
Base Guide

Chapter 10 
Database Maintenance



Copyright

This document is Copyright © 2020 by the LibreOffice Documentation Team. Contributors are listed
below. You may distribute it and/or modify it under the terms of either the GNU General Public 
License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0/), version 4.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
This chapter was translated from the German LibreOffice Base Handbuch.

To this edition
Pulkit Krishna Dan Lewis Jean Hollis Weber

To previous editions
Jochen Schiffers Robert Großkopf Jost Lange
Hazel Russman

Feedback
Please direct any comments or suggestions about this document to the Documentation Team’s 
mailing list: documentation@global.libreoffice.org

Note

Everything you send to a mailing list, including your email address and any other 
personal information that is written in the message, is publicly archived and cannot be 
deleted.

Publication date and software version
Published May 2020. Based on LibreOffice 6.2.

Documentation for LibreOffice is available at http://documentation.libreoffice.org/en/

http://documentation.libreoffice.org/en/
mailto:documentation@global.libreoffice.org
http://creativecommons.org/licenses/by/4.0/
http://www.gnu.org/licenses/gpl.html


Contents
Copyright..............................................................................................................................2

Contributors.................................................................................................................................2
To this edition..........................................................................................................................2
To previous editions................................................................................................................2

Feedback.....................................................................................................................................2

Publication date and software version.........................................................................................2

General remarks on maintaining databases.....................................................................4

Compacting a database.......................................................................................................4

Resetting autovalues...........................................................................................................4

Querying database properties............................................................................................4

Exporting data......................................................................................................................5

Testing tables for unnecessary entries.............................................................................6
Testing entries using the relationship definition............................................................................6

Editing entries using forms and subforms....................................................................................7

Queries for finding orphan entries................................................................................................8

Database search speed.......................................................................................................8
Effect of queries...........................................................................................................................8

Effect of listboxes and comboboxes.............................................................................................9

Influence of the database system used........................................................................................9

Chapyer 10 Database Maintenance | 3



General remarks on maintaining databases

Frequent alteration of the data in a database, in particular many deletions, has two effects. First, 
the database grows steadily even though it may not actually contain more data. Second, the 
automatically created primary key continues to increment regardless of what value for the next key 
is actually necessary. Important maintenance is described in this chapter.

Compacting a database

The behavior of HSQLDB is to preserve storage space for deleted records. Databases that are 
filled with test data, especially if this includes images, retain the same size even if all these records
are subsequently deleted. This is because of a property of each table’s primary keys. The 
database document file contains the last value used for each primary key. When a new record is 
made within a table, it is assigned the next value.

To free this storage space, the database records must be rewritten (tables, table descriptions, etc). 
This can be done by opening each table and deleting all of its records. Care must be taken when 
dealing with linked tables.

Use Tools > Relationships to determine which table should have its data deleted. Look at the two 
tables. The one with its primary key being part of the relationship is the table whose data needs to 
be deleted. Close the Relationships dialog. Select the Tables icon in the main database window. 
Then double-click the table to show its data. Delete its data. Save the table and then the database.
After doing this, these changes need to be written to the database document file. To do this, close 
LibreOffice. This will also compact the database files.

Close LibreOffice and reopen it if you are going to use it again.

Resetting autovalues

A database is created, all possible functions tested with examples, and corrections made until 
everything works. By this time, on average, many primary key values will have risen to over 100. 
Bad luck if the primary key has been set to auto-increment, as is commonplace! If the tables are 
emptied in preparation for normal usage or prior to handing the database on to another person, the
primary key continues to increment from its current position instead of resetting itself to zero.

The following SQL command, entered using Tools > SQL, lets you reset the initial value:

ALTER TABLE "Table_name" ALTER COLUMN "ID" RESTART WITH New value

This assumes that the primary key field has the name ID and has been defined as an autovalue 
field. The new value should be the one that you want to be automatically created for the next new 
record. So, for example, if current records go up to 4, the new value should be 5 without altering 
the ID field. The first ID value will be the New value in the SQL statement above.

Querying database properties

All information on the tables of the database is stored in table form in a separate part of HSQLDB. 
This separate area can be reached using the name INFORMATION_SCHEMA.

The following query can be used to find out field names, field types, column sizes, and default 
values. Here is an example for a table named Searchtable.

SELECT "COLUMN_NAME", "TYPE_NAME", "COLUMN_SIZE", "COLUMN_DEF" AS "Default 
Value" FROM "INFORMATION_SCHEMA"."SYSTEM_COLUMNS" WHERE "TABLE_NAME" = 
'Searchtable' ORDER BY "ORDINAL_POSITION"

4 | Chapyer 10 Database Maintenance



All special tables in HSQLDB are described in Appendix A of this book. Information on the content 
of these tables is most easily obtained by direct queries:

SELECT * FROM "INFORMATION_SCHEMA"."SYSTEM_PRIMARYKEYS"

The asterisk ensures that all available columns of the table are shown. The table searched for 
above gives essential information on the primary keys of the various tables.

