
AMLibO no6

LibOBasic_06_Dialogs_Flat_A4_EN_v105.odt

Dialogs In BASIC
Displaying A Simple Message
Print "Hello World!"
☞ The Cancel choice stops the program.

Displaying Information
MsgBox(MessageText[, Dialog Code[, Title]])
☞ Line breaks in MessageText with Chr(10) or Chr(13).

Display A Message And Wait For A Response
Response = MsgBox(MessageText[, DialogCode[,

Title]])
where
• Response is an integer value that reflects the user’s choice.
• DialogCode : the sum of button codes + icon + default button (as below).

Buttons to display

0 OK 3 Yes, No, Cancel
1 OK, Cancel 4 Yes, No
2 Stop, Retry, Ignore 5 Retry, Cancel

Icon

0 (none) 48  Caution
16  Critical message 64 i Information (OK only)
32  Question

Default button

0 First 256 Second 512 Last
Return values (user’s selection)

1 OK 3 Stop 5 Ignore 7 No
2 Cancel 4 Retry 6 Yes
InputBox() Function
Function InputBox(Message[, Title[, DefaultValue]])
returns a string. On cancellation, returns a zero-length string.

API Dialogs
☞ The aspect of FilePicker and FolderPicker types below depend upon

Tools > Options > LibreOffice > General, Use LibreOffice dialogs

API Dialog Types
File Selection: FilePicker Objects
com.sun.star.ui.dialogs.FilePicker From above configuration option.
com.sun.star.ui.dialogs.OfficeFilePicker Forces LibreOffice style.
com.sun.star.ui.dialogs.SystemFilePicker Forces native OS style.
Directory Selection: FolderPicker Objects
com.sun.star.ui.dialogs.FolderPicker From above configuration option.
com.sun.star.ui.dialogs.OfficeFolderPicker Forces LibreOffice style.
com.sun.star.ui.dialogs.SystemFolderPicker Forces native OS style.
The FilePicker Object (or OfficeFilePicker Or SystemFilePicker)
oFilePicker = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")
AppendFilter() By pairs: appendFilter("LiteralName", "*.xyz")

Ex : oFilePicker.appendFilter("ODF Documents", _
"*.odt;*.ods")

CurrentFilter Sets the default filter from the ones added using AppendFilter
(literal name) or the user’s filter selection.

DefaultName Default name for the file to save.
DisplayDirectory The starting directory or the user’s directory selection.
Execute Transfers the execution stream to the dialog and reads the return

code (see return constants values below).
Files An array of selected files.
initialize() Dialog type selection (see type constants below).

Dim FPType(0) As Integer
FPType(0) = 'a type constant
oFilePicker.initialize(FPType())

MultiSelectionMode Disables/Enables the multi-selection mode (defaults to False).
Title The dialog window title.
FilePicker Type Constants
com.sun.star.ui.dialogs.TemplateDescription.XXX :
FILEOPEN_SIMPLE 0 Simple open file dialog.
FILESAVE_SIMPLE 1 Simple save file dialog.
FILESAVE_AUTOEXTENSION_PASSWORD 2 Enhanced save dialog: automatic extension

+ password.
FILESAVE_AUTOEXTENSION_PASSWORD_FI
LTEROPTIONS

3 Enhanced save dialog: automatic extension
+ password + filter options.

FILESAVE_AUTOEXTENSION_SELECTION 4 Enhanced save dialog: automatic extension
+ selection.

FILESAVE_AUTOEXTENSION_TEMPLATE 5 Enhanced save dialog: automatic extension
+ templates.

FILEOPEN_LINK_PREVIEW_IMAGE_TEMPLA
TE

6 Enhanced open dialog: insert as link +
preview + template.

FILEOPEN_PLAY 7 Enhanced open dialog: play.
FILEOPEN_READONLY_VERSION 8 Enhanced open dialog: read-only + version.
FILEOPEN_LINK_PREVIEW 9 Enhanced open dialog: link + preview.
FILESAVE_AUTOEXTENSION 10 Enhanced save dialog: automatic extension
FILEOPEN_PREVIEW 11 Enhanced open dialog: preview.
FILEOPEN_LINK_PLAY 12 Enhanced open dialog: insert as link + play.

