
Calc Guide

Chapter 12
Calc Macros
Automating repetitive tasks

Copyright

This document is Copyright © 2019 by the LibreOffice Documentation Team. Contributors are listed
below. You may distribute it and/or modify it under the terms of either the GNU General Public
License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), version 4.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
This book is adapted and updated from the LibreOffice 4.1 Calc Guide.

To this edition
Steve Fanning Jean Hollis Weber

To previous editions
Andrew Pitonyak Barbara Duprey Jean Hollis Weber
Simon Brydon

Feedback
Please direct any comments or suggestions about this document to the Documentation Team’s
mailing list: documentation@global.libreoffice.org.

Note

Everything you send to a mailing list, including your email address and any other
personal information that is written in the message, is publicly archived and cannot be
deleted.

Publication date and software version
Published December 2019. Based on LibreOffice 6.2.

Using LibreOffice on macOS
Some keystrokes and menu items are different on macOS from those used in Windows and Linux.
The table below gives some common substitutions for the instructions in this chapter. For a more
detailed list, see the application Help.

Windows or Linux macOS equivalent Effect

Tools > Options menu LibreOffice > Preferences Access setup options

Right-click Control + click or right-click
depending on computer setup

Open a context menu

Ctrl (Control) ⌘ (Command) Used with other keys

F5 Shift + ⌘ + F5 Open the Navigator

F11 ⌘ + T Open the sidebar Styles panel

Documentation for LibreOffice is available at https://documentation.libreoffice.org/en/

https://documentation.libreoffice.org/en/
mailto:documentation@global.libreoffice.org
http://creativecommons.org/licenses/by/4.0/
http://www.gnu.org/licenses/gpl.html

Contents
Copyright..2

Contributors...2
To this edition..2
To previous editions..2

Feedback...2

Publication date and software version...2

Using LibreOffice on macOS..2

Introduction..4

Using the macro recorder...4

Write your own functions..8
Create function macro..8

Using a macro as a function..12

Macro security warnings..12

Loaded / unloaded libraries..13

Passing arguments to a macro..15

Arguments are passed as values...16

Writing macros that act like built-in functions...16

Accessing cells directly..17

Sorting...18

Overview of BeanShell, JavaScript, and Python macros..19
Introduction..19

BeanShell macros..20

JavaScript macros...22

Python macros...24

Conclusion..25

Chapter 12 Calc Macros | 3

Introduction

Chapter 13 of the Getting Started Guide (entitled Getting Started with Macros) is an introduction to
the macro facilities that are available in LibreOffice. The current chapter provides further
introductory information about the use of macros within a Calc spreadsheet.

A macro is a set of commands or keystrokes that are stored for later use. An example of a simple
macro is one that enters your address into the current cell of an open spreadsheet. You can use
macros to automate both simple and complex tasks, and they enable you to introduce new
features that are not built into Calc.

The simplest way to create a macro is to record a series of actions through Calc’s user interface.
Calc saves recorded macros using the open source LibreOffice Basic scripting language, which is
a dialect of the well-known BASIC programming language. Such macros can be edited and
enhanced after recording using the built-in LibreOffice Basic Integrated Development Environment
(IDE).

The most powerful macros in Calc are created by writing code using one of the four supported
scripting languages (LibreOffice Basic, BeanShell, JavaScript, and Python). This chapter provides
an overview of Calc’s macro facilities, mostly focused on its default macro scripting language,
LibreOffice Basic. Some examples are included for the BeanShell, JavaScript and Python scripting
languages but fuller descriptions of the facilities for these languages are beyond the scope of this
document.

Using the macro recorder

Chapter 13 of the Getting Started Guide includes examples showing how to use the macro
recorder and understand the generated LibreOffice Basic scripts. The following steps give a further
example, specific to a Calc spreadsheet, without the more detailed explanations of the Getting
Started Guide. A macro is created and saved which performs a paste special with multiply
operation across a range of spreadsheet cells.

 1) Use Tools > Options > LibreOffice > Advanced from the Menu bar and select the Enable
macro recording option to enable the macro recorder.

 2) Use File > New > Spreadsheet from the Menu bar to create a new spreadsheet.

 3) Enter the numbers shown in Figure 1 into cells A1:C3 of the first sheet in the new
spreadsheet.

