# Documentation/Calc Functions/ERF.PRECISE

ERF.PRECISE

## Category:

Statistical Analysis

## Summary:

Returns values of the Gaussian error function(integral), also called as error function, between 0 and the given limit.

## Syntax:

ERF.PRECISE(LowerLimit)

## Returns:

Returns a real number which is the Gaussian error function value for LowerLimit and it ranges from -1 to 1, i.e. (-1,1).

## Arguments:

LowerLimit is the limit of the integral. The calculation takes place between 0 and this limit, any real number, or a reference to the cell containing that number. It can be negative under which case the function reverses the integral, i.e. calculates the integral value from 0 to this limit with a negative sign multiplied to it.

• If the LowerLimit is not a real number or the referenced cell doesn't contain a real number then the function returns a value(#VALUE!) error.

The formula for ERF.PRECISE is:

where L is the LowerLimit.

The figure below illustrates the function ERF.PRECISE:

ERF.PRECISE function

For more details on ERF.PRECISE, visit Wikipedia.

## Examples:

Formula Description Returns
=ERF.PRECISE(1) The function calculates the Gaussian error integral value for LowerLimit as 1. 0.842700792949715
=ERF.PRECISE(-1) The function calculates the Gaussian error integral value for LowerLimit as -1. -0.842700792949715

None

ERF.PRECISE