
AMLibO no9

LibOBasic_09_StructDataTypes_Flat_A4_EN_v101.odt

Arrays
Used for grouping related items. The items are indexed (Long).
Dimensions
An array may have several sizes/dimensions (60 max.).
Declaring Arrays
 The index base is 0 (zero)! Change it with Option Base 1 (rarely needed).
Below: ix = index.

Static arrays Size is known at write-time

1 dimension (« vector »)
Dim T(ixMin To ixMax) As SomeType Dim T(1 To 12) As SomeType

1 dimension of 12 memory places, indexed 
from 1 to 12.

or
Dim T(ixMax) As SomeType Dim T(9) : 1 dimension of 10 items, indexed 

from 0 to 9.
Several dimensions

Dim T(ixMin1 To ixMax1, ixMin2 To 
ixMax2) As SomeType

Several dimensions (example with 2).
Dim T(1 To 12, 1 To 31) As Integer
2 dimensions (reserves 12 and 31 items)

or
Dim T(ixMax1, ixMax2, ...) As 

SomeType
Dim T(2,4) As String : 2 dimensions. 
3 items for the 1st, 5 for the 2nd .

Dynamic arrays Size is known at run-time

Dim MyArr() As SomeType
Dim MyArr As Variant }Declares an unknown dimension array. 

ReDim is necessary in the future.
☞ When declared as a Variant type, an array may home items of different types.

Nested Arrays/Jagged Arrays
Or array of arrays. Ex: used to access Calc range data values (.DataArray property).
An encompassing array (variant type) has arrays of data as items:
Dim MyArr As Variant
MyArr = Array(Array(1, 2, 3), Array(10, 20, 30), Array(7, 8, 9))
MyArr(0)(0) is 1; MyArr(2)(2) is 9, etc.
Accessing An Array Item
By index :
Dim MyArr(9) As Integer
MyArr(5) = 123

Dim MyArr(11, 31) As Integer
MyArr(5, 28) = 123

Array Functions And Instructions
Option Base 1 (instruction at module start – applies to the current module)

Forces array indices to start at 1 instead of 0.
IsArray() Returns True if the variable is an array type.

OK = IsArray(MyArr)
Array() Returns an initialized array from discreet values.

MyArr = Array("A", 2, Now())  'here, variant array
Redim (instruction) Re-dimensions an array

With data loss: Redim MyArr(dimension)
Without data loss: Redim Preserve MyArr(dimension)

Erase (Instruction) Deletes an array contents. Erase MyArr
In case of a dynamic array, frees memory.

LBound() Returns an array lower bound.
Defaults to the 1st dimension, otherwise specify : LBound(MyArr, 2)

UBound() Returns an array upper bound (same condition as LBound).
☞ An array has no defined dimension if

UBound(MyArr) = -1 and LBound(MyArr) = 0
Split() Creates an array (vector) by splitting a string on a delimiter.

A=Split("C:/file.txt", "/") → A(0)="C:", A(1)="file.txt"
Join() Reverts the Split() operation: merges an array items (vector) to get a 

string.
Join(A, "|") → "C:|file.txt"

Checking An Array Validity
MyArr is an array variable. It can be manipulated as such if it passes the three tests:
1. Does the variable exists? Not IsNull(MyArr)
2. Is it an array? IsArray(MyArr)
3. Is the array dimension defined? UBound(MyArr) >= LBound(MyArr)
Browsing A 1-Dimension Array (vector)

By Index

Dim MyArr(9) As Integer, i As Long
For i = LBound(MyArr) To UBound(MyArr)
Print MyArr(i)

Next i

By Items

Dim Val As 'compatible type with the array items
For Each Val In MyArr 
Print Val

Next

Browsing A 2-Dimension Array

Dim MyArr(2, 4) '3 rows, 4 columns
Dim i As Long, j As Long
For i = LBound(MyArr) To Ubound(MyArr)
For j = LBound(MyArr, 2) To UBound(MyArr, 2)
Print MyArr(i, j)

Next j
Next i

LibreOffe RefCard

LibreOfice BASIC
Structured Data Types

v. 1.01 – 11/03/2019
Inter.

Writen with LibreOffe v. 5.3.3 – Platform : All

Sorting Arrays
☞ No such predefined functionality (look for QuickSort on the web).

