this is the top-level user folder and the user is the emergency user,
return the user immediately without further authorization.

	Otherwise, attempt to authorize the user by creating a new security manager
for this user and calling its validate() method with accessed,
container, name, and value as arguments.

The default security manager validate() method delegates to the equivalent
method on the ZopeSecurityPolicy. This is a charming 200+ line bundle of
if statements that does something like this:

	If the name is an aq_* attribute other than aq_parent,
aq_inner or aq_explicit, raise Unauthorized.

	Obtain the aq_base'd version of container and accessed. If the
accessed parent was not acquisition-wrapped, treat the aq_base'd
container as the aq_base'd accessed.

	The caller may have passed in the required roles already as an optimization.
If not, attempt to get the required roles by calling
getRoles(container, name, value). The Python version of this is defined in
AccessControl.ZopeSecurityPolicy. It does the following:

	If the value has a __roles__ attribute, and it is None
(ACCESS_PUBLIC) or a list or tuple of roles, return them. (This probably
means the value is a content object or similar.)

	If it is a PermissionRole object or another object with a
rolesForPermissionOn() method (described above), call this with the
value as an argument and return the results. (This probably means the
value is a method.)

	If there is no __roles__ attribute, check if we have a name. Return
"no roles" if not.

	Attempt to find a class for the value's container. If value is a
method, go via the im_self attribute to get an instance to use as the
container. Then look for a <name>__roles__ attribute on the class.
If this is a PermissionRole, call rolesForPermissionOn() as above;
if it is a list, tuple or one of the sentinel values (ACCESS_PUBLIC,
ACCESS_PRIVATE or ACCESS_NONE, return it directly.

	
	If we still have no roles, we may have a primitive or other simple object

	that is not directly security-aware. We can still try to get security
information from the container:

	If there is no container passed in, we have no way of inferring one, so
all bets are off. Raise Unauthorized.

	Attempt to get a __roles__ value from the container. If it is
acquisition-wrapped, also try to explicitly acquire __roles__ if it does
not have a __roles__ attribute itself.

If this fails, then we may still be able to get some security assertions
from the container (see below), but we only allow this if the accessed
parent is the container. If the value was accessed through a more
convoluted acquisition chain, say, we cannot rely solely on container
assertions, so we raise Unauthorized.

	At this point, there are two possibilities: we have some roles required to
access the container, or we have no roles at all, but we accessed the
value directly from its parent container. In both cases, we check
container security assertions:

	If the container is a tuple or string, and we have gotten this far, we
consider access to be allowed and return true. (This can't really happen
through URL traversal, but could occur with path traversal).

	If the container is an object with an attribute
__allow_access_to_unprotected_subobjects__, obtain this. It can be
of three things:

	An integer or boolean

	if set to a true value, allow access and return
True, otherwise raise Unauthorized.

	A dictionary

	Attempt to look up a truth value in this dictionary by
using the accessed name as a key. If not found or false, raise
Unauthorized, otherwise allow access and return True. If the name
is not found, default to allowing access.

	A callable

	Call it with the name and value as arguments, and
use the return value to determine whether to allow access or raise
Unauthorized.

	If there is no __allow_access_to_unprotected_subobjects__, raise
Unauthorized.

	If we did manage to get some roles from the container, we still check
__allow_access_to_unprotected_subobjects__ as above, but only as a
negative: we raise Unauthorized if access is not allowed, and continue
security checking against the roles we found otherwise. In this case, we
use the container (probably a content object) as the value to check.

	At this point, we have roles, and we know the container in theory allows
access to the attribute that did not have its own security assertions. We
set value to be the container so that we can check whether we are in
fact allowed to access the container.

	We can now check whether the user has the appropriate roles. This is
essentially the same logic as in checkPermission() above, although
stated slightly differently:

	If __roles__ is None (ACCESS_PUBLIC) or contains
Anonymous, allow access immediately.

	If the execution context is something like a through-the-web Python script
owned by a user, we raise Unauthorized if the owner does not have any
of the required roles.

	If the execution context has proxy roles, these are allowed to be used
to validate access instead of the user's actual roles.

	Otherwise, call user.allowed() to validate access and either return
true or raise Unauthorized.

The remainder of the logic in validate() concerns the case where
verbose-security is enabled in zope.conf. Various checks are made in
an attempt to raise Unauthorized exceptions with meaningful descriptions
about where in the validation logic access was denied.

Changing permissions

The mapping of permissions to roles can be managed persistently at any object by
setting the mangled permission attribute (see the description of
rolesForPermissionOn() above) to a list of roles as an instance variable.

The most basic API to do so is the class
AccessControl.Permission.Permission. This is a transient helper class
initialized with a (non-mangled) permission name (i.e. the first element in an
__ac_permissions__ tuple), a tuple of attributes the permission applies to
(i.e. the second element in an __ac_permissions__ item) — referred to as
the variable data — and an object where the permission is being managed.

The methods getRoles(), setRoles() and setRole() on the
Permission class allow roles to be obtained and changed.

getRoles() will first attempt to get the mangled permission name attribute
and return its value.

If it is not set, it will fall back to looping over all the listed attributes
(data) and obtaining the roles from the first one found, taking into account
the various ways in which __roles__ can be stored. Note that an empty string
in the tuple of attributes means "check the object itself for a __roles__
attribute". If __roles__ is a list, it is returned, though if it contains
the legacy role Shared, this is removed first. The sentinel None
(ACCESS_PUBLIC) is turned into ['Manager', 'Anonymous']. If no roles are
set, the default return value is ['Manager'], though another default can be
supplied as the optional last parameter to getRoles().

setRoles() will set the
mangled permission name as an instance variable on the object (or delete the
variable, if setting to an empty list of roles). Next, it will
ensure no other __roles__ or <name>__roles__ instance variables have
been set (class variables are left alone, of course), so that the mangled
permission name attribute is the unambiguous statement of the permission-to-
role mapping.

Note that for both getRoles() and setRoles(), the difference between
a tuple (don't acquire roles) and a list (do acquire) is significant, and
preserved.

setRole() is used to manage a single role. It takes a role name and a
boolean to decide whether the role should be set or not. It simply builds the
appropriate list or tuple based on the current value of getRoles() and then
calls setRoles().

In most cases, it is easier to use the API provided by
AccessControl.rolemanager.RoleManager to manipulate roles in a particular
context, rather than using Permission directly. This class, usually via the
more specific OFS.roles.RoleManager, is a mixing to most persistent objects
in Zope. It contains a number of relevant methods:

	ac_inherited_permissions(all=0)

	Returns a list of permissions applicable to this class, but not defined on
this class directly, by walking the __bases__ of the class. (Note that
this is not inheritance in the persistent acquisition sense!). If all is set
to a truth value, the permissions on this class are included as well. The
return value is an __ac_permissions__-like tuple of tuples. For inherited
permissions, the attribute list of each permission entry will be an empty
tuple.

	permission_settings(permission=None)

	Returns the settings for a single permission or all permissions, returning a list of
dicts. Used mainly by ZMI screens.

	manage_role(role, permissions=[])

	Uses the Permission API to grant the role to the permissions passed in,
and take it away from any other permissions where the role may be set.

	manage_acquiredPermissions(permissions=[])

	Uses the Permission API to set the roles lists for each of the passed-in
permissions to a list (acquire), and for all other permissions to a tuple
(don't acquire).

	manage_permission(permission, roles=[], acquire=0)

	Uses the Permission API to set roles for the given permission to either a
tuple or list (it does not matter what type of sequence the roles
parameter contains, the acquire parameter is used), but only if the
permission is known to this object.

	permissionsOfRole(role)

	Uses the Permission API to get the permissions of the given role. Returns
a list of dicts with keys name and selected (set to either an empty
string or the string SELECTED).

	rolesOfPermission(permission)

	The inverse of permissionsOfRole(), returning a similar data structure.

	acquiredRolesAreUsedBy(permission)

	Returns either CHECKED or an empty string, depending on whether the roles
sequence of the given permission is a list or tuple.

The use of the strings CHECKED or SELECTED as booleans is an unfortunate
side-effect of these methods being used quite literally by ZMI templates.

Global and local roles

The list of known (valid) roles in any context is set in the attribute
__ac_roles__. On the initialization of the application root during startup,
in install_required_roles() in OFS.Application.AppInitializer, this is
made to include at least Owner and Authenticated. The RoleManager
base class sets it as a class variable with the value
('Manager', 'Owner', 'Anonymous', 'Authenticated').

In AccessControl.rolemanager.RoleManager, the method valid_roles() can
be used to obtain the list of valid roles in any given context. It will also
include roles from any parent objects referenced via a __parent__
attribute.

User-defined roles can be set through the ZMI or the method _addRole() in
the OFS.roles.RoleManager specialization, which simply manipulates the
__ac_roles__ tuple as an instance variable. There is also _delRoles() to
delete roles. The method userdefined_roles() on the base
AccessControl.rolemanager.RoleManager class will return a list of all roles
that were set as instance variables rather than class variables.

The global roles of a given user is determined by the getRoles() function
on the user object (see the description of the allowed() method above).
The default ZODBRoleManager plugin for PAS stores a mapping of users and
roles persistently in the ZODB, though other implementations are possible, e.g.
querying an LDAP repository.

Users may also have local roles, granted in a particular container and its
children. These can be discovered for a given user most easily by calling the
getRolesInContext() function on a user object, which takes a context object
as a parameter.

Local roles are stored in the instance variable __ac_local_roles__. This may
be a dictionary or a callable that returns a dictionary, containing a mapping of user (or
group) ids to local roles granted. The local role check is performed iteratively
by walking up the acquisition chain and checking the instances of bound methods,
until the root of the acquisition chain is reached.

The API to manage local role assignments in a given context is found in
AccessControl.rolemanager.RoleManager, through the following methods:

	get_local_roles()

	Return a tuple of local roles, each represented as a tuple of user ids and
a tuple of local roles for that user id. With PAS, this may also include
group ids.

	users_with_local_role(role)

	Inspect __ac_local_roles__ to get a list of all users with the given local
role.

	get_local_roles_for_userid(userid)

	Inspect __ac_local_roles__ to get a tuple of all local roles for the given
user id.

	manage_addLocalRoles(userid, roles)

	Modify __ac_local_roles__ to add the given roles to the given user id. Any
existing roles are kept.

	manage_setLocalRoles(userid, roles)

	Modify __ac_local_roles__ to add the given roles to the given user id. Any
existing roles are replaced.

	manage_delLocalRoles(userids)

	Remove all local roles for the given user ids.

Emergency users

On startup, at import time of AccessControl.users, the function
readUserAccessFile() is called to look for a file called access in the
Zope INSTANCE_HOME (an environment variable) directory. If found, it reads
the first line and parses it to return a tuple (name, password, domains,
remote_user_mode,).

If set, the module variable emergency_user is set to an
UnrestrictedUser, a special type of user where the allowed() method
always returns true. If not, it is set to a NullUnrestrictedUser, which
acts in reverse and disallows everything.

The user folder implementations in AccessControl and PAS make specific
checks for this user during authentication and permission validation to ensure
this user can always log in and has virtually any permission, with the exception
of _what_not_even_god_should_do (ACCESS_NONE).

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 internals »

The ExtensionClass

Description

What is ExtensionClass.Base used for?

	What is an ExtensionClass?

	How does acquisition work?

What is an ExtensionClass?

Before Python 2.2 and "new-style" classes, the ExtensionClass.ExtensionClass
metaclass provided features now found in Python itself. Nowadays, it mainly
provides three features:

	Support for a class initialiser. Classes deriving from ExtensionClass.Base
can define a method __class_init__(self), which is called when the
class is initialised (usually at module import time). Note that self
here is the class object, not an instance of the class.

	Ensuring that any class that has ExtensionClass as a __metaclass__
implicitly gets ExtensionClass.Base as a base class.

	Providing an inheritedAttribute method, which acts a lot like super()
and is hence superfluous except for in legacy code.

The base class ExtensionClass.Base provides the __of__ protocol that is
used by acquisition. It is similar to the __get__ hook used in Python
descriptors, except that __of__ is called when an implementor is retrieved
from an instance as well as from a class. Here is an example:

>>> from ExtensionClass import Base
>>> class Container(Base):
... pass

>>> class Item(Base):
... def __init__(self):
... self.visited = []
... def __of__(self, parent):
... self.visited.append(parent)
... return self

>>> container = Container()
>>> item = Item()
>>> item.visited
[]
>>> container.item1 = item
>>> item.visited
[]
>>> container.item1
<__main__.O object at 0x10cc0ddd0>
>>> item.visited
[<__main__.C object at 0x10cc0dc90>]

>>> container.item1 # again
<__main__.O object at 0x10cc0ddd0>
>>> item.visited
[<__main__.C object at 0x10cc0dc90>, <__main__.C object at 0x10cc0dc90>]

There is probably little reason to use ExtensionClass.Base in new code,
though when deriving from Acquisition.Implicit or Acquisition.Explicit,
it will be included as a base class of those classes.

How does acquisition work?

Black magic.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	Appendices »

 	older manuals »

 	Zope 2 internals »

Zope's many hooks

Description

What hooks does Zope provide for application code?

Zope provides many different hooks that can be used to execute code at various
times during its lifecycle. The most important ones are outlined below.

	Process lifecycle

	ZODB connection lifecycle

	Request lifecycle

	Publication

	Traversal

Process lifecycle

zope.processlifetime defines three events:

	IDatabaseOpened

	notified when the main ZODB has been opened, but before the root
application object is set.

	IDatabaseOpenedWithRoot

	notified later in the startup cycle, when the application root has been
set and initialized.

	IProcessStarting

	notified when the Zope startup process has completed, but before the Zope
server runs (and so can listen to requests).

ZODB connection lifecycle

Functions that should be called just after traversal over the
ZApplicationWrapper as it opens a ZODB connection for the request should
be added to the App.ZApplication.connection_open_hooks list. They are
called with a ZODB connection as their sole argument.

The ZODB transaction provides two methods to register hooks —
addBeforeCommitHook() and addAfterCommitHook(). These can be passed
functions and a (static) set of arguments and will be called just before, and
just after, a transaction is committed. The hook function must take at least one
argument, a boolean indicating whether the transaction succeeded.

Use transaction.get() to get hold of the transaction object. See
transaction.interfaces.ITransaction for more details.

Request lifecycle

Request-scoped items may be protected from garbage collection using
request._hold(). If applicable, the item held can implement __del__(),
which will be called when the request is destroyed.

The event zope.publisher.events.EndRequestEvent is triggered at the end
of an event, just before any held items are cleared.

Publication

The publisher notifies a number of events, which can be used to hook into
various stages of the publication process. These are all defined in the module
ZPublisher.pubevents.

When an exception is raised, a view registered for the exception type as
context (and a generic request) named index.html will be rendered as an
error message, if it exists.

Traversal

If an object has a method __bobo_traverse__(self, request, name), this will
be used during traversal in lieu of attribute or item access. It is expected to
return the next item to traverse to given the path segment name. A more
modern approach is to register an adapter to IPublishTraverse although this
only applies to publication (URL) traversal, not path traversal.

The method __before_publishing_traverse__(self, object, request) can be
implemented to be notified when traversal first finds an object. Implemented on
a class, the self and object parameters will be the same.

See also the SiteAccess package, which implements a through-the-web
manageable, generic multi-hook to let any callable be invoked before access
through an "AccessRule".

The event zope.traversing.interfaces.IBeforeTraverseEvent is notified when
traversing over something that is a local component site, e.g. the Plone site
root.

The __browser_default__ method can be implemented to specify a "default
page" (akin to an index.html in a folder). A more modern way to do this is
to register an adapter to IBrowserPublisher.

An adapter to ITraversable can be used to implement namespace traversal
(.../++<namespace>++name/...). See above for further details.

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

About this documentation

	Contributing to the documentation
	Reaching the documentation team

	License

	Workflow

	Editing the documentation on GitHub

	Pull request checklist

	Editing the documentation using git

	Translation

	Rest Styleguide
	Introduction

	Line length & translations

	Document page format

	Headings style guide

	Links

	Syntax highlighting

	Other Sphinx and restructured text source snippets

	Helper tools for writing Documentation
	Online tools:

	Offline tools:

	Language tools:

	Documentation Styleguide for Add ons
	Introduction

	Best practices

	Styleguide

	README

	Directory Structure

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	About this documentation »

Contributing to the documentation

Description

How to write and submit content for the Plone Documentation.

	Reaching the documentation team

	License

	Workflow

	Editing the documentation on GitHub

	Pull request checklist

	Editing the documentation using git

	Translation
	Quick start:

	Getting started

Reaching the documentation team

The Plone community runs a documentation team which is responsible for keeping the Plone documentation coherent.
To reach this team for any questions please contact

	Documentation team mailing list [https://plone.org/support/forums/docs]

	#plone-docs IRC channel on irc.freenode.net

License

The Plone Documentation by Plone Foundation [http://plone.org] is licensed under a Creative Commons Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/].

If you want to contribute to this documentation, you can do so directly by making a pull request, if you have filled out a Contributor Agreement [http://plone.org/foundation/contributors-agreement].

If you haven't filled in a Contributor Agreement, you can still contribute. Contact the Documentation team, for instance via the mailinglist [http://sourceforge.net/p/plone/mailman/plone-docs/] or directly send a mail to plone-docs@lists.sourceforge.net
Basically, all we need is your written confirmation that you are agreeing your contribution can be under Creative Commons. You can also add in a comment with your pull request "I, <full name>, agree to have this published under Creative Commons 4.0 International BY".

Workflow

The documentation is hosted on github. And there are tools hooked directly into it:

	there are branches for the different versions of Plone

	translation hooks with Transifex are in place

	some external documentation is pulled in, to collect all the documentation in one place.

For these reasons, it is important we keep the documentation coherent.
Therefore, we follow a simple workflow, which we ask all contributors to respect:

Please DO NOT commit to master directly. Even for the smallest and most trivial fix. ALWAYS open a pull request and ask somebody else to merge your code. NEVER merge it yourself.

Your pull requests may be checked for spelling, and clarity. So don't hesitate to contribute also if English is not your first language, we will try to be helpful in corrections without being annoying.

If you don't get feedback on your pull request in a day please come to #plone-docs and ask.

The main goal of this process is not to annoy you. On the contrary, we love your contributions.

But the documentation team also wants to keep the documentation in good shape.

Editing the documentation on GitHub

This is the recommended way for smaller changes, and for people who are not familiar with Git.

	Go to Plone Documentation [https://github.com/plone/documentation] on GitHub.

	Press the Fork button. This will create your own personal copy of the documentation.

	Edit files using GitHub's text editor in your web browser

	Fill in the Commit changes-textbox at the end of the page telling why you did the changes. Press the Commit changes-button next to it when done.

	Then head to the green New pull request-button (e.g. by navigating to your fork's root and clicking "Pull requests" on the right menu-bar, or directly via https://github.com/yourGitHubUserName/documentation/pulls), you won't need to fill in any additional text. Just press New pull request button, finally click "Send pull request".

	Your changes are now queued for review under project's Pull requests [https://github.com/plone/documentation/pulls] tab on Github.

	For more information about writing documentation please read the styleguide and also this.

	You will receive a message when your request has been integrated into the documentation. At that moment, feel free to delete the copy of the documentation you created under your account on github. Next time you contribute, just fork again. That way you'll always have a fresh copy of the documentation to work on.

Pull request checklist

Making a good pull request makes life easier for everybody:

	The title and description of a pull request MUST be descriptive and need to reflect the changes. So please say "grammar fixes on the intro page" or "new page: feature x explained as a user story"

If you can state for which versions of Plone your submissions are valid, that would be awesome.

Editing the documentation using git

This is the recommended method of editing the documentation for
advanced users.

	Learn about Sphinx [http://sphinx-doc.org/] and restructured text [http://sphinx-doc.org/rest.html].

	Fork [https://help.github.com/articles/fork-a-repo] the documentation source files into your own repository

	Edit the file(s) which you want to update.

	Check that you do not have any syntax errors or typos

	Commit your changes and create [https://help.github.com/articles/creating-a-pull-request] and open pull [https://help.github.com/articles/using-pull-requests] request.

For more information about writing documentation please read the styleguide and also this.

Translation

We use Transifex [https://www.transifex.com/] for translation.
Thanks to that it is really easy to contribute to translation.

Quick start:

	Browse to: https://www.transifex.com/projects/p/plone-doc/ and choose your language.

	Click on the right Join Team

Getting started

	Go to: https://www.transifex.com/signin/

	Go to: https://www.transifex.com/projects/p/plone-doc/

	Click on: HELP TRANSLATE PLONE DOCUMENTATION [https://www.transifex.com/signup/?join_project=plone-doc]

	Choose your language

	Click on the right Join Team

 © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
 Plone and the Plone[®] logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
 For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
 All other trademarks are owned by their respective owners.
 Hosted by Rackspace..
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Plone Documentation v4.3 »

 	About this documentation »

Rest Styleguide

Description

How to write content for the Plone Documentation.

	Introduction

	Line length & translations

	Document page format
	Tab policy

	Headings and filenames

	Page structure

	Section structure

	Headings style guide

	Links

	Syntax highlighting

	Other Sphinx and restructured text source snippets

Introduction

This chapter explains the basics of editing, and updating to
the Plone Documentation.

Note

All pages should be in ReStructured Text, and have a .rst extension. Images should be in .png, or .jpg format. Please, don't use .gif, because the PDF-generating software has issues with that.

Line length & translations

Documentation is not code. Repeat after us: Documentation is not code.

Therefore, documentation should not follow PEP8 or other arbitrary conventions.

Note

Remember : This documentation is set up so it is fully translatable by using standard tools like transifex.

Your sentences will become .po strings, to be translated.

Now, think about how translations would work if the translator can only see an arbitrary part of a sentence. Translating is hard enough without creating additional problems...

If you want to keep short lines:

Use semantic linefeeds
(http://rhodesmill.org/brandon/2012/one-sentence-per-line/)
when you are editing restructured text (or any other interpreted rich text format) because it will greatly improve the editing and maintenance of your documents.

Take this example paragraph:

Patterns can take options in two ways:
from the DOM or via the jQuery interface.
It is highly recommended to use the DOM interface,
since it offers a lot more flexibility compared to the jQuery approach.
Also,
if you wish to use the automatic binding and rebinding functionality,
the DOM approach is more straightforward and hassle-free.

Notice how it's easier to just reshuffle sentences and add stuff if,
instead of using your editor "autowrap" feature,
you manually insert line breaks after full stops, commas,
or upon "grammatical" boundaries
(and not merely word ones).

But again, do not be afraid to use more than 80 characters. It's 2014, and it's documentation.

Document page format

Here are some Sphinx coding conventions used in the documentation.

Tab policy

	Indentation 4 spaces

	No hard tabs

	No trailing whitespaces

Headings and filenames

	For the headings, capitalize the first letter only

	For the filenames, use_underscore_naming_style

Page structure

Each page should contain, in this order:

	The main heading. This will be visible in the table of contents:

==================================
Writing and updating this document
==================================

	The description of the page, which will appear in Plone's
Description Dublin Core metadata field. This created using the reST
admonition directive. A single paragraph of text consisting of 1-3
sentences is recommended, so that the same text fits into the search
engine results (Google):

.. admonition:: Description

 This text will go to Plone's pages description field. It will appear in
 the search engine listings for the page.

The contents directive will cause Sphinx to generate the Table of
Contents shortcut links at the start of the page. Using the local
option excludes the page itself and ToC title from the listing:

.. contents:: :local:

Introduction paragraph: A brief overview:

Introduction

This chapter will describe the basics of how to contribute to this document.

A number of paragraphs: The actual content of the document page:

Contributions needed

Below is the list of documentation and references we'd like to see

Section structure

Each section (folder) must contain

	index.rst with:

	Section heading: This will be visible in the table of contents

	A single paragraph summarizing what this section is all about. This will be
mapped to Plone folder description.

	Sphinx toctree directive, maxdepth 2. Each .rst file in the folder should
be linked to this toctree.

.. toctree::
 :maxdepth: 2

 chapter1
 chapter2
 chapter3

Headings style guide

ReStructured text and Sphinx enable any style you would prefer for the
various heading level you would need. In example, underlining level 1
headings with ., level 2 headings with # and level 3 headings with
| is perfect as far as docutils is concerned. But not for a human
documentation maintainer.

In order to have consistent heading styles in all files that make this great
document, it is recommended to follow strictly the rules stated in the Sphinx
manual here: http://sphinx-doc.org/rest.html#sections

As individual files do not have so called "parts" or "chapters", the headings
would be underlined like this:

