
AMLibO no8

LibOBasic_08_Params_Flat_A4_EN_v103.odt

Knowing LibreOffice Paths
User Files Paths
These paths can be modified in the UI menu Tools > Options > LibreOffice > Paths

Use the PathSettings service:

Dim oPaths As Object
Dim Dirs As Variant 'directories array
oPaths = CreateUnoService("com.sun.star.util.PathSettings")
Dirs = Split(oPaths.Xxx, ";")

where Xxx is the property associated to the wanted directory, among:
The property… … points to

Addin The directory with the old add-ins.
AutoCorrect The autocorrection dialog parameters.
AutoText The autotexts storage directory name.
Backup The backup directory name.
Basic Here are the BASIC files used for autopilots.
Bitmap Toolbar icons.
Config Fichiers de configuration.
Dictionary Storage for the provided dictionaries.
Favorite Path for storing files bookmarks.
Filter Filters storage.
Gallery Multimedia and Gallery storage.
Graphic The directory displayed when a graphic is opened or saved.
Help Path to help files.
Linguistic Language checking files storage.
Module Paths to the modules.
Palette Paths to the palettes (.sob to .sof).
Plugin Plugins storage paths.
Storage Mail or newsgroup files storage (ex : FTP server).
Temp Base URL to temporary files.
Template Template storage directories.
UIConfig Global directories for configuration files storage.
UserConfig The user’s configuration parameters directory.
Work Path to the work directory. Can be modified to follow the user’s

needs.
BasePathShareLayer ?
BasePathUserLayer ?
Extension Installation Path
Use the “package provider” singleton:
"/singletons/com.sun.star.deployment.PackageInformationProvider"

Dim oInfo As Object, Path As String
oInfo =
GetDefaultContext.getByName("/singletons/com.sun.star.deployment.P
ackageInformationProvider")

If Not IsNull(oInfo) Then
Path = oInfo.getPackageLocation(ExtID)

End If
If (Path <> "") Then Path = Path & "/"

where ExtID is the unique identifier for the given extension (ex : "com.company.AName")
☞ Path either holds the directory (in URL form) or a zero-length string if not found.
☞ You may also use the strings expander with the UNO_USER_PACKAGES_CACHE macro.

Knowing LibreOffice Execution Parameters
Two complementary services are available: PathSubstitution and MacroExpander.
Using The PathSubstitution Service

Dim oSubst As Object, Result As String
oSubst = CreateUnoService("com.sun.star.util.PathSubstitution")
Result = oSubst.getSubstituteVariableValue("$(var_name)")

☞ The substituted variable is a string which format is $(var_name)
☞ The result is in URL form.

The variable… … is a substitute for
$(inst) The LibreOffice installation path.
$(prog) The soffice program path.
$(user) The user’s installation path.
$(work) The user’s work directory.

Under Windows, it is My Documents. Under Unix, it is the “home” dir.
$(home) The user’s directory.

Under Unix, it is the “home” dir.
Under Windows, it is the directory that CSIDL_PERSONAL point to, for
ex : "Documents and Settings\<username>\Documents".

$(temp) The current temporary directory.
$(path) The contents of the environment PATH variable.
$(username)
(since LibO 5.2)

The user name for the current session (without domain name under
Windows).

$(langid) Then language code LibreOffice uses. Ex : 1036 for French (France).
$(vlang) The language code LibreOffice uses, in text form. Ex : "fr" for French.

LibreOffice RefCard

LibreOfice BASIC
Runtime Parameters

v. 1.03 – 12/02/2018
Advanficed

Writen using LibreOffice v. 5.3.3 – Platform : All

Using The “Macro” (String) Expander Singleton
 Such “macros” have nothing to see with the BASIC macros we’re dealing with in other

parts of this refcard.
"/singletons/com.sun.star.util.theMacroExpander"
and call its ExpandMacros() method:

Dim oContext as Object 'context object
Dim oMacroExpand as Object 'macro expander
Dim Result As String

oContext = getProcessServiceManager().DefaultContext
oMacroExpand =
oContext.getValueByName("/singletons/com.sun.star.util.theMacroExp
ander")

Result = oMacroExpand.ExpandMacros("$UNO_USER_PACKAGES_CACHE")

 A “macro” string must start with the $ symbol.
☞ Directory and file names are returned in URL form.
“Macros”
There’re plenty of them. For a full list, see:
https://wiki.documentfoundation.org/Development/Environment_variables
and, for the bootstrap file:
ORIGIN LibreOffice installation directory.
SYSUSERCONFIG The user’s parameters directory (profile) in his session.
UNO_USER_PACKAGES_CACHE The extensions directory.
USERNAME The user’s account name.

Knowing LibreOffice Command-Line Parameters
Here, we only describe the parameters that are useful in macro development mode. A full
list may be found here (checked 2018/06):
https://dnimruoynepo.blogspot.fr/2016/12/command-line-arguments-in-libreoffice.html
From which these are extracted:
Help And Information
--version Displays the version number.
--nstemporarydirectory (only for MacOS X sandbox)

Returns the temporary directory path for the current user.
Overrides all other arguments.