LibreOffice RefCard

LibreOfice BASIC
Dialogs
v. 1.05 – 12/02/2018

Advanficed

Writen using LibreOffice v. 5.3.3 – Platform : All

Return Values Constants
com.sun.star.ui.dialogs.ExecutableDialogResults.XXX
CANCEL 0 Canceled OK 1 Validated
The FolderPicker Object (Or OfficeFolderPicker Or SystemFolderPicker)
oFldrPicker = CreateUnoService("com.sun.star.ui.dialogs.FolderPicker")
Description Help text to display on the dialog. Does nothing on an

OfficeFolderPicker.
DisplayDirectory Starting directory.
Execute Transfers the execution stream to the dialog and reads the return

code (see return code constants above).
Title Dialog title.
Directory User’s selection.
Opening A Unique File (FilePicker)
1. Create a FilePicker. The default type usually fits (FILEOPEN_SIMPLE),
2. set its properties and methods (see above),
3. execute,
4. read the return values in theCurrentFilter, DisplayDirectory and Files (vector)

properties (Files(0) only has a value).

Dim oFilePicker As Object, FileName As String
FileName = ""
'FilePicker initialization
oFilePicker = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")
oFilePicker.DisplayDirectory = ConvertToURL("C:\Path\To\SomeDir")
oFilePicker.appendFilter("Calc Documents", "*.ods")
oFilePicker.CurrentFilter = "Calc Documents"
oFilePicker.Title = "Select a Calc document"
'execution and return check (OK?)
If oFilePicker.execute = _

com.sun.star.ui.dialogs.ExecutableDialogResults.OK Then
FileName = oFilePicker.Files(0)

End If

Opening Several Files (FilePicker)
1. As above,
2. set its properties and methods (esp. with MultiSelectionMode = True),
3. execute,
4. read the Files() vector that holds the user’s choices.
Saving A File (FilePicker)
1. Create a FilePicker,
2. set its properties and methods (type FILESAVE_XXX) (see above),
3. execute,
4. read the return values in theCurrentFilter, DisplayDirectory and Files (vector)

properties (Files(0) alone holds a value).
Selecting A Directory (FolderPicker)
1. Create a FolderPicker,
2. set its properties and methods (see above),
3. execute,
4. read the return value in Directory.

Dim oFP As Object, DirName As String
DirName = ""
oFP = CreateUnoService("com.sun.star.ui.dialogs.FolderPicker")
oFP.DisplayDirectory = ConvertToURL("C:\Path\To\SomeDir")
oFP.Description = "Select a directory"
oFP.Title = "Select the backup directory"
If oFP.execute = _

com.sun.star.ui.dialogs.ExecutableDialogResults.OK Then
DirName = oFP.Directory

End If

Custom Dialogs 101
A BASIC dialog = a dialog module (drawing) + (at least) one code module.
Dialog Execution Sequence

The figure above illustrates a typical dialog execution sequence:
1. As a response to an application event, you create the dialog,
2. (initialize dialog controls from the application context if necessary),
3. run the dialog that receives the execution flow:

4. display,
5. (dialog controls events management),
6. some events imply the dialog close (OK, Cancel) ;

7. (finalize to the application context if necessary),
8. the dialog is destroyed and the flow returns to the calling application.

☞ Creation, initialization, execution, finalization and destruction: processed in your code.
Display, closing: automatic operations that follow the latter.

 Think to the responses to control events (“Associating an event to a macro” and Ref-
Card #4).

Loading Dialog Libraries
☞ Much code or several dialogues? You may want to store them in dedicated libraries.
 Dialog libraries are never automatically loaded.
 Loading libraries: beware to the typecase!