Heading 1
=========
...
Heading 2

...
Heading 3
^^^^^^^^^
...
Heading 4
`````````
...








Links

Sphinx can use two link styles, inline and via a link at the end of the page. Please only use inline links like this:

`Example <http://example.com>`_





otherwise the URL is not attached to the context it is used in, and that makes it harder for translators to use the right expressions.




Syntax highlighting

Sphinx does syntax highlighting using the Pygments [http://pygments.org/]
library.

You can specify different highlighting for a code block using the following
syntax:

With two colons you start a code block using the default highlighter::

    # Some Python code here
    # The language defaults to Python, we don't need to set it
    if 1 == 2:
        pass





You can specify the language used for syntax highlighting by using
the code-block directive:

.. code-block:: python

    if "foo" == "bar":
        # This is Python code
        pass





For example, to specify XML:

.. code-block:: xml

    <somesnippet>Some XML</somesnippet>





... or UNIX shell:

.. code-block:: console

   # A comment
   sh myscript.sh





... or a buildout.cfg:

.. code-block:: ini

   [some-part]
   # A random part in the buildout
   recipe = collective.recipe.foo
   option = value





... or interactive Python:

.. code-block:: pycon

   >>> class Foo:
   ...     bar = 100
   ...
   >>> f = Foo()
   >>> f.bar
   100
   >>> f.bar / 0
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   ZeroDivisionError: integer division or modulo by zero





Setting the highlighting mode for the whole document:

.. highlight:: console

All code blocks in this doc use console highlighting by default::

   some shell commands





If syntax highlighting is not enabled for your code block, you probably have
a syntax error and Pygments will fail silently.

The full list of lexers and associated short names is here:
http://pygments.org/docs/lexers/




Other Sphinx and restructured text source snippets

Italics:

This *word* is italics.





Strong:

This **word** is in bold text.





Inline code highlighting:

This is :func:`aFunction`, this is the :mod:`some.module` that contains
the :class:`some.module.MyClass`






Note

These Python objects are rendered as hyperlinks if the symbol is
mentioned in a relevant directive. See
http://sphinx-doc.org/domains.html and
http://sphinx-doc.org/ext/autodoc.html



Making an external link (note the underscore at the end):

`This is an external link to <http://opensourcehacker.com>`_





Making an internal link:

:doc:`This is a link to </introduction/writing.txt>`
...
See also :ref:`somewhere` (assuming that a line containing only
``.. _somewhere:`` exists above a heading in any file of this
documentation) ...
And a link to the term :term:`foo` assuming that ``foo`` is defined in
the glossary.





Glossary:

.. glossary:: :sorted:





Bullet list:

* First bullet
* Second bullet with `a link <http://opensourcehacker.com>`_





Warning:

.. warning::

   This is a warning box (yellow)






Warning

This is a warning box (yellow)



.. error::

   This is an error box (red)






Error

This is an error box (red)



Note:

.. note::

   This is a note box (blue)






Note

This is a note box (blue)



.. TODO::

   This is a TODO item






Todo

This is a TODO item









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Plone Documentation v4.3 »

          	About this documentation »
 
      

    


    
      
          
            
  
Helper tools for writing Documentation


Description

Tools and Plugins which will help to write documentation.





	Online tools:

	Offline tools:

	Language tools:






Online tools:


	rst.ninjs.org [http://rst.ninjs.org/] and a fork with more Sphinx support at livesphinx.herokuapp.com [http://livesphinx.herokuapp.com/]

	notex.ch [https://notex.ch/]






Offline tools:

ReText is a handy editor for .rst and .md formats.
On Ubuntu and Debian-based systems all you have to do is

apt-get install retext





Pandoc If you have existing documentation, you may want to check out pandoc [http://johnmacfarlane.net/pandoc/] , the "swiss army knife" of document conversions. For instance, it can create valid rst files from Markdown and quite a number of other formats.
On Ubuntu you can install it via apt

apt-get install pandoc





There is also a online version [http://johnmacfarlane.net/pandoc/try/].

Sublime Text has a number of plugins for rst highlighting and snippets, install via the Sublime package installer.

Emacs has a nice rst-mode [http://docutils.sourceforge.net/docs/user/emacs.html]. This mode comes
with some Emacs distros. Try M-x rst-mode in your Emacs and enjoy syntax
coloration, underlining a heading with ^C ^A

Another nice tool for Emacs is Flycheck [https://flycheck.readthedocs.org/en/latest/index.html].

Eclipse users can install ReST Editor through the Eclipse
Marketplace.

Vim does syntax highlighting for RST files.
There is also a nice plugin with enhanced functionalities called Riv [https://github.com/Rykka/riv.vim].

restview ReStructuredText viewer [https://pypi.python.org/pypi/restview]
A viewer for ReStructuredText documents that renders them on the fly.

pip install restview








Language tools:

These tools can help you to check for grammatical mistakes and typos, you should always use a spell checker anyway!

LanguageTool is an Open Source proofreading software for English, French, German, Polish, and more than 20 other languages [https://www.languagetool.org/].

After the Deadline is a language checker for the web [http://www.afterthedeadline.com/].
This handy tool is also available in your Plone sites, by the way, see the conent quality section







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Plone Documentation v4.3 »

          	About this documentation »
 
      

    


    
      
          
            
  
Documentation Styleguide for Add ons


Description

A guide to write Documentation for Plone Add-ons





	Introduction

	Best practices

	Styleguide

	README

	Directory Structure






Introduction

Having a 'best practices' approach for writing your documentation will benefit the users of your add-on, and the community at large.

Even better: when there is a clear structure and style for your documentation, the chances that other people will help improve the documentation increase!

Further advantages of following this guide:


	The documentation can be included on docs.plone.org [http://docs.plone.org]

	It will be in optimal format to be translated with tools like Transifex [https://www.transifex.com/].

	Unicorns will come and play in your garden. No, really.






Best practices

For including documentation into docs.plone.org, please follow these guidelines:


	Please do not symlink to, or use the include directive on files that live outside your '/docs' directory.

	So, for best results: write a short README.rst in the top level of your repository. It should have an introduction of what the package does, about 1-3 paragraphs, plus licensing and contact information. And then a link to the longer documentation in the /docs directory.

	Linking the other way around is OK, but not optimal. If you create a README.rst in the /docs/source directory, and make a symlink to it from the root of your repository, Github will display that one just fine. But pypi will not render it nice, instead rendering it as plain text which may confuse readers.

	Please do not use 'autodoc' to include comments of your code.

	Please follow this ReST styleguide and use semantic linefeeds. Do not break your sentences into half with newlines because you somehow think you should follow PEP8.



Your documentation is not code.

Let's repeat that, shall we?

Your documentation is not code.

It needs to be translatable. No, not into PHP, but into Chinese, Catalan, Klingon, ...

Think about it this way: each sentence in the documentation can be turned into a .po string.
Breaking sentences with linebreaks would mean a translator will only see part of the sentence, making it impossible to translate.




Styleguide


	All documentation should be written in valid ReStructuredText [http://docutils.sourceforge.net/rst.html]  There are some Helper tools for writing Documentation available.

	All documentation should be in the folder /docs/source

	It's good practice to have a README.rst and a CHANGES.rst file in the top level of your package. If you want that information to also be available in the documentation on docs.plone.org, you should move those files into the /docs/source directory, and then make a symlink in the root of your package. Don't forget to update setup.py if you're using these files as long_description!!

	that README.rst should just contain a short description of your package, what it does, and the requirements. Do not put your entire documentation in it.

	The documentation goes into /docs/source/*.rst. Make sure the starting page of your doc is called index.rst. Create multiple pages if it makes your documentation clearer.

	If you want to include images (Yes! We love you! But do remember, .png or .jpg, no .gif please), you should place them into /docs/_images

	You should use Sphinx [http://sphinx-doc.org/]






README

This is an example of how a README(.rst) should look like:

collective.fancystuff
=====================

collective.fancystuff will make your Plone site more fancy.
It can do cool things, and will make the task of keeping your site fancy a lot easier.

The main audience for this are people who run a chocolate factory.
But it also is useful for organisations planning on world domination.


Features
--------

- Be awesome
- Make things fancier
- Works out of the box, but can also be customized. After installation, you will find a new item in your site control panel where to set various options.


Examples
--------

This add-on can be seen in action at the following sites:
- http://fancysite.com
- http://fluffystuff.org


Documentation
-------------

Full documentation for end users can be found in the "docs" folder, and is also available online at http://docs.plone.org/foo/bar


Translations
------------

This product has been translated into

- Klingon (thanks, K'Plai)


Installation
------------

Install collective.fancystuff by adding it to your buildout:

   [buildout]

    ...

    eggs =
        collective.fancystuff


and then running "bin/buildout"



Contribute
----------

- Issue Tracker: github.com/collective/collective.fancystuff/issues
- Source Code: github.com/collective/collective.fancystuff
- Documentation: docs.plone.org/foo/bar

Support
-------

If you are having issues, please let us know.
We have a mailing list located at: project@example.com

License
-------

The project is licensed under the GPLv2.








Directory Structure


	You should configure Sphinx in that way that you have a separate /source directory for your documentation .rst files



$YOUR_PROJECT/docs/source






	/docs could contain your Makefile and conf.py

	/docs/_images should only contain images

	/docs/source should only contain your documentation written in rst. Use .rst as the file extension.

	use relative links for internal links within your /docs/source directory, to include images for instance.

	make sure all .rst files are referenced with a Table of Contents directive, like this example:



.. toctree::
   :maxdepth: 2

   quickstart
   working_examples
   absolutely_all_options_explained
   how_to_contribute











          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
License for Plone Documentation

Plone Documentation by Plone Foundation [http://plone.org] is licensed under a Creative Commons Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/].

If you want to contribute to this documentation, you can do so directly by making a pull request, if you have filled out a Contributor Agreement [http://plone.org/foundation/contributors-agreement].

If you haven't filled in a Contributor Agreement, you can still contribute. Contact the Documentation team, for instance via the mailinglist [http://sourceforge.net/p/plone/mailman/plone-docs/] or directly send a mail to plone-docs@lists.sourceforge.net





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          previous

        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Asking for help


guidelines and examples

If you need help with an error or problem: before asking the question, please take a few minutes to read the guidelines below. It is important to know how to state questions, because once you learn it, answers will come much faster.




Asking help on discussion forums and mailing lists

By stating a well-phrased question you increase the likelihood of fast and helpful response to your question.

Here are some general key rules users need to follow in creating a new topic.


	ALWAYS start with searching, that means, before you create a topic. Most of your questions were probably already answered by someone else in the past. Save your and our time by searching the web first.



Where to search:


	Google - Before asking for help, make a Google search with related keywords. Pick meaningful keywords from the log entry.

	StackOverflow [http://stackoverflow.com/questions/tagged/plone?sort=faq] - some FAQs are maintained here.

	Troubleshooting tips and common error messages - for enabling debug mode and common tracebacks.

	Plone development tracker [http://dev.plone.org/plone] - for known related issues (plone.org account needed).



If at any point you see any kind of error message (including error codes) – put them in the topic. Never write anything like “I see some error message”. Be specific.

See  Basic troubleshooting in case of an error

Follow the structure of the forum by creating your topic in a proper location (subforum). If you are in doubt where to create your topic, post to the general questions [https://plone.org/support/forums/general] forum.

Follow the netiquette while visiting and writing on forum or mailing list (give respect = get respect). This includes:


	Be patient – Sometimes the problem cannot be solved within minutes or hours. You might need to bump the topic few times till an experienced person comes to the site and sees it but usually if you do not see any response after 24h it probably means we cannot answer your question.

	Do not use bad words. Respect others and what they are doing.

	Do not completely edit/erase your posts after you posted them on the forum (except for small corrections - they are allowed) Remember that once you sent them, they belong to the community and shall be used by anyone who needs it.




How to write a good topic

Keep in mind, that if you ask a question and all you hear is silence, it might be a good indicator that something is wrong with your topic. Read the hints below and try to match your topic with specified pattern.

Subject lines: most people will read a message only if it appears to be intelligent. Your subject line is your sales pitch, so you should make your subject line specific and easy to understand.


Note

A poor subject line:

GET METHOD!! URGENT HELP!!!!

A better subject line:

FooError in Passing GET variables to FormController



The big picture - An opening sentence should state the general problem that you wish to solve.

A snapshot of your environment - For Plone and for other relevant products: provide version numbers. e.g., "I'm running Plone 4.0.1 under Python 2.6.4."

Steps to reproduce the issue - Give information about your ideas of how this error appeared, what caused it or anything that could lead to reproducing the error on another computer. The expected result .






Asking help in real time chat (IRC)

Plone community real time chat is at the  #plone IRC channel on the freenode IRC network.

If you're not already familiar with IRC, you can visit the support area [https://plone.org/support], which offers a web page that connects you to our chat room right in your web browser.

Here are couple of useful hints while connecting to IRC network:


	Do not ask permission to ask a question, but directly start the conversation having the all necessary input. Follow the example below:


Hi! I am trying to install PloneFormGen product, but it does not appear in the add on products list.

When I start Zope in debug mode I get the following log entry.

I pasted the log to pastie.org and here is the link for the log entry http://pastie.org/123123






	Be specific - tell us why you are trying to accomplish something and then tell us what the problem is. Here are some guidelines how to form a good question for Internet discussion.



	Do not copy-paste text to chat. This disrupts other people chatting about other topics. Instead please paste the full traceback error log to pastie.org and then paste the link to your error log or code (from your browser's address bar) to the chat.



	Do not send direct messages to chat participants unless you have a clear reason to do so



	Keep the chat window open at least 30 minutes so that someone has time to pick up your question. Be patient.



	Do not repeat yourself - people might be busy or not able to help with your problem.  Silence doesn't mean we're ignoring you, it means that nobody is online right now who knows the answer to your question.



	Do not overuse CAPS-LOCK writing, since it is considered shouting and nobody likes when others shout at them. Do not use excessive exclamation marks (!!!) or question marks (???) as it makes you look unprofessional and discourages to help you.



	There are many people discussing simultaneously - if you address a message to a particular person, use his or her nick name. Hint: you can use Tab key to autocomplete nick name after typing few letters.



	IRC is a real-time communication tool. Keep in mind, that since you write something, and send it, it cannot be taken back.



	Try to respond to all questions other users have. IRC is much more fluent and faster than forum, so don’t worry if you forget about putting something in the first message – you can still keep up.



	Do not worry if you are not fluent in English - Plone is a global community, and people will usually try to ask you more detailed questions in a way that the message gets through.






Note

Examples

An ineffective IRC question:

"Anyone here using product XYZ? Anyone here have problems installing XYZ?"

A question that is more likely to gain attention and a positive response:

"Hi, I'm using product XYZ on Plone 4.0.1, I have a problem with the feature that is supposed to doABC— I get error BlahBlahError — what might be wrong? Here is a link to the error log on pastie.org:http://pastie.org/123123"






Tracebacks

When there is an error, a Python program always products a traceback, a complete information where the application was when the error happened. To help you with an error, a complete traceback log is needed, not just the last line which says something like "AttributeError".

Copy full tracebacks to your message (discussion forums) or pastie.org link (IRC). The most reliable way to get the traceback output is to start Plone (Zope application server) on foreground mode in your terminal / command line.

First, shutdown Plone if it's running as service / background process. Then start Plone on foreground mode.

On Linux, OSX or similar systems this is (navigate to Plone folder first):

bin/instance fg





On Windows command prompt this is

cd "C:\Program Files\Plone"
bin\buildout.exe fg





Zope outputs all debug information to the console where it was started in foreground mode. When the error happens, the full traceback is printed to the console as well.

If Zope does not start in foreground mode it means that your add-on configuration is bad and you need to fix it and the related traceback is printed as well. In production mode, Zope ignores all add-ons which fail to load.


Credits

This how-to originated as an informal, user-friendly alternative to Eric Raymond's How to Ask Questions the Smart Way [http://www.catb.org/~esr/faqs/smart-questions.html]. ESR's doc is long and offensive, though once you realize that ESR is your crusty old merchant-marine uncle it can be fun and helpful.

The error report format is adapted from Joel Spolsky's comments on bug tracking, e.g., in Joel on Software [http://www.joelonsoftware.com/articles/fog0000000029.html].









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  


  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  







  Opening library documentation failed

  
    	Verify that you have JavaScript enabled in your browser.

    	Make sure you are using a modern enough browser. Firefox 3.5, IE 8, or equivalent is required, newer browsers are recommended.

    	Check are there messages in your browser's JavaScript error log. Please report the problem if you suspect you have encountered a bug.

  






    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Adding five.grok as a dependency

How to install the five.grok package safely

Assuming you already have a suitable package and a buildout, using
five.grok should be as simple as depending on it in your setup.py
file:

install_requires = [
    ...
    'five.grok',
    ]





As shown on the previous page, you probably also want this as a minimum
in your configure.zcml:

<configure xmlns="http://namespaces.zope.org/zope"
           xmlns:grok="http://namespaces.zope.org/grok"
           i18n_domain="my.package">

    <include package="five.grok" />
    <grok:grok package="." />

</configure>





However, if you are using Zope 2.10, you may also need to pin certain
eggs in your buildout.cfg. If you are using Dexterity, there are
already part of the “known good set” of packages. Otherwise, see the
five.grok installation instructions [https://pypi.python.org/pypi/five.grok] for details.

Naturally, you will need to re-run buildout after editing setup.py
and/or buildout.cfg.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Background

What is five.grok all about?



	The Zope Component Architecture
	Conventions used in this manual





	What is Grok and five.grok?
	Example

	Grok vs. five.grok vs. grokcore





	Adding five.grok as a dependency









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
The Zope Component Architecture

A high level overview of the basic concepts of the Zope Component
Architecture

The Zope Component Architecture underpins much of the advanced
functionality in Zope and Plone. By mastering a few core concepts, you
will be able to understand, extend and customise a wide range of Zope
technologies. These concepts include:


	Using interfaces formalise a contract for and document a given
component

	Implementing the singleton pattern with unnamed utilities

	Using named utilities to build a registry of homogenous objects

	Using adapters to implement generic functionality that can work with
heterogeneous objects

	Customising behaviour with the concept of a more-specific adapter or
multi-adapter

	Event subscribers and event notification

	Display components, including browser views, viewlets and resource
directories



This tutorial will explain these concepts using simple examples, and
illustrate how to use convention-over-configuration with the five.grok
package to quickly and easily employ adapters, utilities, event
subscribers and browser components in your own code.


Conventions used in this manual

The examples in this manual are sometimes shortened for readability, and
you may find that certain details of implementation are not shown to
keep the examples short and focused.

You will find two kinds of code listings here. A code block illustrating
code you may write in your own files is shown verbatim like this:

from five import grok

class SampleAdapter(grok.Adapter):
    grok.provides(ISomeInterface)
    grok.context(ISomeOtherInterface)

    ...





Note:


	Code snippets may refer to code defined earlier on the same page. In
this case, import statements for this code are not shown.

	An ellipsis is sometimes used to abbreviate code listings.



Sometimes, we will also show how a component or function can be used in
client code. Here, “client code” means any code that is making use of
the features implemented with the components illustrated. These are
shown using Python interpreter (aka doctest) conventions, like this:

>>> from five import grok
>>> context = SomeObjects()
>>> adapted = ISomeInterface(context)
>>> adapted.someValue
123





Lines starting with >>> indicate executable Python code, be that in a
test, in the interactive interpreter, or in the body of a function or
method somewhere. Return values and output are shown underneath without
the three-chevron prefix.







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
What is Grok and five.grok?


Warning

Grok is not allowed for Plone core developement.
Grok is not recommended for Plone addon development.



Heritage and anthropology

This manual is about using five.grok to configure components in the
Zope Component Architecture. But what is five.grok?

Grok [http://grok.zope.org] is a web development framework built on top of Zope 3 (aka Zope
Toolkit, or ZTK). One of the main aims of the Grok project is to make it
easier to get started with Zope development by employing
“convention-over-configuration” techniques. Whereas in a “plain Zope” a
developer would typically write a component in Python code and then
register it in ZCML (an XML syntax, normally found in a file called
configure.zcml), a Grok developer uses base classes and inline code
directives to achieve the same thing. The advantage is that the “wiring”
of a component is maintained right next to its code, making it easier to
understand what registrations are in effect, and reducing the need for
context-switching between different files and syntaxes.

It is important to realise that, for the purposes of this manual at
least, the Grok concepts are just an alternate way to configure the Zope
Component Archiecture. Everything that can be done with Grok
configuration can also be done with “plain Zope” and ZCML. The grok
syntax is merely a more convenient, compact and opinionated way to
achieve the same thing.

Opinionated? That’s right. In part, the design of the various Grok
directives and base classes aims to steer developers towards good
practice, well-organised code and shared standards. That’s not to say
you can’t go your own way if you really need to, but it is usually best
to follow the conventions and standards used by everybody else, unless
you have good reason to do otherwise.


Example

Let’s take a look at an example. Here is a simple adapter registration
in vanilla Zope. First, the adapter factory, a Python class:

from zope.interface import implements
from zope.component import adapts

from my.package.interfaces import IMyType
from zope.size.interfaces import ISized

class MyTypeSized(object):
    implements(ISized)
    adapts(IMyType)

    def __init__(self, context):
        self.context = context

    def sizeForSorting(self):
        return 'bytes', 0

    def sizeForDisplay(self):
        return u'nada'





Then, the registration in configure.zcml:

<configure xmlns="http://namespaces.zope.org/zope" i18n_domain="my.package">

    <adapter
        for=".interfaces.IMyType"
        provides="zope.size.interfaces.ISized"
        factory=".size.MytypeSized"
        />

</configure>





(note: in this case we could omit the for and provides lines, but
this is the full syntax)

With Grok convention-over-configuration, you can do it all in one file,
like this:

from five import grok

from my.package.interfaces import IMyType
from zope.size.interfaces import ISized

class MyTypeSized(grok.Adapter):
    grok.provides(ISized)
    grok.context(IMyType)

    def sizeForSorting(self):
        return 'bytes', 0

    def sizeForDisplay(self):
        return u'nada'





For this to work, the package needs to be “grokked”. This is done with a
single statement in configure.zcml, which then grokks all modules in
the package:

<configure xmlns="http://namespaces.zope.org/zope" i18n_domain="my.package"
           xmlns:grok="http://namespaces.zope.org/grok">

    <include package="five.grok" />
    <grok:grok package="." />

</configure>





The <include /> statement ensures that the grok directive is
available. Once these two lines are in configure.zcml, we should not
need to add any more registrations to this file, no matter how many
grokked components we added to modules inside this package.

When the configuration is loaded (at “grok time”), various “grokkers”
will analyse the code in the package, typically looking for special base
classes (like grok.Adapter above), directives*(like the
*grok.provides() and grok.implements() lines above), module-level
function calls, directories and files (e.g. page templates), and
configure components based on these conventions.




Grok vs. five.grok vs. grokcore

Grok started life as a monolithic framework, but the nice cavemen of the
Grok project decided to factor out the various grokkers into multiple
smaller packages. Thus, we have packages like martian [https://pypi.python.org/pypi/martian], the toolkit
used to write grokkers, grokcore.component [https://pypi.python.org/pypi/grokcore.component], which contains grokkers
for basic component architecture primitives such as adapters and
utilities, grokcore.security [https://pypi.python.org/pypi/grokcore.security], which provides for permissions and
security declarations, grokcore.view [https://pypi.python.org/pypi/grokcore.view], which provides support for
browser views, grokcore.viewlet [https://pypi.python.org/pypi/grokcore.viewlet], which provides support for viewlets,
and so on.

five.grok [https://pypi.python.org/pypi/five.grok] is an integration package for Zope 2 which brings these
directives to Zope 2 applications such as Plone. In most Grok
documentation, you will see a line like this:

import grok





This is using the standalone Grok framework. The five.grok equivalent
is:

from five import grok





As far as possible, the five.grok project aims to make the conventions
and syntax used in standalone Grok work identically in Zope 2. If you
come across a piece of Grok documentation, chances are you can get it to
work in Zope 2 by switching the "import grok" line to "from five
import grok", although there are situations where this is not the case.
In particular, we tend to use Plone content types instead of
Grok ”models" and standard add/edit forms instead of the formlib-based
forms from Grok.







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Browser components

Using five.grok to create views, viewlets and resource directories



	Views
	Views with templates

	Views without templates

	Implementing simple forms

	Utility views

	Overriding views





	Viewlets
	Registering a viewlet

	Viewlet ordering

	Overriding an existing viewlet

	Restricting a viewlet to the canonical view





	Resource directories
	Importing CSS and JavaScript files in templates

	Registering resources with Plone’s resource registries

	Image resources













          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Resource directories

Exposing static resources such as CSS, JavaScript and image files.

So far, we have seen how to create views and viewlets. Using views with
a custom render() method that sets the Content-Type header, we were