General Parameters
--quickstart[=no] Disables/Enables the quick starter.

Only one value at the right of “=”:no which disables the quick
start.

--nolockcheck Disables check for remote instances using one installation.
--infilter={filter} Force an input filter type if possible. If it isn’t possible,

LibreOffice uses the available filter for the document.
Example :
--infilter="Calc Office Open XML"
--infilter="Text (encoded):UTF8,LF,,,"
Note that filter names may change, these examples show the
use of the argument. Unfortunately, there is no easy way to
know all the available filters.

--pidfile={file} Store soffice.bin pid in {file}.
--display {display} Sets the DISPLAY environment variable on UNIX-like

platforms to the value {display} (only supported by a start
script for the LibreOffice).

UI Control
--nologo Disables the splash screen at program start.
--minimized Starts minimized. The splash screen is not displayed.
--nodefault Starts without displaying anything except the splash screen

(do not display initial window).
--invisible Starts in invisible mode. Neither the start-up logo nor the initial

program window will be visible. LibreOffice can be controlled,
and documents and dialogs can be controlled and opened via
the API. Using the parameter, LibreOffice can only be ended
using the taskmanager (Windows) or the kill command
(UNIX-like systems).
--invisible cannot be used with --quickstart.

--headless Starts in “headless mode” which allows using the application
without GUI. This special mode can be used when the
application is controlled by external clients via the API.

☞ invisible vs headless.
--invisible does not disable the GUI: documents and dialogs are displayed.
--headless calls a “silent mode” everytime a GUI is not needed.

--norestore Disables restart and file recovery after a system crash.
--safe-mode Starts in a safe mode, i.e. starts temporarily with a fresh user

profile and helps to restore a broken configuration.
--accept={UNO-URL} Specifies an UNO-URL connect-string to create an UNO

acceptor through which other programs can connect to access
the API.
{UNO-URL} is a string like
 uno:connection-type,params;protocol-
name,params;ObjectName.
At the same time, according to the LibreOffice code, the
ObjectName is ignored.

--unaccept={UNO-URL} Closes an acceptor that was created with --accept.
Use --unaccept=all to close all open acceptors.

Developer Parameters
--terminate_after_init Exit after initialization complete (no documents loaded).
--eventtesting Exit after loading documents.
Creating Documents
These arguments create an empty document of the specified kind. Only one of them may
be used in one command line. If filenames are specified after an argument, then it tries to
open those files in the specified component. If it is impossible to open in the selected
component, LibreOffice loads the document.
The options below create empty documents of the specified type:
--writer --draw --base --math
--calc --impress --global --web

https://wiki.documentfoundation.org/Development/Environment_variables
https://dnimruoynepo.blogspot.fr/2016/12/command-line-arguments-in-libreoffice.html

Opening Files
The arguments define how following filenames are treated. New treatment begins after the
argument and ends at the next argument. The default treatment is to open documents for
editing, and create new documents from document templates.
-n Treats following files as templates for creation of new

documents.
-o Opens following files for editing, regardless whether they are

templates or not.
--pt {Printer} Prints following files to the printer {Printername}, after which

those files are closed. The splash screen does not appear. If
used multiple times, only last {Printername} is effective for
all documents of all --pt runs.
Also, --printer-name argument of --print-to-file switch
interferes with {Printername}.

-p Prints following files to the default printer, after which those
files are closed.
The splash screen does not appear. If the file name contains
spaces, then it must be enclosed in quotation marks.

--view Opens following files in viewer mode (read-only).
--show Opens and starts the following presentation documents of

each immediately. Files are closed after the showing.
Files other than Impress documents are opened in default
mode, regardless of previous mode.

--convert-to
OutExt[:OutFilterName]
[--outdir output_dir]

Batch convert files (implies --headless).
OutExt : target extension.
OutFilterName : the conversion filter.
If --outdir isn't specified, then current working directory is
used as output_dir.
If --convert-to is used more than once, last value of
OutputFileExtension[:OutputFilterName] is effective.
If --outdir is used more than once, only its last value is
effective.
Examples :
-- convert-to pdf *.doc
-- convert-to pdf:writer_pdf_Export --outdir
/home/user *.doc
-- convert-to "html:XHTML Writer File:UTF8" *.doc
-- convert-to "txt:Text (encoded):UTF8" *.doc
Unfortunately, now there is no easy way to know all the
possible filter values. Thus, the use of this argument is
difficult, in spite of its potential usefulness.

https://ask.libreoffice.org/en/question/2641/convert-to-command-line-parameter/
points to:
https://cgit.freedesktop.org/libreoffice/core/tree/filter/source/config/fragments/filters
(checked 2018/06)
--print-to-file [--
printer-name
printer_name] [--
outdir output_dir]

Batch print files to file.
If --outdir is not specified, then current working directory is
used as output_dir.
If --printer-name or --outdir used multiple times, only last
value of each is effective.
Also, {Printername} of --pt switch interferes with
--printer-name.