Figure 1: Enter numbers into cells A1:C3

 4) Select cell A3, which contains the number 3, and use Edit > Copy from the Menu bar to
copy the value to the clipboard.

 5) Select all cells in the range A1:C3.

 6) Use Tools > Macros > Record Macro from the Menu bar to start the macro recorder. Calc
displays the Record Macro dialog, which includes a Stop Recording button (Figure 2).

Figure 2: Record Macro dialog with Stop Recording button

4 | Using the macro recorder

 7) Use Edit > Paste Special > Paste Special from the Menu bar to open the Paste Special
dialog (Figure 3).

Figure 3: Paste Special dialog

 8) Select the Paste all option in the Selection area and the Multiply option in the Operations
area, and click OK. The values in cells A1:C3 are now multiplied by 3 (Figure 4).

Figure 4: Cells A1:C3 multiplied by 3

 9) Click the Stop Recording button to stop the macro recorder. Calc displays a variant of the
LibreOffice Basic Macros dialog (Figure 5).

Caution

An earlier bug caused versions of LibreOffice 6.2 to crash when you clicked the Stop
Recording button, but this bug is fixed in LibreOffice 6.3. See entry #122598 in The
Document Foundation’s Bugzilla defect tracking system for more details.

Using the macro recorder | 5

1 My Macros 5 Current document

2 LibreOffice Macros 6 Create new library

3 Expand/collapse icon 7 Create new module in library

4 Open documents 8 Macros in selected module

Figure 5: Parts of the LibreOffice Basic Macros dialog

Note

The Save macro in area of the LibreOffice Basic Macros dialog shows the existing
LibreOffice Basic macros, hierarchically structured into library containers, libraries,
modules, and macros as described in Chapter 13 of the Getting Started Guide. Figure 5
shows the My Macros library container, the LibreOffice Macros library container, the
library container for the open Balance.ods file, and the library container for the
untitled file created at step 2. Use the expand / collapse icons to the left of each library
container name to view the libraries, modules and macros within that container.

 10) Select the entry for the current document in the Save macro in area. As the current
document in this example has not been saved, it is referred to by its default name
Untitled 1.

Documents that have been saved include a macro library named Standard. This library is
not created until the document is saved or the library is needed, so at this point in the
example procedure your new document does not contain a library. You can create a new
library to contain the macro you have just created, but this is not necessary.

 11) Click the New Module button. Calc displays the New Module dialog (Figure 6). Type a
name for the new module or leave the name as the default Module1.

6 | Using the macro recorder

Figure 6: New Module dialog

Note

The libraries, modules and macro names must follow some strict rules. Following the main
rules, the names must:

• Begin with a letter

• Comprise lower case letters (a..z), upper case letters (A..Z), digits (0..9), and
underscore characters (_)

• Not contain any other spaces, punctuation symbols, or special characters (including
accents)

 12) Click the OK button to create a new module. As no macro libraries exist in our current
document, Calc automatically creates and uses a Standard library.

 13) On the LibreOffice Basic Macros dialog, select the entry for the newly created module in the
Save macro in area, type the text PasteMultiply in the Macro Name box, and click the
Save button (Figure 7).

Figure 7: Select the module and name the macro

The macro is saved with the name PasteMultiply in the newly created module within the Standard
library of the Untitled 1 document. Listing 1 shows the contents of the macro.

Using the macro recorder | 7

Listing 1. Paste special with multiply macro

sub PasteMultiply
 rem --
 rem define variables
 dim document as object
 dim dispatcher as object
 rem --
 rem get access to the document
 document = ThisComponent.CurrentController.Frame
 dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 rem --
 dim args1(5) as new com.sun.star.beans.PropertyValue
 args1(0).Name = "Flags"
 args1(0).Value = "A"
 args1(1).Name = "FormulaCommand"
 args1(1).Value = 3
 args1(2).Name = "SkipEmptyCells"
 args1(2).Value = false
 args1(3).Name = "Transpose"
 args1(3).Value = false
 args1(4).Name = "AsLink"
 args1(4).Value = false
 args1(5).Name = "MoveMode"
 args1(5).Value = 4

 dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0,
args1())

end sub

Write your own functions

Create function macro
You can write a macro and then call it as you would call a Calc function. Use the following steps to
create a simple function macro:

 1) Create a new spreadsheet, save it with the name CalcTestMacros.ods, and leave it
open in Calc.

