Documentación/Funciones de Calc/COMBINAT
TDF LibreOffice en español Document Liberation Project Blogs comunitarios Weblate Nextcloud Redmine Preguntas y respuestas Donar
Nombre de la función:
COMBINAT
Categoría:
Matemáticas
Resumen:
Calcula el número de combinaciones al elegir un subconjunto de "k" objetos de un grupo de "n" objetos (sin repetición).
Sintaxis:
COMBINAT(Number1; Number2)
Devuelve:
Devuelve un entero positivo, que es el número de combinaciones (sin repetición) para los argumentos dados.
Argumentos:
Número1 es un número entero no negativo, o una referencia a una celda que contiene ese número, que es el número de objetos en el grupo.
Número2 es un número entero no negativo, o una referencia a una celda que contiene ese número, que es el número de objetos a elegir del grupo.
- Si Número1 o Número2 no son numéricos, COMBINAT mostrará el error #¡VALOR!.
- Si Número1 o Número2 no es un valor entero, COMBINAT lo convertirá en un número entero, tomando su valor mínimo.
- Si Número1 o Número2 es menor que 0, COMBINAT mostrará un error de argumento no válido (Err:502).
- Si Número1 < Número2, COMBINAT mostrará un error de argumento no válido (Err:502).
Detalles adicionales:
- La fórmula que especifica el número de combinaciones posibles, si se seleccionan k elementos de una colección de n elementos (sin repetición y cuando el orden no importa), con k ≤ n, es la siguiente:[math]\displaystyle{ \text{COMBIN}(n,k) ~=~\frac{n!}{k!(n-k)!} }[/math]
- El número resultante de combinaciones a menudo se denomina "n elige k" y ocurre en varias áreas de las matemáticas, incluso como un coeficiente binomial. También tiene varias notaciones, incluidas [math]\displaystyle{ C(n,k) }[/math], [math]\displaystyle{ _{n}C_{k} }[/math] y <math>\binom{n}{k}< /matemáticas>.
- Dispone de más información en la página de Wikipedia Combinación
Ejemplos:
Fórmula | Descripción | Devuelve |
---|---|---|
=COMBINAT(3; 2) | De un grupo de 3 elementos, se pueden elegir 2 de 3 maneras. | 3 |
=COMBINAT(7,6;3,3) | COMBINAT trunca ambos argumentos, a 7 y 3 respectivamente. De un grupo de 7 artículos, se pueden elegir 3 de 35 maneras. | 35 |
=COMBINAT(D1; D2)
=COMBINAT(D1; D2) donde las celdas D1 y D2 contienen los valores 52 y 13 respectivamente. |
A partir de una baraja estándar de 52 cartas, hay 635013559600 formas de repartir una mano de bridge compuesta por 13 cartas. | 635013559600 |
Funciones de LibreOffice relacionadas:
Norma ODF:
Funciones equivalentes de Excel:
COMBIN