This information is useful above all for macros. Instead of having to provide detailed information on
each freshly created table or database, procedures are written to fetch this information directly out 
of the database and are therefore universally applicable. The example database shows this, 
among other things, in one of the maintenance modules, where foreign keys are determined.

Exporting data

Along with the possibility of exporting data by opening the *.odb file, there is a much simpler 
method. Directly at the Base interface, you can use Tools > SQL to enter a simple command that, 
in server databases, is reserved for the system administrator.

SCRIPT 'database name'

This creates a complete SQL extraction of the database with all table definitions, relationships 
between tables, and records. Queries and forms are not accessed since they were created in the 
user interface and are not stored in the internal database. However all views are included.

Note

This procedure can be used to update an embedded database for connecting to the 
database with HSQLDB 2.50. Again, queries and forms have to be replaced.

By default, the exported file is a normal text file. It can also be provided in binary or compressed 
(zipped form), especially for large databases. However, this makes re-importing it into LibreOffice 
somewhat more complicated.

The format of the exported file can be changed using:

SET SCRIPTFORMAT {TEXT | BINARY | COMPRESSED};

To export the file requires using this SQL code one line at a time:

SCRIPT ‘database name’;

SET SCRIPTFORMAT {TEXT | BINARY | COMPRESSED}:

SHUTDOWN SCRIPT;

CHECKPOINT;

This exports the text file database name in the home folder with the database information.

The file can be read in using Tools > SQL, creating a new database with the same data. In the 
case of an internal database, the following lines must be removed before import:

CREATE SCHEMA PUBLIC AUTHORIZATION DBA

CREATE USER SA PASSWORD ""

GRANT DBA TO SA

SET WRITE_DELAY 60

SET SCHEMA PUBLIC

These entries deal with the user profile and other default settings, which are already set for 
LibreOffice internal databases. As a result, an error message appears if any of these lines are 

Exporting data | 5



present. They are found directly before the contents that will be inserted into the tables using the 
INSERT command.

To import this file, the contents of it needs to be divided into multiple text files created by a simple 
text editing program. The first file should contain all of the Create Tables and Views. Copy all the 
lines from the first line beginning with CREATE TABLE to the one line above the line containing 
INSERT INTO. Paste this into the first file. Copy and paste the rest of the file into the second file.

There is a limit to the size of second file: it needs to be less than 65KB. If it is larger, it too should 
be divided into smaller text files by cutting and pasting. Just make sure that the top line of each of 
these new files begins with INSERT INTO. One way to do this is to cut from the bottom up to such 
a line.

Testing tables for unnecessary entries

A database consists of one or more main tables, which contain foreign keys from other tables. In 
the example database, these are the Media and Address tables. In the Address table the primary 
key of the postcode occurs as a foreign key. If a person moves to a new home, the address gets 
changed. The result may be that no foreign key Postcode_ID corresponding to this postcode exists
any longer. In principle therefore, the postcode itself could be deleted. However, it is not apparent 
during normal usage that the record is no longer needed. There are various ways to prevent this 
sort of problem arising.

Testing entries using the relationship definition
The integrity of the data can be ensured while defining relationships. In other words, you can 
prevent the deletion or alteration of keys from leading to errors in the database. The following 
dialog is accessible through Tools > Relationships, followed by a right-click on the connector 
between two tables.

Here the tables Address and Street are considered. All specified actions apply to the Address 
table, which contains the foreign key Street_ID. Update options refer to an update of the ID field in 
the Street table. If the numeric key in the "Street"."ID" field is altered, No action means that the 

6 | Chapyer 10 Database Maintenance



database resists this change if a "Street"."ID" with that key number occurs as a foreign key in the 
Address table.

Update cascade means that the key number is simply carried over. If the street 'Burgring' in the 
Street table has the ID ‘3' and is also represented in "Address"."Street_ID", the ID can be safely 
altered, for example, to '67' – the corresponding "Address"."Street_ID" values will be automatically 
be changed to '67'.

If Set null is chosen, altering the ID makes "Address"."Street_ID" an empty field.

The Delete options are handled similarly.

For both options, the GUI currently does not allow the possibility Set default, as the GUI default 
settings are different from those of the database. See Chapter 3, Tables.