able to create files on the fly. We could even use this for binary data.

In may cases, however, we simply want to expose some static files, such
as CSS and JavaScript files, or images and use them in our dynamic
views. Luckily, five.grok makes this easy.

When a package is grokked, a grokker will look for a directory inside
the package with the name static. This is then available under the
prefix ++resource++<packagename>, where <packagename> is the dotted
name to the package in which the static directory is located.

For example, let’s say we had a package called example.messaging. The
static*directory would then be found in *example/messaging/static,
alongside the Python modules and sub-packages in this package. If this
directory in turn contained a file called messaging.css, it would be
accessible on a URL like
http://example.org/site/++resource++example.messaging/messaging.css.


Note

If you need to register additional directories, you can do so using the
<browser:resourceDirectory /> ZCML directive in configure.zcml. This
requires two attributes: name is the name that appears after the
++resource++***namespace; *directory is a relative path to the
directory containing resources.




Importing CSS and JavaScript files in templates

One common use of static resources is to add a static CSS or JavaScript
file to a specific template. We can do this by filling the style_slot
or javascript_slot in Plone’s main_template in our own view
template and using an appropriate resource link.

For example, we could add the following in a view using
main_template. Note that this would go outside the block filling the
master macro.

<html>

...

<head>
    <metal:block fill-slot="style_slot">
        <link rel="stylesheet" type="text/css"
            tal:define="navroot context/@@plone_portal_state/navigation_root_url"
            tal:attributes="href string:${navroot}/++resource++example.messaging/messaging.css"
            />
    </metal:block>
</head>

...

</html>






Note

Always create the resource URL relative to the navigation root as shown
here, so that the URL is the same for all content objects using this
view. This allows for efficient resource caching.



Of course, we could use the same technique anywhere else in any other
page template, but the head slots are a good place for CSS and
JavaScript resources.




Registering resources with Plone’s resource registries

Sometimes it is more appropriate to register a stylesheet with Plone’s
portal_css registry (or a JavaScript file with
portal_javascripts), rather than add the registration on a
per-template basis. This ensures that the resource is available
site-wide.


Note

It may seem wasteful to include a resource that is not be used on all
pages in the global registry. Remember, however, that portal_css and
portal_javascripts will merge and compress resources, and set caching
headers such that browsers and caching proxies can cache resources well.
It is often more effective to have one slightly larger file that caches
well, than to have a variable number of files that may need to be loaded
at different times.



To add a static resource file, you can use the GenericSetup
cssregistry.xml or jsregistry.xml import steps in the
profiles/default directory. For example, an import step to add the
conference.css file site-wide may involve a cssregistry.xml file
that looks like this:

<?xml version="1.0"?>
<object name="portal_css">
 <stylesheet id="++resource++example.conference/conference.css"
    title="" cacheable="True" compression="safe" cookable="True"
    enabled="1" expression="" media="screen" rel="stylesheet" rendering="import"
    />
</object>





Similarly, a JavaScript resource could be imported with a
jsregistry.xml like:

<?xml version="1.0"?>
<object name="portal_javascripts">
 <javascript cacheable="True" compression="none" cookable="True"
    enabled="False" expression=""
    id="++resource++example.conference/conference.js" inline="False"/>
</object>








Image resources

Images can be added to resource directories just like any other type of
resource. To use the image in a view, you can construct an <img /> tag
like this:

<img style="float: left; margin-right: 2px; margin-top: 2px"
     tal:define="navroot context/@@plone_portal_state/navigation_root_url"
     tal:attributes="src string:${navroot}/++resource++example.conference/program.gif"
     />











          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Viewlets

Dynamic snippets with viewlets

Viewlets, as their name suggests, are “little views” - snippets of HTML
that are rendered at defined location in a view. Behind the scenes, a
viewlet is a named browser component that is registered for a context
and a request (like a view), as well as for a view and a viewlet
manager.

In a page template, you may see something this:

<div tal:replace="structure provider:plone.belowtitle" />





This tells Zope to look up and render the content provider with the
name plone.belowtitle. The most common type of content provider is a
viewlet manager. When the viewlet manager is rendered, it will look up
any viewlets which are registered for that viewlet manager, and which
are applicable to the current context (content object), request (browser
layer), and view (the same provider expression can be used in multiple
templates, but sometimes we only want a viewlet to show up for a
particular view). These are then rendered into the page template.

Plone comes with a number of standard viewlet managers, covering various
areas of the page which you may want to plug viewlets into. The standard
viewlet managers are all defined in the package
plone.app.layout.viewlets. In its configure.zcml, you will see a
number of sections like this:

<browser:viewletManager
    name="plone.htmlhead"
    provides=".interfaces.IHtmlHead"
    permission="zope2.View"
    class="plone.app.viewletmanager.manager.BaseOrderedViewletManager"
    />





This shows that we have a viewlet manager with the name
plone.htmlhead, identifiable via the interface
plone.app.layout.viewlets.interfaces.IHtmlHead.

Another way to find viewlet managers is to use the @@manage-viewlets
view: simply append /@@manage-viewlets to the end of the URL of a
content item in Plone, and you will see the viewlet managers and
viewlets that make up various parts of the page. You can find the
various viewlet manager names and interfaces on this screen as well.


Registering a viewlet

With five.grok, we can register a viewlet using the grok.Viewlet base
class:

from five import grok
from plone.app.layout.viewlets.interfaces import IAboveContent

...

class MessageViewlet(grok.Viewlet):
    """Display the message subject
    """

    grok.name('example.messaging.MessageViewlet")
    grok.context(IDocument)
    grok.require('zope2.View')
    grok.viewletmanager(IAboveContent)

    def update(self):
        self.message = IMessage(self.context)





Notes:


	We use grok.name() to give the viewlet a name. If this were
omitted, the name would be taken from the class name, in all
lowercase. The name is primarily useful for overriding the viewlet
for a more specific context or layer later, but it must be unique, so
it is a good idea to use a dotted name based on the package name.

	We use grok.context() to limit this viewlet to a particular content
type, described by the IDocument interface from earlier examples
(not shown). We could omit this, in which case the viewlet would be
shown for any type of context where the viewlet manager is rendered.

	As with a view, we have to specify a permission required to see the
viewlet, using grok.require(). If the user does not have the
required permission, the viewlet will simply be omitted.

	We override the update() method to prepare some data for the
template, much like we did for the view in the previous section. We
could also define additional properties or methods on the viewlet
class.

	We specify the viewlet manager using grok.viewletmanager().

	As with a view, the context is available as self.context and the
request as self.request. In addition, there is self.view, the
current view, and self.viewletmanager, the viewlet manager.



To render the viewlet, we could either override the render() method
and return a string, or use a page template. A page template will be
automatically associated using the rules that apply views. Thus, if the
viewlet was defined in browser.py, the template would be found in
browser_templates/messageviewlet.pt. In the template, the variable
view refers to the current view, and the variable viewlet refers to
an instance of the viewlet class. For example:

<div class="messageViewlet">
  <span>The message subject for this document would be </span>
  <span tal:content="viewlet/message/subject" />
</div>





Notes:


	Viewlet templates tend to be short, and never include the full <html
/> wrapper.

	For the page template to be valid, there must be exactly one root
node, a <div /> in this case.

	It is a good idea to apply a CSS class to the outer element of the
viewlet, so that it can be styled easily.

	The viewlet*variable refers to an instance of the viewlet class.
There is also *view, the current view; context, the context
content object; and request, the current request.






Viewlet ordering

By default, the order of viewlets in a viewlet manager is arbitrary.
Plone’s viewlet managers, however, add ordering support, as well as the
ability to temporarily hide particular viewlets. You can control the
order through-the-web using the @@manage-viewlets view described
above.

A more robust and repeatable option, however, is to configure ordering
at product installation time using Generic Setup, by adding a
viewlets.xml to your profiles/default directory.

For example, to ensure that our new viewlet appeared first in the
plone.abovecontent manager, we could use a viewlets.xml file like
this:

<?xml version="1.0"?>
<object>
  <order manager="plone.abovecontent" skinname="*">
    <viewlet name="example.messaging.MessageViewlet" insert-before="*"/>
  </order>

</object>





See this tutorial [http://plone.org/documentation/kb/customizing-main-template-viewlets] for more detail about the syntax of this file.




Overriding an existing viewlet

Just like a view, a viewlet with a particular name can be overridden
based on the type of context, using the grok.context() directive, or a
browser layer, using the grok.layer() directive.

Here is an example using a more-specific context override:

from five import grok
from plone.app.layout.interfaces import IAboveContent

...

class SilentMessageViewlet(grok.Viewlet):
    """Don't get in the way of important documents
    """

    grok.name('example.messaging.MessageViewlet")
    grok.context(IImportantDocument)
    grok.require('zope2.View')
    grok.viewletmanager(IAboveContent)

    def update(self):
        self.message = IMessage(self.context)

    def render(self):
        return ''





Notes:


	The viewlet name and manager are the same as those used in the
original registration, allowing this viewlet to act as an override
for the one defined previously.

	Here, the viewlet is registered for a more-specific context, using
grok.context().

	In this case, there is no page template. Instead, we return an empty
string from render(). This has the effect of hiding the viewlet for
documents providing IImpotantDocument*(from the examples earlier in
the manual, this is a marker interface that can be applied to
*IDocument instances). We could of course have used a template as
well, as shown above.






Restricting a viewlet to the canonical view

A viewlet may be registered to appear only when a particular type of
view is being rendered, using the grok.view() directive. You can pass
either the view class itself, or an interface it implements, to this
directive. One common example of this is the IViewView marker
interface, which Plone applies to the canonical view (i.e. the one you
get when clicking the View tab) of a content object.

Here is a refined version of our original viewlet, applied to the
canonical view only (template not shown again):

<div tal:replace="structure provider:example.messaging.MessageArea" />






Note

this will cause an error if the viewlet manager is not
available for the current context and view.



We need to register some viewlets before this would actually display
anything. Previously, we used an interface provided by the viewlet
manager to register a viewlet for that manager. We could define such an
interface and use grok.implements() on the viewlet manager class to
associate it with the manager class. However, we can also use the
viewlet manager class directly:

class DummyViewlet(grok.Viewlet):
    grok.name('example.messaging.DummyViewlet')
    grok.require('zope2.View')
    grok.viewletmanager(MessageAreaViewletManager)

    def render(self):
        return "<p>Dummy</p>"





It would of course be better to use a page template, but this would be
enough for a quick test.







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Views

Browser views with and without templates

Browser views (or just “views”) are the most common form of display
technology in Zope. When you view a web page in Plone, chances are it
was rendered by a view[1].

At the most basic level, a view is a component (in fact, a named
multi-adapter) that is looked up during traversal (i.e. when Zope
interpreters a URL) and then called by the Zope publisher to obtain a
string of HTML to return to the browser. That normally involves a page
template, although it is possible to construct the response in code as
well. Sometimes, the view may not return anything. One reason may be
that it results in a redirect. Furthermore, some views are not designed
to be invoked from URL traversal, instead containing utility methods
which are looked up from other views or components.


Views with templates

The most common type of view involves a Python class and an associated
page template. The Python class is used to register the view. An
instance of the class is also available in the template, under the name
view. This provides a natural home for “display logic” - calculations
or preparation of data intended only for the view.


Note

As a rule of thumb, try to keep the page template free from complex
expressions. Python code is much easier to debug and test.



Here is an example of a view class which registers a view and provides
some helper methods and attributes. It also prepares some variables for
the view in the update() method, which is called just before the view
is rendered. Obviously, we could have omitted these things if they were
not necessary, in which case the Python class would serve only as a
place to hang the view’s registration.

This class could go in any Python module. For generic views,
browser.py is a good choice.

from five import grok
from Acquisition import aq_inner

class AsMessage(grok.View):
    """Render a document as a message
    """

    grok.context(IDocument)
    grok.require('zope2.View')
    grok.name('as-message')

    def update(self):
        context = aq_inner(self.context)
        self.message = IMessage(context)

    def truncatedBody(self, maxLength=1000):
        return self.message.body[:maxLength





The automatically associated template is shown below. If the Python
module was browser.py, this would be found in a directory
browser_templates/asmessage.pt in the same package. The directory
name is taken from the module name (with _templates appended); the
filename is taken from the class name (in all lowercase, with a .pt
extension).

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
      xmlns:tal="http://xml.zope.org/namespaces/tal"
      xmlns:metal="http://xml.zope.org/namespaces/metal"
      xmlns:i18n="http://xml.zope.org/namespaces/i18n"
      lang="en"
      metal:use-macro="context/main_template/macros/master"
      i18n:domain="example.conference">

<body>

<metal:main fill-slot="main">
    <tal:main-macro metal:define-macro="main">

    <div tal:replace="structure provider:plone.abovecontenttitle" />

    <h1 class="documentFirstHeading">Message view</h1>

    <div tal:replace="structure provider:plone.belowcontenttitle" />

    <p class="documentDescription">This is the message view of the content object</p>

    <div tal:replace="structure provider:plone.abovecontentbody" />

    <div>
        <label>Subject:</label> <span tal:content="view/message/subject" />
    </div>
    <div>
        <label>Body:</label> <span tal:content="view/truncatedBody" />
    </div>

    <div tal:replace="structure provider:plone.belowcontentbody" />

    </tal:main-macro>
</metal:main>

</body>
</html>





If we now had a content object providing IDocument reachable at
http://example.org/my-document, we would be able to invoke this view
using a URL like http://example.org/my-document/@@as-message. See the
Dexterity Developer Manual for more information about how to register
default and alternative views for content items.

Notes:


	The class will grokked as a view because it derives from grok.View.
This in turn defines a constructor which saves the context content
object as self.context and the request as self.request.

	We register the view for a specific type of content object using
grok.context(), which we have already seen in the context of
adapters. Here, we have used the IDocument interface from earlier
in this manual. If there is a module-level context, this can be
omitted.

	We give the view a name using grok.name(). This corresponds to the
path segment in the URL. This directive is optional. The default view
name is the name of the class in all lowercase, e.g. “asmessage” in
this case.

	We specify a permission required to access the view using
grok.require(). This directive is required. You can pass
“zope2.Public” to indicate that the view does not require any
permissions at all. Other common permissions include zope2.View,
cmf.ModifyPortalContent and cmf.ManagePortal. See the Dexterity
Developer Manual for more information about permissions and
workflow.

	We override the update() method, which is called by the base class
before the view is rendered. This is a good place to pre-calculate
values used in the template and process any request variables (see
the section on forms below). Since views are transient objects
instantiated on the fly, we can safely store values on the view
object itself. Here, we have looked up an IMessage*adapter (from the
adapter examples earlier in this manual) and stored it in
*self.message. This is available in the template as view/message.

	In the update() method, we use the aq_inner() function on
self.context to avoid possible problems with the view being part of
the acquisition chain of self.context. If that didn’t make any
sense, better not to worry about why this is necessary. Nine times of
out ten, you won’t have a problem if you just use self.context
directly, but since the tenth time is quite hard to debug, it’s a
good habit to get into.

	We have also defined a custom method, which we use in the template
via a TAL expression.

	In the template, we use the master macro of Plone’s
main_template to get the standard Plone look-and-feel, and include
a number of standard viewlet managers (see the section on viewlets
later in this manual) to provide standard UI elements.

	We use a number of TAL expressions to render information from the
context (the IDocument object) and the view instance (in
particular, the view.message object we set in the update()
method). See the ZPT reference [http://docs.zope.org/zope2/zope2book/AppendixC.html] for more details on the TAL syntax.






Views without templates

Sometimes, we do not need a template. In this case, we can override the
render() method of the grok.View base class to return a string,
which is then returned to the browser as the response body.

Below is an example that builds a CSV file of the recipients of the
message representation of the context. By setting appropriate response
headers, this view ensures that the browser will attempt to download
that generated file, rather than display a plain text response.

from StringIO import StringIO
import csv

from five import grok
from Acquisition import aq_inner

class MessageRecipients(grok.View):
    """Return a CSV file with message recipients
    """

    grok.context(IDocument)
    grok.require('zope2.View')
    grok.name('message-recipients')

    def update(self):
        context = aq_inner(self.context)
        self.message = IMessage(context)

    def render(self):
    out = StringIO()
    context = aq_inner(self.context)
    writer = csv.writer(out)

    # Write header
    writer.writerow(('Email address', 'Subject'))

    subject = self.message.subject

    # Write body
    for recipient in self.message.recipients:
        writer.writerow((recipient, subject,))

    # Prepare response

    filename = "Recipients for %s.csv" % context.title

    self.request.response.setHeader('Content-Type', 'text/csv')
    self.request.response.setHeader('Content-Disposition', 'attachment; filename="%s"' % filename)

    return out.getvalue()





Notes:


	We use the Python csv module to build the output string.

	We return a string, which represents the response body.

	We set the Content-Type repsonse header to indicate to the browser
that the return value should be opened as a spreadsheet.

	We set the Content-Disposition response header to indicate that the
return value should be treated as a separate file rather than opened
in the browser, and suggest a filename for the download.






Implementing simple forms

Dexterity uses the powerful z3c.form [https://pypi.python.org/pypi/z3c.form] library to provide forms based
on schemata defined in Python or through-the-web, including validation
and standardised widgets. Sometimes, though, we just want a simple HTML
form and a bit of logic to process request parameters. One common way to
implement this is with a view that defines a form, which submits back to
itself. The form is processed in the update() method of the view
class.

The example below shows a simple form which allows users to subscribe to
a content object with an email address. The list of subscribers is
stored in an annotation (as described earlier in this manual).

from five import grok
from Acquisition import aq_inner

from BTrees.OOBTree import OOSet

from zope.annotation.interfaces import IAnnotatablel, IAnnotations

class Subscribe(grok.View):
    """Allow users to subscribe to an item
    """

    grok.context(IAnnotatable)
    grok.require('zope2.View')

    def update(self):
        context = aq_inner(self.context)

        # A dictionary of items submitted in a POST request
        form = self.request.form

        self.errors = {}

        if 'form.button.Subscribe' in self.request:
            email = self.request.get('email', None)
            if email is None:
                self.errors['email'] = "Email address is required"

            else:
                annotations = IAnnotations(context)
                addresses = annotations.setdefault('example.grok.subscriptions',  OOSet())

                if email in addresses:
                    self.errors['email'] = "Email address already subscribed"
                else:
                    addresses.add(email)
                    self.request.response.redirect(self.context.absolute_url() + "/view")





Here is the form template. Assuming the view was put in a module
subscription.py, the template would be in
subscription_templates/subscribe.pt.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
      xmlns:tal="http://xml.zope.org/namespaces/tal"
      xmlns:metal="http://xml.zope.org/namespaces/metal"
      xmlns:i18n="http://xml.zope.org/namespaces/i18n"
      lang="en"
      metal:use-macro="context/main_template/macros/master"
      i18n:domain="example.conference">

<body>

<metal:main fill-slot="main">
    <tal:main-macro metal:define-macro="main">

    <div tal:replace="structure provider:plone.abovecontenttitle" />

    <h1 class="documentFirstHeading">Subscribe</h1>

    <div tal:replace="structure provider:plone.belowcontenttitle" />

    <div tal:replace="structure provider:plone.abovecontentbody" />

    <form tal:attributes="action request/URL" method="post">

        <div class="field">
            <div class="error"
                tal:condition="view/errors/email|nothing"
                tal:content="view/errors/email|nothing" />
            <label for="email">Email address:</label>
            <input type="text" id="email" name="email" />
        </div>

    </form>

    <div tal:replace="structure provider:plone.belowcontentbody" />

    </tal:main-macro>
</metal:main>

</body>
</html>





To make the example more realistic, we would obviously also need to
write some code to help manage the list of subscribers, allowing users
to un-subscribe and so on, as well as some functionality to actually use
the list. These could potentially be created as other views in the same
module. Their templates would then also go in the
subscription_templates directory.

Notes:


	We’ve omitted the grok.name() directive, so the view name will be
@@subscribe.

	We register the form for a generic interface so that it can be used
on any annotatable context.

	We use a redirect if the form is successfully submitted. The
grok.View base class is smart enough to avoid invoking any
associated template or overridden render() method if a redirect
takes place.

	We use self.request.form to inspect the submitted form. This
dictionary contains form values submitted via a POST request. For a
GET request, use self.request.get() to obtain parameters.

	We use an OOSet as an efficient persistent storage of subscription
email addresses.






Utility views

Not all views are meant to be rendered. Sometimes, a view provides
utility methods that may be used from other views. Plone has a few such
views in the plone.app.layout.globals package:


	plone_portal_state, which gives access to site-wide information,
such as the URL of the navigation root.

	plone_context_state, which gives access to context-specific
information, such as an item’s URL or title.

	plone_tools, which gives access to common tools, such as
portal_membership or portal_catalog.



See the interfaces.py module in plone.app.layout.globals for
details. In a template, we would look up these with a TAL expression
like:

<div tal:define="context_state nocall:context/@@plone_context_state;
                 viewUrl context_state/view_url;">
    <a tal:attributes="href viewUrl">View URL</a>
</div>





In code, we could perform the same lookup like so (note that we need a
context object and the request; in a view, we’d normally get these from
self.context and self.request):

>>> from zope.component import getMultiAdapter
>>> context_state = getMultiAdapter((context, request,), name=u"plone_context_state")
>>> viewUrl = context_state.view_url()





A utility view is registered like any other view. If you are using
grok.View to register one, you should return an empty string from the
render() method. You also should not use update(), since it may not
be called for you. Instead, define methods and attributes that can be
accessed independently. Here is an example:

from five import grok
from Acquisition import aq_inner

from plone.memoize import view
from Products.CMFCore.interfaces import IContentish

class MessageInfo(grok.View):
    """Utility view to quickly access message aspects of
    an object.
    """

    grok.context(IContentish)
    grok.require('zope2.View')
    grok.name('message-info')

    def render(self):
        """No-op to keep grok.View happy
        """
        return ''

    @view.memoize
    def recipients(self):
        message = self._message()
        if message is None:
            return None
        return message.recipients

    ...

    @view.memoize
    def _message(self):
        """Get the message representation of the context
        """
        context = aq_inner(self.context)
        return IMessage(context, None)





Notes:


	We have implemented an empty render() method to satisfy
grok.View.

	We have used plone.memoize [https://pypi.python.org/pypi/plone.memoize] to lazily cache variables. The
@view.memoize decorator will cache each value for the duration of
the request. See plone.memoize’s interfaces.py for more details.

	We’re being defensive and returning None in the cases where the
IMessage adapter cannot be looked up.






Overriding views

Recall that views are implemented behind the scenes as named
multi-adapters. One consequence if this is that it is possible to
override a view with a given name by using the more-specific adapter
concept. You can:


	Register a view with the same name as an existing view, specifying a
more specific context interface with grok.context()

	Register a view with the same name as an existing view, specifying a
more specific type of request with grok.layer().



The term “layer” here relates to the concept of a “browser layer”. Upon
traversal, the request may be marked with one or more marker interfaces.
In Plone, this normally happens in one of two ways:


	A browser layer can be automatically associated with the currently
active Plone theme. This magic is performed using the plone.theme [https://pypi.python.org/pypi/plone.theme]
package.

	One or more browser layers can be activated when a particular product
is installed in a Plone site. The plone.browserlayer [https://pypi.python.org/pypi/plone.browserlayer] package
supports this via the browserlayer.xml GenericSetup syntax. See the
Dexterity Developer Manual for more information about creating a
GenericSetup profile.



For example, the following class (view implementation and template not
shown) could be used to override a view for a specific layer:

from five import grok

...

class AsMessage(grok.View):
    """Render a document as a message
    """

    grok.context(IDocument)
    grok.layer(IMessageOverrides)
    grok.require('zope2.View')
    grok.name('as-message')

    ...





Notes:


	The grok.layer() directive takes an interface as its only argument.
This should be a layer marker interface. In this case, we have
assumed that we have an IMessageOverrides layer.

	We’ve used the same name and context as the default implementation of
the view.

	We’ve also used the same permission. It is possible to change the
permission, but in most cases this would just be confusing.

	We will also sometimes use layers not to override an existing view,
but to ensure that the view is not available until a package has been
installed into a Plone site (in the case of a layer registered with
browserlayer.xml) or a given theme is active (in the case of a
theme-specific layer).




Note

You can use five.grok to override any browser view, not just those
registered with five.grok. For a simpler way to override templates (but
not Python logic), you may also want to look into z3c.jbot [https://pypi.python.org/pypi/z3c.jbot].



[1] As of Plone 3, that’s not entirely true: an older technology known
as skin layer templates are used for many of the standard pages, but the
principles behind them are the same.







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Adapters

Adapting from one interface to another with simple adapters and
multi-adapters

Adapters are one of the most powerful concepts of the Zope Component
Architecture. They underpin a huge amount of the functionality - and