 2) Use Tools > Macros > Organize Macros > LibreOffice Basic from the Menu bar to open
the LibreOffice Basic Macros dialog (Figure 8). Note that the layout of the LibreOffice Basic
Macros dialog in this circumstance is different from the version that Calc displays when the
user clicks the Stop Recording button on the Record Macro dialog (see Figure 5).

The Macro From area lists the available macro library containers, including those relating to
any LibreOffice documents that are currently open. My Macros contains macros that you
write or add to LibreOffice and are available to more than one document. LibreOffice
Macros contains macros that were included with your LibreOffice installation and should not
be changed.

8 | Create function macro

Figure 8: LibreOffice Basic Macros dialog

 3) Click Organizer to open the LibreOffice Basic Macro Organizer dialog (Figure 9).

Figure 9: LibreOffice Basic Macro Organizer

Click on the Libraries tab and, in the Location: area, select the entry for the name of the
current document. The Library: area updates to show the name of the empty Standard
library.

Create function macro | 9

 4) Click New to open the New Library dialog to create a new library for this document (Figure
10).

Figure 10: New Library dialog

 5) Enter a descriptive library name (such as AuthorsCalcMacros) and click OK to create
the library. The Library: area of the LibreOffice Basic Macro Organizer dialog updates to
include the name of the newly created library. A library name can comprise up to 30
characters. Note that in some cases, the dialog may show only a portion of the name.

Figure 11: The new library is shown in the Library: area

Select the AuthorsCalcMacros entry in the Library: area and click Edit to edit the library.
Calc automatically creates a module named Module1 and a macro named Main. Calc
displays the LibreOffice Basic Integrated Development Environment (IDE), shown in
Figure 12.

10 | Create function macro

Figure 12: LibreOffice Basic Integrated Development Environment

Figure 12 shows the default configuration for the LibreOffice Basic IDE. This comprises:

• A menu bar.

• Three toolbars (Language, Macro, and Standard). The Macro toolbar provides
various icons for editing and testing programs.

• The Object Catalog, enabling selection of the required library container, library,
module, and macro.

• The Editor Window, in which you can edit the LibreOffice Basic program code. The
column on the left side is used to set breakpoints in the program code.

• The Watch Window (located at the left, below the Object Catalog and Editor
Window) displays the contents of variables or arrays during a single step process.

• The Call Stack Window (located to the right, below the Object Catalog and Editor
Window) provides information about the call stack of procedures and functions
when a program runs.

• A tab control area.

• A status bar.

The LibreOffice Basic IDE provides powerful facilities for the development and debugging
of LibreOffice Basic macros. A fuller description of this facility is beyond the scope of this
document.

 6) In the Editor Window, modify the code so that it is the same as that shown in Listing 2.The
important addition is the creation of the NumberFive function, which returns the value 5.

Create function macro | 11

Tip

The Option Explicit statement forces all variables to be declared before they are
used. If Option Explicit is omitted, variables are automatically defined at first use
as type Variant.

Listing 2. Function that returns the value 5

REM ***** BASIC *****
Option Explicit

Sub Main

End Sub

Function NumberFive ()
 NumberFive = 5
End Function

 7) Use the Save button of the Standard toolbar within the LibreOffice Basic IDE to save the
modified Module1.

Using a macro as a function
Using your newly created CalcTestMacros.ods spreadsheet, select a cell and enter the formula
=NumberFive() (Figure 13). Calc finds the macro, calls it, and displays the result (5) in that cell.

Figure 13: Use the NumberFive macro as a Calc
function

Tip

Function names are not case sensitive. In Figure 13, the function name was entered
as NumberFive() but Calc displays it as NUMBERFIVE() in the Formula bar.

Macro security warnings
You should now save the Calc document, close it, and open it again. Depending on your settings in
the Macro Security dialog accessed using Tools > Options > LibreOffice > Security > Macro
Security from the Menu bar, Calc may display one of the warnings shown in Figures 14 and 15.

In the case of the warning shown in Figure 14, you will need to click Enable Macros, or Calc will
not allow any macros to be run in the document. If you do not expect a document to contain a
macro, it is safer to click Disable Macros in case the macro is a virus.