Defining relationships helps keep the relationships themselves clean, but it does not remove 
unnecessary records that provide their primary key as a foreign key in the relationship. There may 
be any number of streets without corresponding addresses.

Editing entries using forms and subforms
In principle the whole interrelationship between tables can be displayed within forms. This is 
easiest of course when a table is related to only one other table. Thus in the following example, the
author’s primary key becomes the foreign key in the table rel_Media_Author. rel_Media_Author 
also contains a foreign key from Media, so that the following arrangement shows a n:m relationship
with three forms. Each is presented through a table.

The first figure shows that the title I hear you knocking belongs to the author Dave Edmunds. 
Therefore Dave Edmunds must not be deleted – otherwise information required for the media 
I hear you knocking will be missing. However the listbox allows you to choose a different record 
instead of Dave Edmunds.

In the form there is a built-in filter whose activation can tell you which categories are not needed in 
the Media table. In the case just described, almost all the example authors are in use. Only the 
Erich Kästner record can be deleted without any consequences for any other record in Media.

The filter is hard-coded in this case. It is found in the form properties. Such a filter is activated 
automatically when the form is launched. It can be switched off and on. If it is deleted, it can be 
accessed again by a complete reload of the form. This means more than just updating the data; 
the whole form document must be closed and then reopened.

Testing tables for unnecessary entries | 7



Queries for finding orphan entries
The above filter is part of a query which can be used to find orphaned entries.

SELECT "Surname", "Firstname" FROM "Author" WHERE "ID" NOT IN (SELECT 
"Author_ID“ FROM "rel_Media_Author")

If a table contains foreign keys from several other tables, the query needs to be extended 
accordingly. This affects, for example, the Town table, which has foreign keys in both the Media 
table and the Postcode table. Therefore, records in the Town table which are to be deleted should 
not be referenced in either of these tables. This is determined by the following query:

SELECT "Town" FROM "Town" WHERE "ID" NOT IN (SELECT "Town_ID“ FROM 
"Media") AND "ID" NOT IN (SELECT "Town_ID“ FROM "Postcode")

Orphaned entries can then be deleted by selecting all the entries that pass the set filter, and using 
the Delete option in the context menu of the record pointer, called up by right-clicking.

Database search speed

Effect of queries
It is just these queries, used in the previous section to filter data, that prove unsatisfactory in regard
to the maximum speed of searching a database. The problem is that in large databases, the 
subquery retrieves a correspondingly large amount of data with which each single displayable 
record must be compared. Only comparisons with the relationship IN make it possible to compare 
a single value with a set of values. The query

… WHERE "ID" NOT IN (SELECT "Author_ID“ FROM "rel_Media_Author")

can contain a large number of possible foreign keys from the rel_Media_Author table, which must 
first be compared with the primary keys in the Authors table for each record in that table. Such a 
query is therefore not suitable for daily use but may be required for database maintenance. For 
daily use, search functions need to be constructed differently so that the search for data is not 
excessively long and does not damage day-to-day work with the database.

8 | Chapyer 10 Database Maintenance



Effect of listboxes and comboboxes
The more listboxes that are built into a form, and the more they contain, the longer the form takes 
to load, since these listboxes must be created.

The better the Base program sets up the graphical interface and initially reads the listbox contents 
only partially, the less delay there will be.

Listboxes are created using queries, and these queries must be run when the form is loaded for 
each listbox.

The same query structure for more listboxes is better done using a common View, instead of 
repeatedly creating fields with the same syntax using the stored SQL commands in the listboxes. 
Views are above all preferable for external database systems, as here the server runs significantly 
faster than a query which has to be put together by the GUI and freshly put to the server. The 
server treats Views as complete local queries.

Influence of the database system used
The internal HSQLDB database is set up to ensure that Base and Java work well together. 
Unfortunately since LibreOffice version 3.5, Base has had problems with the speed of processing 
in precisely this area. This becomes particularly noticeable when dealing with large tables with 
several thousand records. These problems have various causes and only disappeared with 
Version 4.1.

External databases run significantly faster. Direct connections to MySQL or PostgreSQL, and 
connections using ODBC, run at practically the same speed. JDBC also depends on cooperation 
with Java, but still works faster than an internal connection using HSQLDB. 

Database search speed | 9


	Copyright
	Contributors
	To this edition
	To previous editions

	Feedback
	Publication date and software version

	General remarks on maintaining databases
	Compacting a database
	Resetting autovalues
	Querying database properties
	Exporting data
	Testing tables for unnecessary entries
	Testing entries using the relationship definition
	Editing entries using forms and subforms
	Queries for finding orphan entries

	Database search speed
	Effect of queries
	Effect of listboxes and comboboxes
	Influence of the database system used