“pluggability” - of Zope and Plone. You will often see documentation (or
interfaces) that describe how a customisation can be applied by writing
an adapter.

As the name suggests, adapters implement the “adapter” software design
pattern. In the simplest terms, an adapter is a component that knows how
to use an object providing one interface to implement another interface.

The usual analogy is that of international power plugs: a European plug
has two prongs and a UK plug has three, but for the most part they do
the same job and use the same (or nearly the same) voltage. If you have
a UK appliance and you are in a country that has European sockets, you
can (re-)use your appliance (and avoid buying a new one) by employing an
adapter that makes the UK plug fit into the European socket. (If you’ve
ever lived in the UK, you’ll understand why “European” is not a superset
of “UK” in the preceding paragraph).


Note

If you prefer duck metaphors, there is an awesome talk by Brandon Craig
Rhodes about the concept of an adapter for your viewing pleasure
here [http://plone.org/events/conferences/2008-washington-dc/agenda/using-grok-to-walk-like-a-duck].
It even has sound effects.



In software terms, it is much the same. Let’s say that we were writing a
Twitter-to-email gateway (because Gmail has lots of storage space and
it’s important to know when some man in Kuala Lumpur got out of bed).
Suppose we have a function that can send an email, expecting an
IMessage object. Unfortunately, our input is a tweet, conforming to
the ITweet interface:

from zope.interface import Interface
from zope import schema

class IMessage(Interface):
    """An email-like message
    """

    subject = schema.TextLine(title=u"Subject")
    recipients = schema.Tuple(title=u"Recipients",
                              description=u"A list of email addresses",
                              value_type=schema.TextLine())
    body = schema.Text(title=u"Body", required=False)

    def format():
        """Return a formatted string representing the message
        """

class ITweet(Interface):
    """A microblogging message
    """

    from_ = schema.TextLine(title=u"Subject")
    message = schema.Text(title=u"The message")





What we need is a way to adapt our ITweet object to an IMessage.

The basic approach is to write a class that implements the attributes
and methods of IMessage by delegating to an adapted context object
that provides the ITweet interface. And a simple adapter would be
just that: a class that we instantiated directly, being passing a tweet
in its constructor, and then behaving like an IMessage.

Doing this, however, would tie us down to a specific implementation of
the adapter. The ZCA gives us a more powerful alternative by maintaining
a registry of adapters. We simply ask for an adapter from the object
we have, to the interface we want, and the ZCA searches the registry
for the most appropriate one. In code, it looks like this:

def sendAsEmail(context):
    """Convert the object passed in to an email message and send it.
    """

    message = IMessage(context)
    sendEmail(message)





We could call this function with a tweet like this:

>>> tweet = getLatestTweet() # implementaiton not shown - returns an object providing ITweet
>>> sendAsEmail(tweet)





Here, we have assumed that the incoming object is an ITweet, but in
reality it could be anything that was adaptable to IMessage.
Suddenly, our sendAsEmail() function can be used for Identi.ca
messages and those really irritating Facebook status updates as well.
All we have to do is register an appropriate adapter from the source
type to IMessage, and we’re done.


Note

As you may imagine, this technique is very useful in a content
management scenario where you may have any number of different content
types and you want to implement some common functionality that works
across a number of objects.



The syntax we used here is to “call” the interface. This is the most
convenient way to look up a simple (unnamed, non-multi) adapter. If no
adapter can be found, the ZCA will raise a TypeError. That normally
indicates a programming error, so we don’t mind, but if you are unsure
whether the adapter has been registered, you can fall back to a default
value (e.g. None) like this:

>>> message = IMessage(tweet, None)






Registering classes as adapter factories

Now that we have seen what adapters do and how to look them up, let’s
actually write and register one.

When we register adapters, we are actually registering an
adapter****factory. This is a callable that takes as an argument the
object being adapted, and returns an object providing the desired
interface. Each time an adapter is looked up, the ZCA calls the adapter
factory to obtain a new adapter instance. (Compare this to utilities,
which are instantiated once and shared.)

In most cases, adapter factories are classes implementing a given
interface and taking a single parameter in their constructor. (A Python
class object is a callable which takes the arguments of the class’
__init__() method and returns an instance of the class). The
grok.Adapter base class relies on this convention. It even defines the
constructor (although you can override it) and stores the adapted object
in the variable self.context, as is the convention.

An adapter factory for adapting ITweet s to IMessage s could thus look
like this:

class TweetMessage(grok.Adapter):
    """Adapts an ITweet to an IMessage.

    This adapter is readonly. Thus we are strictly speaking only implementing
    a subset of the IMessage interface.
    """

    grok.provides(IMessage)
    grok.context(ITweet)

    @property
    def subject(self):
        return u"New tweet from %s!" % self.context.form_

    @property
    def recipients(self):
        return ('tweetgateway@example.org',)

    @property
    def body(self):
        return self.context.message

    def format(self):
        return "%s\n%s" % (self.subject, self.body,)





Assuming the package is being grokked, this is all it takes to register
an adapter with five.grok.

Notes:


	The adapted object is available as self.context when using the
default constructor.

	If you are writing your own constructor, use a signature like "**def
__init__(self, context):"** and store the context argument as
self.context. This is not strictly necessary, but it is an almost
universal convention. Since the constructor is called when the
adapter is looked up, it is best to avoid any resource-intensive
operations there. If an error is raised in the constructor, the
adaptation will fail with a “could not adapt” TypeError.

	The grok.provides() directive indicates the interface that will be
provided by the adapter. If the adapter factory implements a single
interface (via grok.implements() or inherited from a base class),
this is optional.

	The grok.context() directive indicates what is being adapted. This
is usually an interface, but it can also be a class, in which case
the adapter is specific to instances of that class (or a subclass).
This directive can sometimes be omitted if there is an unambiguous
module-level context. This is an instance providing the IContext
interface from grokcore.component.interfaces, and will typically be
something like a content object. If in doubt, it is always safest to
provide an explicit context using the grok.context() directive.






Modelling aspects as adapters

In the example above, we used an adapter to make an object providing one
interface conform to another. In this case, the objects were similar in
purpose, they just happened to have incompatible interfaces. However,
adapters are also frequently used in situations where we are trying to
model different aspects of an object as independent components, without
having to support every possible feature in a single class.

Consider our message interface again. Let’s say that we wanted to be
able to email any content object as a message. Is our content object a
message? Not at all, but we can provide an adapter to the IMessage
interface which models the “messaging” aspect of the content object.

Such an adapter may look something like this (IDocument*and
implementation not shown, but assume it supports the properties
*title*and *text):

from five import grok

class DocumentMessage(grok.Adapter):
    grok.provides(IMessage)
    grok.context(IDocument)

    @property
    def subject(self):
        return self.context.title

    @property
    def recipients(self):
        return ('intray@example.org',)

    @property
    def body(self):
        return self.context.text

    def format(self):
        return "%s\n%s" % (self.subject, self.body,)





This is relatively straightforward, and we could imagine having a number
of such adapters to represent any number of different content types as
messages.

Now consider the alternatives:


	we could write a bespoke email-sending function for each type of
content and use if-statements or lookup tables to find the correct
one; or

	we could demand that every content type that supported being sent as
an email inherited from a mix-in class that provided the required
properties.



The latter is the usual approach in the world of object oriented
programming, and is fine for small, closed systems. In an open-ended
system such as Plone, however, we don’t always have the option of mixing
new functionality into old code, and classes with “fat” interfaces can
become unwieldy and difficult to work with.




Customisation with more-specific adapters

So far, we have limited ourselves to having only one adapter per type of
context. The ZCA allows us to have multiple possible adapters, leaving
it to pick the most appropriate one. Here, “most appropriate” really
means “most specific”, according to the following rules:


	An adapter registered for a class is more specific than an adapter
registered for an interface

	An adapter registered for an interface directly provided by an
instance is more specific than an adapter registered for an interface
implemented by that object’s class

	An adapter registered for an interface listed earlier in the
implements() directive is more specific than an adapter registered
for an interface listed later

	An adapter registered for an interface implemented by a given class
is more specific than an adapter registered for an interface
implemented by a base class

	An adapter registered for a given interface provided by an object is
more specific than an adapter registered for a base-interface of that
interface

	In the case of a multi-adapter (see below), the specificity of the
adapter to the first adapted object is more important than the
specificity to subsequent adapted objects



These rules are known as “interface resolution order” and are basically
equivalent to the “method resolution order” used to determine which
method takes precedence in the case of multiple inheritance. Most of the
time, this works as you would expect, so you do not need to worry too
much about the detail of the rules.

The power of the “more-specific adapter” concept is that we can create a
generic adapter for a generic interface, and then provide an override
for a more specific interface. Let’s say that we had the following
hierarchy of interfaces, implemented by different types of content
objects (not shown):

from zope.interface import Interface
from zope import schema

class IContent(Interface):
    """A content object
    """

    title = schema.TextLine(title=u"Title")

class IDocument(IContent):
    """A document content item
    """

    text = schema.TextLine(title=u"Body text")

class IFile(IContent):
    """A file content item
    """

    contents = schema.Bytes(title=u"Raw data")





We could now register a generic adapter from IContent to IMessage,
which would be usable for any content item providing this interface,
including file content, or some future type of content we haven’t even
thought of yet. Then, we could register a more specific adapter for
IDocument, like the one we saw above, to provide more specific behaviour
for the document type.

But why stop there? Perhaps we want to be able to mark certain documents
as important and have the message subject change? One way to do that is
with a marker interface on the instance:

class IImportantDocument(Interface):
    """Marker interface for important documents
    """





We would apply this selectively to instances using alsoProvides()
(perhaps in an event handler):

>>> from zope.interface import alsoProvides
>>> alsoProvides(urgentDocument, IImportantDocument)





We could then register an adapter for this. We can even re-use our
previous adapter factory by subclassing it and overriding only the
properties or methods we care about:

class ImportantDocumentMessage(DocumentMessage):
    grok.provides(IMessage)
    grok.context(IImpotrantDocument)

    @property
    def subject(self):
        return u"URGENT! " + self.context.title





Note: This factory class is grokked as an adapter because it derives
from DocumentMessage which in turn derives from grok.Adapter.


Note

If you have a class that derives from one of the special Grok base
classes (like grok.Adapter or grok.GlobalUtility), but you do not
want it to be grokked, e.g. because it is used only as a base class for
other classes, you can use the grok.baseclass() directive with no
arguments to disable grokking.






Using a function as an adapter factory

Remember we said that an adapter factory is a “callable” that returns an
object providing the appropriate interface? Classes are one type of
callable, but the most common callable, of course, is a function. It can
be useful to register a function as an adapter factory in situations
when you are not actually (or always) instantiating a class to provide
the adapter.

As an example, let’s say that we wanted to keep a cache of the adapter
instances, perhaps because they are resource intensive. In this case, we
may either create a new adapter object, or re-use an existing one (in
general, we wouldn’t do this of course, due to thread safety and state
management issues, but it’s a useful example). We can’t do that in the
__init__() method of a class, because that is not called until
after the class has been instantiated. Instead, we could use a function
as the adapter factory:

from five import grok

@grok.implementer(IMessage)
@grok.adapter(ITweet)
def messageFromTweetAdapter(context):
    cached = messageCache.get(context) # dict-like interface; not shown
    if cached is not None:
        return cached
    else: # create a new object
        return TweetMessage(context)





Notes:


	The @implementer decorator specifies the interface(s) which will be
provided by the returned objects. In the case of an adapter factory,
you should pass a single interface, although the decorator can take
multiple arguments.

	The @adapter decorator actually registers the adapter. For a single
adapter, pass a single interface. For a multi-adapter (see below),
you can pass multiple arguments. For a named adapter (see below) you
can pass a name=u“name” keyword argument.






Using an instance as an adapter factory

In addition to classes and functions, an instance of a class that has a
__call__() method may be used as an adapter factory callable. To
register such an object as an adapter factory, we can’t use the
grok.Adapter base class (since that would register the class as the
adapter factory and we want to register the object) or the @adapter
decorator. Instead, we use the global_adapter() function.

This is much less common, but can be useful in certain circumstances.
Here is an example from the z3c.form [https://pypi.python.org/pypi/z3c.form] library:

from five import grok

from zope.interface import Interface
from zope import schema
import z3c.form.widget import StaticWidgetAttribute

class ISchema(Interface):
    """This schema will be used to power a z3c.form form"""

    field = schema.TextLine(title=u"Sample field")

labelOverride = StaticWidgetAttribute(u"Override label", field=ISchema['field'])
grok.global_adapter(labelOverride, name=u"label")





The StaticWidgetAttribute() function returns a callable object that is
intended to be registered as an adapter factory. The global_adapter()
function takes care of this for us at “grok time”. In this case, we have
passed the instance and a name (see named adapters, below) because the
object provides a single interface and has an “adapts” declaration. If
this was not the case, we could use the full syntax:

grok.global_adapter(adapterFactoryInstance, (IAdapted,), IProvided, name=u"name")





Note: The adapted interfaces are passed as a tuple to support
multi-adapters (see below).




Named adapters

As we have seen above, adapters - like utilities - can be registered
with a name:


	By using the grok.name() directive in the class body of an adapter
factory deriving from grok.Adapter.

	By using the name*keyword argument to the *@adapter function
decorator

	By using the name*argument to the *global_adapter() function



Named adapters are a lot less common than named utilities, but can be
useful in a few circumstances:


	You want the user to choose among a number of different
implementations at runtime. In this case, you could translate the
user’s input (or some other external runtime state) to the name of an
adapter.

	You want to allow third-party packages to plug in any number of
adapters, which you will iterate over and use as appropriate, but you
also want to allow an individual named adapter to be overridden for a
more specific interface (see also subscription adapters below).

	Most browser components (views, viewlets, resource directories) are
in fact implemented as named (multi-)adapters. For a view, the name
is the path segment that appears in the URL.



If you want to get a simple (non-multi) adapter by name, use the
getAdapter() function:

>>> from zope.component import getAdapter
>>> adapted = getAdapter(context, IMessage, name=u"adapter-name")





This will raise a ComponentLookupError if no adapter can be found.
There is also a queryAdapter() function which returns None as a
fallback instead.

If you want to iterate over all the named adapters that provide a given
interface, you can do:

>>> from zope.component import getAdapters
>>> for name, adapter in getAdapters((context,), IMessage):
...     print "Name gave us", adapter.format()





Note that this function takes a tuple of objects as the context, because
it is also used for multi-adapters.




Multi-adapters

So far, our adapters have all adapted a single context. A multi-adapter
is an adapter that adapts more than one thing. There are a few reasons
to want to do this:


	If you have written an adapter and you find that you need to pass an
object to (almost) every one of its methods, you could use a
multi-adapter to allow the adapter to be initialised with more than
one object.

	The rules of “more specific” adapters applies to each adapted context
of multi-adapters. Thus, if you want to allow a component to be
swapped out (customised) along multiple dimensions, you could look it
up as a multi-adapter.



Multi-adapters are frequently used in browser components (such as views
and viewlets), which adapt a context object and the request. This allows
multiple views to be registered with the same name, with different
implementations based on the type of context (i.e. the "index" view
for an IDocument is different to the view of an IFile) or the type
of request (i.e. an HTTP request results in a different response to an
XML-RPC request). Furthermore, the request may be marked with marker
interfaces (known as “browser layers”) upon traversal, allowing you to
register a different view depending on which layer is in effect.

Browser components are registered using specific grokkers which also
take care of things like security and template binding. We will cover
those later. For a simple example, however, consider the following:

from zope.interface import Interface
from zope import schema

class IBloggingService(Interface):
    """A blogging service
    """

    title = schema.TextLine(title=u"Name of service")
    url = schema.URI(title=u"API URL")

class IMicroBloggingService(IBloggingService):
    """A micro-blogging service
    """

    maxMessageLength = schema.Int(title=u"Max message length allowed")

class IMessageBroadcaster(Interface):
    """Multi-adapt a context and a blogging service to this interface
    """

    def send():
        """Send the context as a message using the given service
        """





We could imagine looking up a multi-adapter like this:

>>> from zope.component import getMultiAdapter()
>>> context = Document() # an object providing IDocument
>>> service = TwitterService() # an object providing IMicroBloggingService
>>> broadcaster = getMultiAdapter((context, service,), IMessageBroadcaster)





This will raise a ComponentLookupError if no suitable adapter can be
found. There is also queryMultiAdapter(), which will return None as
a fallback.

Like other adapters, a multi-adapter is registered with a callable that
acts as the adapter factory. The callable must take one argument for
each adapted object (two, in this case). We can register multi-adapters
with the @adapter function decorator or the grok.global_adapter()
function, as indicated above. More commonly, however, we will use the
grok.MultiAdapter base class, like this:

class BloggingBroadcaster(grok.MultiAdapter):
    grok.provides(IMessageBroadcaster)
    grok.adapts(IContent, IBloggingService)

    def __init__(self, context, service):
        self.context = context
        self.service = service

    def send(self):
        message = IMessage(self.context)
        text = message.format()
        print text

class MicroBloggingBroadcaster(grok.MultiAdapter):
    grok.provides(IMessageBroadcaster)
    grok.adapts(IContent, IMicroBloggingService)

    def __init__(self, context, service):
        self.context = context
        self.service = service

    def send(self):
        message = IMessage(self.context)
        text = message.format()
        print text[:self.service.maxMessageLength]





Here, we have registered two multi-adapters, the second more specific
than the first. Notice how we have to define a constructor: the base
class can’t do it for us, since it doesn’t know how many things we will
adapt or what we may want to call the variables where they are stored.




Subscription adapters

There is one final type of adapter known as a subscription adapter.
These can be used when you always want to look up and iterate over all
available adapters to a specific interface, as opposed to finding the
most specific one. However, it is not possible to override or disable a
subscription adapter without removing its registration directly, so most
people prefer to use named adapters instead, which allow an adapter with
a given name to be overridden for a more specific interface. Like event
handlers (which are in fact implemented using subscription adapters),
subscription adapters are registered with the <subscriber /> ZCML
directive. There is currently no way to register one using Grok
conventions.







          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Annotations

Using the zope.annotation package

Annotations are a convenient feature used throughout Zope and Plone.
They also serve as a useful real-world example of adapters.

The zope.annotation [https://pypi.python.org/pypi/zope.annotation] package defines an interface IAnnotations. By
adapting an object (often a content item) to this interface, you can get
and set values using a dict-like API. These values are then persisted
against the context object.

Remember that we often use adapters to model different aspects of an
object. A content object may have a basic schema - its content data
model - but there may be any number of adapters providing functionality
which in turn may need to persist other information. The annotations API
provides a simple and consistent storage abstraction for such
information.

The basic syntax for using an annotation is:

>>> from zope.annotation.interfaces import IAnnotations
>>> annotations = IAnnotations(context)
>>> annotations['my.package.key'] = 1234





Notes:


	Since annotations can be used by any number of packages, we tend to
use dotted names as keys, to reduce the risk of colissions when two
packages are writing annotations onto the same object.

	The values stored in annotation must be persitable. Primitives are
fine, as are objects deriving from persistence.Persistent.

	The IAnnotations*interface promises all the usual methods of a
Python dictionary. For example, you can use *setdefault() to set a
default value if you are not sure that it has been created yet.



But where are annotations stored? As users of the IAnnotations
interface we don’t care: that logic is implemented by the IAnnotations
adapter. We could implement our own such adapter, but we normally don’t:
the zope.annotation package comes with an adapter providing
IAnnotations and adapting a marker interface IAttributeAnnotations.
This stores the values in an efficient, persistent BTree structure.
(That BTree happens to be stored as an attribute of the content object
called __annotations__, although we don’t ever access that
directly.)

Most content objects and the request object in Zope and Plone provide
this marker interface, making them “annotatable”. If you are working on
a simpler object, you can declare support for
IAttributeAnnotations with a directive like:

from persistence import Persistent
from five import grok
from zope.annotation.interfaces import IAttributeAnnotations

class SomeType(Persistent):
    grok.implements(IAttributeAnnotations)

    ...





Let’s now show a more complete example of using annotations. Recall the
following interface, which we used to implement a multi-adapter in the
previous section:

class IMessageBroadcaster(Interface):
    """Multi-adapt a context and a blogging service to this interface
    """

    def send():
        """Send the context as a message using the given service
        """





Let’s say that we wanted to count the number of messages sent against
each each content object. Here is an implementation of the multi-adapter
that uses annotations to do that:

from five import grok
from zope.annotation.interfaces import IAnnotations

class BloggingBroadcaster(grok.MultiAdapter):
    grok.provides(IMessageBroadcaster)
    grok.adapts(IContent, IBloggingService)

    COUNTER_KEY = 'example.messaging.counter'

    def __init__(self, context, service):
        self.context = context
        self.service = service

    def send(self):
        message = IMessage(self.context)
        text = message.format()

        annotations = IAnnotations(self.context, None)
        if annotations is not None:
            messageCount = annotations.get(COUNTER_KEY, 0)
            messageCount += 1
            annotations[COUNTER_KEY] = messageCount
            print "This is message number", messageCount

        print text





This code is defensive in that we gracefully handle the case where the
context is not annotatable. When it is, we get the current counter (if
set), increment it, and then save it back again, before printing the
value.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Events

Registering event handlers and sending events

Zope provides an events system. Various components (e.g the standard add
and edit forms) notify any number of event subscribers (also known
as event handlers) of a particular event. The subscribers are then
executed.

Note that:


	Event subscribers are executed in arbitrary order

	Events are executed synchronously: The code which notifies of the
event will block until all event handlers have returned



Each type of event is described by an interface. The implementation of
this interface will typically carry some information about the event,
which may be useful to event subscribers.

Some events are known as object events. These have an object
attribute, giving access to the (content) object that the event relates
to. Object events allow event handlers to be registered for a specific
type of object as well as a specific type of event.

Some of the most commonly used event types in Plone are shown below.
They are all object events (i.e. they derive from
zope.component.interfaces.IObjectEvent).


	zope.lifecycleevent.interfaces.IObjectCreatedEvent, fired by the
standard add form just after an object has been created, but before
it has been added on the container. Note that it is often easier to
write a handler for IObjectAddedEvent (see below), because at this
point the object has a proper acquisition context. This makes it
possible to look up tools using getToolByName(), for example.

	zope.lifecycleevent.interfaces.IObjectModifiedEvent, fired by the
standard edit form when an object has been modified

	zope.lifecycleevent.interfaces.IObjectAddedEvent, fired when an
object has been added to its container. The container is available as
the newParent attribute, and the name the new item holds in the
container is available as newName.

	zope.lifecycleevent.interfaces.IObjectRemovedEvent, fired when an
object has been removed from its container. The container is
available as the oldParent attribute, and the name the item held in
the container is available as oldName.

	zope.lifecycleevent.interfaces.IObjectMovedEvent, fired when an
object is added to, removed from, renamed in, or moved between
containers. This event is a super-type of IObjectAddedEvent
and*IObjectRemovedEvent*, shown above, so an event handler registered
for this interface will be invoked for the ‘added’ and ‘removed’
cases as well. When an object is moved or renamed, all of
oldParent, newParent, oldName and newName will be set.

	Products.CMFCore.interfaces.IActionSucceededEvent, fired when a
workflow event has completed. The workflow attribute holds the
workflow instance involved, and the action attribute holds the
action (transition) invoked.



Of course, you can create your own event types as well. However, for
standard CRUD type operations (create, read, update, delete), it is best
to use the standard event types with a custom object type rather than
creating an object-specific event type.


Registering an event subscriber

Event subscribers can be registered using the subscribe() decorator.
This takes at least one argument: the type (interface) of event to
subscribe to. For object events, it can take two parameters: the type of
object, and the type of event. This allows us to limit an event handler
to a particular type of context object.

Here is an example, printing a message every time a CMF content object
is added to a folder:

from five import grok

from zope.lifecycleevent.interfaces import IObjectAddedEvent
from Products.CMFCore.interfaces import IContentish

@grok.subscribe(IContentish, IObjectAddedEvent)
def printMessage(obj, event):
    print "Received event for", obj, "added to", event.newParent





Provided the module is grokked, this is all we have to do to register a
new event subscriber. Although this example is trivial, there is no
limit to what you can do within an event handler.

Notes:


	The two arguments to the function correspond to the two arguments to
the subscribe() decorator. For object events, the first is the
object that the event relates to (which will be the same as