12 | Macro security warnings

Figure 14: Warning that a document contains macros

In the case of the warning shown in Figure 15, Calc will not allow any macros to be run in the
document and you should click the OK button to remove the warning from the screen.

Figure 15: Warning that macros in the document are disabled

When the document loads with macros disabled, Calc will not be able to find any macro functions
and will indicate an error in any affected cell by displaying the text #NAME? in that cell.

Loaded / unloaded libraries
When it opens a spreadsheet, Calc does not open all macro libraries that it can find in the available
library containers because this would be a waste of resources. Instead Calc automatically loads
just the Standard library within the My Macros library container and the document’s own Standard
library. No other libraries are automatically loaded.

When you re-open your CalcTestMacros.ods spreadsheet, Calc does not contain a function
named NumberFive(), so it checks all visible, loaded macro libraries for the function. Loaded
libraries in LibreOffice Macros, My Macros, and the document are checked for an appropriately
named function. In our initial implementation, the NumberFive() function is stored in the
AuthorsCalcMacros library, which is not automatically loaded when the document is opened.
Hence the NumberFive() function is not found and an error condition appears in the cell where it is
called (Figure 16).

Figure 16: The macro function is not available

Loaded / unloaded libraries | 13

Use Tools > Macros > Organize Macros > LibreOffice Basic from the Menu bar to open the
LibreOffice Basic Macros dialog (Figure 17). The icon for a loaded library (for example, Standard)
has a different appearance to the icon for a library that is not loaded (for example,
AuthorsCalcMacros).

Figure 17: Different symbols for loaded and unloaded libraries

Click the expand icon next to AuthorsCalcMacros to load the library. The icon changes appearance
to indicate that the library is now loaded. Click Close to close the LibreOffice Basic Macros dialog.

Unfortunately, the cell containing =NumberFive() in our initial implementation is still in error. Calc
does not recalculate cells in error unless you edit them or somehow change them. The usual
solution is to store macros used as functions in the Standard library. If the macro is large or if there
are many macros, a stub with the desired name is stored in the Standard library. The stub macro
loads the library containing the implementation and then calls the implementation. The following
steps illustrate this method.

 1) Use Tools > Macros > Organize Macros > LibreOffice Basic in the Menu bar to open the
LibreOffice Basic Macros dialog. Select the NumberFive macro and click Edit to open the
macro for editing (Figure 18).

Figure 18: Select a macro and click Edit

 2) Calc displays the LibreOffice Basic IDE (Figure 12), with the input cursor in the Editor
Window at the line Function NumberFive (). Change the name of NumberFive to
NumberFive_Implementation so that the function’s code matches Listing 3.

14 | Loaded / unloaded libraries

Listing 3. Change the name of NumberFive to NumberFive_Implementation

Function NumberFive_Implementation ()
 NumberFive_Implementation = 5
End Function

 3) Click the Select Macro button in the Standard toolbar of the LibreOffice Basic IDE to open
the LibreOffice Basic Macros dialog (Figure 18).

 4) Select the Standard library in the CalcTestMacros.ods document and click the New
button to create a new module. Enter a meaningful name such as CalcFunctions and
click OK. Calc automatically creates a macro named Main and opens the module for
editing.

 5) Create a macro in the CalcFunctions module of the Standard library that loads the
AuthorsCalcMacros library if it is not already loaded, and then calls the implementation
function. See Listing 4.

Listing 4. Create a new NumberFive function to call the NumberFive_Implementation
function

Function NumberFive()
 If NOT BasicLibraries.isLibraryLoaded("AuthorsCalcMacros") Then
 BasicLibraries.LoadLibrary("AuthorsCalcMacros")
 End If
 NumberFive = NumberFive_Implementation()
End Function

 6) Save, close, and reopen the Calc document. This time, if macros are enabled, the
NumberFive() function works as expected.

Passing arguments to a macro
To illustrate a function that accepts arguments, we will write a macro that calculates the sum of its
arguments that are positive. It will ignore arguments that are less than zero (see Listing 5).