--cat Dump text content of the following files to console (implies
--headless).
Cannot be used with --convert-to.

-env:var[=value] Set a bootstrap variable.
For example: to set a non-default user profile path:
-env:UserInstallation=file:///tmp/test
Unfortunately, now there is no easy way to get all the possible
variables for this flag.

Calling A Macro Through The Command-Line
Syntax
☞ The --headless option triggers a silent execution (see above).
Calling A Global Macro
{soffice} "macro:///library/module/macro[(params)]"
Calling A Macro Stored In An ODF Document
{soffice} path/to/doc.odf "macro://./library/module/macro[(params)]"
The {soffice} Form

Windows %programfiles%\libreoffice 5\program\soffice.exe
GNU/Linux /opt/LibreOffice 5/program/soffice

Installing A Macro… By Macro
 We don’t install a macro, we install a library that contains it.

In A Nutshell
A container file (Writer, Calc, etc.) holds both the macro to install and an installer macro:
• The installer macro is stored in the document Standard library,
• The macro to install is separated from the installer and stored within its own library.

We’ll install the latter.
☞ Generally, the container file type (Writer, Calc, etc.) is not connected to the macro to in-

stall capabilities. Writer is a good container as we may use it to document the process.

The Macro To Install
Store it in its own library in the container document. We’ll install that library.
The Installer Macro
Its purpose is to copy the contained library to the global container My Macros. Here’s an
example of a typical installation process for a code library:

Dim oSrcLib As Object 'source library (container document)
Dim oDestLib As Object 'target library (in 'My Macros')
Dim i As Integer
Dim SrcModules() As String
'we create the target library if it doesn' exist yet
If Not GlobalScope.BasicLibraries.hasByName("MyTargetLib") Then
GlobalScope.BasicLibraries.createLibrary("MyTargetLib")

End If
'we copy the modules
If BasicLibraries.hasByName("MySourceLib") Then
BasicLibraries.loadLibrary("MySourceLib")
oSrcLib = BasicLibraries.getByName("MySourceLib")
oDestLib = GlobalScope.BasicLibraries.getByName("MyTargetLib")
SrcModules = oSrcLib.getElementNames()
'installation des modules 1 par 1
i = LBound(SrcModules())
Do While (i <= uBound(SrcModules()))
If Not oDestLib.hasByName(SrcModules(i)) Then
oDestLib.insertByName(SrcModules(i), _

oSrcLib.getByName(SrcModules(i)))
End If
i = i + 1

Loop
End If

☞ To install a dialog library, replace
BasicLibraries with DialogLibraries
and GlobalScope.BasicLibraries with GlobalScope.DialogLibraries.

Beyond Macros: Extensions
The next step would be to turn our macro into an extension for ease of distribution or use.
 This is a difficult task. Bernard Marcelly’s ExtensionCompiler brings much help in that

area: http://berma.pagesperso-orange.fr/Files_en/ExtensionCompiler.ott.

Credits
Author: Jean-François Nifenecker – jean-francois.nifenecker@laposte.net
We are like dwarves perched on the shoulders of giants, and thus we are able to see more and farther than the
latter. And this is not at all because of the acuteness of our sight or the stature of our body, but because we are
carried aloft and elevated by the magnitude of the giants. (Bernard of Chartres [attr.])

History

Version Date Comments

1.02 23/06/2018 First EN version

1.03 02/12/2018 Minor corrections.

License
This RefCard is distributed under the
CreativeCommons BY-SA v3 license

Informations
https://creativecommons.org/licenses/by-sa/3.0/fr/

https://creativecommons.org/licenses/by-sa/3.0/fr/
mailto:jean-francois.nifenecker@laposte.net
http://berma.pagesperso-orange.fr/Files_en/ExtensionCompiler.ott
file:///D:/DGDDI/MesDocuments/tmp/test
https://cgit.freedesktop.org/libreoffice/core/tree/filter/source/config/fragments/filters
https://ask.libreoffice.org/en/question/2641/convert-to-command-line-parameter/

	Knowing LibreOffice Paths
	User files paths
	Extension installation path

	Knowing LibreOffice execution parameters
	Using the PathSubstitution service
	Using the “Macro” (String) expander singleton
	“Macros”

	Knowing LibreOffice command-Line parameters
	Help And information
	General Parameters
	UI Control
	Developer Parameters
	Creating documents
	Opening files

	Calling a macro Through the command-Line
	Syntax
	Calling a Global macro
	Calling a Macro stored in an ODF document
	The {soffice} form

	Installing a macro… by macro
	In a nutshell
	The macro to install
	The installer macro

	Beyond macros: extensions