event.object in most cases). The second is the event instance.

	Obviously, we could use a more specific content type interface if we
wanted to be more specific.

	Unlike adapters, you cannot override an event subscriber by using a
more specific interface. Each and every applicable event subscriber
will be executed when an event is fired.






Creating a custom event type

Creating a new type of event is not much more difficult. Here is an
example that involves the sample message broadcasting service we saw in
the previous sections:

First, we define an object event type. This would typically be in an
interfaces.py module:

from zope.component.interfaces import IObjectEvent
from zope import schema

class IMessageSentEvent(IObjectEvent)

    message = schema.Object(title=u"Message", schema=IMessage)
    messageCount = schema.Int(title=u"Number of messages so far")





The event implementation itself is simple too. The object attribute is
mandated by the IObjectEvent interface.

from five import grok
from zope.component.interfaces import ObjectEvent

class MessageSentEvent(ObjectEvent):
    grok.implements(IMessageSentEvent)

    def __init__(self, object, message, messageCount):
        self.object = object
        self.message = message
        self.messageCount = messageCount





Here is another implementation of the messaging service, this time
broadcasting an event:

from five import grok
from zope.annotation.interfaces import IAnnotations
from zope.event import notify

class BloggingBroadcaster(grok.MultiAdapter):
    grok.provides(IMessageBroadcaster)
    grok.adapts(IContent, IBloggingService)

    COUNTER_KEY = 'example.messaging.counter'

    def __init__(self, context, service):
        self.context = context
        self.service = service

    def send(self):
        message = IMessage(self.context)
        text = message.format()

        annotations = IAnnotations(self.context, None)
        messageCount = -1
        if annotations is not None:
            messageCount = annotations.get(COUNTER_KEY, 0)
            messageCount += 1
            annotations[COUNTER_KEY] = messageCount
            print "This is message number", messageCount

        notify(MessageSentEvent(self.context, message, messageCount))

        print text





Notes:


	We use the notify() function from the zope.event package to
broadcast the event.

	The call to notify() will not return until every event subscriber
has been executed.



As before, we could now register an event subscriber for this event.
Since it is an object event, we can use the two-argument version of the
subscribe decorator as shown above. However, we could also have a more
general event handler that executes for any type of object. Here is one
that simply logs that a message has been sent:

from five import grok
import logging

auditLog = logging.getLogger('auditlog')

@grok.subscriber(IMessageSentEvent)
def log(event):
    auditLog.info("Message number %s sent for %s" % (event.messageCount, event.object,))











          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Further details

Where to find more information about the core components

In this section, we have described how to use five.grok to configure
standard Zope Component Architecture components. In fact, the
functionality for this can be found in the grokcore.component [https://pypi.python.org/pypi/grokcore.component]
package, and does not strictly require the use of five.grok: you could
use grokcore.component directly. This may be useful if you are trying
to create a package that should work with other frameworks using the
Zope Toolkit / Zope 3, such as Grok itself.

grokcore.component contains a few other grokkers and helper functions
which we have not described here. You are encouraged to read its
documentation [https://pypi.python.org/pypi/grokcore.component] for details.

If you need to introspect the interfaces of your components, you should
also take a look at the zope.interface API, which for example provides
functions for enumerating the interfaces implemented by a class or
provided by an object.

If you need to introspect the component architecture itself, look up the
zope.component API, where you will find methods for enumerating,
querying, registering and removing adapters, utilities and event
subscribers.

Both of these packages have interfaces containing copious internal
documentation.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Core components

Using five.grok to configure adapters, utilities and event subscribers



	Interfaces

	Utilities

	Adapters
	Registering classes as adapter factories

	Modelling aspects as adapters

	Customisation with more-specific adapters

	Using a function as an adapter factory

	Using an instance as an adapter factory

	Named adapters

	Multi-adapters

	Subscription adapters





	Annotations

	Events
	Registering an event subscriber

	Creating a custom event type





	Further details









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Interfaces

Describing functionality with interfaces

There is nothing Grok-specific about interfaces, but they are important
because they used in various directives for describing or registering
components.

Zope interfaces are implemented in the zope.interface package. In addition, zope.schema contains various classes that can be used to describe the type of attributes on an interface (the Dexterity developer manual contains a reference).

Interfaces are typically found in an interfaces.py module, although
you will sometimes see schema interfaces kept in the same module as
other code (e.g. content classes, event handlers) related to the content
type described by that schema.

The simplest interface is a marker interface. This is used as a flag
which can either be applied or not to a particular object. A marker
interface may look like this:

from zope.interface import Interface

class IImportant(Interface):
    ""Marker interface used for important objects
    ""





Notice how we have a docstring on the interface. Interfaces are useful
as documentation, and you should endeavour to describe their purpose and
behaviour in docstrings on the interface and on any attributes or
methods (see below).

Also note that although an interface is created using the
class*keyword, they are in fact instances of type *InterfaceClass. For
the most part, you don’t need to worry about this.

Interfaces are said to be implemented by classes, in which case
instances of that class is said to provide the interface.

from five import grok

class ImportantStuff(object):
    grok.implements(IImportant)

    ...





Note: The grok.implements() directive is just a convenience alias for
the implements() directive from zope.interface.

Adherence to a given interface can be tested like this:

>>> IImportant.implementedBy(ImportantStuff)
True
>>> stuff = ImportantStuff()
>>> IIimportant.providedBy(stuff)
True





Again, note that we perform an “implements” check against the class and
a “provides” check against an instance.

It is also possible to apply an interface directly to an instance. This
is mostly relevant to marker interfaces, since other interfaces promise
attributes and methods that you usually cannot guarantee that the object
will provide.

>>> from zope.interface import alsoProvides
>>> alsoProvides(someObject, IImportant)





Let’s now take a look at a non-marker interface. This one promises
several attributes and methods. Typing and constraints for attributes
are described by zope.schema fields.

from zope.interface import Interface
from zope import schema

class IMessage(Interface):
    """An email-like message
    """

    subject = schema.TextLine(title=u"Subject")
    recipients = schema.Tuple(title=u"Recipients",
                              description=u"A list of email addresses",
                              value_type=schema.TextLine())
    body = schema.Text(title=u"Body", required=False)

    def format():
        """Return a formatted string representing the message
        """





Again notice the use of docstrings for methods and titles and
descriptions for fields. Also notice how the method does not take the
self parameter. If the implementation is a class (as it is likely to
be), its methods will of course take the self parameter, but as far as
the user of the interface is concerned, this is an implementation
detail, and so does not belong in the interface.

Here is a class implementing this interface:

class Message(object):
    implements(IMessage)

    subject = u""
    recipients = ()
    body = u""

    def format(self):
        return "Subject: %s\nTo: %s\n%s" % (self.subject, ', '.join(self.recipients), self.body,)





Like classes, interfaces may inherit one another. The derived interface
inherits all the attributes and methods of the parent interface. Objects
providing the derived interface must provide all attributes and methods
of both interfaces.

class ITestContent(Interface):
    """Base interface for content types
    """

    title = schema.TextLine(title=u"Title")

class IDocumentContent(ITestContent):
    """Document content
    """

    text = schema.Text(title=u"Body")

class IFileContent(ITestContent):
    """File content
    """

    data = schema.Bytes(title=u"Octet stream")





A class may implement more than one interface. In addition, a class
automatically implements all interfaces from its base classes (unless
you use the implementsOnly() directive from zope.interface).

class ImportantMessageDocument(Message):
    grok.implements(IDocumentContent, IImportant)

    title = u"Title"

    def _getText(self):
        return self.body
    def _setText(self, value):
        self.body = value
    text = property(_getText, _setText)





Here, we have implemented text as a property delegating to the body
field from the IMessage interface. We inherited the implementation of
body from the Message*base class, from which we have also indicated
the *implements() specification for the IMessage interface:

>>> doc = ImportantMessageDocument()
>>> IImportant.providedBy(doc)
True
>>> IMessage.providedBy(doc)
True
>>> ITestContent.providedBy(doc)
True
>>> IDocumentContent.providedBy(doc)
True
>>> IFileContent.providedBy(doc)
False





There are a few other things you can do with interfaces, such as
specifying interfaces provided by modules (used to specify an API for
that module) or classes (e.g. in the case of class objects acting as
factories), looping through the interfaces provided by an instance, or
adding or removing marker interfaces. None of these is terribly common.
See the documentation for zope.interface [https://pypi.python.org/pypi/zope.interface] (including its interfaces)
for details.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Utilities

Singletons and registries with utilities

Utilities are simple components which may be looked up by interface and
optionally name. They are used for two purposes:


	To implement a “singleton” - an object which is created in memory
once and shared by all clients.

	To implement a registry of objects all providing the same interface.
In this case, each object is a named utility.



As with all components, utilities can be local or global. A local
utility is installed as a persistent object in a “local component site”
(such as a Plone site). Sometimes, we use local utilities as singletons
storing persistent objects, although there are better solutions (such as
plone.app.registry [https://pypi.python.org/pypi/plone.app.registry] / plone.registry [https://pypi.python.org/pypi/plone.registry]) for that. More commonly, a
local utility is simply used to override a global utility with of same
interface (and optionally name).

In Plone, local components can be installed using the
componentregistry.xml GenericSetup import step. See the GenericSetup
documentation for more details. The techniques mentioned in this
manual pertain to global utilities only.

Global utilities can be registered in one of two ways using five.grok:


	By writing a class deriving from GlobalUtility. The class will be
used as a utility factory. It will be instantiated once (its
constructor must be callable with no arguments), on startup, and
registered according to the directives used on the class.

	By calling the global_utility() function on an
already-instantiated object. This allows you to configure the
instance in code before registering it.



To illustate both of these techniques, we will create two interfaces:

from zope.interface import Interface
from zope import schema

class ILanguage(Interface):
    """A language.

    Each language is registered as a named utility providing this interface.
    The utility name should be a locale name, e.g. 'en_GB' or 'de'.
    """

    title = schema.TextLine(title=u"Name of the language (in English)")

class ILanguagePreference(Interface):
    """Singleton used to look up a preferred language
    """

    preferredLanguage = schema.Object(title=u"User's preferred language", schema=ILanguage, readonly=True)

    def switch(newPreferredLanguage):
        """Switch preferred languages.

        Takes a local name as a parameter)
        """





Before we implement these utilities, let’s consider how we may use these
two interfaces from client code which does not care about their
implementation.

To look up the currently preferred language, we could do:

>>> from zope.component import getUtility
>>> preference = getUtility(ILanguagePreference)
>>> preference.preferredLanguage
<Language object at ...>
>>> preference.switch('en_GB')





Languages are looked up as named utilities. Thus, we could get a
language like this:

>>> from zope.component import queryUtility
>>> en_GB = queryUtility(ILanguage, name=u"en_GB")





Notes:


	getUtility() will return the default utility for the given
interface if no name is passed (in fact, the default utility has a
name of u“”, i.e. an empty string).

	If no utility can be found, a ComponentLookupError will be raised.

	We can use queryUtility() instead to fall back on another value
(None, by default) instead of raising an error if the utility is
not found.

	Each time we call getUtility() with the same arguments, we get the
same object back. This may lead to thread-safety issues in
multi-threaded environments (such as Zope), so be careful if your
utility can be modified after startup.



Let’s now show how these utilities could be registered. First, we will
create a class to encapsulate languages, instantiate a objects of this
class, and register each as a named utility providing the ILanguage
interface:

from five import grok

class Language(object):
    grok.implements(ILanguage)

    def __init__(title):
        self.title = title

en_GB = Language(u"English (British)")
en_US = Language(u"English (US)")
de = Language(u"German")

grok.global_utility(en_GB, provides=ILanguage, name="en_GB", direct=True)
grok.global_utility(en_US, provides=ILanguage, name="en_US", direct=True)
grok.global_utility(de, provides=ILanguage, name="en_de", direct=True)





Notes:


	The provides argument can be omitted if (as is the case here) the
object provides exactly one interface. Otherwise, it is required.

	Name name*parameter defaults to *u“” and so can be omitted if you
are registered an unnamed utility.

	The direct=True argument indicates that the utility instance is
being passed as the first argument. The argument should be False if
a class or factory is being passed.



Next, we will define the preferred language utility. This time, we will
create a utility class and ask five.grok to register an instance of it
for us.

from five import grok
import os

class EnvironmentLanguagePreference(grok.GlobalUtility):
    """Language preference taken from the PREFERRED_LANGUAGE environment variable
    """
    grok.provides(ILanguagePreference)

    @property
    def preferredLanguage(self):
        envKey = os.environ.get('PREFERRED_LANGUAGE', 'en_US')
        return getUtility(ILanguage, envKey)

    def switch(self, newPreferredLanguage):
        os.environ['PREFERRED_LANGUAGE'] = newPreferredLanguage





Notes:


	The class is recognised as a factory for a global utility from its
base class.

	The class does not have a constructor. If it did, it would need to be
callable with no arguments.

	The utility’s interface is given with the grok.provides()
directive. We could also have used grok.implements(), but bear in
mind that the class can implement multiple interfaces whilst a
utility can provide only one. grok.provides() can only be used once
per class and can only be passed a single interface.

	Here, we are registering an unnamed utility. We could have used the
grok.name() directive to give the utility a name.



Provided the package is grokked, this is all it takes to register one
unnamed and three named global utilities with five.grok.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Zope Component Architecture basics with five.grok

This manual describes the basics of the Zope Component Architecture using
five.grok, which brings convention-over-configuration to Zope 2 and Plone.

It will be useful to developers who want to learn how to configure
Zope components using grok-style configuration instead of ZCML.


Warning

Grok is not allowed for Plone core developement.
Grok is not recommended for Plone addon development.





	Background
	The Zope Component Architecture

	What is Grok and five.grok?

	Adding five.grok as a dependency





	Core components
	Interfaces

	Utilities

	Adapters

	Annotations

	Events

	Further details





	Browser components
	Views

	Viewlets

	Resource directories





	Other five.grok functionality









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Other five.grok functionality

What we haven't covered

Grok and five.grok provide some functionality we deliberately haven’t
discussed in this manual. This includes:


	Annotation factories. Annotations are very useful, but the pattern of
using a persistent object as the adapter implementation instead of
just using the IAnnotations from zope.annotation and its
dict-like API to store primitives can lead to problems when code is
moved or uninstalled. See grokcore.annotation [https://pypi.python.org/pypi/grokcore.annotation] for an example of
this functionality.

	Defining permissions with grok.Permission. We prefer to define
permissions in configuration files, rather than code. See
grokcore.security [https://pypi.python.org/pypi/grokcore.security] if you hate XML so much that you don’t mind
using Python as a configuration language. See the Dexterity
developer manual for more details on creating custom permissions.

	Defining resource directories (other than the implicit static
directory) using grok.DirectoryResource instead of the
<browser:resourceDirectory /> directive, for the same reasons. See
grokcore.view [https://pypi.python.org/pypi/grokcore.view].

	Defining local component sites and local utilities using
grokcore.site [https://pypi.python.org/pypi/grokcore.site]. In Plone, we use the componentregistry.xml
GenericSetup import step for this purpose.

	Creating browser layers with the grok.skin() directive. In Plone,
we use the browserlayer.xml GenericSetup import step and/or the
plone.theme [https://pypi.python.org/pypi/plone.theme] package for this purpose.

	Forms using grokcore.formlib [https://pypi.python.org/pypi/grokcore.formlib]. For Dexterity development, we use
z3c.form [https://pypi.python.org/pypi/z3c.form] instead.

	Model objects using grok.Model. We use Dexterity content objects
instead.

	The grok.order() directive, used to order viewlets based on an
integer weighting. We use the base class for
plone.app.viewletmanager instead, which supports explicit ordering
as part of a theme. See grokcore.viewlet [https://pypi.python.org/pypi/grokcore.viewlet] for details on how
grok.order() works.

	The view/static variable. This allows access to static resources in
the static directory using TAL expressions like
tal:attributes=“href view/static/stylesheet.css”. Unfortunately,
the link this results in will always be relative to the context,
rather than relative to the site navigation root, which means that it
will not cache well. Therefore, we construct the URL manually
instead. See grokcore.view [https://pypi.python.org/pypi/grokcore.view] for more details.



Some of this reflects the Dexterity developers’ preferences and views.
You are allowed to disagree.





          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  
Grok framework


Warning

Grok is not allowed for Plone core developement.
Grok is not recommended for Plone addon development.




Description

Using Grok framework in Plone programming. Grok
provides  Dont-Repeat-Yourself API to create
Zope 3 components easier.





	Introduction

	Tutorial

	Using Grok in your package
	configure.zcml - register your package for grokking

	setup.py - include five.grok package dependency for download





	Plone 4.3 migration and five.grok dependency
	Migrating Dexterity and z3c.forms to Plone 4.3

	Migrating views from five.grok to plain Plone





	Grok static media folder
	Subscribing using the grok API





	Creating a viewlet using Grok

	Creating a viewlet manager: Grok way

	More info






Introduction

Grok is a project to give sane, easy to use, API to Zope 3 systems.
It exists as standalone, but Plone compatible port five.grok is available for Plone 3.3 and onwards.

Benefits over using pure Zope 3 APIs


	No ZCML files or XML sit-ups needed (except bootstrapping one configure.zcml file)

	More things are automatic and less explicit hand-written code needed. E.g. template file and view class are automatically matched.

	Less code generation



Grok will automatically scan all .py files in your product and
run registration code in them. This way you can use Python decorators
and magical classes to perform tasks which before needed to have
hand written registration code.

More info


	http://grok.zope.org/

	https://pypi.python.org/pypi/five.grok






Tutorial


	http://plone.org/products/dexterity/documentation/manual/five.grok

	http://www.martinaspeli.net/articles/using-grok-techniques-in-plone






Using Grok in your package


configure.zcml - register your package for grokking

To enable grok'ing for your package:


	The top-level configure.zcml must include the grok namespace and
the grok:grok directive. You do not need to put
this directive subpackages. This directive scans your package source tree
recursively for grok'ed files.

	The package must be loaded using setup.py auto-include, NOT using a
zcml = section in buildout.cfg.
Otherwise templates are not loaded.

	Optionally, add templates and static folders to your package root.

	You still need to include subpackages for old-fashioned ZCML
configurations.



Example

<configure
    xmlns="http://namespaces.zope.org/zope"
    xmlns:five="http://namespaces.zope.org/five"
    xmlns:cmf="http://namespaces.zope.org/cmf"
    xmlns:i18n="http://namespaces.zope.org/i18n"
    xmlns:grok="http://namespaces.zope.org/grok"
    i18n_domain="plonetheme.xxx">

  <include package="five.grok" />

  <five:registerPackage package="." initialize=".initialize" />

  <!-- Grok the package to initialise schema interfaces and content classes -->
  <grok:grok package="." />

  <include package=".browser" />

</configure>





If you are using components from other packages you might also want to add

<includeDependencies package="." />





This makes the configure.zcml and thus Python code
of all modules listed in setup.py install_requires
section is loaded before your module is being processed.




setup.py - include five.grok package dependency for download

You still need to get five.grok package to your buildout.

Edit your Python egg setup.py file and list five.grok as dependency:

install_requires = ["five.grok", ...],





Re-run buildout. Now buildout should download five.grok for PyPi and activate it for you.

If you are using Plone 4.1 or older you also need Dexterity extends = line pindowns in your buildout [http://plone.org/products/dexterity/documentation/how-to/install].
Otherwise you may get Version Conflict errors when running buildout.






Plone 4.3 migration and five.grok dependency

Please see Plone 4.2 -> 4.3 Dexterity upgrade guide [http://plone.org/documentation/manual/upgrade-guide/version/upgrading-plone-4.2-to-4.3/dexterity-optional-extras] first.


Migrating Dexterity and z3c.forms to Plone 4.3

Plone 4.3 ships with Dexterity. five.grok is a huge dependency with a lot of
code of which maintenance cannot be guaranteed in the future (See grok.zope.org [http://grok.zope.org],
discussion [http://plone.293351.n2.nabble.com/The-grokless-madness-and-unable-to-create-a-simple-form-tp7564179p7564184.html]).
Because Plone community cannot commit to maintain this code, but we still want to use the best goodies
of grok based development, some compromises was made for Plone 4.3 regarding grok style forms and directives.


	You can include five.grok as a dependency, as you have done this far, but it is not going to be
in Plone default installation in foreseeable future. Please see migration notes.

	grok() declarations, like grok.name() in classes are not supported by Plone 4.3 out of the box

	plone.directives.form goodies distributed to two supported packages: plone.supermodel and
plone.autoform



To make your code Plone 4.3 compatible, grokless way do imports as following:

import z3c.form.form

from plone.supermodel import model
from plone.autoform import directives as form
from plone.autoform.form import AutoExtensibleForm





And you can use them like:

class IChoiceExamples(model.Schema):
    """ Single choice and multiple choice examples """

    form.widget(multiChoiceCheckbox=CheckBoxFieldWidget)
    multiChoiceCheckbox = zope.schema.List(
        title=u"Checkbox multiple choices",
        ...)


# Different form base classes are provided:
# XXX: Fill in here what you should use with Dexterity content types
class ChoiceExamples(AutoExtensibleForm, z3c.form.form.Form):
    """
    """
    schema = IChoiceExamples








Migrating views from five.grok to plain Plone

If you further want to break the dependency with five.grok
and get rid of grok.xxx() directives in your classes
here are further dependency.

Remove five.grok from the dependency list of your egg and remove <grok:grok> ZCML directive in configure.zcml.

Remove from five import grok in all of your package modules.

Manually register static media folder of your egg

Declare views and forms using configure.zcml

Remove grok.templatedir() and map view classes to templates using <browser:page> ZCML directive.

Grok migration source example:

class Demos(grok.View):
    """ Render all demo forms with their widgets in a nice view.

    Read forms which implements IWidgetDemo marke via @widget_demo
    class decocator. Build a nice and useful description string
    for each field in those forms.

    """

    grok.context(ISiteRoot)
    grok.name("widgets-demo")





ZCML migration configuration.zcml target example:

<configure
    xmlns="http://namespaces.zope.org/zope"
    xmlns:five="http://namespaces.zope.org/five"
    xmlns:cmf="http://namespaces.zope.org/cmf"
    xmlns:i18n="http://namespaces.zope.org/i18n"
    xmlns:browser="http://namespaces.zope.org/browser"
    i18n_domain="plone.app.widgets">

  <browser:page
      name="widgets-demo"
      for="Products.CMFCore.interfaces.ISiteRoot"
      class=".demo.Demos"
      permission="zope2.View"
      template="widgets-demo.pt"
      />

</configure>






Note

Forms handle update() themselves - this concerns only non-form views



If your view has update() method you need to call it manually in __call__()
because BrowserView base class doesn't do this.


class MyView(BrowserView):



	def update(self):

	...

	def __call__(self):

	self.update()
return self.index()  # Or self.render() for grok.CodeView














Grok static media folder

Learn more about Resource directories.


Warning

Since five.grok 1.3.0 this method does not work.



The easiest way to manage static resources is to make use of the static resource directory feature in five.grok.
Simply add a directory called static in the package and make sure that the <grok:grok package="." />
line appears in configure.zcml.

Example how to include yourproduct.app/static folder as ++resource++yourproduct.app URL.

<configure
    ...
    xmlns:grok="http://namespaces.zope.org/grok">

  <grok:grok package="." />

</configure>





If a static resource directory in the example.conference package contains a file called conference.css,
it will be accessible on a URL like http://<server>/site/++resource++example.conference/conference.css.
The resource name is the same as the package name wherein the static directory appears.


Subscribing using the grok API


Note

Since the release of Plone 4, this (grok) method is simpler.



Example subscription which subscribes a content type to add and edit events:

from five import grok
from Products.Archetypes.interfaces import IObjectEditedEvent
from Products.Archetypes.interfaces import IObjectInitializedEvent

class ORAResearcher(folder.ATFolder, orabase.ORABase, ResearcherMixin):
    """A Researcher synchronized from ORA.
    """
    implements(IORAResearcher, IResearcher)

    meta_type = "ORAResearcher"
    schema = ORAResearcherSchema

    # Callbacks for both add and edit events

    @grok.subscribe(ORAResearcher, IObjectEditedEvent)
    def object_edited(context, event):
        orabase.object_edited(context, event)

    @grok.subscribe(ORAResearcher, IObjectInitializedEvent)
    def object_added(context, event):
        orabase.object_added(context, event)





Example subscription which subscribes events without context:

# Really old stuff
from ZPublisher.interfaces import IPubStart

# Modern stuff
from five import grok

@grok.subscribe(IPubStart)
def check_redirect(e):
    """ Check if we have a custom redirect script in Zope
    application server root.
    """





For more information, see:


	Using Grok








Creating a viewlet using Grok

Grok framework allows you to register a viewlet easily using Python directives.

It is recommended that you use Dexterity ZopeSkel add-on product code skeleton
where you add this code.

Create yourcomponent.app/yourcomponent/app/browser/viewlets.py:

"""

    Viewlets related to application logic.

"""

# Zope imports
from Acquisition import aq_inner
from zope.interface import Interface
from five import grok
from zope.component import getMultiAdapter

# Plone imports
from plone.app.layout.viewlets.interfaces import IHtmlHead

from yourcompany.app.behavior.lsmintegration import ISomeDexterityBehavior

# The viewlets in this file are rendered on every content item type
grok.context(Interface)

# Use templates directory to search for templates.
grok.templatedir('templates')

class JavascriptSnippet(grok.Viewlet):
    """ A viewlet which will include some custom code in <head> if the condition is met """

    grok.viewletmanager(IHtmlHead)

    def available(self):
        """ Check if we are in a specific content type.

        Check that the Dexterity content type has a certain
        behavior set on it through Dexterity settings panel.
        """
        try:
            avail = ISomeDexterityBehavior(self.context)
        except TypeError:
            return False

        return True





Then create folder yourcomponent.app/yourcomponent/app/browser/templates where you add the related javascripthead.pt:

<tal:extra-head omit-tag="" condition="viewlet/available">
        <meta name="something" content="your custom meta">
</tal:extra-head>





More info


	http://vincentfretin.ecreall.com/articles/using-five.grok-to-add-viewlets






Creating a viewlet manager: Grok way

Recommended if you want to keep the number of files and lines of XML and Python to a minimum.

An example here for related Python code:

* http://code.google.com/p/plonegomobile/source/browse/gomobiletheme.basic/trunk/gomobiletheme/basic/viewlets.py#80





More info


	http://grok.zope.org/doc/current/reference/components.html?highlight=viewlet#grok.ViewletManager






More info

Tutorials


	http://plone.org/products/dexterity/documentation/manual/five.grok/background/adding-five.grok-as-a-dependency



Steps:


	Add dependencies to your setup.py.

	Edit buildout.cfg to include the good known version set.

	Add the grok ZCML directive to configure.zcml.









          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	Plone Documentation v4.3 »
 
      

    


    
      
          
            
  Search

  
  
    Please activate JavaScript to enable the search
    functionality.
  

  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  

  
  
  


          

      

      

    


    
        © Copyright The text and illustrations in this website are licensed by the Plone Foundation under a Creative Commons Attribution 4.0 International license.
        Plone and the Plone<sup>®</sup> logo are registered trademarks of the Plone Foundation, registered in the United States and other countries.
        For guidelines on the permitted uses of the Plone trademarks, see https://plone.org/foundation/logo
        All other trademarks are owned by their respective owners.
        Hosted by Rackspace..
      Created using Sphinx 1.3.1.
    

  _images/workflowsteps.png
\
Copy Editor






_images/addfolder.png
Add Folder

Afelder uich can ontain the tems.

Defaut | Categorization  Dates  Ownership  Saffings

Tt =

Butterfiies|

Description
Used n iem lisings and seareh resuls






_images/copy_of_addnewmenu.png
Display ¥ Add new... v State: Published

% Collection
) Event

& File

= Folder

he Plone Team or the SN LIEE 13
* Link

B News ltem

E Page

ight corner)





_images/form_radiobuttons1.png
Contact Us

Customer =
Customer email

pramens

Subject =
© Comment

O Feature Request
O Technical Issue
© Complaint

O Other

Other
If you've specified Other ab

please fil this this field too.

Message =
The message body

“send






_images/tiny_start.jpg
el | Discreet

#aa

}# youire seeing this instead of the web site you were expecting,the
ounerof this web site has jus installed Plone. Do not contact the Flone.
“Team or the Flone maiing lsts about i

Get started
Before you start exploring your newly created Plone site, please

do the following:
1. Make sure you are logged in as an admin/manager user.
(You should see a Site Setup link in the top right comer)

2. Set up your mail server. (Plone needs a valid SMTP server to
verify users and send out password reminders)

3. Decide what security level you want on your site. (Who can
Join, password policies, etc)

PR






_images/working-copy_checkin-confirmation.png
You are here: Home / News / Welcome to our new site!

Published

by e Doe —las modied May 14, 2015 0933 P —Histery.
‘The long wait is now over
Our newsite is built with Plone.





_images/folderviewstandard.png
® Plone
S

Sswpn
[ e—r—
[Ep——
JEp—
JEo—

JE— . Closetags vy i st ot ay 3 2010 05:4350
O rouasa-suppes
[— - ushng by s — st ot My 3 20100434

g potes [ ——

- et Sipers by i st o My 0,210 5544 P

oy sttty 3, 201 0544 o






_images/zeo_cluster.png
ZEO Client 1
Port 8081

ZEO Client 2
Port 8082

ZEO Server
Port 8000

ZODB / Blobs

—

ZEO Client
Ports






_images/addevent.png
Add Event

R e

e

P

(Save) (Goncel]





_images/insert_anchor_select_text.jpg
Body Text

el | Normal paragraph
= EEREN)

Description

Habitat

Behavior

Distribution

Conservation Status

Literature

wDescription

Text text text text text text text text text text text text text text
LeX teXT text text text text text text text text text text text text

TeXt text text text text ext text text text text text text text text
TeXt text text text text text text text text text text text text.

‘Text text text text text text text text text text text text text text
TeXt text text text text text text text text text text text text text
TeXt text text text text text text text text text text text text text
TeXt text text text text text text text text text text text text text






_images/folderviewthumbnail.png
Rules  snaring ubiishe

by aimin o o May 03 2010 1046 P istory

Spreadwnged Cloudywngs ©) Duskyngs (0) Grass:Skppers (0)
Suppers (0)
Hespena Skppers | Roaasice-suppers | Giantsppers (0)

© ©






_images/blocked_portlets.png
Add portlet... ¢
Portlets assigned here
Nagation Hide =

Blocklunblock portlets

Calendar
et items

Group porlets

Use parent settings ¢

Content type portlets:

Use parent settings o
Save settings.





_images/folderviewsummary.png
oy odin s ot My 09,2010 104 P — sty
Spread-winged Skippers
Read e

Cloudywings

Read More

Duskywings

Read Horo

Grass-Skippers

Read ore

Hesperia Skippers

Read Moo

Roadside-Skippers

Read More
Giant-Skippers

Read More.





_images/home_base.jpg
X Workflow State at
/Plone/portal_workflow/todo_item_workflow/states/open
1d ‘open

Title Open

Description

Possible Transitions ¥ complete (Complete)
() reopen (Reopen)

| Save changes |





_images/stateadvanced.png
Publishing process

e status (o call s review sat) deterines who can see . Anothe way o contol h vty of
e s with s Pushing Date An e o pubicly searchatie befoe s publshing date. s il prevent the
e rom showeg g n ores an foldr Istings, ahough e fem it S0 be vaiable I accessed drocty va
R

Atfcted contont

0o n Size  Modified State
¥ Olongtalled Skipper 148  Apr21,2010 11:41AM  Private

Clinclude contained items
 checked, this il stmpt t modiy the staus of sl content i any selected okders and their subfoidrs.

Publishing Date
“The date when the tem wil be pubished. Il no dte is slected the flem wil be published immedately.

EWEWERIEDERES

fom expies. Tris wil automatically make the o nvisiblefor cthers a the given date. Ifno
date s chosen, it wil never expre.

ERECRERIERERES

Comments.
Wil be added to the publishing istory. If multipe flems are selected, ihis comment willbe atached o ll of them.

Change State
‘Select he ransiton fobe used fo modiying the ems stat.

©No change

O Submitfor publication
OPublish

G ()






_images/hierarchy.png
Home

Navigation, Recent liems

About Documentation
Navigation, Recent liems Navigation, Recent ltems,
Collection

Tutorials Videos

Navigation, Search ‘ ‘ Navigation, Search






_images/add_image.jpg
Add Image

An image, which can be referenced in documents or displayed in an album.

Defaults  Categorization  Dates  Ownership _ Settings
Title

rose

Description
A short summary of the content.

a description of the ROSE image]

“save| [ * Cancel






_images/extraction-interface-config.jpg
Ll @ £ @ o rocahosc8080/pione30/ac users/pugiv b (G- Google
C - GETYTa e g gere
% Plugin Registry at /plone30/acl_users /plugins ,
Extraction Plugins
Available Plugins Active Plugins

Credentils cookieauth
credentias_basic_auth

EN
el

=

oD





_images/add_completed.jpg
riables | Worklists

perties.

s | permissions | Groups

o Workflow States at /Plone/portal_workflow/todo_item_workflow/states

State added. (2012-08-18 17:18)

open
No transitions.

Delete | [ Set Initial State Running outof click joke:

Add a state

1d [completed





_images/03.png
Contents  View  Edit_ Rules [EIL)

Sharing for “Documentation”

You can control who can view and edit your item using the list below.

Search for wseror group.

Name, Canadd Camedit  Canview  Canreviow
B Loggedn users 2} a e ]
2 Jayne Smythe (smythe) ° ° ° o “—

 nherit permissions from higher lovels
By dfaut, pemissions rom the container of this e ars inhered. I you isable i, ony the explcilydefned
sharing permissions i be vald. In e overview, the symbol © ndicates an nhered value. Smiarly the symbl
(@ indcates  goba e, which s manage b the site administalr

(Gave) (Cancel)





_images/basicpropertiestabs.png
Default  Categorization Dates Ownership  Settings





_images/statemenu.png
Actions ¥ State: Published V.
Send back
Retract

Advanced.





_images/13.png
Molly Jones ¥

® Plone’

Donly in current section

Home News Events Users

Documentation

oy Manager — fast modifed Ap 21, 2010 03:14 PM — Histery

(3 Project Overview — by Jayne Smythe — last modified Apr 21, 2010 02:13 PM
Introduction toth project and al th players

03 Widget Installation — by George Shrubb — last modified Apr 21, 2010 02:09 PM

(3 FAQs — by Jayne Smythe — last modified Apr 21, 2010 02:12 PM





_images/dashboardedit.png
Edit your dashboard
Portlets assigned here (133 porier. 3] ‘Add port]

L b =
Portets assigned here (A4 porit... [
Gane b x| Resantams

Portlets assigned he
« Portlets assigned here Reviewlit  Fi






_images/your_theme_egg_skin_cutdown.png
base_properties.props

o
[-Lstyles porlets.css.dtml
— ‘_ ‘ ‘public.css.dtmi

skins | [.1_custom_images

[.1_custom_templates





_images/your_theme_egg_config_cutdown.png
profies. zem!

viewlts xl
cssregistryxml
registry xmi
skins.xmil
import_steps xml





_images/inlineeditingtitle1.png
Easter Tiger Swallowtail >
[ coit shaing

tate: private

k&s!em Tiger Swallowtail N
byt sz A= sy
e bkl oo swallwtal s one o ou mcst speciacularand il bt s Bright yellow wings with b sripes.
ke hs usaly vry g swallwial denifabe. Femaes re dinorphe (v o ) with Sme hvingblck wigs
i petcentge of black farm femlescreases as oo moves o areas ofwarmer clmate. These forms are ey
istinguih rom thr "ack”swalovais, ecause they lack the mecian crange syt on th hindwing, sen cn Black
1 Spicebush swalos,and e idescent b f Pipeine swallwtals The blck form

femais usually i ashadon f the ypcal“igr” et

This species cecupies deckuous waadlands, specally waadland ecies and woaded stream systemes, It s oen present n
‘suburban setings, saring high among he tees.





_images/p4_addnewmenu.png
% Collection
f Event

& File

= Folder

& Image
* Link

B News ltem






_images/add-item-menu-folder.png
Display ¥ Add new... V. State: Published
% Collection
f Event
& File

Pine Team or e[ I
“ Link

out i

& News ltem
E Page

PES—





_images/zeo_cluster_cached.png
Web Server
807443






_images/operationpaste3.png





_images/table_fancy_grid_listing.jpg
‘Thoroughbred Champions Quarter Horse Champions.
Man O' War First Down Dash
Secretariat Dashing Folly.
Citation Special Leader
Kelso Gold Coast Express.

Count Fleet

Easy Jet






_images/server_response.png
Your
Computer

Internet

€— OK, Here it come:

Plone Software
Plone Storage






_images/04.png
Contents  View Edit _ Rules [

ing

Sharing for “Documentation”
You can control who can view and edit your item using the list below.

B G

Name Canadd  Camedit Canview  Canreview
B Loggedinusers =] [z} [z} =]
3 George st shrube) a o 0
2 sayne Smyne (smytne)  © ° ° °

# Inherit permissions from higher levels.

By default, permissions from the container of ths flem are inheried. Ifyou disable this, only the explict defined
sharing permissions will be vali. n the overview, the symbol © indicates an inherited value. Simiary, the symbol
@ indicates a global ole, which is managed by the site administator

Gave) (Caneel)





_images/akamaidesign.png
Header Logo, G
Menus, Search -

Header

Footer

Right Column with ”Porﬂexs“\/

“Zoom" Column





_images/06.png
George Shrubb ¥






_images/image_preview.png
Add Classic Portlet
Adiassic poret allows you to use legacy portet templates.

T —

Template s
The tempiate containng the porte.

Macro s
The macro conaing the porler. Leave bank I thee s o macro

porter

[ETET|






_images/02b.png
George Shrubb ¥

® Plone

e e e





_images/dashboardpersonalprefs.png
view I

Personal Preferences

Your personal settings.

Personal Detals

Full Name

(Gearge Shubb
Em

[gshrubb@pions.org

Location
Your location - ither city and country - o in a company seting, where your ofice s located.

—————

Language
Your preferred language.

Language neutral (site default]S

Biography.
A short ovenview of who you are and what you do. Will b displayed on the your author page, linked from the

items you create,






_images/working-copy_checkout-notification.png
You are here: Home / News / Welcome to our new site!

This is 3 working copy of Welcome o our new stsl, mads by Jane Doe on May 16, 2015 ‘

b Jone Dae it modiid iy 14,2015 093 Pl sy
The long wait is now over
Our new sie s bt with Plone.





_images/helloworldview.png
Ll view ]

Site

last modified Aug 26, 2012 0208 PM

Hello World





_images/manage_portal_workflow.jpg
€ © C fi | [ localhost:3080/Plone/manage_main
] ./ portal_vidannotation
|/ portal_uidgenerator
0 ./ portal_uidhandier

1) " portal_undo (Defines actionpd functionality

related to undo)
© portal_url (Mathods jgfnchor you to the root of
Your Plone site)

. portal_workflow (Contains workflow
your portal)

todorlist (TODO List) 1Ko

@ transiation_service (Provides access to the
translation machinery)
) 22 uid_catalog (Catalog of unique content identifiers)

[Rename | (Cut | (Copy | [ Paste | [(Delete | [ import/Export | [ Seiect Al

wAE R
2012-08-17 12:32

20120817 12:32
20120817 12:32

20120817 12:32
2012-08-17 12:32
2012-08-17 12:32

2012-08-17 12:32

2012-08-17 12:32
2012-08-17 17:17.

2012-08-17 12:32

2012-08-17 12:32





_images/mindmap.png





_images/directedassociation.png
Collection

Book






_images/plone_theme_dev_theming-test-screenshot.png
COOL PLONE SITE

Welcome to Plone

by admin — lat modified Jul 26, 2012 1204 AM — Hisory
Congratulatons! You havesuccessfully installd Plone

Also availabe in presentaton mode.

1 you'e secin this instead of the i s you were expectin, the over of
this web st hasjut installed Pone. Do not contact the Plone Team o the
Plone maling lists about this

Get started

Before you start explring your sy creatd Plone sit, please do the
folloving;

O ST





_images/cookie-plugin-properties.jpg
Sadentiels cockle b, o
£ (@ o/ iocaost 8080 plone30/acusers/cedev . ([GJ7 Google QG

e

Frorer

= e

& Extended Cookie Auth Helper at /plone30/acl_users/credentials_cookle_auth

Properties allow you to assign simple values to Zope objects. To change property values, edit the values and click
“Save Changes".

Name Value Type

Tide  wm

Cookie Name [ sng

toginform fequreiogn g
Save Changes | _oeiste

o 2dd 2 new property, enter a name, type and value for the new property and click the "Add" button.

Nam Tyve g E|

vawe [ _naa |

= °





_images/settingspanel.png
Default  Categorization  Dates  Ownership | Seftings
D attow comments
I zlscted, users oan 324 commants o this tem.

D esclude from navigation
I selected, thisiam wilnot appesr in the navigation tiee

Ceresertation mode
I selected, tiswill give sers the ability o view the contents 35 presentation slides.

st of conterts.

I lcted, this will 2how 2 table of cantents 3t the top o the page.

Change note
Enter 3 commant that dsribes the shanges you made,






_images/plone_configuration_panel.jpg
Plone Configuration

B Addons [ HTML Fitering
@ Calendar @ Image Handiing
./ Configuration Registry ick!

% Content Rules
-/ Dexterity Content Typos
@ Discussion

& Editing T Navigation

@ Erors a, Search

8 Security

@ site

@ Themes

0 TinyMCE Visual Editor
[ Types

2 Users and Groups.

%2 Zope Management Interface





_images/copy_of_p4_addcollection.png
Add Collection

0 e s e Bt 4 e 95 T 6

Otou CoogorzaionDots Ownerstip Seiogs

Used i o istings 30 seach et

Body Text:

e [es/Esam

e

7 Limit Soarch Rl
¥slactod oy th Nombar of tms nicstod o i b oy
Hamborof tons

o

 Diplay o Tablo

(Columns i e abe s concold by Tabe Colrs’ ol

Toble Catumns
‘Selct wic s 0 sty when Dilay s b is hacked






_images/p4_foldercontentsreorder.png
Click and drag a row by grabbing
Itin the order column to change
The order of rows

i 0 o clummngs
B O O ousgunss

E 3 Grass sippars

3 Hesporia Spers
8 O O RoadsideSippers
By O Giansumers

Copy| (Gt [Rename [Deete

Click a checkbox to perfom one
Of the operations along the bottom

Click on the title to go
o the item

sieel¥ ot

E O O swentwingmssippes 160

[Change Siaie]

May 03,2010 0541 PM

May 03,2010 0543PM

May 03,2010 0544 P01

May 03,2010 0544 M

May 03,2010 0544 M

Moy 03,2010 05 45PM

Prvste

Prvate





_images/cleanup_states.jpg
Properties 1 states 1 1

Checkit!
M’w States at /Plone/portal_workflow/todo_item_workflow/states

Workists Y Scripts 1 Permissions T Groups 1 Doc

150,good!

Set i State





_images/insert_image_caption.jpg
nsered mage
ubrres

@ Home

© CurrentFoder






_images/conditionlistempty.png
bt ) 5
P — )






_images/find_addons.jpg
€ C i [ locathost8080) Plone/@@overview-controlpanel

“ News Events Users e up code base TODO Tems

Configuration area for Plone and add-on Products.

Plone.
0 T Fiteing 8 sacuny
o 13 image Hansing @sto
/ Canprtion Rty B # Tremes
1 Contnt ks i © TiyhCE Vil Edtr
-/ Dextety Contont Types. / Maitoranco 0 Typen
 Dicussion 7 Mk B Usors st Gz
X Estng i Navaton 7 Zopn Management ntadace

@ emn 2 Seweh





_images/tableediting.png
o o
Thoroughbred Champions Quarter Horse Champions

Man O' War First Down Dash
Secretariat Dashing Folly l
Citation Sspecial Leader
Kelso Gold Coast Express
Count Fieet Easy Jet
& &





_images/availablecontentrulesforcontext.png
Content rules for Site

There oo cueny noactve conent uiesin s Plons it

Uso e cotre s coroponl 1 crokanowres o oo modlyeusinganes






_images/firstresult.png
Contact Us.





_images/at-folderish-screenshot.jpg
“folderlisting’






_images/edit_completed.jpg
Delete | [ Set Initial State





_images/plone_donut.png
Your
Computer

Internet

elone

Plone
Storage

Softwar®





_images/content_types_into_plone.png
Text (Web Pages)

Photos and Images
Documents

News and Events

Audio Files

Content Management System





_images/working-copy_cancel-checkout.png
You are here: Home / News / Welcome to our new site!

“This is 2 working copy of Welcome to our new sitel, made by Jan Doe on May 14, 2015
(View changes)

Welcome to our new site!

b Jone Doe st modtied iy 14,2015 093 Pl sy
The long wait is now over
Our new sie s bt with Plone.

Delete

Rename
Checkin

9 can





_images/my_site_served.png
Your
Computer

Internet

Plone Software
Plone Storage

Rendered Page






_images/quickedit-demo.png





_images/back_to_workflow.jpg
Properties

%5 Workflow Transition at
/Plone/portal_workflow/todo_item_workflow/transitions/reopen

Properties changed. (2012-08-18 18:36)
d reopen

Title Reopen
Description [whoops! This task is sl n progress

This takes you back
tothe core workflow





_images/copy_of_manage_portlets_button.png
All recent changes.





_images/13c.png
Molly Jones ¥

® Plone

Home News Evenis Users

Project Overview
5y Jayne Smyth — st modfed A 21,2010 0330 P — ity
Introduction to the project and all the players

Lorem ipsum dolor sit amet
consectetuer adipiscing it Donec odio. Quisque volutpat mattis eros. Nullam malesuada erat ut turpis.
Suspendisse uma nibh, viverra non, semper suscip, posuere a, pede.

Donec nec justo eget felis facilisis fermentum.
Alquam portitor mauris it amet orci Asnean dignissim peentesque s

Morbi in sem quis dui placerat ornare.
« Pellentesque odio nisi, euismod in, pharetra a, ultricies in, diam.
« Sed arcu. Cras consequat.





_images/initial_state.jpg
perties | States | Transitions | Var

bles | Worl

ts | scripts

rmissions | Groups

T Workflow States at /Plone/portal_workflow/todo_item_workflow /states
completed Completed
reopen (Reopen)

¥ *open Open check

gmplete)

s click





_images/behaviors_config.jpg
« Back to Dexterity Content Ty
Behaviors

Behaviors for TODO Item (todo_item)
[ Basic metadata UN-check

Adds a title and descriptc

‘and language setting

- Dublin Core metadata
‘Adds Dublin Core metadata fieds (equals Basic metadata + Categorization + Effective range + Ownership)

) Effective range
Assign an effective andlor expiration date.

() Exclude From navigation
Allow items to be excluded from navigation

) Hide rules tab
Remove the ries tab when viewing this piece of content

) Hide share tab
Remove the share tab when viewing this piece of content

- Name from file name
Automatically generate short URL name for content based on s primary field file name

 Name from title
P e e e e s e e e





_images/your_theme_egg_skin.png
rgmedf2ts

L

y

o

[ed

Leoo i

14 y
your  [your theme
ramespace] - package]

configure.zem

setupcly

souppy

setuphandiers.py

Py

base_propertes.props

base_cs il
poriats s il
‘puble cas dimi
rtaces py
I sy
iy
S —
v
mages
’
tompates vewiets xi
cssrgisity xmi
sregsyami
m!. sk xmi
amm impor_siepsxml
contiurs zomi
[, proties:zomi
skins zomd





_images/inserttablepanel.png
Table

Table Class
Rows
Columns

plain

[~ Create Headings

add table

fix all tables






_images/portal_workflow_contents.jpg
€ C f [ localhosts

80/Plone/portal_workflow/ manage._selectWorkflows ¢ | & [ 4@

orktows Y Svervew ew Y rropertes T securty Y onas T ovnerm
“. Plone Workflow Tool at /Plone,
Workflows by type Al available workflows are here

ATBooleanCriterion (Boolean Criterion)

ATCurrentAuthorCriterion (Current Author
Criterion)

ATDateCriteria (Friendly Date Criteria)

ATDateRangeCriterion (Date Range
Criterion)

ATListCriterion (List Criterion)






_images/collection2.png
search ferms
Define the search tems for the fems you want o st by choosing what to match on. The st ofresuits il be dynan

Type. v s v [Page Remove e
= : —
s
—R L
=3
-
i o
- He
=
e S ) e
Collection (old-style)

Body Text





_images/restricttypes.png
Restrict what types of content can be added

Tipe restictions
Selectthe restction poliey in his location

© Allowthe standard types to be added
O specitytypes manually






_images/log-in.png
Login





_images/blank-testrecorder.png
.

‘Entera URL above and clck the go buton t0 begin recording.





_images/component.png
Permission

Template






_images/complete_details.jpg
roperis e

“ Workflow Transition at /plone_api/portal_workflow/todo_item_workflow/transitions/complete

1
Title
Description

Destination state
Trigger type

Script (before)

Script (after)
Guard

Display in actions.
box

Sov changs

‘compiete

R — 0l
Compiete s sk A———  Optional

compieed ¢ | efmmm—Double check

Automatic
© Iniated by user acton

/Yo allowanyone to update, use “View"

Permission(s) Wodiy perlconert| Role(s) Group(s)
Expression @]

Name (formatted)  [Compiers |

URL (formatted)  eoment s/ conentsts_modivmorion;

Tcon URL (formatted)
category I\
Don'tthink

much. justirememt






_images/example_rules_list.png
o hcot et 0 b gl 2t s s D et

O Mowpagecrested Ot st s cortane) B
‘Ao page 1 reed e ldr.

(Enatie) (Diabe) Do) (A contet i





_images/anchorwindow.png
Bedy Tem
Bz

iii
it

= D & o wm [Normal parag

Anchors

[Unk 10 anchor| [Wanage Anchors
Heading

® Description

Subheading € Habiat

Lireral € Behavor

Discreet ¢ Disubuton
Pul-quote  Consenation Saus
Page break (print only) | Lerature

Clear floats

Select a paragraph sty then choose a paragraph and Ok to inserta lnk o that
location.

ok *cancel





_images/retitle_workflow.jpg
% Workflow at /Plone/portal_workflow/todo_item_workflow
d todo_item_workflow

Title TODO Item Workflow

A simple workflow that marks if something is completed or
not.
Description

‘Manager'
role
bypasses
guards

Instance
creation
conditions _Expression

Permission(s) Role(s)

lickit!





_images/zope_ws_webapps.png
Web Server
807443

Zope / Plone
Port 8080

ZODB / Blobs





_images/add_folder_menu.jpg
Cortrts () 6t Rucs Shaing Aciors v Dplty v Addrew..v Siais Pubiahed v
* Calecton
Welcome to Plone & Event
by i st ot A 17,2012 144 A — iy & Fio

Congratulations! You have successfully installed Plone.
R ol st e

& imego
fyoure soang i rstsdof s sk you weroexpoctn, o curar s 1o RS Do ot contacth P
Toar o the Phna i s b .
S - & News Htom
Hover andthen lick Folder,
Get started & Page

Before you start explring your newly created Plone sita, lease do the folof IR 23

1. Make sure you are logged in as an admin/manager USer. (You shou have 3 Sts Setup enty n e men i the 109 Fght





_images/helloworld.png
NE =
L(Iass

diagram
tool

HelloType
HelloTert : string






_images/directory_structure_plone.png
(& prthon_dev

* @ buildout.python
ez

*~ (@ bin
» 3 heloworld
& incude.

@

& W buildout
- eveiop
 18nduce

- M nsance

- paster
- st

M zopepy.

M zopeskel





_images/foldercontents.png
O ouuegs
Jp—
Ohspenssipens
Je—
[p—

g s

[ —

Sk
B O Osmemmpsipn 18 o momam o

[RSy— -
5O Sommen e uormoman P
[CEr— [
B O Oepmsmpm 18 unodmwmuns e
B O Omsseswpm 18 yomosuns o
B O Soumsien Do o moosisou ame
(opr) ] o) (o (oo i

e e U0 2002008y e s s
[ s





_images/sitesetup-cp.png
Doy i comen socion

7= Documerts Images  Fies

Site Setup

Configuration area for Plone and add-on Products.

Plone Configuration

8 Astons O trmn « Seach

5 corr - 8 ey

 Coesions F— S

 Contprin gy @ # Tromes

. v 0 TioE Vit
/ Msrca 87

> S 2 vk Pr—

X eaing 5 Nvigaion £ 2050 Masagement Irtadace






_images/anchorset.png
Body Text

Descripton
Habiat

senavir
Oisuibuion
Conservation Saws

Uterawre

Description
Tex text fext ext tex fext fext ext fext tex fexttext ext et textfext fext ext tex fext fext ext text
XXt EXT TEXT TeRT (XL eXL Xt TeXT TeXT {eXC ext (Xt TexTfext ext (Xt (Xt fext fext ext (Xt text
fext ext text fext text ext tex text text text ext tex fexttext ext ext textfext text ext tex text ext
TEXCfeXt EXE TEX TeXTTeXCTeXt X TEXE TeXTfeXC EXL (X TeXT TeXTfeX: EXt 1 TeXT text fext ext.

Text text text text text text text (Xt et ext text text text text text {ext (ext (ext ext fext text text text





_images/events-summary-chart.jpg
European Plone Symposium 2010

When May 26,2010 1100 AM to
May 30, 2010 07.00 PM

Where Sortento, haly
Attendees Alexander Limi, Martin Aspeli

Add event to calendar






_images/final_todo_fields_config.jpg
« Back to Dexterity Content Types
[ T
Edit TODO Item (todo_item) pasnents

— Detaut

# title — Text line (String)
TODO =

(e forithe, young





_images/restricttypesmanually.png
Restrict what types of content can be added

Tipe restictions
Selectthe restcton policy in his location

O Allowthe standard types to be added

{5 specity types manually

Alowedtypes

Controls what types are addable in this locaton.
Callection
Event

File

Secondarytypes
Selectnich types shauld b svailzble in the Mars... submn instead of in the main pulldown. This s
useful 1o indicate that these are not the prefered types i thisfocation, but are allawsd ifyou really
need tham.

Oeotection  Clrotder  Cews tem

Cevert Cimage  Clrage

Crie Cluink






_images/rulejustadded.png
T ———

e —

O SundEmalwhan sy Page s M Ot o) B
s s st g st sors

(€nabi) (Disti) (Dvit) (A conor ]





_images/insert_table.jpg
General

Advanced






_images/table_fancy_vertical_listing.jpg
‘Thoroughbred Champions Quarter Horse Champions.
Man O' War First Down Dash
Secretariat Dashing Folly.
Citation Special Leader
Kelso Gold Coast Express.

Count Fleet

Easy Jet






_images/operationpaste4.png
ot T Swakowint

§ 0 Comentoswmn 18 eyor oA e

[Cun] [Rename | [Paste | [Delete | [ Change Stax|






_images/working-copy_checkin-form.png
You are here: Home / News / Welcome to our new site!

view [aL

Check in Welcome to our new site!

‘Checking n this working copy wil replace the existing tem with the working copy.

Checkn Message
Enter a message to be saved alongside the chackn. This should explain what was changed, for audit

purposes.
Updats news item ingress






_images/basic-form1.png





_images/aggregation.png
Shelr

Book






_images/your_theme_egg_egg_installation.png
init_py|

base_properties.props

base_css dim

[-Lstyles portets css i

¥ ] publiccss.dim
[.Leustom_images

1L cusiom tempiates

_int_py

contigurezem!

interfaces py
viewets py

<
tyour
[namespace)

our theme.
package]
configure.zem!

setupclg

= e

browser

-
viewetpt

images.
v
tomplates. viewlets xnl
cssregistryxml
Jsregisty xmi
skins.xmi

configure zeml

profles zoml
skins.zemi

setuphandiers py

ni_py





_images/workflow_base_view.jpg
% Workflow at /Plone

‘Workli

‘Scripts | Permissio

al_workflow/todo_item_workflow
d todo_item_workflo}

Title DC Workflow Definiion _ ClICK{tOTCreate new/states

Description

"Manager'
role
bypasses
guards
Instance
creation
conditions  Expression

Permission(s)

Save changes

Role(s)
21





_images/Capture.png
e ke e e
o






_images/copy2_of_copy_of_p4_collectionssearchcrit1.png
Criteria for News and Events
No criteria defined yet. The search will not show any results. Please add criteria below.

—adsew Searen Ctera

Field name.
The time and date an tem was created






_images/buildout_python-web.png
) cotecive buidoutpython [ T

@ Conenmae | S zp [T s ovnesom e/ ttn coscotiective it pyen.

Pouchmeser - Fiea Comnis Sovcres 3 Tigs Oowniods =





_images/statemenu1.png
Publish
Submit for publication

Advanced..





_images/07.png
@ Plone :
g

Contents Actions ¥ Add new... ¥

Documentation

by Managr — st modiied Ae 01, 20100338 PM — Hstoy

[3 Project Overview — by Jayne Smythe — last modified Apr 0fL JLZIL LS
Introducton t the project and al the players > B

£ Event

5 File

“ Link

& News Item

B Page





_images/helloworldform.png
Contents [AYEWE Rules  Sharing

IIH Hello World

Name
Please enter your name.

[(save |






_images/toolbar_image.jpg
Discreet

]






_images/versioncompare-src.png





_images/externallinkpanel.png
External Link
Link the hghighted text t this URL:
) preview.

o | ¢ aancel





_images/locking01.png
This item was locked by George Shrubb 10 minutes ago
If you are certain this user has abandoned the object, you may
object. You will then be able to edit it

the

Widget Installation

B by George Shrubb —last modified May 02, 2010 11:51 AW
How to install and use Widget.

Step One
1. Prain bibendum metus at odio.
2. Aenean mollis egestas odio.






_images/fooview.jpg
[contents ] [IVEWIN [_edt | [ properties |

s e e | stter

Foo Foo Foo Foo






_images/rename_workflow.jpg
*%. Plone Workflow Tool at /Plone/portal workflow

Type Name size

g‘umcmc ipleaseliow (comment Review
orktion)

copy_of_one_state_workflow (Single State Workflow)
() £ folder_workflow (Community Workfiow for Folders)

£ intranet._folder_workflow (Intranet Workflow for
Folders)

() £ intranet_workfiow (Intranet/Extranet Workfiow)

) €3 one_state_workflow (Single State Workfiow)

O 12 plone_work@hy Clickiitinity workfiow)
fication_workfiow (Simple Publcation

Copy | [Paste | [Delee | [mport/export | [ select Al

Add Wor

Last Modified
2012-08-23 16:37

2012-08-23 16:57
2012-08-23 16:37

2012-08-23 16:37

2012-08-23 16:37
2012-08-23 16:37
2012-08-23 16:37

2012-08-23 16:37





_images/ajax_call.jpg
© 4 | 3 localhost8080/lone/ odo-Iist/go-to~the-bathroom/update_workflowtransiton=complete

*remuttars (

“eomploted”, “tzansitions

+ trve)






_images/compare-versions.png
Fiverion 2y 52 26101 Second vaon 3y 7. 25167)

Show atrces






_images/buildingblocks1.png





_images/save_todo_folder.jpg
You are here: Home /]

Add Folder
Defaults  Catogorzation  Dates  Ownorship  Settings

Title »

TODO List

Description
Used i tem istings and search rosuls.