Listing 5. PositiveSum calculates the sum of its positive arguments

Function PositiveSum(Optional x)
 Dim TheSum As Double
 Dim iRow As Integer
 Dim iCol As Integer

 TheSum = 0.0
 If NOT IsMissing(x) Then
 If NOT IsArray(x) Then
 If x > 0 Then TheSum = x
 Else
 For iRow = LBound(x, 1) To UBound(x, 1)
 For iCol = LBound(x, 2) To UBound(x, 2)
 If x(iRow, iCol) > 0 Then TheSum = TheSum + x(iRow, iCol)
 Next
 Next
 End If
 End If
 PositiveSum = TheSum
End Function

Passing arguments to a macro | 15

The macro in Listing 5 demonstrates some important techniques:

 1) The argument x is Optional. When an argument is not Optional and the function is
called without it, Calc outputs a warning message every time the macro is called. If Calc
calls the function many times, then the error is displayed many times.

 2) The function IsMissing checks that an argument was passed before it is used.

 3) The function IsArray checks to see if the argument is a single value, or an array. For
example, =PositiveSum(7) or =PositiveSum(A4). In the first case, the number 7 is
passed as an argument, and in the second case, the value of cell A4 is passed to the
function. In both these cases, IsArray returns the value False.

 4) If a range is passed to the function, it is passed as a two-dimensional array of values; for
example, =PositiveSum(A2:B5). The functions LBound and UBound are used to
determine the array bounds that are used. Although the lower bound is one, it is considered
safer to use LBound in case it changes in the future.

Tip

The macro in Listing 5 is careful and checks to see if the argument is an array or a
single argument. The macro does not verify that each value is numeric. You may be as
careful as you like. The more things you check, the more robust the macro is, but the
slower it runs.

Passing one argument is as easy as passing two: add another argument to the function definition
(see Listing 6). When calling a function with two arguments, separate the arguments with a
comma; for example, =TestMax(3, -4).

Listing 6. TestMax accepts two arguments and returns the larger

Function TestMax(x, y)
 If x >= y Then
 TestMax = x
 Else
 TestMax = y
 End If
End Function

Arguments are passed as values
Arguments passed to a macro from Calc are always values. It is not possible to know what cells, if
any, are used. For example, =PositiveSum(A3) passes the value of cell A3, and PositiveSum
has no way of knowing that cell A3 was used. If you must know which cells are referenced rather
than the values in the cells, pass the range as a string, parse the string, and obtain the values in
the referenced cells.

Writing macros that act like built-in functions
Although Calc finds and calls macros as normal functions, they do not really behave as built-in
functions. For example, macros do not appear in the function lists. It is possible to write functions
that behave as regular functions by writing an Add-In. However, this is an advanced topic that is for
experienced programmers and is beyond the scope of this guide.

16 | Writing macros that act like built-in functions

Accessing cells directly

You can access the LibreOffice internal objects directly to manipulate a Calc document. For
example, the macro in Listing 7 adds the values in cell A2 from every sheet in the current
document. ThisComponent is automatically set to reference the current document when the
macro starts. A Calc document contains sheets and the macro accesses these via a call to
ThisComponent.getSheets(). Use getCellByPosition(col, row) to return a cell at a
specific row and column.

Listing 7. SumCellsAllSheets adds the values in cell A2 of every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim i As integer
 Dim oSheets
 Dim oSheet
 Dim oCell

 TheSum = 0
 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCell = oSheet.getCellByPosition(0, 1) ' GetCell A2
 TheSum = TheSum + oCell.getValue()
 Next
 SumCellsAllSheets = TheSum
End Function

Tip

A cell object supports the methods getValue(), getString(), and getFormula() to get the
numerical value, the string value, or the formula used in a cell. Use the corresponding
set functions to set appropriate values.

Use oSheet.getCellRangeByName("A2") to return a range of cells by name. If a single cell is
referenced, then a cell object is returned. If a cell range is given, then an entire range of cells is
returned (see Listing 8). Notice that a cell range returns data as an array of arrays, which is more
cumbersome than treating it as an array with two dimensions as is done in Listing 5.

Listing 8. SumCellsAllSheets adds the values in cells A2:C5 of every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim iRow As Integer, iCol As Integer, i As Integer
 Dim oSheets, oSheet, oCells
 Dim oRow(), oRows()

 TheSum = 0
 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCells = oSheet.getCellRangeByName("A2:C5")

 REM The getDataArray() method returns strings and numbers
 REM but is not used in this function.

