FR/Math/Solutions entrainements

From The Document Foundation Wiki
Jump to navigation Jump to search

Solutions des entraînements

Entraînement 1 (les bases)

La formule peut être codée par
[math]\displaystyle{ {\left(a\mathrm{-}b\right)}^{2}\mathrm{=}{a}^{2}+{b}^{2}\mathrm{-}2ab }[/math] (a-b)^2=a^2+b^2-2 a b
[math]\displaystyle{ \frac{1}{R}\mathrm{=}\frac{1}{{R}_{1}}+\frac{1}{{R}_{2}} }[/math] 1 over R=1 over R_1+1 over R_2
[math]\displaystyle{ 3\text{m}\mathrm{\cdot }5\text{m}\mathrm{=}15{\text{m}}^{2} }[/math] 3 "m" cdot 5 "m" = 15 "m"^2
[math]\displaystyle{ \mathrm{1,6726}\mathrm{\cdot }{10}^{\mathrm{-}27}\text{kg}\mathrm{=}\mathrm{1,0073}\text{u} }[/math] 1,6726 cdot 10^-27 "kg" = 1,0073 "u"

Entraînement 2 (les parenthèses)

La formule peut être codée par
[math]\displaystyle{ a\mathrm{\cdot }\frac{b}{c}\mathrm{=}\frac{a\mathrm{\cdot }b}{c} }[/math] a cdot {b over c}={a cdot b} over c
[math]\displaystyle{ \frac{8y\mathrm{-}3}{5n}\mathrm{-}\frac{y+2}{2n} }[/math] {8 y-3} over {5 n} - {y+2} over {2 n}
[math]\displaystyle{ I\mathrm{=}\mathrm{\lbrack }3;8) \, }[/math] I= \[ 3 ; 8 \)
[math]\displaystyle{ \mathrm{\lbrace }x\mathrm{=}2 \, }[/math] left lbrace x=2 right none

Entraînement 3 (les modèles)

La formule peut être codée par
[math]\displaystyle{ 2x\mathrm{-}1\mathrm{\le }3\mathrm{-}5x }[/math] 2 x-1 <= 3-5 x
[math]\displaystyle{ x \in A }[/math] x in A
[math]\displaystyle{ A\mathrm{\cap }B\mathrm{=}\mathrm{\varnothing } }[/math] A intersection B= emptyset
[math]\displaystyle{ x\mathrm{\cdot }y\mathrm{=}0\mathrm{\Leftrightarrow }x\mathrm{=}0\mathrm{\vee }y\mathrm{=}0 }[/math] x cdot y=0 dlrarrow x=0 or y=0
[math]\displaystyle{ \sqrt[3]{{x}^{2}}\mathrm{=}{x}^{2\mathrm{/}3} }[/math] nroot 3 x^2= x^{2 / 3}
[math]\displaystyle{ \frac{1}{2}\left(\frac{2}{3}+\frac{4}{5}\right) }[/math] 1 over 2 left ( 2 over 3 + 4 over 5 right )
[math]\displaystyle{ A\mathrm{=}\left(\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots \right) }[/math] A=left lbrace 1 over 2 , 1 over 3 , 1 over 4 , 1 over 5 , dotslow right rbrace
[math]\displaystyle{ \underset{1}{\overset{10}{\mathrm{\int }}}{n}^{2}\mathit{dn} }[/math] int from 1 to 10 n^2 dn
[math]\displaystyle{ \begin{array}{c}2\left(x\mathrm{-}3\right)+2\mathrm{=}4\left(x+2\right)\mathrm{\Leftrightarrow }\\ 2x\mathrm{-}4\mathrm{=}4x+8\mathrm{\Leftrightarrow }\\ x\mathrm{=}\mathrm{-}6\end{array} }[/math] 2(x-3)+2=4(x+2) dlrarrow newline 2 x -4=4 x+8 dlrarrow newline x=-6

Entraînement 4 (les symboles additionnels)

La formule peut être codée par
[math]\displaystyle{ O\mathrm{=}2\pi r \, }[/math] O= 2 %pi r
[math]\displaystyle{ 8\text{V}\mathrm{=}2\text{A}\mathrm{\cdot }4\Omega }[/math] 8 "V"=2 "A" cdot 4 %OMÉGA
[math]\displaystyle{ \frac{Q}{\Delta t} }[/math] Q over {%DELTA t}

Entraînement 5 (les polices)

La formule peut être codée par
Fr.HT Math Couleur exemple.PNG "#" nitalic{ color red {f e} color green {2 4} color blue {a 0} }

Entraînement 6 (les formules chimiques)

La formule peut être codée par
[math]\displaystyle{ {\mathrm{Fe}}^{2+} \, }[/math] Fe^{2+{}}
[math]\displaystyle{ {}_{6}^{12}\mathrm{C} \, }[/math] C lsub 6 lsup 12
[math]\displaystyle{ {\mathrm{CH}}_{4}+{\mathrm{2O}}_{2}\rightarrow {\mathrm{CO}}_{2}+2{\mathrm{H}}_{2}\mathrm{O} }[/math] CH_4+2O_2 toward CO_2 + 2 H_2 O

Chapitre précédent : Annexe 5 Formules chimiques