Copying Arrays

General Case A (For..Next) loop copying values from one array to the other. Might be 
looong!

Hint Assign then ReDim Preserve:
Array2 = Array1      'both var. -> same data
ReDim Preserve Array2(ADim)  '-> now 2 different data sets
☞ Only applies to simple types arrays (non object).

Using Arrays With Subprograms

As A Sub Parameter
Sub with an array parameter Sub UseArray(ByRef MyArr() As String)
Calling the Sub Dim MyArray(9) As String

UseArray(MyArray)
As A Function Result
Function returning an array Function GetArray() As Integer()

GetArray = SomeIntegerArray()
Return from the function Dim MyArray As Integer

MyArray = GetArray()
Arrays And Spreadsheet Ranges
(see RefCard #3)

Custom Types
Allow to aggregate several values (members) within a unique data type.
Data manipulation, parameter passing and function returns are simplified.
 Members may be of any type, simple or custom, but not array.

Type Declaration
Type MyCustomType
  SomeMember As SimpleType
  OtherMember As OtherSimpleType
End Type

Type MyEvent
  Name As String
  DateTime As Date
End Type

Declaring Custom Type Variables
Dim SomeVar As MyCustomType
 Limitation: a custom type is only visible in the very module it is declared. Thus, the As 

MyCustType is only possible within the same module where MyCustType is declared. 
See Factory/Accessor functions.

Using Custom Type Variables

Assigning MyVar.SomeMember = SomeValue
Reading SomeVar = MyVar.OtherMember
The With Keyword
Shortens items references With MyVar

  .SomeMember = SomeValue
End With
☞ Note the dot presence.

Collections
Structure for fast access to indexed data using keys.
A collection is handled as an Object type.
Stored items can be of any type, incl. Object.
 The key is of String type. In a collection, every key is unique.
Declaring A Collection Dim oColl As New Collection
Adding An Item
With a key oColl.Add(Item, "TheKey")

☞ Future read by key or by index.
☞ The key is not case-sensitive.
☞ The insertion position may be specified with 

Before/After :
oColl.Add(Item, "TheKey", After:="Key0")

Without a key oColl.Add(Item)
☞ Future read by index only.

Checking An Item Exists Try reading the key and handle the possible error.
(see below).

Getting An Item
By key Value = oColl("TheKey")
By index Value = oColl.Item(Index)
Replacing An Item Same key, new item value.

☞ Delete then Add.
Deleting An Item
By key oColl.Remove("TheKey")
By index oColl.Remove(Index)
Deleting All Items ReDim oColl As New Collection
Counting Items NumItems = oColl.Count

Checking An Item Existence
Try reading the key and handle the possible error.

Function ExistsItem(ByRef pColl As Object, pKey As String) As Boolean
Dim Item As Variant, Exists As Boolean
On Local Error Goto ErrHandler
Exists = False
Item = pColl(pKey)  'if pKey not found -> ErrHandler:
Exists = True
ErrHandler:
'do nothing

ExistsItem = Exists
End Function

Browsing A Collection
You may get all collection items by browsing them.
☞ It is not possible to browse by keys.
By Items Index

For i = 1 To oColl.Count
Value = oColl.Item(i) 'reading the data

Next i

By Items Direct Access

Dim AnItem As 'type compatible with the collection items
For Each AnItem In oColl
'do smthg with AnItem (data)

Next



Creating Classes In Basic
Embryo of object oriented programming (OOP).
☞ Limitations: no inheritance (use delegation), no polymorphism!
A LibreOffice Basic class might thus be seen as a glorified custom type to which we add 
some behavior (functions and subprograms).
Vocabulary
Class module Code module that contains the class declares.
Class A type that allows to create (instanciate) object variables.
Events Two events may be intercepted: object creation and destruction.
Member A variable that is internal to a class (not meant to be used outside).
Property Reflects an object state.
Method Realizes some action on/with the object.
Instance The object created from a class type.
Specifying A Class
A class specifications (members, events, properties, methods) are all written within a sin-
gle dedicated code module. In LibreOffice Basic, this module only differs from standard 
modules by its initial options.
☞ Hint: use a naming convention for class modules.