Accessing cells directly | 17

 REM The getData() method returns only numbers and is applicable
 REM to this function.

 oRows() = oCells.getData()
 For iRow = LBound(oRows()) To UBound(oRows())
 oRow() = oRows(iRow)
 For iCol = LBound(oRow()) To UBound(oRow())
 TheSum = TheSum + oRow(iCol)
 Next
 Next
 Next
 SumCellsAllSheets = TheSum
End Function

Tip

When a macro is called as a Calc function, the macro cannot modify any value in the
sheet from which the macro was called, except the value of the cell that contains the
function.

Sorting

Consider sorting the data shown in Figure 19. First, sort on column B descending and then on
column A ascending.

Figure 19: Sort column B descending and column A
ascending

The example in Listing 9 demonstrates how to sort on these two columns.

Listing 9. SortRange sorts cells A1:C5 of Sheet 1

Sub SortRange
 Dim oSheet ' Calc sheet containing data to sort.
 Dim oCellRange ' Data range to sort.

 REM An array of sort fields determines the columns that are
 REM sorted. This is an array with two elements, 0 and 1.
 REM To sort on only one column, use:
 REM Dim oSortFields(0) As New com.sun.star.util.SortField
 Dim oSortFields(1) As New com.sun.star.util.SortField

 REM The sort descriptor is an array of properties.
 REM The primary property contains the sort fields.
 Dim oSortDesc(0) As New com.sun.star.beans.PropertyValue

 REM Get the sheet named "Sheet1"
 oSheet = ThisComponent.Sheets.getByName("Sheet1")

18 | Sorting

 REM Get the cell range to sort
 oCellRange = oSheet.getCellRangeByName("A1:C5")

 REM Select the range to sort.
 REM The only purpose would be to emphasize the sorted data.
 'ThisComponent.getCurrentController.select(oCellRange)

 REM The columns are numbered starting with 0, so
 REM column A is 0, column B is 1, etc.
 REM Sort column B (column 1) descending.
 oSortFields(0).Field = 1
 oSortFields(0).SortAscending = FALSE

 REM If column B has two cells with the same value,
 REM then use column A ascending to decide the order.
 oSortFields(1).Field = 0
 oSortFields(1).SortAscending = TRUE

 REM Setup the sort descriptor.
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Sort the range.
 oCellRange.Sort(oSortDesc())
End Sub

Overview of BeanShell, JavaScript, and Python macros

Introduction
Many programmers may not be familiar with LibreOffice Basic and so Calc supports macros written
in three other languages that may be more familiar. These are BeanShell, JavaScript, and Python.

The primary macro scripting language for Calc is LibreOffice Basic and the standard LibreOffice
installation provides a powerful integrated development environment (IDE) together with more
options for this language.

Macros are organized in the same way for all four scripting languages. The LibreOffice Macros
container holds all the macros that are supplied in the LibreOffice installation. The My Macros
library container holds your macros that are available to any of your LibreOffice documents. Each
document can also contain your macros that are not available to any other document.

When you use the macro recording facility, Calc creates the macro in LibreOffice Basic. To use the
other available scripting languages you must write the code yourself.

When you select to run a macro using Tools > Macros > Run Macro from the Menu bar, Calc
displays the Macro Selector dialog. This dialog enables selection and running of any available
macro, coded in any of the available languages (Figure 20).

When you select to edit a macro using Tools > Macros > Edit Macros from the Menu bar, Calc
displays the LibreOffice Basic IDE. This dialog enables selection and editing of any available
LibreOffice Basic macro, but not macros in other languages.

Introduction | 19

Figure 20: Macro Selector dialog

The component model used in LibreOffice is known as Universal Network Objects or UNO.
LibreOffice macros in any scripting language use a UNO runtime application programming
interface (API). The XSCRIPTCONTEXT interface is provided to macro scripts in all four
languages, and provides a means of access to the various interfaces which they might need to
perform some action on a document.

BeanShell macros
BeanShell is a Java-like scripting language that was first released in 1999.

When you select Tools > Macros > Organize Macros > BeanShell from the Menu bar, Calc
displays the BeanShell Macros dialog (Figure 21).

20 | BeanShell macros

Figure 21: BeanShell Macros dialog

Click the Edit button on the BeanShell Macros dialog to access the BeanShell Debug Window
(Figure 22).