antwait to start getting things done - let's work on this together!
(mileage may vary)






_images/collection1.png
Add Collection

cscton of serchaie ot
Defaults  Setings  Categorzatin  Dates _ Creators
Tite =

my collection

Summary
Used in item listings and search resus.

Search terms
Define the search terms for the items you want to list by choosing
Select. v
Text
Description
‘Searchable text
Tag
Title
Dates
Creation date
Effective date
Event end date
Event start date

Expiration date
Moification date
Metadata

Creator
Location
Review state
‘Short name (id)
7






_images/directory_structure.png
Em_i_






_images/plonemain3_0loggedin.png
John Smith v

® Plone’

Welcome to Plone

Congratulations! You have successfully nstalled Plone.
Ao vt inprosaesion o
e s 1 e i vt e 10 o i ot f e ot . D crtoc T s s

Get started
Botr you st axplrng your bl creted Plna sk, lsassdo e fowing

1 Make 1 you 1 10994 1 35 3 imemanage s (1ot Sk e e o 7 1)

F o R ———

. Do what scuty v you YA 1 our . Rk gt s, )

Get comfortable

At hat,wesugget yo docne o s of e lowing

« P o Wt nwin Plns,
= Readth docuerttin,sgaciaty s Documsntton for contnt aorsandSansr st scommendtons.
« Explr the st a4 s o loe.

« Read anorsubscrbetth sppon s,

Make it your own





_images/setup_export.jpg
Contents Y Profiles 1 Impor Upgrades.

/ Generic Setup Tool at /Pidfih/portal setup

Type Name

5l @.mpm-au xport)Blone) configuration

Grne P

L -depenaencies-
20120823;

[ import-ali-profile-Products.CMFPlone_plone-20120823

O B import-all-profile-Products.CMFPlone_plone-content-
20120823203236.10g »

@ import-all-profile-plone.app.dexterity_default-201208
O B import-all-profile-plonetheme.classic_default-20120¢
1 import-all-profile-plonetheme. sunburst_default-20120
O [ import-all-profile-tutorial.todoapp_default-201208232

Rename | [ Cut | [ Copy | [ Paste | [ Delete | [ import/Export





_images/helloworld-plone-shot.png
@ tpocalhost 8080/po2/portal factor [+ |

[Wevopedia 0

Q-

website-aberscht bamerefreheit kontakt  Kanfiguration

e —/

Fekgangia_sbmelden

e sind bier: startacie - [

tuee

Bisher keine Artkel
verindert.

Al Anderungen.

HelloType bearbeiten =55

“rstelt o admin zuetzt vrandart: 15.09,2007

Titel

[—

Hellotext

[ —]

« September 2007

So Mo 0i Mi Do Fr Sa

1
2345678

510 11 12 13 14[35
161718 19 20 21 22
232025 2 27 2029
B

Fertiy

o [Rvson






_images/custom_view.jpg
TODO List

by admin — tast miiod Aug 25, 2012 0831 M — Hitory.

Tite Sttus  Lastmodifiod
©  gotothebatvoom  open Aug 25, 2012 06:20 PM
o cleanthocatiiterbox  open Aug 25, 2012 06:33 PM

°  paybils open Aug 25, 2012 06:33 PM





_images/datessettings.png
Default  Categorization  Dates | Ownership  Seftings

Publishing Date
The date when the ftem will e published. Ifno date s selected the fem will be publshed
immediataly.

ffE—

Expiration Date
The date whan the item expires. This will utomatiosly maks the tem invisibla fo others ot the
given date. I no date i chasen, twill never exire.

>l v[va-e ™

Change note
Enter 3 commant that describes he shanges you made,






_images/editpagecategorization.png
Default  Categorization | Dates  Ovnership  Seftings

Tags
Tags are commanly used for ad-hac arganization of content
Newtags

Retsted ams
A

Lacstion
The gesgraphical location sscosiated with the iem, if spglicatle.

Langusge

Engish v

Change note
Enter 3 commant that descibes he shanges you made,






_images/add_open.jpg
Makelit/s

Add a state
1d [open .






_images/copy_of_foldercontents.png
contents R ‘add new.

Skippers

by i~ st ey 052101045 1 — sy

Uponetever
Setect:an
Tite ER— state
8 O Osrcaswngeisipes 18 Mey0320100s41PH  Pivae
80 O cuumns BE  Mayos 2000543M  Prvate
8 O O ousowings 1KB My 03,20100543PM  Private.
I ye— e Mayos 2000544PM  Prvate
B O O Hesperia Sppers. 1KB  May03,20100544PM  Private.
B O ORmsdeSwes 18 Mey032010054PM  Pivaie
B O O oiansupes 1KB  May03,20100545PM  Prvate.

(comy)





_images/helloworldpersonprivate.png
Home, News Events Users My H

You are here: Home » My Hello World Person

haring

My Hello World Person

by admin — last modified Sep 02, 2012 12:24 PM — History
Name:
Jim Bob





_images/tinymce_images.png
Uisaa/muokkaa
Kuvaselain

Olet taalla: .Paasivu — =i Teemat —» c;Perheet

- shortauts.

2 Ko

ts Tamanhetkinen kansio
s Kuvapankki






_images/05.png
Project overview
oy Gerge S st e oy G2, 210 1124 A —Histry
Sed o onim vitas mauts vrustincidun. Etam non gaida dam, Cras Iboris, st vtas hndrer plletesqus,
i non e pretum, sat ik sagtis
rion viverra prelaim, erat nibh sag

tisus orci sodales uma, vel pubinar arcu nisi sad arcu. Donec pharstra
o

T






_images/transitions_tab.jpg
bles | Workl Scripts | Permissions | Groups

Properties | States | Transitions

f Workflow States at /Plon I_workflow/todo_item_workflow/states

State added. (2012-08-18 17:19)

") completed
No transitions.
open
No transitions.

Delete | [ Set Initial State





_images/form_radiobuttons.png
Contact Us

Customer =
Customer email

pramens

Subject =
© Comment

O Feature Request
O Technical Issue
© Complaint

O Other

Other
If you've specified Other ab

please fil this this field too.

Message =
The message body

“send






_images/your_theme_egg_qi_installation.png
npmed22 our
Feme packite]

docs

four

v
e
il

ramespace]  package]

init_py|

your theme.
configure.zemi
setupcly

sowppy

base_properties.props

-Lsiyies porits css i

A

browser

publc.cas.cimi
{LLeustom_images
—.)

Leusi

configure.zemi

interfaces py
viewets py

viewlatpt

b

images.

configure zeml
profles.zomi
skins.zemi

satuphandiers py

_int_py





_images/add_transitions.jpg
Ml Properties | States | Transitions | Variables | Worklists | Scripts | Permissions | Groups

™ Workflow Transitions at

/Plone/portal_workflow/todo_item_workflow/transitions

Transition added. (2012-08-18 17:25)

D complete < —
ompl Ke

Destination state: (Remain in state)
Trigger: User action

Note: Renaming a transition will not automatically update all items in the workflow
ffected by it. You will need to fix them manually.

Rename | | Delete

Second:click-
Add a transition

d reopen -





_images/deactivate.jpg
BT T R AP R EA Y SR IDODMRRRE, Qs < Spapoe

()& plone.app.i 104
Extension profile to install an intid utilty in a Plone site






_images/edit_todo_workflow.jpg
Plone Workflow Tool at /Plone/portal workflow.

Adawarkdow

Type Name Size Last Modified

O 3 comment._review_workflow (Comment Review =

et 20120817 12:32

3 folder_workfiow (Community Workflow for Folders) 2012:0817 1232

)3 s e waritow iant worow or Enirii
3 intranet_workfiow (Intraney/Extranet Workfiow) 2012:0817 12:32
£ one._state_workflow (Single State Workflow) 2012:0817 12:32

& plone_workflow (Community Workflow)

£ simple_publication_workflow (Simple Publication
Workflow)
todo_item_workflow (DC Workfiow D

20120817 12:32
20120817 12:32

ion 20120817 17:52
Rename | | Cut | | Copy | | Paste | | Delete | | ImporyExpert | [ Selectll





_images/order_of_precedence.png
| contents | properties | view | security | undo | Ownership | Int

@ Plone skins Tool at /themereference/portal_skins
S| selections

Name Layers (in order of precedence)
custom
LanguageTool
cnfeditions_vievs
CHFEditions
O plone Default ~ |ChangeSet

kupu_plone
Kupu
kupu_tests
archetypes v

I3






_images/enter_portal_setup.jpg
./ portal_historyidhandler

(@ portal_interface (Allows to query object interfaces)
9 portal_javascripts (Registry of Javascript files)

@ portal_kss (Registry of Kinetic Style Sheets)
portal_languages (Language specific settings)

@ portal_memberdata (Handles the available properties on
members)
) @ portal_membership (Handles membership policies)
) @ portal_metadata (Controls metadata like keywords,
copyrights, etc)
g ® portal_migration (Upgrades to newer Plone versions)

] ./ portal_modifier

./ portal_password_reset (Hagijjgjpassword retention
policy)

&
K
g
]
2
2
)

| ./ portal_purgepolicy

settings registry)

®\
3
a
2

(Allows to install/uninstall products)
) ./ portal_referes
) 7 portal_regigffation (Handles registration of new users)

) -/ portal_setup sAdd g0 2nd configuration managemeny

portal_syndication (Generates RSS for folders)
) © portal_tinymce

() ® portal_transforms (Handles data conversion between
MIME types)

3
g

N
3
A
3

@
3
g
9)
g
o






_images/inlineeditingbodytext1.png
Eastern Tiger Swallowail

[ ccit  Shain ctions

Eastern Tiger Swallowtail

by —lastmedied ayor 100522 A0 sy

e Eoklycolore Swallowiail 1 one f Ut mcst speciaculr and il DUt s, BTght yeTon wings wih back srpes
ke this usuallyvery lage swallwai identabie. Females are dimorphic (have b frms) wih some having black wings.
s perceniage ofback form females ncreases as one maves ioareas of warmer climate. These forms are easy
isinguish fom oter“Hack” swalwails, because they lack he mecian range spot-5arc o th induing,seen o Black
i Spcebush swallotaks, and the iescent blue of Pipevine swalowtails. The black form

males usually retain a shacw of the tpical iger” patiern.

s species cccupies decuous woadlands, speciall woodland edges and wooded siteam systemas. 1) oten present n
ububan setings,scaing high among the tees.





_images/arrowBlank.png





_images/table_subdued_grid.jpg
Thoroughbred Champions

Quarter Horse Champions

Man O' War

First Down Dash

Secretariat

Dashing Folly

Citation Special Leader
Kelso Gold Coast Express.
Count Fleet Easy Jet






_images/editimage.png
Eastern Tiger Swalawtail >

Edit Image

Detault | Categorization Dates  Ownership  Settings

Tine
Eastern Tiger Swallowtail Butterfly

Doscrption
Usedin femlisings and searchresuls

8] Currentimage G inag — 13¢8

O Keep existing image
O Reptace ith newimage:

[ —

[save] (canca





_images/workflow.jpg
ouisn
quad cles anager)

retact  [guard.soles Manager.Owner |

fenaing from prve

submit guard roles Mansger wrer]

oubin
s roes anagerReviewer]
PESp———

publsh[quad.coles Marsger] Bablshed

e (gurd rles Mansger Owner Revinss]

oustisn
{auard rles Manager Revewer]

Taoard rles Manager Owner]

cubmit_(guardrols MansgerOwrer]
Croated wan Posedon o UL Comnty Edton Ko fr CommerciaUse.





_images/insert_table_classes.jpg
General | Advanced

— Not set
Subdued grid
Invisible grid
Fancy listing
Fancy grid listing

Fangy vertical listing






_images/caption_page.jpg
page-example

by admin — last modified Nov 10, 2008 09:43 AM

body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
iThis is & descripeion of the ROSE: body text body text body text body text body
Image text body text body text body text body text
body text body text body text body text body
text body text body text body text body text
body text body text body text body text body text body text body text body text body
text body text body text body text body text body text body text body text body text
body text body text body text body text body text body text body text body text body
text body text body text body text body text body text body text body text body text
body text body text body text body text body text body text body text body text body
text body text body text body text body text body text body text body text body text






_images/editpagepanelplone3.png
Add Page

A page inthe site. Can contain fich text

Default  Categorization Dates  Ownership  Seftings.

Title «

Writing for the web

Summary.
Used in item listings and search results

Things to remember when writing content for the web

Body Text
Stle. e s =
3 .=

[Lorem ipsum dolor sit amet, consectetur adipiscing elit Aliquam et elementum leo. In_ 4|
el risus enim, eget eleifend erat. Fusce metus insum, pretium eget pretiurn in,

incidunt quis quam. Pellentesque ac tellus at orei slementurn adipiscing. Morbi nulla
lorem, ulricies quis dictum vel, commodo in ikero. Mauris lacinia magna eu ligula
laravida congue. Donec pulvinar,lorem quis semper congue, diam dolor rutrum turpis,

fac placerat ipsum arcu non orci. Pellentesque sit amet ipsum etnibh semper vehicula, —
ivamus mauris libero, vulputate sed malesuada a, venenatis nec urpis. Cras augue
Inulla, vlutpat non vulputate quis, dignissim at magna. In hac habitasss platea

dictumst Pellentesque atlibero nisi, in fingilla mi. Maecenas eget ipsum magna, sit

Change note
Enter a commentthat deseribes the changes you made.

— 1






_images/add-new-item-form-folder.png
admin ¥

Dol in currnt section

Display v Addnew... v State: Published v

dothe following:
s shoukt have a Sta Setp enty i the menu s hetop right comer)
y usors and sond out password rominders)

ogsiraton, password poicies, tc)





_images/portal_skins_zmi_snip.png
Contents | _Properties jew | security

© Plone Skins Tool at /referencemanual/portal_skins

Type Name
(3 plone_wysiwyg
(3 plone_templates
(3 plone_tableless
(3 plone_styles

(3 plone_scripts
(3 plone_prefs

(3 plone_portlets
(3 plone_login

(3 plone_kss

A nlane imanee

1000000000





_images/your_theme_egg_components_cutdown.png
—init__py

configure zem
interfaces py
_ ‘_* viewlets.py
browser
E—  viewlept

-

images

templates Viewlets xml

prof !s default






_images/12.png
tonts  View  Edit  Rul

Sharing for “Documentation”

You can control who can view and edit your item using the list below.

Name Canadd  Canedit  Canview Canreview

B Loggedn users 8 e 8 e
2 George Shrubb (shrubb) L]
2 Jayne Smyte smythe) @

=}

2] o a
° ° °
2 Moty Jones (ones) @ =] s]
# Inherit permissions from higher levels. \
By defout, permissions from the container of tis e are inhered. fyou isable this, only the explcly
defined sharing permissions willbe vl In the overvew, the symbol © indicates an nheried vaue.
Similarty,the symbol @ indicates a gobal roe, which is managed by the site adminiirator

G (GaneD)





_images/edit_reopen.jpg
™ Workflow Transitions at
/Plone/portal_workflow/todo_item_workflow/transitions
C) complete Complete

Destination state: completed

Trigger: User action

Requires permission: Modify portal content
ds to actions box: Complete

Bestination state: (zemain in state)
Trigger: User action





_images/client_request.png
Give me www.mysite.com, please... —»»

Your
Computer

Internet

Plone Software
Plone Storage






_images/plonemain3_0anon.png
L

® Plone’

N

Welcome to Plone

Congratulations! You have successfully nstalled Plone.
Ao alabs inpesasaion mose

Get started

Bokr you stat explonng yous by crated Pins s

15060 s ok
1 Mok 010 yu 10994 1 38 30 mTAagH R (v 2 Sk s 1 1)
FIR A ———

3. Dscdewhat scurty vl you war o your . o s egtnn s, )

Get comfortable

At hat, e sugget yodo v o o of e owing

= Fd o Wt nwin Plns,
= Readth documenttin,spacshy he Documention for ontnt adors and S st rscommindtions
« Explor the st s ans o o,

« Road anlorsubscref th sppor s,

Make it your own

Plns has o of ot setings 1 can b used 1 make o whal yauwan . Soms sxamp

« Try oot o Glloren thoms, okher ick Fomthe inchuded ones., or one of e avlsble themes ¥om pons. o, ke s e conpaltie i





_images/cookie-plugin.jpg
credentials. cookie.auth

@ £ @ o rocahosc8080/pione30/ac users/crede v b (G Google

e T oo = e

Frorer

ssers/credentials_cookie_auth

Choase the functonaltty ths Extended Cookie Auth Helper will perform

& Extended Cookie Auth Helper at /plone30/ac

cnallenge (challenge)
Reset Credentials (resetCredentials)
Update Credentials (updateCredentials)
Extraction (extractCredentials)

EEER]

Update

=






_images/export_todo.jpg
Dexterity content types

TheDonit forget toicheck!]l know always doiable for your ste.
select Type Name Description #of items

E [ TODO Item SWM%LPJ@E;

Delete | [ Clone [ Bxport Type Profies || Export schema Models






_images/loginform.png
Forgot your password?
If you have forgotten your passward, we can send yau a new one.






_images/copy_of_operationcut.png
Contents [0

Eat  Rules Sharing

Skippers

ycin ot madhd iy 2304 Pt — sy
Upone evel
Seect: Al
Tite size
O O spreatwinged Suippers 148
i O ockwywings 18
O o ouskywings 18
i O s Sippers 1@
© Easkern Tiger Swallowial 148
O 3 Hesperia Skippers. 18
O O Ao Suppers e
i O Ooansipers 18

(Guf[Renane) (Beee) (Crange Stak)

Modiied
May 03, 20100541 PM
May 03, 20100543 P
May 03, 20100543 P M
May 03, 20100544 P
My 07, 20100519 AM
May 03, 20100544 P
May 03, 201005.44 P

May 05, 20100545 P

state

Priae

Prie

Priae

Prie

Priae

Prie

Priae

Prie






_images/uml-model-small.png





_images/uml-testcase.png
A4 BE —veve-t Bt T- =
e s
s T e e e
i Smament einone
et —

mybetnodh v

(et e void
retpehods  wid

restsetup






_images/map_to_workflow.jpg
Plone Site

rempFolder ©cfauy
ropic (Collection (old-style)) [©cfauy
odo_item (TODO Item) - Update/to new/workflow

simple_publication_workflow

@ Clicktosave!

ik the button below to updatsths securty settinss of all workflowaware obiacs in
aeiy PoGlickiihis everytime you update a workiiow

if'you have items that already exist and\you
Update securysecings jof=\ antithem to have the newworkflow.






_images/09b.png
ing  Actions ¥ Display v Add

Documentation
by Manger — st modiied A0, 010 0338 M History

3 Project Overview — by Jayne Smythe — last modified Apr 21, 2010 02:13 PM
Introduction to the project and al th players
3 Widget Installation — by George Shrubb — last modified Apr 21, 2010 02:09 PM

3 Customer Support — by Jayne Smythe — last modified Apr 21, 2010 02:11 PM

3 FAQs — by Jayne Smythe —last modified Apr 21, 2010

26m





_images/zeo_cluster_load_balanced.png
Web Server
807443

Load
Balancer
Port 9000

ZEO Client
1
Port 8081

ZEO Client
2
Port 8082

ZEO Client

Ports

ZEO

Server |«—>| ZODB/
Port 8000 Blobs






_images/creating-the-form-title-description.png
Add Form Folder

Duete Cuesin Oses Owonbp St Orenien

Jamaican Meetup
e

Uh i g s s

T uimata meotup, ind outwhat thers a1 dong I your ares

— AN

-
Tk e o i sk it o1 o st s oo e, 5ot rd kct

Tk e
Pl crared g e Wi i et o . i, 0 ) e Sy ol Do b o oo

Otene

Tk vew

ok 1 e e et 5L sl v o 8 ccssd i 10554, UL 5.1 I i ot ey, i
e e o s it TS et o 5o 43t 1 o6





_images/loggedinstrip.png
George Shrubb ¥

Eeasme| Deshboard

Dlonly in: Preferences
Site Setup
Log out





_images/addcontenttypecondition.png
Add Content Type Condition

A portal type condition makes the rule apply only to certain content types.

Configure lemert

Content type =
The cantent typs to check for

rolder
Image

o sl





_images/validation_error_pretty.png
Contact Us

ey

imaspavmovs






_images/sitesetup-cp-4_2.png
£ Cotpon s

ot

e
Otma

prn—
e

=

0 T v e
37
o

T e g it





_images/edit_complete.jpg
 gomplete G

Destination state: (Remain in state)
Trigger: User action

) reopen
Destination state: (Remain in state)
Trigger: User action





_images/formlib_firstresult.png
Contact Us.





_images/save_rename_workflow.jpg
jepis

Rename,

[ Cancel |






_images/working-copy_locked.png
You are here: Home / News / Welcome to our new site!

“This item is being edited by Jane Doe in a working copy created on May 14, 2015. (View
changes)

minute ago.

I e v iy e

Welcome to our new site!

8 by Jane Doe — last modifed My 14, 2015 09:33 PM — History
‘The long wait is now over
Our newsite is built with Plone.





_images/theming-cp-test.png
1 your theme use rlative path for imoges, st

il work rgarless of wtich page lana i endars
e pigeenfig g com/iszodes

¥ Road notwork
Alow s and thes to b rod fom rormco sarvors.





_images/install_todo.jpg
Chec
s needed for full Dexterity support,

Diazo theme support
Installs a control panel to allow on-the-fly theming with Diazo
HTTP caching support
Installs plone.app.caching
OpenlID Authentication Support
Adds support for authenticating with OpenlD credentials in a Plone site
Plone debug toolbar
Development tools for Plone
Products.Clouseau
Installs the Products.Clouseau package
Session refresh support
Optional plone.session refresh support.
Static resource storage
Afolder for storing and serving static resource files
Workflow Policy Support (CMFPlacefulWorkflow) - no core types
dependency
Add in Plone the capability to change workflow chains for types in
‘every object. With no dependency on core Plone types.
Working Copy Support (Iterate)
Adds working copy support (aka. in-place staging) to Plone.
collective.z3cform.datetimewidget
Enable plone.app.jquerytools support for date-time widget

Check!






_images/working-copy_checkout.png
You are here: Home / News / Welcome to our new site!

Eait

Sharing Actions v State: Published v

Welcome to our new site!
by S Do It o iy 1, 2015 093 P iy

The long wait is now over
Our new site is built with Plone.





_images/folderviewtabular.png
oy o lat modibd May 05, 20101045 P —Hisory

Tie Auhor  Type  Modiied

O Spreadwinged Skppers  admin  Folder  May 03,2010 0541 PM

© cloudyuings agmn  Folder  May03,2010 0543 PM
© puskywangs agmn  Folder  May03,2010 0543 P
3 Grass-Skppers agmn  Folder  May03,2010 0544 PM
3 Hesperia skppers agmn  Folder  May03 2010 0544 PM
© Roadside-skppers agmn  Foder  May03,2010 0544 PM

© Gantsippers agmn  Folder  May03,2010 0545 PM





_images/customlabel.jpg





_images/add_todo_content_type.jpg
' Add Content Type

Type Name x
(7000 tem.

ShortName =
Used for programmatc access 1 e ype

o ma—

Description
Somathing that nseds €o b done:






_images/previousnextenabling.png
Contents  View [[EL0 Rules Sharing

Edit Folder

Afolder which can contain other tems.

Default Categorization Dates  Ownership  Settings

) Allow comments.
If selected, users can add comments to this item.

[0 Exclude from navigation
If selected, this item will not appear in the navigation tree

2 Enable next previous navigation
This enables nexprevious widget on conent fems contaned i s oder

G






_images/history-viewlet.png
History

Publish — Georgs Shiubb on May 02, 2010 10:42 AM

Edited — George Shrubb on May 02,2010 10:42 AM Rever to this revision

View  Compare to current
1 Compare |

Edited — George Shiubb on May 02,2010 10:42 AM (Rever to this revision]

Initialrevision View  Compare to current






_images/addmailaction.png
Add Mail Action

st
i

[ —]

fr—

(Sam) Cancel)





_images/butterflies_folder.png





_images/addlink.png
Add Link

Al 30 intemsl o xtemal ecoure,

Default | Categorizafion  Dates  Ovnership  Seftings

Titie s

Description
Used n iem lisings and searoh resuls

URL
e

Change note
Enter 3 commant that describes the shanges you made,






_images/hellojimbobview.png
My Hello World Person

by admin — st modified Sep 02, 2012 1224 PM

Hello Jim Bob





_images/pas-contents.jpg
006 aclusers =
G P @ R [@mwoanssoso ponssorscmersimanev b (Gl Goose Q@

N E —RE— AT e—as——ma—
(@) Pluggable Auth Service at /plone30/acl_users L}
[Gatargs e Grsser P = _ade |
Ty Name sne e
TG croser 200612290158
200612290158
200612200158
T 8 loa ros 00612290158
e 200612290158
- e s 00612290158
RS 200612290158
I~ & sniffer 2006-12-29 01:56
I~ 8 source_groups 2006-12-29 01:56
I 8 source-siacs 0612290158
N ] 200612200156

Renome | _cut | Copy | _Delete | _tmport/Export | _Seiect Al

= °





_images/formlib_invariant_error.png
Contact Us

Customer
Customer emai

[user@domain.com

Subject
Other -
Other

I you've specifed Other above, please il tis this field too

Message =
The message body
Whste o Eath 5 the Coazy Smidy

“aend





_images/butterflies_folder_text.png
Introduction

Abutterflyis aninsect of the order Lepi
doptera.The scope of the term depends
on how far the concept of "butterfly” is
extended. Currently, most experts
include the superfamilies Hedyloidea
(the American moth-butterflies), Hes-
perigidea (the skippers) and Papilionoi-
the so-called true’ butterflies).This
ept of butterflies including. the
loidea is an only recently
ded one, but it makes the group a
| clade, the Rhopalocera. Like all
tera, butterflies are notable for
usual life cycle with a larval
¢ stage, an inactive pupal
stage and a spectacular metamorpho-
sis into a familiar and colourful winged
adult form, and most species being
day-lying, they regularly attract atten-
tion. The diverse patterns formed by
their brightly coloured wings and their
erratic-yet graceful-flight have made
butterfly watching a popular hobby.

Butterflies





_images/foldercontentsdrag.png
Title size  Modified state
O O spreadwinged Skippers  1kB May 03,2010 05.41PM  Private
O © cloudywings 1KB  May03,2000543PM  Private
O O buskywings 1KB  May03,2000543PM  Private
O O crass Skippers 1KB  May03,20100544PM  Private
O O Hesperia Skippers 1KB  May03,20100544PM  Private
O O Roadside-skippers 1kB  May03,20100544PM  Private
O O ciantskippers 1KB  May03,20100545PM  Private






_images/helloworldformblank.png
Contents [AYEWE Rules  Sharing

Name
Please enter your name.

[save ] (Cancel |





_images/jimbobform.png
Contents [AYCVE Rules  Sharing

Name =
Please enter your name.

Jim Bob,

[save ] (Cancel )






_images/helloworldpersonform.png
Add Person

Simpie Person Content Type
Defaults Categorization Dates  Ownership
Title =

My Hello World Person

Description
Used in item listings and search results

Blah, biah, blah...

Name =
Please enter your name.

im Bob

save | [ Cancel

Settings





_images/insertimagecurrentfolder.png
Insert Image Search

9 Home © - Garentfolder)
O Current foder toad..
DMy recenttems.

Recent tems

o[+ ancel





_images/your_theme_egg_skin_cutdown1.png
lemplates. viewlets.xml
cssregistryxml

Joregistry.xmil
skins.xml

——

configure zemi
profles zeml

skins zeml






_images/08.png
® Plone

Home News Events Users.

I8 et sharing Actions ¥ _State:

Widget Installation

oy Gaorge St — st modfied Ape 01, 2010 0346 PM — History
How to install your widget
* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Private

‘Aliquam tincidunt mauris eu fisus.

Vestibulum auctor dapibus neque.
Nunc dignissim risus id metus.
Cras omare tristique el





_images/inserttablepanelclasses.png
Table

Table Class
Rows
Columns

unsorted listing

add table

fix all tables






_images/diazothemeexplained.png





_images/rulesforthiscontext.png
Content rules for Site
T g coet i s sciv s Pone St

U th contor e col ponci o crot s o dlta ar modly axsing anes

Assign e here ce 3

Active content Appliesto  Enabled  enabled
rules inthis Plone Sublolders  here
site

O SendEmailwhen o B
anyPageis
Modified (Object
modified)
Wams the users
about page
modifcatons.





_images/rule_assignment_list.png
[
os





_images/edititemfolder.png
ontents  view [T

s Shaing

Edit Folder
Default  Categorization Dates Ownership  Settings.

i

Butterflies|

Description
Used in tem listings and search resuls






_images/tiny-mce-toolbar.png
-
i
=
-
=
w
w

EamEes T ERS






_images/table_resize.jpg
frhoroughbred Champions Quarter Horse Champions
Man O War First Down Dash
Secretariat Dashing Folly
“Cration Special Leader
Kelso Gold Coast Express
Count Fleet Easy Jet

o &





_images/insertlinkpanel.png
Insert Link

Home ) Members

(5 Currentfoder | 3 | Long-tailed Skippers
(©My recent tems

(ORecent items

Search

Title

Long taled skippers

Description

Longaled SKippersbelong o the species

Urbanus prteus They eed on legume iy
vines g beans

o] - canel]






_images/createplonesite.png
® Plone’

Plone is up and running.

‘Your Plone site has not been added yet:

Creste s v o st
Zope Management Interface — low-level technical configuration.

For documentation, add-ons, support, community, visit plone.org





_images/composition.png
Shelr

Book






_images/formlib_firstform-filled.png
Contact Us






_images/todo_item.jpg
You are here: Home / TODO List / Pick up grandma from soccer practice

Sharing

Pick up grandma from soccer practice

by admin — last modiled Aug 17, 2012 0520 PM — History.





_images/save_open.jpg
T workflow State at
/Plone/portal_workflow/ todo_item_workflow/states/open

d
Title
Description

Possible Transitions ¥ complete (Completc) = check:

open
Open

Forithe user

() reopen (Reopen)

)






_images/check_workflow.jpg
29

30

31

32

33

34

35

36

37

38

Workflow Tool Products.CMFCore.exportimport.wor

Export workflow tool's check
workfow dafinitions and || mmm—CREC

rting scripts.

Site Properties Products. CMFCore.exportimport.proj
Export site properties.

KSS registry Products.ResourceRegistries.exporti
Export stylesheet registry

MemberData properties Products.CMFPlone.exportimport.me
Export MemberData properties

Package browser layers plone.browserlayer.exportimport.ex
Export package browser

layers

Caching Policies Products.CMFCore.exportimport.cac

Export caching policy
manager's policies.

Archetype Tool Products. Archetypes.exportimport.a
Export Archetype Tool.
Viewlet Settings plone.app.viewletmanager.exportim
Export viewlet settings

MailHost Products.CMFCore.exportimport.m:
Export the mailhost's settings

and properties

CMFEditions Repository Tool  Products.CMFEditions.exportimport.i
Export repository tool's

settings.

Content Type Registry Products.CMFCore.exportimport.con

Export content type regisi
precicates  bindings, f CUSK

Javascript regists Products.ResourceRegistries. exporti

Exportall steps.





_images/anchor_page.jpg
Sody Text

dl[Normal paragraph
o EIEY

Pescription

Habitat

Behavior
Distribution
Conservaion Status

Literature

Description
TextteXtteXttext Hext text text text ext ext ext ext ext text
X teXt teXtteXCHeXC HeXt HeXt eXt ext ext ext ext ext text
Xt teXt teXtHeXCHeXC HeXt HeXt ext ext ext ext fext ext text
Xt teXt teXtteXtHEXC HEXC HEXC HEXC HEXt EXt eXt ext ext.

Xt 10Xt textHext Hext text ext ext ext ext ext ext ext text
Xt teXt teXtHEXCHeXC HEXt HeXt HEXt Hext ext ext ext ext text
Xt text text text text ext ext ext ext ext ext fext text text
Xt teXt texttext text ext ext ext ext ext ext fext text text
Xt teXt texttext text ext ext ext ext ext ext ext text text
Xt text text texttexttext text.

Habitat
Text txt text (Xt (Xt Xt text text text textLext texttexttext
XX teXCHEXC HEXC HEXC HEXC EXC HEXC eXt ext ext ext text
X LA teXCHEXC HEXC HEXC HEXC EXC EXC eXt eXt ext ext text

TeXt Xt X Xt Tt TextLextLext text LextLexttexttexttext
Xt teXt teXtteXCteXt HeXt HEXt HEXt HeXt ext ext ext ext text
XX teXCtEXCHEXCHEXC HEXC LEXC LEXt eXt ext ext ext text
X tEXC teXCtEXCHEXC HEXC HEXC LEXC LEXt eXt ext ext ext text
X tEXCteXCHEXC HEXCHEXC HEXC LEXC LEXt eXt ext ext ext text
Xttt text text text text text,

Behavior
Text txt tex tex text texttexttexttexttexttexttexttexttext

TeXt txt e text teXtTeXTLeXTTexT text texttextteXtteXttext
XX teXCtEXCHEXC HEXC HEXC HEXC HeXt eXt ext ext ext text

Q3






_images/plonedefaultareaslabeled.png
-]

@ Plone Header Area e ()

-

G i T e -
e Apiece of news St T 8
DA st o et 17300108 sy R
[mieriresrim eyt A IR RS
s wn w[me w0
e T

e ) Right Areal

Left Area Main Area Mg poil

R T N I I S e v e

Footer Area Ste Map Accessiaty Contact






_images/content_is_added_to_folders.png
Folder:

eb Pages)

Photos and Images

Documents
News and Events
Videos

Audio Files






_images/ruleslistcomplete.png
e (£ o) )

st comton it )

e — (£ o] )

O — )





_images/add-item-menu-image.png
Display ¥ Add new... v State: Published
% Colle
B Event

fone Team or the out tis
B News ltem
E Page

—





_images/manage_viewlets.png
it o s o ) e

et por s 1) 4.

[T

it por oo 34 ¥

e persep 4 7 i

® Plone’






_images/default_workflow.jpg
todo_item (TODO Item)
(Defautt)

et

e





_images/youre_welcome.jpg
____f Properties. ) 8 Variables.

% Workflow Transition at
/Plone/portal_workflow/ todo_item_workflos omple

Properties changed. (2012-08-18 17:54)

1d complete
Title Complete
Description |Complete this task

Destination -

ey completed :

IHager Automatic

ype
) Initiated by user action

Script r

i I €T

Script =

after)  L0one)2