Initial Options
A class module should start with the options :
Option Explicit  'as usual
Option Compatible
Option ClassModule
Member Variables
They are internal to the class, thus declared as Private. 
☞ A class members should never be called from the outside through the instance but 

only using properties created for that purpose.
Private mName As String
Private mSheet As Object
Events
These are two internal subprograms, thus declared as Private.
Constructor Private Sub Class_Initialize()

To initialize the object being created.
Destructor Private Sub Class_Terminate()

To cleanup internal items of an object being destroyed.
 Security breach. It is highly advised to not have this destructor 

within your classes: because of an implementation bug in VisualBa-
sic, Class_Terminate() is a security breach and, as such, is re-
jected by antivirus (see CVE-2018-8174).

☞ Limitation: these subprograms can’t receive parameters.

Properties
Property = object state.
They are meant to be visible from the outer, thus declared as Public.
Reading (Get) (any data type, incl. object)

Public Property Get Name() As String
  Name = mName
End Property

Writing (Let) (all data types, except objects)
Public Property Let Name(ByRef pName As String)
  mName = pName
End Property

Writing (Set) (objects only)
Public Property Set Sheet(ByRef pSheet As Object)
  Set mSheet = pSheet
End Property

☞ A property may be prematurely exited using the Exit Property instruction.
A class may contain read-only or read-write properties. Write both Get and Let/Set prop-
erties whenever necessary.
Properties may access the class members, properties and methods.
Methods
Method = action on/from the object.
These are Sub and Function specific to the class. They may be internal (Private) or vis-
ible (Public). They are written just like standard Sub and Function, introduced with the 
Public or Private keyword. They have full access to the class members and properties.

Using Classes In Basic
Declaring/Creating An Object
Immediate instanciation Set MyObject = MyClass
Differed instanciation
(at 1st call) Dim MyObject As New MyClassMyObject = New MyClass
The class constructor is called at the time of the object instanciation.
Declaring an object As New MyClass is not possible out of the library in which the 
MyClass module exists. You’ll have to declare the object As Object.
 Limitation: a class is only visible in the very library where the class module exists.

See Factory/Accessor functions.

Accessing An Object Properties And Methods
Object items access syntax: object.property or object.method
The With..End With syntax may be used, like for custom types.
Freeing An Object
When an object is not useful anymore, you may destroy it: Set oMyObject = Nothing
The class destructor is called at that time.
☞ This instruction is not strictly necessary in Sub or Function, as local variables are de-

stroyed at exit but the destruction time is not under your control then.
The Set oMyObject = Nothing instruction:
– Shows the intention.
– Ensures the controlled object destruction time.

Factory/Accessor Functions
Custom Types And Classes Visibility Question
• A custom type is only visible in the module where it is declared. 
• A class is only visible in the library where it is declared.
A workaround is to prepare a factory function (aka accessor) to create such variables. 
Such function may be called from any other module or library.

 Use  Visibility ☞ Factory created in ☞ Declared

Cust. Type As MyType Same module Same module As Variant

Class As MyClass Same library Same library, other module As Object

Creating The Factory Function
 The factory function can also be used for variable initialization.
Custom Types

Function CreateMyCustomType() As MyCustomType
Dim oVar As MyCustomType
CreateMyCustomType = oVar

End Function

Classes

Function CreateMyClass() As MyClass
Dim oVar As New MyClass
CreateMyClass = oVar

End Function

Using The Factory Function

Custom Types
Dim MyVar As Variant
MyVar = CreateMyCustomType()
Classes
Dim oMyVar As Object
oMyVar = CreateMyClass()

Credits
Author : Jean-François Nifenecker – jean-francois.nifenecker@laposte.net
We are like dwarves perched on the shoulders of giants, and thus we are able to see more and farther than the 
latter. And this is not at all because of the acuteness of our sight or the stature of our body, but because we are  
carried aloft and elevated by the magnitude of the giants. (Bernard  of Chartres [attr.])

History

Version Date Comments

1.0 04/20/2019 First version

1.01 11/03/2019 Fixes

License
This RefCard is placed under the

CreativeCommons BY-SA v3 (fr) license
Information

https://creativecommons.org/licenses/by-sa/3.0/fr/

mailto:jean-francois.nifenecker@laposte.net
https://creativecommons.org/licenses/by-sa/3.0/fr/

