Jump to content

Documentation/Calc Functions/ERF.PRECISE

From The Document Foundation Wiki
This page contains changes which are not marked for translation.

Function name:

ERF.PRECISE

Category:

Statistical Analysis

Summary:

Calculates values of the error function, also known as the Gauss error function. The error function is defined as an integral, which ERF.PRECISE evaluates between 0 and a specified limit.

Syntax:

ERF.PRECISE(Lower limit)

Returns:

Returns a real number in the range -1 < x < 1, which is the value of the error function between 0 and the specified limit.

Arguments:

Lower limit is a real number, or a reference to a cell containing that number, which is the limit of the integral that defines the error function. The calculation takes place between 0 and this limit. The error function is an odd function and ERF.PRECISE utilizes the relationship [math]\displaystyle{ \text{ERF.PRECISE}(-x)=-\text{ERF.PRECISE}(x) }[/math] to ensure that the correct result is returned for negative values of Lower limit.

  • If Lower limit is non-numeric, then ERF.PRECISE reports a #VALUE! error.

Additional details:

  • Calc's ERF and ERF.PRECISE functions perform similar calculations. However, ERF allows both upper and lower limits of the integral to be specified as arguments, whereas ERF.PRECISE always uses the value 0 for one of the limits. The requirements for ERF are specified in ODF 1.2; ERF.PRECISE is provided for interoperability with Microsoft Excel.
  • The formula for ERF.PRECISE is:
[math]\displaystyle{ \text{ERF.PRECISE}(x)~=~\frac{2}{\sqrt{\pi}}\:\int_{0}^{x}e^{-t^2}dt }[/math]
where x is the limit of the integral.
  • The following figure illustrates the ERF.PRECISE function:
Plot for ERF.PRECISE function
Plot for ERF.PRECISE function
  • The name space for ERF.PRECISE is COM.MICROSOFT.ERF.PRECISE.
  • For more information about the error function, visit Wikipedia's Error function page.

Examples:

Formula Description Returns
=ERF.PRECISE(A1) where cell A1 contains the value 0.5. Here the function calculates the integral between 0 and 0.5. Note that the formula =ERF(A1) returns the same result. 0.520499877813047
=ERF.PRECISE(-0.5) Here the function calculates the integral between -0.5 and 0. Note that the formula =ERF(-0.5) returns the same result. -0.520499877813047

Related LibreOffice functions:

ERF

ERFC

ERFC.PRECISE

ODF standard:

None

Related (or similar) Excel functions:

ERF.PRECISE since v.2010.