Modal Vs Non-modal
Modal A modal dialog takes full control upon the keyboard, mouse and screen,

waiting for some action from the user. The underlying application is then not
accessible.
☞ By default, dialogues are modal.

Non-modal A non-modal dialog doesn’t block access to the application.
Ex : the LibreOffice Search & replace dialogue.
 Multiple calls to a non-modal dialog may block the application.

Standard Custom Dialogs (modal)
This is the most frequent use.
Given a dialog module MyDlg and a code module MyDlgCode in a MyDlgLib library. In a
code module Sub, we instantiate a dialog object (oDlg) from the dialog.
Creating / Loading In Memory

DialogLibraries.loadLibrary("MyDlgLib")
oLib = DialogLibraries.getByName("MyDlgLib")
oModule = oLib.getByName("MyDlg")
oDlg = CreateUnoDialog(oModule)
'on now manipulate the oDlg object

Calling The Dialog
oDlg.execute ☞ The execution flow is transferred to the dialog.

Calling And Testing The Return Value
If oDlg.execute = com.sun.star.ui.dialogs.ExecutableDialogResults.OK

Then …
☞ The execution flow is transferred to the dialog and the return value is checked (did the

user select OK?).

Terminating / Destroying The Dialog
oDlg.dispose
Wrap-up Example (Code Module)
This example doesn’t show any event management.

Sub ShowDialog()

Dim oLib As Object, oModule As Object, oDlg As Object

DialogLibraries.loadLibrary("MyDlgLib")
oLib = DialogLibraries.getByName("MyDlgLib")
oModule = oLib.getByName("MyDlg")
oDlg = CreateUnoDialog(oModule)
'InitializeDlg() 'code to initialize the dialog contents
If oDlg.execute = com.sun.star.ui.dialogs.ExecutableDialogResults.OK
Then
'FinalizeDlg() 'code to do something with the user's input

End If
oDlg.dispose
End Sub

Non-modal Custom Dialogs
Given a dialog module MyNMDlg and a code module MyNMDlgCode in MyNMDlgLib library.
In a Sub of the code module, we instantiate an object (oDlg) from the dialog.
Apply the same technique as above, with some subtleties:
1. The dialog display is ensured using oDlg.SetVisible(True) instead of

oDlg.execute,
2. we set two global Boolean flags:
• gRunning that prevents multiple executions,
• gShowMe that controls the dialog display,
3. events responses (controls) must set gShowMe to False to close the dialog.
Displaying The Dialog
oDlg.SetVisible(True) ☞ The dialog is displayed.

The execution flow is not transferred to the dialog.

Wrap-up Example (Code Module)

Dim gShowMe As Boolean 'dialog display flag.
Dim gRunning As Boolean 'execution flag to prevent multiple runs.

Sub ShowNonModalDialog()
'manages the dialog creation and display

Dim oLib As Object, oModule As Object, oDlg As Object

'check for multiple runs
If Not gRunning Then
gRunning = True
gShowMe = True
DialogLibraries.loadLibrary("MyNMDlgLib")
oLib = DialogLibraries.getByName("MyNMDlgLib")
oModule = oLib.getByName("MyNMDlg")
oDlg = CreateUnoDialog(oModule)
'InitializeDlg() 'code to initialize the dialog contents

'display the dialog as long as the flag is True
Do While gShowMe
Wait 20 'allow other software execution
oDlg.SetVisible(True) 'keep on screen

Loop
'if we are here, the dialog was closed (see OnBtnOKClick)
'FinalizeDlg() 'code to do something with the user's input
oDlg.dispose
gRunning = False

End If
End Sub ' ShowNonModalDialog

Sub OnBtnOKClick(ByRef pEvt As Object)
'Response to a click on a OK button on the non-modal dialog

'set the appropriate actions
'then end with:
gShowMe = False '=> the ShowNonModalDialog while loop ends