Figure 22: BeanShell Debug Window

BeanShell macros | 21

Listing 10 is an example of a BeanShell macro that inserts the text “Hello World from BeanShell” in
cell A1 of the active Calc spreadsheet.

Listing 10. Sample BeanShell macro

import com.sun.star.uno.UnoRuntime;
import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.text.XText;

model = XSCRIPTCONTEXT.getDocument();

controller = model.getCurrentController();

view = UnoRuntime.queryInterface(XSpreadsheetView.class, controller);

sheet = view.getActiveSheet();

cell = sheet.getCellByPosition(0, 0);

cellText = UnoRuntime.queryInterface(XText.class, cell);

textCursor = cellText.createTextCursor();

cellText.insertString(textCursor, "Hello World from BeanShell", true);

return 0;

JavaScript macros
JavaScript is a high-level scripting language that was first released in 1995.

When you select Tools > Macros > Organize Macros > JavaScript from the Menu bar, Calc
displays the JavaScript Macros dialog (Figure 23).

Figure 23: JavaScript Macros dialog

22 | JavaScript macros

Click the Edit button on the JavaScript Macros dialog to access the Rhino JavaScript Debugger
(Figure 24). Detailed instructions for using this tool can be found on Mozilla’s website at
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Debugger.

Figure 24: Rhino JavaScript Debugger

Listing 11 is an example of a JavaScript macro that inserts the text “Hello World from JavaScript” in
cell A1 of the first sheet in a Calc spreadsheet.

JavaScript macros | 23

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Debugger

Listing 11. Sample JavaScript macro

importClass(Packages.com.sun.star.uno.UnoRuntime);
importClass(Packages.com.sun.star.sheet.XSpreadsheetDocument);
importClass(Packages.com.sun.star.container.XIndexAccess);
importClass(Packages.com.sun.star.table.XCellRange);
importClass(Packages.com.sun.star.table.XCell);

documentRef = XSCRIPTCONTEXT.getDocument();

spreadsheetInterface = UnoRuntime.queryInterface(XSpreadsheetDocument,
documentRef);

allSheets = UnoRuntime.queryInterface(XIndexAccess,
spreadsheetInterface.getSheets());

theSheet = allSheets.getByIndex(0);

Cells = UnoRuntime.queryInterface(XCellRange,theSheet);

cellA1 = Cells.getCellByPosition(0,0);

theCell = UnoRuntime.queryInterface(XCell,cellA1);

theCell.setFormula("Hello World from JavaScript");

Python macros
Python is a high-level, general-purpose programming language that was first released in 1991.

When you select Tools > Macros > Organize Macros > Python from the Menu bar, Calc displays
the Python Macros dialog (Figure 25).

Figure 25: Python Macros dialog

24 | Python macros

Facilities to edit and debug Python scripts are not currently integrated into the standard LibreOffice
user interface. However you can edit Python scripts with your preferred text editor or an external
IDE. The Alternative Python Script Organizer (APSO) extension eases the editing of Python
scripts, in particular when embedded in a document. Using APSO you can configure your preferred
source code editor, start the integrated Python shell and debug Python scripts. For more
information search for Python in the LibreOffice Help system and visit the Designing & Developing
Python Applications section of The Document Foundation’s wiki
(https://wiki.documentfoundation.org/Macros/Python_Design_Guide).

Listing 12 is an example of a Python macro that sets cell A1 of the first sheet in a Calc spreadsheet
to the text “Hello World from Python”.

Listing 12. Sample Python macro

import uno

def HelloWorld():

 doc = XSCRIPTCONTEXT.getDocument()

 cell = doc.Sheets[0]['A1']

 cell.setString('Hello World from Python')

 return

Conclusion

This chapter provides an overview of how to create libraries and modules, using the macro
recorder, using macros as Calc functions, and writing your own macros without the macro recorder.
Each topic deserves at least one chapter, and writing your own macros for Calc could easily fill an
entire book. In other words, this is just the beginning of what you can learn.

Additional detail about Calc’s macro facilities can be obtained from the Help system, The
Document Foundation’s wiki pages (for example https://wiki.documentfoundation.org/Macros) and
other Internet sources (for example the http://ask.libreoffice.org/ Q&A site).

Conclusion | 25

http://ask.libreoffice.org/
https://wiki.documentfoundation.org/Macros
https://wiki.documentfoundation.org/Macros/Python_Design_Guide