Buard Permission(s) Modify portal conent | Role(s) Group(s)
Expression | &4}

Display in o
DY I « Name (formatted)  Compi

URL (formatted)  &conent_urs/content satus_ modiworkiow.
Icon URL (formatted)

category

Save changes.





_images/firstform-filled.png
Contact Us






_images/smealdesign.png
HeaderLogo, mgn o~ e
Menus, Search

Header
Focus

Main
Menu

Left

/ ==
Column %‘/
>
Footer Three

Topical
Columns





cover.jpeg
Blone Documentation v4.3 »

Plone - The Open Source CMS

‘This document is a community maintained manual for the Plone [hitp/plone org] Content
management system.

B
B
=3

‘The target audience of the documentation includes

« Content editors: wriing, updating and ordering the actual content of the site
Site adminstrators: instaling Plone, add-ons and setting up the site

Designers: changing Plone's visual appearance

‘Deployers: hosting Plone for production on a server

Developers: Customizing Plone, developing add-ons, and improving Plone iself

Ingoduction
o Whatis Plone?
o What does Plone mean? How is it pronounced?

Quickstart
o Online demo sites
o Plone on your own machine
© Deployment

Working with Content
© Introduction
Logsing In
‘Adding Content
Managing Content
Using TingMCE as visual editor
Collaboration and Workflow
Using Listings & Queries (Collections
Botlet Management
Create and maintain good quality content
Using Kupu as visual editor

 Adapting & Extending Plone

o Basic Changes (Look and Feel)

o Theming Plone

cocoo00o0 o0

O





_images/reactivate.jpg
() & Working Copy Support (iterate) 2.1.5

Adds working copy support (aka. in-place staging) to Plone.
= 3 *r todoapp 0.1 Checks

Extension profile for tutorial.todoapp.

Click






_images/sitesetup.png
Site Setup

Configuration area for Plone and add-on Products.

Plone Configuration

8 Add-ons. @ Image Handiing @sie

@ Calendar Language # Themes

.+ Configuration Registry 1 Mail & TinyMCE Visual Edtor

*, Content Rules. -/ Maintenance D Types

® Discussion # Markup 8 Users and Groups.

X Editing 1 Navigation 74 Zope Management Interface
@ Errors. 2 Search

3 HTML Filtering 8 Security





_images/image.png





_images/formlib_validation_error_pretty.png
Contact Us

ey

imaspavmovs






_images/save_reopen.jpg
N Properties ) § bles

“ Workflow Transition at
/Plone/portal_workflow/todo_item_workflow/ transitions/reopen

Properties changed. (2012-08-18 18:29)

1d reopen

Title Reopen A—

Description Whoops! This taskis st in progress.

Destination

St open : *—Flnul state

Trigger A

type
©) Initiated by user action

Script ———

(before)  |Nend =

Script =

Gnen Mone)

Guard Permission(s) Modify portal content| Role(s)
Expression

Display in e SoresaEl

e box Name (formatted)  Reop @ User
URL (formatted) conten

Icon URL (formatted)

Last|butinGtIZHst.

r P






_images/folders_within_folders.png
Butterflies:

Introduction
Butterfly 1
Butterfly 2
Reports:

Report 1
Report 2

Videos:

Video 1
Video 2






_images/dashboard.png
George Shrubb’s dashboard

e [ T e ]






_images/operationdelete.png
P View Edit Rules Sharing Add new... ¥

Skippers

oy Manager — last modified May 05, 2010 10:13 AM — History

Up one level
Seloct: Al
Titl Size  Modified Sate Order
O O Cloudywings 1KB May05,201010:7AM  Publshed
8 O uskywings KB May05,201010:14AM  Published
O O GiantSiippers 1KB May05,201010:14AM  Publshed
B O Grass-Skippers KB May05,201010:14AM  Published
@ OeastemTigerSwalowtal  1kB  May05,20101026AM  Published
O 2 Hespera Skippers KB May05,20101028AM  Publshed
O ORoadside Skippers 1KB May05,20101029AM  Publshed
O CSpreaduwinged Skippers  1K8  May05,2010 1029 AM  Published &

(Copy) (Cur) (Renmame ) ((Delete ) ((Change State )





_images/addimage.png
Add Image

Animage, which can be referenced in documents o displayed in an abum,

Default Categorization Dates Ownership Settings

Title

Description
A short summary of the content

( || Browse.






_images/save_completed.jpg
o Workflow State at
/Plone/portal_workflow/todo_item_workflow/states/completed

completed
Completed

1d
Title
Description

possible Transitions () complete (Completc
 reopen (wa-)b— Check

savechinges | g

Click





_images/inlineeditingbodytext2.png
Eastern Tiger Swallowtail >

Eastem Tiger Swallowtail

vadin— ot iy 7, 21005204 — sty

FleD s resam
= vt o

.

fThe boldly clore swallowtal 5 10 o most spectacular and familar uteries. BrIgh yllaw wings Wit ack sipes.
make this usually very large swallowtal dentiiabl. Females are mpiiC (ave tolams) wih same havng back wings.
[Thispercentage cf back frm females ncreases as cne moves o areas  warmer cimate These ams are ea5yto
(@stinguish rom ahe black” swallowial, because ey lackthe melan arange spe band an the hindwing seen an Black
Jand Spicabush swalldails, and he ridescent biue d Pipevine swallowils The biack frm

females usually retain a shadow d th typical Uger”patern

17 spectes cocuples deciduaus wordands, specially wapdand edges and weeed sream systemas. s den present n
Isuburban setings scring high amang e trees.






_images/operationpaste.png
[T coit Ruies  Sh

Add n

i~ lstmaded a8 5101045 1 — sty

(3 Eastern Tiger Swallowtil 1k8

Upore kel
Select: A1
Tite size
O O spreadwinged Skipers 1k
i O O Cloudywings. ke
O O ouskywings 18
O GrmssSkipers e
§ O O tesperia Skippers 18
i O 0 Roside Skippers 1@
a]
a]

© GiantSkippers e

Moditied
Hay 3, 20100541 P4
Hay 5, 200054391
Hay 3, 20100543 PH
Hay 5, 20100544 P
Hay 3, 20100544 P
Hay 3, 20100544 P
Hay 07, 20000519 A1

My 03, 201005.45 P11

(o) (Fmame) (Pas) (o) (Ghange Se)

state

Priva

Pt

Privaie

P

Pt

Privaie

Privae

Pt





_images/save_todo_item.jpg
Add TODO ltem

Somotingrends 0 bo done

000 »

Pick

Save | Cancel





_images/ownershipsettings.png
Default  Categorization  Dates  Ownership | Seftings

Crastors
Persons esponsible for creating the ontent of this Hem. Please enter 3 it of user names, one per
tine. The piinsipal restor should come fist.

ey

Contributors
The names of peagl that have cantrbutad o his item. Each sontibutar hould be on 3 sparate
line.

Rigrts
Copyight statemant o other rghts information on tis tem.

Change note
Enter 3 commant that dsscibes he shanges you made,






_images/customwidget.jpg
Last modified 2006-04-27 03134






_images/insert_external_link.jpg
Uorres

@ Home.

@ Current Flder

o xermal






_images/welcometoplone.png
Edit Rues Sharing Display v Ad

Welcome to Plone

by admin — last modiied Aug 26,2012 02:08 PM — Hitory

Congratulations! You have successfully installed Plone.
Also available in presentation mode.

 you'te seeing s nstead of e web 18 you were expectng, he ownar of s web e s just nstaled Plone. Do ot
contac the Plone Team o the Pl maiing iss sbout i,

Get started

Before you startexploring your newiy created Plone sit, please do the following:

1. Make sure you are logged in as an adminimanager user. (You shouid have s Sta Seup entry i the menu n e
1op tight comer)

2. Set up your mail Servr. (Pone needs a vaid SMTP serve o very users and send ot password eminders)

3. Decide what secuity level you wan on your site. (Alow sef registaton, password pocies, oc)





_images/image_size.jpg
Dimensions

Crreven aows0n, )

Original
Large (768x768)
Preview (400x400)

Mini (200x200)
Thumb (128x128)
Tile (64x64)

Icon (32x32)
Listing (16x16)






_images/discoverdesign.png
Menus, Search

Header Logo, p_'SCQVER .

Header v
Focus =

DoV NENSLETERS.

V
Right
Column

Left <
Column

>
Center
Area
Footer n———





_images/editstripmenus.png
s KT Edic Rl

Sharing Display v Add new... ¥ State: Published ¥





_images/manage_portlets.png
(Add portlet... 2]
Portlets assigned here

Login 1 Hide x
Calendar 14 Hide x
Recent items 1 Hide x

Blocklunblock portlets
Parent portlets: | Do not block ¢ |

Group portlets: | Use parent settings & |

Content type portlsts:

| Use parent settings ¢

| Save settings |





_images/table_fancy_listing.jpg
Thoroughbred Champions ‘Quarter Horse Champions
Man O War First Down Dash
Secretariat Dashing Folly
Ctation Special Leader
Kelso Golg Coast Express

Count Fleet

Easy Jet






_images/editstriptabs.png
Contents






_images/uml-testcase1.png
A4 BE —veve-t Bt T- =
e s
s T e e e
i Smament einone
et —

mybetnodh v

(et e void
retpehods  wid

restsetup






_images/copy_of_p4_collectionssearchcrit2.png
Criteria for News and Events

No criteria defined yet. The search will not show any results. Please add criteria below.

—adsew Searen Ctera

Field name.
The time and date an tem was created
Creation Date_[]

Crteria type

Crieia doss match

—setsonOnter

Fotdname
Lt e i
Rova

Reverse display order






_images/server_rack.png
Your
Computer

S
53

wwoa”

i

- Buipe®

&

[ Plone Software

Plone Storage

Internet






_images/dexterity_export.jpg
B L)

(e)(®-](=] Q

| _uibrary

@ Applications

s

{3 buildouts.
e

Detumens

(2 Downloads.

&2 Dropbox

(& Google Drive

| 3 Graphics
ar

o

| @8

& Pictures

| @ Public

@ sites

.
Topet

" W dexterity_ex...825183826 > (1 types. »

1 types.x





_images/prologue-epilogue.png
mw_

Dwts Compten Do Ou S Ot

P
F.......m.m..-.n..-....,..m.

[rS—
———y

o ——
ety
S

D i a1 St b o e s st 10055 L. ) s s s B st s
e gt e o T o o g 43 e
T

afe_ fssezam

P o —T T T T T






_images/portal_js_snippet.png
faery js

Compression type

Tix

none






_images/zope_plus_ws.png
Web Server
807443

Zope / Plone
Port 8080

ZODB / Blobs





_images/live_search_title.jpg
search |

LiveSearch | / sweet.

[ Pick up grandma from soccerp...

Advanced Search...
Home





_images/insert_image_dialog.jpg
nsejeatmage

ubrres mage s

e, image lst
@ Current Foder Tipencient






_images/export_workflow_example.jpg
setup_tool-2012082520154¢
O [8-] [~ Q

+ [ dexterity_ex...825183826 [ workflows "
workflows.xmi






_images/your_theme_egg_config.png
memepnac

iy

docs

init_py|

y
(1. egqo
pl

four [your theme.
ramespace]  package]

configure zemi

setupclg

sowppy

base_properties.props

=

e porits css i
publiccss.dim

browser

'_

[.Lcustom_images

B |

Lousic

mplates.
_int_py
contigure zem!

interfaces py
viewets py

viewlatpt

images.

—

tomplates &

configure zeml

 oteszem

skins zemi

setuphandiers.py.

_int_py





_images/todo_item_behaviors.jpg
« Back to Dexterity Content Ty

i W (todo_item) M-

‘Think:about clicking, thenclick.

[ Save Defauits





_images/add_todo_item.jpg
e e e e [
PR —

Cten
| - EEE]

by admin st modiied Aug 17, 2012 0510 M — Mitory

Can't wait to start getting things done - let's work on this tog

Thoro ro curenty o toms nhs odor

Manage portiets ZOMG there itis! Clickiit! Quick!

‘The Plone® Open Sourcs CMSWCM s © 2000-2012 by the Plone Foundaton and

GPLilanse.

imago
News ltom

Page

B Todo ltem

Restrctons.
g under the GNU






_images/table_invisible_grid.jpg
Thoroughbred Champions
Man O' War

Secretariat

Citation

Kelso

Count Fleet

Quarter Horse Champions
First Down Dash
Dashing Folly
Special Leader
Gold Coast Express.

Easy Jet





_images/just_zope.png
Zope / Plone

Port 80 or 8080

ZODB / Blobs





_images/select_todo_view.jpg
Coioris (O] E& uios oy Acors v Dislay v Adinew..v Sts: Puthed v

tandard view
r—

by sdmin —tast modtied g 25, 2012 00 S NIV
3 go to the bathroom — by admi SRR

52000.2012 by e Plone Foundation |

Povered by Poe & Pyion
Site Map Accessivilty Contact





_images/add_todo_field.jpg
Add new field

Title =
000

Short Name =
Used for programmatic access to the field.

s help text for the feld.

Fiold type =
e rr— Make sure this says title!
(ada | o= Thenclick!






_images/arrowUp.png





_images/addons.png
4 Content Rules
® Discussion

X Editing

@ Erors

3 HTML Fitering
Image Handing
mLanguage

&1 Mail

~— Avaiato sddons

)% Diazo theme support 1.0
Instals a contro panel to allow on-the-fly heming with Diszo

) HTTP caching support 1.1
Instals plone.app.caching

¥ 5 Hello World 1.0
‘Simple Hello World Example
@ Add-on Desciption





_images/collection3.png
‘Search terms
fin the searchtams for the ems you want 0 Ist by choosing wha 10 math on. The st of resutswilbe cynamically updated.

(e vl O —
Event st st * (Wt et Bl Tors  Reoere
F—

Sorton Even st cte | Roversad rder

proview

e





_images/add_content_type.jpg
- e i i

You arshere: Homa / Dextarty Cortant Types.
Dexterity content types

Ciick the *Add Content Typs" button to begin creating a new custom content type.






_images/kupugrab.png
Text Format  mwi

T EE 2= 0 L ) o Nomalpwsgamn 8






_images/compare-button.png
History
Publsh — Gaore Sk on ay 02,2010 1042 A

Edtod — Gaorgo St n May 02,2010 10.2AM

View Gompar to curent

Edtad — Gaorge b o May 02,2910 10.42 M

Viow Compar o cursnt






_images/coverage.png
salesforcepfgadapter/
content/
salesforcepfgadapter.py
_init_py
Extensions/
Install py
init__.py
‘migrations/
‘migrateUpTol0rcl py

Ml covered 60% (131 of 334 uncovered)
 covered 91% (14 of 170 uncovered)
 covered 91% (14 of 168 uncovered)
covered 100% (0 of 2 uncovered)
[B covered 9% (94 of 104 uncovered)
covered 9% (94 of 104 uncovered)
[l covered 100% (0 of 0 uncovered)
[M covered 100% (0 of 21 uncovered)
[M covered 100% (0 of 21 uncovered)
[M covered 100% (0 of 0 uncovered)
[M covered 419 (23 of 39 uncovered)






_images/site_setup.jpg
admin ¥

P l one’ rrrr—
Conly incurent - Preferences
Clickiit! —’sme Sotp

Home News Events ers Log out





_images/copy_workflow.jpg
. Plone Workflow Tool at /Plone/portal workflow

Type Name
) £ comment_review_workflow (Comment Review
Workflow)

12 folder_workflow (Community Workflow for Folders)

2 intranet_dl:Checkiity (intranet Workfiow for
Fold

inet_workflow (Intranet/Extranet Workflow)
 £%he_state_workflow (Single State Workflow)
& plone_;

£ simple pub
Workfiow)

Rename | [ Cut

Tt g000

import/Export

Select Al

‘Add Workfiow,

Last Modified
2012-08-23 16:37
2012-08-23 16:37
2012.08-23 16:37

2012-08-23 16:37
2012-08-23 16:37
2012-08-23 16:37

2012-08-23 16:37





_images/taggedvalues-argouml.png
1 items ¢ [defaut_sctions

Canalk

words - string Model

aMyLteT hingD : veid

< I

As Diagram

<5 | 4Stereowpe | 4 Tagged Values | 4 Checkiist

et method aPoperies [ 4 Documentation
et v
description Tag Definition |

Jdisable_pobymorphing
[doctest_name
[documentation

email
era

Value

ity opinion
o0






_images/client_to_server_simple.png
Your
Computer

»

Internet

Plone Software
Plone Storage

<






_images/inlineeditingtitle2.png
Eastern Tiger Swallawtail »
[T et snanng

>

Eastem Tiger Swallowtail

(s [l

it modeciay 0, 10 24N —Hstay
The bady caare swallutal s o f aut mast spectacular and famila biterfies. Brightyelow wings wth black stipes.
make s usually very large swallowailIdentable. Famales are Gmaphic (vave brofams) with same having back wings.
This percentage d black crm females incresses as e moves ntoareas o warmer clmate. Thse fams are €35y to
dstinguishfrom aher THack” swallowals, because hey lack the mecian @ange spatband on the hindwing seen an Black
an Spicebush swalctais, anitheiidescent bue of Pipeing swalowtais. The back fam

femaes usually rtai a shadaw d th typical Vger”patern

This speces acuples deiduas woodlands, specialy WCIANG ecges and wcded sirea systemas i 5 e presen i
‘suburban settings, soaring high amang the vees





_images/custombody.jpg
T sdd e em~ | seater TBIET

Test e

Some other value

Grated by fisd
Last modiind 2006-04-27 0310






_images/enable-disable-custom-theme.png
Welcome to Plone





_images/basic-form.png
Order your pizza

We will contact you to confirm your order and delivery.

Your full name =
Test

Address line 1=
one

Address line 2
Postcode =

Telephone number =
We prefer a mobile number

Your order =

Wargherital
Pepperoni
Hawaiian

Order) (Cancel





_images/plone_donut_full.png
Your
Computer






_images/hellojimbobform.png
Contents [AYCVE Rules  Sharing

Iﬂa Hello Jim Bob

Name =
Please enter your name.

[(Save | _Cancel |





_images/foldercontentsdrop.png
Title Size  Modified state
O O cloudywings 1KB  May03,2000543PM  Private
O © buskywings 1KB  May03,2000543PM  Private
O O GrassSkippers 1kB  May03,20100544PM  Private
O O Hesperia Skippers 1KB  May03,20100544PM  Private
O O Roadside skippers 1kB  May(03,20100544PM  Private
O O ciantskippers 1KB  May03,20100545PM  Private
O O spread-winged Skippers  1k8 My 03,2010 0541PM  Private.






_images/09.png
@ Plone’
ey e

Edit

Sharing Actions ¥ State: Private V.

Widget Installation

by Gearge Shub — st modid A 01, 20100245 P — Hstory
How to install your widget

« Lorem ipsum dolor it amet,consscletuer adipiscing il
Aliquam tincidunt mauris eu risus.
Vestoutm auctor dapos necue. Va
Nunc dignissim risus id metus.
Cras omare tistque sit.

cut
Copy

Delete

Rename





_images/advancedstatepanel.png
Publishing process

At st (o cahd e e i wh can s . Antnr wy I corko e vy of an e i wit s Pshig
Dat Ao i 1k iy sorchal belor puiha s T i provnt e o o showing p i pats an oldr s,
i o e ik o il et By v s URL

Atctod coment
0 e San Mostea sute
© Oy 18 01200012467 Pubisned
pubtising Ooe
The e ho o il b puished I ot slctd e i b pbished imciily
(o) (e W) (58 3 (02): (59 (9
Expraton ooe

e e who o o expee. This it ulmasclmaks h o e for oers st e g dt, 1t chosen, il v

EREWER W ERER

Wi 265041 th puising ity et v selcte, i corment i atschd o9

Change ste
Sl o vanston e s o g e s it
o crange
React
O Senamack

D ED






_images/10.png
Content

ST sharing

Sharing for “Documentation”
YYou can control who can view and edit your item using the list below.
Name, Canadd  Camedit Canview Canreview
B Logged-in users =] =] =] =]
2 George Shrubb (shrubb) i =] a] a]
2 Jayne Smythe (smythe) ° o ° °

inherit permissions from higher levels

By default, permissions from the container of this item are inherited. If you disable this, oy the
explcity defined sharing permissions will be valid. In the overview, the symbol @ indicates an
inherited value. Similarly, the symbol @ indicates a global role, which is managed by the site
administrator.

[ED]CE=D)





_images/your_theme_egg.png
docs

int_py|

i1 -‘gs!ﬂ

four _your theme
ramespace] - packagel

configure zemi

setupclg

setuppy

base_propertes.props

base_css il
i css i
e
contiure zemi
[ow—
ooy
—  vewms
mages
mptes -
gt
plisiony
. L— ¥ sins i
pottes dotion s
conture e
rotes s
e sem

setuphanders.py

_ink_py





_images/addnewsitem.png
Add News ltem

S anuncemer ha il show v o the s pore and i he news Ising

Defaut | Categerization  Dates  Ownership  Sefings.

e s

Summary
Used in tem lstings and search esuts.

Body Text:
Er—T £
vt -
image
Wil b zhn i s ting, and i the st s, Imge il b el o 3 senstls
[ Bromse
mage Capton
Change ncte
Enter s camment tat dusedbes the changes you made.

[save]






_images/copy_of_operationpaste2.png
: o “

Sharing

Skippers
byt rmddun 210645 — iy
Upare el

Select: All
Title

3 Spreadawinged Skippers

3 Cloudings.

3 puskywings
3 Grass Skippers

3 Hesperia Skippers.

00000 O

3 Roadsice-Skippers

size

e

e

e

e

e

e

Mocitied
May 5, 2000541 PH
May 3, 20100543 P10
May 3, 20005:43PM
May 3, 20100544 P
May 3, 20100544 P

May 03, 20100544 P

State

Prvae

Prvaie

Prvae

Prvaie

Prvae

Priae






_images/anchortext.png
Body Text

BZEEESE E FF 2= 9L o wm|Nomalpaagraph - T

Pescription
Habiaat

Behavior
Distributon
Consenvaton Status

Uteraure

Description
Text fext txt eXt fext Xt {EXEfex Xt {eXt text EX{ {ext fxt EX! Xt (Xt EXEfex eXC eXt txt X
X Xt eXtfex Xt e fext Xt fext fxt eXt fext fext ext fex fext ext text (ex{ [ext fxt ex{ fext
X Xt eXt fex ext et Text Xt fext fext ex! fext fext ext fex fext {ext text ex{ fext txt ex{ fext
X Xt eXtfeX Xt eX! Tex Xt feX: Text X! fext fxt ex! fext fext eXtfex ext ext text ext.

TEXC teXtteXE EXE (X EeXEHEXE EXT 1eXT TeXTHEXE EXE X [eXT EXE EXE LeXTEeXE EXL EXT teXT teXt teXt
EXE EXT TN feXtfeXt X fXE feXT{EXE (Xt TeXEteXC EXL (X feXt feXt {eXt 1 (Xt feXt {eXt (Xt text
EXE EXT TN feXt feXt Xt (Xt feXT{eXE (Xt TeXE teXC EXL (X TeXt feXt {eXt 1t TeXtEeXC {eXt (ext text
EXEEXT TeXT feXTfeXt Xt TeXt feXT{eX{ (X TeXE TeXC EXL (Xt TeXt feXt {ext 1 TextfeXt {eXt (ext text
EXCEXT TeXT TeXTfeXt Xt TeXt feXT{eXt (Xt TeXT TeXT eXL (X TeXt feXt {eXt (X (Xt feXt {eXt (xt text
X EXT TeXT TeXTfeXt Xt TeXt feXt feXt (ext text.

Habitat

TeXT teXtteXE EXE (X EeXEHEXE EXT 1eXT TeXTHEXE EXE X feXT EXE EXE LeXEEeXE EXL (X (Xt teXt teXt
EXE X TN feXt feXt Xt feXE feXt{eXt (Xt TeXETeXC EXL (X feXt feXt {eXt 1 (Xt feXt {eXt (ext text
EXCEXT X TeXtfeXt Xt TeXt feXt{eXt (Xt TeXT TeXC eXL (Xt fext feXt {ext 1 TextfeXt {eXt (ext text
X EXT TeXT teXCfeXt Xt TeXt feXtfeXt T TextfeXC eXt (e TextfeXt ext (e fext fext ext ext,

TEXC teXTteXE EXE tEXT EeXEHEXE EXT 1EXT TEXTHEXE EXE TEXT teXT EXE EXE LeXTEeXE EXL X teXT LKL teX
LEXE EXT teXT teXCHEXE EXT teXT feXC EXE (X TeXTteXC EXL (XT feXT (XL EXC X (XEEeXL EXC (XT teXT
LEXE EXT teXT 1eXC HEXE EXT (X teXT EXE XE TeXEteXC EXL (XY (X LEXT EXL EXE (XE EeXC EXC (XE texT
REXE EXT teXT TeXCHEXE EXT X feXT EXE X TeXEteXE EXL (XY X LEXT EXL X TXE EeXC EXC (Xt text
EXE X X feXtfeXt Xt teXt feXT{eXE (Xt Xt teXC EXL (X feXt (Xt {eXt 1t teXtFeXt {eXt (ext text
eXCEXT TeXT teXCfeXt Xt teXt feXt {eXt (ext text.

Behavior

TEXT 1eXTteXE EXE (X EeXEHEXE EXT 1EXT TEXTHEXE EXE LEXT teXT EXE EXE LeXTEeXE EXL (X teXT LKL teX
HEXE EXT teXT Xt HEXE EXT teXE feXC EXE (XE TeXEteXC EXL (X feXT XL EXE X (XEEeXL EXC (XE teXT
HEXE EXT 1eXT 1eXCHEXE EXT (X feXT EXE X TeXEteXE EXL (XY (X teXT EXE XL (X EeXC EXC (X text
HEXE X teXT LEXCHEXE X teXE feXTHEXE X TEXEEEXC EXE (X TeXELEXL EXL 12X (Xt (XL EXE eXL,

TEXC teXEtEXC EXE tEXTEeXTHEXE EXT TEXT teXTHEXE EXE TEXTLEXTHEXC EXE LeXTEeXE HEXL EXT teXT LKL teX
LEXE EXT teXT teXtHEXE EXT T feXCHEXE X TeXTteXC EXL (X teXT Xt EXE X TXTEeXC EXC EXT texT
LEXE EXT tXT teXC HEXE EXT tXT teXC EXE X LeXTteXC EXL (X 1eXT LEXT EXE X TEXTEeXC EXC (XT teXT
LEXE EXT 1eXT teXCHEXE EXT X teXT EXE (X TEXTteXC EXL (XY (X LEXT EXE X (EXTEeXC EXC (X texT

HEXE X 1eXT teXCHEXE X (X teXT HEXE XE TeXEteXC EXE (X1 teXTLEXL EXL X (XT (XL EXL XU teXE

LEXE EXT teXT LEXCHEXC X tX LEXTHEXC 6XE teX.






_images/dexterity_extension.jpg
® Plone

Create a Plone site

Path identifier
The id of the site. This ends up as part of the URL.
No special characters are allowed.

Plone

Title
Ashort tite for the site. This will be shown in the title of the browser window on
each page.

Sie

Language
The main language of the site.
y— )

[ Englis

Add-ons:

Select any add-ons you want to activate i
‘add-ons after the site has been creal

fediately. You can also activate
ing the Add-ons control panel.

() Arecibo
Plone interface to Arecibo
/ Dexterity Content Type
Configures various components needed for full Dexterity support.






_images/transformimage.png
Eastern Tiger Swallowtail
Eait [EESTTTY shaing

Eastern Tiger Swallowtail Butterfly

Original size- 13548
Transfom

[Flp around vertical axis || Execute ]

onte.
b unde the GV G lcense.

by e & o





_images/eventstartandendfields.png
Event Starts =

2007 =] /[July ~lis 10 o[- -
Event Ends »
2007 =] /[July ~lis 10 +[:[—- -






_images/diazo-concept.png





_images/inlineeditingoff.png
Tactions v [ state:private v

Eastern Tiger Swallowtail
s okl colored swalowtal i o ofcu st specaculr and i buefies. g el ings it back
Svipes make 1 usaly vy 3190 Swalowtal mmeciatel Genaie. Females 8 e (rave o o) i
e back g T perartg o bickfrm frmais Wreaias o ont v o dregsof warmar e
These forms ae asy i distingush o other lack”vallowna, becaus they ac he madian orarge spa-and. o
e Wi, een onBAck and S9ebush swllowas, and h rdescen e of e swalowtais Th biacorm
{emaes usualy reain  sadow of e il " pern.

T species occuples deciduous woodlands, especialy woodiand edges and wooded sream systems. It s ofen present
in suburban setings, scaring high among the wees.






_images/13b.png
Molly Jones ¥

@ Plone’ ——
l News Events. Users

Edit  Sharing Actions ¥ State: Pri

Widget Installation

by Goorge Shrubb — last modifed Apr 21, 2010 03:16 PM — History
How to install the Widget
 Lorem ipsum dolor sit amet, consectetuer adipiscing eli.
 Aliquam tincidunt mauris eu risus.
* Vestibulum auctor dapibus neque.
 Nunc dignissim risus id metus.
« Cras omare tristique elit.






_images/select_anchor.jpg





_images/dashboardjohnsmith.png
George Shrubb’s dashboard

e [ T e ]






_images/statemenu2.png
Actions ¥ State: Published V.
Send back
Retract

Advanced.





_images/image_resizing.png





_images/verify-testrecorder.png
you can Start wrigiaa aaccha away, and h

age.

\guage your browrer -
Site Setup. If you need to maintain your content in multiple I






_images/calendarpopuppanel.png
Event Starts »

[2010]/[March %] ¢[22%] i@ [021%] : [105] [PMiv]

| March 200 S

| Today ) .

[20109]/ [V wk Mo Tue Wed Thu Fri Sat sun | [PM¥]
o 1 2z 3 4 5 & 7

Event Ends =

0 8 s 0 m o1z 13 14
n1s 16 7 18 13 W 2
222 23 24 5 2 2 =
132 @ 3

Select date.






_images/addingnewrule.png
Ducipion

——
Gt modied B
@ toa

ooty o

[ ——

(sow) (Gancel]






_images/maintemplate.png
Viewlets

Content View

Main

Main Siot

[

Viewtet
Manager

-






_images/insert_internal_link.jpg
Uorres

@ Home.

@ Current ol
© Exernal

= anchors

Long-taled Skippers.
Long-taled Sippers beong to
the species Urbanus proteus.
Theyfeed on egurme family
vines Gncluding beans).






_images/addfile.png
Add File

fo et e uploded to the ste.

Default | Categerization  Dates  Ovnership  Seftings

Tite

Description
Used n e lisings and seareh resuls

File s

Browse.






_images/works.jpg
You are here: Home > Clean up code base

EZQ =it Rues Shaing Actions v State: Open v
m Item created

Clean up code base

)
by admin — last modified Aug 23, 2012 05:33 PM — History ItiworksY






_images/plone-default-design-areas.png
“

Log In, Location Information

Left Area Main Area Right Area





_images/working-copy_checkin.png
You are here: Home / News / Welcome to our new site!

This is a working copy of Welcome to our new site!,
(View changes)

made by Jane Doe on May 14, 2015

Welcome to our new site!

by e Doe —las modied May 14, 2015 0933 P —Histery.
The long waitis now over
Our newsite is built with Plone.





_images/kupu-text-styles.png
Description
Normal

Heading

‘Subheading

Uiteral

Page break (print only)
Clearfloats (remove style)

Highlight

Example

text

text

text

text

text





_images/previousnextexample.png
© Cloudwings ) ccit Sharing  Actions v State: Published ¥
3 Page One

Coutpinge>
0 Page Two Page Two
1 Poge Thes oy Jo St st o My 0, 2010 10:15 A — sty
[T Previous: Page One | Next: Page Three ,
O Giant-Skippers

02 Grass-Siippers





_images/renameitem.png
Rename item

Each item has a Short Name and a Title, which you can change by entering the new details
below.

— GlantSkppers o)
New Short Name
‘Shortname i the par it shows up in e URL of i fom.

Now Title

[Swallowtais.
Fename A [Cancel





_images/your_theme_egg_components.png
=

L

YTy i

oy
o

[e?

docs

init_py|

v
(.1 e0

four
ramespace]

your theme.
packagel
confiure zemi

setupclg

sowppy

base_properties.props

—E.

- _css dimi
N portets cos dtm

LLst

publiccss.dimi
[.Lcustom_images

Lcusiom_tomplates

_int_py

configure zeml

interfaces py
viewets py

viewlopi

viewlets xnl
cssregistryxmil
Jsregisty xmi
skins.xml
import

configure zeml
profles.zomi

setuphandiers.py

ni_py





_images/insert_anchor.jpg
[ Insertjedit anchor

Anchor name =






_images/07b.png
® Plone’

Home. News Events. Users

View Act

Project Overview il

b Jayne Smythe — st modiied Ap 01, 2010 0340 PM — Hisory
Introduction to the project and all the players

ns ¥






_images/overrides-tab.png
Edit Form Folder

Use i i placeof 8 hanksage desgnaion o dteminsfna acinaflercai your st adaplr(f you have onel You woukd us
Lamolt o sl Laave smply f unneodos. Otnarwss, specy o8 you wold 8 CFomConioler acdon oo and argumen. corclts wh
edenc "o vrse_") snd 8 TALES expreseio.For sxampe, wdeec_o g hank.559e" woud et 1o nanks oge

Gustom Form Ackon
Use s 1 ovarid thefom acton e, Specty 8 URL 1o wh the o wipos Th wibyoas fom valdaton,sucess cton ads

Form Sotup Seript
ATALES axpesson st wl b cated wha tn o' iplyed.Lasve ol # snneaded. The s common s of i o 1 ot o
ks by popuaing equest o Any v mtumad by e expressn & Grved. PLEASE NOTE: ars i avaion of e xcress

AtarVaidaon S

ATALES oxpession st il b cated oo for ssuccsslty vadated, bt befor cafingan st acplrd any)orapiayng a tark
mcusstiom dctinary.Laave ol  unnsaded-Tha mos oo use of i ek o cak s pyhen s Sasn up lrm put oo
57 e express0n & G PLEASE NOTE:ars i e valiaton o 1 expession wikauss a1 roronform gy






_images/add_new_field.jpg





_images/invariant_error.png
Contact Us

Customer
Customer emai

[user@domain.com

Subject
Other -
Other

I you've specifed Other above, please il tis this field too

Message =
The message body
Whste o Eath 5 the Coazy Smidy

“aend





_images/image_caption_settings.jpg
TinyMCE Settings
~ Upto Site Setup
Settings for the TinyMCE Wysiwyg editor.
Layout = Toolbar  Resource Types

) Link using UIDs
Links t0 Objects on this site can use unique object ids 50 that the inks remain

valid even f the target object is renamed or moved elsewhere on the site.

{# Allow captioned images

Images will be automatically captioned.





_images/folderdisplaymenu.png
Contents Edit_ Rules Sharing Actions v Display v Addnew.. v State: Published

Skippers Al content

by admin — st i May 03,2010
= Spread-winged Skippars — by

Thumbnail view

ent item as defaut view.

= Cloudywings — by admin — I

= Duskywings.

 admin — last moditied May 03, 2010 05:43 PM

= GrassSkippers — by admin —last modified May 03, 2010 05:44 PM

= Hesperia Skippers — by admin — last modified May 03, 2010 05:44 PM
1 Roadside-Skippers — by admin — last modified May 03, 2010 05:44 PH

= Glant Skippers — by admin —

last modified May 03, 2010 05:45 PM






_images/11.png
Contents  View Edit  Rules [Rog]

Sharing for “Documentation”

You can control who can view and edit your item using the list below.

[Search for wser o groum
Name, Canadd  Canedit Canview  Canreview
8 Logged-n users =] a a =]
2 George Shrubb (shrubb) “ [ =] [z}
2 Jayne Smythe (smythe) ° ° \ ° °

@ Inherit permissions from higher levels

By default, permissions from the container o ths tem are nherite. Ifyou disable tis, only the expiily
defined sharing permissions will b vald.Inthe overview, the symbol © indicates an inherted value.
Similarty, the symbol @ indicates a global rol, which is managed by the site adminisirator.






_images/welcome_to_plone.jpg
® Plone Sr—_

Welcome to Plone

o s st ot A 17, 212 2.2 P — ity
Congratulations! You have successfully installed Plone.
Aiso avaiabe in presentaton mode..

e seeng e etend o ha e 1 you ersaxpoctn, o owne of i wab sk st sl Pl o o cotacth Pre Team
S ——

Get started

Bcfo you stat exporng your newly created Plone site iease doth fllowing:

1. Make sure you are ogged in as an adminmanager User, (1o s hve 5 Sts Ses ey 1 e s 1 e p g cror)
2. St p your mai sever (s neods v TP s ety s and s ot s i)

3. Docide what socuitylovel you want on your site (Mo saf opatato,pesswd s, o)

Get comfortable





_images/table_controls.jpg
B8 3.3 LT





_images/addnewmenu.png
Display ¥ Add new... v State: Published

% Collection
) Event

& File

= Folder

he Plone Team or the SN LIEE 13
* Link

B News ltem

E Page

ight corner)





_images/working-copy_cancel-checkout-form.png
You are here: Home / News / Welcome to our new site!

view [0S

Cancel check-out of Welcome to our new site!.

Canceling the check-out wil delete ths working copy, and any modiications made to it wil be lost. The
existing version of th contant will become unlacked

Can Kout

checkout