'thus the dialog closes
End Sub 'OnBtnOKClick

Associating An Event To A Macro
A dialog communicates with the application through events ( on the figure). You thus
have to write macros to respond to events occurrences. Extract from RefCard #4:
1. Create the macro to call, according to this template:

Sub MacroName()
End Sub

 Hint: name the macro from the object and event type.
Example : Sub OnOKButtonClick()
That Sub may get a parameter. See below “Getting Information”,

2. select the object that carries the event to intercept,
3. go to its settings (differs according to the object),
4. select the event to intercept,
5. point to the macro that should be run when the event fires (point 1).
☞ More information about events in RefCard #4.

Getting Information About The Triggered Event
The event management macro can read the input parameter to get more information
about the event itself:
Sub EventResponse(ByRef Event As Object)
End Sub

The Event input object properties and methods depend from the type of event that trig-
gered the macro call.
Most Frequent Cases For Controls
To gain access to the calling… Interrogate
Calling control object Event.Source
Control model object Event.Source.Model
Dialog object that owns the control Event.Source.Context

Initialization And Finalization
Initialization
( in the figure) A dialog often requires information from the execution context. The initial-
ization macro configures the dialogue contents from this data.
Finalization
( in the figure) Here, we have the opposite process: setting context data from what was
input in the dialogue.

Managing Dialog Modules
LibreOffice manages dialog modules independently from code (see RefCard #1). We may
copy such modules from a document to another.
Copying Modules From A Library To Another
(within the same document or between documents/containers)
1. In the IDE, open both source and target documents/containers,
2. open the Macro organizer (button),
3. go to the Dialogs tab, drag/drop from the source to the target.
☞ By default, modules are moved. To copy: Ctrl + drag/drop.

Saving A Dialog (Drawing Alone)
1. In the IDE, open the dialog module to save,
2. click the toolbar button Export Dialog,
3. name the file and save it.
The document is in XML format with an .xdl extension.
☞ Import is the reciprocal process, using the Import Dialog button.

Credits
Author: Jean-François Nifenecker – jean-francois.nifenecker@laposte.net
We are like dwarves perched on the shoulders of giants, and thus we are able to see more and farther than the
latter. And this is not at all because of the acuteness of our sight or the stature of our body, but because we are
carried aloft and elevated by the magnitude of the giants. (Bernard of Chartres [attr.])

History

Version Date Comments

1.05 02/12/2018 Minor updates.

License
This RefCard is distributed under the
CreativeCommons BY-SA v3 license

Information
https://creativecommons.org/licenses/by-sa/3.0/fr/

mailto:jean-francois.nifenecker@laposte.net
https://creativecommons.org/licenses/by-sa/3.0/fr/

	Dialogs in BASIC
	Displaying a simple message
	Displaying information
	Display a message and wait for a response
	InputBox() function

	API dialogs
	API dialog types
	File selection: FilePicker objects
	Directory selection: FolderPicker objects

	The FilePicker object (or OfficeFilePicker or SystemFilePicker)
	FilePicker type Constants
	Return Values constants

	The FolderPicker object (Or OfficeFolderPicker or SystemFolderPicker)
	Opening a unique file (FilePicker)
	Opening several files (FilePicker)
	Saving a file (FilePicker)
	Selecting a directory (FolderPicker)

	Custom dialogs 101
	Dialog execution sequence
	Loading dialog libraries
	Modal vs Non-modal

	Standard custom dialogs (modal)
	Creating / Loading in memory
	Calling the dialog
	Calling and testing the return value
	Terminating / Destroying the dialog
	Wrap-up Example (Code module)

	Non-modal custom dialogs
	Displaying the dialog
	Wrap-up Example (Code module)

	Associating an event to a macro
	Getting information about the triggered event
	Most frequent cases for controls

	Initialization and finalization
	Initialization
	Finalization

	Managing dialog modules
	Copying modules from a library to another
	Saving a dialog (Drawing alone)

